Sample records for key ash layers

  1. Effects of a layer of vegetative ash layer on wettable and water repellent soil hydrology

    NASA Astrophysics Data System (ADS)

    Bodí, Merche B.; Doerr, Stefan H.; Cerdà, Artemi; Mataix-Solera, Jorge

    2010-05-01

    Following a wildfire, a layer of vegetative ash often covers the ground until it is dissolved or redistributed by wind and water erosion. Much of the existing literature suggests that the ash layer temporally reduces infiltration by clogging soil pores or by forming a surface crust (Mallik et al., 1984; Onda et al., 2008). However, an increasing number of field-based studies have found that, at least in the short term, ash increases infiltration by storing rainfall and protecting the underlying soil from sealing (Cerdà and Doerr, 2008; Woods and Balfour, 2008). On the other hand, after a fire the soil may have produced, enhanced or reduced its water repellency (Doerr et al., 2000). Very few studies have been taken into account the interaction of the ash and the repellent soil. The layer of ash may have similar role as a litter layer in delaying runoff and reducing erosion by storing water. In order to examine this interaction, it was been made a series of experiments using a laboratory rainfall simulation. It has been assessed the effects of an ash layer i) on a wettable and water repellent soil (WDPT > 7200s), ii) with different ash thicknesses (bare soil and 5 mm, 15 mm and 30 mm of ash), iii) preceding and following the first rain after a fire when the ground is still wetted and after being partially dried. Three replicates were done, being a total of 40 simulations. The ash used was collected from a Wildfire in Teruel (Spain) during summer of 2009. The simulations were conducted in metal boxes of 30x30 cm and filled with 3 cm of soil. The slope of the box was set at 10° (17%) and the intensity applied was 78-84 mm h-1during 40 minutes. The splash detachment was determined also using four splash cups. Overland flow and subsurface drainage was collected at 1-minute intervals and the former stored every 5 min to allow determination of sediment concentrations, yield and erosion rates. Each sample was examined at the end in terms of water repellency, infiltration

  2. Permeation Properties and Pore Structure of Surface Layer of Fly Ash Concrete

    PubMed Central

    Liu, Jun; Qiu, Qiwen; Xing, Feng; Pan, Dong

    2014-01-01

    This paper presents an experimental study on the nature of permeation properties and pore structure of concrete surface layers containing fly ash. Concretes containing different dosages of fly ash as a replacement for cement (15% and 30% by weight of total cement materials, respectively) were investigated. Concrete without any fly ash added was also employed as the reference specimen. Laboratory tests were conducted to determine the surface layer properties of concrete including chloride transport, apparent water permeability and pore structure. The results demonstrate that incorporation of fly ash, for the early test period, promotes the chloride ingress at the surface layer of concrete but substituting proportions of fly ash may have little impact on it. With the process of chloride immersion, the chloride concentration at the surface layer of concrete with or without fly ash was found to be nearly the same. In addition, it is suggested that the water permeability at the concrete surface area is closely related to the fly ash contents as well as the chloride exposure time. Pore structure was characterized by means of mercury intrusion porosimetry (MIP) test and the scanning electron microscopy (SEM) images. The modification of pore structure of concrete submersed in distilled water is determined by the pozzolanic reaction of fly ash and the calcium leaching effect. The pozzolanic reaction was more dominant at the immersion time of 180 days while the calcium leaching effect became more evident after 270 days. PMID:28788677

  3. Availability of residual phosphorus from broiler litter ash and layer manure ash amended soil for Paspalum vaginatum uptake

    USDA-ARS?s Scientific Manuscript database

    It has been hypothesized by several scientists that poultry litter ash could be used as a slow releasing phosphorus fertilizer that will become available over time. To test this hypothesis, a greenhouse study was conducted using a broiler litter ash, layer manure ash and calcium phosphate to determ...

  4. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill

    PubMed Central

    Kong, Qingna; Qiu, Zhanhong; Shen, Dongsheng

    2016-01-01

    Municipal solid waste incinerator (MSWI) bottom ash is often used as the protection layer for the geomembrane and intermediate layer in the landfill. In this study, three sets of simulated landfills with different mass proportion of MSWI bottom ash layer to municipal solid waste (MSW) layer were operated. Cu and Zn concentrations in the leachates and MSW were monitored to investigate the effect of MSWI bottom ash layer on the Cu and Zn discharge from the landfill. The results showed that the Zn discharge was dependent on the mass proportion of MSWI bottom ash layer. The pH of landfill was not notably increased when the mass proportion of MSWI bottom ash layer to MSW layer was 1 : 9, resulting in the enhancement of the Zn discharge. However, Zn discharge was mitigated when the mass proportion was 2 : 8, as the pH of landfill was notably promoted. The discharge of Cu was not dependent on the mass proportion, due to the great affinity of Cu to organic matter. Moreover, Cu and Zn contents of the sub-MSW layer increased due to the MSWI bottom ash layer. Therefore, the MSWI bottom ash layer can increase the potential environmental threat of the landfill. PMID:28044139

  5. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill.

    PubMed

    Kong, Qingna; Yao, Jun; Qiu, Zhanhong; Shen, Dongsheng

    2016-01-01

    Municipal solid waste incinerator (MSWI) bottom ash is often used as the protection layer for the geomembrane and intermediate layer in the landfill. In this study, three sets of simulated landfills with different mass proportion of MSWI bottom ash layer to municipal solid waste (MSW) layer were operated. Cu and Zn concentrations in the leachates and MSW were monitored to investigate the effect of MSWI bottom ash layer on the Cu and Zn discharge from the landfill. The results showed that the Zn discharge was dependent on the mass proportion of MSWI bottom ash layer. The pH of landfill was not notably increased when the mass proportion of MSWI bottom ash layer to MSW layer was 1 : 9, resulting in the enhancement of the Zn discharge. However, Zn discharge was mitigated when the mass proportion was 2 : 8, as the pH of landfill was notably promoted. The discharge of Cu was not dependent on the mass proportion, due to the great affinity of Cu to organic matter. Moreover, Cu and Zn contents of the sub-MSW layer increased due to the MSWI bottom ash layer. Therefore, the MSWI bottom ash layer can increase the potential environmental threat of the landfill.

  6. Lidar observation of Eyjafjallajoekull ash layer evolution above the Swiss Plateau

    NASA Astrophysics Data System (ADS)

    Simeonov, Valentin; Dinoev, Todor; Parlange, Mark; Serikov, Ilya; Calpini, Bertrand; Wienhold, F.; Engel, I.; Brabec, M.; Crisian, A.; Peter, T.; Mitev, Valentin; Matthey, R.

    2010-05-01

    The Iceland volcano Eyjafjallajökull started to emit significant amounts of volcanic ash and SO2 on 15th April 2010, following the initial eruption on 20th March 2010. In the next days, the ash was dispersed over large parts of Europe resulting in the closure of the major part of the European airspace. Information about spatial and temporal evolution of the cloud was needed urgently to define the conditions for opening the airspace. Satellite, airborne and ground observations together with meteorological models were used to evaluate the cloud propagation and evolution. While the horizontal extents of the volcanic cloud were accurately captured by satellite images, it remained difficult to obtain accurate information about the cloud base and top height, density and dynamics. During this event lidars demonstrated that they were the only ground based instruments allowing monitoring of the vertical distribution of the volcanic ash. Here we present observational results showing the evolution of the volcanic layer over the Swiss plateau. The measurements were carried out by one Raman lidar located in Payerne, two elastic lidars located in Neuchatel and Zurich, and a backscatter sonde launched from Zurich. The observations by the lidars have shown very similar time evolution, coherent with the backscatter sonde profiles and characterized by the appearance of the ash layer on the evening of 16th, followed by descend to 2-3 km during the next day and final mixing with the ABL on 19th. Simultaneous water vapor data from the Payerne lidar show low water content of the ash layer. The CSEM and EPFL gratefully acknowledge the financial support by the European Commission under grant RICA-025991.

  7. Migration of nitrate, nitrite, and ammonia through the municipal solid waste incinerator bottom ash layer in the simulated landfill.

    PubMed

    Yao, Jun; Chen, Luxi; Zhu, Huayue; Shen, Dongsheng; Qiu, Zhanhong

    2017-04-01

    Simulated landfill was operated for 508 days to investigate the effect of municipal solid waste incinerator (MSWI) bottom ash layer on the migration of nitrate, nitrite, and ammonia when it was used as the intermediate layer in the landfill. The result suggested that the MSWI bottom ash layer could capture the nitrate, nitrite, and ammonia from the leachate. The adsorption of the nitrate, nitrite, and ammonia on the MSWI bottom ash layer was saturated at the days 396, 34, and 97, respectively. Afterwards, the nitrogen species were desorbed from the MSWI bottom ash layer. Finally, the adsorption and desorption could reach the equilibrium. The amounts of adsorbed nitrate and nitrite on the MSWI bottom ash layer were 1685.09 and 7.48 mg, respectively, and the amount of the adsorbed and transformed ammonia was 13,773.19 mg, which was much higher than the desorbed. The water leaching test and synthetic precipitation leaching procedure (SPLP) results showed that the leachable nitrate, nitrite, and ammonia in the MSWI bottom ash were greatly increased after the landfill operation, suggesting that the adsorbed nitrogen could be finally leached out. Besides, the results also showed that MSWI bottom ash layer could affect the release of nitrate and ammonia at the initial stage of the landfill. However, it had little effect on the release of nitrite.

  8. The normalised wildfire ash index (NWAI): a remote sensing approach for quantifying post-wildfire ash loads

    NASA Astrophysics Data System (ADS)

    Chris, Chafer; Doerr, Stefan; Santin, Cristina

    2017-04-01

    The impacts of wildfire ash, the powdery residue from fuel burning, on post-fire ecosystems are many and diverse. Ash is a source of nutrients and can help the recovery of vegetation. It can also contain substantial amounts of recalcitrant carbon and thus contribute to long-term carbon storage. In its initial state, the ash layer on the ground can protect the bare soil, mitigating post-fire water erosion by runoff. However, when the adsorbent capability of this layer is exceeded, ash can be transported into the hydrological network and be a major contributor to water contamination. Ash can also contribute to post-fire mass movements such as debris flows. The eco-hydro-geomorphic impacts of ash on post-fire ecosystems are therefore important, but remain poorly quantified. A fundamental step in that direction is the understanding of ash production and distribution at the landscape scale, which would allow incorporating ash as a key parameter into post-fire risk models. We have developed a new spectral index (NWAI) using Landsat imagery to model the spatial distribution of ash loads in the post-fire landscape. It was developed based on a severe wildfire that burnt 13,000 ha of dry eucalyptus forest near Sydney and has also been tested for a forested area burnt by the catastrophic 2009 Black Saturday fires near Melbourne. Although ecosystem and fire characteristics differed substantially between the Sydney and Melbourne fires, our NWAI index performs well. In this contribution we will discuss the (i) the principles of the NWAI and (ii) its potential for pollution risk forecasting.

  9. Differentiation of volcanic ash-fall and water-borne detrital layers in the Eocene Senakin coal bed, Tanjung Formation, Indonesia

    USGS Publications Warehouse

    Ruppert, L.F.; Moore, T.A.

    1993-01-01

    The Sangsang deposit of the Eocene Senakin coal bed, Tanjung Formation, southeastern Kalimantan, Indonesia, contains 11 layers, which are thin ( 70%). These layers are characterized by their pelitic macroscopic texture. Examination of eight of the layers by scanning-electron microscopy, energy-dispersive X-ray, and X-ray diffraction analyses show that they are composed primarily of fairly well-crystallized kaolinite, much of which is vermicular. Accessory minerals include abundant Ti oxide, rare-earth element-rich Ca and A1 phosphates, quartz that luminescences in the blue color range, and euhedral to subhedral pyroxene, hornblende, zircon, and sanidine. Although this mineral suite is suggestive of volcanic ash-fall material, only the four pelitic layers in the middle of the bed are thought to be solely derived from volcanic ash-falls on the basis of diagnostic minerals, replaced glass shards, and lithostratigraphic relationships observed in core and outcrop. The three uppermost pelitic layers contain octahedral chromites, some quartz grains that luminesce in teh orange color range, and some quartz grains that contain two-phase fluid inclusions. These layers are interpreted to be derived from a combination of volcanic ash-fall material and hydrologic transport of volcaniclastic sediment. In contrast, the lowermost pelitic layer, which contains large, rounded FeMg-rich chromites, is thought to have been dominantly deposited by water. The source of the volcanic ash-fall material may have been middle Tertiary volcanism related to plate tectonic activity between Kalimantan and Sulawesi. The volcanic ash was deposited in sufficient amounts to be preserved as layers within the coal only in the northern portions of the Senakin region: the southern coal beds in the region do not contain pelitic layers. ?? 1993.

  10. Numerical model for a watering plan to wash out organic matter from the municipal solid waste incinerator bottom ash layer in closed system disposal facilities.

    PubMed

    Ishii, Kazuei; Furuichi, Toru; Tanikawa, Noboru

    2009-02-01

    Bottom ash from municipal solid waste incineration (MSWI) is a main type of waste that is landfilled in Japan. The long-term elution of organic matter from the MSWI bottom ash layers is a concern because maintenance and operational costs of leachate treatment facilities are high. In closed system disposal facilities (CSDFs), which have a roof to prevent rainfall from infiltrating into the waste layers, water must be supplied artificially and its quantity can be controlled. However, the quantity of water needed and how to apply it (the intensity, period and frequency) have not been clearly defined. In order to discuss an effective watering plan, this study proposes a new washout model to clarify a fundamental mechanism of total organic carbon (TOC) elution behavior from MSWI bottom ash layers. The washout model considers three phases: solid, immobile water and mobile water. The parameters, including two mass transfer coefficients of the solid-immobile water phases and immobile-mobile water phases, were determined by one-dimensional column experiments for about 2 years. The intensity, period and frequency of watering and other factors were discussed based on a numerical analysis using the above parameters. As a result, our washout model explained adequately the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurred (pH approximately 8.3). The determined parameters and numerical analysis suggested that there is a possibility that the minimum amount of water needed for washing out TOC per unit weight of MSWI bottom ash layer could be determined, which depends on the two mass transfer coefficients and the depth of the MSWI bottom ash layer. Knowledge about the fundamental mechanism of the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurs, clarified by this study, will help an effective watering plan in CSDFs.

  11. To fractionate municipal solid waste incineration bottom ash: Key for utilisation?

    PubMed

    Sormunen, Laura Annika; Rantsi, Riina

    2015-11-01

    For the past decade, the Finnish waste sector has increasingly moved from the landfilling of municipal solid waste towards waste incineration. New challenges are faced with the growing amounts of municipal solid waste incineration bottom ash, which are mainly landfilled at the moment. Since this is not a sustainable or a profitable solution, finding different utilisation applications for the municipal solid waste incineration bottom ash is crucial. This study reports a comprehensive analysis of bottom ash properties from one waste incineration plant in Finland, which was first treated with a Dutch bottom ash recovery technique called advanced dry recovery. This novel process separates non-ferrous and ferrous metals from bottom ash, generating mineral fractions of different grain sizes (0-2 mm, 2-5 mm, 5-12 mm and 12-50 mm). The main aim of the study was to assess, whether the advanced bottom ash treatment technique, producing mineral fractions of different grain sizes and therefore properties, facilitates the utilisation of municipal solid waste incineration bottom ash in Finland. The results were encouraging; the bottom ash mineral fractions have favourable behaviour against the frost action, which is especially useful in the Finnish conditions. In addition, the leaching of most hazardous substances did not restrict the utilisation of bottom ash, especially for the larger fractions (>5 mm). Overall, this study has shown that the advanced bottom ash recovering technique can be one solution to increase the utilisation of bottom ash and furthermore decrease its landfilling in Finland. © The Author(s) 2015.

  12. Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards

    PubMed Central

    Lowe, John; Barton, Nick; Blockley, Simon; Ramsey, Christopher Bronk; Cullen, Victoria L.; Davies, William; Gamble, Clive; Grant, Katharine; Hardiman, Mark; Housley, Rupert; Lane, Christine S.; Lee, Sharen; Lewis, Mark; MacLeod, Alison; Menzies, Martin; Müller, Wolfgang; Pollard, Mark; Price, Catherine; Roberts, Andrew P.; Rohling, Eelco J.; Satow, Chris; Smith, Victoria C.; Stringer, Chris B.; Tomlinson, Emma L.; White, Dustin; Albert, Paul; Arienzo, Ilenia; Barker, Graeme; Borić, Dušan; Carandente, Antonio; Civetta, Lucia; Ferrier, Catherine; Guadelli, Jean-Luc; Karkanas, Panagiotis; Koumouzelis, Margarita; Müller, Ulrich C.; Orsi, Giovanni; Pross, Jörg; Rosi, Mauro; Shalamanov-Korobar, Ljiljiana; Sirakov, Nikolay; Tzedakis, Polychronis C.

    2012-01-01

    Marked changes in human dispersal and development during the Middle to Upper Paleolithic transition have been attributed to massive volcanic eruption and/or severe climatic deterioration. We test this concept using records of volcanic ash layers of the Campanian Ignimbrite eruption dated to ca. 40,000 y ago (40 ka B.P.). The distribution of the Campanian Ignimbrite has been enhanced by the discovery of cryptotephra deposits (volcanic ash layers that are not visible to the naked eye) in archaeological cave sequences. They enable us to synchronize archaeological and paleoclimatic records through the period of transition from Neanderthal to the earliest anatomically modern human populations in Europe. Our results confirm that the combined effects of a major volcanic eruption and severe climatic cooling failed to have lasting impacts on Neanderthals or early modern humans in Europe. We infer that modern humans proved a greater competitive threat to indigenous populations than natural disasters. PMID:22826222

  13. Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards.

    PubMed

    Lowe, John; Barton, Nick; Blockley, Simon; Ramsey, Christopher Bronk; Cullen, Victoria L; Davies, William; Gamble, Clive; Grant, Katharine; Hardiman, Mark; Housley, Rupert; Lane, Christine S; Lee, Sharen; Lewis, Mark; MacLeod, Alison; Menzies, Martin; Müller, Wolfgang; Pollard, Mark; Price, Catherine; Roberts, Andrew P; Rohling, Eelco J; Satow, Chris; Smith, Victoria C; Stringer, Chris B; Tomlinson, Emma L; White, Dustin; Albert, Paul; Arienzo, Ilenia; Barker, Graeme; Boric, Dusan; Carandente, Antonio; Civetta, Lucia; Ferrier, Catherine; Guadelli, Jean-Luc; Karkanas, Panagiotis; Koumouzelis, Margarita; Müller, Ulrich C; Orsi, Giovanni; Pross, Jörg; Rosi, Mauro; Shalamanov-Korobar, Ljiljiana; Sirakov, Nikolay; Tzedakis, Polychronis C

    2012-08-21

    Marked changes in human dispersal and development during the Middle to Upper Paleolithic transition have been attributed to massive volcanic eruption and/or severe climatic deterioration. We test this concept using records of volcanic ash layers of the Campanian Ignimbrite eruption dated to ca. 40,000 y ago (40 ka B.P.). The distribution of the Campanian Ignimbrite has been enhanced by the discovery of cryptotephra deposits (volcanic ash layers that are not visible to the naked eye) in archaeological cave sequences. They enable us to synchronize archaeological and paleoclimatic records through the period of transition from Neanderthal to the earliest anatomically modern human populations in Europe. Our results confirm that the combined effects of a major volcanic eruption and severe climatic cooling failed to have lasting impacts on Neanderthals or early modern humans in Europe. We infer that modern humans proved a greater competitive threat to indigenous populations than natural disasters.

  14. Designing laboratory rainfall simulation experiments to examine the effects of a layer of vegetative ash on soil hydrology in Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Bodí, Merche B.; Cerdà, Artemi; Doerr, Stefan H.; Mataix-Solera, Jorge

    2010-05-01

    Vegetative ash formed during forest wildfires often blankets the ground. Some studies have found the ash layer to increases infiltration by storing rainfall and protecting the underlying soil from sealing (Cerdà, and Doerr, 2008; Woods and Balfour, 2008), but at the same time, others identified it as a potential cause of increased overland flow due to sealing the soil pores or crusting (Mallik et al., 1984; Onda et al., 2008). The variability in the effects of ash depends mainly on the ash type and temperature of combustion, ash thickness and soil type (Kinner and Moody, 2007; Larsen et al., 2009). In order to study the effect of the ash layer on the soil hydrology and soil erosion under i) intense thunderstorms, ii) wettable and water repellent soil and iii) different ash thicknesses, rainfall simulation experiments were performed in a small plot (0.09 m2) in order to reach the highest accuracy. The simulator comprises a constant head tank of 40x40 cm with 190 hypodermic needles of 0.5 mm. A randomization screen served to break up the raindrops and ensure random drop landing positions (Kamphorst, 1987). The average of the intensities applied in the experiment was 82.5 ± 4.13 mm h-1 during 40 minutes. In order to verify the constancy of the intensity it was measured before and after each simulation. The rainfall was conducted in a metal box of 30x30 cm within 1 m of distance from the randomization screen. The slope of the box was set at 10° (17%). It is designed to collect overland flow and subsurface flow through the soil. Each rainfall simulation was conducted on 3 cm of both wettable and water repellent soil (WDPT>7200s). They are the same soil but one transformed into hydrophobic. The treatments carried out are: a) bare soil, b) 5 mm of ash depth, c) 15 mm of ash depth and d) 30 mm of ash depth, with three replicates. The ash was collected from a wildfire and the thicknesses are in the range of the reported in the literature. The first replicate was used for

  15. Bio fuel ash in a road construction: impact on soil solution chemistry.

    PubMed

    Thurdin, R T; van Hees, P A W; Bylund, D; Lundström, U S

    2006-01-01

    Limited natural resources and landfill space, as well as increasing amounts of ash produced from incineration of bio fuel and municipal solid waste, have created a demand for useful applications of ash, of which road construction is one application. Along national road 90, situated about 20 km west of Sollefteå in the middle of Sweden, an experiment road was constructed with a 40 cm bio fuel ash layer. The environmental impact of the ash layer was evaluated from soil solutions obtained by centrifugation of soil samples taken on four occasions during 2001-2003. Soil samples were taken in the ash layer, below the ash layer at two depths in the road and in the ditch. In the soil solutions, pH, conductivity, dissolved organic carbon (DOC) and the total concentration of cations (metals) and anions were determined. Two years after the application of the ash layers in the test road, the concentrations in the ash layer of K, SO4, Zn, and Hg had increased significantly while the concentration of Se, Mo and Cd had decreased significantly. Below the ash layer in the road an initial increase of pH was observed and the concentrations of K, SO4, Se, Mo and Cd increased significantly, while the concentrations of Cu and Hg decreased significantly in the road and also in the ditch. Cd was the element showing a potential risk of contamination of the groundwater. The concentrations of Ca in the ash layer indicated an ongoing hardening, which is important for the leaching rate and the strength of the road construction.

  16. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects

    USGS Publications Warehouse

    Bodi, Merche B.; Martin, Deborah; Balfour, Victoria N.; Santin, Cristina; Doerr, Stefan H.; Pereira, Paulo; Cerda, Artemi; Mataix-Solera, Jorge

    2014-01-01

    , although physical reactions with CO2 and when moistened produce further changes in ash characteristics.As a new material present after a wildland fire, ash can have profound effects on ecosystems. It affects biogeochemical cycles, including the C cycle, not only within the burned area, but also globally. Ash incorporated into the soil increases temporarily soil pH and nutrient pools and changes physical properties such as albedo, soil texture and hydraulic properties including water repellency. Ash modifies soil hydrologic behavior by creating a two-layer system: the soil and the ash layer, which can function in different ways depending on (1) ash depth and type, (2) soil type and (3) rainfall characteristics. Key parameters are the ash's water holding capacity, hydraulic conductivity and its potential to clog soil pores. Runoff from burned areas carries soluble nutrients contained in ash, which can lead to problems for potable water supplies. Ash deposition also stimulates soil microbial activity and vegetation growth.Further work is needed to (1) standardize methods for investigating ash and its effects on the ecosystem, (2) characterize ash properties for specific ecosystems and wildland fire types, (3) determine the effects of ash on human and ecosystem health, especially when transported by wind or water, (4) investigate ash's controls on water and soil losses at slope and catchment scales, (5) examine its role in the C cycle, and (6) study its redistribution and fate in the environment.

  17. The Role of Authigenic Volcanic Ash in Marine Sediment

    NASA Astrophysics Data System (ADS)

    Scudder, R.; McKinley, C. C.; Thomas, D. J.; Murray, R. W.

    2016-12-01

    Marine sediments are a fundamental archive of the history of weathering and erosion, biological productivity, volcanic activity, patterns of deep-water formation and circulation, and a multitude of other earth, ocean, and atmosphere processes. In particular, the record and consequences of volcanic eruptions have long fascinated humanity. Volcanic ash layers are often visually stunning, and can have thicknesses of 10s of cm or more. While the ash layer records are of great importance by themselves, we are missing a key piece of information-that of the very fined grained size fractions. Dispersed ash is the very fine grained-component that has either been mixed into the bulk sediment by bioturbation, or is deposited from subaqueous eruptions, erosion of terrestrial deposits, general input during time periods of elevated global volcanism, or other mechanisms, plays an important role in the marine sediment. The presence of dispersed ash in the marine record has previously been relatively over-looked as it is difficult to identify petrographically due to its commonly extremely fine grain size and/or alteration to authigenic clay. The dispersed ash, either altered or unaltered, is extremely difficult to differentiate from detrital/terrigenous/authigenic clay, as they are all "aluminosilicates". Here we apply a combined geochemical, isotopic, and statistical technique that enables us to resolve volcanic from detrital terrigenous inputs at DSDP/ODP/IODP sites from both the Brazil Margin and the Northwest Pacific Oceans. Incorporating the combined geochemical/statistical techniques with radiogenic isotope records allows us to address paleoceanographic questions in addition to studies of the effect of sediment fluxes on carbon cycling, the relationship between volcanic ash and biological productivity of the open ocean and nutrient availability for subseafloor microbial life.

  18. Wildfire Ash: Chemical Composition, Ash-Soil Interactions and Environmental Impacts

    NASA Astrophysics Data System (ADS)

    Brook, Anna; Hamzi, Seham; Wittenberg, Lea

    2015-04-01

    produced ash has significant and not always constructive pedological, ecological, hydrological and geomorphological effects and impacts (Shakesby, 2011). Abundant scientific information is assembled either from control fires by collecting samples before and after wildfire event, or conducting laboratory experiments exanimating data under truly isolated conditions (Lugassi et al., 2013). However, an integration and synthesis of the knowledge about ash including deeper understanding of inter-correlation between chemical, physical and morphological compounds in open post-burn environment and its possible interactions in soil formation or impact on soil composition are highly needed. The main aim of the presented study was to advance the science of soil-fire relationship by recognizing the remains ash as a new soil-forming factor, on par with the traditionally recognized factors: parent material, topography, time, climate, organisms, and recently recognized human activity as the sixth factor. This research was conducted to develop new methods to assess impacts and quantify the contributions/influences of post-fire products, mainly ash, on soil composition and soil properties in post-burned environment. We conducted several controlled experiments using 40 soil samples (typical Mediterranean Rendzina soil, pH 6.84, a grayish-brown, humus- and free calcium carbonate- rich, intra-zonal). The samples include bare soils and different types and loads of forest litter, were exposed to different temperatures (200° C, 400° C and 600° C) in a muffle furnace for 2 hours (Pereira et al. 2011) as fire temperature plays a key role in determining ash properties. The ash produced at a low temperatures (50% carbon and retains many of the structural characteristics of the parent material. At higher temperatures, the residue ash is greyish, consisted of very fine particles that preserve almost none of the original structural characteristics of the fuel (Woods and Balfour, 2008) creating

  19. Seasonal Variations in Ash Content of Some Michigan Forest Floor Fuels

    Treesearch

    Robert M. Loomis

    1982-01-01

    Samples from the forest floor litter layer were collected seasonally from under medium to fully stocked larger sapling to sawtimber stands in Lower Michigan to study seasonal ash content changes. The total ash and silica-free ash content of tree foliage in the upper part of the litter layer differed little from season to season. Differences in ash content due to...

  20. On the visibility of airborne volcanic ash and mineral dust

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; Sauer, D. N.; Minikin, A.; Reitebuch, O.; Dahlkötter, F.; Mayer, B. C.; Emde, C.; Tegen, I.; Gasteiger, J.; Petzold, A.; Veira, A.; Kueppers, U.; Schumann, U.

    2012-12-01

    After the eruption of the Eyjafjalla volcano (Iceland) in April 2010 which caused the most extensive restrictions of the airspace over Europe since the end of World War II, the aviation safety concept of avoiding "visible ash", i.e. volcanic ash that can be seen by the human eye, was recommended. However so far, no clear definition of "visible ash" and no relation between the visibility of an aerosol layer and related aerosol mass concentrations are available. The goal of our study is to assess whether it is possible from the pilot's perspective in flight to detect the presence of volcanic ash and to distinguish between volcanic ash and other aerosol layers just by sight. In our presentation, we focus the comparison with other aerosols on aerosol types impacting aviation: Besides volcanic ash, dust storms are known to be avoided by aircraft. We use in-situ and lidar data as well photographs taken onboard the DLR research aircraft Falcon during the Saharan Mineral Dust Experiments (SAMUM) in 2006 and 2008 and during the Eyjafjalla volcanic eruption in April/May 2010. We complement this analysis with numerical modelling, using idealized radiative transfer simulations with the 3D Monte Carlo radiative transfer code MYSTIC for a variety of selected viewing geometries. Both aerosol types, Saharan mineral dust and volcanic ash, show an enhanced coarse mode (> 1 μm) aerosol concentration, but volcanic ash aerosol additionally contains a significant number of Aitken mode particles (< 150 nm). Volcanic ash is slightly more absorbing than mineral dust, and the spectral behaviour of the refractive index is slightly different. According to our simulations, these differences are not detectable just by human eye. Furthermore, our data show, that it is difficult to define a lower threshold for the visibility of an aerosol layer because the visual detectability depends on many parameters, including the thickness of the aerosol layer, the brightness and color contrast between the

  1. Effects of fire on ash thickness in a Lithuanian grassland and short-term spatio-temporal changes

    NASA Astrophysics Data System (ADS)

    Pereira, P.; Cerdà, A.; Úbeda, X.; Mataix-Solera, J.; Martin, D.; Jordán, A.; Burguet, M.

    2012-12-01

    Ash thickness is a key variable in the protection of soil against erosion agents after planned and unplanned fires. Thicker ash provides better protection against raindrop impact and reduces the runoff response by retaining water and promoting water infiltration although little is known about the distribution and the evolution of the ash layer after the fires. Ash thickness measurements were conducted along two transects (flat and sloping areas) following a a grid experimental design. Both transects extended from the burned area into an adjacent unburned area. We analysed ash thickness evolution according to time and fire severity. In order to interpolate data with accuracy and identify the techniques with the least bias, several interpolation methods were tested in the grid plot. Overall, the fire had a low severity. The fire significantly reduced the ground cover, especially on sloping areas owing to the higher fire severity and/or less biomass previous to the fire. Ash thickness depends on fire severity and is thin where fire severity was higher and thicker in lower fire severity sites. The ash thickness decreased with time after the fire. Between 4 and 16 days after the fire, ash was transported by wind. The major reduction took place between 16 and 34 days after the fire as a result of rainfall, and was more efficient where fire severity was higher. Between 34 and 45 days after the fire no significant differences in ash thickness were identified among ash colours and only traces of the ash layer remained. The omni-directional experimental variograms shown that variable structure did not change importantly with the time, however, the most accurate interpolation methods were different highlighting the slight different patterns of ash thickness distribution with the time. The ash spatial variability increased with the time, particularly on the slope, as a result of water erosion.

  2. Lunar ash flows - Isothermal approximation.

    NASA Technical Reports Server (NTRS)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  3. Fly ash in landfill top covers - a review.

    PubMed

    Brännvall, E; Kumpiene, J

    2016-01-01

    Increase of energy recovery from municipal solid waste by incineration results in the increased amounts of incineration residues, such as fly ash, that have to be taken care of. Material properties should define whether fly ash is a waste or a viable resource to be used for various applications. Here, two areas of potential fly ash application are reviewed: the use of fly ash in a landfill top cover either as a liner material or as a soil amendment in vegetation layer. Fly ashes from incineration of three types of fuel are considered: refuse derived fuel (RDF), municipal solid waste incineration (MSWI) and biofuel. Based on the observations, RDF and MSWI fly ash is considered as suitable materials to be used in a landfill top cover liner. Whereas MSWI and biofuel fly ashes based on element availability for plant studies, could be considered suitable for the vegetation layer of the top cover. Responsible application of MSWI ashes is, however, warranted in order to avoid element accumulation in soil and elevation of background values over time.

  4. Stochastic Modelling of the Hydraulic Anisotropy of Ash Impoundment Sediment

    NASA Astrophysics Data System (ADS)

    Slávik, Ivan

    2017-12-01

    In the case reported here the impoundments of a 400 MW coal heated power plant with an annual production of about 1.5 million tons of fuel ash are of the cross-valley type, operated by the simple and cheap „upstream method”. The aim of the research was to determine overall and local values of the permeability in horizontal as well as in vertical direction and the anisotropy of the thin-layered sedimented ash. The coal ashes are hydraulically transported through pipelines in form of a slurry and periodically floated on the beach of the impoundment. The ashes are deposited in the form of a thin-layered sediment, with random alternation of layers with a coarser or finer granularity. The ash impoundment sediment is anthropogenic sediment with horizontally laminated texture. Therefore, the sediment is anisotropic from the viewpoint of water seepage. The knowledge of the permeability and the seepage anisotropy of the sediment is a basic requirement for the design of an appropriate dewatering system. The seepage anisotropy of the ash sediment has been checked by means of stochastic modelling, based on the correlation between the effective grain diameter and the coefficient of permeability of the ash: the effective grain diameter and the thickness of individual layers have been proposed to be random events.

  5. Wildland fire ash: future research directions

    NASA Astrophysics Data System (ADS)

    Bodí, Merche B.; Martins, Deborah A.; Cerdà, Artemi; Balfour, Victoria N.; Santin, Cristina; Doerr, Stefan H.; Pereira, Paulo; Mataix-Solera, Jorge

    2014-05-01

    Ash is a key component of the forest fires affected land (Cerdà, 1998; Bodí et al., 2011; Pereira et al., 2013a). Ash controls the hydrological processes and determines the water repellency (Dlapa et al., 2012) and the infiltration rates (Cerdà and Doerr, 2008;). Moreover, ash is the key factor on runoff initiation and then on the soil erosion. Little is known about the impact of ash in different ecosystems, but during the last decade a substantial increase in the papers that show the role of ash in the Earth and Soil System were published (Bodí et al., 2012; Pereira et al., 2013b).. Ash is being found as the key component of the post-fire pedological, geomorphological and hydrological response after forest fires (Fernández et al., 2012; Martín et al., 2012; Bodí et al., 2013; Guénon et al., 2013; Pereira et al., 2013c). A recent State-of-the-Art review about wildland fire ash (Bodí et al., 2014) compiles the knowledge regarding the production, composition and eco-hydro-geomorphic effects of wildland fire ash. In the present paper we indicate the knowledge gaps detected and suggest topics that need more research effort concerning: i) data collection and analysis techniques: a) To develop standardized sampling techniques that allow cross comparison among sites and avoid inclusion of the underlying soil unless the burned surface soil forms part of the ash layer, b) To develop standardized methods to define and characterize ash, including its color, physical properties such as particle size distribution or density, proportion of pyrogenic C, chemical and biological reactivity and persistence in the environment, c) To validate, calibrate and test measurements collected through remote sensing with on-the-ground measurements. ii) ash production, deposition redistribution and fate: d) To untangle the significance of the effects of maximum temperature reached during combustion versus the duration of heating, e) To understand the production of ash by measuring its

  6. Volcanic ash dosage calculator: A proof-of-concept tool to support aviation stakeholders during ash events

    NASA Astrophysics Data System (ADS)

    Dacre, H.; Prata, A.; Shine, K. P.; Irvine, E.

    2017-12-01

    The volcanic ash clouds produced by Icelandic volcano Eyjafjallajökull in April/May 2010 resulted in `no fly zones' which paralysed European aircraft activity and cost the airline industry an estimated £1.1 billion. In response to the crisis, the Civil Aviation Authority (CAA), in collaboration with Rolls Royce, produced the `safe-to-fly' chart. As ash concentrations are the primary output of dispersion model forecasts, the chart was designed to illustrate how engine damage progresses as a function of ash concentration. Concentration thresholds were subsequently derived based on previous ash encounters. Research scientists and aircraft manufactures have since recognised the importance of volcanic ash dosages; the accumulated concentration over time. Dosages are an improvement to concentrations as they can be used to identify pernicious situations where ash concentrations are acceptably low but the exposure time is long enough to cause damage to aircraft engines. Here we present a proof-of-concept volcanic ash dosage calculator; an innovative, web-based research tool, developed in close collaboration with operators and regulators, which utilises interactive data visualisation to communicate the uncertainty inherent in dispersion model simulations and subsequent dosage calculations. To calculate dosages, we use NAME (Numerical Atmospheric-dispersion Modelling Environment) to simulate several Icelandic eruption scenarios, which result in tephra dispersal across the North Atlantic, UK and Europe. Ash encounters are simulated based on flight-optimal routes derived from aircraft routing software. Key outputs of the calculator include: the along-flight dosage, exposure time and peak concentration. The design of the tool allows users to explore the key areas of uncertainty in the dosage calculation and to visualise how this changes as the planned flight path is varied. We expect that this research will result in better informed decisions from key stakeholders during

  7. Reduction of Leaching Impacts by Applying Biomass Bottom Ash and Recycled Mixed Aggregates in Structural Layers of Roads

    PubMed Central

    Cabrera, Manuel; Galvin, Adela P.; Agrela, Francisco; Beltran, Manuel G.; Ayuso, Jesus

    2016-01-01

    This research is focused on analyzing the environmental pollution potential of biomass bottom ashes as individual materials, as mixtures manufactured with biomass bottom ashes and granular construction aggregates, and these mixtures treated with cement. For the environmental assessment of all of the samples and materials mentioned, the following leaching procedures have been performed: the compliance batch test of UNE-EN 12457-3:2003 for aggregates and bottom ashes; the column test according to NEN 7343:1994 for the mixtures prepared in the laboratory; and the tank test by EA NEN 7375:2004 for analyzing the behavior of mixtures after their solidification/stabilization with 5% cement. After the discussion of the data, the reduction of the pollution load of the most hazardous biomass bottom ashes after their combination with different aggregates can be confirmed, which implies their possible application in civil infrastructures, such as filler embankments and road construction layers, without negatively impacting the environment. In addition, the positive effect of the stabilization/solidification of the cement-treated mixtures with a reduction of the heavy metals that were released at the highest levels, namely As, Hg Cr, Ni, Cu, Se and Mo, was proven. PMID:28773352

  8. Asian dust deposition rendered volcanic-ash-soils the ability to retain radiocesium in Japan

    NASA Astrophysics Data System (ADS)

    Nakao, A.; Uno, S.; Tanaka, R.; Yanai, J.; Kosaki, T.; Kubotera, H.

    2017-12-01

    Although mineral dusts are known to contribute greatly to marine and terrestrial biogeochemical cycles, their role in increasing the retention of radio-Cs in soil is less clear. Fine-mica, which is one of the main component of Asian dust, has a specific adsorption site for radio-Cs. Therefore, historical deposition of Asian dust may have rendered soils in Japan capable of retaining radio-Cs. This effect may be particularly important for volcanic-ash derived soils since they originally contain only small amounts of fine-mica. To test this hypothesis, we investigated 47 soils in volcanic ash-fall layers at four sites (Site 1, 2, 3, 4) with a different distance from volcanic crater of Mt. Aso, Japan, which is 10, 14, 16, and 32 km, respectively. Soils were collected from surface to the volcanic layer with 7.3 ka in Site 1 and 2, whereas from surface to the layer with 30 ka in Site 3 and 4. Ages of key layers were confirmed by tephrochronology and 14C dating method. Oxygen isotopic ratio (d18O) value of fine-quartz was used as a fingerprint of Asian dust in each volcanic layer. Average d18O value for fine-quartz from Site 3 and 4 was 16.0 ± 0.4‰, which was homogeneous and very close to those of fine-quartz in Gobi Desert, while clearly different from those of SiO2 in volcanic rocks. Fine-quartz and fine-mica contents were larger with increased distance from the volcanic crater and showed a linear relationship. Cumulative amount of fine-mica in the layers deposited during the last glacial period (i.e. 10 ka to 30 ka) was about five times larger than those deposited during the postglacial period (i.e. < 10 ka). These results clearly indicated that fine-mica in the volcanic ash-fall layers are mostly derived from Asian dust. Since radio-Cs adsorption experiment revealed that the ability to retain radio-Cs increased linearly as soils contained larger amount of fine-mica, we concluded that the inclusion rate of Asian dust to volcanic ash determine the ability to retain

  9. Regeneratively cooled coal combustor/gasifier with integral dry ash removal

    DOEpatents

    Beaufrere, A.H.

    1982-04-30

    A coal combustor/gasifier is disclosed which produces a low or medium combustion gas fired furnances or boilers. Two concentric shells define a combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

  10. Ash production and dispersal from sustained low-intensity Mono-Inyo eruptions

    NASA Astrophysics Data System (ADS)

    Black, Benjamin A.; Manga, Michael; Andrews, Benjamin

    2016-08-01

    Recent rhyolitic volcanism has demonstrated that prolonged low-intensity ash venting may accompany effusive dome formation. We examine the possibility and some consequences of episodes of extended, weak ash venting at the rhyolitic Mono-Inyo chain in Eastern California. We describe ash-filled cracks within one of the youngest domes, Panum Crater, which provide a textural record of ash venting during dome effusion. We use synchrotron-based X-ray computed tomography to characterize the particles in these tuffisites. Particle sizes in well-sorted tuffisite layers agree well with grain size distributions observed during weak ash venting at Soufrière Hills Volcano, Montserrat, and yield approximate upper and lower bounds on gas velocity and mass flux during the formation of those layers. We simulate ash dispersal with Ash3d to assess the consequences of long-lived Mono-Inyo ash venting for ash deposition and the accompanying volcanic hazards. Our results highlight the sensitivity of large-scale outcomes of volcanic eruptions to small-scale processes.

  11. Benthic boundary layer processes in the Lower Florida Keys

    USGS Publications Warehouse

    Lavoie, D.L.; Richardson, M.D.; Holmes, C.

    1997-01-01

    This special issue of Geo-Marine Letters, "Benthic Boundary Layer Processes in the Lower Florida Keys," includes 12 papers that present preliminary results from the Key West Campaign. The Dry Tortugas and Marquesas Keys test sites were selected by a group of 115 scientists and technicians to study benthic boundary layer processes in a carbonate environment controlled by bioturbation and biogeochemical processes. Major activities included remote sediment classification; high-frequency acoustic scattering experiments; sediment sampling for radiological, geotechnical, biological, biogeochemical, physical, and geoacoustic studies; and hydrodynamic studies using an instrumented tetrapod. All these data are being used to improve our understanding of the effects of environmental processes on sediment structure and behavior.

  12. Submergence of black ash logs to control emerald ash borer and preserve wood for American Indian basketmaking

    Treesearch

    Therese M. Poland; Tina M. Ciaramitaro; Marla R. Emery; Damon J. Crook; Ed Pigeon; Angie Pigeon

    2015-01-01

    Indigenous artisans in the Great Lakes region rely on the ring-porous property of black ash Fraxinus nigra Marshall (Oleaceae), which allows annual layers of xylem to be easily separated to make baskets that are important economic resources and vessels of culture. The emerald ash borer Agrilus planipennis Fairmaire (Coleoptera:...

  13. Regeneratively cooled coal combustor/gasifier with integral dry ash removal

    DOEpatents

    Beaufrere, Albert H.

    1983-10-04

    A coal combustor/gasifier is disclosed which produces a low or medium combustion gas for further combustion in modified oil or gas fired furnaces or boilers. Two concentric shells define a combustion volume within the inner shell and a plenum between them through which combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

  14. Geochemistry of Sediment from IODP Expeditions 322 and 333: Terrigenous Provenance, Dispersed Ash, and the Nankai 'Subduction Factory'

    NASA Astrophysics Data System (ADS)

    Scudder, R.; Murray, R. W.; Schindlbeck, J.; Kutterolf, S.

    2013-12-01

    Terrigenous material and volcanic ash play important roles in the IODP Seismogenic Zone and 'Subduction Factory' initiatives. Particularly relevant to these projects are studies of geochemical budgets including how fluids within subducting sediment will be affected by hydration/dehydration reactions. Of great importance is the volcanic component, which occurs both as discrete ash layers and as ash dispersed throughout the sediment column and their related altered products in the down-going plate. Based on bulk sedimentary geochemical studies of IODP Sites C0011 and C0012 drilled during Expeditions 322 and 333, we will show the importance of dispersed ash to the Nankai subduction zone and document important changes in terrigenous provenance to these locations. The major elemental characteristics of the hemipelagic mudstones are remarkably consistent both downcore and between Site C0011 and Site C0012. For example, the average Si/Al ratio at both sites C0011 and C0012 is 3.3 × 0.2. This is observed in other key major elemental indicators as well (e.g., Fe2O3). Alkali elements, Trace elements and REEs exhibit greater downcore variability while remaining consistent between the sites. Ternary diagrams such as La-Th-Sc and Sc-Cr-Th as well as other geochemical plots (i.e., Sm/Al vs. Th/Al) show that Site C0011 and Site C0012 are fairly clustered, derived primarily from a continental arc source, and that distal sources to the sediment are important in addition to a modest and varying component from the proximal Izu-Bonin Island Arc. Multivariate statistical treatments are further being applied to the datasets from these sites to allow a better determination of the number of sources that make up the bulk sediment (and their provenance). Q-mode Factor Analysis was performed in order to determine the composition of potential end member contributions to these sites. The multivariate statistics indicate Site C0011 and C0012 each have 4-5 end members that explain 98% of the

  15. Regional-scale input of dispersed and discrete volcanic ash to the Izu-Bonin and Mariana subduction zones

    NASA Astrophysics Data System (ADS)

    Scudder, Rachel P.; Murray, Richard W.; Schindlbeck, Julie C.; Kutterolf, Steffen; Hauff, Folkmar; McKinley, Claire C.

    2014-11-01

    We have geochemically and statistically characterized bulk marine sediment and ash layers at Ocean Drilling Program Site 1149 (Izu-Bonin Arc) and Deep Sea Drilling Project Site 52 (Mariana Arc), and have quantified that multiple dispersed ash sources collectively comprise ˜30-35% of the hemipelagic sediment mass entering the Izu-Bonin-Mariana subduction system. Multivariate statistical analyses indicate that the bulk sediment at Site 1149 is a mixture of Chinese Loess, a second compositionally distinct eolian source, a dispersed mafic ash, and a dispersed felsic ash. We interpret the source of these ashes as, respectively, being basalt from the Izu-Bonin Front Arc (IBFA) and rhyolite from the Honshu Arc. Sr-, Nd-, and Pb isotopic analyses of the bulk sediment are consistent with the chemical/statistical-based interpretations. Comparison of the mass accumulation rate of the dispersed ash component to discrete ash layer parameters (thickness, sedimentation rate, and number of layers) suggests that eruption frequency, rather than eruption size, drives the dispersed ash record. At Site 52, the geochemistry and statistical modeling indicates that Chinese Loess, IBFA, dispersed BNN (boninite from Izu-Bonin), and a dispersed felsic ash of unknown origin are the sources. At Site 1149, the ash layers and the dispersed ash are compositionally coupled, whereas at Site 52 they are decoupled in that there are no boninite layers, yet boninite is dispersed within the sediment. Changes in the volcanic and eolian inputs through time indicate strong arc-related and climate-related controls.

  16. Use of weathered and fresh bottom ash mix layers as a subbase in road constructions: environmental behavior enhancement by means of a retaining barrier.

    PubMed

    Del Valle-Zermeño, R; Chimenos, J M; Giró-Paloma, J; Formosa, J

    2014-12-01

    The presence of neoformed cement-like phases during the weathering of non-stabilized freshly quenched bottom ash favors the development of a bound pavement material with improved mechanical properties. Use of weathered and freshly quenched bottom ash mix layers placed one over the other allowed the retention of leached heavy metals and metalloids by means of a reactive percolation barrier. The addition of 50% of weathered bottom ash to the total subbase content diminished the release of toxic species to below environmental regulatory limits. The mechanisms of retention and the different processes and factors responsible of leaching strongly depended on the contaminant under concern as well as on the chemical and physical factors. Thus, the immediate reuse of freshly quenched bottom ash as a subbase material in road constructions is possible, as both the mechanical properties and long-term leachability are enhanced. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Trace elements in coal ash

    USGS Publications Warehouse

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    In this fact sheet, the form, distribution, and behavior of trace elements of environmental interest in samples of coal fly ash were investigated in response to concerns about element mobility in the event of an ash spill. The study includes laboratory-based leaching experiments to examine the behavior of trace elements, such as arsenic (As) and chromium (Cr), in response to key environmental factors including redox conditions (degree of oxygenation), which are known to vary with depth within coal ash impoundments and in natural ecosystems. The experiments show that As dissolves from samples of coal fly ash into simulated freshwater under both oxic (highly oxygenated) and anoxic (poorly oxygenated) conditions, whereas dissolved Cr concentrations are very redox dependent. This U.S. Geological Survey research helps define the distribution of elements such as As in coal ash and shows that element mobility can vary considerably under different conditions expected in the environment.

  18. Leaching behaviour of coal-ash: a case study.

    PubMed

    Hajarnavis, M R; Bhide, A D

    2003-10-01

    Leaching of trace elements from fly ash dumps to subsoil layer due to the rain water results in contamination of ground water. The ground water pollution due to fly ash deposition on land so occurring was assessed by simulating the disposal site conditions using two lysimeter with two different soils. Leachate was collected and analysed daily to help understand the phenomenon of leaching of fly-ash constituents in the environment. The trace metals and physico-chemical parameters of fly ash and soil used were measured before and after the experiment. Results of analysis of soil and fly ash samples were then compared with the results of lysimeter-I and lysimeter-II. The study reveals that metals respond differently at dumping site while reacting with soil and water.

  19. Ash cloud aviation advisories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, T.J.; Ellis, J.S.; Schalk, W.W.

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet andmore » every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.« less

  20. Rainfall and wet and dry cycle's impact on ash thickness. A laboratory experiment

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Keestra, Saskia; Peters, Piet; Cerdà, Artemi

    2016-04-01

    Ash is the most important and effective soil protection in the immediate period after the fire (Cerda and Doerr, 2008; Pereira et al., 2015a). This protection can last for days or weeks depending on the fire severity, topography of the burned area and post-fire meteorological conditions. In the initial period after the fire, ash is easily transported by wind. However after the first rainfalls, ash is eroded, or bind in soil surface (Pereira et al., 2013, 2015a). Ash thickness has implications on soil protection. The soil protection against the erosion and the ash capacity to retain water increases with the ash thickness (Bodi et al., 2014). Ash cover is very important after fire because store water and releases into soil a large amount of nutrients, fundamental to vegetation recuperation (Pereira et al., 2014). Despite the importance of ash thickness in post fire environments, little information is available about the effects of rainfall and wet and dry cycle's effects on ash thickness. This work aims to fill this gap. The objective of this study is to investigate the impacts of rainfall and wet and dry cycles in the ash thickness of two different under laboratory conditions. Litter from Oak (Quercus robur) and Spruce (Picea abis) were collected to and exposed during 2 hours to produce ash at 200 and 400 C. Subsequently a layer of 15 mm ash was spread on soil surface in small boxes (24x32 cm) and then subjected to rainfall simulation. Boxes were placed at a 17% of inclination and a rainfall intensity of 55 mm/h during 40 minutes was applied. After the rainfall simulation the plots were stored in an Oven at the temperature of 25 C during four days, in order to identify the effects of wet and dry cycles (Bodi et al., 2013). Ash thickness was measured after the first rainfall (AFR), before the second rainfall (BSR) - after the dry period of 4 days - and after the second rainfall (ASR). In each box a grid with 57 points was designed in order to analyse ash thickness

  1. Size fractionation as a tool for separating charcoal of different fuel source and recalcitrance in the wildfire ash layer.

    PubMed

    Mastrolonardo, Giovanni; Hudspith, Victoria A; Francioso, Ornella; Rumpel, Cornelia; Montecchio, Daniela; Doerr, Stefan H; Certini, Giacomo

    2017-10-01

    Charcoal is a heterogeneous material exhibiting a diverse range of properties. This variability represents a serious challenge in studies that use the properties of natural charcoal for reconstructing wildfires history in terrestrial ecosystems. In this study, we tested the hypothesis that particle size is a sufficiently robust indicator for separating forest wildfire combustion products into fractions with distinct properties. For this purpose, we examined two different forest environments affected by contrasting wildfires in terms of severity: an eucalypt forest in Australia, which experienced an extremely severe wildfire, and a Mediterranean pine forest in Italy, which burned to moderate severity. We fractionated the ash/charcoal layers collected on the ground into four size fractions (>2, 2-1, 1-0.5, <0.5mm) and analysed them for mineral ash content, elemental composition, chemical structure (by IR spectroscopy), fuel source and charcoal reflectance (by reflected-light microscopy), and chemical/thermal recalcitrance (by chemical and thermal oxidation). At both sites, the finest fraction (<0.5mm) had, by far, the greatest mass. The C concentration and C/N ratio decreased with decreasing size fraction, while pH and the mineral ash content followed the opposite trend. The coarser fractions showed higher contribution of amorphous carbon and stronger recalcitrance. We also observed that certain fuel types were preferentially represented by particular size fractions. We conclude that the differences between ash/charcoal size fractions were most likely primarily imposed by fuel source and secondarily by burning conditions. Size fractionation can therefore serve as a valuable tool to characterise the forest wildfire combustion products, as each fraction displays a narrower range of properties than the whole sample. We propose the mineral ash content of the fractions as criterion for selecting the appropriate number of fractions to analyse. Copyright © 2016. Published

  2. Ash after forest fires. Effects on soil hydrology and erosion

    NASA Astrophysics Data System (ADS)

    Bodí, Merche B.

    2013-04-01

    Hillslopes were though to be most susceptible to enhanced hydro-geomorphological responses immediately following burning, with susceptibility declining during the first months or years depending on the soil and vegetation recovery. However, Cerdà (1998) found some indices in that immediately after the fire, the thin wettable ash layer that typically covers the ground could absorb rainfall and prevent or delay the onset of overland flow and associated erosion. Therefore the time lag while ash remains on the ground become of crucial importance to protect the soil after a wildfire. The effect of this ash layer was rarely been considered in detail because ash has often been reduced or redistributed by wind or water erosion before the onset of monitoring and thus the data collection typically begun some weeks or month after the fire. The first papers focussed only on ash and its hydrological effects were published by Cerdà and Doerr (2008) and by Woods and Balfour (2008). The results showed that the soil covered with ash indeed reduced and delayed surface runoff, reduced soil splash detachment and produced lower sediment yield compared to bare terrain. However, these findings arose more questions, as for instance: Why in other research there were indices that ash reduces infiltration? what is the mechanism by which why ash reduces overland flow? The research went further with Bodí PhD. First of all, it was crucial the agreement on the fact that the material "ash" is very variable depending on the original vegetation and the type and temperature of combustion. Therefore ash properties are different between wildfires even and within a fire. This is the main reason of its different effects and thus ash not always reduces runoff and sediment yield. In this way, depending on the nature of ash, it can increase overland flow if it is crusted (usually it contains a high content of calcium carbonate), it is water repellent (with high contents of organic carbon and specially

  3. Wildfire ash: its production and hydro-eco-geomorphic effects in forested landscapes

    NASA Astrophysics Data System (ADS)

    Doerr, S. H.; Bodi, M.; Santin, C.; Balfour, V.; Woods, S.; Mataix-Solera, J.; Cerda, A.; Shakesby, R.

    2012-12-01

    Fire, whether ignited naturally or by humans, is one of the most important disturbance agents in many of the world's forested ecosystems. Amongst its direct consequences is the deposition of a range of solid and largely powdery residues on the ground consisting of charred organic material including charcoal and residual mineral material. This fragile 'ash' layer can be removed in large quantities from hillslopes within days by wind or water erosion, with the latter facilitating its transfer to the hydrological system. Probably as a result of its ephemeral nature and not being soil, vegetation or litter, ash has seen limited attention in studies on hydrological impacts of wildfire. Those few studies available show that ash can substantially affect the hydrological system. When present on hillslopes as a water-absorbent layer, it can reduce surface runoff, protect soil against rainsplash erosion, and its leachates can reportedly reduce soil erodibility by promoting flocculation of dispersed clays. In contrast, however, ash can also increase surface runoff by blocking soil pores or by forming a crust. Furthermore, ash is thought capable of promoting debris flows. Its net effect probably depends on the nature of the ash and soil including their respective water repellency levels, the pore size distribution of the soil, and general terrain and rainfall characteristics. Being very mobile, ash can be the source of substantial organic and inorganic sediment inputs, and of solute influxes into the fluvial system. These can affect water quality sometimes with detrimental effects on aquatic organisms and domestic water supply. This presentation aims to provide an overview of the current knowledge base regarding the production and potential effects of wildfire ash on the hydrological system in and beyond forested landscapes..The late Scott Woods examining a thick ash layer following a severe fire in a conifer forest. Montana, USA.

  4. Performance of double-layer biofilter packed with coal fly ash ceramic granules in treating highly polluted river water.

    PubMed

    Jing, Zhaoqian; Li, Yu-You; Cao, Shiwei; Liu, Yuyu

    2012-09-01

    To improve trickling filters' denitrification efficiency, a biofilter with a trickling upper layer and a submerged lower layer was developed and applied in treating highly polluted river water. It was packed with porous coal fly ash ceramic granules. Its start-up characteristics, influence of hydraulic loading rates (HLR), carbon/nitrogen (C/N) ratio and filter depth on pollutants removal were investigated. The results indicated this biofilter was started quickly in 16 days with river sediment as inoculum. Alternating nitrification and denitrification were achieved when water flowed downwards. COD and nitrogen were mainly removed in the upper layer and the lower layer, respectively. With HLR of 4.0-5.0m(3)/(m(2)d), chemical oxygen demand (COD), ammonium (NH(4)(+)-N) and total nitrogen (TN) in the effluent were below 50, 5 and 15 mg/L, respectively. This biofilter removed more than 80% of COD, 85% of NH(4)(+)-N and 60% of TN with C/N ratios ranging from 6 to 10. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. State of volcanic ash dispersion prediction

    NASA Astrophysics Data System (ADS)

    Eliasson, Jonas; Palsson, Thorgeir; Weber, Konradin

    2017-04-01

    The Eyjafjallajokull 2010 and Grimsvotn 2011 eruptions created great problems for commercial aviation in Western Europe and in the North Atlantic region. Comparison of satellite images of the visible and predicted ash clouds showed the VAAC prediction to be much larger than the actual ash clouds. No official explanation of this discrepancy exists apart from the definition of the ash cloud boundary. Papers on simulation of the Eyjafjallajökull ash cloud in peer reviewed journals, typically attempted to simulate the VAAC predictions rather than focusing on the satellite pictures. Sporadic measurements made in-situ showed much lower ash concentrations over Europe than the predicted values. Two of the weak points in ash cloud prediction have been studied in airborne measurements of volcanic ash by the Universities in Kyoto Japan, Iceland and Düsseldorf Germany of eruptions in Sakurajima, Japan. It turns out that gravitational deformation of the plume and a streak fallout process make estimated ash content of clouds larger than the actual, both features are not included in the simulation model. Tropospheric plumes tend to ride in stable inversions this causes gravitational flattening (pancaking) of the volcanic plume, while diffusion in the mixing layer is insignificant. New rules from ICAO, effective from November 2014, reiterate that jetliners should avoid visible ash, this makes information on visible ash important. A procedure developed by JMÁs Tokyo VAAC uses satellite images of visible ash to correct the prediction. This and the fact that meteorological data necessary to model gravitational dispersion and streak fallout do not exist in the international database available to the VAAĆs. This shows that close monitoring by airborne measurements and satellite and other photographic surveillance is necessary.

  6. Evaluation of log submergence to control EAB and preserve black ash for native American basketry

    Treesearch

    Therese M. Poland; Damon J. Crook; Tina M. Ciaramitaro

    2011-01-01

    Many Native American cultures use black ash, Fraxinus nigra, for basket-making because its ring-porous wood allows the annual layers of xylem to be easily separated. The emerald ash borer (EAB, Agrilus planipennis) is threatening North America's ash resource including black ash, and a centuries-old native art form. Native...

  7. Environmental hazard of oil shale combustion fly ash.

    PubMed

    Blinova, Irina; Bityukova, Liidia; Kasemets, Kaja; Ivask, Angela; Käkinen, Aleksandr; Kurvet, Imbi; Bondarenko, Olesja; Kanarbik, Liina; Sihtmäe, Mariliis; Aruoja, Villem; Schvede, Hedi; Kahru, Anne

    2012-08-30

    The combined chemical and ecotoxicological characterization of oil shale combustion fly ash was performed. Ash was sampled from the most distant point of the ash-separation systems of the Balti and Eesti Thermal Power Plants in North-Eastern Estonia. The fly ash proved potentially hazardous for tested aquatic organisms and high alkalinity of the leachates (pH>10) is apparently the key factor determining its toxicity. The leachates were not genotoxic in the Ames assay. Also, the analysis showed that despite long-term intensive oil-shale combustion accompanied by considerable fly ash emissions has not led to significant soil contamination by hazardous trace elements in North-Eastern Estonia. Comparative study of the fly ash originating from the 'new' circulating fluidized bed (CFB) combustion technology and the 'old' pulverized-fired (PF) one showed that CFB fly ash was less toxic than PF fly ash. Thus, complete transfer to the 'new' technology will reduce (i) atmospheric emission of hazardous trace elements and (ii) fly ash toxicity to aquatic organisms as compared with the 'old' technology. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Volcanic Ash on Slopes of Karymsky

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A volcanic eruption can produce gases, lava, bombs of rock, volcanic ash, or any combination of these elements. Of the volcanic products that linger on the land, most of us think of hardened lava flows, but volcanic ash can also persist on the landscape. One example of that persistence appeared on Siberia's Kamchatka Peninsula in spring 2007. On March 25, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the area around the Karymsky Volcano. In this image, volcanic ash from earlier eruptions has settled onto the snowy landscape, leaving dark gray swaths. The ash stains are confined to the south of the volcano's summit, one large stain fanning out toward the southwest, and another toward the east. At first glance, the ash stain toward the east appears to form a semicircle north of the volcano and sweep back east. Only part of this dark shape, however, is actually volcanic ash. Near the coast, the darker color may result from thicker vegetation. Similar darker coloring appears to the south. Volcanic ash is not really ash at all, but tiny, jagged bits of rock and glass. These jagged particles pose serious health risks to humans and animals who might inhale them. Likewise, the ash poses hazards to animals eating plants that have been coated with ash. Because wind can carry volcanic ash thousands of kilometers, it poses a more far-reaching hazard than other volcanic ejecta. Substantial amounts of ash can even affect climate by blocking sunlight. Karymsky is a stratovolcano composed of alternating layers of solidified ash, hardened lava, and volcanic rocks. It is one of many active volcanoes on Russia's Kamchatka Peninsula, which is part of the 'Ring of Fire' around the Pacific Rim. NASA image created by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  9. Spain as an emergency air traffic hub during volcanic air fall events? Evidence of past volcanic ash air fall over Europe during the late Pleistocene

    NASA Astrophysics Data System (ADS)

    Hardiman, Mark; Lane, Christine; Blockley, Simon P. E.; Moreno, Ana; Valero-Garcés, Blas; Ortiz, José E.; Torres, Trino; Lowe, John J.; Menzies, Martin A.

    2010-05-01

    Past volcanic eruptions often leave visible ash layers in the geological record, for example in marine or lake sedimentary sequences. Recent developments, however, have shown that non-visible volcanic ash layers are also commonly preserved in sedimentary deposits. These augment the record of past volcanic events by demonstrating that past ash dispersals have been more numerous and widely disseminated in Europe than previously appreciated. The dispersal ‘footprints' of some large late Pleistocene European eruptions are examined here in the light of the recent Eyjafjallajökull eruption. For example, the Vedde Ash which was erupted from Iceland around 12 thousand years ago, delivered distal (and non-visible) glass deposits as far south as Switzerland and as far east as the Ural Mountains in Russia, with an overall European distribution remarkably similar to the dominant tracks of the recent Eyjafjallajökull plumes. The Eyjafjallajökull eruption has demonstrated that relatively small amounts of distal volcanic ash in the atmosphere can seriously disrupt aviation activity, with attendant economic and other consequences. It has raised fundamental questions about the likelihood of larger or more prolonged volcanic activity in the near future, and the possibility of even more serious consequences than those experienced recently. Given that there are several other volcanic centres that could cause such disruption in Europe (e.g. Campania and other volcanic centres in Italy; Aegean volcanoes), a key question is whether there are parts of Europe less prone to ash plumes and which could therefore operate as emergency air traffic hubs during times of ash dispersal. Although not generated to answer this question, the recent geological record might provide a basis for seeking the answer. For example, four palaeo-records covering the time frame of 8 - 40 Ka BP that are geographically distributed across Spain have been examined for non-visible distal ash content. All four have

  10. Probabilistic detection of volcanic ash using a Bayesian approach

    PubMed Central

    Mackie, Shona; Watson, Matthew

    2014-01-01

    Airborne volcanic ash can pose a hazard to aviation, agriculture, and both human and animal health. It is therefore important that ash clouds are monitored both day and night, even when they travel far from their source. Infrared satellite data provide perhaps the only means of doing this, and since the hugely expensive ash crisis that followed the 2010 Eyjafjalljökull eruption, much research has been carried out into techniques for discriminating ash in such data and for deriving key properties. Such techniques are generally specific to data from particular sensors, and most approaches result in a binary classification of pixels into “ash” and “ash free” classes with no indication of the classification certainty for individual pixels. Furthermore, almost all operational methods rely on expert-set thresholds to determine what constitutes “ash” and can therefore be criticized for being subjective and dependent on expertise that may not remain with an institution. Very few existing methods exploit available contemporaneous atmospheric data to inform the detection, despite the sensitivity of most techniques to atmospheric parameters. The Bayesian method proposed here does exploit such data and gives a probabilistic, physically based classification. We provide an example of the method's implementation for a scene containing both land and sea observations, and a large area of desert dust (often misidentified as ash by other methods). The technique has already been successfully applied to other detection problems in remote sensing, and this work shows that it will be a useful and effective tool for ash detection. Key Points Presentation of a probabilistic volcanic ash detection scheme Method for calculation of probability density function for ash observations Demonstration of a remote sensing technique for monitoring volcanic ash hazards PMID:25844278

  11. Volcanic Ashes Intercalated with Cultural Vestiges at Archaeological Sites from the Piedmont to the Amazon, Ecuador

    NASA Astrophysics Data System (ADS)

    Valverde, Viviana; Mothes, Patricia; Andrade, Daniel

    2014-05-01

    A mineralogical analysis was done on 70 volcanic ashes; 9 corresponding to proximal samples of seven volcanoes: Cotopaxi (4500 yBP), Guagua Pichincha (3300 yBP, 1000 yBP and 1660 yAD), Cuicocha (3100 yBP), Pululahua (2400 yBP), Ninahuilca (2350 yBP and 4600 yBP) and 61 to distal ashes collected at eight archaeological sites in the Coastal, Sierra and Amazon regions of Ecuador. Cultural vestiges are from Pre-ceramic, Formative, Regional Development and Integration periods, with the exception of a site denominated Hacienda Malqui, which also has Inca vestiges. The sampling process was done in collaboration with various archaeologists in 2011-2013. The volcanic ashes were washed, dried and divided in order to obtain a representative fraction and their later analysis with binocular microscope. The microscope analysis allowed determination of the characteristics of each component of volcanic ash. These main elements are: pumice fragments, minerals, volcanic glass, lithics and exogenous material (non volcanic). The petrographic analysis of distal volcanic ash layers at each archaeological site was correlated by their components and characteristics with proximal volcanic ashes of source volcanoes. Some correlations permitted obtaining a relative age for the layers of distal volcanic ash in the archaeological sites. The petrographic analysis showed a correlation between the archaeological sites of Las Mercedes - Los Naranjos, Rumipamba and El Condado (located west of Quito) with the eruptive activity of Guagua Pichincha volcano (3300 yBP, 1000 yBP and 1660 yAD) and Pululahua volcano (2400 yBP). Also, a correlation with eruptive activity of Ninahuilca (2350 yBP), Cotopaxi (4500 yBP) and Quilotoa (800 yBP) volcanoes at Hda. Malqui (60 km west of Latacunga) was provided by mineralogy of the respective ashes expulsed by these volcanoes. The ash layers at Cuyuja (50 km east of Quito) are mostly superficial; they are associated with Quilotoa's 800 yBP plinian. Finally at the

  12. Geotechnical properties of ash deposits near Hilo, Hawaii

    USGS Publications Warehouse

    Wieczorek, G.F.; Jibson, R.W.; Wilson, R.C.; Buchanan-Banks, J. M.

    1982-01-01

    Two holes were hand augered and sampled in ash deposits near Hilo, Hawaii. Color, water content and sensitivity of the ash were measured in the field. The ash alternated between reddish brown and dark reddish brown in color and had water contents as high as 392%. A downhole vane shear device measured sensitivities as high as 6.9. A series of laboratory tests including grain size distribution, Atterberg limits, X-ray diffraction analysis, total carbon determination, vane shear, direct shear and triaxial tests were performed to determine the composition and geotechnical properties of the ash. The ash is very fine grained, highly plastic and composed mostly of gibbsite and amorphous material presumably allophane. The ash has a high angle of internal friction ranging from 40-43? and is classified as medium to very sensitive. A series of different ash layers was distinguished on the basis of plasticity and other geotechnical properties. Sensitivity may be due to a metastable fabric, cementation, leaching, high organic content, and thixotropy. The sensitivity of the volcanic ash deposits near Hilo is consistent with documented slope instability during earthquakes in Hawaii. The high angles of internal friction and cementation permit very steep slopes under static conditions. However, because of high sensitivity of the ash, these slopes are particularly susceptible to seismically-induced landsliding.

  13. Wet-dry cycles effect on ash water repellency. A laboratory experiment.

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Cerdà, Artemi; Oliva, Marc; Mataix, Jorge; Jordán, Antonio

    2014-05-01

    In the immediate period after the fire, the ash layer has a strong influence on soil hydrological processes, as runoff, infiltration and erosion. Ash is very dynamic in the space and time. Until the first rainfall periods, ash is (re)distributed by the wind. After it can cover the soil surface, infiltrate or transported to other areas by water transport (Pereira et al., 2013a, b). This will have strong implications on nutrient redistribution and vegetation recovery. Ash layer may affect soil water repellency in different ways, depending on fire severity, soil properties and vegetation. Ash produced at low temperatures after low-severity burning is usually hydrophobic (Bodi et al., 2011, 2012). Wet-dry cycles have implications on ash physical and chemical properties, changing their effects in space and time. The aim of this study is to analyse the effects of fire temperature and severity on ash water repellency. Pinus sylvestris needles were collected in a Lithuania forest in Dzukija National Park (53º 54' N and 24º 22' E), transported to laboratory and washed with deionized water to remove soil particles and other residues. Needle samples were dried during 24 hours and exposed to different temperatures: 200, 300, 400 and 500 ºC, during 2 hours. Ash colour was analysed according to the Munsell Soil Color charts. Ash was black (10 YR 2/1) at 200 ºC, very dark grey (10YR 3/1) at 300 ºC, gray (10YR 5/1) at 400 ºC and light gray (10YR 7/1) at 500 ºC. Ten samples of ash released after each treatment were placed in plastic dishes (50 mm in diameter) in an amount enough to form a 5 mm thick layer, and ash water repellency was measured according to the Water Drop Penetration Test. Later, ash was carefully wetted with 15 ml of deionized water and placed in an oven during 4 days (96 hours), as in Bodí et al. (2012). This procedure was repeated 5 times in order to observe the effects of wet-dry cycles in ash water repellency. The results showed significant differences

  14. Retrieval of volcanic ash properties from the Infrared Atmospheric Sounding Interferometer (IASI)

    NASA Astrophysics Data System (ADS)

    Ventress, Lucy; Carboni, Elisa; Smith, Andrew; Grainger, Don; Dudhia, Anu; Hayer, Catherine

    2014-05-01

    The Infrared Atmospheric Sounding Interferometer (IASI), on board both the MetOp-A and MetOp-B platforms, is a Fourier transform spectrometer covering the mid-infrared (IR) from 645-2760cm-1 (3.62-15.5 μm) with a spectral resolution of 0.5cm-1 (apodised) and a pixel diameter at nadir of 12km. These characteristics allow global coverage to be achieved twice daily for each instrument and make IASI a very useful tool for the observation of larger aerosol particles (such as desert dust and volcanic ash) and the tracking of volcanic plumes. In recent years, following the eruption of Eyjafjallajökull, interest in the the ability to detect and characterise volcanic ash plumes has peaked due to the hazards to aviation. The thermal infrared spectra shows a rapid variation with wavelength due to absorption lines from atmospheric and volcanic gases as well as broad scale features principally due to particulate absorption. The ash signature depends upon both the composition and size distribution of ash particles as well as the altitude of the volcanic plume. To retrieve ash properties, IASI brightness temperature spectra are analysed using an optimal estimation retrieval scheme and a forward model based on RTTOV. Initially, IASI pixels are flagged for the presence of volcanic ash using a linear retrieval detection method based on departures from a background state. Given a positive ash signal, the RTTOV output for a clean atmosphere (containing atmospheric gases but no cloud or aerosol/ash) is combined with an ash/cloud layer using the same scheme as for the Oxford-RAL Retrieval of Aerosol and Cloud (ORAC) algorithm. The retrieved parameters are ash optical depth (at a reference wavelength of 550nm), ash effective radius, layer altitude and surface temperature. The potential for distinguishing between different ash types is explored and a sensitivity study of the retrieval algorithm is presented. Results are shown from studies of the evolution and composition of ash plumes

  15. Ultraviolet Satellite Measurements of Volcanic Ash. Chapter 12

    NASA Technical Reports Server (NTRS)

    Carn, S. A.; Krotkov, N. A.

    2016-01-01

    Ultraviolet (UV) remote sensing of volcanic ash and other absorbing aerosols from space began with the launch of the first Total Ozone Mapping Spectrometer (TOMS) instrument in 1978. Subsequent UV satellite missions (TOMS, GOME, SCIAMACHY, OMI, GOME-2, OMPS) have extended UV ash measurements to the present, generating a unique multidecadal record. A UV Aerosol Index (UVAI) based on two near-UV wavelengths, equally applicable to multispectral (TOMS, DSCOVR) or hyperspectral (GOME, SCIAMACHY, OMI, GOME-2, OMPS) instruments, has been used to derive a unique absorbing aerosol climatology across multiple UV satellite missions. Advantages of UV ash measurements relative to infrared (IR) techniques include the ability to detect ash at any altitude (assuming no clouds), above clouds, and over bright surfaces, where visible and IR techniques may fail. Disadvantages include the daytime-only restriction and nonspecificity to silicate ash, since UV measurements are sensitive to any UV-absorbing aerosol, including smoke, desert dust, and pollution. However, simultaneous retrieval of sulfur dioxide (SO2) abundance and UVAI provides robust discrimination of volcanic clouds. Although the UVAI is only semiquantitative, it has proved successful at detecting and tracking volcanic ash clouds from many volcanic eruptions since 1978. NASA A-Train measurements since 2006 (eg, CALIOP) have provided much improved constraints on volcanic ash altitude, and also permit identification of aerosol type through sensor synergy. Quantitative UV retrievals of ash optical depth, effective particle size, and ash column mass are possible and require assumptions of ash refractive index, particle size distribution, and ash layer altitude. The lack of extensive ash refractive index data in the UV-visible and the effects of ash particle shape on retrievals introduce significant uncertainty in the retrieved parameters, although limited validation against IR ash retrievals has been successful. In this

  16. Using Kettle Lake Records to Date and Interpret Holocene Ash Deposition in Upper Cook Inlet, Anchorage, AK

    NASA Astrophysics Data System (ADS)

    Werner, A.; Kathan, K. M.; Kaufman, D. S.; Hancock, J. R.; Waythomas, C. F.; Wallace, K. L.

    2004-12-01

    Fourteen sediment cores recovered from three kettle lakes (Goose, Little Campbell and Lorraine) near Anchorage, AK were used to document and date Holocene volcanic ash deposition in the upper Cook Inlet area. Small lakes (<0.5 km2) with small (<1.5 km2), low relief (<50 m), and well-vegetated drainage areas were selected in order to minimize ash remobilization by mass wasting and fluvial processes. The resulting stratigraphic records are interpreted as primary terpha-fall stratigraphies. Relative to the surrounding lacustrine sediments, the ash layers exhibit low organic-matter content (as determined by loss-on-ignition, LOI), high magnetic susceptibility (MS), increased density (X-radiographs), and bubble-wall glass shards. Some ash layers are up to 1 cm thick (macrotephra) consisting of pure glass, some occur as light bands, while others (microtephra) can only be located using non-visual techniques (MS, LOI and X-radiography). The thinnest microtephras observed occur either as discrete (1 mm) layers or diffuse laminations composed of tephra mixed with ambient lake sediment. Forty-five AMS C-14 dates on terrestrial macro fossils were used to constrain sedimentation-rate models for the cores, and to assign absolute ages to ash units. Comparison of inferred tephra ages corroborates our intra and inter basin stratigraphic correlations (+/- 200 yrs) based on physical and MS stratigraphy. Ten out of 12 macrotephras can be confidently correlated among all three lakes, whereas, two of the prominent tephras occur in one basin but not in the others. This suggests subtle differences in ash plume extents or differences in tephra preservation between lakes. A total of 24 Holocene ash units (12 macro and 12 micro) have been recognized and dated in the Anchorage area, suggesting an ash-fall frequency of about 2.4/1000 yrs. By comparison, historical records suggest more frequent ash-fall events (120/1000 yrs). Our data indicate that, either the ash layers are not consistently

  17. Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?

    NASA Astrophysics Data System (ADS)

    White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.

    2013-12-01

    Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image

  18. Hail formation triggers rapid ash aggregation in volcanic plumes.

    PubMed

    Van Eaton, Alexa R; Mastin, Larry G; Herzog, Michael; Schwaiger, Hans F; Schneider, David J; Wallace, Kristi L; Clarke, Amanda B

    2015-08-03

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized 'wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ∼95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits.

  19. Hail formation triggers rapid ash aggregation in volcanic plumes

    PubMed Central

    Van Eaton, Alexa R.; Mastin, Larry G.; Herzog, Michael; Schwaiger, Hans F.; Schneider, David J.; Wallace, Kristi L.; Clarke, Amanda B.

    2015-01-01

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized ‘wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ∼95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits. PMID:26235052

  20. Ash in fire affected ecosystems

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah

    2015-04-01

    Ash in fire affected ecosystems Ash lefts an important footprint in the ecosystems and has a key role in the immediate period after the fire (Bodi et al., 2014; Pereira et al., 2015). It is an important source of nutrients for plant recover (Pereira et al., 2014a), protects soil from erosion and controls soil hydrological process as runoff, infiltration and water repellency (Cerda and Doerr, 2008; Bodi et al., 2012, Pereira et al., 2014b). Despite the recognition of ash impact and contribution to ecosystems recuperation, it is assumed that we still have little knowledge about the implications of ash in fire affected areas. Regarding this situation we wanted to improve our knowledge in this field and understand the state of the research about fire ash around world. The special issue about "The role of ash in fire affected ecosystems" currently in publication in CATENA born from the necessity of joint efforts, identify research gaps, and discuss future cooperation in this interdisciplinary field. This is the first special issue about fire ash in the international literature. In total it will be published 10 papers focused in different aspects of the impacts of ash in fire affected ecosystems from several parts of the world: • Fire reconstruction using charcoal particles (Burjachs and Espositio, in press) • Ash slurries impact on rheological properties of Runoff (Burns and Gabet, in press) • Methods to analyse ash conductivity and sorbtivity in the laboratory and in the field (Balfour et al., in press) • Termogravimetric and hydrological properties of ash (Dlapa et al. in press) • Effects of ash cover in water infiltration (Leon et al., in press) • Impact of ash in volcanic soils (Dorta Almenar et al., in press; Escuday et al., in press) • Ash PAH and Chemical extracts (Silva et al., in press) • Microbiology (Barreiro et al., in press; Lombao et al., in press) We believe that this special issue will contribute importantly to the better understanding of

  1. An Experimental Study of the Effects of Litter and Duff Consumption and Ash Formation on Post-Fire Runoff.

    NASA Astrophysics Data System (ADS)

    Woods, S. W.; Balfour, V.

    2007-12-01

    Consumption of the litter and duff layers in forest wildfires can lead to substantial increases in the frequency and magnitude of overland flow. These increases result from the loss of storage in the organic surface layer, reduced surface roughness, and from sealing of the exposed mineral soil surface. The presence of an ash layer may accentuate surface sealing by providing an additional source of fine material, or it may reduce runoff by storing rainfall and by protecting the soil surface from raindrop impacts. We used simulated rainfall experiments to assess the effects of litter and duff consumption and the presence of ash layers of varying thickness on post fire runoff at two forested sites in western Montana, one with sandy loam soils formed out of granodiorite and the other with gravelly silt loam soils formed out of argillite. At each site we measured the runoff from simulated rainfall in replicated 0.5 m2 plots before and after application of the following treatments: 1) burning with a fuel load of 90 Mg ha-1, 2) manual removal of the litter and duff layers, 3) addition of 0.5, 2.5 and 5 cm of ash to plots from which the litter and duff had previously been removed, and 4) addition of the same depths of ash to burned plots at the sandy loam site. In the burned plots the surface litter and duff layers were completely consumed and a <1cm layer of black and gray ash and char was formed, indicating a moderate severity burn. The mean soil temperature in the upper 1 cm of the mineral soil was 70° C, and there was no detectable increase in water repellency. The mean final infiltration capacity of the burned sandy loam plots was 35 mm hr-1 compared to a pre-fire mean of 87 mm hr-1, while in the gravelly silt loam plots the pre- and post burn infiltration capacities (27 and 31 mm hr- 1) were not significantly different. Manual removal of the litter and duff layers reduced the mean final infiltration capacity in the sandy loam plots from 64 mm hr-1 to 40 mm hr-1 and

  2. Ash Analysis

    NASA Astrophysics Data System (ADS)

    Marshall, Maurice R.

    Ash refers to the inorganic residue remaining after either ignition or complete oxidation of organic matter in a foodstuff. A basic knowledge of the characteristics of various ashing procedures and types of equipment is essential to ensure reliable results. Two major types of ashing are used: dry ashing, primarily for proximate composition and for some types of specific mineral analyses; wet ashing (oxidation), as a preparation for the analysis of certain minerals. Microwave systems now are available for both dry and wet ashing, to speed the processes. Most dry samples (i.e., whole grain, cereals, dried vegetables) need no preparation, while fresh vegetables need to be dried prior to ashing. High-fat products such as meats may need to be dried and fat extracted before ashing. The ash content of foods can be expressed on either a wet weight (as is) or on a dry weight basis. For general and food-specific information on measuring ash content, see references (1-11).

  3. Thermal behaviour of ESP ash from municipal solid waste incinerators.

    PubMed

    Yang, Y; Xiao, Y; Wilson, N; Voncken, J H L

    2009-07-15

    Stricter environmental regulations demand safer treatment and disposal of incinerator fly ashes. So far no sound technology or a process is available for a sustainable and ecological treatment of the waste incineration ashes, and only partial treatment is practised for temporary and short-term solutions. New processes and technology need to be developed for comprehensive utilization and detoxification of the municipal solid waste (MSW) incinerator residues. To explore the efficiency of thermal stabilisation and controlled vitrification, the thermal behaviour of electrostatic precipitator (ESP) ash was investigated under controlled conditions. The reaction stages are identified with the initial moisture removal, volatilization, melting and slag formation. At the temperature higher than 1100 degrees C, the ESP ashes have a quicker weight loss, and the total weight loss reaches up to 52%, higher than the boiler ash. At 1400 degrees C a salt layer and a homogeneous glassy slag were formed. The effect of thermal treatment on the leaching characteristics of various elements in the ESP ash was evaluated with the availability-leaching test. The leaching values of the vitrified slag are significantly lowered than that of the original ash.

  4. Metal mobilization under alkaline conditions in ash-covered tailings.

    PubMed

    Lu, Jinmei; Alakangas, Lena; Wanhainen, Christina

    2014-06-15

    The aim of this study was to determine element mobilization and accumulation in mill tailings under alkaline conditions. The tailings were covered with 50 cm of fly ash, and above a sludge layer. The tailings were geochemically and mineralogically investigated. Sulfides, such as pyrrhotite, sphalerite and galena along with gangue minerals such as dolomite, calcite, micas, chlorite, epidote, Mn-pyroxene and rhodonite were identified in the unoxidized tailings. The dissolution of the fly ash layer resulted in a high pH (close to 12) in the underlying tailings. This, together with the presence of organic matter, increased the weathering of the tailings and mobilization of elements in the uppermost 47 cm of the tailings. All primary minerals were depleted, except quartz and feldspar which were covered by blurry secondary carbonates. Sulfide-associated elements such as Cd, Fe, Pb, S and Zn and silicate-associated elements such as Fe, Mg and Mn were released from the depletion zone and accumulated deeper down in the tailings where the pH decreased to circum-neutral. Sequential extraction suggests that Cd, Cu, Fe, Pb, S and Zn were retained deeper down in the tailings and were mainly associated with the sulfide phase. Calcium, Cr, K and Ni released from the ash layer were accumulated in the uppermost depletion zone of the tailings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Cadmium Removal from Contaminated Water Using Polyelectrolyte-Coated Industrial Waste Fly Ash

    PubMed Central

    Olabemiwo, Fatai A.; Oyehan, Tajudeen A.; Khaled, Mazen

    2017-01-01

    Fly ash (FA) is a major industrial waste generated from power stations that add extra cost for proper disposal. Recent research efforts have consequently focused on developing ways to make use of FA in environmentally sound applications. This study, therefore, investigates the potential ability of raw fly ash (RFA) and polyelectrolyte-coated fly ash (PEFA) to remove cadmium (Cd) from polluted water. Using layer-by-layer approach, functionalized fly ash was coated with 20 layers from 0.03% (v/v) of cationic poly(diallyldimethylammonium chloride) (PDADMAC) and anionic polystyrene sulfonate (PSS) solutions. Both surface morphology and chemical composition of the adsorbent (PEFA) were characterized using Field-Emission Scanning Electron Microscope (FE-SEM), X-Ray Diffraction (XRD), Fourier-Transform Infrared (FTIR), and X-Ray Fluorescence (XRF) techniques. The effects of pH, adsorbent dosage, contact time, initial contaminant concentration, and mixing rate of the adsorption of Cd were also studied in batch mode experiments. Results of the study revealed that a 4.0 g/L dosage of PEFA removed around 99% of 2.0 mg/L of Cd in 15 min at 150 rpm compared to only 27% Cd removal achieved by RFA under the same conditions. Results also showed that adsorption by PEFA followed both Langmuir and Freundlich models with correlation coefficients of 98% and 99%, respectively. PMID:28680373

  6. Toward an integrated Volcanic Ash Observing System in Europe

    NASA Astrophysics Data System (ADS)

    Lee, Deborah; Lisk, Ian

    2014-05-01

    Volcanic ash from the Icelandic eruption of Eyjafjallajökull in April and May of 2010 resulted in the decision by many northern European countries to impose significant restrictions on the use of their airspace. The eruption, extent and persistence of the ash revealed how reliant society now is on a safe and efficient air transport system and the fragility of that system when affected by the impact of complex natural hazards. As part of an EC framework programme, the 2011-2013 WEZARD (WEather HaZARD for aeronautics) consortium conducted a cross-industry volcanic ash capability and gap analyses, with the EUMETNET (network of 29 National Meteorological Services) led Work Package 3 focussing on a review of observational and monitoring capabilities, atmospheric dispersion modelling and data exchange. The review has revealed a patchwork of independent observing capabilities for volcanic ash, with some countries investing and others not at all, and most existing networks focus on space-based products. Existing capabilities do not provide the necessary detail on the geographical and vertical extent of volcanic ash and associated levels of contamination, which decision makers in the aviation industry require in order to decide where it is safe to fly. A resultant high priority was identified by WEZARD Work Package 3 for an enhanced observational network of complementary monitoring systems needed to initialise, validate and verify volcanic ash dispersion model output and forecasts. Thus a key recommendation is to invest in a major pre-operational demonstrator "European volcanic ash observing network", focussing on distal monitoring, and aiming to a) fill R&D gaps identified in instrumentation and algorithms and b) integrate data, where possible in near-real-time, from a range of ground-based, airborne and space-based techniques. Here we present a key WEZARD recommendation toward an integrated volcanic ash observing system in Europe, in context with other related projects

  7. Volcanic and atmospheric controls on ash iron solubility: A review

    NASA Astrophysics Data System (ADS)

    Ayris, Paul; Delmelle, Pierre

    2012-01-01

    The ash material produced by volcanic eruptions carries important information about the underground magma eruptive conditions and subsequent modifications in the volcanic plume and during atmospheric transport. Volcanic ash is also studied because of its impacts on the environment and human health. In particular, there is a growing interest from a multidisciplinary scientific community to understand the role that ash deposition over open ocean regions may play as a source of bioavailable Fe for phytoplankton production. Similar to aeolian mineral dust, the processes that affect the mineralogy and speciation of Fe in ash may promote solubilisation of Fe in ash, and thus may increase the amount of volcanic Fe supplied to ocean surface waters. Our knowledge of these controls is still very limited, a situation which has hindered quantitative interpretation of experimental Fe release measurements. In this review, we identify the key volcanic and atmospheric controls that are likely to modulate ash Fe solubility. We also briefly discuss existing data on Fe release from ash and make some recommendations for future studies in this area.

  8. The ash in forest fire affected soils control the soil losses. Part 1. The pioneer research

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Pereira, Paulo

    2013-04-01

    After forest fires, the ash and the remaining vegetation cover on the soil surface are the main protection against erosion agents. The control ash exert on runoff generation mechanism was researched during the 90's (Cerdà, 1998a; 1998b). This pioneer research demonstrated that after forest fires there is a short period of time that runoff and surface wash by water is controlled by the high infiltration rates achieved by the soil, which were high due to the effect of ash acting as a mulch. The research of Cerdà (1998a; 1998b) also contributed to demonstrate that runoff was enhanced four month later upon the wash of the ash by the runoff, but also due to the removal of ash due to dissolution and water infiltration. As a consequence of the ephemeral ash cover the runoff and erosion reached the peak after the removal of the ash (usually four month), and for two years the soil erosion reached the peak (Cerdà, 1998a). Research developed during the last decade shown that the ash and the litter cover together contribute to reduce the soil losses after the forest fire (Cerdà and Doerr, 2008). The fate of the ash is related to the climatic conditions of the post-fire season, as intense thunderstorms erode the ash layer and low intensity rainfall contribute to a higher infiltration rate and the recovery of the vegetation. Another, key factor found during the last two decades that determine the fate of the ash and the soil and water losses is the impact of the fauna (Cerdà and Doerr, 2010). During the last decade new techniques were developed to study the impact of ash in the soil system, such as the one to monitor the ash changes by means of high spatial resolution photography (Pérez Cabello et al., 2012), and laboratory approaches that show the impact of ash as a key factor in the soil hydrology throughout the control they exert on the soil water repellency (Bodí et al., 2012). Laboratory approaches also shown that the fire severity is a key factor on the ash chemical

  9. Multiple ash layers in late Quaternary sediments from the Central Indian Basin

    NASA Astrophysics Data System (ADS)

    Mascarenhas-Pereira, M. B. L.; Nagender Nath, B.; Iyer, S. D.; Borole, D. V.; Parthiban, G.; Jijin, R.; Khedekar, V.

    2016-04-01

    We have investigated three sediment cores collected from water depths > 5000 m along the transect 76°30‧E in close proximity to a fracture zone in the Central Indian Basin (CIB). The cores yielded five volcanic horizons of which four have visual and dispersed shards. Rhyolitic glass shards of bubble wall, platy, angular and blocky types were retrieved from various stratigraphic horizons in the cores. The abundance of glass shards, composition of bulk sediments, and 230Thexcess ages of the host sediments were used to distinguish the volcanic horizons. Of the four volcanic horizons, three are now newly reported and correspond to ages of ~ 85, 107-109 and 142-146 ka while the fourth horizon is of 70-75 ka. By using trace element ratios and Cr and Nb-based normative calculations, cryptotephra has been identified for the first time from the CIB sediment. The cryptotephra forms the fifth ash horizon and is of ~ 34 ka. A comparison with the published data on volcanic tephra in and around the Indian Ocean indicate the shard rich horizon (SRH) of 70-75 ka to resemble the Younger Toba Tuffs (YTT), while the other volcanic horizons that were deposited during different time periods do not correlate with any known marine or terrestrial records. These tephra layers have produced a tephrostratigraphic framework across the tectonically and volcanically complex regions of the CIB. Due to the lack of terrestrial equivalents of these tephra, it is hypothesized that the newly found volcanic horizons may have been derived from submarine volcanic eruptions. Multiple layers of submarine volcaniclastic deposits found at water depths as great as 5300 m reaffirm the growing belief that submarine phreatomagmatic eruptions are much more common in the intraplate region of the Indian Ocean than previously reported.

  10. Marine mesocosm bacterial colonisation of volcanic ash

    NASA Astrophysics Data System (ADS)

    Witt, Verena; Cimarelli, Corrado; Ayris, Paul; Kueppers, Ulrich; Erpenbeck, Dirk; Dingwell, Donald; Woerheide, Gert

    2015-04-01

    Volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, wind-delivered volcanic ash may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, which bacteria are involved in pioneer colonisation remain unknown. We hypothesize that physico-chemical properties (i.e., morphology, mineralogy) of the ash may dictate bacterial colonisation. The effect of substrate properties on bacterial colonisation was tested by exposing five substrates: i) quartz sand ii) crystalline ash (Sakurajima, Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size, in controlled marine coral reef aquaria under low light conditions for six months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis of Similarity supported significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community with the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community composition during colonisation of volcanic ash in a coral reef-like environment is controlled by the

  11. Marine Mesocosm Bacterial Colonisation of Volcanic Ash

    NASA Astrophysics Data System (ADS)

    Witt, V.; Cimarelli, C.; Ayris, P. M.; Kueppers, U.; Erpenbeck, D.; Dingwell, D. B.; Woerheide, G.

    2014-12-01

    Explosive volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local or regional scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, ash deposition may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, it is currently unknown which bacteria are involved in pioneer colonisation. We hypothesize that physico-chemical properties (i.e., morphology, chemistry, mineralogy) of the ash may dictate bacterial colonisation. We have tested the effect of substrate properties on bacterial diversity and abundance colonising five substrates: i) quartz sand ii) crystalline ash from the Sakurajima volcano (Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size - by incubation in a controlled marine mesocosm (coral reef aquarium) under low light conditions for three months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis Of Similarity supports significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community and carried the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community

  12. Protecting black ash from the emerald ash borer

    Treesearch

    Les Benedict

    2010-01-01

    Black ash (Fraxinus nigra) is an important resource for Tribes in the Northeast and Great Lakes regions of the North American continent. Ash in North America is being threatened with widespread destruction as a result of the introduction of emerald ash borer beetle (Agrilus planipennis) in 2002. Measures are being taken to slow the spread of emerald ash borer beetle....

  13. Hail formation triggers rapid ash aggregation in volcanic plumes

    USGS Publications Warehouse

    Van Eaton, Alexa R.; Mastin, Larry G.; Herzog, M.; Schwaiger, Hans F.; Schneider, David J.; Wallace, Kristi; Clarke, Amanda B

    2015-01-01

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized ‘wet’ eruption. The 2009 eruption of Redoubt Volcano in Alaska incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits, and numerical modeling demonstrate that volcanic hail formed rapidly in the eruption plume, leading to mixed-phase aggregation of ~95% of the fine ash and stripping much of the cloud out of the atmosphere within 30 minutes. Based on these findings, we propose a mechanism of hail-like aggregation that contributes to the anomalously rapid fallout of fine ash and the occurrence of concentrically-layered aggregates in volcanic deposits.

  14. The 15 September 1991 pyroclastic flows at Unzen Volcano (Japan): a flow model for associated ash-cloud surges

    NASA Astrophysics Data System (ADS)

    Fujii, Toshitsugu; Nakada, Setsuya

    1999-04-01

    Large-scale collapse of a dacite dome in the late afternoon of 15 September 1991 generated a series of pyroclastic-flow events at Unzen Volcano. Pyroclastic flows with a volume of 1×10 6 m 3 (as DRE) descended the northeastern slope of the volcano, changing their courses to the southeast due to topographic control. After they exited a narrow gorge, an ash-cloud surge rushed straight ahead, detaching the main body of the flow that turned and followed the topographic lows to the east. The surge swept the Kita-Kamikoba area, which had been devastated by the previous pyroclastic-flow events, and transported a car as far as 120 m. Following detachment, the surge lost its force after it moved several hundred meters, but maintained a high temperature. The deposits consist of a bottom layer of better-sorted ash (unit 1), a thick layer of block and ash (unit 2), and a thin top layer of fall-out ash (unit 3). Unit 2 overlies unit 1 with an erosional contact. The upper part of unit 2 grades into better-sorted ash. At distal block-and-ash flow deposits, the bottom part of unit 2 also consists of better-sorted ash, and the contact with the unit 1 deposits becomes ambiguous. Video footage of cascading pyroclastic flows during the 1991-1995 eruption, traveling over surfaces without any topographic barriers, revealed that lobes of ash cloud protruded intermittently from the moving head and sides, and that these lobes surged ahead on the ground surface. This fact, together with the inspection by helicopter shortly after the events, suggests that the protruded lobes consisted of better-sorted ash, and resulted in the deposits of unit 1. The highest ash-cloud plume at the Oshigadani valley exit, and the thickest deposition of fall-out ash over Kita-Kamikoba and Ohnokoba, indicate that abundant ash was also produced when the flow passed through a narrow gorge. In the model presented here, the ash clouds from the pyroclastic flows were composed of a basal turbulent current of high

  15. Causes of Variability in the Effects of Vegetative Ash on Post-Fire Runoff and Erosion

    NASA Astrophysics Data System (ADS)

    Balfour, V.; Woods, S.

    2008-12-01

    Vegetative ash formed during forest wildfires has varying effects on post-fire runoff and erosion. In some cases the ash layer reduces runoff and erosion by storing rainfall and by protecting the soil surface from surface sealing and rainsplash detachment. In other cases, the ash layer increases runoff and erosion by forming a surface crust, clogging soil pores, and providing a ready source of highly erodible fine material. Since only a handful of studies have measured the hydrogeomorphic effect of ash, it is unclear whether the observed variability in its effect reflects initial spatial variability in the ash properties due to factors such as fuel type and fire severity, or differences that develop over time due to compaction and erosion or exposure of the ash to rainfall and air. The goal of our research was to determine if the observed differences in the effect of ash on runoff and erosion are due to: 1) variability in initial ash hydrologic properties due to differences in combustion temperature and fuel type, or 2) variability in ash hydrologic properties caused by mineralogical phase changes that develop after the ash is exposed to water. We created ash in the laboratory using wood and needles of Lodgepole pine (Pinus contorta), Ponderosa pine (Pinus Ponderosa) and Douglas fir (Pseudotsuga menziesii) and at 100° C temperature increments from 300 to 900° C. A subsample of ash from each fuel type / temperature combination was saturated, left undisturbed for 24 hours and then oven dried at 104° C. Dry and wetted ash samples were characterized in terms of: structure (using a scanning electron microscope), carbon content, mineralogy (using X-ray diffraction), porosity, water retention properties and hydraulic conductivity. Ash produced at the higher combustion temperatures from all three fuel types contained lime (CaO), which on wetting was transformed to portlandite (Ca(OH)2) and calcite (CaCO3). This mineralogical transformation resulted in irreversible

  16. Occurrence of Somma-Vesuvio fine ashes in the tephrostratigraphic record of Panarea, Aeolian Islands

    NASA Astrophysics Data System (ADS)

    Donatella, De Rita; Daniela, Dolfi; Corrado, Cimarelli

    2008-10-01

    Ash-rich tephra layers interbedded in the pyroclastic successions of Panarea island (Aeolian archipelago, Southern Italy) have been analyzed and related to their original volcanic sources. One of these tephra layers is particularly important as it can be correlated by its chemical and morphoscopic characteristics to the explosive activity of Somma-Vesuvio. Correlation with the Pomici di Base eruption, that is considered one of the largest explosive events causing the demolition of the Somma stratovolcano, seems the most probable. The occurrence on Panarea island of fine ashes related to this eruption is of great importance for several reasons: 1) it allows to better constrain the time stratigraphy of the Panarea volcano; 2) it provides a useful tool for tephrochronological studies in southern Italy and finally 3) it allows to improve our knowledge on the distribution of the products of the Pomici di Base eruption giving new insights on the dispersion trajectories of fine ashes from plinian plumes. Other exotic tephra layers interbedded in the Panarea pyroclastic successions have also been found. Chemical and sedimentological characteristics of these layers allow their correlation with local vents from the Aeolian Islands thus constraining the late explosive activity of Panarea dome.

  17. Engineering Behavior and Characteristics of Wood Ash and Sugarcane Bagasse Ash

    PubMed Central

    Grau, Francisco; Choo, Hyunwook; Hu, Jong Wan; Jung, Jongwon

    2015-01-01

    Biomasses are organic materials that are derived from any living or recently-living structure. Plenty of biomasses are produced nationwide. Biomasses are mostly combusted and usually discarded or disposed of without treatment as biomass ashes, which include wood and sugarcane bagasse ashes. Thus, recycling or treatment of biomass ashes leads to utilizing the natural materials as an economical and environmental alternative. This study is intended to provide an environmental solution for uncontrolled disposal of biomass ashes by way of recycling the biomass ash and replacing the soils in geotechnical engineering projects. Therefore, in this study, characteristic tests of wood and sugarcane bagasse ashes that are considered the most common biomass ashes are conducted. The test of chemical compositions of biomass ashes is conducted using energy dispersive X-ray spectroscopy (EDS), and Scanning Electron Microscope (SEM), and heavy metal analysis is also conducted. Engineering behaviors including hydraulic conductivity, constrained modulus and shear modulus are examined. Also, coal fly ash Class C is used in this study for comparison with biomass ashes, and Ottawa 20/30 sands containing biomass ashes are examined to identify the soil replacement effect of biomass ashes. The results show that the particle sizes of biomass ashes are halfway between coal fly ash Class C and Ottawa 20/30 sand, and biomass ashes consist of a heterogeneous mixture of different particle sizes and shapes. Also, all heavy metal concentrations were found to be below the US Environmental Protection Agency (EPA) maximum limit. Hydraulic conductivity values of Ottawa 20/30 sand decrease significantly when replacing them with only 1%–2% of biomass ashes. While both the constrained modulus and shear modulus of biomass ashes are lower than Ottawa 20/30 sand, those of mixtures containing up to 10% biomass ashes are little affected by replacing the soils with biomass ashes. PMID:28793611

  18. Photocatalytic enhancement of floating photocatalyst: Layer-by-layer hybrid carbonized chitosan and Fe-N- codoped TiO2 on fly ash cenospheres

    NASA Astrophysics Data System (ADS)

    Song, Jingke; Wang, Xuejiang; Bu, Yunjie; Wang, Xin; Zhang, Jing; Huang, Jiayu; Ma, RongRong; Zhao, Jianfu

    2017-01-01

    Due to the advantage of floating on water surface, floating photocatalysts show higher rates of radical formation and collection efficiencies. And they were expected to be used for solar remediation of non-stirred and non-oxygenated reservoirs. In this research, floating fly ash cenospheres (FAC) supported layer-by- layer hybrid carbonized chitosan and Fe-N-codoped TiO2 was prepared by a simple sol-gel method. The catalysts were characterized by X-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy(DRS), nitrogen adsorption analyses for Brunauer-Emmett-Teller (BET) specific surface area. It is indicated that Fe-N codoped narrowed the material's band gap, and the layer of carbonized chitosan (Cts) increased the catalyst's adsorption capacity and the absorption ability of visible light. Comparing with Fe-N-TiO2/FAC and N-TiO2/FAC, the composite photocatalyst show excellent performance on the degradation of RhB. Photodegradation rate of RhB by Fe-N-TiO2/FAC-Cts was 0.01018 min-1, which is about 1.5 and 2.09 times higher than Fe-N-TiO2/FAC and N-TiO2/FAC under visible light irradiation in 240 min, respectively. The dye photosentization, capture of holes and electrons by Fe3+ ion, and synergistic effect of adsorption and photodegradation were attributed to the results for the improvement of photocatalytic performance. The floating photocatalyst can be reused for at least three consecutive times without any significant decrease on the degradation of Rhodamin B after each reuse.

  19. Correlation of ash-flow tuffs.

    USGS Publications Warehouse

    Hildreth, W.; Mahood, G.

    1985-01-01

    Discrimination and correlation of ash-flow sheets is important in structurally complex, long-lived volcanic fields where such sheets provide the best keys to the regional stratigraphic framework. Three-dimensional complexities resulting from pulsatory eruptions, sectorial emplacement, mechanical sorting during outflow, thermal and compositional zoning of magmas, the physical zoning of cooling units, and structural and erosional disruption can make such correlation and discrimination difficult. When lithologic, magnetic, petrographic, chemical, and isotopic criteria for correlating ash-flow sheets are critically evaluated, many problems and pitfalls can be identified. Distinctive phenocrysts, pumice clasts, and lithic fragments are among the more reliable criteria, as are high-precision K-Ar ages and thermal remanent magnetization (TRM) directions in unaltered welded tuff. Chemical correlation methods should rely principally upon welded or nonwelded pumice blocks, not upon the ash-flow matrix, which is subject to fractionation, mixing, and contamination during emplacement. Compositional zoning of most large sheets requires that many samples be analyzed before phenocryst, glass or whole-rock chemical trends can be used confidently as correlation criteria.-Authors

  20. Wetting and Spreading of Molten Volcanic Ash in Jet Engines.

    PubMed

    Song, Wenjia; Lavallée, Yan; Wadsworth, Fabian B; Hess, Kai-Uwe; Dingwell, Donald B

    2017-04-20

    A major hazard to jet engines posed by volcanic ash is linked to the wetting and spreading of molten ash droplets on engine component surfaces. Here, using the sessile drop method, we study the evolution of the wettability and spreading of volcanic ash. We employ rapid temperature changes up to 1040-1450 °C, to replicate the heating conditions experienced by volcanic ash entering an operating jet engine. In this scenario, samples densify as particles coalesce under surface tension until they form a large system-sized droplet (containing remnant gas bubbles and crystals), which subsequently spreads on the surface. The data exhibit a transition from a heterogeneous to a homogeneous wetting regime above 1315 °C as crystals in the drops are dissolved in the melt. We infer that both viscosity and microstructural evolution are key controls on the attainment of equilibrium in the wetting of molten volcanic ash droplets.

  1. Probabilistic detection of volcanic ash using a Bayesian approach.

    PubMed

    Mackie, Shona; Watson, Matthew

    2014-03-16

    Airborne volcanic ash can pose a hazard to aviation, agriculture, and both human and animal health. It is therefore important that ash clouds are monitored both day and night, even when they travel far from their source. Infrared satellite data provide perhaps the only means of doing this, and since the hugely expensive ash crisis that followed the 2010 Eyjafjalljökull eruption, much research has been carried out into techniques for discriminating ash in such data and for deriving key properties. Such techniques are generally specific to data from particular sensors, and most approaches result in a binary classification of pixels into "ash" and "ash free" classes with no indication of the classification certainty for individual pixels. Furthermore, almost all operational methods rely on expert-set thresholds to determine what constitutes "ash" and can therefore be criticized for being subjective and dependent on expertise that may not remain with an institution. Very few existing methods exploit available contemporaneous atmospheric data to inform the detection, despite the sensitivity of most techniques to atmospheric parameters. The Bayesian method proposed here does exploit such data and gives a probabilistic, physically based classification. We provide an example of the method's implementation for a scene containing both land and sea observations, and a large area of desert dust (often misidentified as ash by other methods). The technique has already been successfully applied to other detection problems in remote sensing, and this work shows that it will be a useful and effective tool for ash detection. Presentation of a probabilistic volcanic ash detection schemeMethod for calculation of probability density function for ash observationsDemonstration of a remote sensing technique for monitoring volcanic ash hazards.

  2. Emerald ash borer infestation of ash stumps

    Treesearch

    Robert A. Haack; Toby R. Petrice

    2005-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Buprestidae), was first found in North America in 2002. Eradication efforts are currently underway for this insect in both Canada and the United States. As part of the eradication program, thousands of ash trees are cut and chipped. Ash trees are known to produce stump sprouts, and therefore...

  3. Environmentally-mediated ash aggregate formation: example from Tungurahua volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Kueppers, Ulrich; Ayris, Paul M.; Bernard, Benjamin; Delmelle, Pierre; Douillet, Guilhem A.; Lavallée, Yan; Mueller, Sebastian B.; Dingwell, Donald B.; Dobson, Kate J.

    2016-04-01

    Volcanic ash is generated during explosive eruptions through an array of different processes; it can be produced in large quantities and can, in some circumstances, have the potential for far-reaching impacts beyond the flanks of the volcano. Aggregation of ash particles can significantly impact the dispersal within the atmosphere, and its subsequent deposition into terrestrial or aquatic environments. However, our understanding of the complex interplay of the boundary conditions which permit aggregation to occur remain incomplete. Tungurahua volcano, Ecuador, has been intermittently active since 1999. In August 2006, a series of pyroclastic density currents (PDC) were generated during a series of dry, Vulcanian explosions and travelled down the western and northern flanks of the volcano. In some locations, the related PDC deposits temporarily dammed the Chambo river, and the residual heat within those deposits produced vigorous steam plumes. During several field campaigns (2009-2015), we mapped, sampled, and analysed the related deposits. At the base of the Rea ravine, a large delta fan of PDC deposits had dammed the river over a length of several hundred metres. In several outcrops adjacent to the river and in small erosional gullies we found a peculiar stratigraphic layer (up to ten centimetres thick) at the top of the PDC deposits. As this layer is capped by a thin fall unit of coarse ash that we also find elsewhere at the top of the August 2006 deposits, the primary nature is without doubt. In this unit, we observed abundant ash aggregates up to eight millimetres in diameter within a poorly sorted, ash-depleted lapilli tuff, primarily comprised of rounded pumiceous and scoriaceous clasts of similar size. Leaching experiments have shown that these aggregates contain several hundred ppm of soluble sulphate and chloride salts. Recent laboratory experiments (Mueller et al. 2015) have suggested that in order for accretionary lapilli to be preserved within ash

  4. Improving volcanic ash predictions with the HYSPLIT dispersion model by assimilating MODIS satellite retrievals

    NASA Astrophysics Data System (ADS)

    Chai, Tianfeng; Crawford, Alice; Stunder, Barbara; Pavolonis, Michael J.; Draxler, Roland; Stein, Ariel

    2017-02-01

    Currently, the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) runs the HYSPLIT dispersion model with a unit mass release rate to predict the transport and dispersion of volcanic ash. The model predictions provide information for the Volcanic Ash Advisory Centers (VAAC) to issue advisories to meteorological watch offices, area control centers, flight information centers, and others. This research aims to provide quantitative forecasts of ash distributions generated by objectively and optimally estimating the volcanic ash source strengths, vertical distribution, and temporal variations using an observation-modeling inversion technique. In this top-down approach, a cost functional is defined to quantify the differences between the model predictions and the satellite measurements of column-integrated ash concentrations weighted by the model and observation uncertainties. Minimizing this cost functional by adjusting the sources provides the volcanic ash emission estimates. As an example, MODIS (Moderate Resolution Imaging Spectroradiometer) satellite retrievals of the 2008 Kasatochi volcanic ash clouds are used to test the HYSPLIT volcanic ash inverse system. Because the satellite retrievals include the ash cloud top height but not the bottom height, there are different model diagnostic choices for comparing the model results with the observed mass loadings. Three options are presented and tested. Although the emission estimates vary significantly with different options, the subsequent model predictions with the different release estimates all show decent skill when evaluated against the unassimilated satellite observations at later times. Among the three options, integrating over three model layers yields slightly better results than integrating from the surface up to the observed volcanic ash cloud top or using a single model layer. Inverse tests also show that including the ash-free region to constrain the model is not

  5. Altered volcanic ash layers of the Late Cretaceous San Felipe Formation, Sierra Madre Oriental (Northeastern Mexico): Usbnd Pb geochronology, provenance and tectonic setting

    NASA Astrophysics Data System (ADS)

    Velasco-Tapia, Fernando; Martínez-Paco, Margarita; Iriondo, Alexander; Ocampo-Díaz, Yam Zul Ernesto; Cruz-Gámez, Esther María; Ramos-Ledezma, Andrés; Andaverde, Jorge Alberto; Ostrooumov, Mikhail; Masuch, Dirk

    2016-10-01

    A detailed petrographic, geochemical, and Usbnd Pb geochronological study of altered volcanic ash layers, collected in eight outcrops of the Late Cretaceous San Felipe Formation (Sierra Madre Oriental, Northeastern Mexico), has been carried out. The main objectives have been: (1) to establish a deposit period, and (2) to propose a reliable provenance-transport-deposit-diagenetic model. These volcano-sedimentary strata represent the altered remains of vitreous-crystalline ash (main grains: quartz + K-feldspar (sanidine) + Na-plagioclase + zircon + biotite; groundmass: glass + calcite + clinochlore + illite) deposited and preserved in a shallow, relatively large in area, open platform environment. Major and trace element geochemistry indicate that parent volcanism was mainly rhyodacitic to rhyolitic in composition. Discrimination diagrams suggest a link to continental arc transitional to extension tectonic setting. Usbnd Pb geochronology in zircon has revealed that the volcanic ash was released from their sources approximately during the range 84.6 ± 0.8 to 73.7 ± 0.3 Ma, being transported to the depocenters. Burial diagenesis process was marked by: (a) a limited recycling, (b) the partial loss of original components (mainly K-feldspar, plagioclase, biotite and glass), and (c) the addition of quartz, calcite, illite and clinochlore. The location of the source area remains uncertain, although the lack of enrichment in Zr/Sc ratio suggests that ashes were subjected to relatively fast and short-distance transport process. El Peñuelo intrusive complex, at 130-170 km west of the depocenters, is the nearest known zone of active magmatism during the Upper Cretaceous. This intermediate to felsic pluton, characterized by a geochemical affinity to post-orogenic tectonic setting, could be linked to the volcanic sources.

  6. Ash Plume from Shiveluch

    NASA Image and Video Library

    2012-10-09

    When NASA’s Terra satellite passed over Russia’s Kamchatka Peninsula at noon local time (00:00 Universal Time) on October 6, 2012, Shilveluch Volcano was quiet. By the time NASA’s Aqua satellite passed over the area two hours later (bottom image), the volcano had erupted and sent a plume of ash over the Kamchatskiy Zaliv. The plume traveled about 90 kilometers (55 miles) toward the south-southeast, where a change in wind direction began pushing the plume toward the east. On October 6, 2012, the Kamchatka Volcanic Emergency Response Team (KVERT) reported that the ash plume from Shiveluch reached an altitude of 3 kilometers (9,800 feet) above sea level, and had traveled some 220 kilometers (140 miles) from the volcano summit. Shiveluch (also spelled Sheveluch) ranks among the biggest and most active volcanoes on the Kamchatka Peninsula. Rising to 3,283 meters (10,771 feet) above sea level, Shiveluch is a stratovolcano composed of alternating layers of hardened lava, compacted ash, and rocks ejected by previous eruptions. The beige-colored expanse of rock on the volcano’s southern slopes (visible in both images) is due to an explosive eruption that occurred in 1964. Part of Shiveluch’s southern flank collapsed, and the light-colored rock is avalanche debris left by that event. High-resolution imagery of Shiveluch shows very little vegetation within that avalanche zone. On October 6, 2012, KVERT cited observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on Terra and Aqua in detecting the Shiveluch eruption. This was not the first time that MODIS observed a Shiveluch eruption shortly after it started. In 2007, MODIS captured an image within minutes of the eruption’s start, before winds could blow the ash away from the summit. When NASA’s Terra satellite passed over Russia’s Kamchatka Peninsula at noon local time (00:00 Universal Time) on October 6, 2012, Shilveluch Volcano was quiet (top image). By the time NASA

  7. Ash formation, deposition, corrosion, and erosion in conventional boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, S.A.; Jones, M.L.

    1995-12-01

    The inorganic components (ash-forming species) associated with coals significantly affect boiler design, efficiency of operation, and lifetimes of boiler parts. During combustion in conventional pulverized fuel boilers, the inorganic components are transformed into inorganic gases, liquids, and solids. This partitioning depends upon the association of the inorganic components in the coal and combustion conditions. The inorganic components are associated as mineral grains and as organically associated elements, and these associations of inorganic components in the fuel directly influence their fate upon combustion. Combustion conditions, such as temperature and atmosphere, influence the volatility and the interaction of inorganic components during combustionmore » and gas cooling, which influences the state and size composition distribution of the particulate and condensed ash species. The intermediate species are transported with the bulk gas flow through the combustion systems, during which time the gases and entrained ash are cooled. Deposition, corrosion, and erosion occur when the ash intermediate species are transported to the heat-transfer surface, react with the surface, accumulate, sinter, and develop strength. Research over the past decade has significantly advanced understanding of ash formation, deposition, corrosion, and erosion mechanisms. Many of the advances in understanding and predicting ash-related issues can be attributed to advanced analytical methods to determine the inorganic composition of fuels and the resulting ash materials. These new analytical techniques have been the key to elucidation of the mechanisms of ash formation and deposition. This information has been used to develop algorithms and computer models to predict the effects of ash on combustion system performance.« less

  8. Probabilistic detection of volcanic ash using a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Mackie, Shona; Watson, Matthew

    2014-03-01

    Airborne volcanic ash can pose a hazard to aviation, agriculture, and both human and animal health. It is therefore important that ash clouds are monitored both day and night, even when they travel far from their source. Infrared satellite data provide perhaps the only means of doing this, and since the hugely expensive ash crisis that followed the 2010 Eyjafjalljökull eruption, much research has been carried out into techniques for discriminating ash in such data and for deriving key properties. Such techniques are generally specific to data from particular sensors, and most approaches result in a binary classification of pixels into "ash" and "ash free" classes with no indication of the classification certainty for individual pixels. Furthermore, almost all operational methods rely on expert-set thresholds to determine what constitutes "ash" and can therefore be criticized for being subjective and dependent on expertise that may not remain with an institution. Very few existing methods exploit available contemporaneous atmospheric data to inform the detection, despite the sensitivity of most techniques to atmospheric parameters. The Bayesian method proposed here does exploit such data and gives a probabilistic, physically based classification. We provide an example of the method's implementation for a scene containing both land and sea observations, and a large area of desert dust (often misidentified as ash by other methods). The technique has already been successfully applied to other detection problems in remote sensing, and this work shows that it will be a useful and effective tool for ash detection.

  9. Physical Layer Secret-Key Generation Scheme for Transportation Security Sensor Network

    PubMed Central

    Yang, Bin; Zhang, Jianfeng

    2017-01-01

    Wireless Sensor Networks (WSNs) are widely used in different disciplines, including transportation systems, agriculture field environment monitoring, healthcare systems, and industrial monitoring. The security challenge of the wireless communication link between sensor nodes is critical in WSNs. In this paper, we propose a new physical layer secret-key generation scheme for transportation security sensor network. The scheme is based on the cooperation of all the sensor nodes, thus avoiding the key distribution process, which increases the security of the system. Different passive and active attack models are analyzed in this paper. We also prove that when the cooperative node number is large enough, even when the eavesdropper is equipped with multiple antennas, the secret-key is still secure. Numerical results are performed to show the efficiency of the proposed scheme. PMID:28657588

  10. Physical Layer Secret-Key Generation Scheme for Transportation Security Sensor Network.

    PubMed

    Yang, Bin; Zhang, Jianfeng

    2017-06-28

    Wireless Sensor Networks (WSNs) are widely used in different disciplines, including transportation systems, agriculture field environment monitoring, healthcare systems, and industrial monitoring. The security challenge of the wireless communication link between sensor nodes is critical in WSNs. In this paper, we propose a new physical layer secret-key generation scheme for transportation security sensor network. The scheme is based on the cooperation of all the sensor nodes, thus avoiding the key distribution process, which increases the security of the system. Different passive and active attack models are analyzed in this paper. We also prove that when the cooperative node number is large enough, even when the eavesdropper is equipped with multiple antennas, the secret-key is still secure. Numerical results are performed to show the efficiency of the proposed scheme.

  11. Greatly increased use of fly ash in hydraulic cement concrete (HCC) for pavement layers and transportation structures - volume I.

    DOT National Transportation Integrated Search

    2012-03-01

    The purpose of this phase is to evaluate the past, current and future trends of use of fly ash in concrete and restrictions to its use. The American Coal Ash Association (ACAA) conducts an annual survey of fly ash production and use. Typically on an ...

  12. Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator.

    PubMed

    Yang, Y; Xiao, Y; Voncken, J H L; Wilson, N

    2008-06-15

    Boiler ash generated from municipal solid waste (MSW) incinerators is usually classified as hazardous materials and requires special disposal. In the present study, the boiler ash was characterized for the chemical compositions, morphology and microstructure. The thermal chemical behavior during ash heating was investigated with thermal balance. Vitrification of the ash was conducted at a temperature of 1400 degrees C in order to generate a stable silicate slag, and the formed slag was examined with chemical and mineralogical analyses. The effect of vitrification on the leaching characteristics of various elements in the ash was evaluated with acid leaching. The study shows that the boiler ash as a heterogeneous fine powder contains mainly silicate, carbonate, sulfates, chlorides, and residues of organic materials and heavy metal compounds. At elevated temperatures, the boiler ash goes through the initial moisture removal, volatilization, decomposition, sintering, melting, and slag formation. At 1400 degrees C a thin layer of salt melt and a homogeneous glassy slag was formed. The experimental results indicate that leaching values of the vitrified slag are significantly reduced compared to the original boiler ash, and the vitrification could be an interesting alternative for a safer disposal of the boiler ash. Ash compacting, e.g., pelletizing can reduce volatilization and weight loss by about 50%, and would be a good option for the feed preparation before vitrification.

  13. Chemically frozen multicomponent boundary layer theory of salt and/or ash deposition rates from combustion gases

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Chen, B.-K.; Fryburg, G. C.; Kohl, F. J.

    1979-01-01

    There is increased interest in, and concern about, deposition and corrosion phenomena in combustion systems containing inorganic condensible vapors and particles (salts, ash). To meet the need for a computationally tractable deposition rate theory general enough to embrace multielement/component situations of current and future gas turbine and magnetogasdynamic interest, a multicomponent chemically 'frozen' boundary layer (CFBL) deposition theory is presented and its applicability to the special case of Na2SO4 deposition from seeded laboratory burner combustion products is demonstrated. The coupled effects of Fick (concentration) diffusion and Soret (thermal) diffusion are included, along with explicit corrections for effects of variable properties and free stream turbulence. The present formulation is sufficiently general to include the transport of particles provided they are small enough to be formally treated as heavy molecules. Quantitative criteria developed to delineate the domain of validity of CFBL-rate theory suggest considerable practical promise for the present framework, which is characterized by relatively modest demands for new input information and computer time.

  14. Dispersed Volcanic Ash in Sediment Entering NW Pacific Ocean Subduction Zones: Towards a Regional Perspective

    NASA Astrophysics Data System (ADS)

    Scudder, R. P.; Murray, R. W.; Underwood, M.; Kutterolf, S.; Plank, T.; Dyonisius, M.; Arshad, M. A.

    2011-12-01

    Volcanic ash has long been recognized to be an important component of the global sedimentary system. Ash figures prominently in a number of sedimentary and petrophysical investigations, including how the fluid budget of subducting sediment will be affected by hydration/dehydration reactions. Additionally, many studies focus on discrete ash layers, and how to link their presence with volcanism, climate, arc evolution, biological productivity, and other processes. Less widely recognized is the ash that is mixed into the bulk sediment, or "dispersed" ash. Dispersed ash is quantitatively significant and is an under-utilized source of critical geochemical and tectonic information. Based on geochemical studies of ODP Site 1149, a composite of DSDP Sites 579 & 581, as well as IODP Sites C0011 & C0012 drilled during Expedition 322, we will show the importance of dispersed ash to the Izu-Bonin-Marianas, Kurile-Kamchatka and Nankai subduction zones. Initial geochemical analyses of the bulk sediment, as related to dispersed ash entering these subduction systems are presented here. Geochemical analysis shows that the characteristics of the three sites exhibit some variability consistent with observed lithological variations. For example, the average SiO2/Al2O3 ratios at Site 1149, Site C0011 and Site C0012 average 3.7. The composite of Sites 579 & 581 exhibits a higher average of 4.6. There are contrasts between other key major elemental indicators as well (e.g., Fe2O3). Ternary diagrams such as K2O-Na2O-CaO show that there are at least two distinct geochemical fields with Sites 1149, C0011 and C0012 clustering in one and Sites 579 & 581 in the other. Q-mode Factor Analysis was performed on the bulk sediment chemical data in order to determine the composition of potential end members of these sites. The multivariate statistics indicate that Site 1149 has 3-4 end members, consistent with the results of Scudder et al. (2009, EPSL, v. 284, pp 639), while each of the other sites

  15. MSW fly ash stabilized with coal ash for geotechnical application.

    PubMed

    Kamon, M; Katsumi, T; Sano, Y

    2000-09-15

    The solidification and stabilization of municipal solid waste (MSW) fly ash for the purpose of minimizing the geo-environmental impact caused by toxic heavy metals as well as ensuring engineering safety (strength and soaking durability) are experimentally evaluated. The mixtures of MSW fly ash stabilized with cement and fluidized bed combustion coal fly ash (FCA) were used for unconfined compressive strength tests, leachate tests, and soaking tests. The behavior of soluble salts contained in the MSW fly ash significantly affects strength development, soaking durability, and the hardening reaction of the stabilized MSW fly ash mixtures. The cement stabilization of the MSW fly ash does not have enough effect on strength development and soaking durability. The addition of cement only contributes to the containment of heavy metals due to the high level of alkalinity. When using FCA as a stabilizing agent for MSW fly ash, the mixture exhibits high strength and durability. However, the Cd leachate cannot be prevented in the early stages of curing. Using a combination of cement and FCA as a MSW fly ash stabilizer can attain high strength, high soaking durability, and the containment of heavy metals. The stabilized MSW fly ash with cement and FCA can be practically applied to embankments.

  16. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard

    NASA Astrophysics Data System (ADS)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.

    2013-12-01

    Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to

  17. Structure, properties, and surfactant adsorption behavior of fly ash carbon

    NASA Astrophysics Data System (ADS)

    Kulaots, Indrek

    The objective of this research was to suggest methods by which certain problems associated with use of coal fly ash as a pozzolanic agent in concrete mixtures could be alleviated, guided by a better characterization of fly ash properties. A sample suite of eighty fly ashes was gathered from utilities across the world (mainly US-based) and included ashes from coals ranging in rank from bituminous to lignite. The widely used foam index test is used to characterize ashes with respect to their propensity to adsorb surfactants (called Air Entraining Admixtures or AEAs) used to impart freeze-thaw resistance to concrete. In ash-containing concrete mixtures, AEAs are adsorbed from the polar concrete-water solution onto non-polar unburned carbon surfaces in the ash. The AEA uptake by fly ashes only crudely correlates with the amount of carbon in the fly ash, because carbon surface area, accessibility and polarity all play a role in determining adsorption capacities. Fly ash carbon particle size distribution is also a key factor. Fine carbon particles in fly ash fractions of <106mum are responsible for about 90% of surfactant adsorption capacity. Surfactant adsorption on fly ash carbon is, in the foam index test, a dynamic process. The time of the test (typically <10 minutes) is not long enough to permit penetration of small porosity by the relatively large AEA molecules, and only the most readily available adsorption surface near the geometrical surface of the carbon particles is utilized. The nature of the foam index test was also examined, and it is recommended that a more standardized test procedure based upon pure reagents be adopted for examining the nature of fly ashes. Several possible reagents were identified. Room temperature fly ash ozonation is a powerful technique that allows increasing fly ash surface polarity in a relatively short time and thus is very effective for decreasing the AEA uptake capacity. Depending on the ozone input concentration, sample amount

  18. An Experimental Study of High Strength-High Volume Fly Ash Concrete for Sustainable Construction Industry

    NASA Astrophysics Data System (ADS)

    Kate, Gunavant K.; Thakare, Sunil B., Dr.

    2017-08-01

    Concrete is the most widely used building material in the construction of infrastructures such as buildings, bridges, highways, dams, and many other facilities. This paper reports the development, the basic idea, the main properties of high strength-high volume fly ash with application in concrete associated with the development and implementation of Sustainable Properties of High Volume Fly Ash Concrete (HVFAC) Mixtures and Early Age Shrinkage and mechanical properties of concrete for 7,28,56 and 90days. Another alternative to make environment-friendly concrete is the development of high strength-high-volume fly ash concrete which is an synthesized from materials of geological origin or by-product materials such as fly ash which is rich in silicon and aluminum. In this paper 6 concrete mixtures were produced to evaluate the effect of key parameters on the mechanical properties of concrete and its behavior. The study key parameters are; binder material content, cement replacement ratios, and the steel fibers used to High Volume Fly Ash mixtures for increasing performance of concrete.

  19. Proceedings of the Coastal Benthic Boundary Layer Key West Workshop

    DTIC Science & Technology

    1997-06-24

    depth are controlled by climatic changes which affect sea level and result in vastly different sedimentary regimes. After several hours of discussion...benthic boundary layer. EOS 75: 201- 206. Tom S.J. and Richardson M.D. (1996) The Key West campaign. Sea Technology 36:17-25. 6 Mi : VA1 I I AI T0. 03 a -1Z...reflectors appear to be unconformable surfaces based on the presence of karst, and probably represent erosion and cementation during sea -level lowstands

  20. Development of novel ash hybrids to introgress resistance to emerald ash borer into north American ash species

    Treesearch

    Jennifer L. Koch; David W. Carey; Mary E. Mason

    2008-01-01

    Currently, there is no evidence that any of the native North American ash species have any resistance to the emerald ash borer (EAB). This means that the entire ash resource of the eastern United States and Canada is at risk of loss due to EAB. In contrast, outbreaks of EAB in Asian ash species are rare and appear to be isolated responses to stress (Bauer et al. 2005,...

  1. Volcanic Ash Preservation in Prokosko Jezero, Boznia Herzegowina - Extending our Knowledge of Eruptions in the Adriatic Sea Area.

    NASA Astrophysics Data System (ADS)

    van den Bogaard, C.; Dörfler, W.

    2017-12-01

    Archaeological and palaeoecological studies of settlement phases and changes in society are often based on natural archives: changes in the sediment composition and pollen content reflect climatic developments, plant successions show human interactions with the landscape. Volcanic ash layers preserved in the archives form valuable time markers in archaeological studies, the data base is being enlarged rapidly. Here we report new results from a core from the Prokosko Jezero, Boznia Herzegowina, close to the Neolithic tell settlement at Okoliste. The core extends the European eruption record back into Late Glacial times. A total of at least 18 eruptive events are recorded in the core. No visible ash layers occur, 13 of the events are preserved as crypto-tephra layers, 5 as discrete layers. The ash particles have been provenance-fingerprinted by electron microprobe analysis and results are compared with published chemical measurements obtained from proximal and other distal sites within and around the Adriatic Sea. One of the aims of the present study was the timely correlation to other distal sites, comparing the overregional environmental development.

  2. Differential utilization of ash phloem by emerald ash borer larvae: Ash species and larval stage effects

    Treesearch

    Yigen Chen; Michael D. Ulyshen; Therese M. Poland

    2012-01-01

    Two experiments were performed to determine the extent to which ash species (black, green and white) and larval developmental stage (second, third and fourth instar) affect the efficiency of phloem amino acid utilization by emerald ash borer (EAB) Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) larvae. EAB larvae generally utilized green ash...

  3. Study of PCDD/Fs distribution in fly ash, ash deposits, and bottom ash from a medical waste incinerator in China.

    PubMed

    Du, Yingzhe; Jin, Yuqi; Lu, Shengyong; Peng, Zheng; Li, Xiaodong; Yan, Jianhua

    2013-02-01

    Over the past decades in China, the number of medical waste incinerators (MWIs) has been rising rapidly, causing emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). In this study, samples of fly ash, ash deposits, and bottom ash from typical MWIs were analyzed for PCDD/Fs and their distribution characteristics. Results showed international toxic equivalent (I-TEQ) values in the range of 6.9-67 ng I-TEQ/g in fly ash and ash deposits, whereas the concentration in bottom ash was extremely low (only 1.33 pg I-TEQ/g), yet the generation of PCDD/Fs was mostly de novo synthesis in fly ash and ash deposits according to the ratio of PCDFs to PCDDs; the major distribution differences of PCDD/Fs in fly ash was manifested by the content of toxic furan 2,3,7,8-TCDF but other toxic PCDD/Fs showed similar distribution. Other findings are that 2,3,4,7,8-PeCDF had the most contribution to TEQ concentration, and that the most abundant toxic furan congener is 1,2,3,4,6,7,8-HpCDF. Correlation analysis showed that there was no significant correlation between PCDD/Fs concentration and several other physical and chemical parameters. This paper is of interest because it presents the emission performances of PCDD/Fs in ash from medical waste incineration in China. PCDD/F contents in fly ash and ash deposits vary between 6.9 and 67.3 ng I-TEQ/g. However, the concentration in bottom ash was extremely low (only 1.33 x 10(-3) ng I-TEQ/g). The fingerprints of PCDD/Fs in fly ash are almost similar, except for 2,3,7,8-TCDF. There is no marked correlation between PCDD/Fs and other physicochemical properties.

  4. Host resistance to emerald ash borer: development of novel ash hybrids

    Treesearch

    Jennifer L. Koch; David W. Carey; Richard Larson

    2007-01-01

    In contrast to the rapid destruction of ash trees in the United States by emerald ash borer (EAB, Agrilus planipennis Fairmaire), outbreaks of EAB in Asia appear to be isolated responses to stress, such as drought, and do not devastate the ash population. This indicates that in Asia, ash trees may have a level of inherent resistance. This resistance...

  5. Climate change and the ash dieback crisis

    PubMed Central

    Goberville, Eric; Hautekèete, Nina-Coralie; Kirby, Richard R.; Piquot, Yves; Luczak, Christophe; Beaugrand, Grégory

    2016-01-01

    Beyond the direct influence of climate change on species distribution and phenology, indirect effects may also arise from perturbations in species interactions. Infectious diseases are strong biotic forces that can precipitate population declines and lead to biodiversity loss. It has been shown in forest ecosystems worldwide that at least 10% of trees are vulnerable to extinction and pathogens are increasingly implicated. In Europe, the emerging ash dieback disease caused by the fungus Hymenoscyphus fraxineus, commonly called Chalara fraxinea, is causing a severe mortality of common ash trees (Fraxinus excelsior); this is raising concerns for the persistence of this widespread tree, which is both a key component of forest ecosystems and economically important for timber production. Here, we show how the pathogen and climate change may interact to affect the future spatial distribution of the common ash. Using two presence-only models, seven General Circulation Models and four emission scenarios, we show that climate change, by affecting the host and the pathogen separately, may uncouple their spatial distribution to create a mismatch in species interaction and so a lowering of disease transmission. Consequently, as climate change expands the ranges of both species polewards it may alleviate the ash dieback crisis in southern and occidental regions at the same time. PMID:27739483

  6. A Comprehensive Training Data Set for the Development of Satellite-Based Volcanic Ash Detection Algorithms

    NASA Astrophysics Data System (ADS)

    Schmidl, Marius

    2017-04-01

    We present a comprehensive training data set covering a large range of atmospheric conditions, including disperse volcanic ash and desert dust layers. These data sets contain all information required for the development of volcanic ash detection algorithms based on artificial neural networks, urgently needed since volcanic ash in the airspace is a major concern of aviation safety authorities. Selected parts of the data are used to train the volcanic ash detection algorithm VADUGS. They contain atmospheric and surface-related quantities as well as the corresponding simulated satellite data for the channels in the infrared spectral range of the SEVIRI instrument on board MSG-2. To get realistic results, ECMWF, IASI-based, and GEOS-Chem data are used to calculate all parameters describing the environment, whereas the software package libRadtran is used to perform radiative transfer simulations returning the brightness temperatures for each atmospheric state. As optical properties are a prerequisite for radiative simulations accounting for aerosol layers, the development also included the computation of optical properties for a set of different aerosol types from different sources. A description of the developed software and the used methods is given, besides an overview of the resulting data sets.

  7. Emerald ash borer biocontrol in ash saplings: the potential for early stage recovery of North American ash

    USDA-ARS?s Scientific Manuscript database

    In many parts of North America, ash stands have been reduced by the emerald ash borer (Agrilus planipennis) invasion to a few surviving mature trees and young basal sprouts, saplings, and seedlings. Without a seed bank, ash tree recovery will require survival and maturation of these younger cohorts...

  8. Effects of broiler litter ash, layer manure ash and calcium phosphate on corn, wheat and soybean growth, phosphorus and arsenic uptake

    USDA-ARS?s Scientific Manuscript database

    Poultry litter is being incinerated in order to reduce excess litter and to increase the percentage of renewable fuel used to generate electricity. Ash from incinerated litter has been effective in increasing crop growth. However, there is no current literature comparing phosphorus availability fr...

  9. Aerosol layer height from synergistic use of VIIRS and OMPS

    NASA Astrophysics Data System (ADS)

    Lee, J.; Hsu, N. Y. C.; Sayer, A. M.; Kim, W.; Seftor, C. J.

    2017-12-01

    This study presents an Aerosol Single-scattering albedo and Height Estimation (ASHE) algorithm, which retrieves the height of UV-absorbing aerosols by synergistically using the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Ozone Mapping and Profiler Suite (OMPS). ASHE provides height information over a much broader area than ground-based or spaceborne lidar measurements by benefitting from the wide swaths of the two instruments used. As determination of single-scattering albedo (SSA) of the aerosol layer is the most critical part for the performance and coverage of ASHE, here we demonstrate three different strategies to constrain the SSA. First, ASHE is able to retrieve the SSA of UV-absorbing aerosols when Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) provides vertical profiles of the aerosol layer of interest. Second, Aerosol Robotic Network (AERONET) inversions can directly constrain the SSA of the aerosol layer when collocated with VIIRS or OMPS. Last, a SSA climatology from ASHE, AERONET, or other data sources can be used for large-scale, aged aerosol events, for which climatological SSA is well-known, at the cost of a slight decrease in retrieval accuracy. The same algorithm can be applied to measurements of similar type, such as those made by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI), for a long-term, consistent data record.

  10. Potentially harmful elements released by volcanic ashes: Examples from the Mediterranean area

    NASA Astrophysics Data System (ADS)

    Cangemi, Marianna; Speziale, Sergio; Madonia, Paolo; D'Alessandro, Walter; Andronico, Daniele; Bellomo, Sergio; Brusca, Lorenzo; Kyriakopoulos, Konstantinos

    2017-05-01

    We have performed leaching experiments on the fine (< 2 mm) particulate sampled in seven active and quiescent volcanic systems in the Mediterranean area. We reacted the particulate both in pure water and in a synthetic gastric solution. The amount of As, Mn, Pb, Ba, U and Ni leached by pure water exceeded the MAC limits for drinking water in all the materials under investigation. We defined a tolerable ash intake index (TAI) to evaluate the impact of ash ingestion, and we find that 0.2 g and 12 g of ingested fine ash from Vesuvius and Vulcano are enough to exceed the safety limits for Pb and As. Six grams of fine ashes from Stromboli are sufficient to overstep the safety limits for As. Based on our mineralogical characterisation of the particulate, we expect that the submillimetric ash fraction, with a higher surface/volume ratio, releases a greater relative amount of trace metals, which are concentrated in the thin surface layer produced by the reaction of the pristine volcanic particles with coexisting volcanic gases. This means that our measurements represent lower bounds to the actual amount of metal released in aqueous solutions by the volcanic ashes from the locations under investigation. Our results place the first constraints on the mobilisation of toxic elements from volcanic ash, which are necessary to assess the associated potential health risk of volcanic areas.

  11. Volcanic ash melting under conditions relevant to ash turbine interactions

    PubMed Central

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B.

    2016-01-01

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200–2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines. PMID:26931824

  12. Volcanic ash melting under conditions relevant to ash turbine interactions.

    PubMed

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B

    2016-03-02

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.

  13. Emerald ash borer aftermath forests: the future of ash ecosystems

    Treesearch

    Kathleen S. Knight; Daniel A. Herms; John Cardina; Robert Long; Kamal J.K. Gandhi; Catharine P. Herms

    2011-01-01

    The effects of emerald ash borer (EAB) (Agrilus planipennis) on forest ecosystems are being studied through a collaborative research program between the U.S. Forest Service and The Ohio State University. We are monitoring ash demographics, understory light availability, EAB population dynamics, native and non-native plants, and effects of ash...

  14. Formation mechanism of the protective layer in a blast furnace hearth

    NASA Astrophysics Data System (ADS)

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Xu, Meng; Liu, Feng

    2015-10-01

    A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast furnace taphole level when a certain amount of titanium- bearing burden was used. Samples of the protective layer were extracted to identify the chemical composition, phase assemblage, and distribution. Furthermore, the formation mechanism of the protective layer was determined after clarifying the source of each component. Finally, a technical strategy was proposed for achieving a stable protective layer in the hearth. The results show that the protective layer mainly exists in a bilayer form in the sidewall, namely, a titanium-bearing layer and a graphite layer. Both the layers contain the slag phase whose major crystalline phase is magnesium melilite (Ca2MgSi2O7) and the main source of the slag phase is coke ash. It is clearly determined that solid particles such as graphite, Ti(C,N) and MgAl2O4 play an important role in the formation of the protective layer, and the key factor for promoting the formation of a stable protective layer is reasonable control of the evolution behavior of coke.

  15. Dispersal of Volcanic Ash on Mars: Ash Grain Shape Analysis

    NASA Astrophysics Data System (ADS)

    Langdalen, Z.; Fagents, S. A.; Fitch, E. P.

    2017-12-01

    Many ash dispersal models use spheres as ash-grain analogs in drag calculations. These simplifications introduce inaccuracies in the treatment of drag coefficients, leading to inaccurate settling velocities and dispersal predictions. Therefore, we are investigating the use of a range of shape parameters, calculated using grain dimensions, to derive a better representation of grain shape and effective grain cross-sectional area. Specifically, our goal is to apply our results to the modeling of ash deposition to investigate the proposed volcanic origin of certain fine-grained deposits on Mars. Therefore, we are documenting the dimensions and shapes of ash grains from terrestrial subplinian to plinian deposits, in eight size divisions from 2 mm to 16 μm, employing a high resolution optical microscope. The optical image capture protocol provides an accurate ash grain outline by taking multiple images at different focus heights prior to combining them into a composite image. Image composite mosaics are then processed through ImageJ, a robust scientific measurement software package, to calculate a range of dimensionless shape parameters. Since ash grains rotate as they fall, drag forces act on a changing cross-sectional area. Therefore, we capture images and calculate shape parameters of each grain positioned in three orthogonal orientations. We find that the difference between maximum and minimum aspect ratios of the three orientations of a given grain best quantifies the degree of elongation of that grain. However, the average aspect ratio calculated for each grain provides a good representation of relative differences among grains. We also find that convexity provides the best representation of surface irregularity. For both shape parameters, natural ash grains display notably different shape parameter values than sphere analogs. Therefore, Mars ash dispersal modeling that incorporates shape parameters will provide more realistic predictions of deposit extents

  16. Fly ash carbon passivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most ofmore » the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.« less

  17. Ashes to ashes: Large Fraxinus germplasm collections and their fates

    Treesearch

    Kim C. Steiner; Paul. Lupo

    2010-01-01

    As the emerald ash borer (EAB) threatens the survival of our ash species, measures should be taken to preserve their genetic variability in the event that we discover a way to restore populations destroyed by the beetle. As it happens, large germplasm collections exist for our most important and widely distributed eastern species of the genus, white ash (...

  18. The adsorption of HCl on volcanic ash

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Xochilt; Schiavi, Federica; Keppler, Hans

    2016-03-01

    Understanding the interaction between volcanic gases and ash is important to derive gas compositions from ash leachates and to constrain the environmental impact of eruptions. Volcanic HCl could potentially damage the ozone layer, but it is unclear what fraction of HCl actually reaches the stratosphere. The adsorption of HCl on volcanic ash was therefore studied from -76 to +150 °C to simulate the behavior of HCl in the dilute parts of a volcanic plume. Finely ground synthetic glasses of andesitic, dacitic, and rhyolitic composition as well as a natural obsidian from Vulcano (Italy) served as proxies for fresh natural ash. HCl adsorption is an irreversible process and appears to increase with the total alkali content of the glass. Adsorption kinetics follow a first order law with rate constants of 2.13 ṡ10-6 s-1 to 1.80 ṡ10-4 s-1 in the temperature range investigated. For dacitic composition, the temperature and pressure dependence of adsorption can be described by the equation ln ⁡ c = 1.26 + 0.27 ln ⁡ p - 715.3 / T, where c is the surface concentration of adsorbed HCl in mg/m2, T is temperature in Kelvin, and p is the partial pressure of HCl in mbar. A comparison of this model with a large data set for the composition of volcanic ash suggests that adsorption of HCl from the gas phase at relatively low temperatures can quantitatively account for the majority of the observed Cl concentrations. The model implies that adsorption of HCl on ash increases with temperature, probably because of the increasing number of accessible adsorption sites. This temperature dependence is opposite to that observed for SO2, so that HCl and SO2 are fractionated by the adsorption process and the fractionation factor changes by four orders of magnitude over a temperature range of 250 K. The assumption of equal adsorption of different species is therefore not appropriate for deriving volcanic gas compositions from analyses of adsorbates on ash. However, with the experimental

  19. Ash wettability conditions splash erosion in the postfire

    NASA Astrophysics Data System (ADS)

    Gordillo-Rivero, Ángel J.; de Celis, Reyes; García-Moreno, Jorge; Jiménez-Compán, Elizabeth; Alanís, Nancy; Cerdà, Artemi; Pereira, Paulo; Zavala, Lorena M.; Jordán, Antonio

    2015-04-01

    1. INTRODUCTION Soil sustainability and recovery after fire depend on physical, chemical and biological processes and fire severity (Neary et al., 1999; Mataix-Solera and Guerrero, 2007). Fire effects on soils are divided in two types: direct effects, as a consequence of combustion and temperature reached and indirect effects (Neary et al., 1999) as consequence of changes in other ecosystem components, such as decrease in vegetal coverage or ash and partially burned litter contribution including changes in flora (Pausas and Verdú, 2005; Trabaud, 2000). Low intensity fires, during which high temperatures are not reached, affect vegetal coverage but will not cause major impacts on soil. In contrast, prolonged, recurrent, or high-intensity fires may cause important impacts on the soil system functioning (De Celis et al., 2013; DeBano, 1991; Mataix-Solera et al., 2009; Zavala et al., 2014), aggregation (Mataix-Solera et al., 2011), organic matter content and quality (Sevink et al., 1989), water repellency (DeBano, 2000; Doerr et al., 2000), soil nutrients (Stark, 1977), soil erosion (Larsen et al., 2009) and others. In these cases, the restoration period of the initial conditions can be very long and changes may become permanent (DeBano, 1991). During combustion, fuel (biomass, necromass and soil organic matter) is transformed in materials with new physical and chemical properties. After burn, the soil surface is covered by a layer of ash and charred organic residues. Ash has important ecological, hydrological and geomorphological effects, even after being rearranged or mobilized by runoff or wind (Bodí et al., 2014). Ash properties will depend on the burned species, the amount of affected biomass, fuel flammability and structure, temperature and the residence time of thermal peaks (Pereira et al., 2009). Some studies have emphasized the role of ash on soil protection during the after fire period, in which the vegetable coverage could be drastically decreased (Cerd

  20. A six-year record of volcanic ash detection with Envisat MIPAS

    NASA Astrophysics Data System (ADS)

    Griessbach, S.; Hoffmann, L.; von Hobe, M.; Müller, R.; Spang, R.

    2012-04-01

    Volcanic ash particles have an impact on the Earth's radiation budget and pose a severe danger to air traffic. Therefore, the ability to detect and characterize volcanic ash layers on a global and altitude-dependent scale is essential. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on-board ESA's Envisat is mainly used for measurements of vertical profiles of atmospheric trace gases. It is also very sensitive to cloud and aerosol particles. We developed a fast, simple, and reliable method to detect volcanic ash using MIPAS spectra. From calculations of volcanic ash and ice particle optical properties, such as extinction coefficients and single scattering albedos as well as simulated MIPAS radiance spectra, we derived two optimal micro windows at 10.5 and 12.1 μm to detect volcanic ash. The calculations were performed with the JUelich RApid Spectral Simulation Code (JURASSIC), which includes a scattering module. Our method applies two radiance thresholds to detect volcanic ash. The first one is derived from a statistical analysis of six years of measured MIPAS radiances in the selected spectral windows. This statistical threshold accounts only for pure volcanic ash detections. The second threshold is derived from simulations of MIPAS radiances with JURASSIC for a broad range of atmospheric conditions and tangent altitudes for volcanic ash and ice particles. The second threshold allows more volcanic ash detections, because it accounts also for mixtures of ice and volcanic ash particles within the instrument's field of view. With the new method major eruptions (from e.g. Chaiten, Okmok, Kasatochi, Sarychev, Eyafjallajökull, Merapi, Grimsvötn, Puyehue-Cordon Caulle, Nabro) as well as several smaller eruptions at mid-latitudes and in polar regions between 2006 - 2011 were clearly identified in the MIPAS data. Trajectory calculations using the Chemical Langangian Model of the Stratosphere (CLaMS) are used to locate a volcanic eruption for each

  1. Mercury release from fly ashes and hydrated fly ash cement pastes

    NASA Astrophysics Data System (ADS)

    Du, Wen; Zhang, Chao-yang; Kong, Xiang-ming; Zhuo, Yu-qun; Zhu, Zhen-wu

    2018-04-01

    The large-scale usage of fly ash in cement and concrete introduces mercury (Hg) into concrete structures and a risk of secondary emission of Hg from the structures during long-term service was evaluated. Three fly ashes were collected from coal-fired power plants and three blend cements were prepared by mixing Ordinary Portland cement (OPC) with the same amount of fly ash. The releasing behaviors of Hg0 from the fly ash and the powdered hydrated cement pastes (HCP) were measured by a self-developed Hg measurement system, where an air-blowing part and Hg collection part were involved. The Hg release of fly ashes at room temperature varied from 25.84 to 39.69 ng/g fly ash during 90-days period of air-blowing experiment. In contrast, the Hg release of the HCPs were in a range of 8.51-18.48 ng/g HCP. It is found that the Hg release ratios of HCPs were almost the same as those of the pure fly ashes, suggesting that the hydration products of the HCP have little immobilization effect on Hg0. Increasing temperature and moisture content markedly promote the Hg release.

  2. Modeling the formation of the quench product in municipal solid waste incineration (MSWI) bottom ash.

    PubMed

    Inkaew, Kanawut; Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki

    2016-06-01

    This study investigated changes in bottom ash morphology and mineralogy under lab-scale quenching conditions. The main purpose was to clarify the mechanisms behind the formation of the quench product/layer around bottom ash particles. In the experiments, the unquenched bottom ashes were heated to 300°C for 1h, and were quenched by warm water (65°C) with different simulated conditions. After having filtered and dried, the ashes were analyzed by a combination of methodologies namely, particle size distribution analysis, intact particle and thin-section observation, X-ray diffractometry, and scanning electron microscope with energy dispersive X-ray spectroscopy. The results indicated that after quenching, the morphology and mineralogy of the bottom ash changed significantly. The freshly quenched bottom ash was dominated by a quench product that was characterized by amorphous and microcrystalline calcium-silicate-hydrate (CSH) phases. This product also enclosed tiny minerals, glasses, ceramics, metals, and organic materials. The dominant mineral phases produced by quenching process and detected by XRD were calcite, Friedel's salt, hydrocalumite and portlandite. The formation of quench product was controlled by the fine fraction of the bottom ash (particle size <0.425mm). From the observations, a conceptual model of the ash-water reactions and formation of the quench product in the bottom ash was proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Lube oil-dependent ash chemistry on soot oxidation reactivity in a gasoline direct-injection engine

    DOE PAGES

    Choi, Seungmok; Seong, Heeje

    2016-09-30

    Gasoline particulate filters (GPF) are considered an enabling technology to meet stringent particulate matter (PM) regulations for gasoline direct-injection (GDI) engines, which are known to produce significant PM emissions. While ash loading in filters has been recognized to be detrimental in filter performance by increasing back pressure, increased ash fractions in soot were observed to enhance soot oxidation. In this study, GDI soot samples derived from different gasoline/lube oil blends were evaluated to identify potential promoting factors when formulated lube oils were dosed into gasoline fuel. Ca-derived ash enhanced soot oxidation remarkably, while P- and ZDDP-derived ash deteriorated soot oxidation.more » It is apparent that the promoting effect of lube oil-derived ash is due mainly to the Ca component that is the most abundant among additive components in lube oil. Bulk and surface analyses of these ash compounds indicate that Ca-derived ash would be complex compounds, while the contribution of CaSO 4, which is one of the most abundant ash compounds from diesel engines, is almost negligible. For the validation of the ash promoting impact in filters, the regeneration experiments were compared for a TWC-coated GPF in a GDI engine before and after ash loading was performed. The pressure drop of the ash-loaded GPF decreased noticeably in the initial regeneration stage and it increased gradually, whereas that of no ash-loaded GPF increased gradually without any reduction. So, it is concluded that the ash layer in the GPF assisted soot oxidation in the early regeneration stage when it was in close contact with soot.« less

  4. Lube oil-dependent ash chemistry on soot oxidation reactivity in a gasoline direct-injection engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Seungmok; Seong, Heeje

    Gasoline particulate filters (GPF) are considered an enabling technology to meet stringent particulate matter (PM) regulations for gasoline direct-injection (GDI) engines, which are known to produce significant PM emissions. While ash loading in filters has been recognized to be detrimental in filter performance by increasing back pressure, increased ash fractions in soot were observed to enhance soot oxidation. In this study, GDI soot samples derived from different gasoline/lube oil blends were evaluated to identify potential promoting factors when formulated lube oils were dosed into gasoline fuel. Ca-derived ash enhanced soot oxidation remarkably, while P- and ZDDP-derived ash deteriorated soot oxidation.more » It is apparent that the promoting effect of lube oil-derived ash is due mainly to the Ca component that is the most abundant among additive components in lube oil. Bulk and surface analyses of these ash compounds indicate that Ca-derived ash would be complex compounds, while the contribution of CaSO 4, which is one of the most abundant ash compounds from diesel engines, is almost negligible. For the validation of the ash promoting impact in filters, the regeneration experiments were compared for a TWC-coated GPF in a GDI engine before and after ash loading was performed. The pressure drop of the ash-loaded GPF decreased noticeably in the initial regeneration stage and it increased gradually, whereas that of no ash-loaded GPF increased gradually without any reduction. So, it is concluded that the ash layer in the GPF assisted soot oxidation in the early regeneration stage when it was in close contact with soot.« less

  5. Glass-ceramic from mixtures of bottom ash and fly ash.

    PubMed

    Vu, Dinh Hieu; Wang, Kuen-Sheng; Chen, Jung-Hsing; Nam, Bui Xuan; Bac, Bui Hoang

    2012-12-01

    Along with the gradually increasing yield of the residues, appropriate management and treatment of the residues have become an urgent environmental protection problem. This work investigated the preparation of a glass-ceramic from a mixture of bottom ash and fly ash by petrurgic method. The nucleation and crystallization kinetics of the new glass-ceramic can be obtained by melting the mixture of 80% bottom ash and 20% fly ash at 950 °C, which was then cooled in the furnace for 1h. Major minerals forming in the glass-ceramics mainly are gehlenite (Ca(2)Al(2)SiO(7)) & akermanite (Ca(2)MgSiO(7)) and wollastonite (CaSiO(3)). In addition, regarding chemical/mechanical properties, the chemical resistance showing durability, and the leaching concentration of heavy metals confirmed the possibility of engineering and construction applications of the most superior glass-ceramic product. Finally, petrurgic method of a mixture of bottom ash and fly ash at 950 °C represents a simple, inexpensive, and energy saving method compared with the conventional heat treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Parameterization of volcanic ash remobilization by wind-tunnel erosion experiments.

    NASA Astrophysics Data System (ADS)

    Del Bello, Elisabetta; Taddeucci, Jacopo; Merrison, Jonathan; Alois, Stefano; Iversen, Jens Jacob; Scarlato, Piergiorgio

    2017-04-01

    The remobilization of volcanic ash from the ground is one of the many problems posing threat to life and infrastructures during and after the course of an explosive volcanic eruption. A proper management of the risks connected to this problem requires a thorough understanding of the factors that influence and promote the dispersal of particles over large distances. Towards this target, we conducted a series of experiments aimed at defining first-order processes controlling the remobilization threshold of ash particles by wind erosion. In the framework of the EU-funded Europlanet project, we joinly used the environmental wind tunnel facility at Aarhus University (DK) and the state-of-the art high-speed imaging equipment of INGV experimental lab (Italy) to capture at unparalleled temporal and spatial resolution the removal dynamics of ash-sized (half-millimetre to micron-sized) particles. A homogenous layer of particles was set at on a plate placed downwind a boundary layer setup. Resuspension processes were filmed at 2000 fps and 50 micron pixel resolution, and the plate weighted pre and post-experiment. Explored variables include: 1) wind speed (from ca. 1 to 7 m/s) and boundary layer structure; 2) particle grain size (from 32-63 to 90-125 micron), and sample sorting); 3) chemical and textural features, using basalt and trachyte samples from Campi Flegrei (Pomici Principali,10 ka) and Eyjafjallajökull (May 2010) eruptions; and 4) temperature and humidity, by conducting experiments either at ambient conditions or with a heated sample. We found that the grain size distribution exerts a strong control on the fundamental dynamics of gas-particle coupling. Particles > 90 micron detach from the particles layer individually, also entering the gas flow individually. Conversely, removal < 63 micron particles occurs in clumps of aggregates. These clumps, once taken in charge by the gas flow, are frequently disaggregated and dispersed rapidly (order of few milliseconds). Our

  7. Ordovician ash geochemistry and the establishment of land plants

    PubMed Central

    2012-01-01

    The colonization of the terrestrial environment by land plants transformed the planetary surface and its biota, and shifted the balance of Earth’s biomass from the subsurface towards the surface. However there was a long delay between the formation of palaeosols (soils) on the land surface and the key stage of plant colonization. The record of palaeosols, and their colonization by fungi and lichens extends well back into the Precambrian. While these early soils provided a potential substrate, they were generally leached of nutrients as part of the weathering process. In contrast, volcanic ash falls provide a geochemically favourable substrate that is both nutrient-rich and has high water retention, making them good hosts to land plants. An anomalously extensive system of volcanic arcs generated unprecedented volumes of lava and volcanic ash (tuff) during the Ordovician. The earliest, mid-Ordovician, records of plant spores coincide with these widespread volcanic deposits, suggesting the possibility of a genetic relationship. The ash constituted a global environment of nutrient-laden, water-saturated soil that could be exploited to maximum advantage by the evolving anchoring systems of land plants. The rapid and pervasive inoculation of modern volcanic ash by plant spores, and symbiotic nitrogen-fixing fungi, suggests that the Ordovician ash must have received a substantial load of the earliest spores and their chemistry favoured plant development. In particular, high phosphorus levels in ash were favourable to plant growth. This may have allowed photosynthesizers to diversify and enlarge, and transform the surface of the planet. PMID:22925460

  8. Exploring the molecular and biochemical basis of ash resistance to emerald ash borer

    Treesearch

    Justin G.A. Whitehill; Daniel A. Herms; Pierluigi Bonello

    2010-01-01

    Larvae of the emerald ash borer (EAB) (Agrilus planipennis) feed on phloem of ash (Fraxinus spp.) trees. It is hypothesized that the resistance of Asian species of ash (e.g., Manchurian ash, F. mandshurica) to EAB is due to endogenous defenses present in phloem tissues in the form of defensive proteins and/or...

  9. Thermal Barrier Coatings Chemically and Mechanically Resistant to High Temperature Attack by Molten Ashes

    NASA Astrophysics Data System (ADS)

    Gledhill, Andrew

    Thermal barrier coatings (TBCs) are ceramic coatings used on component in the hottest sections of gas turbine engines, used for power generation and aviation. These coatings insulate the underlying metal components and allow for much higher engine operating temperatures, improving the engine efficiency. These increase temperatures engender a new set of materials problems for TBCs. Operating temperatures in engines are now high enough for silicate impurities, either present in the fuel or ingested into the engines, to melt and adhere to the surface of the TBCs. The effects of four such impurities, two coal fly ashes, a petroleum coke-fly ash blend, and volcanic ash from the Eyjafjallajokull volcano were tested with conventional yttria-stabilized zirconia (YSZ) coatings, and found to penetrate through the entire thickness of the coating. This penetration reduces the strain tolerance of the coatings, and can result in premature failure. Testing on a newly built thermal gradient burner rig with simultaneous injection of ash impurities has shown a reduction of life up to 99.6% in these coatings when ash is present. Coatings of an alternative ceramic, gadolinium zirconate (Gd2Zr 2O7), were found to form a dense reaction layer with each of these impurities, preventing further penetration of the molten ash. This dense layer also reduces the strain tolerance, but these coatings were found to have a significantly higher life than the YSZ coatings. Testing with a small amount of ash baked onto the samples showed thirteen times the life of YSZ coatings. When the ash is continuously sprayed onto the hot sample, the life of the Gd2Zr2O7 coatings was nearly twice that of the YSZ. Finally, a delamination model was employed to explain the degradation of both types of coatings. This elastic model that takes into account the degree of penetration, differential cooling in thermal gradient testing, and thermal expansion mismatch with the underlying substrate, predicted the failure of

  10. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  11. Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.

  12. Differential response in foliar chemistry of three ash species to emerald ash borer adult feeding.

    PubMed

    Chen, Yigen; Whitehill, Justin G A; Bonello, Pierluigi; Poland, Therese M

    2011-01-01

    The emerald ash borer (EAB; Agrilus planipennis Fairmaire; Coleoptera: Buprestidae), is an exotic wood-boring beetle that has been threatening North American ash (Fraxinus spp.) resources since its discovery in Michigan and Ontario in 2002. In this study, we investigated the phytochemical responses of the three most common North American ash species (black, green, and white ash) in northeastern USA to EAB adult feeding. Black ash was the least responsive to EAB adult feeding in terms of the induction of volatile compounds, and levels of only two (indole and benzyl cyanide) of the 11 compounds studied increased. In green ash, levels of two [(E)-β-ocimene and indole] of the 11 volatile compounds studied were elevated, while the levels of two green leaf volatiles [hexanal and (E)-2-hexenal] decreased. White ash showed the greatest response with an increase in levels of seven of the 11 compounds studied. Qualitative differences among ash species were detected. Among the phenolic compounds detected, ligustroside was the only one detected in all three species. Oleuropein aglycone and 2 unidentified compounds were found only in black ash; coumaroylquinic acid and feruloylquinic acid were detected only in green ash; and verbascoside hexoside was detected only in white ash. EAB adult feeding did not elicit or decrease concentrations of any selected individual phenolic compounds. However, although levels of total phenolics from black and green ash foliage were not affected by EAB adult feeding, they decreased significantly in white ash. EAB adult feeding elevated chymotrypsin inhibitors in black ash. The possible ecological implications of these findings are discussed.

  13. Group-V atoms exchange due to exposure of InP surface to AsH3(+PH3) revealed by x-ray CTR scattering

    NASA Astrophysics Data System (ADS)

    Tabuchi, M.; Yamada, N.; Fujibayashi, K.; Takeda, Y.; Kamei, H.

    1996-05-01

    We conducted x-ray crystal truncation rod (CTR) measurements using synchro-tron radiation to analyze the As atom distribution in InP to the order of 1 ML. The InP samples which were only exposed to AsH3(+PH3) and capped by InP were investigated to study the effect of the purge sequence. The purge sequence is unavoidable to grow heteroepitaxial layers by OMVPE and is considered to affect largely the structure of the interface. From the results of the measurement and the computer simulation, the distribution of P and As atoms of the order of 1 ML was discussed as functions of the exposing time. It was shown that the number of As atoms contained in the samples saturated when the AsH3-exposure time is longer than 10 s. Comparing the profiles of AsH3-exposed samples with that of (AsH3 + PH3)-exposed samples, it was found that the As distribution in the buffer layer was suppressed in (AsH3 + PH3)-exposed samples. In order to obtain the sharp interfaces, the AsH3-exposure time must be shorter than 0.5 s.

  14. Interspecific variation in resistance to emerald ash borer (Coleoptera: Buprestidae) among North American and Asian ash (Fraxinus spp.).

    PubMed

    Rebek, Eric J; Herms, Daniel A; Smitley, David R

    2008-02-01

    We conducted a 3-yr study to compare the susceptibility of selected North American ash and an Asian ash species to emerald ash borer, Agrilus planipennis Fairmaire, an invasive wood-boring beetle introduced to North America from Asia. Because of a coevolutionary relationship between Asian ashes and emerald ash borer, we hypothesized an Asian ash species, Manchurian ash, is more resistant to the beetle than its North American congeners. Consistent with our hypothesis, Manchurian ash experienced far less mortality and yielded far fewer adult beetles than several cultivars of North American green and white ash. Surprisingly, a black ash (North American) x Manchurian ash hybrid was highly susceptible to emerald ash borer, indicating this cultivar did not inherit emerald ash borer resistance from its Asian parent. A corollary study investigated the efficacy of soil-applied imidacloprid, a systemic, neonicotinoid insecticide, for controlling emerald ash borer in each of the five cultivars. Imidacloprid had no effect on emerald ash borer colonization of Manchurian ash, which was low in untreated and treated trees. In contrast, imidacloprid did enhance survival of the North American and hybrid cultivars and significantly reduced the number of emerald ash borer adults emerging from green and white ash cultivars. We identify a possible mechanism of resistance of Manchurian ash to emerald ash borer, which may prove useful for screening, selecting, and breeding emerald ash borer-resistant ash trees.

  15. Aerosol properties and meteorological conditions in the city of Buenos Aires, Argentina, during the resuspension of volcanic ash from the Puyehue-Cordón Caulle eruption

    NASA Astrophysics Data System (ADS)

    Graciela Ulke, Ana; Torres Brizuela, Marcela M.; Raga, Graciela B.; Baumgardner, Darrel

    2016-09-01

    The eruption in June 2011 of the Puyehue-Cordón Caulle Volcanic Complex in Chile impacted air traffic around the Southern Hemisphere for several months after the initial ash emissions. The ash deposited in vast areas of the Patagonian Steppe was subjected to the strong wind conditions prevalent during the austral winter and spring experiencing resuspension over various regions of Argentina. In this study we analyze the meteorological conditions that led to the episode of volcanic ash resuspension which impacted the city of Buenos Aires and resulted in the closure of the two main airports in Buenos Aires area (Ezeiza and Aeroparque) on 16 October 2011. A relevant result is that resuspended material (volcanic ash plus dust) imprints a distinguishable feature within the atmospheric thermodynamic vertical profiles. The thermodynamic soundings show the signature of "pulses of drying" in layers associated with the presence of hygroscopic ash in the atmosphere that has already been reported in similar episodes after volcanic eruptions in other parts of the world. This particular footprint can be used to detect the probable existence of volcanic ash layers. This study also illustrates the utility of ceilometers to detect not only cloud base at airports but also volcanic ash plumes at the boundary layer and up to 7 km altitude. Aerosol properties measured in the city during the resuspension episode indicate the presence of enhanced concentrations of aerosol particles in the boundary layer along with spectral signatures in the measurements at the Buenos Aires AERONET site typical of ash plus dust advected towards the city. The mandatory aviation reports from the National Weather Service about airborne and deposited volcanic ash at the airport near the measurement site (Aeroparque) correlate in time with the enhanced concentrations. The presence of the resuspended material was detected by the CALIOP lidar overpassing the region. Since the dynamics of ash resuspension and

  16. Interspecific comparison of constitutive ash phloem phenolic chemistry reveals compounds unique to manchurian ash, a species resistant to emerald ash borer.

    PubMed

    Whitehill, Justin G A; Opiyo, Stephen O; Koch, Jennifer L; Herms, Daniel A; Cipollini, Donald F; Bonello, Pierluigi

    2012-05-01

    The emerald ash borer (Agrilus planipennis, EAB) is an invasive wood-borer indigenous to Asia and is responsible for widespread ash (Fraxinus spp.) mortality in the U.S. and Canada. Resistance and susceptibility to EAB varies among Fraxinus spp., which is a result of their co-evolutionary history with the pest. We characterized constitutive phenolic profiles and lignin levels in the phloem of green, white, black, blue, European, and Manchurian ash. Phloem was sampled twice during the growing season, coinciding with phenology of early and late instar EAB. We identified 66 metabolites that displayed a pattern of variation, which corresponded strongly with phylogeny. Previously identified lignans and lignan derivatives were confirmed to be unique to Manchurian ash, and may contribute to its high level of resistance to EAB. Other compounds that had been considered unique to Manchurian ash, including hydroxycoumarins and the phenylethanoids calceolarioside A and B, were detected in closely related, but susceptible species, and thus are unlikely to contribute to EAB resistance of Manchurian ash. The distinct phenolic profile of blue ash may contribute to its relatively high resistance to EAB.

  17. Effects of nano-SiO(2) and different ash particle sizes on sludge ash-cement mortar.

    PubMed

    Lin, K L; Chang, W C; Lin, D F; Luo, H L; Tsai, M C

    2008-09-01

    The effects of nano-SiO(2) on three ash particle sizes in mortar were studied by replacing a portion of the cement with incinerated sewage sludge ash. Results indicate that the amount of water needed at standard consistency increased as more nano-SiO(2) was added. Moreover, a reduction in setting time became noticeable for smaller ash particle sizes. The compressive strength of the ash-cement mortar increased as more nano-SiO(2) was added. Additionally, with 2% nano-SiO(2) added and a cure length of 7 days, the compressive strength of the ash-cement mortar with 1 microm ash particle size was about 1.5 times better that of 75microm particle size. Further, nano-SiO(2) functioned to fill pores for ash-cement mortar with different ash particle sizes. However, the effects of this pore-filling varied with ash particle size. Higher amounts of nano-SiO(2) better influenced the ash-cement mortar with larger ash particle sizes.

  18. Validation of Volcanic Ash Forecasting Performed by the Washington Volcanic Ash Advisory Center

    NASA Astrophysics Data System (ADS)

    Salemi, A.; Hanna, J.

    2009-12-01

    In support of NOAA’s mission to protect life and property, the Satellite Analysis Branch (SAB) uses satellite imagery to monitor volcanic eruptions and track volcanic ash. The Washington Volcanic Ash Advisory Center (VAAC) was established in late 1997 through an agreement with the International Civil Aviation Organization (ICAO). A volcanic ash advisory (VAA) is issued every 6 hours while an eruption is occurring. Information about the current location and height of the volcanic ash as well as any pertinent meteorological information is contained within the VAA. In addition, when ash is detected in satellite imagery, 6-, 12- and 18-hour forecasts of ash height and location are provided. This information is garnered from many sources including Meteorological Watch Offices (MWOs), pilot reports (PIREPs), model forecast winds, radiosondes and volcano observatories. The Washington VAAC has performed a validation of their 6, 12 and 18 hour airborne volcanic ash forecasts issued since October, 2007. The volcanic ash forecasts are viewed dichotomously (yes/no) with the frequency of yes and no events placed into a contingency table. A large variety of categorical statistics useful in describing forecast performance are then computed from the resulting contingency table.

  19. Interspecific Proteomic Comparisons Reveal Ash Phloem Genes Potentially Involved in Constitutive Resistance to the Emerald Ash Borer

    PubMed Central

    Whitehill, Justin G. A.; Popova-Butler, Alexandra; Green-Church, Kari B.; Koch, Jennifer L.; Herms, Daniel A.; Bonello, Pierluigi

    2011-01-01

    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica), which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra) and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE) to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER), and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion. PMID:21949771

  20. Interspecific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer.

    PubMed

    Whitehill, Justin G A; Popova-Butler, Alexandra; Green-Church, Kari B; Koch, Jennifer L; Herms, Daniel A; Bonello, Pierluigi

    2011-01-01

    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica), which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra) and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE) to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER), and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion.

  1. The Effect of Baggase Ash on Fly Ash-Based Geopolimer Binder

    NASA Astrophysics Data System (ADS)

    Bayuaji, R.; Darmawan, M. S.; Husin, N. A.; Banugraha, R.; Alfi, M.; Abdullah, M. M. A. B.

    2018-06-01

    Geopolymer concrete is an environmentally friendly concrete. However, the geopolymer binder has a problem with setting time; mainly the composition comprises high calcium fly ash. This study utilized bagasse ash to improve setting time on fly ash-based geopolymer binder. The characterization of bagasse ash was carried out by using chemical and phase analysis, while the morphology characterization was examined by scanning electron microscope (SEM). The setting time test and the compressive strength test used standard ASTM C 191-04 and ASTM C39 / C39M respectively. The compressive strength of the samples determined at 3, 28 and 56 days. The result compared the requirement of the standards.

  2. Volcanic ash layers in blue ice fields (Beardmore Glacier Area, Antarctica): Iridium enrichments

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian

    1988-01-01

    Dust bands on blue ice fields in Antarctica have been studied and have been identified to originate from two main sources: bedrock debris scraped up from the ground by the glacial movement (these bands are found predominantly at fractures and shear zones in the ice near moraines), and volcanic debris deposited on and incorporated in the ice by large-scale eruptions of Antarctic (or sub-Antractic) volcanoes. Ice core studies have revealed that most of the dust layers in the ice cores are volcanic (tephra) deposits which may be related to some specific volcanic eruptions. These eruptions have to be related to some specific volcanic eruptions. These eruptions have to be relatively recent (a few thousand years old) since ice cores usually incorporate younger ice. In contrast, dust bands on bare blue ice fields are much older, up to a few hundred thousand years, which may be inferred from the rather high terrestrial age of meteorites found on the ice and from dating the ice using the uranium series method. Also for the volcanic ash layers found on blue ice fields correlations between some specific volcanoes (late Cenozoic) and the volcanic debris have been inferred, mainly using chemical arguments. During a recent field expedition samples of several dust bands found on blue ice fields at the Lewis Cliff Ice Tongue were taken. These dust band samples were divided for age determination using the uranium series method, and chemical investigations to determine the source and origin of the dust bands. The investigations have shown that most of the dust bands found at the Ice Tongue are of volcanic origin and, for chemical and petrological reasons, may be correlated with Cenozoic volcanoes in the Melbourne volcanic province, Northern Victoria Land, which is at least 1500 km away. Major and trace element data have been obtained and have been used for identification and correlation purposes. Recently, some additional trace elements were determined in some of the dust band

  3. Testing exposure of a jet engine to a dilute volcanic-ash cloud

    NASA Astrophysics Data System (ADS)

    Guffanti, M.; Mastin, L. G.; Schneider, D. J.; Holliday, C. R.; Murray, J. J.

    2013-12-01

    An experiment to test the effects of volcanic-ash ingestion by a jet engine is being planned for 2014 by a consortium of U.S. Government agencies and engine manufacturers, under the auspices of NASA's Vehicle Integrated Propulsion Research Program. The experiment, using a 757-type engine, will be an on-ground, on-wing test carried out at Edwards Air Force Base, California. The experiment will involve the use of advanced jet-engine sensor technology for detecting and diagnosing engine health. A primary test objective is to determine the effect on the engine of many hours of exposure to ash concentrations (1 and 10 mg/cu m) representative of ash clouds many 100's to >1000 km from a volcanic source, an aviation environment of great interest since the 2010 Eyjafjallajökull, Iceland, eruption. A natural volcanic ash will be used; candidate sources are being evaluated. Data from previous ash/aircraft encounters, as well as published airborne measurements of the Eyjafjallajökull ash cloud, suggest the ash used should be composed primarily of glassy particles of andesitic to rhyolitic composition (SiO2 of 57-77%), with some mineral crystals, and a few tens of microns in size. Collected ash will be commercially processed less than 63 microns in size with the expectation that the ash particles will be further pulverized to smaller sizes in the engine during the test. For a nominally planned 80 hour test at multiple ash-concentration levels, the test will require roughly 500 kg of processed (appropriately sized) ash to be introduced into the engine core. Although volcanic ash clouds commonly contain volcanic gases such as sulfur dioxide, testing will not include volcanic gas or aerosol interactions as these present complex processes beyond the scope of the planned experiment. The viscous behavior of ash particles in the engine is a key issue in the experiment. The small glassy ash particles are expected to soften in the engine's hot combustion chamber, then stick to cooler

  4. Ocean iron-fertilisation by volcanic ash

    NASA Astrophysics Data System (ADS)

    Langmann, B.; Zaksek, K.; Hort, M. K.; Duggen, S.

    2009-12-01

    Marine primary productivity (MPP) can be limited by the availability of macro-nutrients like nitrate and phosphate. In so-called ‘High-Nutrient-Low-Chlorophyll’ (HNLC) areas, macro-nutrient concentrations are high, but iron is the key biologically limiting micro-nutrient for primary production. Three major sources for iron supply into the ocean have been considered so far: upwelling of deep ocean water, advection from the continental margins and atmospheric deposition with aeolian dust deposition commonly assumed to dominate external iron supply to the open ocean. Iron supply to HNLC regions can affect climate relevant ocean-atmosphere exchanges of chemical trace species, e.g. organic carbon aerosols, DMS and CO2. Marine aerosols can act as efficient cloud condensation nuclei and significantly influence cloud properties and thus the Earth’s radiative budget via the indirect aerosol effects whereas a drawdown of atmospheric CO2 due to ocean fertilisation can have important implications for the global CO2 budget. Recent laboratory experiments suggest that material from volcanic eruptions such as ash may also affect the MPP through rapid iron-release on contact with seawater. Direct evidence, however, that volcanic activity can cause natural iron-fertilisation and MPP increase has been lacking so far. Here first evidence for a large-scale phytoplankton bloom in the NE Pacific resulting from volcanic ash fall after the eruption of Kasatochi volcano in August 2008 is presented. Atmospheric and oceanic conditions were favourable to generate this phytoplankton bloom. We present satellite observations to show the connection between volcanic ash fall and oceanic MPP. In addition, three-dimensional atmosphere/chemistry-aerosol model results are presented showing the atmospheric distribution of volcanic ash and its fall-out after the eruption of Kasatochi volcano. The amount of ash and that of iron attached to it is sufficient to explain measured seawater CO2 decrease

  5. Influence of trap placement and design on capture of the emerald ash borer (Coleoptera: Buprestidae).

    PubMed

    Francese, Joseph A; Oliver, Jason B; Fraser, Ivich; Lance, David R; Youssef, Nadeer; Sawyer, Alan J; Mastro, Victor C

    2008-12-01

    The key to an effective pest management program for the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera Buprestidae), is a survey program equipped with tools for detecting and delimiting populations. We studied the effects of trap design, color, and placement on the efficacy of sticky traps for capturing the emerald ash borer. There were significant differences in trap catch along a transect gradient from wooded to open field conditions, with most beetles being caught along the edge, or in open fields, 15-25 m outside an ash (Fraxinus spp. L.) (Oleaceae) woodlot. Greater emerald ash borer catch occurred on purple traps than on red or white traps. Traps placed in the mid-canopy of ash trees (13 m) caught significantly more beetles than those placed at ground level. We also describe a new trap design, a three-sided prism trap, which is relatively easy to assemble and deploy.

  6. Survey for tolerance to emerald ash borer within North American ash species

    Treesearch

    Jennifer L. Koch; Mary E. Mason; David W. Carey; Kathleen Knight; Therese Poland; Daniel A. Herms

    2010-01-01

    Since the discovery of the emerald ash borer (EAB) near Detroit, MI, in 2002, more than 40 million ash trees have been killed and another 7.5 billion are at risk in the United States. When the EAB outbreak was initially discovered, our native ash species appeared to have no resistance to the pest.

  7. The influence of sugarcane bagasse ash as fly ash on cement quality

    NASA Astrophysics Data System (ADS)

    Rauf, N.; Damayanti, M. C.; Pratama, S. W. I.

    2017-01-01

    Fly ash often is used as the third material for cement. The fly ash from sugarcane bagasse is usually considered as industrial waste material that can be added to the base material of cement (clinker, trash, gypsum and lime stone) for economic and environment reason. The amount of fly ash usually up to 30 % of cement material, but in this research the percentage of sugarcane bagasse ash (SBA) is added to cement material is up to 15% total weight. Then the x-rays fluorescence (XRF) was used to determine its chemical composition of raw material and cement samples. The physical properties of cement such as fineness, setting time, expansion, and compressive strength were measured using Automatic Blaine, Vicat, Autoclave, respectively. The result show that the percentage of sugarcane bagasse ash influences the quality of cement and concrete, and this is confirmed with Indonesia National Standard (SNI). It is showed that the sugarcane bagasse ash could be use as material to improve the quality of cement and will solve the environment waste material

  8. Can ash clog soil pores?

    NASA Astrophysics Data System (ADS)

    Stoof, Cathelijne; Stoof, Cathelijne; Gevaert, Anouk; Gevaert, Anouk; Baver, Christine; Baver, Christine; Hassanpour, Bahareh; Hassanpour, Bahareh; Morales, Veronica; Morales, Veronica; Zhang, Wei; Zhang, Wei; Martin, Deborah; Martin, Deborah; Steenhuis, Tammo; Steenhuis, Tammo

    2015-04-01

    Wildfire can greatly increase a landscape's vulnerability to flooding and erosion events, and ash is thought to play a large role in controlling runoff and erosion processes after wildfire. Although ash can store rainfall and thereby reduce runoff and erosion for a limited period after wildfires, it has also been hypothesized to clog soil pores and reduce infiltration. Several researchers have attributed the commonly observed increase in runoff and erosion after fire to the potential pore-clogging effect of ash. Evidence is however incomplete, as to date, research has solely focused on identifying the presence of ash in the soil, with the actual flow processes associated with the infiltration and pore-clogging of ash remaining a major unknown. In several laboratory experiments, we tested the hypothesis that ash causes pore clogging to the point that infiltration is hampered and ponding occurs. We first visualized and quantified pore-scale infiltration of water and ash in sand of a range of textures and at various infiltration rates, using a digital bright field microscope capturing both photo and video. While these visualization experiments confirm field and lab observation of ash washing into soil pores, we did not observe any clogging of pores, and have not been able to create conditions for which this does occur. Additional electrochemical analysis and measurement of saturated hydraulic conductivity indicate that pore clogging by ash is not plausible. Electrochemical analysis showed that ash and sand are both negatively charged, showing that attachment of ash to sand and any resulting clogging is unlikely. Ash also had quite high saturated conductivity, and systems where ash was mixed in or lying on top of sand had similarly high hydraulic conductivity. Based on these various experiments, we cannot confirm the hypothesis that pore clogging by ash contributes to the frequently observed increase in post-fire runoff, at least for the medium to coarse sands

  9. Synthesis of zeolite NaA membrane from fused fly ash extract.

    PubMed

    Ameh, Alechine E; Musyoka, Nicholas M; Fatoba, Ojo O; Syrtsova, Daria A; Teplyakov, Vladimir V; Petrik, Leslie F

    2016-01-01

    Zeolite-NaA membranes were synthesized from an extract of fused South African fly ash on a porous titanium support by a secondary growth method. The influence of the synthesis molar regime on the formation of zeolite NaA membrane layer was investigated. Two synthesis mixtures were generated by adding either aluminium hydroxide or sodium aluminate to the fused fly ash extract. The feedstock material and the synthesized membranes were characterized by X-diffraction (XRD), scanning electron microscopy (SEM) and X-ray fluorescence spectroscopy (XRF). It was found by XRD and SEM that the cubic crystals of a typical zeolite NaA with a dense intergrown layer was formed on the porous Ti support. The study shows that the source of Al used had an effect on the membrane integrity as sodium aluminate provided the appropriate amount of Na(+) to form a coherent membrane of zeolite NaA, whereas aluminium hydroxide did not. Morphological, the single hydrothermal stage seeded support formed an interlocked array of zeolite NaA particles with neighbouring crystals. Also, a robust, continuous and well-intergrown zeolite NaA membrane was formed with neighbouring crystals of zeolite fused to each other after the multiple stage synthesis. The synthesized membrane was permeable to He (6.0 × 10(6) L m(-2)h(-1) atm(-1)) and CO2 (5.6 × 10(6) L m(-2)h(-1) atm(-1)), which indicate that the layer of the membrane was firmly attached to the porous Ti support. Membrane selectivity was maintained showing membrane integrity with permselectivity of 1.1, showing that a waste feedstock, fly ash, could be utilized for preparing robust zeolite NaA membranes on Ti support.

  10. Ash Dispersal in Planetary Atmospheres: Continuum vs. Non-continuum Effects

    NASA Astrophysics Data System (ADS)

    Fagents, S. A.; Baloga, S. M.; Glaze, L. S.

    2013-12-01

    The dispersal of ash from a volcanic vent on any given planet is dictated by particle properties (density, shape, and size distribution), the intensity of the eruptive source, and the characteristics of the planetary environment (atmospheric structure, wind field, and gravity) into which the ash is erupted. Relating observations of potential pyroclastic deposits to source locations and eruption conditions requires a detailed quantitative understanding of the settling rates of individual particles under changing ambient conditions. For atmospheres that are well described by continuum mechanics, the conventional Newtonian description of particle motion allows particle settling velocities to be related to particle characteristics via a drag coefficient. However, under rarefied atmospheric conditions (i.e., on Mars and at high altitude on Earth), non-continuum effects become important for ash-sized particles, and an equation of motion based on statistical mechanics is required for calculating particle motion. We have developed a rigorous new treatment of particle settling under variable atmospheric conditions and applied it to Earth and Mars. When non-continuum effects are important (as dictated by the mean free path of atmospheric gas relative to the particle size), fall velocities are greater than those calculated by continuum mechanics. When continuum conditions (i.e., higher atmospheric densities) are reached during descent, our model switches to a conventional formulation that determines the appropriate drag coefficient as the particle transits varying atmospheric properties. The variation of settling velocity with altitude allows computation of particle trajectories, fall durations and downwind dispersal. Our theoretical and numerical analyses show that several key, competing factors strongly influence the downwind trajectories of ash particles and the extents of the resulting deposits. These factors include: the shape of the particles (non-spherical particles

  11. Selenium in fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutenmann, W.H.; Bache, C.A.; Youngs, W.D.

    1976-03-05

    Selenium, at concentrations exceeding 200 parts per million (ppM) (dry weight), has been found in white sweet clover voluntarily growing on beds of fly ash in central New York State. Guinea pigs fed such clover concentrated selenium in their tissues. The contents of the honey stomachs of bees foraging on this seleniferous clover contained negligible selenium. Mature vegetables cultured on 10 percent (by weight) fly ash-amended soil absorbed up to 1 ppM of selenium. Fly ashes from 21 states contained total selenium contents ranging from 1.2 to 16.5 ppM. Cabbage grown on soil containing 10 percent (by weight) of thesemore » fly ashes absorbed selenium (up to 3.7 ppM) in direct proportion (correlation coefficient r = .89) to the selenium concentration in the respective fly ash. Water, aquatic weeds, algae, dragonfly nymphs, polliwogs, and tissues of bullheads and muskrats from a fly ash-contaminated pond contained concentrations of selenium markedly elevated over those of controls.« less

  12. Activation of fly ash

    DOEpatents

    Corbin, David R.; Velenyi, Louis J.; Pepera, Marc A.; Dolhyj, Serge R.

    1986-01-01

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  13. Activation of fly ash

    DOEpatents

    Corbin, D.R.; Velenyi, L.J.; Pepera, M.A.; Dolhyj, S.R.

    1986-08-19

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  14. Quantity, composition and water contamination potential of ash produced under different wildfire severities.

    PubMed

    Santín, Cristina; Doerr, Stefan H; Otero, Xosé L; Chafer, Chris J

    2015-10-01

    Wildfires frequently threaten water quality through the transfer of eroded ash and soil into rivers and reservoirs. The ability to anticipate risks for water resources from wildfires is fundamental for implementing effective fire preparedness plans and post-fire mitigation measures. Here we present a new approach that allows quantifying the amount and characteristics of ash generated under different wildfire severities and its respective water contamination potential. This approach is applied to a wildfire in an Australian dry sclerophyll eucalypt forest, but can be adapted for use in other environments. The Balmoral fire of October 2013 affected 12,694 ha of Sydney's forested water supply catchment. It produced substantial ash loads that increased with fire severity, with 6, 16 and 34 Mg ha(-1) found in areas affected by low, high and extreme fire severity, respectively. Ash bulk density was also positively related to fire severity. The increase with fire severity in the total load and bulk density of the ash generated is mainly attributed to a combination of associated increases in (i) total amount of fuel affected by fire and (ii) contribution of charred mineral soil to the ash layer. Total concentrations of pollutants and nutrients in ash were mostly unrelated to fire severity and relatively low compared to values reported for wildfire ash in other environments (e.g. 4.0-7.3mg As kg(-1); 2.3-4.1 B mg kg(-1); 136-154 P mg kg(-1)). Solubility of the elements analysed was also low, less than 10% of the total concentration for all elements except for B (6-14%) and Na (30-50%). This could be related to a partial loss of soluble components by leaching and/or wind erosion before the ash sampling (10 weeks after the fire and before major ash mobilisation by water erosion). Even with their relatively low concentrations of potential pollutants, the substantial total ash loads found here represent a water contamination risk if transported into the hydrological network

  15. Volcanic Ash Cloud Observations with the DLR-Falcon over Europe during Airspace Closure

    NASA Astrophysics Data System (ADS)

    Schumann, Ulrich; Weinzierl, Bernadett; Reitebuch, Oliver; Minikin, Andreas; Schlager, Hans; Rahm, Stephan; Scheibe, Monika; Lichtenstern, Michael; Forster, Caroline

    2010-05-01

    At the time of the EGU conference, the volcano ash plume originating from the Eyjafjallajökull volcano eruption in Iceland was probed during 9 flights with the DLR Falcon research aircraft in the region between Germany and Iceland at 1-11 km altitudes between April 19 and May 3, 2010. The Falcon was instrumented with a downward looking, scanning 2-µm-Wind-Lidar (aerosol backscattering and horizontal wind, 100 m vertical resolution), and several in-situ instruments. The particle instrumentation, including wing station probes (PCASP, FSSP-300) cover particle number and size from 5 nm to some tens of µm. Further in-situ instruments measured O3, CO, SO2, H2O, and standard meteorological parameters. Flight planning was based on numerical weather forecasts, trajectory-based particle-dispersion models, satellite observations and ground based Lidar observations, from many sources. During the flight on April 19, 2010, layers of volcanic ash were detected first by Lidar and then probed in-situ. The horizontal and vertical distribution of the volcanic ash layers over Eastern Germany was highly variable at that time. Calculations with the particle dispersion model FLEXPART indicate that the volcanic ash plumes measured by the Falcon had an age of 4-5 days. The concentrations of large particles measured in the volcanic aerosol layers are comparable to concentrations measured typically in fresh (age < 2 days) Saharan dust plumes. An estimation of the particle mass concentration in the elevated volcanic ash plume probed as part of a vertical profile over Leipzig at about 4 km altitude yields 60 µg/m3 (possibly 100 µg/m3), with an uncertainty of factor two. Of the total mass only less than 10 percent was residing in the particle size range below 2.5 µm. This emphasizes the need for adequate instrumentation to fully capture the size distribution of volcanic ash. During April 29-May 3, a sequence of flights has been performed between Germany, Scotland, and Iceland. Lidar

  16. The spatial distribution of riparian ash: implications for the dispersal of the emerald ash borer

    Treesearch

    Susan J. Crocker; W. Keith Moser; Mark H. Hansen; Mark D. Nelson

    2007-01-01

    A pilot study to assess riparian ash connectivity and its implications for emerald ash borer dispersal was conducted in three subbasins in Michigan's Southern Lower Peninsula. Forest Inventory and Analysis data were used to estimate ash biomass. The nineteen percent of plots in riparian physiographic classes contained 40 percent of ash biomass. Connectivity of...

  17. Magnetic mapping of distribution of wood ash used for fertilization of forest soil.

    PubMed

    Petrovský, Eduard; Remeš, Jiří; Kapička, Aleš; Podrázský, Vilém; Grison, Hana; Borůvka, Luboš

    2018-06-01

    The effect of wood-ash fertilization on forest soils has been assessed mainly through geochemical methods (e.g., content of soil organic matter or nutrients). However, a simple and fast method of determining the distribution of the ash and the extent of affected soil is missing. In this study we present the use of magnetic susceptibility, which is controlled by Fe-oxides, in comparing the fertilized soil in the forest plantation of pine and oak with intact forest soil. Spatial and vertical distribution of magnetic susceptibility was measured in an oak and pine plantation next to stems of young plants, where wood ash was applied as fertilizer. Pattern of the susceptibility distribution was compared with that in non-fertilized part of the plantation as well as with a spot of intact natural forest soil nearby. Our results show that the wood-ash samples contain significant amount of ferrimagnetic magnetite with susceptibility higher than that of typical forest soil. Clear differences were observed between magnetic susceptibility of furrows and ridges. Moreover, the dispersed ash remains practically on the surface, does not penetrate to deeper layers. Finally, our data suggest significant differences in surface values between the pine and oak plants. Based on this study we may conclude that magnetic susceptibility may represent a simple and approximate method of assessing the extent of soil affected by wood-ash. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Large-scale reintroduction of ash

    Treesearch

    Ronald. Overton

    2010-01-01

    No strategies currently exist for reintroducing ash; progression of emerald ash borer (EAB) through the eastern United States is likely to be a decades-long process, and extirpation of ash from this area is likely to take even longer. Reintroduction of ash into areas where it has been extirpated by EAB will require addressing technical issues as well as social and...

  19. Interspecific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer

    Treesearch

    Justin G.A. Whitehill; Alexandra Popova-Butler; Kari B. Green-Church; Jennifer L. Koch; Daniel A. Herms; Pierluigi Bonello

    2011-01-01

    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F....

  20. Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes

    DOE PAGES

    Hsieh, Peter Y.; Kwong, Kyei-Sing; Bennett, James

    2015-09-27

    Coal gasification yields synthesis gas, an important intermediate in chemical manufacturing. It is also vital to the production of liquid fuels through the Fischer-Tropsch process and electricity in Integrated Gasification Combined Cycle power generation. Minerals naturally present in coal become molten in entrained-flow slagging gasifiers. Molten coal ash slag penetrates and dissolves refractory bricks, leading to costly plant shutdowns. The extent of coal ash slag penetration and refractory brick dissolution depends on the slag viscosity, the gasification temperature, and the composition of slag and bricks. We measured the viscosity of several synthetic coal ash slags with a high-temperature rotary viscometermore » and their ash fusion temperatures through optical image analysis. All measurements were made in a carbon monoxide-carbon dioxide reducing atmosphere that approximates coal gasification conditions. Empirical correlation models based on ash fusion temperatures were used to calculate critical viscosity temperatures based on the coal ash compositions. These values were then compared with those obtained from thermodynamic phase-transition models. An understanding of slag viscosity as a function of ash composition is important to reducing refractory wear in slagging coal gasifiers, which would help to reduce the cost and environmental impact of coal for chemical and electricity production.« less

  1. Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Peter Y.; Kwong, Kyei-Sing; Bennett, James

    Coal gasification yields synthesis gas, an important intermediate in chemical manufacturing. It is also vital to the production of liquid fuels through the Fischer-Tropsch process and electricity in Integrated Gasification Combined Cycle power generation. Minerals naturally present in coal become molten in entrained-flow slagging gasifiers. Molten coal ash slag penetrates and dissolves refractory bricks, leading to costly plant shutdowns. The extent of coal ash slag penetration and refractory brick dissolution depends on the slag viscosity, the gasification temperature, and the composition of slag and bricks. We measured the viscosity of several synthetic coal ash slags with a high-temperature rotary viscometermore » and their ash fusion temperatures through optical image analysis. All measurements were made in a carbon monoxide-carbon dioxide reducing atmosphere that approximates coal gasification conditions. Empirical correlation models based on ash fusion temperatures were used to calculate critical viscosity temperatures based on the coal ash compositions. These values were then compared with those obtained from thermodynamic phase-transition models. An understanding of slag viscosity as a function of ash composition is important to reducing refractory wear in slagging coal gasifiers, which would help to reduce the cost and environmental impact of coal for chemical and electricity production.« less

  2. Quantum key distribution network for multiple applications

    NASA Astrophysics Data System (ADS)

    Tajima, A.; Kondoh, T.; Ochi, T.; Fujiwara, M.; Yoshino, K.; Iizuka, H.; Sakamoto, T.; Tomita, A.; Shimamura, E.; Asami, S.; Sasaki, M.

    2017-09-01

    The fundamental architecture and functions of secure key management in a quantum key distribution (QKD) network with enhanced universal interfaces for smooth key sharing between arbitrary two nodes and enabling multiple secure communication applications are proposed. The proposed architecture consists of three layers: a quantum layer, key management layer and key supply layer. We explain the functions of each layer, the key formats in each layer and the key lifecycle for enabling a practical QKD network. A quantum key distribution-advanced encryption standard (QKD-AES) hybrid system and an encrypted smartphone system were developed as secure communication applications on our QKD network. The validity and usefulness of these systems were demonstrated on the Tokyo QKD Network testbed.

  3. Borneo stalagmites reveal climatic excursions associated with Toba ash layers prior to Greenland Stadial 20

    NASA Astrophysics Data System (ADS)

    Cobb, K. M.; Orland, I. J.; Carolin, S.; Adkins, J. F.; Valley, J. W.; Jersild, A.; LeGrande, A. N.; Colose, C.

    2017-12-01

    The Toba super-eruption occurred in close association with an abrupt climate transition from Greenland Interstadial (GI-) 20 to Greenland Stadial (GS-) 20, roughly 74 thousand years ago. However, recent attempts to characterize either the regional or global climate response to Toba have been limited by a lack of age control, geographic proximity, and/or convincing marker of the major eruption in most high-resolution paleoclimate archives. Here, we use a suite of micro-scale analytical techniques to evaluate the oxygen isotopic and geochemical composition of multiple stalagmites that grew across the Toba interval in Gunung Mulu National Park, northern Borneo. New timeseries of stalagmite d18O at 50-micron scales across the Toba horizon revleal a large (>1‰), rapid (<200 yr) increase in d18O values within age-error of the 40Ar/39Ar age of the Youngest Toba Tuff (73.9±0.6 ky BP; Storey et al., 2012). We supplement these traditional mass spectrometric measurements with d18O timeseries made on 9-micron spots using the WiscSIMS CAMECA ims 1280 ion microprobe in time-transgressive segments across the Toba horizon in two well-dated stalagmites previously published in Carolin et al., 2013 and Caroline et al., 2014. The SIMS d18O data reveal high-frequency d18O excursions of +2 and -2 per mil during the transition from GI-20 (warm conditions) to Greenland Stadial GS-20 (cool conditions), suggesting that this period was characterized by large fluctuations in regional hydroclimate in the western tropical Pacific, with potentially profound impacts on global atmospheric circulation. We also present results from synchrotron analyses of ash-related elements (S, P, Si, and Al) to resolve the number and relative magnitude of Toba-related eruptions as recorded in several different stalagmites from Borneo, where ash layers likely exceeded 2cm on the overlying terrain. Together, these results indicate that large, rapid ( 10yr-long) environmental changes with marked effects on both

  4. 488-1D Ash Basin closure cap help modeling- Microdrain® liner option

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, J. A.

    At the request of Area Completion Engineering and in support of the 488-1D Ash Basin closure, the Savannah River National Laboratory (SRNL) performed hydrologic simulations of the revised 488-1D Ash Basin closure cap design using the Hydrologic Evaluation of Landfill Performance (HELP) model. The revised design substitutes a MicroDrain Liner®—60-mil low-density polyethylene geomembrane structurally integrated with 130-mil drainage layer—for the previously planned drainage/barrier system—300-mil geosynthetic drainage layer (GDL), 300-mil geosynthetic clay liner (GCL), and 6-inch common fill soil layer. For a 25-year, 24-hour storm event, HELP model v3.07 was employed to (1) predict the peak maximum daily hydraulic head formore » the geomembrane layer, and (2) ensure that South Carolina Department of Health and Environmental Control (SCDHEC) requirements for the barrier layer (i.e., ≤ 12 inches hydraulic head on top of a barrier having a saturated hydraulic conductivity ≤ 1.0E-05 cm/s) will not be exceeded. A 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches rainfall (Weber 1998). HELP model v3.07 results based upon the new planned cap design suggest that the peak maximum daily hydraulic head on the geomembrane barrier layer will be 0.15 inches for a minimum slope equal to 3%, which is two orders of magnitude below the SCDHEC upper limit of 12 inches.« less

  5. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk, E-mail: ubolluk@buu.ac.t

    2010-04-15

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electronmore » microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.« less

  6. The Effects of Bottom Ash on Setting Time and Compressive Strength of Fly Ash Geopolymer Paste

    NASA Astrophysics Data System (ADS)

    Affandhie, B. A.; Kurniasari, P. T.; Darmawan, M. S.; Subekti, S.; Wibowo, B.; Husin, N. A.; Bayuaji, R.; Irawan, S.

    2017-11-01

    This research is to find out the contribution of waste energy utilization of fly ash and bottom ash coal as binding agent of geopolymer concrete. This research methodology uses experimental approach in laboratory by making cylinder paste test object with dimension diameter of 2.5 cm x height 5 cm with some combination of fly ash and bottom ash mix with time setting test (ASTM C 191-04a) and compressive strength (ASTM C 39-04a). The research concludes that the effect of bottom ash on fly ash-based geopolymer paste shows good results in setting time and compressive strength.

  7. An atlas of volcanic ash

    NASA Technical Reports Server (NTRS)

    Heiken, G.

    1974-01-01

    Volcanic ash samples collected from a variety of recent eruptions were studied, using petrography, chemical analyses, and scanning electron microscopy to characterize each ash type and to relate ash morphology to magma composition and eruption type. The ashes are best placed into two broad genetic categories: magnetic and hydrovolcanic (phreatomagmatic). Ashes from magmatic eruptions are formed when expanding gases in the magma form a froth that loses its coherence as it approaches the ground surface. During hydrovolcanic eruptions, the magma is chilled on contact with ground or surface waters, resulting in violent steam eruptions. Within these two genetic categories, ashes from different magma types can be characterized. The pigeon hole classification used here is for convenience; there are eruptions which are driven by both phreatic and magmatic gases.

  8. Atom-efficient route for converting incineration ashes into heavy metal sorbents.

    PubMed

    Chiang, Yi Wai; Santos, Rafael M; Vanduyfhuys, Kenneth; Meesschaert, Boudewijn; Martens, Johan A

    2014-01-01

    Bottom ashes produced from municipal solid-waste incineration are suitable for sorbent synthesis because of their inherent composition, high alkalinity, metastable mineralogy, and residual heat. This work shows that bottom ashes can be atom-efficiently converted into valuable sorbents without the need for costly and hazardous chemicals. The ashes were hydrothermally treated in rotary autoclaves at autogenic pH conditions to promote the conversion of precursor mineral phases into zeolites and layered silicate hydrates. Two main mineral phases were formed: katoite and sodium aluminum phosphate silicate hydrate. These mineral alterations are accompanied by a tenfold increase in specific surface area and a twofold reduction in average particle size. Performance evaluation of the new sorbents for Cd(2+), Zn(2+), and Pb(2+) adsorption at pH5 indicates sorption capacities of 0.06, 0.08, and 0.22 mmol g(-1), respectively, which are similar to those of natural adsorbents and synthetic materials obtained from more demanding synthesis conditions. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Biotic and abiotic factors affect green ash volatile production and emerald ash borer adult feeding preference.

    PubMed

    Chen, Yigen; Poland, Therese M

    2009-12-01

    The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an exotic woodborer first detected in 2002 in Michigan and Ontario and is threatening the ash resource in North America. We examined the effects of light exposure and girdling on green ash (Fraxinus pennsylvanica Marsh) volatile production, and effects of light exposure, girdling, and leaf age on emerald ash borer adult feeding preferences and phototaxis. Green ash seedlings grown under higher light exposure had lower amounts of three individual volatile compounds, (Z)-3-hexenol, (E)-beta-ocimene, and (Z,E)-alpha-farnesene, as well as the total amount of six detected volatile compounds. Girdling did not affect the levels of these volatiles. Emerald ash borer females preferred mature leaves, leaves from girdled trees, and leaves grown in the sun over young leaves, leaves from nongirdled trees, and leaves grown in the shade, respectively. These emerald ash borer preferences were most likely because of physical, nutritional, or biochemical changes in leaves in response to the different treatments. Emerald ash borer females and males showed positive phototaxis in laboratory arenas, a response consistent with emerald ash borer preference for host trees growing in sunlight.

  10. Morphology and petrography of volcanic ashes.

    NASA Technical Reports Server (NTRS)

    Heiken, G.

    1972-01-01

    Study of volcanic ash samples collected from a variety of recent eruptions using petrography, chemical analyses, and scanning electron microscopy to characterize each type and to relate ash morphology to magma composition and the type of eruption. The ashes are placed in the broad genetic categories of magmatic and phreatomagmatic. The morphology of ash particles from magmatic eruptions of high viscosity magma is governed primarily by vesicle density and shape. Ash particles from eruptions of low viscosity magmas are mostly droplets. The morphology of ash particles from phreatomagmatic eruptions is controlled by stresses within the chilled magma which result in fragmentation of the glass to form small blocky or pyramidal glass ash particles.

  11. 10 Risk to Ash from Emerald Ash Borer: Can Biological Control Prevent the Loss of Ash Stands

    USDA-ARS?s Scientific Manuscript database

    Ash trees were once relatively free of serious, major diseases and insect pests in North America until the arrival of EAB, which was first detected in North America in Michigan in 2002. As of February 2014, EAB had been detected in 22 U.S. states and two Canadian provinces, killing millions of ash ...

  12. Grimsvotn ash plume detection by ground-based elastic Lidar at Dublin Airport on May 2011

    NASA Astrophysics Data System (ADS)

    Lolli, S.; Martucci, G.; O'Dowd, C.; sauvage, L.; Nolan, P.

    2011-12-01

    Volcanic emissions comprising steam, ash, and gases are injected into the atmosphere and produce effects affecting Earth's climate. Volcanic ash is composed of non-spherical mineral and metal (particles spanning a large size range. The largest ones are likely to sediment quickly close to the eruption site. The ash component, and sulphate formed by subsequent oxidation of the SO2 occurring in clouds, poses a variety of hazards to humans and machinery on the ground, as well as damage to the aircrafts which fly through the ash layers. To mitigate such hazards the Irish Aviation Authority (IAA) equipped with an ALS Lidar, produced by LEOSPHERE, deployed at Dublin Airport, which provides real-time range-corrected backscatter signal and depolarization ratio profiles allowing the detection and monitoring of ash plumes. On May, 21st 2011, the Grimsvotn Icelandic volcano erupted, sending a plume of ash, smoke and steam 12 km into the air and causing flights to be disrupted at Iceland's main Keflavik airport and at a number of North European airports. Due to upper level global circulation, the ash plume moved from Iceland towards Ireland and North of Scotland, and was detected a number of times by the ALS Lidar above Dublin Airport between May, 21st and 25th. A preliminary analysis of the detected volcanic plume is presented here as well as a preliminary intercomparison of the microphysical and optical characteristics with the Eyjafjallajökull eruption in 2010.

  13. Characterization of metals released from coal fly ash during dredging at the Kingston ash recovery project.

    PubMed

    Bednar, A J; Averett, D E; Seiter, J M; Lafferty, B; Jones, W T; Hayes, C A; Chappell, M A; Clarke, J U; Steevens, J A

    2013-09-01

    A storage-pond dike failure occurred on December 22, 2008 at the Tennessee Valley Authority Kingston Fossil Plant resulting in the release of over 4million cubic meters (5million cubic yards) of fly ash. Approximately half of the released ash was deposited in the main channel of the Emory River, Tennessee, USA. Remediation efforts of the Emory River focused on hydraulic dredging, as well as mechanical excavation in targeted areas. However, agitation of the submerged fly ash during hydraulic dredging introduces river water into the fly ash material, which could promote dissolution and desorption of metals from the solid fly ash material. Furthermore, aeration of the dredge slurry could alter the redox state of metals in the fly ash material and thereby change their sorption, mobility, and toxicity properties. The research presented here focuses on the concentrations and speciation of metals during the fly ash recovery from the Emory River. Our results indicate that arsenite [As(III)] released from the fly ash material during dredging was slowly oxidized to arsenate [As(V)] in the slurry recovery system with subsequent removal through precipitation or sorption reactions with suspended fly ash material. Concentrations of other dissolved metals, including iron and manganese, also generally decreased in the ash recovery system prior to water discharge back to the river. Published by Elsevier Ltd.

  14. Biogas purification with biomass ash.

    PubMed

    Fernández-Delgado Juárez, M; Mostbauer, P; Knapp, A; Müller, W; Tertsch, S; Bockreis, A; Insam, H

    2018-01-01

    The aim of the study was to investigate the option to purify biogas from small-scale biogas plants by entrapping CO 2 and H 2 S with regionally available biomass ash. Connected to the existing biogas plant Neustift (Tyrol) wood ash placed in a 1 m 3 container was used as a trap for CO 2 and H 2 S in the biogas. With the process conditions chosen, for a period of a few hours CO 2 was trapped resulting in pure methane. The removal of H 2 S was much longer-lasting (up to 34 d). The cumulative H 2 S uptake by the biomass ash ranged from 0.56 to 1.25 kg H 2 S per ton of ash. The pH of the ash and the leachability of Lead and Barium were reduced by the flushing with biogas, however toxicity towards plants was increased thus reducing the potential of ash use in agriculture. It can be concluded that biomass ash may be used for removal of hydrogen sulphide from biogas in small and medium biogas plants. The economic evaluation, however, indicated that the application of this system is limited by transport distances for the ash and its potential use afterwards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. First experimental observations on melting and chemical modification of volcanic ash during lightning interaction.

    PubMed

    Mueller, S P; Helo, C; Keller, F; Taddeucci, J; Castro, J M

    2018-01-23

    Electrification in volcanic ash plumes often leads to syn-eruptive lightning discharges. High temperatures in and around lightning plasma channels have the potential to chemically alter, re-melt, and possibly volatilize ash fragments in the eruption cloud. In this study, we experimentally simulate temperature conditions of volcanic lightning in the laboratory, and systematically investigate the effects of rapid melting on the morphology and chemical composition of ash. Samples of different size and composition are ejected towards an artificially generated electrical arc. Post-experiment ash morphologies include fully melted spheres, partially melted particles, agglomerates, and vesiculated particles. High-speed imaging reveals various processes occurring during the short lightning-ash interactions, such as particle melting and rounding, foaming, and explosive particle fragmentation. Chemical analyses of the flash-melted particles reveal considerable bulk loss of Cl, S, P and Na through thermal vaporization. Element distribution patterns suggest convection as a key process of element transport from the interior of the melt droplet to rim where volatiles are lost. Modeling the degree of sodium loss delivers maximum melt temperatures between 3290 and 3490 K. Our results imply that natural lighting strikes may be an important agent of syn-eruptive morphological and chemical processing of volcanic ash.

  16. Leaching from solid waste incineration ashes used in cement-treated base layers for pavements.

    PubMed

    Cai, Z; Bager, Dirch H; Christensen, T H

    2004-01-01

    Waste incineration bottom ash and treated flue gas cleaning products mixed with 2.5% of cement (50 kg/m3) were tested in the laboratory in terms of compressive strength and tank leaching tests over a 64-day period. Although the material displayed lower mechanical strength than a reference concrete, the strength still was sufficient for use as a base layer for roads. The metal content in the incineration-residue-based specimens was up to 100 times higher than in the reference concrete, suggesting that the mixed waste incineration residue should be used only for dedicated purposes. The leaching of Cl and Na was increased by a factor of 20-100 from the incineration-residue-based specimens as compared to the reference, while the leaching of K, Ca and SO4 was increased by a factor of 2-10. The leaching of heavy metals was also higher from the incineration-residue-based specimens than from the reference with respect to Cu (50 times), Cd, Pb and Zn (5 times), but not with respect to Cr and Ni. The leaching curves did only allow for a closer evaluation of the leaching process in a few cases. The physical retention of the constituents seemed to be the same in the reference as in the incineration-residue-based specimens. Heavy metal leaching was limited by enhanced chemical retention in the incineration-residue-specimens as compared to the reference. Since no quality criteria in terms of leaching from a monolithic material are currently available, the leaching issue must be evaluated case by case.

  17. Feeding by emerald ash borer larvae induces systemic changes in black ash foliar chemistry

    Treesearch

    Yigen Chen; Justin G.A. Whitehill; Pierluigi Bonello; Therese M. Poland

    2011-01-01

    The exotic wood-boring pest, emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has been threatening North American ash (Fraxinus spp.) resources, this being recognized since its first detection in Michigan, USA and Ontario, Canada in 2002. Ash trees are killed by larval feeding in the cambial region...

  18. High-volume fly ash concrete.

    DOT National Transportation Integrated Search

    2013-06-01

    The objective of the proposed study is to design, test, and evaluate high-volume fly ash concrete mixtures. Traditional specifications : limit the amount of fly ash to 40% or less cement replacement. This program attempts to increase the ash content ...

  19. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash.

    PubMed

    Kalaw, Martin Ernesto; Culaba, Alvin; Hinode, Hirofumi; Kurniawan, Winarto; Gallardo, Susan; Promentilla, Michael Angelo

    2016-07-15

    Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1) their technical properties are comparable if not better; (2) they can be produced from industrial wastes; and (3) within reasonable constraints, their production requires less energy and emits significantly less CO₂. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC) use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA) and coal bottom ash (CBA), and rice hull ash (RHA). The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF) for elemental and X-ray diffraction (XRD) for mineralogical composition. The raw materials' thermal stability and loss on ignition (LOI) were determined using thermogravimetric analysis (TGA) and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP) analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR), scanning

  20. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash

    PubMed Central

    Kalaw, Martin Ernesto; Culaba, Alvin; Hinode, Hirofumi; Kurniawan, Winarto; Gallardo, Susan; Promentilla, Michael Angelo

    2016-01-01

    Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1) their technical properties are comparable if not better; (2) they can be produced from industrial wastes; and (3) within reasonable constraints, their production requires less energy and emits significantly less CO2. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC) use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA) and coal bottom ash (CBA), and rice hull ash (RHA). The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF) for elemental and X-ray diffraction (XRD) for mineralogical composition. The raw materials’ thermal stability and loss on ignition (LOI) were determined using thermogravimetric analysis (TGA) and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP) analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR), scanning

  1. Emerald ash borer biocontrol in ash saplings: The potential for early stage recovery of North American ash trees

    Treesearch

    Jian J. Duan; Leah S. Bauer; Roy G. Van Driesche

    2017-01-01

    In many parts of North America, ash (Fraxinus) stands have been reduced by the emerald ash borer (Agrilus planipennis) invasion to a few surviving mature trees, saplings, basal sprouts, and seedlings. Without a soil seed bank for Fraxinus spp., tree recovery will require survival and maturation of these...

  2. Active mineral additives of sapropel ashes

    NASA Astrophysics Data System (ADS)

    Khomich, V. A.; Danilina, E. V.; Krivonos, O. I.; Plaksin, G. V.

    2015-01-01

    The goal of the presented research is to establish a scientific rational for the possibility of sapropel ashes usage as an active mineral additive. The research included the study of producing active mineral additives from sapropels by their thermal treatment at 850900 °C and afterpowdering, the investigation of the properties of paste matrix with an ash additive, and the study of the ash influence on the cement bonding agent. Thermogravimetric analysis and X-ray investigations allowed us to establish that while burning, organic substances are removed, clay minerals are dehydrated and their structure is broken. Sapropel ashes chemical composition was determined. An amorphous ash constituent is mainly formed from silica of the mineral sapropel part and alumosilicagels resulted from clay minerals decomposition. Properties of PC 400 and PC 500A0 sparopel ash additives were studied. Adding ashes containing Glenium plasticizer to the cement increases paste matrix strength and considerably reduces its water absorption. X-ray phase analysis data shows changes in the phase composition of the paste matrix with an ash additive. Ash additives produce a pozzolanic effect on the cement bonding agent. Besides, an ash additive due to the alumosilicagels content causes transformation from unstable calcium aluminate forms to the stable ones.

  3. Leaching kinetics of bottom ash waste as a source of calcium ions.

    PubMed

    Koech, Lawrence; Everson, Ray; Neomagus, Hein; Rutto, Hilary

    2015-02-01

    Bottom ash is a waste material from coal-fired power plants, and it is known to contain elements that are potentially toxic at high concentration levels when disposed in landfills. This study investigates the use of bottom ash as a partial substitute sorbent for wet flue gas desulfurization (FGD) processes by focusing on its leaching kinetics in adipic acid. This was studied basing on the shrinking core model that was applied to the experimental data obtained by the authors presented at the International Conference on Industrial, Manufacturing, Automation and Mechanical Engineering, Johannesburg, South Africa, November 27-28, 2013) on dissolution of bottom ash. The leaching rate constant was obtained from different reaction variables, namely, temperature, pH, acid concentration, and solid-to-liquid ratio, that could affect the leaching process. The solid sample of bottom ash was characterized at different leaching periods using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that solid-to-liquid ratio had a significant effect on the leaching rate constant when compared with other variables. The leaching kinetics showed that diffusion through the product layer was the rate-controlling step during leaching, and the activation energy for the process was found to be 18.92 kJ/mol.

  4. Evaluation of engineering properties for the use of leached brown coal ash in soil covers.

    PubMed

    Mudd, Gavin M; Chakrabarti, Srijib; Kodikara, Jayantha

    2007-01-31

    The need to engineer cover systems for the successful rehabilitation or remediation of a wide variety of solid wastes is increasing. Some common applications include landfills, hazardous waste repositories, or mine tailings dams and waste rock/overburden dumps. The brown coal industry of the Latrobe Valley region of Victoria, Australia, produces significant quantities of coal ash and overburden annually. There are some site-specific acid mine drainage (AMD) issues associated with overburden material. This needs to be addressed both during the operational phase of a project and during rehabilitation. An innovative approach was taken to investigate the potential to use leached brown coal ash in engineered soil covers on this overburden dump. The basis for this is two-fold: first, the ash has favourable physical characteristics for use in cover systems (such as high storage capacity/porosity, moderately low permeability, and an ability to act as a capillary break layer generating minimal leachate or seepage); and second, the leachate from the ash is mildly alkaline (which can help to mitigate and reduce the risk of AMD). This paper will review the engineering issues involved in using leached brown coal ash in designing soil covers for potentially acid-forming overburden dumps. It presents the results of laboratory work investigating the technical feasibility of using leached brown coal ash in engineered solid waste cover systems.

  5. The Role of Biocontrol of Emerald Ash Borer in Protecting Ash Regeneration after Invasion

    USDA-ARS?s Scientific Manuscript database

    Emerald ash borer (EAB) is an invasive Asian beetle that is destroying ash in forests over much of eastern North America because of the high susceptibility of our native ash and a lack of effective natural enemies. To increase mortality of EAB larvae and eggs, the USDA (FS, ARS and APHIS) is carryin...

  6. Comparison between volcanic ash satellite retrievals and FALL3D transport model

    NASA Astrophysics Data System (ADS)

    Corradini, Stefano; Merucci, Luca; Folch, Arnau

    2010-05-01

    Volcanic eruptions represent one of the most important sources of natural pollution because of the large emission of gas and solid particles into the atmosphere. Volcanic clouds can contain different gas species (mainly H2O, CO2, SO2 and HCl) and a mix of silicate-bearing ash particles in the size range from 0.1 μm to few mm. Determining the properties, movement and extent of volcanic ash clouds is an important scientific, economic, and public safety issue because of the harmful effects on environment, public health and aviation. In particular, real-time tracking and forecasting of volcanic clouds is key for aviation safety. Several encounters of en-route aircrafts with volcanic ash clouds have demonstrated the harming effects of fine ash particles on modern aircrafts. Alongside these considerations, the economical consequences caused by disruption of airports must be also taken into account. Both security and economical issues require robust and affordable ash cloud detection and trajectory forecasting, ideally combining remote sensing and modeling. We perform a quantitative comparison between Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of volcanic ash cloud mass and Aerosol Optical Depth (AOD) with the FALL3D ash dispersal model. MODIS, aboard the NASA-Terra and NASA-Aqua polar satellites, is a multispectral instrument with 36 spectral bands from Visible (VIS) to Thermal InfraRed (TIR) and spatial resolution varying between 250 and 1000 m at nadir. The MODIS channels centered around 11 and 12 mm have been used for the ash retrievals through the Brightness Temperature Difference algorithm and MODTRAN simulations. FALL3D is a 3-D time-dependent Eulerian model for the transport and deposition of volcanic particles that outputs, among other variables, cloud column mass and AOD. We consider the Mt. Etna volcano 2002 eruptive event as a test case. Results show a good agreement between the mean AOT retrieved and the spatial ash dispersion in the

  7. A model for Nb-Zr-REE-Ga enrichment in Lopingian altered alkaline volcanic ashes: Key evidence of H-O isotopes

    NASA Astrophysics Data System (ADS)

    Dai, Shifeng; Nechaev, Victor P.; Chekryzhov, Igor Yu.; Zhao, Lixin; Vysotskiy, Sergei V.; Graham, Ian; Ward, Colin R.; Ignatiev, Alexander V.; Velivetskaya, Tatyana A.; Zhao, Lei; French, David; Hower, James C.

    2018-03-01

    Clay-altered volcanic ash with highly-elevated concentrations of Nb(Ta), Zr(Hf), rare earth elements (REE), and Ga, is a new type of critical metal deposit with high commercial prospects that has been discovered in Yunnan Province, southwest China. Previous studies showed that the volcanic ashes had been subjected to hydrothermal fluids, the nature of which, however, is not clear. Here we show that the volcanic ashes were originated from alkaline magmatism, followed by a continuous hydrothermal-weathering process. Heated meteoric waters, which were sourced from acidic rains and mixed with CO2 from degassing of the Emeishan plume, have caused partial, but widespread, acidic leaching of Nb, Ta, Zr, Hf, REE, and Ga into ground water and residual enrichment of these elements, along with Al and Ti, in the deeply altered rocks. Subsequent alteration occurring under cooler, neutral or alkaline conditions, caused by water-rock interaction, resulted in precipitation of the leached critical metals in the deposit. Polymetallic mineralization of similar origin may be found in other continental regions subjected to explosive alkaline volcanism associated with deep weathering in humid conditions.

  8. Insights into the Toba Super-Eruption using SEM Analysis of Ash Deposits

    NASA Astrophysics Data System (ADS)

    Gatti, E.; Achyuthan, H.; Durant, A. J.; Gibbard, P.; Mokhtar, S.; Oppenheimer, C.; Raj, R.; Shridar, A.

    2010-12-01

    The ~74 ka Youngest Toba Tuff (YTT) super-eruption of Toba volcano, Northern Sumatra, was the largest eruption of the Quaternary (magnitude M= 8.8) and injected massive quantities of volcanic gases and ash into the stratosphere. YTT deposits covered at least 40,000,000 km2 of Southeast Asia and are preserved in river valleys across peninsular India and Malaysia, and in deep-sea tephra layers in the Indian Ocean, Bay of Bengal and South China Sea. Initial studies hypothesized the eruption caused immediate and substantial global cooling during the ~ 1 kyr between Dansgaard-Oeschger events 19 and 20 which devastated ecosystems and hominid populations. A more recent review argues against severe post-YTT climatic deterioration and cannot find clear evidence for considerable impacts on ecosystems or bio-diversity. The determination of the eruptive parameters is crucial in this issue to document the eruption and understand the potential impacts from future super-volcanic eruptions. Volcanic ash deposits can offer dramatic insights into key eruptive parameters, including magnitude, duration and plume height. The composition and shape of volcanic ashes can be used to interpret physical properties of an erupting magma and tephra transport, while textural characteristics such as grain roughness and surface vescicularity can provide insights into degassing history, volatile content and explosive activity of the volcano. We present a stratigraphic and sedimentological analysis of YTT deposits in stratified contexts at three localities in India, at two sites in Peninsular Malaysia, and at several localities around Lake Toba and on Samosir Island, Sumatra. These sites offer excellent constraints on the spatial distribution of YTT deposits which can be used to infer dispersal directions of the cloud, and provide insights into environmental controls on preservation of tephra beds. The research aims at a systematic interpretation of the Toba tephra to understand the volcanic

  9. Concentration of heavy metals in ash produced from Lithuanian forests

    NASA Astrophysics Data System (ADS)

    Baltrenaite, Edita; Pereira, Paulo; Butkus, Donatas; Úbeda, Xavier

    2010-05-01

    Wood ash contains important amounts of heavy metals. This quantity depends on burned specie, temperature of exposition and heat duration time. Due the high mineralization imposed by the temperatures, ash is used as lime product in agriculture and forests. Also, after a forest fire large quantities of ash are produced and distributed in soil surface. This mineralized organic matter can induce important environmental problems, including soil toxicity provoked by heavy metals leachates from ash. There is an extensive literature about heavy metals contents on ash in different species. However, it recently highlighted that the same species placed in different environments can respond diversely to same temperatures. This question is of major importance because temperature effects on severity can be a function of the plant communities instead of specie characteristics. These findings add a higher degree of complexity in the understanding of temperature effects on ash composition and consequent availability of heavy metals. The aim of this study is to compare the ash chemical heavy metal composition, Cobalt (Co), Chromium (Cr), Cooper (Cu), Silver (Ag), Lead (Pb), Nickel (Ni), Manganese (Mn) and Zinc (Zn), from Pinus sylvestris and Betula pendula, collected in key and representative areas of Lithuanian forests, located in southern, coastal and central part. Samples were collected from alive trees, taken to laboratory and air dried. Subsequently were crushed and submitted to muffle furnace at temperature of 550°C during two hours. The ash samples were digested and in a HNO3-HCl solution and then analysed with AAS. Comparisons between species and sites were performed with a Non-parametric one-way ANOVA‘s on rank transformed data followed by Tukey‘s HSD, significant at a p<0.05. Results showed significant difference between Co and Ag concentrations between Pinus sylvestris and Betula pendula. Also, significantly different concentrations of Pb, Cu, Ni and Mn were

  10. Controlling formaldehyde emissions with boiler ash.

    PubMed

    Cowan, Jennifer; Abu-Daabes, Malyuba; Banerjee, Sujit

    2005-07-01

    Fluidized wood ash reduces formaldehyde in air from about 20 to <1 ppmv. Methanol is removed to a much lower extent. The efficiency of formaldehyde reduction increases with increasing moisture content of the ash. Sorption of formaldehyde to ash can be substantially accounted for by partitioning to the water contained in the ash followed by rate-controlling binding to the ash solids. Adsorption occurs at temperatures of up to 165 degrees C; oxidation predominates thereafter. It is proposed that formaldehyde could be stripped from an air stream in a fluidized bed containing ash, which could then be returned to a boiler to incinerate the formaldehyde.

  11. Effect of fly ash calcination in geopolymer synthesis

    NASA Astrophysics Data System (ADS)

    Samadhi, Tjokorde Walmiki; Jatiningrum, Mirna; Arisiani, Gresia

    2015-12-01

    Geopolymer, a largely amorphous class of inorganic polymer consisting of aluminosilicate repeat units, is an environmentally attractive engineering material due to its ability to consume aluminosilicate waste as raw materials. This work studies the effect of the calcination temperature of a coal fly ash generated by a low-efficiency boiler on the mechanical strength of geopolymer mortar synthesized using a mixture of the fly ash, potassium hydroxide as the alkali activator, and locally available sand as the filler aggregate. The calcination temperature is varied between 500-700 °C, with a calcination period of 2 hours in an electric furnace. Two sand samples with different particle size distributions are used. The key response variable is the compressive strength at room temperature, measured after curing at 80 °C for 7 and 14 days. Uncalcined ash, with a carbon content of approximately 31.0%, is not amenable for geopolymer synthesis. Analysis of experimental data using the ANOVA method for general factorial design identifies significant main effects for all three experimental variables. Two-way interactions are significant, except that between sand type and curing period. Higher calcination temperature significantly improves the strength of the mortar. However, the strength of the obtained geopolymer mortars are still significantly lower than that of ordinary Portland cement mortar.

  12. Volcanic ash impacts on critical infrastructure

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water

  13. Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arenas, Celia; Leiva, Carlos; Vilches, Luis F.

    2013-11-15

    Highlights: • The particle size of bottom ash influenced the acoustic behavior of the barrier. • The best sound absorption coefficients were measured for larger particle sizes. • The maximum noise absorption is displaced to lower frequencies for higher thickness. • A noise barrier was designed with better properties than commercial products. • Recycling products from bottom ash no present leaching and radioactivity problems. - Abstract: The present study aims to determine and evaluate the applicability of a new product consisting of coal bottom ash mixed with Portland cement in the application of highway noise barriers. In order to effectivelymore » recycle the bottom ash, the influence of the grain particle size of bottom ash, the thickness of the panel and the combination of different layers with various particle sizes have been studied, as well as some environmental properties including leachability (EN-12457-4, NEN-7345) and radioactivity tests. Based on the obtained results, the acoustic properties of the final composite material were similar or even better than those found in porous concrete used for the same application. According to this study, the material produced presented no environmental risk.« less

  14. Transcriptomic Signatures of Ash (Fraxinus spp.) Phloem

    PubMed Central

    Mamidala, Praveen; Bonello, Pierluigi; Herms, Daniel A.; Mittapalli, Omprakash

    2011-01-01

    Background Ash (Fraxinus spp.) is a dominant tree species throughout urban and forested landscapes of North America (NA). The rapid invasion of NA by emerald ash borer (Agrilus planipennis), a wood-boring beetle endemic to Eastern Asia, has resulted in the death of millions of ash trees and threatens billions more. Larvae feed primarily on phloem tissue, which girdles and kills the tree. While NA ash species including black (F. nigra), green (F. pennsylvannica) and white (F. americana) are highly susceptible, the Asian species Manchurian ash (F. mandshurica) is resistant to A. planipennis perhaps due to their co-evolutionary history. Little is known about the molecular genetics of ash. Hence, we undertook a functional genomics approach to identify the repertoire of genes expressed in ash phloem. Methodology and Principal Findings Using 454 pyrosequencing we obtained 58,673 high quality ash sequences from pooled phloem samples of green, white, black, blue and Manchurian ash. Intriguingly, 45% of the deduced proteins were not significantly similar to any sequences in the GenBank non-redundant database. KEGG analysis of the ash sequences revealed a high occurrence of defense related genes. Expression analysis of early regulators potentially involved in plant defense (i.e. transcription factors, calcium dependent protein kinases and a lipoxygenase 3) revealed higher mRNA levels in resistant ash compared to susceptible ash species. Lastly, we predicted a total of 1,272 single nucleotide polymorphisms and 980 microsatellite loci, among which seven microsatellite loci showed polymorphism between different ash species. Conclusions and Significance The current transcriptomic data provide an invaluable resource for understanding the genetic make-up of ash phloem, the target tissue of A. planipennis. These data along with future functional studies could lead to the identification/characterization of defense genes involved in resistance of ash to A. planipennis, and in future

  15. Investigations of ash fouling with cattle wastes as reburn fuel in a small-scale boiler burner under transient conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyukjin Oh; Kalyan Annamalai; John M. Sweeten

    2008-04-15

    Fouling behavior under reburn conditions was investigated with cattle wastes (termed as feedlot biomass, FB) and coal as reburn fuels under a transient condition and short-time operation. A small-scale (30 kW or 100,000 Btu/hr) boiler burner research facility was used for the reburn experiments. The fuels considered for these experiments were natural gas (NG) for the ashless case, pure coal, pure FB, and blends of coal and FB. Two parameters that were used to characterize the ash 'fouling' were (1) the overall heat-transfer coefficient (OHTC) when burning NG and solid fuels as reburn fuels, and (2) the combustible loss throughmore » ash deposited on the surfaces of heat exchanger tubes and the bottom ash in the ash port. A new methodology is presented for determining ash fouling behavior under transient conditions. Results on the OHTCs for solid reburn fuels are compared with the OHTCs for NG. It was found that the growth of the layer of ash depositions over longer periods typically lowers OHTC, and the increased concentration of ash in gas phase promotes radiation in high-temperature zones during initial periods while decreasing the heat transfer in low-temperature zones. The ash analyses indicated that the bottom ash in the ash port contained a smaller percentage of combustibles with a higher FB percentage in the fuels, indicating better performance compared with coal because small particles in FB burn faster and the FB has higher volatile matter on a dry ash-free basis promoting more burn out. 16 refs., 12 figs., 6 tabs.« less

  16. Investigations of ash fouling with cattle wastes as reburn fuel in a small-scale boiler burner under transient conditions.

    PubMed

    Oh, Hyukjin; Annamalai, Kalyan; Sweeten, John M

    2008-04-01

    Fouling behavior under reburn conditions was investigated with cattle wastes (termed as feedlot biomass [FB]) and coal as reburn fuels under a transient condition and short-time operation. A small-scale (30 kW or 100,000 Btu/hr) boiler burner research facility was used for the reburn experiments. The fuels considered for these experiments were natural gas (NG) for the ashless case, pure coal, pure FB, and blends of coal and FB. Two parameters that were used to characterize the ash "fouling" were (1) the overall heat-transfer coefficient (OHTC) when burning NG and solid fuels as reburn fuels, and (2) the combustible loss through ash deposited on the surfaces of heat exchanger tubes and the bottom ash in the ash port. A new methodology is presented for determining ash-fouling behavior under transient conditions. Results on the OHTCs for solid reburn fuels are compared with the OHTCs for NG. It was found that the growth of the layer of ash depositions over longer periods typically lowers OHTC, and the increased concentration of ash in gas phase promotes radiation in high-temperature zones during initial periods while decreasing the heat transfer in low-temperature zones. The ash analyses indicated that the bottom ash in the ash port contained a smaller percentage of combustibles with a higher FB percentage in the fuels, indicating better performance compared with coal because small particles in FB burn faster and the FB has higher volatile matter on a dry ash-free basis promoting more burn out.

  17. Spectral analysis of white ash response to emerald ash borer infestations

    NASA Astrophysics Data System (ADS)

    Calandra, Laura

    The emerald ash borer (EAB) (Agrilus planipennis Fairmaire) is an invasive insect that has killed over 50 million ash trees in the US. The goal of this research was to establish a method to identify ash trees infested with EAB using remote sensing techniques at the leaf-level and tree crown level. First, a field-based study at the leaf-level used the range of spectral bands from the WorldView-2 sensor to determine if there was a significant difference between EAB-infested white ash (Fraxinus americana) and healthy leaves. Binary logistic regression models were developed using individual and combinations of wavelengths; the most successful model included 545 and 950 nm bands. The second half of this research employed imagery to identify healthy and EAB-infested trees, comparing pixel- and object-based methods by applying an unsupervised classification approach and a tree crown delineation algorithm, respectively. The pixel-based models attained the highest overall accuracies.

  18. 488-1D Ash basin closure cap help modeling-Microdrain® liner option

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, J.

    At the request of Area Completion Engineering and in support of the 488-1D Ash Basin closure, the Savannah River National Laboratory (SRNL) performed hydrologic simulations of the revised 488-1D Ash Basin closure cap design using the Hydrologic Evaluation of Landfill Performance (HELP) model. The revised design substitutes a MicroDrain Liner®—50-mil linear low-density polyethylene geomembrane structurally integrated with 130-mil drainage layer—for the previously planned drainage/barrier system—300-mil geosynthetic drainage layer (GDL), 300-mil geosynthetic clay liner (GCL), and 6-inch common fill soil layer. For a 25-year, 24-hour storm event, HELP model v3.07 was employed to (1) predict the peak maximum daily hydraulic headmore » for the geomembrane layer, and (2) ensure that South Carolina Department of Health and Environmental Control (SCDHEC) requirements for the barrier layer (i.e., ≤ 12 inches hydraulic head on top of a barrier having a saturated hydraulic conductivity ≤ 1.0E-05 cm/s) will not be exceeded. A 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches rainfall (Weber 1998). HELP model v3.07 results based upon the new planned cap design suggest that the peak maximum daily hydraulic head on the geomembrane barrier layer will be 0.179 inches for a minimum slope equal to 3%, which is approximately two orders of magnitude below the SCDHEC upper limit of 12 inches.« less

  19. Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers.

    PubMed

    Arenas, Celia; Leiva, Carlos; Vilches, Luis F; Cifuentes, Héctor

    2013-11-01

    The present study aims to determine and evaluate the applicability of a new product consisting of coal bottom ash mixed with Portland cement in the application of highway noise barriers. In order to effectively recycle the bottom ash, the influence of the grain particle size of bottom ash, the thickness of the panel and the combination of different layers with various particle sizes have been studied, as well as some environmental properties including leachability (EN-12457-4, NEN-7345) and radioactivity tests. Based on the obtained results, the acoustic properties of the final composite material were similar or even better than those found in porous concrete used for the same application. According to this study, the material produced presented no environmental risk. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Mineral and chemical variations within an ash-flow sheet from Aso caldera, Southwestern Japan

    USGS Publications Warehouse

    Lipman, P.W.

    1967-01-01

    Although products of individual volcanic eruptions, especially voluminous ash-flow eruptions, have been considered among the best available samples of natural magmas, detailed petrographic and chemical study indicates that bulk compositions of unaltered Pleistocene ash-flow tuffs from Aso caldera, Japan, deviate significantly from original magmatic compositions. The last major ash-flow sheet from Aso caldera is as much as 150 meters thick and shows a general vertical compositional change from phenocryst-poor rhyodacite upward into phenocryst-rich trachyandesite; this change apparently reflects in inverse order a compositionally zoned magma chamber in which more silicic magma overlay more mafic magma. Details of these magmatic variations were obscured, however, by: (1) mixing of compositionally distinct batches of magma during upwelling in the vent, as indicated by layering and other heterogeneities within single pumice lumps; (2) mixing of particulate fragments-pumice lumps, ash, and phenocrysts-of varied compositions during emplacement, with the result that separate pumice lenses from a single small outcrop may have a compositional range nearly as great as the bulk-rook variation of the entire sheet; (3) density sorting of phenocrysts and ash during eruption and emplacement, resulting in systematic modal variations with distance from the caldera; (4) addition of xenocrysts, resulting in significant contamination and modification of proportions of crystals in the tuffs; and (5) ground-water leaching of glassy fractions during hydration after cooling. Similar complexities characterize ash-flow tuffs under study in southwestern Nevada and in the San Juan Mountains, Colorado, and probably are widespread in other ash-flow fields as well. Caution and careful planning are required in study of the magmatic chemistry and phenocryst mineralogy of these rocks. ?? 1967 Springer-Verlag.

  1. Estimating potential emerald ash borer (Coleoptera: Buprestidae) populations using ash inventory data.

    PubMed

    McCullough, Deborah G; Siegert, Nathan W

    2007-10-01

    Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), a phloem-feeding pest native to Asia, was identified in June 2002 as the cause of widespread ash (Fraxinus spp.), mortality in southeastern Michigan and Windsor, Ontario, Canada. Localized populations of A. planipennis have since been found across lower Michigan and in areas of Ohio, Indiana, Illinois, Maryland, and Ontario. Officials working to contain A. planipennis and managers of forestlands near A. planipennis infestations must be able to compare alternative strategies to allocate limited funds efficiently and effectively. Empirical data from a total of 148 green ash, Fraxinus pennsylvanica Marsh., and white ash, Fraxinus americana L., trees were used to develop models to estimate surface area of the trunk and branches by using tree diameter at breast height (dbh). Data collected from 71 additional F. pennsylvanica and F. americana trees killed by A. planipennis showed that on average, 88.9 +/- 4.6 beetles developed and emerged per m2 of surface area. Models were applied to ash inventory data collected at two outlier sites to estimate potential production of A. planipennis beetles at each site. Large trees of merchantable size (dbh > or = 26 cm) accounted for roughly 6% of all ash trees at the two sites, but they could have contributed 55-65% of the total A. planipennis production at both sites. In contrast, 75- 80% of the ash trees at the outlier sites were < or =13 cm dbh, but these small trees could have contributed only < or =12% of the potential A. planipennis production at both sites. Our results, in combination with inventory data, can be used by regulatory officials and resource managers to estimate potential A. planipennis production and to compare options for reducing A. planipennis density and slowing the rate of spread for any area of interest.

  2. Ash, the emerald ash borer, and private forest land management

    Treesearch

    Tom Crowe

    2010-01-01

    Forest management through emerald ash borer (EAB) will be a dynamic process that will change based on the best information available at the time. Management decisions will depend on the anticipated time of EAB arrival; the diameter and number of ash present in the forest stand; the diameter and number of other desirable and undesirable species present in the stand (...

  3. Dynamics of surviving ash (Fraxinus spp.) populations in areas long infested by emerald ash borer (Agrilus planipennis)

    Treesearch

    Kathleen S. Knight; Daniel Herms; Reid Plumb; Eileen Sawyer; Daniel Spalink; Elizabeth Pisarczyk; Bernadette Wiggin; Rachel Kappler; Emily Ziegler; Karen Menard

    2012-01-01

    Emerald ash borer (EAB) (Agrilus planipennis), an introduced wood-boring insect, has killed millions of ash (Fraxinus spp.) trees in the Midwest region of the United States and Canada. However, in some areas where EAB has caused almost complete mortality of mature ash trees, a small number of healthy ash trees intermingled with...

  4. Viscoelastic behavior of basaltic ash from Stromboli volcano inferred from intermittent compression experiments

    NASA Astrophysics Data System (ADS)

    Kurokawa, A. K.; Miwa, T.; Okumura, S.; Uesugi, K.

    2017-12-01

    After ash-dominated Strombolian eruption, considerable amount of ash falls back to the volcanic conduit forming a dense near-surface region compacted by weights of its own and other fallback clasts (Patrick et al., 2007). Gas accumulation below this dense cap causes a substantial increase in pressure within the conduit, causing the volcanic activity to shift to the preliminary stages of a forthcoming eruption (Del Bello et al., 2015). Under such conditions, rheology of the fallback ash plays an important role because it controls whether the fallback ash can be the cap. However, little attention has been given to the point. We examined the rheology of ash collected at Stromboli volcano via intermittent compression experiments changing temperature and compression time/rate. The ash deformed at a constant rate during compression process, and then it was compressed without any deformation during rest process. The compression and rest processes repeated during each experiment to see rheological variations with progression of compaction. Viscoelastic changes during the experiment were estimated by Maxwell model. The results show that both elasticity and viscosity increases with decreasing porosity. On the other hand, the elasticity shows strong rate-dependence in the both compression and rest processes while the viscosity dominantly depends on the temperature, although the compression rate also affects the viscosity in the case of the compression process. Thus, the ash behaves either elastically or viscously depending on experimental process, temperature, and compression rate/time. The viscoelastic characteristics can be explained by magnitude relationships between the characteristic relaxation times and times for compression and rest processes. This indicates that the balance of the time scales is key to determining the rheological characteristics and whether the ash behaves elastically or viscously may control cyclic Strombolian eruptions.

  5. Treatment of fly ash for use in concrete

    DOEpatents

    Boxley, Chett [Park City, UT

    2012-05-15

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  6. Treatment of fly ash for use in concrete

    DOEpatents

    Boxley, Chett [Park City, UT; Akash, Akash [Salt lake City, UT; Zhao, Qiang [Natick, MA

    2012-05-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  7. Treatment of fly ash for use in concrete

    DOEpatents

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2013-01-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  8. Detection of fly ash in Portland cement fly ash concrete : final report.

    DOT National Transportation Integrated Search

    1991-12-01

    The chemical composition, phases present, and textural characteristics of suite of 113 fly ashes were studied. The fly ashes came from Gifford-Hill & Co., Inc. power plants in Cason, TX; Gentry, AR; Westlake, LA; Boyce, LA; Choteau, OK and Oologah, O...

  9. Gasification of high ash, high ash fusion temperature bituminous coals

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  10. Volcanic ash observed over Poland, April 2010

    NASA Astrophysics Data System (ADS)

    Pietruczuk, Aleksander; Krzyścin, Janusz; Jarosławski, Janusz; Podgórski, Jerzy

    2010-05-01

    We present analyses of the results of the ground-based measurements of the aerosols at Belsk - Central Geophysical Observatory Institute of Geophysics Polish Academy of Sciences (IGF PAS) after eruption of Eyjafjallajokull volcano. The lidar and Sun-photometric result are compared to model simulations by the Norwegian Institute of Meteorology (NIM), Oslo, Norway. Our measurements show presence of aerosol layers in free troposphere mainly 16 -17 April and 23 April when presence of ash cloud is predicted by the model. However, contribution of that layers to aerosol optical depth (AOD) is rather weak. Variability of AOD during measurements period is small and does not exceed overall mean for April. Aerosol microphysical properties, like size distribution, measured after eruption is typical for advection of clear air form northern Europe. Small fine mode is observed during whole period and only 16 and 17 Aril small increase of coarse mode was found.

  11. MODIS volcanic ash retrievals vs FALL3D transport model: a quantitative comparison

    NASA Astrophysics Data System (ADS)

    Corradini, S.; Merucci, L.; Folch, A.

    2010-12-01

    Satellite retrievals and transport models represents the key tools to monitor the volcanic clouds evolution. Because of the harming effects of fine ash particles on aircrafts, the real-time tracking and forecasting of volcanic clouds is key for aviation safety. Together with the security reasons also the economical consequences of a disruption of airports must be taken into account. The airport closures due to the recent Icelandic Eyjafjöll eruption caused millions of passengers to be stranded not only in Europe, but across the world. IATA (the International Air Transport Association) estimates that the worldwide airline industry has lost a total of about 2.5 billion of Euro during the disruption. Both security and economical issues require reliable and robust ash cloud retrievals and trajectory forecasting. The intercomparison between remote sensing and modeling is required to assure precise and reliable volcanic ash products. In this work we perform a quantitative comparison between Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of volcanic ash cloud mass and Aerosol Optical Depth (AOD) with the FALL3D ash dispersal model. MODIS, aboard the NASA-Terra and NASA-Aqua polar satellites, is a multispectral instrument with 36 spectral bands operating in the VIS-TIR spectral range and spatial resolution varying between 250 and 1000 m at nadir. The MODIS channels centered around 11 and 12 micron have been used for the ash retrievals through the Brightness Temperature Difference algorithm and MODTRAN simulations. FALL3D is a 3-D time-dependent Eulerian model for the transport and deposition of volcanic particles that outputs, among other variables, cloud column mass and AOD. Three MODIS images collected the October 28, 29 and 30 on Mt. Etna volcano during the 2002 eruption have been considered as test cases. The results show a general good agreement between the retrieved and the modeled volcanic clouds in the first 300 km from the vents. Even if the

  12. Generation of volcanic ash: a textural study of ash produced in various laboratory experiments

    NASA Astrophysics Data System (ADS)

    Lavallée, Yan; Kueppers, Ulrich; Dingwell, Donald B.

    2010-05-01

    In volcanology, ash is commonly understood as a fragment of a bubble wall that gets disrupted during explosive eruptions. Most volcanic ashes are indeed the product of explosive eruptions, but the true definition is however that of a particle size being inferior to 2 mm. The term does not hold any information about its genesis. During fragmentation, particles of all sizes in various amounts are generated. In nature, fragmentation is a brittle response of the material (whether a rock or magma) caused by changes in 1) strain rate and 2) temperature, and/or 3) chemical composition. Here we used different experimental techniques to produce ash and study their physical characteristics. The effects of strain rate were investigated by deforming volcanic rocks and magma (pure silicate melt and crystal-bearing magma) at different temperatures and stresses in a uniaxial compression apparatus. Failure of pure silicate melts is spontaneous and generates more ash particles than fragmentation of crystal-bearing melts. In the latter, the abundance of generated ash correlates positively with the strain rate. We complemented this investigation with a study of particles generated during rapid decompression of porous rocks, using a fragmentation apparatus. Products of decompression experiments at different initial applied pore pressure show that the amount of ash generated by bubble burst increase with the initial applied pressure and the open porosity. The effects of temperature were investigated by dropping pure silicate melts and crystal-bearing magma at 900 and 1100°C in water at room temperature. Quenching of the material is accompanied by rapid contraction and near instantaneous fragmentation. Pure silicate melts respond more violently to the interaction with water and completely fragmented into small particles, including a variety of ash morphologies and surface textures. Crystal-bearing magmas however fragmented only very partially when in contact with water and produced a

  13. Cadmium contamination of wood ash and fire-treated coniferous humus: Effect on soil respiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritze, H.; Kapanen, A.; Vanhala, P.

    Atmospheric acidic deposition is known to affect soil fertility and in many countries, liming has been used to counteract anthropogenic soil acidification in coniferous forest soils. Other measures used to improve the acid neutralization capacity of forest soils are wood ash application and prescribed burning. In both cases, ash is deposited on the forest floor, resulting in a pH increase in the humus layer. Currently, application of forests with wood ash is under discussion in Finland, since the naturally occurring cadmium of forest trees is concentrated into the wood ash which then contains between 4 and 20 {mu} g{sup {minus}1}more » of dry matter. Microbes are essential for maintaining soil fertility and plant growth because they play a fundamental role in nutrient availability. Soil respiration rate, which is an indicator of the microbially-mediated nutrient turnover rate, is decreased by addition of cadmium to the soil environment. In this paper we report on the effects of cadmium addition on the soil respiration rate of forest humus having received wood ash or fire treatments. The underlying objectives of this study were: (i) to determine the cadmium level which decreases the soil respiration of a Vaccinium site type forest humus to half of its original value (EC{sub 50}), (ii) to estimate how the forest treatments influence the EC{sub 50}, and (iii) to discuss the effect of Cd addition provided by wood ash on the nutrient mineralization rate. 17 refs., 2 figs., 2 tabs.« less

  14. Innovative use of recovered municipal solid waste incineration bottom ash as a component in growing media.

    PubMed

    Sormunen, Annika; Teo, Kanniainen; Tapio, Salo; Riina, Rantsi

    2016-07-01

    The utilisation of municipal solid waste incineration bottom ash has been extensively studied, for example, in the unbound layers of roads and the products of cement and concrete industry. On the other hand, less attention has been given to other innovative utilisation possibilities, such as using the municipal solid waste incineration bottom ash as a component in growing media of plants. The municipal solid waste incineration bottom ash contains useful substances, such as calcium, that can influence plant growth in a positive manner. Therefore, the utilisation of this waste-derived material in the growing media may substitute the use of commercial fertilisers. Since the municipal solid waste incineration bottom ash also contains hazardous substances that can be toxic to plants, the main aim of this study was to add different amounts of recovered municipal solid waste incineration bottom ash in the growing media and to evaluate the effect of this material on plant growth. Based on the obtained results, the concentration of, for example copper and zinc, increased in test plants; ryegrass and barley, when recovered municipal solid waste incineration bottom ash was added in their growing media. On the other hand, this did not have a significant effect on plant growth, if compared with the growth of plants in commercially produced growing medium. Furthermore, the replacement of natural sand with municipal solid waste incineration bottom ash had a positive liming effect in the growing media. Overall, these findings suggest that the utilisation of recovered municipal solid waste incineration bottom ash as a component in growing media is possible and, thus, may allow more widespread and innovative use of this waste-derived material. © The Author(s) 2016.

  15. The response of Fraxinus nigra forest ground-layer vegetation to emulated emerald ash borer mortality and management strategies in northern Minnesota, USA

    Treesearch

    Christopher E. Looney; Anthony W. D' Amato; Brian J. Palik; Robert A. Slesak; Mitchell A. Slater

    2017-01-01

    When an invasive organism targets a dominant tree species, it can trigger unprecedented shifts in forest plant communities. Emerald ash borer (EAB; Agrilus planipennis Fairmaire), an invasive insect that kills by girdling trees, represents a significant threat to North American Fraxinus (ash) species. EAB has already decimated...

  16. Determination of the Cd-bearing phases in municipal solid waste and biomass single fly ash particles using SR-microXRF spectroscopy.

    PubMed

    Camerani, Maria Caterina; Somogyi, Andrea; Vekemans, Bart; Ansell, Stuart; Simionovici, Alexandre S; Steenari, Britt-Marie; Panas, Itai

    2007-09-01

    By using an excitation energy of 27.0 keV, synchrotron radiation-induced micro-X-ray fluorescence (SR-microXRF) is employed to extract information regarding the composition and distribution of Cd-bearing phases in municipal solid waste (MSW) and biomass fly ashes. Significance of observation is based on statistics of totally more than 100 individual MSW and biomass fly ash particles from a fluidized bed combustion (FBC) plant. Cd concentrations in the parts-per-million range are determined. In general, although previous leaching studies have indicated Cd to be predominant in the smaller-size ash particles, in the present study Cd is more evenly distributed throughout all the particle sizes. For MSW fly ashes, results indicate the presence of Cd mainly as CdBr2 hot-spots, whereas for biomass fly ashes, which exhibit lower CdX2 concentration, a thin Cd layer on/in the particles is reported. For both ashes, Ca-containing matrixes are found to be the main Cd-bearing phases. Support for this observation is found from independent first-principles periodic density functional theory calculations. The observations are condensed into a schematic mechanism for Cd adsorption on the fly ash particles.

  17. Evaluating the provenance of Permian-Triassic and Palaeocene-Eocene ash beds by high precision U-Pb and Lu-Hf isotopic analyses of zircons: linking local sedimentary records to global events

    NASA Astrophysics Data System (ADS)

    Eivind Augland, Lars; Jones, Morgan; Planke, Sverre; Svensen, Henrik; Tegner, Christian

    2016-04-01

    Zircons are a powerful tool in geochronology and isotope geochemistry, as their affinity for U and Hf in the crystal structure and the low initial Pb and Lu allow for precise and accurate dating by U-Pb ID-TIMS and precise and accurate determination of initial Hf isotopic composition by solution MC-ICP-MS analysis. The U-Pb analyses provide accurate chronostratigraphic controls on the sedimentary successions and absolute age frames for the biotic evolution across geological boundaries. Moreover, the analyses of Lu-Hf by solution MC-ICP-MS after Hf-purification column chemistry provide a powerful and robust fingerprinting tool to test the provenance of individual ash beds. Here we focus on ash beds from Permian-Triassic and Palaeocene successions in Svalbard and from the Palaeocene-Eocene Thermal Maximum (PETM) in Fur, Denmark. Used in combination with whole rock geochemistry from the ash layers and the available geochemical and isotopic data from potential source volcanoes, these data are used to evaluate the provenance of the Permian-Triassic and Palaeocene ashes preserved in Svalbard and PETM ashes in Denmark. If explosive eruptions from volcanic centres such as the Siberian Traps and the North Atlantic Igneous Province (NAIP) can be traced to distal basins as ash layers, they provide robust tests of hypotheses of global synchronicity of environmental changes and biotic crises. In addition, the potential correlation of ash layers with source volcanoes will aid in constraining the extent of explosive volcanism in the respective volcanic centres. The new integrated data sets will also contribute to establish new reference sections for the study of these boundary events when combined with stable isotope data and biostratigraphy.

  18. Removal of hazardous metals from MSW fly ash--an evaluation of ash leaching methods.

    PubMed

    Fedje, Karin Karlfeldt; Ekberg, Christian; Skarnemark, Gunnar; Steenari, Britt-Marie

    2010-01-15

    Incineration is a commonly applied management method for municipal solid waste (MSW). However, significant amounts of potentially hazardous metal species are present in the resulting ash, and these may be leached into the environment. A common idea for cleaning the ash is to use enhanced leaching with strong mineral acids. However, due to the alkalinity of the ash, large amounts of acid are needed and this is a drawback. Therefore, this work was undertaken in order to investigate some alternative leaching media (EDTA, ammonium nitrate, ammonium chloride and a number of organic acids) and to compare them with the usual mineral acids and water. All leaching methods gave a significant increase in ash specific surface area due to removal of soluble bulk (matrix) compounds, such as CaCO(3) and alkali metal chlorides. The use of mineral acids and EDTA mobilised many elements, especially Cu, Zn and Pb, whereas the organic acids generally were not very effective as leaching agents for metals. Leaching using NH(4)NO(3) was especially effective for the release of Cu. The results show that washing of MSW filter ash with alternative leaching agents is a possible way to remove hazardous metals from MSW fly ash.

  19. Attraction of the emerald ash borer to ash trees stressed by girdling, herbicide treatment, or wounding

    Treesearch

    Deborah McCullough; Therese Poland; David Cappaert

    2009-01-01

    New infestations of emerald ash borer, Agrilus planipennis Fairmaire, an invasive pest native to Asia, are difficult to detect until densities build and symptoms appear on affected ash (Fraxinus spp). We compared the attraction of A. planipennis to ash trees stressed by girdling (bark and phloem removed...

  20. Energy efficient continuous flow ash lockhopper

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor); Suitor, Jerry W. (Inventor); Dubis, David (Inventor)

    1989-01-01

    The invention relates to an energy efficient continuous flow ash lockhopper, or other lockhopper for reactor product or byproduct. The invention includes an ash hopper at the outlet of a high temperature, high pressure reactor vessel containing heated high pressure gas, a fluidics control chamber having an input port connected to the ash hopper's output port and an output port connected to the input port of a pressure letdown means, and a control fluid supply for regulating the pressure in the control chamber to be equal to or greater than the internal gas pressure of the reactor vessel, whereby the reactor gas is contained while ash is permitted to continuously flow from the ash hopper's output port, impelled by gravity. The main novelty resides in the use of a control chamber to so control pressure under the lockhopper that gases will not exit from the reactor vessel, and to also regulate the ash flow rate. There is also novelty in the design of the ash lockhopper shown in two figures. The novelty there is the use of annular passages of progressively greater diameter, and rotating the center parts on a shaft, with the center part of each slightly offset from adjacent ones to better assure ash flow through the opening.

  1. The influence of using volcanic ash and lime ash as filler on compressive strength in self compacting concrete

    NASA Astrophysics Data System (ADS)

    Karolina, Rahmi; Panatap Simanjuntak, Murydrischy

    2018-03-01

    Self Compacting Concrete (SCC) is a technology which is developing today in which concrete solidifies by itself without using vibrator. Casting conventional concrete which has a lot of reinforcement bars sometimes finds difficulty in achieving optimal solidity. The method used to solve this problem is by using SCC technology. SCC was made by using filler, volcanic ash, and lime ash as the filling materials so that the concrete became more solid and hollow space could be filled up. The variation of using these two materials was 10%, 15%, 20%, and 25% of the cementitious mass and using 1% of superplasticizer from cementitious material. The supporting testing was done by using the test when the concrete was still fluid and when it was solid. Malleable concrete was tested by using EFNARC 2002 standard in slump flow test, v-funnel test, l-shaped box test, and j-ring test to obtain filling ability and passing ability. In this malleable lime concrete test, there was the decrease, compared with normal SCC concrete without adding volcanic ash and lime ash. Testing was also done in solid concrete in compressive strength, tensile strength, and concrete absorption. The result of the testing showed that the optimum tensile strength in Variation 1, without volcanic ash and lime ash – with 1% of superplasticizer was 39.556 MPa, the optimum tensile strength in Variation 1, without volcanic ash and lime ash- with 1% of super-plasticizer was 3.563 MPa, while the value of optimum absorption which occurred in Variation 5 (25% of volcanic ash + 25% of lime ash + 50% of cement + 1% of superplasticizer) was 1.313%. This was caused by the addition of volcanic ash and lime ash which had high water absorption.

  2. Determination of the elastic modulus of fly ash-based stabilizer applied in the trackbed

    NASA Astrophysics Data System (ADS)

    Lojda, Vít; Lidmila, Martin; Pýcha, Marek

    2017-09-01

    This paper describes a unique application of a fly ash-based stabilizer in the trackbed of a railway main line. The key goals of the stabilizer application are to protect the subgrade against the ingress of rain water, to increase the frost resistance and to remediate the natural ground constituted of weathered rock. The stabilizer was designed as a mixture of fly ash, generated as a waste material from coal plants, gypsum, calcium oxide and water. The mixture recipe was developed in a laboratory over several years. In 2005, a trial section of a railway line with subgrade consisting of clay limestone (weathered marlite) was built in the municipality of Smiřice. Since then, periodical measurements including collection of samples for laboratory evaluation of the fly ash-based stabilizer have taken place. Over the time span of the measurements, changes in mineral composition and development of fly ash transforming structures leading to the formation of C-A-S-H gel were detected. This paper describes the experimental laboratory investigation of the influence of dynamic loading on the elastic modulus of fly ash stabilizer samples and the development of permanent deformation of the samples with increasing number of loading cycles.

  3. Twenty million ash trees later: current status of emerald ash borer in Michigan

    Treesearch

    Therese M. Poland

    2007-01-01

    Since its discovery in 2002, the emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), appears to be living up to expectations and predictions about its potential spread and destruction of ash trees, Fraxinus spp., in North America.

  4. Indirect effects of emerald ash borer-induced ash mortality and canopy gap formation on epigaeic beetles.

    PubMed

    Gandhi, Kamal J K; Smith, Annemarie; Hartzler, Diane M; Herms, Daniel A

    2014-06-01

    Exotic herbivorous insects have drastically and irreversibly altered forest structure and composition of North American forests. For example, emerald ash borer (Agrilus planipennis Fairmaire) from Asia has caused wide-scale mortality of ash trees (Fraxinus spp.) in eastern United States and Canada. We studied the effects of forest changes resulting from emerald ash borer invasion on epigaeic or ground beetles (Coleoptera: Carabidae) along a gradient of ash dieback and gap sizes in southeastern Michigan. Ground beetles were sampled in hydric, mesic, and xeric habitats in which black (Fraxinus nigra Marshall), green (Fraxinus pennsylvanica Marshall), and white (Fraxinus americana L.) ash were the most common species, respectively. During 2006-2007, we trapped 2,545 adult ground beetles comprising 52 species. There was a negative correlation between percent ash tree mortality in 2006 and catches of all beetles. Catches of Agonum melanarium Dejean (in 2006) and Pterostichus mutus (Say) (in 2006-2007) were negatively correlated with tree mortality and gap size, respectively. However, catches of Pterostichus corvinus Dejean were positively correlated with gap size in 2006. As ash mortality and average gap size increased from 2006 to 2007, catches of all beetles as well as P. mutus and Pterostichus stygicus (Say) increased (1.3-3.9 times), while species diversity decreased, especially in mesic and xeric stands. Cluster analysis revealed that beetle assemblages in hydric and mesic stand diverged (25 and 40%, respectively) in their composition from 2006 to 2007, and that hydric stands had the most unique beetle assemblages. Overall, epigaeic beetle assemblages were altered in ash stands impacted by emerald ash borer; however, these impacts may dissipate as canopy gaps close.

  5. Review of ecosystem level impacts of emerald ash borer on black ash wetlands: What does the future hold?

    Treesearch

    Randall K. Kolka; Anthony W. D' Amato; Joseph W. Wagenbrenner; Robert A. Slesak; Thomas G. Pypker; Melissa B. Youngquist; Alexis R. Grinde; Brian J. Palik

    2018-01-01

    The emerald ash borer (EAB) is rapidly spreading throughout eastern North America and devastating ecosystems where ash is a component tree. This rapid and sustained loss of ash trees has already resulted in ecological impacts on both terrestrial and aquatic ecosystems and is projected to be even more severe as EAB invades black ash-dominated wetlands of the western...

  6. Nutritional and defensive chemistry of three North American ash species: possible roles in host performance and preference by emerald ash borer

    Treesearch

    Yigen Chen; Therese M. Poland

    2010-01-01

    Black ash (Fraxinus nigra), green ash (F. pennsylvanica), and white ash (F. americana) are the three most abundant ash species in the northeastern USA. We compared emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), adult performance and preference among seedlings...

  7. Attraction of the emerald ash borer to ash trees stressed by girdling, herbicide treatment, or wounding

    Treesearch

    Deborah G. McCullough; Therese M. Poland; David Cappaert

    2009-01-01

    New infestations of emerald ash borer, Agrilus planipennis Fainnaire, an invasive pest native to Asia, are difficult to detect until densities build and symptoms appear on affected ash (Fraxinus spp). We compared the attraction of A. planipennis to ash trees stressed by girdling(bark and phloem removed from a 15...

  8. Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition

    USGS Publications Warehouse

    Schwaiger, Hans F.; Denlinger, Roger P.; Mastin, Larry G.

    2012-01-01

    We develop a transient, 3-D Eulerian model (Ash3d) to predict airborne volcanic ash concentration and tephra deposition during volcanic eruptions. This model simulates downwind advection, turbulent diffusion, and settling of ash injected into the atmosphere by a volcanic eruption column. Ash advection is calculated using time-varying pre-existing wind data and a robust, high-order, finite-volume method. Our routine is mass-conservative and uses the coordinate system of the wind data, either a Cartesian system local to the volcano or a global spherical system for the Earth. Volcanic ash is specified with an arbitrary number of grain sizes, which affects the fall velocity, distribution and duration of transport. Above the source volcano, the vertical mass distribution with elevation is calculated using a Suzuki distribution for a given plume height, eruptive volume, and eruption duration. Multiple eruptions separated in time may be included in a single simulation. We test the model using analytical solutions for transport. Comparisons of the predicted and observed ash distributions for the 18 August 1992 eruption of Mt. Spurr in Alaska demonstrate to the efficacy and efficiency of the routine.

  9. Variation in the Volatile Profiles of Black and Manchurian Ash in Relation to Emerald Ash Borer Oviposition Preferences.

    PubMed

    Rigsby, Chad M; McCartney, Nathaniel B; Herms, Daniel A; Tumlinson, James H; Cipollini, Don

    2017-08-01

    Emerald ash borer (EAB; Agrilus planipennis) is a devastating pest of ash (Fraxinus spp.) in its invaded range in North America. Its coevolved Asian hosts are more resistant and less preferred for oviposition than susceptible North American species. We compared EAB oviposition preferences and bark and canopy volatile organic compound (VOC) emissions of resistant Manchurian ash and susceptible black ash, and examined relationships between VOC profiles and oviposition. In the field, black ash was highly preferred for oviposition while no eggs were laid on Manchurian ash, and we found clear differences in the VOC profiles of Manchurian and black ash. We detected 78 compounds emitted from these species, including 16 compounds that elicited EAB antennal activity in prior studies. Four compounds were unique to black and 11 to Manchurian ash. Emission rates of 14 canopy and 19 bark volatiles varied among the two species, including four previously reported as antennally active. Specifically, 7-epi-sesquithujene (bark) emissions were greater from black ash, while β-caryophyllene (canopy), linalool (bark), and α-cubebene (bark) were emitted at higher rates by Manchurian ash. No relationships were found between the emission rate of any single compound or group of compounds (e.g. monoterpenes) suggesting that preference may be based on complex profile combinations. This is the first study to directly compare VOCs of black and Manchurian ash as well as the first to examine bark- and canopy-specific VOCs. The unique bark and canopy VOC profiles of these two species implicates potentially important variation in VOCs between a closely related resistant and susceptible species that provides a foundation for future studies of host preferences of EAB.

  10. Physiological and behavioral responses of an arboreal mammal to smoke and charcoal-ash substrate.

    PubMed

    Nowack, Julia; Stawski, Clare; Körtner, Gerhard; Geiser, Fritz

    2018-02-01

    The recent observation that torpor plays a key role in post-fire survival has been mainly attributed to the reduced food resources after fires. However, some of these adjustments can be facilitated or amplified by environmental changes associated with fires, such as the presence of a charcoal-ash substrate. In a previous experiment on a small terrestrial mammal the presence of charcoal and ash linked to food restriction intensified torpor use. However, whether fire cues also act as a trigger of torpor use when food is available and whether they affect other species including arboreal mammals remains elusive. To evaluate whether smoke, charcoal and ash can act as proximate triggers for an impending period of food shortage requiring torpor for mammals, we conducted an experiment on captive sugar gliders (Petaurus breviceps), a small, arboreal marsupial, housed in outside aviaries under different food regimes and natural ambient conditions. When food was available, fire simulation via exposure to smoke and charcoal-ash substrate caused a significant earlier start of activity and a significant decrease in resting body temperature. In contrast, only when food was withheld, did smoke and charcoal-ash exposure significantly enhance torpor depth and duration. Thus, our study not only provides evidence that fire simulation does affect arboreal and terrestrial species similarly, but also suggests that smoke and ash were presumably selected as cues for torpor induction because they indicate an impending lack of food. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. [Volatile ashes and their biological effect. 2. Fibrogenic effect of volatile ashes].

    PubMed

    Woźniak, H; Wiecek, E; Lao, I; Wojtczak, J

    1989-01-01

    In experiments on white Wistar rats fibrogenic effects of 6 samples of fly-ashes collected from electric precipitators in power engineering plants have been evaluated. The coal came from different national deposits. All the ashes have been found to contain: quartz and mullite, 3 ashes contained additionally orthoclase, whereas 1, apart from quartz and mullite, contained kaolinite; naturally radioactive elements (Ra226, K40, Th228) and trace elements (As, Ba, Be, Cd, Ce, Cu, Fe, Pa, Mo, Ni, Pb, Se, U Zu). Experimental pneumoconiosis was induced through intratracheal administration of single doses of 50 mg of dust; the experiment was carried out at 3 time intervals of 3, 6 and 9 months. The fibrogenic activity was evaluated both qualitatively (histopathological methods) and quantitatively (lung weight, hydroxyproline content in lungs, dust elimination from lungs); control groups consisted of animals which obtained NaCl solution and quartz sands. Fly-ashes were found to exhibit different fibrogenic effects, yet, their fibrogenic activity was weaker, compared to quartz sands. No clear correlation was found between fibrogenic effects of ashes and test physico-chemical properties, such as the content of SiO2, trace elements or naturally radioactive elements. Analysis of occupational diseases (for the period section): (1979-1983) demonstrated occupational diseases of dust-related aetiology among power engineering workers, pneumoconioses, constituting 7.8% of 127 cases of occupational diseases.

  12. Response of black ash wetland gaseous soil carbon fluxes to a simulated emerald ash borer infestation

    Treesearch

    Matthew Van Grinsven; Joseph Shannon; Nicholas Bolton; Joshua Davis; Nam Noh; Joseph Wagenbrenner; Randall Kolka; Thomas Pypker

    2018-01-01

    The rapid and extensive expansion of emerald ash borer (EAB) in North America since 2002 may eliminate most existing ash stands, likely affecting critical ecosystem services associated with water and carbon cycling. To our knowledge, no studies have evaluated the coupled response of black ash (Fraxinus nigra Marsh.) wetland water tables, soil...

  13. Optimizing Use of Girdled Ash Trees for Management of Low-Density Emerald Ash Borer (Coleoptera: Buprestidae) Populations.

    PubMed

    Siegert, Nathan W; McCullough, Deborah G; Poland, Therese M; Heyd, Robert L

    2017-06-01

    Effective survey methods to detect and monitor recently established, low-density infestations of emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), remain a high priority because they provide land managers and property owners with time to implement tactics to slow emerald ash borer population growth and the progression of ash mortality. We evaluated options for using girdled ash (Fraxinus spp.) trees for emerald ash borer detection and management in a low-density infestation in a forested area with abundant green ash (F. pennsylvanica). Across replicated 4-ha plots, we compared detection efficiency of 4 versus 16 evenly distributed girdled ash trees and between clusters of 3 versus 12 girdled trees. We also examined within-tree larval distribution in 208 girdled and nongirdled trees and assessed adult emerald ash borer emergence from detection trees felled 11 mo after girdling and left on site. Overall, current-year larvae were present in 85-97% of girdled trees and 57-72% of nongirdled trees, and larval density was 2-5 times greater on girdled than nongirdled trees. Low-density emerald ash borer infestations were readily detected with four girdled trees per 4-ha, and 3-tree clusters were as effective as 12-tree clusters. Larval densities were greatest 0.5 ± 0.4 m below the base of the canopy in girdled trees and 1.3 ± 0.7 m above the canopy base in nongirdled trees. Relatively few adult emerald ash borer emerged from trees felled 11 mo after girdling and left on site through the following summer, suggesting removal or destruction of girdled ash trees may be unnecessary. This could potentially reduce survey costs, particularly in forested areas with poor accessibility. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  14. Proceedings of symposium on ash in North America

    Treesearch

    Charles H. Michler; Matthew D., eds. Ginzel

    2010-01-01

    Includes 5 papers and 30 abstracts covering topics related to the biology and ecology of the ash species, ash utilization and management, emerald ash borer, and other threats to ash, and genetics and conservation of ash species. A paper titled "Population-level variation of Fraxinus americana L. is influenced by climate...

  15. Factors affecting the survival of ash (Fraxinus spp.) trees infested by emerald ash borer (Agrilus planipennis)

    Treesearch

    Kathleen S. Knight; John P. Brown; Robert P. Long

    2013-01-01

    Emerald ash borer (Agrilus planipennis) (EAB), an Asian woodboring beetle accidentally introduced in North America, has killed millions of ash (Fraxinus spp.) trees and is spreading rapidly. This study examined the effects of tree- and site-level factors on the mortality of ash trees in stands infested by EAB in OH, USA. Our data...

  16. Use of unwounded ash trees for the detection of emerald ash borer adults: EAB landing behavior

    Treesearch

    Jordan M. Marshall; Melissa J. Porter; Andrew J. Storer

    2011-01-01

    Incorporation of multiple trapping techniques and sites within a survey program is essential to adequately identify the range of emerald ash borer (EAB) (Agrilus planipennis Fairmaire) infestation. Within natural forests, EAB lands on stick band traps wrapped around girdled ash trees at a rate similar to that on unwounded ash trees. The objective of...

  17. Effects of water availability on emerald ash borer larval performance and phloem phenolics of Manchurian and black ash.

    PubMed

    Chakraborty, Sourav; Whitehill, Justin G A; Hill, Amy L; Opiyo, Stephen O; Cipollini, Don; Herms, Daniel A; Bonello, Pierluigi

    2014-04-01

    The invasive emerald ash borer (EAB) beetle is a significant threat to the survival of North American ash. In previous work, we identified putative biochemical and molecular markers of constitutive EAB resistance in Manchurian ash, an Asian species co-evolved with EAB. Here, we employed high-throughput high-performance liquid chromatography with photodiode array detection and mass spectrometry (HPLC-PDA-MS) to characterize the induced response of soluble phloem phenolics to EAB attack in resistant Manchurian and susceptible black ash under conditions of either normal or low water availability, and the effects of water availability on larval performance. Total larval mass per tree was lower in Manchurian than in black ash. Low water increased larval numbers and mean larval mass overall, but more so in Manchurian ash. Low water did not affect levels of phenolics in either host species, but six phenolics decreased in response to EAB. In both ashes, pinoresinol A was induced by EAB, especially in Manchurian ash. Pinoresinol A and pinoresinol B were negatively correlated with each other in both species. The higher accumulation of pinoresinol A in Manchurian ash after attack may help explain the resistance of this species to EAB, but none of the responses measured here could explain increased larval performance in trees subjected to low water availability. © 2013 John Wiley & Sons Ltd.

  18. Ash chemistry and sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrifvars, B.J.; Backman, R.; Hupa, M.

    1996-10-01

    The chemistry of a fuel ash is important to consider when ash behavior in combustion or gasification is studied. Four different types of thermal behavior based bed agglomeration and deposit foliation mechanisms have been proposed to be important, (1) partial melting, (2) viscous flow, (3) chemical reaction sintering, and (4) solid state sintering. In this paper we present data from a broader study in which we have quantified the four mechanisms more in detail. The ashes from 10 different types of fuels have been tested for their sintering tendency by a compression strength sintering test. The ashes were also subjectmore » to quantitative wet chemical analyses and combined differential thermal, thermogravimetric (DT/TG) analyses. These thermal behavior predictions were compared with multi-component multi-phase thermodynamic phase equilibrium calculations and further with full scale combustion experience. The results and their relevance to full scale conversion systems are discussed in the paper.« less

  19. Emerald Ash Borer: Invasion of the Urban Forest and the Threat to North America's Ash Resource

    Treesearch

    Therese M. Poland; Deborah G. McCullough

    2006-01-01

    The emerald ash borer (EAB), a phloem-feeding beetle native to Asia, was discovered killing ash trees in southeastern Michigan and Windsor, Ontario, in 2002. Like several other invasive forest pests, the EAB likely was introduced and became established in a highly urbanized setting, facilitated by international trade and abundant hosts. Up to 15 million ash trees in...

  20. Interspecific comparison of constitutive ash phloem phenolic chemistry reveals compounds unique to Manchurian ash, a species resistant to emerald ash borer

    Treesearch

    Justin G.A. Whitehill; Stephen O. Opiyo; Jennifer L. Koch; Daniel A. Herms; Donald F. Cipollini; Pierluigi Bonello

    2012-01-01

    The emerald ash borer (Agrilus planipennis, EAB) is an invasive wood-borer indigenous to Asia and is responsible for widespread ash (Fraxinus spp.) mortality in the U.S. and Canada. Resistance and susceptibility to EAB varies among Fraxinus spp., which is a result of their co-evolutionary history with the pest....

  1. Effects of calcium in ash on the corrosion performance of Ni-based alloys in simulated oxy-fuel environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Z.; Natesan, K.; Cai, Z.

    Increasing the efficiency of coal power plants requires raising the operating temperature above 650°C. However, coal ash can severely attack alloy materials at high temperature. For example, the corrosion rates of commercial Fe- and Ni-based alloys are generally greater than 2 mm/year at 750°C in the gas environment of oxy-fuel combustion. Thus, a critical study is needed to determine the effect of the constituents in the ash on corrosion and find an approach to reduce the corrosion rates in an ash-laden environment at high temperature. The role of CaO in the ash (typical of U.S. Western coal ash) has beenmore » investigated in laboratory exposure environments with various structural alloys. Detailed results are presented on weight change, scale thickness, internal penetration, microstructural characteristics of corrosion products, and the cracking of scales for the alloys after exposure at 750°C. The thermal stability of K3Al(SO4)3 under the environment of oxy-fuel combustion was determined by thermogravimetric analysis and differential thermal analysis. The reaction of this low melting temperature salt with the CaO-containing ash is discussed. In addition, we performed synchrotron nanobeam X-ray analysis to study the phase and chemical composition of the oxide layers on the alloy surface. Results from these studies are used to address the role of CaO in ash in the long-term corrosion performance of alloys.« less

  2. Sulfur-bearing coatings on fly ash from a coal-fired power plant: Composition, origin, and influence on ash alteration

    USGS Publications Warehouse

    Fishman, N.S.; Rice, C.A.; Breit, G.N.; Johnson, R.D.

    1999-01-01

    Fly ash samples collected from two locations in the exhaust stream of a coal-fired power plant differ markedly with respect to the abundance of thin (???0.1 ??m) sulfur-rich surface coatings that are observable by scanning electron microscopy. The coatings, tentatively identified as an aluminum-potassium-sulfate phase, probably form upon reaction between condensed sulfuric acid aerosols and glass surfaces, and are preferentially concentrated on ash exposed to exhaust stream gases for longer. The coatings are highly soluble and if sufficiently abundant, can impart an acidic pH to solutions initially in contact with ash. These observations suggest that proposals for ash use and predictions of ash behavior during disposal should consider the transient, acid-generating potential of some ash fractions and the possible effects on initial ash leachability and alteration. ?? 1998 Elsevier Science Ltd.

  3. Progression of ash canopy thinning and dieback outward from the initial infestation of emerald ash borer (Coleoptera: Buprestidae) in southeastern Michigan.

    PubMed

    Smitley, David; Davis, Terrance; Rebek, Eric

    2008-10-01

    Our objective was to characterize the rate at which ash (Fraxinus spp.) trees decline in areas adjacent to the leading edge of visible ash canopy thinning due to emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Trees in southeastern Michigan were surveyed from 2003 to 2006 for canopy thinning and dieback by comparing survey trees with a set of 11 standard photographs. Freeways stemming from Detroit in all directions were used as survey transects. Between 750 and 1,100 trees were surveyed each year. A rapid method of sampling populations of emerald ash borer was developed by counting emerald ash borer emergence holes with binoculars and then felling trees to validate binocular counts. Approximately 25% of the trees surveyed for canopy thinning in 2005 and 2006 also were sampled for emerald ash borer emergence holes using binoculars. Regression analysis indicates that 41-53% of the variation in ash canopy thinning can be explained by the number of emerald ash borer emergence holes per tree. Emerald ash borer emergence holes were found at every site where ash canopy thinning averaged > 40%. In 2003, ash canopy thinning averaged 40% at a distance of 19.3 km from the epicenter of the emerald ash borer infestation in Canton. By 2006, the point at which ash trees averaged 40% canopy thinning had increased to a distance of 51.2 km away from Canton. Therefore, the point at which ash trees averaged 40% canopy thinning, a state of decline clearly visible to the average person, moved outward at a rate of 10.6 km/yr during this period.

  4. Ranking Coal Ash Materials for Their Potential to Leach Arsenic and Selenium: Relative Importance of Ash Chemistry and Site Biogeochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Grace E.; Hower, James C.; Phillips, Allison L.

    The chemical composition of coal ash is highly heterogeneous and dependent on the origin of the source coal, combustion parameters, and type and configuration of air pollution control devices. This heterogeneity results in uncertainty in the evaluation of leaching potential of contaminants from coal ash. The goal of this work was to identify whether a single leaching protocol could roughly group high-leaching potential coal ash from low-leaching potential coal ash, with respect to arsenic (As) and selenium (Se). We used four different leaching tests, including the Toxicity Characteristic Leaching Protocol (TCLP), natural pH, aerobic sediment microcosms, and anaerobic sediment microcosmsmore » on 10 different coal ash materials, including fly ash, lime-treated ash, and flue gas desulfurization materials. Leaching tests showed promise in categorizing high and low-leaching potential ash materials, indicating that a single point test could act as a first screening measure to identify high-risk ash materials. However, the amount of contaminant leached varied widely across tests, reflecting the importance of ambient conditions (pH, redox state) on leaching. These results demonstrate that on-site geochemical conditions play a critical role in As and Se mobilization from coal ash, underscoring the need to develop a situation-based risk assessment framework for contamination by coal ash pollutants.« less

  5. Ranking Coal Ash Materials for Their Potential to Leach Arsenic and Selenium: Relative Importance of Ash Chemistry and Site Biogeochemistry

    DOE PAGES

    Schwartz, Grace E.; Hower, James C.; Phillips, Allison L.; ...

    2018-01-23

    The chemical composition of coal ash is highly heterogeneous and dependent on the origin of the source coal, combustion parameters, and type and configuration of air pollution control devices. This heterogeneity results in uncertainty in the evaluation of leaching potential of contaminants from coal ash. The goal of this work was to identify whether a single leaching protocol could roughly group high-leaching potential coal ash from low-leaching potential coal ash, with respect to arsenic (As) and selenium (Se). We used four different leaching tests, including the Toxicity Characteristic Leaching Protocol (TCLP), natural pH, aerobic sediment microcosms, and anaerobic sediment microcosmsmore » on 10 different coal ash materials, including fly ash, lime-treated ash, and flue gas desulfurization materials. Leaching tests showed promise in categorizing high and low-leaching potential ash materials, indicating that a single point test could act as a first screening measure to identify high-risk ash materials. However, the amount of contaminant leached varied widely across tests, reflecting the importance of ambient conditions (pH, redox state) on leaching. These results demonstrate that on-site geochemical conditions play a critical role in As and Se mobilization from coal ash, underscoring the need to develop a situation-based risk assessment framework for contamination by coal ash pollutants.« less

  6. Source water contributions and hydrologic responses to simulated emerald ash borer infestations in depressional black ash wetlands

    Treesearch

    Matthew J. Van Grinsven; Joseph P. Shannon; Joshua C. Davis; Nicholas W. Bolton; Joseph W. Wagenbrenner; Randall K. Kolka; Thomas Grant Pypker

    2017-01-01

    Forested wetlands dominated by black ash (Fraxinus nigra) are currently threatened by the rapid expansion of the exotic emerald ash borer (EAB) (Agrilus planipennis, Coleoptera: Buprestidae) in North America, and very little is known about the hydrology and ecology of black ash wetlands. The ecohydrological response of...

  7. Computer-aided study of key factors determining high mechanical properties of nanostructured surface layers in metal-ceramic composites

    NASA Astrophysics Data System (ADS)

    Konovalenko, Igor S.; Shilko, Evgeny V.; Ovcharenko, Vladimir E.; Psakhie, Sergey G.

    2017-12-01

    The paper presents the movable cellular automaton method. It is based on numerical models of surface layers of the metal-ceramic composite NiCr-TiC modified under electron beam irradiation in inert gas plasmas. The models take into account different geometric, concentration and mechanical parameters of ceramic and metallic components. The authors study the contributions of key structural factors in mechanical properties of surface layers and determine the ranges of their variations by providing the optimum balance of strength, strain hardening and fracture toughness.

  8. Effects of chemical composition of fly ash on efficiency of metal separation in ash-melting of municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp; Tomikawa, Hiroki

    2013-03-15

    Highlights: ► Separation of Pb and Zn from Fe and Cu in ash-melting of municipal solid waste. ► Molar ratio of Cl to Na and K in fly ash affected the metal-separation efficiency. ► The low molar ratio and a non-oxidative atmosphere were better for the separation. - Abstract: In the process of metal separation by ash-melting, Fe and Cu in the incineration residue remain in the melting furnace as molten metal, whereas Pb and Zn in the residue are volatilized. This study investigated the effects of the chemical composition of incineration fly ash on the metal-separation efficiency of themore » ash-melting process. Incineration fly ash with different chemical compositions was melted with bottom ash in a lab-scale reactor, and the efficiency with which Pb and Zn were volatilized preventing the volatilization of Fe and Cu was evaluated. In addition, the behavior of these metals was simulated by thermodynamic equilibrium calculations. Depending on the exhaust gas treatment system used in the incinerator, the relationships among Na, K, and Cl concentrations in the incineration fly ash differed, which affected the efficiency of the metal separation. The amounts of Fe and Cu volatilized decreased by the decrease in the molar ratio of Cl to Na and K in the ash, promoting metal separation. The thermodynamic simulation predicted that the chlorination volatilization of Fe and Cu was prevented by the decrease in the molar ratio, as mentioned before. By melting incineration fly ash with the low molar ratio in a non-oxidative atmosphere, most of the Pb and Zn in the ash were volatilized leaving behind Fe and Cu.« less

  9. Distinguishing defensive characteristics in the phloem of ash species resistant and susceptible to emerald ash borer.

    PubMed

    Cipollini, Don; Wang, Qin; Whitehill, Justin G A; Powell, Jeff R; Bonello, Pierluigi; Herms, Daniel A

    2011-05-01

    We examined the extent to which three Fraxinus cultivars and a wild population that vary in their resistance to Emerald Ash Borer (EAB) could be differentiated on the basis of a suite of constitutive chemical defense traits in phloem extracts. The EAB-resistant Manchurian ash (F. mandshurica, cv. Mancana) was characterized by having a rapid rate of wound browning, a high soluble protein concentration, low trypsin inhibitor activities, and intermediate levels of peroxidase activity and total soluble phenolic concentration. The EAB-susceptible white ash (F. americana, cv. Autumn Purple) was characterized by a slow wound browning rate and low levels of peroxidase activity and total soluble phenolic concentrations. An EAB-susceptible green ash cultivar (F. pennsylvanica, cv. Patmore) and a wild accession were similar to each other on the basis of several chemical defense traits, and were characterized by high activities of peroxidase and trypsin inhibitor, a high total soluble phenolic concentration, and an intermediate rate of wound browning. Lignin concentration and polyphenol oxidase activities did not differentiate resistant and susceptible species. Of 33 phenolic compounds separated by HPLC and meeting a minimum criterion for analysis, nine were unique to Manchurian ash, five were shared among all species, and four were found in North American ashes and not in the Manchurian ash. Principal components analysis revealed clear separations between Manchurian, white, and green ashes on the basis of all phenolics, as well as clear separations on the basis of quantities of phenolics that all species shared. Variation in some of these constitutive chemical defense traits may contribute to variation in resistance to EAB in these species.

  10. The Hazard of Volcanic Ash Ingestion

    NASA Technical Reports Server (NTRS)

    Lekki, John

    2017-01-01

    A research team of U.S. Government agencies and engine manufacturers conducted an experiment to test volcanic-ash ingestion by a NASA owned engine in the same family as the PW 2000 that was donated by the U.S. Air Force. The experiment, called Vehicle Integrated Propulsions Research (VIPR) test, was conducted under the auspices of NASAs Convergent Aeronautics Solutions (CAS) Program and took place in summer of 2015 at Edwards AFB in California as an on-ground, on-wing test. The primary objectives of the volcanic ash test were to determine the effect on the engine of several hours of exposure to low to moderate ash concentrations and to evaluate the capability of engine health management technologies for detecting these effects. The target concentrations of volcanic ash tested were at 1 and 10 mgm3. A natural volcanic ash was used that is representative of distal ash clouds many 100s to 1000 km from a volcanic source. The glassy ash particles were expected to soften and become less viscous when exposed to the high temperatures of the combustion chamber, then stick to the nozzle guide vanes of the high-pressure turbine and this was observed. Numerous observations and measurements of the engines performance and degradation were made during the course of the experiment, including borescope inspections after each test run. The engine has been disassembled so that detailed inspections of the engine effects have been made. A summary of the test methodology and execution will be made along with results from the test. While not intended to be sufficient for rigorous certification of engine performance when ash is ingested, the experiment should provide useful information to aircraft manufacturers, airline operators, and military and civil regulators in their efforts to evaluate the range of risks that ash hazards pose to aviation.

  11. Data from: Emerald ash borer biocontrol in ash saplings: the potential for

    Science.gov Websites

    -year study (2013-2015). Data set one was used for calculations and associated analyses for of the : the potential for early stage recovery of North American Ash trees Adult Emerald ash borer Our study . (three sites), Gratiot Co. (two sites), and Shiawassee Co. (one site), with 10 to 60 km between sites

  12. Determination of coal ash content by the combined x-ray fluorescence and scattering spectrum

    NASA Astrophysics Data System (ADS)

    Mikhailov, I. F.; Baturin, A. A.; Mikhailov, A. I.; Borisova, S. S.; Fomina, L. P.

    2018-02-01

    An alternative method is proposed for the determination of the inorganic constituent mass fraction (ash) in solid fuel by the ratio of Compton and Rayleigh X-ray scattering peaks IC/IR subject to the iron fluorescence intensity. An original X-ray optical scheme with a Ti/Mo (or Sc/Cu) double-layer secondary radiator allows registration of the combined fluorescence-and-scattering spectrum at the specified scattering angle. An algorithm for linear calibration of the Compton-to-Rayleigh IC/IR ratio is proposed which uses standard samples with two certified characteristics: mass fractions of ash (Ad) and iron oxide (WFe2O3). Ash mass fractions have been determined for coals of different deposits in the wide range of Ad from 9.4% to 52.7% mass and WFe2O3 from 0.3% to 4.95% mass. Due to the high penetrability of the probing radiation with energy E > 17 keV, the sample preparation procedure is rather simplified in comparison with the traditional method of Ad determination by the sum of fluorescence intensities of all constituent elements.

  13. Nutritional attributes of ash (Fraxinus spp.) outer bark and phloem and their relationships to resistance against the emerald ash borer.

    PubMed

    Hill, Amy L; Whitehill, Justin G A; Opiyo, Stephen O; Phelan, P Larry; Bonello, Pierluigi

    2012-12-01

    The emerald ash borer (Agrilus planipennis Fairmaire, EAB) is an alien, invasive wood-boring insect that is responsible for killing millions of ash trees since its discovery in North America in 2002. All North American ash species (Fraxinus spp.) that EAB has encountered have shown various degrees of susceptibility, while Manchurian ash (Fraxinus mandshurica Ruprecht), which shares a co-evolutionary history with this insect, is resistant. Recent studies have looked into constitutive resistance mechanisms in Manchurian ash, concentrating on the secondary phloem, which is the feeding substrate for the insect. In addition to specialized metabolism and defense-related components, primary metabolites and nutritional summaries can also be important to understand the feeding behavior of insect herbivores. Here, we have compared the nutritional characteristics (water content, total protein, free amino acids, total soluble sugars and starch, percent carbon and nitrogen, and macro- and micronutrients) of outer bark and phloem from black, green, white and Manchurian ash to determine their relevance to resistance or susceptibility to EAB. Water content and concentrations of Al, Ba, Cu, Fe, K, Li, tryptophan and an unknown compound were found to separate black and Manchurian ash from green and white ash in a principal component analysis (PCA), confirming their phylogenetic placements into two distinct clades. The traits that distinguished Manchurian ash from black ash in the PCA were water content and concentrations of total soluble sugars, histidine, lysine, methionine, ornithine, proline, sarcosine, tyramine, tyrosol, Al, Fe, K, Na, V and an unknown compound. However, only proline, tyramine and tyrosol were significantly different, and higher, in Manchurian ash than in black ash.

  14. Breeding strategies for the development of emerald ash borer - resistant North American ash

    Treesearch

    Jennifer L. Koch; David W. Carey; Kathleen S. Knight; Therese Poland; Daniel A. Herms; Mary E. Mason

    2012-01-01

    The emerald ash borer (Agrilus plannipennis; EAB) is a phloem-feeding beetle that is endemic to Asia. It was discovered in North America in 2002, found almost simultaneously near Detroit, Michigan and Windsor, Ontario, Canada. Adult beetles feed on ash (Fraxinus spp.) foliage, but larval feeding on phloem, cambium, and...

  15. Outlook for ash in your forest: results of emerald ash borer research and implications for management

    Treesearch

    Kathleen S. Knight

    2014-01-01

    Since its accidental introduction near Detroit, Michigan, in the mid-1990s, emerald ash borer (EAB) has rapidly spread through much of the U.S. and adjacent Canada, leaving millions of dead ash trees in Midwestern states (4,11). Unfortunately, EAB attacks trees as small as an inch in stem diameter and it attacks all five ash species native to the region - white, green...

  16. Publication sites productive uses of combustion ash

    Science.gov Websites

    Publication Sites Productive Uses of Combustion Ash For more information contact: e:mail: Public waste combustion ash in landfills. The new technology brief describes recent studies where ash was used

  17. Growth of Larval Agrilus planipennis (Coleoptera: Buprestidae) and Fitness of Tetrastichus planipennisi (Hymenoptera: Eulophidae) in Blue Ash (Fraxinus quadrangulata) and Green Ash (F. pennsylvanica).

    PubMed

    Peterson, Donnie L; Duan, Jian J; Yaninek, J S; Ginzel, Matthew D; Sadof, Clifford S

    2015-12-01

    Emerald ash borer (Agrilus planipennis Fairmaire) is an invasive primary pest of North American ash (Fraxinus spp.) trees. Blue ash (F. quadrangulata) is less susceptible to emerald ash borer infestations in the forest than other species of North American ash. Whereas other studies have examined adult host preferences, we compared the capacity of emerald ash borer larvae reared from emerald ash borer eggs in the field and in the laboratory to survive and grow in blue ash and the more susceptible green ash (F. pennsylvanica). Emerald ash borer larval survivorship was the same on both ash species. Mortality due to wound periderm formation was only observed in living field grown trees, but was low (<4%) in both green and blue ash. No difference in larval mortality in the absence of natural enemies suggests that both green and blue ash can support the development of emerald ash borer. Larvae reared from eggs on blue ash were smaller than on green ash growing in the field and also in bolts that were infested under laboratory conditions. In a laboratory study, parasitism rates of confined Tetrastichus planipennisi were similar on emerald ash borer larvae reared in blue and green ash bolts, as were fitness measures of the parasitoid including brood size, sex ratio, and adult female size. Thus, we postulate that emerald ash borer larvae infesting blue ash could support populations of T. planipennisi and serve as a potential reservoir for this introduced natural enemy after most of the other native ash trees have been killed. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Physiological responses of emerald ash borer larvae to feeding on different ash species reveal putative resistance mechanisms and insect counter-adaptations.

    PubMed

    Rigsby, C M; Showalter, D N; Herms, D A; Koch, J L; Bonello, P; Cipollini, D

    2015-07-01

    Emerald ash borer, Agrilus planipennis Fairmaire, an Asian wood-boring beetle, has devastated ash (Fraxinus spp.) trees in North American forests and landscapes since its discovery there in 2002. In this study, we collected living larvae from EAB-resistant Manchurian ash (Fraxinus mandschurica), and susceptible white (Fraxinus americana) and green (Fraxinus pennsylvanica) ash hosts, and quantified the activity and production of selected detoxification, digestive, and antioxidant enzymes. We hypothesized that differences in larval physiology could be used to infer resistance mechanisms of ash. We found no differences in cytochrome P450, glutathione-S-transferase, carboxylesterase, sulfotransferase, and tryptic BApNAase activities between larvae feeding on different hosts. Despite this, Manchurian ash-fed larvae produced a single isozyme of low electrophoretic mobility that was not produced in white or green ash-fed larvae. Additionally, larvae feeding on white and green ash produced two serine protease isozymes of high electrophoretic mobility that were not observed in Manchurian ash-fed larvae. We also found lower activity of β-glucosidase and higher activities of monoamine oxidase, ortho-quinone reductase, catalase, superoxide dismutase, and glutathione reductase in Manchurian ash-fed larvae compared to larvae that had fed on susceptible ash. A single isozyme was detected for both catalase and superoxide dismutase in all larval groups. The activities of the quinone-protective and antioxidant enzymes are consistent with the resistance phenotype of the host species, with the highest activities measured in larvae feeding on resistant Manchurian ash. We conclude that larvae feeding on Manchurian ash could be under quinone and oxidative stress, suggesting these may be potential mechanisms of resistance of Manchurian ash to EAB larvae, and that quinone-protective and antioxidant enzymes are important counter-adaptations of larvae for dealing with these resistance

  19. Failure to phytosanitize ash firewood infested with emerald ash borer in a small dry kiln using ISPM-15 standards.

    PubMed

    Goebel, P Charles; Bumgardner, Matthew S; Herms, Daniel A; Sabula, Andrew

    2010-06-01

    Although current USDA-APHIS standards suggest that a core temperature of 71.1 degrees C (160 degrees F) for 75 min is needed to adequately sanitize emerald ash borer, Agrilus planipennis Fairmaire-infested firewood, it is unclear whether more moderate (and economical) treatment regimes will adequately eradicate emerald ash borer larvae and prepupae from ash firewood. We constructed a small dry kiln in an effort to emulate the type of technology a small- to medium-sized firewood producer might use to examine whether treatments with lower temperature and time regimes successfully eliminate emerald ash borer from both spilt and roundwood firewood. Using white ash (Fraxinus americana L.) firewood collected from a stand with a heavy infestation of emerald ash borer in Delaware, OH, we treated the firewood using the following temperature and time regime: 46 degrees C (114.8 degrees F) for 30 min, 46 degrees C (114.8 degrees F) for 60 min, 56 degrees C (132.8 degrees F) for 30 min, and 56 degrees C (132.8 degrees F) for 60 min. Temperatures were recorded for the outer 2.54-cm (1-in.) of firewood. After treatment, all firewood was placed under mesh netting and emerald ash borer were allowed to develop and emerge under natural conditions. No treatments seemed to be successful at eliminating emerald ash borer larvae and perpupae as all treatments (including two nontreated controls) experienced some emerald ash borer emergence. However, the 56 degrees C (132.8 degrees F) treatments did result in considerably less emerald ash borer emergence than the 46 degrees C (114.8 degrees F) treatments. Further investigation is needed to determine whether longer exposure to the higher temperature (56 degrees C) will successfully sanitize emerald ash borer-infested firewood.

  20. Ash chemistry and sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrifvars, B.J.; Backman, R.; Hupa, Mikko

    1996-12-31

    The thermal behavior of a fuel ash is one important factor to consider when fireside slagging and fouling problems in steam boilers are addressed. It is well known that different types of chemical reactions and melts in deposits play an important role in the build-up of problematic fireside deposits. Low viscous melts occur in steam boilers mainly when salt mixtures are present in the ash. Such are Merent mixtures of alkali and earth alkali sulfates, chlorides and carbonates. These mixtures do not melt at a certain temperature but form a melt in a temperature range which in some cases maymore » be several hundreds of degrees. The amount of melt is crucial for the deposit build-up. For some boilers it has been found that roughly 10 - 20 weight-% melt in an ash mixture would be enough to cause extensive deposit formation, while 60 - 80 weight-% melt would already cause the ash to be so wet it would flow down a vertical tube and not cause any further deposit growth.« less

  1. Optimum mix for fly ash geopolymer binder based on workability and compressive strength

    NASA Astrophysics Data System (ADS)

    Arafa, S. A.; Ali, A. Z. M.; Awal, A. S. M. A.; Loon, L. Y.

    2018-04-01

    The request of concrete is increasing every day for sustaining the necessity of development of structure. The production of OPC not only consumes big amount of natural resources and energy, but also emit significant quantity of CO2 to the atmosphere. Therefore, it is necessary to find alternatives like Geopolymer to make the concrete environment friendly. Geopolymer is an inorganic alumino-silicate compound, produced from fly ash. This paper describes the experimental work conducted by casting 40 geopolymer paste mixes, and was cured at 80°C for 24 h to evaluate the effect of various parameters affecting the workability and compressive strength. Alkaline solution to fly ash ratio and sodium hydroxide (NaOH) concentration were chosen as the key parameters of strength and workability. Laboratory investigation with different percentage of sodium hydroxide concentration and different alkaline liquid to fly ash ratio reveals that the optimum ratios are 10 M, AL/FA=0.5. It has generally been found that the workability decreased and the compressive strength increased with an increase in the concentration of sodium hydroxide solution. However, workability was increased and the compressive strength was decreased with the increase in the ratio of fly ash to alkaline solution.

  2. Methods to Improve Survival and Growth of Planted Alternative Species Seedlings in Black Ash Ecosystems Threatened by Emerald Ash Borer

    Treesearch

    Nicholas Bolton; Joseph Shannon; Joshua Davis; Matthew Grinsven; Nam Noh; Shon Schooler; Randall Kolka; Thomas Pypker; Joseph Wagenbrenner

    2018-01-01

    Emerald ash borer (EAB) continues to spread across North America, infesting native ash trees and changing the forested landscape. Black ash wetland forests are severely affected by EAB. As black ash wetland forests provide integral ecosystem services, alternative approaches to maintain forest cover on the landscape are needed. We implemented simulated EAB infestations...

  3. Biomass fly ash incorporation in cement based materials =

    NASA Astrophysics Data System (ADS)

    Rajamma, Rejini

    In recent years, pressures on global environment and energy security have led to an increasing demand on renewable energy sources, and diversification of Europe's energy supply. Among these resources the biomass could exert an important role, since it is considered a renewable and CO2 neutral energy resource once the consumption rate is lower than the growth rate, and can potentially provide energy for heat, power and transports from the same installation. Currently, most of the biomass ash produced in industrial plants is either disposed of in landfill or recycled on agricultural fields or forest, and most times this goes on without any form of control. However, considering that the disposal cost of biomass ashes are raising, and that biomass ash volumes are increasing worldwide, a sustainable ash management has to be established. The main objective of the present study is the effect of biomass fly ashes in cement mortars and concretes in order to be used as a supplementary cementitious material. The wastes analyzed in the study were collected from the fluidized bed boilers and grate boilers available in the thermal power plants and paper pulp plants situated in Portugal. The physical as well as chemical characterisations of the biomass fly ashes were investigated. The cement was replaced by the biomass fly ashes in 10, 20 and 30% (weight %) in order to investigate the fresh properties as well as the hardened properties of biomass fly ash incorporated cement mortar and concrete formulations. Expansion reactions such as alkali silica reaction (ASR), sulphate attack (external and internal) were conducted in order to check the durability of the biomass fly ash incorporated cement mortars and concretes. Alternative applications such as incorporation in lime mortars and alkali activation of the biomass fly ashes were also attempted. The biomass fly ash particles were irregular in shape and fine in nature. The chemical characterization revealed that the biomass fly

  4. Investigation on electrical surface modification of waste to energy ash for possible use as an electrode material in microbial fuel cells.

    PubMed

    Webster, Megan; Lee, Hae Yang; Pepa, Kristi; Winkler, Nathan; Kretzschmar, Ilona; Castaldi, Marco J

    2018-03-01

    With the world population expected to reach 8.5 billion by 2030, demand for access to electricity and clean water will grow at unprecedented rates. Municipal solid waste combusted at waste to energy (WtE) facilities decreases waste volume and recovers energy, but yields ash as a byproduct, the beneficial uses of which are actively being investigated. Ash is intrinsically hydrophobic, highly oxidized, and exhibits high melting points and low conductivities. The research presented here explores the potential of ash to be used as an electrode material for a microbial fuel cell (MFC). This application requires increased conductivity and hydrophilicity, and a lowered melting point. Three ash samples were investigated. By applying an electric potential in the range 50-125 V across the ash in the presence of water, several key property changes were observed: lower melting point, a color change within the ash, evidence of changes in surface morphologies of ash particles, and completely wetting water-ash contact angles. We analyzed this system using a variety of analytical techniques including sector field inductively coupled plasma mass spectrometry, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and tensiometry. Ability to make such surface modifications and significant property changes could allow ash to become useful in an application such as an electrode material for a MFC.

  5. Evaluation of Fly Ash Quality Control Tools

    DOT National Transportation Integrated Search

    2010-06-30

    Many entities currently use fly ash in portland cement concrete (PCC) pavements and structures. Although the body of knowledge is : great concerning the use of fly ash, several projects per year are subject to poor performance where fly ash is named ...

  6. Evaluation of fly ash quality control tools.

    DOT National Transportation Integrated Search

    2010-06-30

    Many entities currently use fly ash in portland cement concrete (PCC) pavements and structures. Although the body of knowledge is : great concerning the use of fly ash, several projects per year are subject to poor performance where fly ash is named ...

  7. Sinabung Volcanic Ash Utilization As The Additive for Paving Block Quality A and B

    NASA Astrophysics Data System (ADS)

    Sembiring, I. S.; Hastuty, I. P.

    2017-03-01

    Paving block is one of the building materials used as the top layer of the road structure besides asphalt and concrete. Paving block is made of mixed materials such as portland cement or other adhesive materials, water and aggregate. In this research, the material used as the additive of cement and concrete is volcanic ash from Mount Sinabung, it is based on the results of the material testing, Sinabung ash contains 74.3% silica (SiO2). The purpose of this research aims to analyze the behavior of the paving blocks quality A and B with and without a mixture of Sinabung ash, to analyze the workability of fresh concrete using Sinabung ash as an additive in concrete, and to compare the test results of paving blocks with and without using Sinabung ash. The samples that we made consist of four variations of the concrete mix to experiment a mixture of normal sample without additive, samples which are mixed with the addition of Sinabung ash 5%, 10%, 15%, 20% and 25% of the volume of concrete/m3. Each variation consists of 10 samples of the concrete with 28 days curing time period. We will do the compressive strength and water absorption test to the samples to determine whether the samples are in accordance with the type needed. According to the test result, paving blocks with Sinabung ash and curing time reach quality A at 0%, 5% and 10% mixture with the compressive strength of each 50.14 MPa, 46.20 MPa and 1.49Mpa, and reach quality B at 15%, 20 %,25% mixture with curing time and 0%, 5%, 10%, 15%, 20% and 25% mixture without curing time. According to the absorption values we got from the test which are 6.66%, 6.73%, 6.88%, 7.03%, 7.09% and 7.16%, the entire sample have average absorption exceeding SNI standardization which is above 6% and reach quality C. Based on compressive strength and absorption data obtained Sinabung ash can’t fully replace cement as the binder because of the low CaO content.

  8. Properties of Fly Ash Blocks Made from Adobe Mould

    NASA Astrophysics Data System (ADS)

    Chokhani, Alankrit; Divakar, B. S.; Jawalgi, Archana S.; Renukadevi, M. V.; Jagadish, K. S.

    2018-02-01

    Fly ash being one of the industrial waste products poses a serious disposal problem. This paper presents an experimental study of utilization of fly ash to produce blocks with varying proportions and mix combinations. Composition of fly ash blocks mainly consist of fly ash and sand, with cementitious product as either cement, lime or both, such as fly ash-sand-cement, fly ash-sand-lime and fly ash-sand-cement-lime are used. Four different proportions for each of the mix combinations are experimented. Compressive strength, water absorption, Initial rate of absorption, and dry density of fly ash blocks are studied. The influence of partial and complete replacement of cement by lime is examined.

  9. Properties of Fly Ash Blocks Made from Adobe Mould

    NASA Astrophysics Data System (ADS)

    Chokhani, Alankrit; Divakar, B. S.; Jawalgi, Archana S.; Renukadevi, M. V.; Jagadish, K. S.

    2018-06-01

    Fly ash being one of the industrial waste products poses a serious disposal problem. This paper presents an experimental study of utilization of fly ash to produce blocks with varying proportions and mix combinations. Composition of fly ash blocks mainly consist of fly ash and sand, with cementitious product as either cement, lime or both, such as fly ash-sand-cement, fly ash-sand-lime and fly ash-sand-cement-lime are used. Four different proportions for each of the mix combinations are experimented. Compressive strength, water absorption, Initial rate of absorption, and dry density of fly ash blocks are studied. The influence of partial and complete replacement of cement by lime is examined.

  10. Sulfate resistance of high calcium fly ash concrete

    NASA Astrophysics Data System (ADS)

    Dhole, Rajaram

    Sulfate attack is one of the mechanisms which can cause deterioration of concrete. In general, Class C fly ash mixtures are reported to provide poor sulfate resistance. Fly ashes, mainly those belonging to the Class C, were tested as per the ASTM C 1012 procedure to evaluate chemical sulfate resistance. Overall the Class C fly ashes showed poor resistance in the sulfate environment. Different strategies were used in this research work to improve the sulfate resistance of Class C fly ash mixes. The study revealed that some of the strategies such as use of low W/CM (water to cementing materials by mass ratio), silica fume or ultra fine fly ash, high volumes of fly ash and, ternary or quaternary mixes with suitable supplementary cementing materials, can successfully improve the sulfate resistance of the Class C fly ash mixes. Combined sulfate attack, involving physical and chemical action, was studied using sodium sulfate and calcium sulfate solutions. The specimens were subjected to wetting-drying cycles and temperature changes. These conditions were found to accelerate the rate of degradation of concrete placed in a sodium sulfate environment. W/CM was found to be the main governing factor in providing sulfate resistance to mixes. Calcium sulfate did not reveal damage as a result of mainly physical action. Characterization of the selected fly ashes was undertaken by using SEM, XRD and the Rietveld analysis techniques, to determine the relation between the composition of fly ashes and resistance to sulfate attack. The chemical composition of glass represented on the ternary diagram was the main factor which had a significant influence on the sulfate resistance of fly ash mixtures. Mixes prepared with fly ashes containing significant amounts of vulnerable crystalline phases offered poor sulfate resistance. Comparatively, fly ash mixes containing inert crystalline phases such as quartz, mullite and hematite offered good sulfate resistance. The analysis of hydrated lime

  11. Ash leaf metabolomes reveal differences between trees tolerant and susceptible to ash dieback disease.

    PubMed

    Sambles, Christine M; Salmon, Deborah L; Florance, Hannah; Howard, Thomas P; Smirnoff, Nicholas; Nielsen, Lene R; McKinney, Lea V; Kjær, Erik D; Buggs, Richard J A; Studholme, David J; Grant, Murray

    2017-12-19

    European common ash, Fraxinus excelsior, is currently threatened by Ash dieback (ADB) caused by the fungus, Hymenoscyphus fraxineus. To detect and identify metabolites that may be products of pathways important in contributing to resistance against H. fraxineus, we performed untargeted metabolomic profiling on leaves from five high-susceptibility and five low-susceptibility F. excelsior individuals identified during Danish field trials. We describe in this study, two datasets. The first is untargeted LC-MS metabolomics raw data from ash leaves with high-susceptibility and low-susceptibility to ADB in positive and negative mode. These data allow the application of peak picking, alignment, gap-filling and retention-time correlation analyses to be performed in alternative ways. The second, a processed dataset containing abundances of aligned features across all samples enables further mining of the data. Here we illustrate the utility of this dataset which has previously been used to identify putative iridoid glycosides, well known anti-herbivory terpenoid derivatives, and show differential abundance in tolerant and susceptible ash samples.

  12. Prospects for long-term ash survival in the core emerald ash borer mortality zone

    Treesearch

    Jordan M. Marshall; Andrew J. Storer; Roger Mech; Steven A. Katovich

    2011-01-01

    Attacking all North American ash species (Fraxinus spp.), emerald ash borer (EAB) (Agrilus planipennis Fairmaire) has caused significant mortality within its introduced range. For other forest pests, host bark plays an important role in infestation density and oviposition behavior. The objectives of this study were to (1) locate...

  13. Cohering Behavior of Coal Ash with Pellet Scrap Powder and Relationship Between Coal Ash and Kiln Ringing

    NASA Astrophysics Data System (ADS)

    Yang, Yong-bin; Zhang, Yan; Zhong, Qiang; Jiang, Tao; Li, Qian; Xu, Bin

    The occurrence of different ringing behaviors in oxidized pellet kiln for two kinds of coal (A and B) with similar properties, is difficult to explain based on the relationship between kiln ringing and coal properties. In this paper, the interaction of coal ash with pellet scrap powder was considered by studying the cohering behavior of powders consisting of them. The results showed that the cohering briquette strength of pellet scrap powder increased considerably when mixed with a small amount of coal ash; a maximum could be reached when the mass percent ratio of coal ash was 1.5%; the strength of powder mixed with coal B ash was always higher in same firing system. This obviously illustrated that coal B caused a more serious ringing problem. The relevant mechanism was that the stronger reactivity of coal B ash made cohering briquette have a more perfect crystallization and a more compact structure.

  14. Synthesis of geopolymer from biomass-coal ash blends

    NASA Astrophysics Data System (ADS)

    Samadhi, Tjokorde Walmiki; Wulandari, Winny; Prasetyo, Muhammad Iqbal; Fernando, Muhammad Rizki; Purbasari, Aprilina

    2017-09-01

    Geopolymer is an environmentally attractive Portland cement substitute, owing to its lower carbon footprint and its ability to consume various aluminosilicate waste materials as its precursors. This work describes the development of geopolymer formulation based on biomass-coal ash blends, which is predicted to be the prevalent type of waste when biomass-based thermal energy production becomes mainstream in Indonesia. The ash blends contain an ASTM Class F coal fly ash (FA), rice husk ash (RHA), and coconut shell ash (CSA). A mixture of Na2SiO3 and concentrated KOH is used as the activator solution. A preliminary experiment identified the appropriate activator/ash mass ratio to be 2.0, while the activator Na2SiO3/KOH ratio varies from 0.8 to 2.0 with increasing ash blend Si/Al ratio. Both non-blended FA and CSA are able to produce geopolymer mortars with 7-day compressive strength exceeding the Indonesian national SNI 15-2049-2004 standard minimum value of 2.0 MPa stipulated for Portland cement mortars. Ash blends have to be formulated with a maximum RHA content of approximately 50 %-mass to yield satisfactory 7-day strength. No optimum ash blend composition is identified within the simplex ternary ash blend compositional region. The strength decreases with Si/Al ratio of the ash blends due to increasing amount of unreacted silicate raw materials at the end of the geopolymer hardening period. Overall, it is confirmed that CSA and blended RHA are feasible raw materials for geopolymer production..

  15. Ash aggregation enhanced by deposition and redistribution of salt on the surface of volcanic ash in eruption plumes.

    PubMed

    Mueller, Sebastian B; Ayris, Paul M; Wadsworth, Fabian B; Kueppers, Ulrich; Casas, Ana S; Delmelle, Pierre; Taddeucci, Jacopo; Jacob, Michael; Dingwell, Donald B

    2017-03-31

    Interactions with volcanic gases in eruption plumes produce soluble salt deposits on the surface of volcanic ash. While it has been postulated that saturation-driven precipitation of salts following the dissolution of ash surfaces by condensed acidic liquids is a primary mechanism of salt formation during an eruption, it is only recently that this mechanism has been subjected to detailed study. Here we spray water and HCl droplets into a suspension of salt-doped synthetic glass or volcanic ash particles, and produce aggregates. Deposition of acidic liquid droplets on ash particles promotes dissolution of existing salts and leaches cations from the underlying material surface. The flow of liquid, due to capillary forces, will be directed to particle-particle contact points where subsequent precipitation of salts will cement the aggregate. Our data suggest that volcanically-relevant loads of surface salts can be produced by acid condensation in eruptive settings. Several minor and trace elements mobilised by surface dissolution are biologically relevant; geographic areas with aggregation-mediated ash fallout could be "hotspots" for the post-deposition release of these elements. The role of liquids in re-distributing surface salts and cementing ash aggregates also offers further insight into the mechanisms which preserve well-structured aggregates in some ash deposits.

  16. Ash aggregation enhanced by deposition and redistribution of salt on the surface of volcanic ash in eruption plumes

    PubMed Central

    Mueller, Sebastian B.; Ayris, Paul M.; Wadsworth, Fabian B.; Kueppers, Ulrich; Casas, Ana S.; Delmelle, Pierre; Taddeucci, Jacopo; Jacob, Michael; Dingwell, Donald B.

    2017-01-01

    Interactions with volcanic gases in eruption plumes produce soluble salt deposits on the surface of volcanic ash. While it has been postulated that saturation-driven precipitation of salts following the dissolution of ash surfaces by condensed acidic liquids is a primary mechanism of salt formation during an eruption, it is only recently that this mechanism has been subjected to detailed study. Here we spray water and HCl droplets into a suspension of salt-doped synthetic glass or volcanic ash particles, and produce aggregates. Deposition of acidic liquid droplets on ash particles promotes dissolution of existing salts and leaches cations from the underlying material surface. The flow of liquid, due to capillary forces, will be directed to particle-particle contact points where subsequent precipitation of salts will cement the aggregate. Our data suggest that volcanically-relevant loads of surface salts can be produced by acid condensation in eruptive settings. Several minor and trace elements mobilised by surface dissolution are biologically relevant; geographic areas with aggregation-mediated ash fallout could be “hotspots” for the post-deposition release of these elements. The role of liquids in re-distributing surface salts and cementing ash aggregates also offers further insight into the mechanisms which preserve well-structured aggregates in some ash deposits. PMID:28361966

  17. Improved prediction and tracking of volcanic ash clouds

    USGS Publications Warehouse

    Mastin, Larry G.; Webley, Peter

    2009-01-01

    During the past 30??years, more than 100 airplanes have inadvertently flown through clouds of volcanic ash from erupting volcanoes. Such encounters have caused millions of dollars in damage to the aircraft and have endangered the lives of tens of thousands of passengers. In a few severe cases, total engine failure resulted when ash was ingested into turbines and coating turbine blades. These incidents have prompted the establishment of cooperative efforts by the International Civil Aviation Organization and the volcanological community to provide rapid notification of eruptive activity, and to monitor and forecast the trajectories of ash clouds so that they can be avoided by air traffic. Ash-cloud properties such as plume height, ash concentration, and three-dimensional ash distribution have been monitored through non-conventional remote sensing techniques that are under active development. Forecasting the trajectories of ash clouds has required the development of volcanic ash transport and dispersion models that can calculate the path of an ash cloud over the scale of a continent or a hemisphere. Volcanological inputs to these models, such as plume height, mass eruption rate, eruption duration, ash distribution with altitude, and grain-size distribution, must be assigned in real time during an event, often with limited observations. Databases and protocols are currently being developed that allow for rapid assignment of such source parameters. In this paper, we summarize how an interdisciplinary working group on eruption source parameters has been instigating research to improve upon the current understanding of volcanic ash cloud characterization and predictions. Improved predictions of ash cloud movement and air fall will aid in making better hazard assessments for aviation and for public health and air quality. ?? 2008 Elsevier B.V.

  18. A review on the effect of fly ash characteristics and their variations on the synthesis of fly ash based geopolymer

    NASA Astrophysics Data System (ADS)

    Wattimena, Oswyn K.; Antoni, Hardjito, Djwantoro

    2017-09-01

    There are more than four decades since the last 1970s where geopolymers concrete was first introduced and developed to use as a replacement to conventional concrete material which uses cement as a binder. And since the last two decades, geopolymers which utilized fly ash as aluminosilicate source material, i.e. fly ash based geopolymers, have been investigated. Many researchers present how to produce the best fly ash based geopolymer with a various source of constituent material as well as mixing formula to achieve exceptional concrete performance. Although there is a similar trend towards factors affecting the result of fly ash based geopolymer synthesis, there is still remain a wide range in mixture proportion. The considerable variation in fly ash characteristics as source material in the synthesis can very likely be one of the causes of this problem. This paper attempts to identify the effect of source material variation of geopolymer concrete, particularly which use fly ash as source material and focuses on the variation of its characteristics and the effects to properties of concrete. From the reviews it concluded that different sources (and even the same source, but different batch) of fly ash materials will give some different characteristics of the fly ash, where it would affect the synthesis process of the fly ash based geopolymer concretes.

  19. Relationships between waste physicochemical properties, microbial activity and vegetation at coal ash and sludge disposal sites.

    PubMed

    Woch, Marcin W; Radwańska, Magdalena; Stanek, Małgorzata; Łopata, Barbara; Stefanowicz, Anna M

    2018-06-11

    The aim of the study was to assess the relationships between vegetation, physicochemical and microbial properties of substrate at coal ash and sludge disposal sites. The study was performed on 32 plots classified into 7 categories: dried ash sedimentation ponds, dominated by a grass Calamagrostis epigejos (AH-Ce), with the admixture of Pinus sylvestris (AH-CePs) or Robinia pseudoacacia (AH-CeRp), dry ash landfill dominated by Betula pendula and Pinus sylvestris (AD-BpPs) or Salix viminalis (AD-Sv) and coal sludge pond with drier parts dominated by Tussilago farfara (CS-Tf) and the wetter ones by Cyperus flavescens (CS-Cf). Ash sites were covered with soil layer imported as a part of technical reclamation. Ash had relatively high concentrations of some alkali and alkaline earth metals, Mn and pH, while coal sludge had high water and C, S, P and K contents. Concentrations of heavy metals were lower than allowable limits in all substrate types. Microbial biomass and, particularly, enzymatic activity in ash and sludge were generally low. The only exception were CS-Tf plots characterized by the highest microbial biomass, presumably due to large deposits of organic matter that became available for aerobic microbial biomass when water level fell. The properties of ash and sludge adversely affected microbial biomass and enzymatic activity as indicated by significant negative correlations between the content of alkali/alkaline earth metals, heavy metals, and macronutrients with enzymatic activity and/or microbial biomass, as well as positive correlations of these parameters with metabolic quotient (qCO 2 ). Plant species richness and cover were relatively high, which may be partly associated with alleviating influence of soil covering the ash. The effect of the admixture of R. pseudoacacia or P. sylvestris to stands dominated by C. epigejos was smaller than expected. The former species increased NNH 4 , NNO 3 and arylsulfatase activity, while the latter reduced activity of

  20. A novel reactor for the simulation of gas and ash interactions in volcanic eruption plumes

    NASA Astrophysics Data System (ADS)

    Ayris, Paul M.; Cimarelli, Corrado; Delmelle, Pierre; Dingwell, Donald B.

    2014-05-01

    The chemical interactions between volcanic ash and the atmosphere, hydrosphere, pedosphere, cryosphere and biosphere are initially the result of rapid mobilisation of soluble salts and aqueous acids from wetted particle surfaces. Such surface features are attributable to the scavenging of sulphur and halide species by ash during its transport through the eruption plume and volcanic cloud. It has been historically considered (e.g., Rose, 1977) that the primary mechanism driving scavenging of sulphur and halide species is via condensation of acid aerosols onto ash surfaces within the cold volcanic cloud. However, for large explosive eruptions, insights from new experimental highlight the potential for scavenging via adsorption onto ash within the high-temperature eruption plume. In previous investigations on simple SO2 (Ayris et al. 2013a) and HCl systems (Ayris et al. 2013b), we identified ash composition, and the duration and temperature of gas-ash interaction as key determinants of adsorption-mode scavenging. However, the first generation of gas-ash reactors could not fully investigate the interactions between ash and the hydrous volcanic atmosphere; we have therefore developed an Advanced Gas Ash Reactor (AGAR), which can be fluxed with varying proportions of H2O, CO2, SO2 and HCl. The AGAR consists of a longitudinally-rotating quartz glass reaction bulb contained within a horizontal, three-stage tube furnace operating at temperatures of 25-900° C. A sample mass of up to 100 g can traverse a thermal gradient via manual repositioning of the reaction bulb within the furnace. In combination with existing melt synthesis capabilities in our laboratories, this facility permits a detailed investigation of the effects of ash and gas composition, and temperature on in-plume scavenging of SO2 and HCl. Additionally, the longitudinal rotation enables particle-particle interaction under an 'in-plume' atmosphere, and may yield insight into the effects of gas-ash interaction

  1. Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments

    NASA Astrophysics Data System (ADS)

    Jones, Morgan T.; Gislason, Sigurður R.

    2008-08-01

    Deposition of volcanic ash into aqueous environments leads to dissolution of adsorbed metal salts and aerosols, increasing the bioavailability of key nutrients. Volcanogenic fertilization events could increase marine primary productivity, leading to a drawdown of atmospheric CO 2. Here we conduct flow-through experiments on unhydrated volcanic ash samples from a variety of locations and sources, measuring the concentrations and fluxes of elements into de-ionized water and two contrasting ocean surface waters. Comparisons of element fluxes show that dissolution of adsorbed surface salts and aerosols dominates over glass dissolution, even in sustained low pH conditions. These surface ash-leachates appear unstable, decaying in situ even if kept unhydrated. Volcanic ash from recent eruptions is shown to have a large fertilization potential in both fresh and saline water. Fluorine concentrations are integral to bulk dissolution rates and samples with high F concentrations display elevated fluxes of some nutrients, particularly Fe, Si, and P. Bio-limiting micronutrients are released in large quantities, suggesting that subsequent biological growth will be limited by macronutrient availability. Importantly, acidification of surface waters and high fluxes of toxic elements highlights the potential of volcanic ash-leachates to poison aqueous environments. In particular, large pH changes can cause undersaturation of CaCO 3 polymorphs, damaging populations of calcifying organisms. Deposition of volcanic ash can both fertilize and/or poison aqueous environments, causing significant changes to surface water chemistry and biogeochemical cycles.

  2. Toward an Integrated Solution to Mitigate the Impact of Volcanic Ash to Aviation

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Dezitter, Fabien; Fairlie, T. Duncan; Krotkov, Nickolay; Lekki, John; Lindsay, Francis; Pavolonis, Mike; Pieri, David; Prata, Fred; Vernier, Jean-Paul

    2015-01-01

    The science community is making a concerted effort to improve the reliability of dispersion models for the forecasting of volcanic ash plumes. Toward this end, it has been observed that the assimilation of diverse, accurate and frequent surface, airborne and satellite observations of the source and distal ash plumes may hold the key. Various international research organizations and operational agencies make these observations using a variety of active and passive remote sensing systems and use them to initialize atmospheric trajectory and dispersion models. These observation systems range from surface LIDAR and ceilometers, to airborne radiometers and nephelometers, to satellite radiometers, multi-spectral imagers, LIDAR and UV-photometers. None of these systems alone is a panacea, however, their synergistic application holds great promise toward solving this complex problem. Additionally, the aeronautical and science communities are working to better understand the quantitative thresholds and tolerances of aviation systems to volcanic ash to better inform scientists of the accuracy requirements for dispersion model forecasts. A number of the most recent and promising efforts in all of these area are discussed in this presentation.

  3. The role of biocontrol of emerald ash borer in protecting ash regeneration after invasion

    Treesearch

    Jian J. Duan; Roy G. Van Driesche; Leah S. Bauer; Richard Reardon; Juli Gould; Joseph S. Elkinton

    2017-01-01

    Long-term monitoring in Michigan and several northeastern states has documented increasing parasitism and reduced EAB attack rates. Ash regeneration is currently benefiting from releases of introduced parasitoids, which now cause 20-80% parasitism of EAB larvae in ash saplings (1-2 inch dia.) and young trees (5-8 inch dia.).

  4. Exceptionally Long Distance Transport of Volcanic Ash: Implications for Stratigraphy, Hazards and the Sourcing of Distal Tephra Deposits

    NASA Astrophysics Data System (ADS)

    Jensen, B. J. L.; Mackay, H.; Pyne-O'Donnell, S.; Plunkett, G.; Hughes, P. D. M.; Froese, D. G.; Booth, R.

    2014-12-01

    Cryptotephras (tephra not visible to the naked eye) form the foundation of the tephrostratigraphic frameworks used in Europe to date and correlate widely distributed geologic, paleoenvironmental and archaeological records. Pyne-O'Donnell et al. (2012) established the potential for developing a similar crypto-tephrostratigraphy across eastern North America by identifying multiple tephra, including the White River Ash (east; WRAe), St. Helens We and East Lake, in a peat core located in Newfoundland. Following on from this work, several ongoing projects have examined additional peat cores from Michigan, New York State, Maine, Nova Scotia and Newfoundland to build a tephrostratigraphic framework for this region. Using the precedent set by recent research by Jensen et al.(in press) that correlated the Alaskan WRAe to the European cryptotephra AD860B, unknown tephras identified in this work were not necessarily assumed to be from "expected" source areas (e.g. the Cascades). Here we present several examples of the preservation of tephra layers with an intercontinental distribution (i.e. WRAe and Ksudach 1), from relatively small magnitude events (i.e. St. Helens layer T, Mono Crater), and the first example of a Mexican ash in the NE (Volcan Ceboruco, Jala pumice). There are several implications of the identification of these units. These far-travelled ashes: (1) highlight the need to consider "ultra" distal source volcanoes for unknown cryptotephra deposits,. (2) present an opportunity for physical volcanologists to examine why some eruptions have an exceptional distribution of ash that is not necessarily controlled by the magnitude of the event. (3) complicate the idea of using tephrostratigraphic frameworks to understand the frequency of eruptions towards aiding hazard planning and prediction (e.g. Swindles et al., 2011). (4) show that there is a real potential to link tropical and mid to high-latitude paleoenvironmental records. Jensen et al. (in press) Transatlantic

  5. Water table response to harvesting and simulated emerald ash borer mortality in black ash wetlands in Minnesota, USA

    Treesearch

    Robert A. Slesak; Christian F. Lenhart; Kenneth N. Brooks; Anthony W. D' Amato; Brian J. Palik

    2014-01-01

    Black ash wetlands are seriously threatened because of the invasive emerald ash borer (EAB). Wetland hydrology is likely to be modified following ash mortality, but the magnitude of hydrological impact following loss via EAB and alternative mitigation harvests is not clear. Our objective was to assess the water table response to simulated EAB and harvesting to...

  6. Combustion of Biosolids in a Bubbling Fluidized Bed, Part 1: Main Ash-Forming Elements and Ash Distribution with a Focus on Phosphorus.

    PubMed

    Skoglund, Nils; Grimm, Alejandro; Ohman, Marcus; Boström, Dan

    2014-02-20

    This is the first in a series of three papers describing combustion of biosolids in a 5-kW bubbling fluidized bed, the ash chemistry, and possible application of the ash produced as a fertilizing agent. This part of the study aims to clarify whether the distribution of main ash forming elements from biosolids can be changed by modifying the fuel matrix, the crystalline compounds of which can be identified in the raw materials and what role the total composition may play for which compounds are formed during combustion. The biosolids were subjected to low-temperature ashing to investigate which crystalline compounds that were present in the raw materials. Combustion experiments of two different types of biosolids were conducted in a 5-kW benchscale bubbling fluidized bed at two different bed temperatures and with two different additives. The additives were chosen to investigate whether the addition of alkali (K 2 CO 3 ) and alkaline-earth metal (CaCO 3 ) would affect the speciation of phosphorus, so the molar ratios targeted in modified fuels were P:K = 1:1 and P:K:Ca = 1:1:1, respectively. After combustion the ash fractions were collected, the ash distribution was determined and the ash fractions were analyzed with regards to elemental composition (ICP-AES and SEM-EDS) and part of the bed ash was also analyzed qualitatively using XRD. There was no evidence of zeolites in the unmodified fuels, based on low-temperature ashing. During combustion, the biosolid pellets formed large bed ash particles, ash pellets, which contained most of the total ash content (54%-95% (w/w)). This ash fraction contained most of the phosphorus found in the ash and the only phosphate that was identified was a whitlockite, Ca 9 (K,Mg,Fe)(PO 4 ) 7 , for all fuels and fuel mixtures. With the addition of potassium, cristobalite (SiO 2 ) could no longer be identified via X-ray diffraction (XRD) in the bed ash particles and leucite (KAlSi 2 O 6 ) was formed. Most of the alkaline-earth metals

  7. Combustion of Biosolids in a Bubbling Fluidized Bed, Part 1: Main Ash-Forming Elements and Ash Distribution with a Focus on Phosphorus

    PubMed Central

    2014-01-01

    This is the first in a series of three papers describing combustion of biosolids in a 5-kW bubbling fluidized bed, the ash chemistry, and possible application of the ash produced as a fertilizing agent. This part of the study aims to clarify whether the distribution of main ash forming elements from biosolids can be changed by modifying the fuel matrix, the crystalline compounds of which can be identified in the raw materials and what role the total composition may play for which compounds are formed during combustion. The biosolids were subjected to low-temperature ashing to investigate which crystalline compounds that were present in the raw materials. Combustion experiments of two different types of biosolids were conducted in a 5-kW benchscale bubbling fluidized bed at two different bed temperatures and with two different additives. The additives were chosen to investigate whether the addition of alkali (K2CO3) and alkaline-earth metal (CaCO3) would affect the speciation of phosphorus, so the molar ratios targeted in modified fuels were P:K = 1:1 and P:K:Ca = 1:1:1, respectively. After combustion the ash fractions were collected, the ash distribution was determined and the ash fractions were analyzed with regards to elemental composition (ICP-AES and SEM-EDS) and part of the bed ash was also analyzed qualitatively using XRD. There was no evidence of zeolites in the unmodified fuels, based on low-temperature ashing. During combustion, the biosolid pellets formed large bed ash particles, ash pellets, which contained most of the total ash content (54%–95% (w/w)). This ash fraction contained most of the phosphorus found in the ash and the only phosphate that was identified was a whitlockite, Ca9(K,Mg,Fe)(PO4)7, for all fuels and fuel mixtures. With the addition of potassium, cristobalite (SiO2) could no longer be identified via X-ray diffraction (XRD) in the bed ash particles and leucite (KAlSi2O6) was formed. Most of the alkaline-earth metals calcium and

  8. Distribution of trunk-injected 14C-imidacloprid in ash trees and effects on emerald ash borer (Coleoptera: Buprestidae) adults

    Treesearch

    David Mota-Sánchez; Bert M. Cregg; Deborah G. McCullough; Therese M. Poland; Robert M. Hollingworth

    2009-01-01

    The emerald ash borer (EAB), Agrilus planipennis (Coleoptera: Buprestidae) is a destructive exotic pest of North American ash (Fraxinus sp.) trees. Trunk injection of imidacloprid is commonly used to protect landscape ash trees from A. planipennis damage. Efficacy can vary and little is known about the...

  9. National volcanic ash operations plan for aviation

    USGS Publications Warehouse

    ,; ,

    2007-01-01

    The National Aviation Weather Program Strategic Plan (1997) and the National Aviation Weather Initiatives (1999) both identified volcanic ash as a high-priority informational need to aviation services. The risk to aviation from airborne volcanic ash is known and includes degraded engine performance (including flameout), loss of visibility, failure of critical navigational and operational instruments, and, in the worse case, loss of life. The immediate costs for aircraft encountering a dense plume are potentially major—damages up to $80 million have occurred to a single aircraft. Aircraft encountering less dense volcanic ash clouds can incur longer-term costs due to increased maintenance of engines and external surfaces. The overall goal, as stated in the Initiatives, is to eliminate encounters with ash that could degrade the in-flight safety of aircrews and passengers and cause damage to the aircraft. This goal can be accomplished by improving the ability to detect, track, and forecast hazardous ash clouds and to provide adequate warnings to the aviation community on the present and future location of the cloud. To reach this goal, the National Aviation Weather Program established three objectives: (1) prevention of accidental encounters with hazardous clouds; (2) reduction of air traffic delays, diversions, or evasive actions when hazardous clouds are present; and (3) the development of a single, worldwide standard for exchange of information on airborne hazardous materials. To that end, over the last several years, based on numerous documents (including an OFCMsponsored comprehensive study on aviation training and an update of Aviation Weather Programs/Projects), user forums, and two International Conferences on Volcanic Ash and Aviation Safety (1992 and 2004), the Working Group for Volcanic Ash (WG/VA), under the OFCM-sponsored Committee for Aviation Services and Research, developed the National Volcanic Ash Operations Plan for Aviation and Support of the

  10. Emerald ash borer life cycle

    Treesearch

    Leah S. Bauer; Robert A. Haack; Deborah L. Miller; Toby R. Petrice; Houping Liu

    2004-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), native to several Asian countries, was discovered in southeastern Michigan and nearby Ontario in June of 2002. EAB was identified as the cause of extensive ash (Fraxinus spp.) mortality in approximately 2,500 mi2, and...

  11. Emerald Ash Borer (Coleoptera: Buprestidae)

    USDA-ARS?s Scientific Manuscript database

    The emerald ash borer, Agrilus planipennis Fairmaire, is an invasive beetle from Asia that has caused large scale ash (Fraxinus spp.) mortality in North America. This book chapter reviews the taxonomy, biology, life history of this invasive pest and its associated natural enemies in both its native ...

  12. Ash storms: impacts of wind-remobilised volcanic ash on rural communities and agriculture following the 1991 Hudson eruption, southern Patagonia, Chile

    NASA Astrophysics Data System (ADS)

    Wilson, T. M.; Cole, J. W.; Stewart, C.; Cronin, S. J.; Johnston, D. M.

    2011-04-01

    Tephra fall from the August 1991 eruption of Volcán Hudson affected some 100,000 km2 of Patagonia and was almost immediately reworked by strong winds, creating billowing clouds of remobilised ash, or `ash storms'. The immediate impacts on agriculture and rural communities were severe, but were then greatly exacerbated by continuing ash storms. This paper describes the findings of a 3-week study tour of the diverse environments of southern Patagonia affected by ash storms, with an emphasis on determining the impacts of repeated ash storms on agriculture and local practices that were developed in an attempt to mitigate these impacts. Ash storms produce similar effects to initial tephra eruptions, prolonged for considerable periods. These have included the burial of farmland under dune deposits, abrasion of vegetation and contamination of feed supplies with fine ash. These impacts can then cause problems for grazing animals such as starvation, severe tooth abrasion, gastrointestinal problems, corneal abrasion and blindness, and exhaustion if sheep fleeces become laden with ash. In addition, ash storms have led to exacerbated soil erosion, human health impacts, increased cleanup requirements, sedimentation in irrigation canals, and disruption of aviation and land transport. Ash deposits were naturally stabilised most rapidly in areas with high rainfall (>1,500 mm/year) through compaction and enhanced vegetation growth. Stabilisation was slowest in windy, semi-arid regions. Destruction of vegetation and suppression of regrowth by heavy tephra fall (>100 mm) hindered the stabilisation of deposits for years, and reduced the surface friction which increased wind erosivity. Stabilisation of tephra deposits was improved by intensive tillage, use of windbreaks and where there was dense and taller vegetative cover. Long-term drought and the impracticality of mixing ash deposits with soil by tillage on large farms was a barrier to stabilising deposits and, in turn

  13. The effect of fly ash and coconut fibre ash as cement replacement materials on cement paste strength

    NASA Astrophysics Data System (ADS)

    Bayuaji, R.; Kurniawan, R. W.; Yasin, A. K.; Fatoni, H. AT; Lutfi, F. M. A.

    2016-04-01

    Concrete is the backbone material in the construction field. The main concept of the concrete material is composed of a binder and filler. Cement, concrete main binder highlighted by environmentalists as one of the industry are not environmentally friendly because of the burning of cement raw materials in the kiln requires energy up to a temperature of 1450° C and the output air waste CO2. On the other hand, the compound content of cement that can be utilized in innovation is Calcium Hydroxide (CaOH), this compound will react with pozzolan material and produces additional strength and durability of concrete, Calcium Silicate Hydrates (CSH). The objective of this research is to explore coconut fibers ash and fly ash. This material was used as cement replacement materials on cement paste. Experimental method was used in this study. SNI-03-1974-1990 is standard used to clarify the compressive strength of cement paste at the age of 7 days. The result of this study that the optimum composition of coconut fiber ash and fly ash to substitute 30% of cement with 25% and 5% for coconut fibers ash and fly ash with similar strength if to be compared normal cement paste.

  14. Volcanic Ash fall Impact on Vegetation, Colima 2005

    NASA Astrophysics Data System (ADS)

    Garcia, M. G.; Martin, A.; Fonseca, R.; Nieto, A.; Radillo, R.; Armienta, M.

    2007-05-01

    An ash sampling network was established arround Colima Volcano in 2005. Ash fall was sampled on the North, Northeast, East, Southeast, South, Southwest and West of the volcano. Samples were analyzed for ash components, geochemistry and leachates. Ash fall ocurred on April (12), May (10, 23), June (2, 6, 9, 10, 12, 14), July (27), September (27), October (23) and November (24). Most of the ash is made of andesitic dome-lithics but shows diferences in crystal, juvenile material and lithic content. In May, some samples contained grey and dark pumice (scoria). Texture varies from phi >4 to phi 0. Leachate concentration were low: SO4 (7.33-54.19) Cl- (2.29-4.97) and F- (0.16-0.37). During 2005, Colima Volcano's ash fall rotted some of the guava and peach fruits and had a drying effect on spearment and epazote plants. Even these small ash amounts could have hindered sugar cane and agave growth.

  15. Feeding by emerald ash borer larvae induces systemic changes in black ash foliar chemistry.

    PubMed

    Chen, Yigen; Whitehill, Justin G A; Bonello, Pierluigi; Poland, Therese M

    2011-11-01

    The exotic wood-boring pest, emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has been threatening North American ash (Fraxinus spp.) resources, this being recognized since its first detection in Michigan, USA and Ontario, Canada in 2002. Ash trees are killed by larval feeding in the cambial region, which results in disruption of photosynthate and nutrient translocation. In this study, changes in volatile and non-volatile foliar phytochemicals of potted 2-yr-old black ash, Fraxinus nigra Marshall, seedlings were observed in response to EAB larval feeding in the main stem. EAB larval feeding affected levels of six compounds [hexanal, (E)-2-hexenal, (Z)-3-hexenyl acetate, (E)-β-ocimene, methyl salicylate, and (Z,E)-α-farnesene] with patterns of interaction depending upon compounds of interest and time of observation. Increased methyl salicylate emission suggests similarity in responses induced by EAB larval feeding and other phloem-feeding herbivores. Overall, EAB larval feeding suppressed (Z)-3-hexenyl acetate emission, elevated (E)-β-ocimene emission in the first 30days, but emissions leveled off thereafter, and generally increased the emission of (Z,E)-α-farnesene. Levels of carbohydrates and phenolics increased overall, while levels of proteins and most amino acids decreased in response to larval feeding. Twenty-three amino acids were consistently detected in the foliage of black ash. The three most abundant amino acids were aspartic acid, glutamic acid, glutamine, while the four least abundant were α-aminobutyric acid, β-aminoisobutyric acid, methionine, and sarcosine. Most (16) foliar free amino acids and 6 of the 9 detected essential amino acids decreased with EAB larval feeding. The ecological consequences of these dynamic phytochemical changes on herbivores harbored by ash trees and potential natural enemies of these herbivores are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Ash leaf metabolomes reveal differences between trees tolerant and susceptible to ash dieback disease

    PubMed Central

    Sambles, Christine M.; Salmon, Deborah L.; Florance, Hannah; Howard, Thomas P.; Smirnoff, Nicholas; Nielsen, Lene R.; McKinney, Lea V.; Kjær, Erik D.; Buggs, Richard J. A.; Studholme, David J.; Grant, Murray

    2017-01-01

    European common ash, Fraxinus excelsior, is currently threatened by Ash dieback (ADB) caused by the fungus, Hymenoscyphus fraxineus. To detect and identify metabolites that may be products of pathways important in contributing to resistance against H. fraxineus, we performed untargeted metabolomic profiling on leaves from five high-susceptibility and five low-susceptibility F. excelsior individuals identified during Danish field trials. We describe in this study, two datasets. The first is untargeted LC-MS metabolomics raw data from ash leaves with high-susceptibility and low-susceptibility to ADB in positive and negative mode. These data allow the application of peak picking, alignment, gap-filling and retention-time correlation analyses to be performed in alternative ways. The second, a processed dataset containing abundances of aligned features across all samples enables further mining of the data. Here we illustrate the utility of this dataset which has previously been used to identify putative iridoid glycosides, well known anti-herbivory terpenoid derivatives, and show differential abundance in tolerant and susceptible ash samples. PMID:29257137

  17. Survival of emerald ash borer in chips

    Treesearch

    Deborah G. McCullough; Therese M. Poland; David L. Cappaert

    2005-01-01

    The ability of emerald ash borer (EAB), Agrilus planipennis Fairmaire, to survive following chipping or grinding of infested ash trees remains a critical question for regulatory officials. In October 2002, we felled eight infested ash trees and sampled sections of the trunk and large branches from each tree to estimate EAB density.

  18. Fly ash system technology improves opacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2007-06-15

    Unit 3 of the Dave Johnston Power Plant east of Glenrock, WY, USA had problems staying at or below the opacity limits set by the state. The unit makes use of a Lodge Cottrell precipitator. When the plant changed to burning Power River Basin coal, ash buildup became a significant issue as the fly ash control system was unable to properly evacuate hoppers on the unit. To overcome the problem, the PLC on the unit was replaced with a software optimization package called SmartAsh for the precipitator fly ash control system, at a cost of $500,000. After the upgrade, theremore » have been no plugged hoppers and the opacity has been reduced from around 20% to 3-5%. 2 figs.« less

  19. Emerald ash borer flight potential

    Treesearch

    Robin A. Taylor; Leah S. Bauer; Deborah L. Miller; Robert A. Haack

    2005-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an invasive pest of ash trees (Fraxinus spp.) that is rapidly spreading from the probable introduction site in Detroit, Michigan. The rapid spread to areas outside Michigan is undoubtedly due to phoretic transport on nursery stock, logs, and...

  20. Emerald ash borer biological control

    Treesearch

    Leah Bauer; Juli Gould; Jian Duan; Mike Ulyshen

    2011-01-01

    Emerald ash borer (EAB) (Agrilus planipennis), an invasive buprestid from northeast Asia, was identified in 2002 as the cause of ash (Fraxinus) tree mortality in southeast Michigan and adjacent areas of Ontario, Canada. This destructive beetle apparently arrived in North America via infested solid wood packaging materials from...

  1. A Key for the Identification of Eighteen Common Timbers.

    ERIC Educational Resources Information Center

    Thomas, P. A.

    1991-01-01

    Dichotomous key for 18 woods in common domestic and architectural use in Britain is provided. It is based upon structures visible with the naked eye and a hand-lens. Descriptions of the necessary anatomy and terminology are given. Timbers include yew, pine, spruce, oak, sweet chestnut, elm, ash, teak, cherry, walnut, mahogany, box, beech,…

  2. Volcanic Ash Data Assimilation System for Atmospheric Transport Model

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Shimbori, T.; Sato, E.; Tokumoto, T.; Hayashi, Y.; Hashimoto, A.

    2017-12-01

    The Japan Meteorological Agency (JMA) has two operations for volcanic ash forecasts, which are Volcanic Ash Fall Forecast (VAFF) and Volcanic Ash Advisory (VAA). In these operations, the forecasts are calculated by atmospheric transport models including the advection process, the turbulent diffusion process, the gravitational fall process and the deposition process (wet/dry). The initial distribution of volcanic ash in the models is the most important but uncertain factor. In operations, the model of Suzuki (1983) with many empirical assumptions is adopted to the initial distribution. This adversely affects the reconstruction of actual eruption plumes.We are developing a volcanic ash data assimilation system using weather radars and meteorological satellite observation, in order to improve the initial distribution of the atmospheric transport models. Our data assimilation system is based on the three-dimensional variational data assimilation method (3D-Var). Analysis variables are ash concentration and size distribution parameters which are mutually independent. The radar observation is expected to provide three-dimensional parameters such as ash concentration and parameters of ash particle size distribution. On the other hand, the satellite observation is anticipated to provide two-dimensional parameters of ash clouds such as mass loading, top height and particle effective radius. In this study, we estimate the thickness of ash clouds using vertical wind shear of JMA numerical weather prediction, and apply for the volcanic ash data assimilation system.

  3. Fire severity effects on ash extractable Total Phosphorous

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Úbeda, Xavier; Martin, Deborah

    2010-05-01

    Phosphorous (P) is a crucial element to plant nutrition and limits vegetal production. The amounts of P in soil are lower and great part of this nutrient is absorbed or precipitated. It is well known that fire has important implications on P cycle, that can be lost throughout volatilization, evacuated with the smoke, but also more available to transport after organic matter mineralization imposed by the fire. The release of P depends on ash pH and their chemical and physical characteristics. Fire temperatures impose different severities, according to the specie affected and contact time. Fire severity is often evaluated by ash colour and this is a low-cost and excellent methodology to assess the fire effects on ecosystems. The aim of this work is study the ash properties physical and chemical properties on ash extractable Total Phosphorous (TP), collected in three wildfires, occured in Portugal, (named, (1) Quinta do Conde, (2) Quinta da Areia and (3) Casal do Sapo) composed mainly by Quercus suber and Pinus pinaster trees. The ash colour was assessed using the Munsell color chart. From all three plots we analyzed a total of 102 ash samples and we identified 5 different ash colours, ordered in an increasing order of severity, Very Dark Brown, Black, Dark Grey, Very Dark Grey and Light Grey. In order to observe significant differences between extractable TP and ash colours, we applied an ANOVA One Way test, and considered the differences significant at a p<0.05. The results showed that significant differences in the extractable TP among the different ash colours. Hence, to identify specific differences between each ash colour, we applied a post-hoc Fisher LSD test, significant at a p<0.05. The results obtained showed significant differences between the extractable TP from Very dark Brown and Black ash, produced at lower severities, in relation to Dark Grey, Very Dark Grey and Light Grey ash, generated at higher severities. The means of the first group were higher

  4. Magic year for multiple myeloma therapeutics: Key takeaways from the ASH 2015 annual meeting.

    PubMed

    Zhang, Kejie; Desai, Aakash; Zeng, Dongfeng; Gong, Tiejun; Lu, Peihua; Wang, Michael

    2017-02-07

    Despite the availability of various anticancer agents, Multiple Myeloma (MM) remains incurable in most cases, along with high relapse rate in the patients treated with these agents. The year 2015 saw major advancements in our battle against multiple myeloma. In 2015, the U.S. Food and Drug Administration (FDA) approved three new therapies for multiple myeloma, namely Ixazomib (an oral proteasome inhibitor), Daratumumab and Elotuzumab (monoclonal antibodies against CD38 and SLAMF7 respectively). The purpose of this review is to provide a detailed analysis of these aforementioned breakthrough therapies and two other newer agents, Filanesib (kinesis spindle inhibitor) and selinexor (SINE inhibitor), presented at the 2015 annual meeting of American Society of Hematology (ASH). We also describe the role of agents targeting PD-1 axis and chimeric antigen receptor T (CAR-T) cells in the treatment of MM.

  5. Differential response in foliar chemistry of three ash species to emerald ash borer adult feeding

    Treesearch

    Yigen Chen; Justin G.A. Whitehill; Pierluigi Bonello; Therese M. Poland

    2011-01-01

    The emerald ash borer (EAB; Agrilus planipennis Fairmaire; Coleoptera: Buprestidae), is an exotic wood-boring beetle that has been threatening North American ash (Fraxinus spp.) resources since its discovery in Michigan and Ontario in 2002. In this study, we investigated the phytochemical responses of the three most common North...

  6. Can pore-clogging by ash explain post-fire runoff?

    USGS Publications Warehouse

    Stoof, Cathelijne R.; Gevaert, Anouk I.; Baver, Christine; Hassanpour, Bahareh; Morales, Veronica L.; Zhang, Wei; Martin, Deborah; Giri, Shree K.; Steenhuis, Tammo S.

    2016-01-01

    Ash plays an important role in controlling runoff and erosion processes after wildfire and has frequently been hypothesised to clog soil pores and reduce infiltration. Yet evidence for clogging is incomplete, as research has focussed on identifying the presence of ash in soil; the actual flow processes remain unknown. We conducted laboratory infiltration experiments coupled with microscope observations in pure sands, saturated hydraulic conductivity analysis, and interaction energy calculations, to test whether ash can clog pores (i.e. block pores such that infiltration is hampered and ponding occurs). Although results confirmed previous observations of ash washing into pores, clogging was not observed in the pure sands tested, nor were conditions found for which this does occur. Clogging by means of strong attachment of ash to sand was deemed unlikely given the negative surface charge of the two materials. Ponding due to washing in of ash was also considered improbable given the high saturated conductivity of pure ash and ash–sand mixtures. This first mechanistic step towards analysing ash transport and attachment processes in field soils therefore suggests that pore clogging by ash is unlikely to occur in sands. Discussion is provided on other mechanisms by which ash can affect post-fire hydrology.

  7. Optical properties of volcanic ash: improving remote sensing observations.

    NASA Astrophysics Data System (ADS)

    Whelley, Patrick; Colarco, Peter; Aquila, Valentina; Krotkov, Nickolay; Bleacher, Jake; Garry, Brent; Young, Kelsey; Rocha Lima, Adriana; Martins, Vanderlei; Carn, Simon

    2016-04-01

    Many times each year explosive volcanic eruptions loft ash into the atmosphere. Global travel and trade rely on aircraft vulnerable to encounters with airborne ash. Volcanic ash advisory centers (VAACs) rely on dispersion forecasts and satellite data to issue timely warnings. To improve ash forecasts model developers and satellite data providers need realistic information about volcanic ash microphysical and optical properties. In anticipation of future large eruptions we can study smaller events to improve our remote sensing and modeling skills so when the next Pinatubo 1991 or larger eruption occurs, ash can confidently be tracked in a quantitative way. At distances >100km from their sources, drifting ash plumes, often above meteorological clouds, are not easily detected from conventional remote sensing platforms, save deriving their quantitative characteristics, such as mass density. Quantitative interpretation of these observations depends on a priori knowledge of the spectral optical properties of the ash in UV (>0.3μm) and TIR wavelengths (>10μm). Incorrect assumptions about the optical properties result in large errors in inferred column mass loading and size distribution, which misguide operational ash forecasts. Similarly, simulating ash properties in global climate models also requires some knowledge of optical properties to improve aerosol speciation.

  8. International Database of Volcanic Ash Impacts

    NASA Astrophysics Data System (ADS)

    Wallace, K.; Cameron, C.; Wilson, T. M.; Jenkins, S.; Brown, S.; Leonard, G.; Deligne, N.; Stewart, C.

    2015-12-01

    Volcanic ash creates extensive impacts to people and property, yet we lack a global ash impacts catalog to organize, distribute, and archive this important information. Critical impact information is often stored in ephemeral news articles or other isolated resources, which cannot be queried or located easily. A global ash impacts database would improve 1) warning messages, 2) public and lifeline emergency preparation, and 3) eruption response and recovery. Ashfall can have varying consequences, such as disabling critical lifeline infrastructure (e.g. electrical generation and transmission, water supplies, telecommunications, aircraft and airports) or merely creating limited and expensive inconvenience to local communities. Impacts to the aviation sector can be a far-reaching global issue. The international volcanic ash impacts community formed a committee to develop a database to catalog the impacts of volcanic ash. We identify three user populations for this database: 1) research teams, who would use the database to assist in systematic collection, recording, and storage of ash impact data, and to prioritize impact assessment trips and lab experiments 2) volcanic risk assessment scientists who rely on impact data for assessments (especially vulnerability/fragility assessments); a complete dataset would have utility for global, regional, national and local scale risk assessments, and 3) citizen science volcanic hazard reporting. Publication of an international ash impacts database will encourage standardization and development of best practices for collecting and reporting impact information. Data entered will be highly categorized, searchable, and open source. Systematic cataloging of impact data will allow users to query the data and extract valuable information to aid in the development of improved emergency preparedness, response and recovery measures.

  9. Layered Deposits of Arabia Terra and Meridiani Planum: Keys to the Habitability of Ancient Mars

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Oehler, Dorothy Z.; Paris, Kristen N.; Venechuk, Elizabeth M.

    2006-01-01

    Understanding the habitability of ancient Mars is a key goal in the exploration of that planet. Evidence for conditions favorable to early life must be sought in ancient sedimentary rocks, such as those of Arabia Terra and Meridiani Planum. Arabia Terra, the northernmost extension of the ancient highlands, is dominated by cratered plains and minor ridged units. These plains extend south into the adjacent Meridiani Planum. The Opportunity rover landed in northern Meridiani, close to the border with Arabia. High resolution MOC images reveal extensive layered sequences across much of the Arabia and Meridiani region. These layers have been interpreted as eroded remnants of sedimentary rock deposits (Edgett, 2005). The layered sequences are concentrated in the SW quadrant of Arabia and in northern Meridiani. Preliminary mapping by Edgett (2005) distinguished four large scale layered sequences in the Arabia and Meridiani region. These have dimensions of hundreds to more than 1,000 km. MOLA altimetry shows that each of the sequences can attain a thickness of 200 to 400 m, with a total thickness greater than 1 km. The sequences are generally flat lying, with regional slopes of a few degrees. Much finer layering is evident within a number of craters. The plains and ridged units of the Arabia and Meridiani region were originally mapped as Noachian based on crater statistics, particularly the number of large craters (Scott and Carr, 1978). The layered sequences in the current study postdate many, but not all, of these large craters. The layered sequences have partially or totally filled a number of craters with diameters ranging from 20 to over 50 km. The topmost layered sequence, as well as the lower two sequences, have intermediate thermal inertia, as derived from THEMIS, indicative of moderate induration. The TES spectra from the lower sequences include features indicative of basalt. Some areas of the topmost sequence, which includes the Opportunity landing site, have TES

  10. Eco-friendly fly ash utilization: potential for land application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, A.; Thapliyal, A.

    2009-07-01

    The increase in demand for power in domestic, agricultural, and industrial sectors has increased the pressure on coal combustion and aggravated the problem of fly ash generation/disposal. Consequently the research targeting effective utilization of fly ash has also gained momentum. Fly ash has proved to be an economical substitute for expensive adsorbents as well as a suitable raw material for brick manufacturing, zeolite synthesis, etc. Fly ash is a reservoir of essential minerals but is deficient in nitrogen and phosphorus. By amending fly ash with soil and/or various organic materials (sewage sludge, bioprocess materials) as well as microbial inoculants likemore » mycorrhizae, enhanced plant growth can be realized. Based on the sound results of large scale studies, fly ash utilization has grown into prominent discipline supported by various internationally renowned organizations. This paper reviews attempts directed toward various utilization of fly ash, with an emphasis on land application of organic/microbial inoculants amended fly ash.« less

  11. Fusion characteristics of volcanic ash relevant to aviation hazards

    NASA Astrophysics Data System (ADS)

    Song, Wenjia; Hess, Kai-Uwe; Damby, David E.; Wadsworth, Fabian B.; Lavallée, Yan; Cimarelli, Corrado; Dingwell, Donald B.

    2014-04-01

    The fusion dynamics of volcanic ash strongly impacts deposition in hot parts of jet engines. In this study, we investigate the sintering behavior of volcanic ash using natural ash of intermediate composition, erupted in 2012 at Santiaguito Volcano, Guatemala. A material science procedure was followed in which we monitored the geometrical evolution of cylindrical-shaped volcanic ash compact upon heating from 50 to 1400°C in a heating microscope. Combined morphological, mineralogical, and rheological analyses helped define the evolution of volcanic ash during fusion and sintering and constrain their sticking potential as well as their ability to flow at characteristic temperatures. For the ash investigated, 1240°C marks the onset of adhesion and flowability. The much higher fusibility of ash compared to that of typical test sands demonstrates for the need of a more extensive fusion characterization of volcanic ash in order to mitigate the risk posed on jet engine operation.

  12. The relation between pre-eruptive bubble size distribution, ash particle morphology, and their internal density: Implications to volcanic ash transport and dispersion models

    NASA Astrophysics Data System (ADS)

    Proussevitch, Alexander

    2014-05-01

    Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.

  13. Peak exposures to main components of ash and gaseous diesel exhausts in closed and open ash loading stations at biomass-fuelled power plants.

    PubMed

    Laitinen, Juha; Koponen, Hanna; Sippula, Olli; Korpijärvi, Kirsi; Jumpponen, Mika; Laitinen, Sirpa; Aatamila, Marjaleena; Tissari, Jarkko; Karhunen, Tommi; Ojanen, Kari; Jokiniemi, Jorma; Korpinen, Leena

    2017-10-01

    Fly and bottom ashes are collected at power plants to reduce the environmental effects of energy production. However, handling the ashes causes health problems for operators, maintenance workers and truck drivers at the power plants. Hence, we evaluated ash loaders' peak inhalation exposures to the chemical components of ash and diesel exhausts in open and closed ash loading stations at biomass-fuelled combined heat and power plants. We also carried out chemical and morphological analyses of the ashes to evaluate their health hazard potential in order to find practical technical measures to reduce workers' exposure. On the basis of X-ray diffraction analyses, the main respirable crystalline ash compounds were SiO 2 , CaSO 4 , CaO, Ca 2 Al 2 SiO 7 , NaCl and Ca 3 Al 2 O 6 in the fly ashes and SiO 2 , KAlSi 3 O 8 , NaAlSi 3 O 8 and Ca 2 Al 2 SiO 7 in the bottom ashes. The short-term exposure levels of respirable crystalline silica, inhalable inorganic dust, Cr, Mn, Ni and nitric oxide exceeded their Finnish eight hours occupational exposure limit values in the closed ash loading station. According to our observations, more attention should be paid to the ash-moistening process, the use of tank trucks instead of open cassette flatbed trucks, and the sealing of the loading line from the silo to the truck which would prevent spreading the ash into the air. The idling time of diesel trucks should also be limited, and ash loading stations should be equipped with exhaust gas ventilators. If working conditions make it impossible to keep to the OEL values, workers must use respirators and protect their eyes and skin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Potential for thermochemical conversion of biomass residues from the integrated sugar-ethanol process - Fate of ash and ash-forming elements.

    PubMed

    Dirbeba, Meheretu Jaleta; Brink, Anders; DeMartini, Nikolai; Zevenhoven, Maria; Hupa, Mikko

    2017-06-01

    In this work, potential for thermochemical conversion of biomass residues from an integrated sugar-ethanol process and the fate of ash and ash-forming elements in the process are presented. Ash, ash-forming elements, and energy flows in the process were determined using mass balances and analyses of eight different biomass samples for ash contents, elemental compositions, and heating values. The results show that the ash content increases from the sugarcane to the final residue, vinasse. The cane straw, which is left in the field, contains one-third of the energy and 25% of the K and Cl while the vinasse contains 2% of the energy and 40% of the K and Cl in the cane. K and Cl in biomass fuels cause corrosion and fouling problems in boilers and gasifiers. Over 85% of these elements in the straw are water soluble indicating that water leaching would improve it for utilization in thermochemical conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Aviation response to a widely dispersed volcanic ash and gas cloud from the August 2008 eruption of Kasatochi, Alaska, USA

    USGS Publications Warehouse

    Guffanti, Marianne; Schneider, David J.; Wallace, Kristi L.; Hall, Tony; Bensimon, Dov R.; Salinas, Leonard J.

    2010-01-01

    The extensive volcanic cloud from Kasatochi's 2008 eruption caused widespread disruptions to aviation operations along Pacific oceanic, Canadian, and U.S. air routes. Based on aviation hazard warnings issued by the National Oceanic and Atmospheric Administration, U.S. Geological Survey, the Federal Aviation Administration, and Meteorological Service of Canada, air carriers largely avoided the volcanic cloud over a 5 day period by route modifications and flight cancellations. Comparison of time coincident GOES thermal infrared (TIR) data for ash detection with Ozone Monitoring Instrument (OMI) ultraviolet data for SO2 detection shows congruent areas of ash and gas in the volcanic cloud in the 2 days following onset of ash production. After about 2.5 days, the area of SO2 detected by OMI was more extensive than the area of ash indicated by TIR data, indicating significant ash depletion by fall out had occurred. Pilot reports of visible haze at cruise altitudes over Canada and the northern United States suggested that SO2 gas had converted to sulfate aerosols. Uncertain about the hazard potential of the aging cloud, airlines coped by flying over, under, or around the observed haze layer. Samples from a nondamaging aircraft encounter with Kasatochi's nearly 3 day old cloud contained volcanic silicate particles, confirming that some fine ash is present in predominantly gas clouds. The aircraft's exposure to ash was insufficient to cause engine damage; however, slightly damaging encounters with volcanic clouds from eruptions of Reventador in 2002 and Hekla in 2000 indicate the possibility of lingering hazards associated with old and/or diffuse volcanic clouds.

  16. Geology and mineral deposits of the Jabal ash Shumta quadrangle, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Hummel, C.L.; Ankary, Abdullah O.

    1972-01-01

    Rocks, structures, and mineral deposits which are the result of both the older Halaban petro-tectonic cycle and the younker Najd Wrench Fault deformation are present in the Ash Shumta area. Northward-trending belts of granitic rocks and folded, layered metavolcanic and metasedimentary rocks of the Halaban Formation which they intrude represent the effects of the Halaban cycle. These older rocks are everywhere transected and deformed by northwestward- and northeastward-striking fractures and strike-slip faults and by eastward-striking fractures and fracture-controlled silicic dikes which belong to the Najd Wrench Fault deformation. Several kinds of epigenetic mineral deposits of hydrothermal origin are present throughout the Ash Shumta area. All occur in or ape closely associated with structures of the Najd Wrench Fault deformation. The mineralization which produced the deposits is thought to have taken place during the period of deformation which produced the Najd Wrench Fault structures. The hydrothermal deposits include many metalliferous quartz veins most of which occur in three mineralized areas: two major areas at Jabal Ash Shumta and Jabal El Khom in the northern half of the quadrangle and a minor area along Wadj al Boharah in the southeastern part of the quadrangle. The metalliferous lodes possess the only economic potential in the area of the Jabal Ash Shumta quadrangle. These lodes consist mainly of gold and base metal-bearing quartz veins, some of which were mined for gold in ancient times. The mineralized area at Jabal Ash Shumta has the best of these veins. Higher temperature veins with wolframite as a major constituent and beryl as a minor one occur in a granite cupola in the eastern part of the El Khom area. These veins have altered, gneissen-like wall rocks. Although the grade of the veins is low at the surface, the made could increase at depth. The tungsten-bearing veins and El Khom area possess the greatest economic promise in the Jabal Ash Shumta

  17. Monitoring ash (Fraxinus spp.) decline and emerald ash borer (Agrilus planipennis) symptoms in infested areas

    Treesearch

    Kathleen S. Knight; Britton P. Flash; Rachel H. Kappler; Joel A. Throckmorton; Bernadette Grafton; Charles E. Flower

    2014-01-01

    Emerald ash borer (A. planipennis) (EAB) has had a devastating effect on ash (Fraxinus) species since its introduction to North America and has resulted in altered ecological processes across the area of infestation. Monitoring is an important tool for understanding and managing the impact of this threat, and the use of common...

  18. The Ash that Closed Europe's Airspace in 2010

    NASA Astrophysics Data System (ADS)

    Gislason, S. R.; Alfredsson, H.; Olsson, J.; Eiriksdottir, E.; Oskarsson, N.; Hassenkam, T.; Nedel, S.; Bovet, N.; Hem, C.; Balogh, Z.; Dideriksen, K.; Stipp, S. L.

    2011-12-01

    On 14 April 2010, when meltwater from the Eyjafjallajökull glacier mixed with hot magma, an explosive phreato-magmatic eruption sent unusually fine-grained ash into the jet stream. It quickly dispersed over Europe. Previous airplane encounters with ash had caused sand blasted windows and particles melted inside jet engines, causing them to fail. Therefore, air traffic was grounded for several days. Concerns also arose about health risks from fallout, because ash can transport acids as well as toxic compounds. Studies on ash are usually made on material collected far from the source, where it could have mixed with other atmospheric particles, or after exposure to water as rain or fog, which would alter surface composition. In this study, a unique set of dry ash samples was collected during the explosive eruption and compared with fresh ash with the same bulk composition from a later more typical magmatic event, when meltwater did not have access to the magma.[1] Up to 70 mass % of the phreato-magmatic ash particles, collected 60 km from the source, was <60 μm in diameter, 22% was <10 μm and 11% was ≤ 4.4 μm. The finest grain size was found in the centre of the "collapsed" plume. The magmatic ash was coarser and its surface area was an order of magnitude smaller than for the explosive ash. The relative concentration of surface salts down to 10 nm depth was significantly lower on the explosive ash than the magmatic ash, because less volatile compounds were available to condense on the surfaces when water and steam were present. Instead, they dissolved in the meltwater and were transported as solutes in the ensuing floodwaters. The surface salts dissolved rapidly when exposed to experimental and natural waters, releasing pollutants and nutrients. Some of the salts further enhanced bulk dissolution of the ash. The particles of phreato-magmatic ash that reached Europe in the jet stream were especially sharp and hard, therefore abrasive, over their entire size range

  19. Environmentally friendly use of non-coal ashes in Sweden.

    PubMed

    Ribbing, C

    2007-01-01

    The Swedish Thermal Engineering Research Institute (Värmeforsk) initiated an applied research program "Environmentally friendly use of non-coal ashes", in 2002. The program aims at increasing knowledge on the by-products of energy production and their application. The goal of formulating technical and environmental guidelines and assessments is a major point of the program, which is supported by about forty authorities and private organisations. The programme has been divided into four areas: recycling of ashes to forests, geotechnical applications, use in landfilling, and environmental aspects and chemistry. Among all results obtained, the following progress is shown: *Evidence for the positive effects of spreading ashes on forest growth. *A proposal for environmental guidelines on the utilisation of ashes in construction. *A handbook for using non-coal fly ashes in unpaved roads. *Technical and environmental assessments of MSWI bottom ashes in road construction. *Development of the use of ashes with municipal wastewater sludge as a cover for landfills and mine tailings. *Use of ashes from bio-fuels in concrete and replacement of cement in stoop mining. *A method to classify those by-products from combustion that have mirror entries in the EWC as a hazardous or non-hazardous compound. The Ash Programme has also made it possible to increase knowledge on ashes as valuable materials, on quality assurance and on markets for recovered materials.

  20. Heavy metals in MSW incineration fly ashes

    NASA Astrophysics Data System (ADS)

    Ferreira, C.; Ribeiro, A.; Ottosen, L.

    2003-05-01

    Incineration is a common solution for dealing with the increasing amount of municipal solid waste (MSW). During the process, the heavy metals initially present in the waste go through several transformations, ending up in combustion products, such as fly ash. This article deals with some issues related to the combustion of MSW and the formation of fly ash, especially in what concerns heavy metals. Treatment of the flue gas in air pollution control equipment plays an important role and the basic processes to accomplish this are explained. Fly ash from a semi-dry flue gas treatment system is characterized regarding its physical-chemical properties: pH, solubility, chemical composition, and leaching, amongst others. Results indicate a high alkalinity and the presence of large amounts of calcium, chlorides, sulfates, carbonates, sodium and potassium. Metal concentrations in fly ash are: 6,2g/kg for zinc, 2,4g/kg for lead, 1,7g/kg for iron, and 7,9g/kg for magnesium. Copper, manganese, chromium and cadmium are also present with 546, 338, 104 and 91mg/kg of fly ash, respectively. These results are extremely important in subsequent studies on the treatment of fly ash.

  1. A robust method to forecast volcanic ash clouds

    USGS Publications Warehouse

    Denlinger, Roger P.; Pavolonis, Mike; Sieglaff, Justin

    2012-01-01

    Ash clouds emanating from volcanic eruption columns often form trails of ash extending thousands of kilometers through the Earth's atmosphere, disrupting air traffic and posing a significant hazard to air travel. To mitigate such hazards, the community charged with reducing flight risk must accurately assess risk of ash ingestion for any flight path and provide robust forecasts of volcanic ash dispersal. In response to this need, a number of different transport models have been developed for this purpose and applied to recent eruptions, providing a means to assess uncertainty in forecasts. Here we provide a framework for optimal forecasts and their uncertainties given any model and any observational data. This involves random sampling of the probability distributions of input (source) parameters to a transport model and iteratively running the model with different inputs, each time assessing the predictions that the model makes about ash dispersal by direct comparison with satellite data. The results of these comparisons are embodied in a likelihood function whose maximum corresponds to the minimum misfit between model output and observations. Bayes theorem is then used to determine a normalized posterior probability distribution and from that a forecast of future uncertainty in ash dispersal. The nature of ash clouds in heterogeneous wind fields creates a strong maximum likelihood estimate in which most of the probability is localized to narrow ranges of model source parameters. This property is used here to accelerate probability assessment, producing a method to rapidly generate a prediction of future ash concentrations and their distribution based upon assimilation of satellite data as well as model and data uncertainties. Applying this method to the recent eruption of Eyjafjallajökull in Iceland, we show that the 3 and 6 h forecasts of ash cloud location probability encompassed the location of observed satellite-determined ash cloud loads, providing an

  2. Construction procedures using self hardening fly ash

    NASA Astrophysics Data System (ADS)

    Thornton, S. I.; Parker, D. G.

    1980-07-01

    Fly ash produced in Arkansas from burning Wyoming low sulfur coal is self-hardening and can be effective as a soil stabilizing agent for clays and sands. The strength of soil-self hardening fly ash develops rapidly when compacted immediately after mixing. Seven day unconfined compressive strengths up to 1800 psi were obtained from 20% fly ash and 80% sand mixtures. A time delay between mixing the fly ash with the soil and compaction of the mixture reduced the strength. With two hours delay, over a third of the strength was lost and with four hours delay, the loss was over half. Gypsum and some commercial concrete retarders were effective in reducing the detrimental effect of delayed compaction. Adequate mixing of the soil and fly ash and rapid compaction of the mixtures were found to be important parameters in field construction of stabilized bases.

  3. Ecological and Topographic Features of Volcanic Ash-Influenced Forest Soils

    Treesearch

    Mark Kimsey; Brian Gardner; Alan Busacca

    2007-01-01

    Volcanic ash distribution and thickness were determined for a forested region of north-central Idaho. Mean ash thickness and multiple linear regression analyses were used to model the effect of environmental variables on ash thickness. Slope and slope curvature relationships with volcanic ash thickness varied on a local spatial scale across the study area. Ash...

  4. Liquid chromatography/mass spectrometry for the detection of ash tree metabolites following Emerald Ash Borer infestation.

    PubMed

    Stock, Naomi L; Doran, Michael C; Bonners, Ron F; March, Raymond E

    2018-03-15

    The Emerald Ash Borer (EAB), Agrilus planipennis, an invasive insect detected in the USA and Canada in 2002, is a threat to ash trees with both ecological and economic implications. Early detection of EAB-infestation is difficult due to lack of visible signs and symptoms in the early stages of attack, but is essential to prevent ash mortality. An efficient and reliable tool for the early detection of EAB-infestation would be advantageous. A mass spectrometry based metabolomics approach, using liquid chromatography/mass spectrometry (LC/MS), has been used to investigate the leaf metabolites of both healthy and EAB-infested trees. Leaves from 40 healthy and 40 EAB-infested trees were extracted and analyzed using LC/MS. Resulting data were examined to differentiate between foliage from healthy and EAB-infested trees. Possible biomarkers of EAB attack have been detected. Twenty-one metabolites with increased average ion intensity in EAB-infested ash tree samples and nine metabolites with increased average ion intensity in healthy ash tree samples were identified. Results of this study indicate that metabolomic screening of leaf samples using LC/MS can be useful as a potential tool for the early detection of EAB-infestation. Copyright © 2018 John Wiley & Sons, Ltd.

  5. Engineering properties of lightweight geopolymer synthesized from coal bottom ash and rice husk ash

    NASA Astrophysics Data System (ADS)

    Thang, Nguyen Hoc; Hoa, Nguyen Ngoc; Quyen, Pham Vo Thi Ha; Tuyen, Nguyen Ngoc Kim; Anh, Tran Vu Thao; Kien, Pham Trung

    2018-04-01

    Geopolymer technology was developed by Joseph Davidovits in 1970s based on reactions among alumino-silicate resources in high alkaline conditions. Geopolymer has been recently gaining attention as an alternative binder for Ordinary Portland cement (OPC) due to its low energy and CO2 burden. The raw materials used for geopolymerization normally contain high SiO2 and Al2O3 in the chemical compositions such as meta-kaoline, rice husk ash, fly ash, bottom ash, blast furnace slag, red mud, and others. Moreover, in this paper, coal bottom ash (CBA) and rice husk ash (RHA), which are industrial and agricultural wastes, respectively, were used as raw materials with high alumino-silicate resources. Both CBA and RHA were mixed with sodium hydroxide (NaOH) solution for 20 minutes to obtain the geopolymer pastes. The pastes were filled in 5-cm cube molds according to ASTM C109/C109M 99, and then cured at room condition for hardening of the geopolymer specimens. After 24 hours, the specimens were removed out of the molds and continuously cured at room condition for 27 days. The geopolymer-based materials were then tested for engineering properties such as compressive strength (MPa), volumetric weight (kg/m3), and water absorption (kg/m3). Results indicated that the material can be considered lightweight with volumetric weight from 1192 to 1425 kg/m3; compressive strength at 28 days is in the range of 12.38 to 37.41 MPa; and water absorption is under 189.92 kg/m3.

  6. Effects of Late Stages of Emerald Ash Borer (Coleoptera: Buprestidae)-Induced Ash Mortality on Forest Floor Invertebrate Communities

    PubMed Central

    Herms, Daniel A

    2017-01-01

    Abstract Emerald ash borer (EAB; Agrilus planipennis Fairmaire) is an invasive wood-borer causing rapid, widespread ash tree mortality, formation of canopy gaps, and accumulation of coarse woody debris (CWD) in forest ecosystems. The objective of this study was to quantify the effects of canopy gaps and ash CWD on forest floor invertebrate communities during late stages of EAB-induced ash mortality, when the effects of gaps are predicted to be smallest and effects of CWD are predicted to be greatest, according to the model proposed by Perry and Herms 2016a. A 2-year study was conducted in forest stands that had experienced nearly 100% ash mortality in southeastern Michigan, USA, near where EAB first established in North America. In contrast to patterns documented during early stages of the EAB invasion, effects of gaps were minimal during late stages of ash mortality, but invertebrate communities were affected by accumulation and decomposition of CWD. Invertebrate activity-abundance, evenness, and diversity were highest near minimally decayed logs (decay class 1), but diverse taxon-specific responses to CWD affected community composition. Soil moisture class emerged as an important factor structuring invertebrate communities, often mediating the strength and direction of their responses to CWD and stages of decomposition. The results of this study were consistent with the predictions that the effects of CWD on invertebrate communities would be greater than those of canopy gaps during late stages of EAB-induced ash mortality. This research contributes to understanding of the cascading and long-term ecological impacts of invasive species on native forest ecosystems.

  7. Evaluation of Pollutant Leaching Potential of Coal Ashes for Recycling

    NASA Astrophysics Data System (ADS)

    Park, D.; Woo, N. C.; Kim, H.; Yoon, H.; Chung, D.

    2011-12-01

    By 2009, coal ashes produced from coal-based power plants in Korea have been reused as cement supplement materials; however, the rest is mostly disposed in landfills inside the plant properties. Continuous production of coal ashes and limited landfill sites require more recycles of coal ashes as base materials, specifically in constructions of roads and of huge industrial complex. Previous researches showed that coal ashes could contain various metals such as arsenic(As), chromium(Cr), lead(Pb), nickel(Ni), selenium(Se), etc. In this study, we collected four types of bottom ashes and two of fly ashes from four coal-based power plants. These ash samples were tested with distilled water through the column leaching process in oxidized conditions. The column test results were compared with those of total digestion, sequential extraction processes and TCLP. Concentrations of metals in outflows from columns are generally greater in fly ashes than in bottom ashes, specifically for As, Se, B, Sr and SO4. Only one fly ash (J2-F) shows high concentrations of arsenic and selenium in leachate. Sequential extraction results indicate that these metals are in readily soluble forms, such as adsorbed, carbonated, and reducible forms. Results of TCLP analysis indicate no potential contaminants leached from the ashes. In conclusion, recycling of coal combustion ashes could be encouraged with proper tests such as sequential and leaching experiments.

  8. Larval Survival and Growth of Emerald Ash Borer (Coleoptera: Buprestidae) on White Ash and White Fringetree Saplings Under Well-Watered and Water-Deficit Conditions.

    PubMed

    Rutledge, Claire E; Arango-Velez, Adriana

    2017-04-01

    Emerald ash borer (Agrilus planipennis Fairmaire) was recently found on a novel host in North America, white fringetree (Chionanthus virginicus L.) (Oleaceae). In this study, we artificially infested 4-yr-old, naïve white fringetree and white ash (Fraxinus americana L.) saplings under well-watered and water-deficit conditions with emerald ash borer eggs. We used physiological and phenotypical approaches to investigate both plant response to emerald ash borer and insect development at 21, 36, and 61 d postinfestation. Photosynthesis was reduced in both tree species by larval feeding, but not by water deficits. Emerald ash borer larvae established and survived successfully on white ash. Both establishment and survival were lower on white fringetree than on white ash. Larvae were larger, and had reached higher instars at all three time points on white ash than on white fringetrees. Larvae grew faster in white ash under water-deficit conditions; however, water-deficit conditions negatively impacted survival of larvae at 61 d postinfestation in white fringetrees, although head size did not differ among surviving larvae. White ash showed higher callus formation in well-watered trees, but no impact on larval survival was observed. In white fringetree, callus formation was not affected by water treatment, and was inversely related to larval survival. The higher rate of mortality and slow growth rate of larvae in white fringetree as compared to white ash suggest that populations of emerald ash borer may be sustained by white fringetree, but may grow more slowly than in white ash. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Tailoring graphene layer-to-layer growth

    NASA Astrophysics Data System (ADS)

    Li, Yongtao; Wu, Bin; Guo, Wei; Wang, Lifeng; Li, Jingbo; Liu, Yunqi

    2017-06-01

    A layered material grown between a substrate and the upper layer involves complex interactions and a confined reaction space, representing an unusual growth mode. Here, we show multi-layer graphene domains grown on liquid or solid Cu by the chemical vapor deposition method via this ‘double-substrate’ mode. We demonstrate the interlayer-induced coupling effect on the twist angle in bi- and multi-layer graphene. We discover dramatic growth disunity for different graphene layers, which is explained by the ideas of a chemical ‘gate’ and a material transport process within a confined space. These key results lead to a consistent framework for understanding the dynamic evolution of multi-layered graphene flakes and tailoring the layer-to-layer growth for practical applications.

  10. Fly ash in concrete : final report.

    DOT National Transportation Integrated Search

    1990-08-01

    This study was initiated to develop information regarding the use of fly ash in portland cement concrete for state construction projects. : Concrete mixes containing 10%, 20%, 30%, 40% and 60% fly ash were evaluated in the laboratory in combination w...

  11. Ash content of bones in the pigtail monkey, Macaca nemestrina.

    NASA Technical Reports Server (NTRS)

    Vose, G. P.; Roach, T. L.

    1972-01-01

    Ash analyses of skeletons of four adult primates, Macaca nemestrina, revealed some similarities and some marked contrasts when compared with published data on human skeletal ash. The skull in both Macaca nemestrina and man has the highest ash content of all bones in the skeleton. While the bones of the arms of humans have an ash content nearly identical to that of the legs (0.3% difference), in Macaca nemestrina the humeri and radii contain 5.4% more ash than the femora and tibiae. Similarly in Macaca nemestrina the bones of the hands contain 3.5% more ash than the bones of the feet, while in humans the same bones agree within 0.3% implying that adaptive use function is a factor in bone ash concentration. The ribs of Macaca nemestrina showed an unexpectedly high ash content in comparison with those of humans. In contrast with the relatively constant ash content throughout the vertebrae in humans, a conspicuous decrease axially was noted in Macaca nemestrina.

  12. Simulated Impacts of Emerald Ash Borer on Throughfall and Stemflow Inputs of Water and Nitrogen in Black Ash Wetlands in Northern Michigan

    NASA Astrophysics Data System (ADS)

    Pypker, T. G.; Davis, J.; Van Grinsven, M. J.; Bolton, N. W.; Shannon, J.; Kolka, R. K.; Nelson, J.; Wagenbrenner, J. W.

    2014-12-01

    Emerald ash borer (Agrilus planipennis Fairmaire (EAB)) is an invasive insect that effectively kills ash trees (genus: Fraxinus) greater than 2.5 cm in diameter, resulting in near-complete stand mortality within 3-4 years. Black ash wetlands occupy approximately 270,000 ha in Michigan, and have 40 to 90% of the basal area occupied by black ash (F. nigra Marshall); hence the loss of black ash may result in dramatic changes in the canopy hydrology and nutrient deposition. We assessed the impact of a simulated EAB invasion on throughfall and stemflow quantity and nitrogen (N) content in 9 uninfected black ash wetlands located in the Upper Peninsula of Michigan. Within the 9 stands, 3 stands were left untreated ('Control'), 3 stands had all the black ash trees manually girdled ('Girdled') and 3 had all the black ash trees felled by chainsaw ('Clearcut'). We measured the quantity and inorganic-N content of throughfall using an array of randomly placed collectors (n = 16 per site). Stemflow was monitored at 2 sites (n = 12 trees) on the 3 most common tree species (black ash, yellow birch (Betula alleghaniensis Britt.) and red maple (Acer rubra L.)). Preliminary results indicate that relative to the Control, average monthly throughfall was 25% and 1% greater in the Clearcut and Girdled sites, respectively. While the loss of the ash trees resulted in greater throughfall inputs in the Clearcut sites, water table heights did not significantly change as a result of the treatments. Stemflow from live black ash trees was lower than from the yellow birch and red maple trees. As a result, we predict stemflow will increase over time as species with smoother bark and less upright branching begin replacing the black ash. Hence, the change in tree species may result in a greater concentration of inorganic-N inputs to the base of the trees, thereby altering the distribution of inorganic-N inputs into the wetland. Our preliminary results show no significant change in the total

  13. Possibilities of municipal solid waste incinerator fly ash utilisation.

    PubMed

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.

  14. Natural weathering in dry disposed ash dump: Insight from chemical, mineralogical and geochemical analysis of fresh and unsaturated drilled cores.

    PubMed

    Akinyemi, S A; Akinlua, A; Gitari, W M; Khuse, N; Eze, P; Akinyeye, R O; Petrik, L F

    2012-07-15

    Some existing alternative applications of coal fly ash such as cement manufacturing; road construction; landfill; and concrete and waste stabilisation use fresh ash directly collected from coal-fired power generating stations. Thus, if the rate of usage continues, the demand for fresh ash for various applications will exceed supply and use of weathered dry disposed ash will become necessary alternative. As a result it's imperative to understand the chemistry and pH behaviour of some metals inherent in dry disposed fly ash. The bulk chemical composition as determined by XRF analysis showed that SiO2, Al2O3 and Fe2O3 were the major oxides in fresh ash and unsaturated weathered ashes. The unsaturated weathered ashes are relatively depleted in CaO, Fe2O3, TiO2, SiO2, Na2O and P2O5 due to dissolution and hydrolysis caused by chemical interaction with ingressing CO2 from the atmosphere and infiltrating rain water. Observed accumulations of Fe2O3, TiO2, CaO, K2O, Na2O and SO3 and Zn, Zr, Sr, Pb, Ni, Cr and Co in the lower layers indicate progressive downward movement through the ash dump though at a slow rate. The bulk mineralogy of unsaturated weathered dry disposed ash, as determined by XRD analysis, revealed quartz and mullite as the major crystalline phases; while anorthite, hematite, enstatite, lime, calcite, and mica were present as minor mineral phases. Pore water chemistry revealed a low concentration of readily soluble metals in unsaturated weathered ashes in comparison with fresh ash, which shows high leachability. This suggests that over time the precipitation of transient minor secondary mineral phases; such as calcite and mica might retard residual metal release from unsaturated weathered ash. Chloride and sulphate species of the water soluble extracts of weathered ash are at equilibrium with Na+ and K+; these demonstrate progressive leaching over time and become supersaturated at the base of unsaturated weathered ash. This suggests that the ash dump does not

  15. The leaching characteristics of selenium from coal fly ashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, T.; Wang, J.; Burken, J.G.

    2007-11-15

    The leaching characteristics of selenium from several bituminous and subbituminous coal fly ashes under different pH conditions were investigated using batch methods. Results indicated that pH had a significant effect on selenium leaching from bituminous coal ash. The minimum selenium leaching occurred in the pH range between 3 and 4, while the maximum selenium leaching occurred at pH 12. The release of selenium from subbituminous coal ashes was very low for the entire experimental pH range, possibly due to the high content of calcium which can form hydration or precipitation products as a sink for selenium. The adsorption results formore » different selenium species indicated that Se(VI) was hardly adsorbable on either bituminous coal ashes or subbitumminous coal ashes at any pH. However, Se(I) was highly adsorbed by bituminous coal ashes under acidic pH conditions and was mostly removed by subbitumminous coal ashes across the entire pH range. This result suggests that the majority of selenium released from the tested fly ashes was Se(IV). A speciation-based model was developed to simulate the adsorption of Se(IV) on bituminous coal fly ash, and the pH-independent adsorption constants of HSeO{sup 3-} and SeO{sub 3}{sup 2-} were determined. The modeling approach is useful for understanding and predicting the release process of selenium from fly ash.« less

  16. Physiological responses of emerald ash borer larvae to feeding on different ash species reveal putative resistance mechanisms and insect counter-adaptations

    Treesearch

    C.M. Rigsby; D.N. Showalter; D.A. Herms; J.L. Koch; P. Bonello; D. Cipollini

    2015-01-01

    Emerald ash borer, Agrilus planipennis Fairmaire, an Asian wood-boring beetle, has devastated ash (Fraxinus spp.) trees in North American forests and landscapes since its discovery there in 2002. In this study, we collected living larvae from EAB-resistant Manchurian ash (Fraxinus mandschurica), and susceptible...

  17. Geotechnical characterization of some Indian fly ashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, S.K.; Yudhbir

    2005-10-01

    This paper reports the findings of experimental studies with regard to some common engineering properties (e.g., grain size, specific gravity, compaction characteristics, and unconfined compression strength) of both low and high calcium fly ashes, to evaluate their suitability as embankment materials and reclamation fills. In addition, morphology, chemistry, and mineralogy of fly ashes are studied using scanning electron microscope, electron dispersive x-ray analyzer, x-ray diffractometer, and infrared absorption spectroscopy. In high calcium fly ash, mineralogical and chemical differences are observed for particles, {gt}75 {mu} m and the particles of {lt} 45 {mu} m size. The mode and duration of curingmore » significantly affect the strength and stress-strain behavior of fly ashes. The geotechnical properties of fly ash are governed by factors like lime content (CaO), iron content (Fe{sub 2}O{sub 3}) and loss on ignition. The distinct difference between self-hardening and pozzolanic reactivity has been emphasized.« less

  18. Microphysical Properties of Alaskan Volcanic Ash

    NASA Astrophysics Data System (ADS)

    Puthukkudy, A.; Espinosa, R.; Rocha Lima, A.; Remer, L.; Colarco, P. R.; Whelley, P.; Krotkov, N. A.; Young, K.; Dubovik, O.; Wallace, K.; Martins, J. V.

    2017-12-01

    Volcanic ash has the potential to cause a variety of severe problems for human health and the environment. Therefore, effective monitoring of the dispersion and fallout from volcanic ash clouds and characterization of the aerosol particle properties are essential. One way to acquire information from volcanic clouds is through satellite remote sensing: such images have greater coverage than ground-based observations and can present a "big picture" perspective. A challenge of remote sensing is that assumptions of certain properties of the target are often a pre-requisite for making accurate and quantitative retrievals. For example, detailed information about size distribution, sphericity, and optical properties of the constituent matter is needed or must be assumed. The same kind of information is also needed for atmospheric transport models to properly simulate the dispersion and fallout of volcanic ash. Presented here is a laboratory method to determine the microphysical and optical properties of volcanic ash samples collected from two Alaskan volcanoes with markedly different compositions. Our method uses a Polarized Imaging Nephelometer (PI-Neph) and a system that re-suspends the particles in an air flow. The PI-Neph measures angular light scattering and polarization of the re-suspended particles from 3o to 175o in scattering angle, with an angular resolution of 1o . Primary measurements include phase function and polarized phase function at three wavelengths (445nm, 532nm, and 661nm). Size distribution, sphericity, and complex refractive index are retrieved indirectly from the PI-Neph measurements using the GRASP (Generalized Retrieval of Aerosol and Surface Properties) inversion algorithm. We report the results of this method applied to samples from the Mt. Okmok (2008) and Mt. Katmai (1912) volcanic eruptions. To our knowledge, this is the first time direct measurements of phase matrix elements of ash from Mt. Okmok and Mt. Katmai have been reported. Retrieved

  19. Physical and mathematical modeling of transient infiltration through shallow layered pyroclastic deposits

    NASA Astrophysics Data System (ADS)

    Damiano, Emilia; Greco, Roberto; Guida, Andrea; Olivares, Lucio; Picarelli, Luciano

    2017-04-01

    Layered pyroclastic deposits covering steep slopes, characteristic of large mountainous areas of Campania (southern Italy), are often affected by shallow landslides triggered by heavy rainfall events. In fact, the equilibrium of such deposits is usually guaranteed by the contribution to soil shear strength offered by soil suction, which decreases during wetting. As the return period of the triggering events has been in many cases not extreme, other factors concur to establish triggering conditions. In this respect, heterogeneities, strongly affecting transient infiltration, may in some cases play a crucial role. In this study, the effect of the presence of soil layers, characterized by markedly different hydraulic properties, on the rainwater infiltration process is investigated. In fact, the pyroclastic covers of Campania, being the result of the deposition of materials originated by several eruptions of the nearby volcanic complexes, usually consist of alternating layers of ashes (silty sands) and pumices (gravel with sand). The presence of coarse-textured pumices between finer ashes strongly affects the infiltration process. In fact, the pumices, which are characterized by saturated hydraulic conductivity larger than ashes, are capable of retaining less water than ashes in unsaturated conditions, so that their unsaturated hydraulic conductivity is usually very small. Hence, depending on the water potential distribution throughout the cover at the onset of rainfall, pumices may act as a barrier to the propagation of the wet front (the so-called capillary barrier effect), or, approaching saturation, let the water pass through them very quickly. Such a complex behavior has been studied by means of a series of infiltration experiments carried out in an instrumented flume in the Geotechnical Laboratory of the University of Campania (http://www.dicdea.unina2.it/it/dipartimento/laboratori/laboratorio-di-geotecnica). Starting from different initial moisture conditions

  20. Volcanic ash - Terrestrial versus extraterrestrial

    NASA Technical Reports Server (NTRS)

    Okeefe, J. A.

    1976-01-01

    A principal difference between terrestrial and extraterrestrial lavas may consist in the greater ability of terrestrial lavas to form thin films (like those of soap bubbles) and hence foams. It would follow that, in place of the pumice and spiny shards found in terrestrial volcanic ash, an extraterrestrial ash should contain minute spherules. This hypothesis may help to explain lunar microspherules.

  1. Ash dieback in the Northeast

    Treesearch

    Robert W. Brandt

    1961-01-01

    A dieback condition among our ash trees is causing great concern among foresters and forest industries in the northeastern United States. There is good cause for concern. For example, a recent survey made by the New York Conservation Department in 18 eastern counties of the State revealed that about 70 percent of the woodland ash trees are dead or dying.

  2. Bottom ash boosts poor soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, D.

    1993-04-01

    This article describes agricultural uses of fluidized bed bottom ash residue from burning limestone and coal in electric power generating plants: as a limestone substitute, to increase calcium levels in both soil and plants, and as a gypsom-containing soil amendment. Apples and tomatoes are the crops used. The industrial perspective and other uses of bottom ash are also briefly described.

  3. Economic analysis of emerald ash borer (Coleoptera: Buprestidae) management options.

    PubMed

    Vannatta, A R; Hauer, R H; Schuettpelz, N M

    2012-02-01

    Emerald ash borer, Agrilus planipennis (Fairmaire) (Coleoptera: Buprestidae), plays a significant role in the health and extent of management of native North American ash species in urban forests. An economic analysis of management options was performed to aid decision makers in preparing for likely future infestations. Separate ash tree population valuations were derived from the i-Tree Streets program and the Council of Tree and Landscape Appraisers (CTLA) methodology. A relative economic analysis was used to compare a control option (do-nothing approach, only removing ash trees as they die) to three distinct management options: 1) preemptive removal of all ash trees over a 5 yr period, 2) preemptive removal of all ash trees and replacement with comparable nonash trees, or 3) treating the entire population of ash trees with insecticides to minimize mortality. For each valuation and management option, an annual analysis was performed for both the remaining ash tree population and those lost to emerald ash borer. Retention of ash trees using insecticide treatments typically retained greater urban forest value, followed by doing nothing (control), which was better than preemptive removal and replacement. Preemptive removal without tree replacement, which was the least expensive management option, also provided the lowest net urban forest value over the 20-yr simulation. A "no emerald ash borer" scenario was modeled to further serve as a benchmark for each management option and provide a level of economic justification for regulatory programs aimed at slowing the movement of emerald ash borer.

  4. Potential species replacements for black ash (Fraxinus nigra) at the confluence of two threats: Emerald ash borer and a changing climate

    Treesearch

    Louis Iverson; Kathleen S. Knight; Anantha Prasad; Daniel A. Herms; Stephen Matthews; Matthew Peters; Annemarie Smith; Diane M. Hartzler; Robert Long; John Almendinger

    2015-01-01

    The emerald ash borer (Agrilus planipennis; EAB) is causing widespread mortality of ash (Fraxinus spp.) and climate change is altering habitats of tree species throughout large portions of North America. Black ash (F. nigra), a moist-soil species common in the Northwoods of Minnesota, Wisconsin, and...

  5. Potential effects of foundation species loss on wetland communities: A case study of black ash wetlands threatened by emerald ash borer

    Treesearch

    Melissa B. Youngquist; Sue L. Eggert; Anthony W. D' Amato; Brian J. Palik; Robert A. Slesak

    2017-01-01

    The emerald ash borer (EAB; Agrilus planipennis) is an invasive beetle that causes almost complete mortality of ash trees (Fraxinus spp.) in North America and Europe. Northern temperate wetlands, where black ash (F. nigra) is a dominant and foundation species, will likely undergo dramatic shifts after EAB...

  6. Predicting the ability to produce emerald ash borer: a comparison of riparian and upland ash forests in southern lower Michigan

    Treesearch

    Susan J. Crocker; Deborah G. McCullough; Nathan W. Siegert

    2009-01-01

    Concern for the future of ash trees in the United States has risen since the 2002 discovery of emerald ash borer (EAB) (Agrilus planipennis Fairmaire) in southeastern Michigan. The ability of ash forests in the Southern Lower Peninsula of Michigan to produce EAB was compared by physiographic class and stand size. Results showed that EAB production...

  7. Effect of Rice Husk Ash Insulation Powder on the Reoxidation Behavior of Molten Steel in Continuous Casting Tundish

    NASA Astrophysics Data System (ADS)

    Kim, Tae Sung; Chung, Yongsug; Holappa, Lauri; Park, Joo Hyun

    2017-06-01

    Rice husk ash (RHA) has been widely used as an insulation powder in steel casting tundish. Its effect on the reoxidation of molten steel in tundish as well as on the corrosion of magnesia refractory was investigated. The reoxidation of the steel, indicated by an oxygen pickup, was progressed by increasing the ratio of RHA to the sum of RHA and carryover ladle slag ( R ratio) greater than about 0.2. The increase of the silica activity in the slag layer promoted the self-dissociation of SiO2 from the slag layer into the molten steel, resulting in the silicon and oxygen pickup as the R ratio increased. The total number of reoxidation inclusions dramatically increased and the relative fraction of Al2O3-rich inclusions increased by increasing the R ratio. Hence, the reoxidation of molten steel in tundish might become more serious due to the formation of alumina-rich inclusions as the casting sequence increases. MgO in the refractory directly dissolved into the molten slag layer without forming any intermediate compound layer ( e.g., spinel), which is a completely different situation from the general slag-refractory interfacial reaction. A flow was possibly induced by the bursting of gas bubbles at the ash-slag (-refractory) interface, since the silica in the RHA powder continuously dissolved into the molten slag pool. Thus, the RHA insulation powder has a negative effect on the corrosion of MgO refractory.

  8. High-MgO Vitric Ash in Upper Kulanaokuaiki Tephra, Kilauea Volcano, Hawai`i: A Preliminary Description

    NASA Astrophysics Data System (ADS)

    Rose, T. R.; Fiske, R. S.; Swanson, D.

    2011-12-01

    Small, well-formed Pele's tears containing anomalously high values of MgO were recently discovered in outcrops of the upper Kulanaokuaiki Tephra at and near the base of Uwekahuna Bluff, the western wall of Kilauea Caldera. Electron microprobe analyses of more than 60 high-MgO tears, which are 1-3 mm in diameter, show that most contain 11 to 12 wt. % MgO with a few approaching 13 % MgO. Separate microprobe analyses for sulfur and chlorine of 20 grains revealed no appreciable amounts of either, indicating the magma was largely degassed. Polished-section studies employing an analytical scanning electron microscope show most tears are composed of pure microvesicular glass with scattered skeletal olivine crystals and rare chromite. The abundance of skeletal olivine appears to increase with decreasing MgO content of the glass. These tears contain among the highest known MgO values of any material erupted subaerially from Kilauea. The high-MgO tears occur in a 1-6 cm thick layer of medium-coarse lithic-crystal-vitric ash. The top of this layer consists of 2-3 mm of very fine lithic-crystal ash. The lithics and many of the olivine crystals in this layer are highly oxidized. This deposit is at the top of a sequence of several lithic beds that are interspersed with thinner vitric units totaling about 75 cm in thickness. It is overlain by 9-13 cm of medium pumice lapilli and coarse vitric ash at the top of the "Bluff base" and "mid-Bluff" tephra sections described by Fiske et al. (2009). This high-MgO glass layer has been found thus far in only one other locality, a 2 m-deep soils study pit within Kipuka Puaulu, 3.5 km northwest of the caldera. Based upon stratigraphic relationships and preliminary microprobe data, a few other likely exposures of the high-MgO deposit have been identified north and west of the caldera. The high-MgO vitric ash in the upper Kulanaokuaiki Tephra has a primitive composition that suggests little if any shallow level storage of magma. Instead, the

  9. Comparing metabolomic profiles of Asian and North American ash species (genus Fraxinus) to investigate the basis for resistance to emerald ash borer

    Treesearch

    Darla French; Rick Meilan

    2010-01-01

    At present, North American ash (Fraxinus spp.) are under attack by the emerald ash borer (Agrilus planipennis Fairmaire; EAB), an invasive species native to eastern Asia. Interestingly, Asian ash species are comparatively resistant to this phloem-feeding insect.

  10. The Effect of Ash and Inorganic Pigment Fill on the Atomic Oxygen Erosion of Polymers and Paints (ISMSE-12)

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Simmons, Julie C.; de Groh, Kim K.; Miller, Sharon K.

    2012-01-01

    Low atomic oxygen fluence (below 1x10(exp 20) atoms/sq cm) exposure of polymers and paints that have a small ash content and/or inorganic pigment fill does not cause a significant difference in erosion yield compared to unfilled (neat) polymers or paints. However, if the ash and/or inorganic pigment content is increased, the surface population of the inorganic content will begin to occupy a significant fraction of the surface area as the atomic oxygen exposure increases because the ash is not volatile and remains as a loosely attached surface layer. This results in a reduction of the flux of atomic oxygen reacting with the polymer and a reduction in the rate of erosion of the polymer remaining. This paper presents the results of ground laboratory and low Earth orbital (LEO) investigations to evaluate the fluence dependence of atomic oxygen erosion yields of polymers and paints having inorganic fill content.

  11. Growth of larval agrilus planipennis (Coleoptera: Buprestidae) and fitness of tetrastichus planipennisi (Hymenoptera: Eulophidae) in blue ash (Fraxinus quadrangulata) and green ash (F. pennsylvanica)

    USDA-ARS?s Scientific Manuscript database

    Emerald ash borer (EAB) (Agrilus planipennis) is a primary pest of North American ash (Fraxinus spp.) trees. Blue ash (F. quadrangulata) is more resistant than other North American ash and able to survive EAB infestation. This tree may affect EAB larvae and T. planipennisi. We compared the capacity ...

  12. Multi-scale analytical investigation of fly ash in concrete

    NASA Astrophysics Data System (ADS)

    Aboustait, Mohammed B.

    Much research has been conducted to find an acceptable concrete ingredient that would act as cement replacement. One promising material is fly ash. Fly ash is a by-product from coal-fired power plants. Throughout this document work on the characterization of fly ash structure and composition will be explored. This effort was conducted through a mixture of cutting edge multi-scale analytical X-ray based techniques that use both bulk experimentation and nano/micro analytical techniques. Furtherly, this examination was coupled by performing Physical/Mechanical ASTM based testing on fly ash-enrolled-concrete to examine the effects of fly ash introduction. The most exotic of the cutting edge characterization techniques endorsed in this work uses the Nano-Computed Tomography and the Nano X-ray Fluorescence at Argonne National Laboratory to investigate single fly ash particles. Additional Work on individual fly ash particles was completed by laboratory-based Micro-Computed Tomography and Scanning Electron Microscopy. By combining the results of individual particles and bulk property tests, a compiled perspective is introduced, and accessed to try and make new insights into the reactivity of fly ash within concrete.

  13. Laboratory rearing of emerald ash borer

    Treesearch

    Leah S. Bauer; Robert A. Haack; Deborah L. Miller; Houping Liu; Toby Petrice

    2004-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), native to several Asian countries, was identified in 2002 as the cause of ash (Fraxinus spp.) mortality throughout southeastern Michigan and southwestern Ontario. More isolated infestations continue to be found throughout Lower Michigan, northern...

  14. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Ash pans. 230.69 Section 230.69 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230...

  15. Modernization of the International Volcanic Ash Website - a global resource for ashfall preparedness and impact guidance.

    NASA Astrophysics Data System (ADS)

    Wallace, K.; Leonard, G.; Stewart, C.; Wilson, T. M.; Randall, M.; Stovall, W. K.

    2015-12-01

    The internationally collaborative volcanic ash website (http://volcanoes.usgs.gov/ash/) has been an important global information resource for ashfall preparedness and impact guidance since 2004. Recent volcanic ashfalls with significant local, regional, and global impacts highlighted the need to improve the website to make it more accessible and pertinent to users worldwide. Recently, the Volcanic Ash Impacts Working Group (Cities and Volcanoes Commission of IAVCEI) redesigned and modernized the website. Improvements include 1) a database-driven back end, 2) reorganized menu navigation, 3) language translation, 4) increased downloadable content, 5) addition of ash-impact case studies, 7) expanded and updated references , 8) an image database, and 9) inclusion of cooperating organization's logos. The database-driven platform makes the website more dynamic and efficient to operate and update. New menus provide information about specific impact topics (buildings, transportation, power, health, agriculture, water and waste water, equipment and communications, clean up) and updated content has been added throughout all topics. A new "for scientists" menu includes information on ash collection and analysis. Website translation using Google translate will significantly increase user base. Printable resources (e.g. checklists, pamphlets, posters) provide information to people without Internet access. Ash impact studies are used to improve mitigation measures during future eruptions, and links to case studies will assist communities' preparation and response plans. The Case Studies menu is intended to be a living topic area, growing as new case studies are published. A database of all images from the website allows users to access larger resolution images and additional descriptive details. Logos clarify linkages among key contributors and assure users that the site is authoritative and science-based.

  16. Study on Strength Behavior of Organic Soil Stabilized with Fly Ash

    PubMed Central

    Molla, Md. Keramat Ali; Sarkar, Grytan

    2017-01-01

    The aim of this study is to investigate the effect of fly ash on the consistency, compactness, acidic properties, and strength of organic soil. The presence of organic content in the soil has detrimental impacts on the physical and strength behavior of soil. To investigate the effectiveness of fly ash in the stabilization of organic soil, two types of fly ashes (Type I and Type II) at different percentages were used. It is found that fly ash significantly reduces the plasticity index of the organic soil, whereas the liquid and plastic limits increase. The dry density of the fly ash-soil mixture increases significantly, while the water requirement reduces due to the addition of fly ash. The increase of dry density compromises higher strength. The increase of qu with the increase of fly ash content is mainly due to the pozzolanic reaction of fly ash, although the reduction in water content results from the addition of dry fly ash solid. Moreover, Type I fly ash contributes a higher value of qu compared to Type II fly ash. This is attributed to the characteristics of fly ash including CaO and CaO/SiO2 ratio. PMID:29085881

  17. Environmentally-Friendly Dense and Porous Geopolymers Using Fly Ash and Rice Husk Ash as Raw Materials

    PubMed Central

    Ziegler, Daniele; Formia, Alessandra; Tulliani, Jean-Marc; Palmero, Paola

    2016-01-01

    This paper assesses the feasibility of two industrial wastes, fly ash (FA) and rice husk ash (RHA), as raw materials for the production of geopolymeric pastes. Three typologies of samples were thus produced: (i) halloysite activated with potassium hydroxide and nanosilica, used as the reference sample (HL-S); (ii) halloysite activated with rice husk ash dissolved into KOH solution (HL-R); (iii) FA activated with the alkaline solution realized with the rice husk ash (FA-R). Dense and porous samples were produced and characterized in terms of mechanical properties and environmental impact. The flexural and compressive strength of HL-R reached about 9 and 43 MPa, respectively. On the contrary, the compressive strength of FA-R is significantly lower than the HL-R one, in spite of a comparable flexural strength being reached. However, when porous samples are concerned, FA-R shows comparable or even higher strength than HL-R. Thus, the current results show that RHA is a valuable alternative to silica nanopowder to prepare the activator solution, to be used either with calcined clay and fly ash feedstock materials. Finally, a preliminary evaluation of the global warming potential (GWP) was performed for the three investigated formulations. With the mix containing FA and RHA-based silica solution, a reduction of about 90% of GWP was achieved with respect to the values obtained for the reference formulation. PMID:28773587

  18. Removal of chloride from MSWI fly ash.

    PubMed

    Chen, Wei-Sheng; Chang, Fang-Chih; Shen, Yun-Hwei; Tsai, Min-Shing; Ko, Chun-Han

    2012-10-30

    The high levels of alkali chloride and soluble metal salts present in MSWI fly ash is worth noting for their impact on the environment. In addition, the recycling or reuse of fly ash has become an issue because of limited landfill space. The chloride content in fly ash limits its application as basis for construction materials. Water-soluble chlorides such as potassium chloride (KCl), sodium chloride (NaCl), and calcium chloride hydrate (CaCl(2) · 2H(2)O) in fly ash are easily washed away. However, calcium chloride hydroxide (Ca(OH)Cl) might not be easy to leach away at room temperature. The roasting and washing-flushing processes were applied to remove chloride content in this study. Additionally, air and CO(2) were introduced into the washing process to neutralize the hazardous nature of chlorides. In comparison with the water flushing process, the roasting process is more efficient in reducing the process of solid-liquid separation and drying for the reuse of Cl-removed fly ash particles. In several roasting experiments, the removal of chloride content from fly ash at 1050°C for 3h showed the best results (83% chloride removal efficiency). At a solid to liquid ratio of 1:10 the water-flushing process can almost totally remove water-soluble chloride (97% chloride removal efficiency). Analyses of mineralogical change also prove the efficiency of the fly ash roasting and washing mechanisms for chloride removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Assessment of compost application to coal ash disposal sites to promote the rapid vegetation establishment

    NASA Astrophysics Data System (ADS)

    Repmann, F.; Slazak, A.; Babic, M.; Schneider, B. U.; Schaaf, W.; Hüttl, R. F.

    2009-04-01

    In the city of Tuzla, located in Bosnia and Herzegovina, a coal fired thermo electric power plant is operated by the company JP ELEKTROPRIVERDA BIH TERMOELEKTRANA "TUZLA". High amounts of ash are produced by the power plant, which are currently disposed into settlement ponds bordered by dams in natural valleys. A total of four ash disposal sites covering an area of approx. 170 ha have been established during the last decades. Due to the fact that residual ash from coal combustion was found to contain a variety of trace elements (Ni, Cr, As, B), it must be assumed that ash disposal of that magnitude constitutes an environmental problem which is investigated within the EU-FP6 / STREP project "Reintegration of Coal Ash Disposal Sites and Mitigation of Pollution in the West Balkan Area" RECOAL. The main hazards relate to soil and groundwater contamination due to leaching toxins, dust dispersion, and toxins entering the food chain as these disposal sites are used for agricultural purposes. In order to rapidly establish a vegetation cover on barren ash dumps that particularly would prevent dust erosion we assessed the applicability of compost, produced from locally available municipal and industrial organic residues as an amendment to ash to improve substrate fertility. The envisaged remediation technology was considered to be a low cost, easy applicable and rapid method capable of substantially enhancing living conditions of residents in the vicinity of the abandoned disposal sites. Various compost application rates were evaluated in the field on experimental site Divkovici I in Tuzla and additionally in the greenhouse environment at Brandenburg Technical University Cottbus. Field and laboratory tests revealed that plant growth and cover rate can substantially be improved by mixing compost into the upper ash layer to a maximum depth of approx. 20 cm. Besides direct growth observations in the field analysis of soil parameters gave evidence that the fertility of ashy

  20. The use of shale ash in dry mix construction materials

    NASA Astrophysics Data System (ADS)

    Gulbe, L.; Setina, J.; Juhnevica, I.

    2017-10-01

    The research was made to determine the use of shale ash usage in dry mix construction materials by replacing part of cement amount. Cement mortar ZM produced by SIA Sakret and two types of shale ashes from Narva Power plant (cyclone ash and electrostatic precipitator ash) were used. Fresh mortar properties, hardened mortar bulk density, thermal conductivity (λ10, dry) (table value) were tested in mortar ZM samples and mortar samples in which 20% of the amount of cement was replaced by ash. Compressive strenght, frost resistance and resistance to sulphate salt solutions were checked. It was stated that the use of electrostatic precipitator ash had a little change of the material properties, but the cyclone ash significantly reduced the mechanical strength of the material.

  1. Laboratory bioassay of emerald ash borer adults with a Bacillus thuringiensis formulation sprayed on ash leaves

    Treesearch

    Leah S. Bauer; Deborah L. Miller; Diana. Londono

    2011-01-01

    The emerald ash borer (EAB) (Agrilus planipennis), a buprestid native to Asia that feeds on ash trees (Fraxinus spp.), was discovered in southeast Michigan and nearby Ontario in 2002. It apparently arrived in the 1990's via infested solid-wood packing materials from China. As of 2011, areas considered generally infested with...

  2. Effect of the addition of by-product ash of date palms on the mechanical characteristics of gypsum-calcareous materials used in road construction

    NASA Astrophysics Data System (ADS)

    Khellou, A.; Kriker, A.; Hafssi, A.; Belbarka, K.; Baali, K.

    2016-07-01

    The gypsum-calcareous materials, also known as the crusting tuff, are used in the pavement layers of low -traffic road and considered as the materials of first choice in the Saharan region of Algeria. The objective of this paper is to study the mechanical characteristics of tuff of Ouargla town that is situated in the Southeast of Algeria, by adding different percentage of ash resulted from the combustion of by-products of date palms, such as 4%, 8% and l2%, to the tuff. The results obtained have shown a remarkable improvement both in compressive strength at different ages and in the bearing index in the two cases immediate and after immersion in water. These characteristics of the mixture (tuff+ash) reach their maximum values at the 8% of ash addition.

  3. STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Hurt; Eric Suuberg; John Veranth

    2002-09-10

    The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity; and (3) the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. During this fourthmore » project period we completed the characterization of ozone-treated carbon surfaces and wrote a comprehensive report on the mechanism through which ozone suppresses the adsorption of concrete surfactants.« less

  4. Stream Water, Carbon and Total Nitrogen Load Responses to a Simulated Emerald Ash Borer Infestation in Black Ash Dominated Headwater Wetlands

    NASA Astrophysics Data System (ADS)

    Van Grinsven, M. J.; Shannon, J.; Noh, N. J.; Kane, E. S.; Bolton, N. W.; Davis, J.; Wagenbrenner, J.; Sebestyen, S. D.; Kolka, R.; Pypker, T. G.

    2017-12-01

    The rapid and extensive expansion of emerald ash borer (EAB) is considered an important ecological and economic disturbance, and will likely affect critical ecosystem services associated with black ash wetlands. It is unknown how EAB-induced disturbance in wetlands dominated with black ash will impact stream water, dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) export dynamics. We hypothesized that loads of water, DOC and TDN exported from black ash wetlands would be elevated following an EAB-induced disturbance. Stream water, DOC and TDN loads exiting two black ash wetlands in headwater watersheds in Michigan were quantified over a four-year period, and were combined with wetland soil temperature and soil decomposition rate monitoring to better understand the biogeochemical implications of an EAB-induced disturbance. After a two-year baseline monitoring period, an EAB disturbance was simulated by felling (ash-cut) all black ash trees with diameters greater than 2.5-cm in one wetland. When compared to the unaltered control, stream water DOC and TDN concentrations exiting the ash-cut wetland were significantly larger by 39% and 38%, respectively during the post-treatment study period. The significantly elevated DOC and TDN concentrations were likely associated with the higher soil temperatures and increased rates of soil decomposition detected in the ash-cut site during the post-treatment period. No significant mean daily stream discharge differences were detected between treatments during the pre-treatment period, however the 0.46 mm d-1 mean daily stream discharge exiting the ash-cut wetland was significantly smaller than the 1.07 mm d-1 exiting the unaltered control during the post-treatment study period. The significantly smaller daily stream discharge in the ash-cut site likely contributed to the fact no significant differences between treatments for either mean daily DOC loads or TDN loads were detected during the post-treatment period

  5. Mineralogy, chemical composition, and microstructure of ferrospheres in fly ashes from coal combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yongchun Zhao; Junying Zhang; Junmin Sun

    2006-08-15

    Fourteen samples of coal and ferrospheres, which were recovered by dry magnetic separation from fly ashes, were collected from five power plants in China. The mineralogy, chemical composition, and microstructure of ferrospheres in fly ashes have been studied by optical microscopy, X-ray diffraction (XRD), Moessbauer spectroscopy, and field emission scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (FSEM-EDX). Iron in ferrospheres mainly occurs as Fe{sub 3}O{sub 4}, {alpha}Fe{sub 2}O{sub 3}, {gamma}Fe{sub 2}O{sub 3}, MgFe{sub 2}O{sub 4}, and Fe{sup 3+}-glass, ferrian spinel, and so on. On the basis of iron content, the ferrospheres in fly ashes are classified into four groups,more » namely ferrooxides, aluminosilicate-bearing ferrooxides, high-ferriferous aluminosilicates, and ferroaluminosilicates . Ferrooxides are derived from the oxidation of iron-bearing minerals, whereas aluminosilicate-bearing ferrooxides, high-ferriferous aluminosilicates, and ferroaluminosilicates are formed by the fusion of different proportions of inherent iron-bearing minerals and clay minerals. According to their microstructure, the ferrospheres in fly ashes are classified into seven groups, namely sheet ferrospheres, dendritic ferrospheres, granular ferrospheres, smooth ferrospheres, ferroplerospheres, porous ferrospheres, and molten drop ferrospheres. Sheet ferrospheres are derived from the oxidation of iron-bearing minerals immediately; smooth ferrospheres, molten drop ferrospheres, ferroplerospheres, and porous ferrospheres are the complex eutectic of inherent iron-bearing minerals and clay minerals; dendritic ferrospheres and granular ferrospheres are formed by the conglutination after the oxidation of iron-bearing minerals. Ferrooxides and aluminosilicate-bearing ferrooxides are important sources of the initial layer that occurs in deposits formed in coal-burning systems. 78 refs., 11 figs., 4 tabs.« less

  6. Treatment of fly ash from power plants using thermal plasma.

    PubMed

    Al-Mayman, Sulaiman; AlShunaifi, Ibrahim; Albeladi, Abdullah; Ghiloufi, Imed; Binjuwair, Saud

    2017-01-01

    Fly ash from power plants is very toxic because it contains heavy metals. In this study fly ash was treated with a thermal plasma. Before their treatment, the fly ash was analyzed by many technics such as X-ray fluorescence, CHN elemental analysis, inductively coupled plasma atomic emission spectroscopy and scanning electron microscopy. With these technics, the composition, the chemical and physical proprieties of fly ash are determined. The results obtained by these analysis show that fly ash is mainly composed of carbon, and it contains also sulfur and metals such as V, Ca, Mg, Na, Fe, Ni, and Rh. The scanning electron microscopy analysis shows that fly ash particles are porous and have very irregular shapes with particle sizes of 20-50 μm. The treatment of fly ash was carried out in a plasma reactor and in two steps. In the first step, fly ash was treated in a pyrolysis/combustion plasma system to reduce the fraction of carbon. In the second step, the product obtained by the combustion of fly ash was vitrified in a plasma furnace. The leaching results show that the fly ash was detoxified by plasma vitrification and the produced slag is amorphous and glassy.

  7. Treatment of fly ash from power plants using thermal plasma

    PubMed Central

    Al-Mayman, Sulaiman; AlShunaifi, Ibrahim; Albeladi, Abdullah; Binjuwair, Saud

    2017-01-01

    Fly ash from power plants is very toxic because it contains heavy metals. In this study fly ash was treated with a thermal plasma. Before their treatment, the fly ash was analyzed by many technics such as X-ray fluorescence, CHN elemental analysis, inductively coupled plasma atomic emission spectroscopy and scanning electron microscopy. With these technics, the composition, the chemical and physical proprieties of fly ash are determined. The results obtained by these analysis show that fly ash is mainly composed of carbon, and it contains also sulfur and metals such as V, Ca, Mg, Na, Fe, Ni, and Rh. The scanning electron microscopy analysis shows that fly ash particles are porous and have very irregular shapes with particle sizes of 20–50 μm. The treatment of fly ash was carried out in a plasma reactor and in two steps. In the first step, fly ash was treated in a pyrolysis/combustion plasma system to reduce the fraction of carbon. In the second step, the product obtained by the combustion of fly ash was vitrified in a plasma furnace. The leaching results show that the fly ash was detoxified by plasma vitrification and the produced slag is amorphous and glassy. PMID:28546898

  8. How yield relates to ash content, Δ13C and Δ18O in maize grown under different water regimes

    PubMed Central

    Cabrera-Bosquet, Llorenç; Sánchez, Ciro; Araus, José Luis

    2009-01-01

    Background and Aims Stable isotopes have proved a valuable phenotyping tool when breeding for yield potential and drought adaptation; however, the cost and technical skills involved in isotope analysis limit its large-scale application in breeding programmes. This is particularly so for Δ18O despite the potential relevance of this trait in C4 crops. The accumulation of minerals (measured as ash content) has been proposed as an inexpensive way to evaluate drought adaptation and yield in C3 cereals, but little is known of the usefulness of this measure in C4 cereals such as maize (Zea mays). The present study investigates how yield relates to ash content, Δ13C and Δ18O, and evaluates the use of ash content as an alternative or complementary criterion to stable isotopes in assessing yield potential and drought resistance in maize. Methods A set of tropical maize hybrids developed by CIMMYT were subjected to different water availabilities, in order to induce water stress during the reproductive stages under field conditions. Ash content and Δ13C were determined in leaves and kernels. In addition, Δ18O was measured in kernels. Key Results Water regime significantly affected yield, ash content and stable isotopes. The results revealed a close relationship between ash content in leaves and the traits informing about plant water status. Ash content in kernels appeared to reflect differences in sink–source balance. Genotypic variation in grain yield was mainly explained by the combination of ash content and Δ18O, whilst Δ13C did not explain a significant percentage of such variation. Conclusions Ash content in leaves and kernels proved a useful alternative or complementary criterion to Δ18O in kernels for assessing yield performance in maize grown under drought conditions. PMID:19773272

  9. Ash bed level control system for a fixed-bed coal gasifier

    DOEpatents

    Fasching, George E.; Rotunda, John R.

    1984-01-01

    An ash level control system is provided which incorporates an ash level meter to automatically control the ash bed level of a coal gasifier at a selected level. The ash level signal from the ash level meter is updated during each cycle that a bed stirrer travels up and down through the extent of the ash bed level. The ash level signal is derived from temperature measurements made by thermocouples carried by the stirrer as it passes through the ash bed and into the fire zone immediately above the ash bed. The level signal is compared with selected threshold level signal to determine if the ash level is above or below the selected level once each stirrer cycle. A first counter is either incremented or decremented accordingly. The registered count of the first counter is preset in a down counter once each cycle and the preset count is counted down at a selected clock rate. A grate drive is activated to rotate a grate assembly supporting the ash bed for a period equal to the count down period to maintain the selected ash bed level. In order to avoid grate binding, the controller provides a short base operating duration time each stirrer cycle. If the ash bed level drops below a selected low level or exceeds a selected high level, means are provided to notify the operator.

  10. Study on the Volatility of Cesium in Dry Ashing Pretreatment and Dissolution of Ash by Microwave Digestion System - 13331

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Kwang-Soon; Lee, Chang Heon; Ahn, Hong-Joo

    2013-07-01

    Based on the regulation of the activity concentration of Cs-137, Co-58, Co-60, Fe-55, Ni-59, Ni-63, Sr-90, Nb-94, and Tc-99, and the total alpha from the radioactive waste acceptance criteria, the measurement of the activity concentration of these nuclides in low and intermediate levels of radioactive waste such as in paper, cotton, vinyl and plastic samples was investigated. A dry ashing method was applied to obtain a concentration effect of the samples. Owing to the temperature dependence of the volatility for cesium, the temperature of 300 to 650 deg. C was examined. It was found that 450 deg. C is themore » optimum dry ashing temperature. After dry ashing, the produced ash was dissolved with HNO{sub 3}, HCl, and HF by a high-performance microwave digestion system. The ash sample, for the most part, was completely dissolved with 10 mL of HNO{sub 3}, 4 mL of HCl, and 0.25 mL of HF by a high-performance microwave digestion system using a nova high temperature rotor at 250 deg. C for 90 min until reaching 0.2 g. To confirm the reliability of cesium loss after the performance of the dry ashing procedure, a cesium standard solution for AAS and a Cs-137 standard solution for gamma spectrometry were added to a paper towel or a planchet of stainless steel, respectively. Cesium was measured by AAS, ICP-MS, and gamma spectrometry. The volatility of cesium did not occur until 450 deg. C ashing. (authors)« less

  11. Validation of the FALL3D ash dispersion model using observations of the 2010 Eyjafjallajökull volcanic ash clouds

    NASA Astrophysics Data System (ADS)

    Folch, A.; Costa, A.; Basart, S.

    2012-03-01

    During April-May 2010 volcanic ash clouds from the Icelandic Eyjafjallajökull volcano reached Europe causing an unprecedented disruption of the EUR/NAT region airspace. Civil aviation authorities banned all flight operations because of the threat posed by volcanic ash to modern turbine aircraft. New quantitative airborne ash mass concentration thresholds, still under discussion, were adopted for discerning regions contaminated by ash. This has implications for ash dispersal models routinely used to forecast the evolution of ash clouds. In this new context, quantitative model validation and assessment of the accuracies of current state-of-the-art models is of paramount importance. The passage of volcanic ash clouds over central Europe, a territory hosting a dense network of meteorological and air quality observatories, generated a quantity of observations unusual for volcanic clouds. From the ground, the cloud was observed by aerosol lidars, lidar ceilometers, sun photometers, other remote-sensing instruments and in-situ collectors. From the air, sondes and multiple aircraft measurements also took extremely valuable in-situ and remote-sensing measurements. These measurements constitute an excellent database for model validation. Here we validate the FALL3D ash dispersal model by comparing model results with ground and airplane-based measurements obtained during the initial 14-23 April 2010 Eyjafjallajökull explosive phase. We run the model at high spatial resolution using as input hourly-averaged observed heights of the eruption column and the total grain size distribution reconstructed from field observations. Model results are then compared against remote ground-based and in-situ aircraft-based measurements, including lidar ceilometers from the German Meteorological Service, aerosol lidars and sun photometers from EARLINET and AERONET networks, and flight missions of the German DLR Falcon aircraft. We find good quantitative agreement, with an error similar to

  12. STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Hurt; Eric Suuberg; John Veranth

    2004-02-13

    The overall objective of the present project was to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific issues addressed included: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity based on pilot-plant studies; and (3) the kinetics and mechanism of ash ozonation. This laboratory data has provided scientific and engineering support and underpinning for parallel process development activities.more » The development work on the ash ozonation process has now transitioned into a scale-up and commercialization project involving a multi-industry team and scheduled to begin in 2004. This report describes and documents the laboratory and pilot-scale work in the above three areas done at Brown University and the University of Utah during this three-year project.« less

  13. Relationship between textural properties, fly ash carbons, and Hg capture in fly ashes derived from the combustion of anthracitic pulverized feed blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isabel Surez-Ruiz; Jose B. Parra

    2007-08-15

    In this work, the textural properties of a series of whole anthracitic-derived fly ashes sampled in eight hoppers from the electrostatic precipitators and their sized fractions (from {gt}150 to {lt}25 {mu}m) are investigated. Data from N{sub 2} adsorption isotherms at 77 K, helium density, and mercury porosimetry have contributed to establish a relationship between the Brunauer-Emmett-Teller (BET) surface areas, VTOT, porosity, carbon content (the type of fly ash carbons), and Hg retention in these fly ashes. The unburned carbons in these ashes are macroporous materials, and they are different from the carbons in fly ashes from classes C and Fmore » (the latter derived from the combustion of bituminous coals) and show different textural properties. These ashes represent the end member of the fly ash classes C and F with respect to certain textural properties. Although the BET surface area and VTOT values for the studied samples are the lowest reported, they increase with the increase in carbon content, anisotropic carbon content, and particle size of the ashes. Thus, a positive relationship between all these parameters and Hg capture by the coarser ash fractions was found. The finest fraction of carbons ({lt}25 {mu}m) represented an exception. Although it makes a significant contribution to the total carbon of the whole fly ashes and shows relatively higher surface areas and VTOT values, its Hg concentration was found to be the lowest. This suggests that the type of unburned carbons in the finest fraction and/or other adsorption mechanisms may play a role in Hg concentration. Because the textural properties of anisotropic carbons depend on their subtype and on their origin, the need for its differentiation has been evidenced. 54 refs., 8 figs., 3 tabs.« less

  14. Investigation of polycyclic aromatic hydrocarbon content in fly ash and bottom ash of biomass incineration plants in relation to the operating temperature and unburned carbon content.

    PubMed

    Košnář, Zdeněk; Mercl, Filip; Perná, Ivana; Tlustoš, Pavel

    2016-09-01

    The use of biomass fuels in incineration power plants is increasing worldwide. The produced ashes may pose a serious threat to the environment due to the presence of polycyclic aromatic hydrocarbons (PAHs), because some PAHs are potent carcinogens, mutagens and teratogens. The objective of this study was to investigate the content of total and individual PAHs in fly and bottom ash derived from incineration of phytomass and dendromass, because the data on PAH content in biomass ashes is limited. Various operating temperatures of incineration were examined and the relationship between total PAH content and unburned carbon in ashes was also considered. The analysis of PAHs was carried out in fly and bottom ash samples collected from various biomass incineration plants. PAH determination was performed using gas chromatography coupled with mass spectrometry. The correlations between the low, medium and high molecular weight PAHs and each other in ashes were conducted. The relationship between PAH content and unburned carbon, determined as a loss on ignition (L.O.I.) in biomass ashes, was performed using regression analysis. The PAH content in biomass ashes varied from 41.1±1.8 to 53,800.9±13,818.4ng/g dw. This variation may be explained by the differences in boiler operating conditions and biomass fuel composition. The correlation coefficients for PAHs in ash ranged from 0.8025 to 0.9790. The regression models were designed and the coefficients of determination varied from 0.908 to 0.980. The PAH content in ash varied widely with fuel type and the effect of operating temperature on PAH content in ash was evident. Fly ashes contained higher amounts of PAHs than bottom ashes. The low molecular weight PAHs prevailed in tested ashes. The exponential relationship between the PAH content and L.O.I. for fly ashes and the linear for bottom ashes was observed. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Remobilisation of industrial lead depositions in ash during Australian wildfires.

    PubMed

    Wu, Liqin; Taylor, Mark Patrick; Handley, Heather K

    2017-12-01

    This study examined the recycling of lead (Pb) in ash from wildfires, its source and potential contribution to environmental contamination. Ash from wildfires was collected from four Australian sites following uncontrolled fires during 2012 to 2013 close to major urban populations in Sydney (New South Wales), Hobart (Tasmania) and Adelaide (South Australia). The samples were analysed for their total Pb concentration and Pb isotopic composition to determine the sources of Pb and the extent, if any, of industrial contamination and its recycling into the ecosystem. Median ash concentrations (23mg/kg) released from a wildfire close to Australia's largest city, Sydney, exceeded the median ash Pb concentrations from wildfires from the less populated locations of Hobart, Adelaide and NSW Central Coast. Lead isotopic compositions of Duffys Forest wildfire ash demonstrate that anthropogenic inputs from legacy leaded petrol depositions were the predominant source of contamination. Despite the cessation of leaded petrol use in Australia in 2002, historic petrol Pb deposits continue to be a substantial source of contamination in ash: petrol Pb contributed 35% of the Pb in the Woy Woy ash, 73% in Duffys Forest ash, 39% in Forcett ash and 5% in Cherryville ash. The remobilisation of legacy industrial Pb depositions by wildfires in ash results in it being a persistent and problematic contaminant in contemporary environmental systems because of its known toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Biology of emerald ash borer parasitoids

    Treesearch

    Leah S. Bauer; Jian J. Duan; Jonathan P. Lelito; Houping Liu; Juli R. Gould

    2015-01-01

    The emerald ash borer (EAB) (Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), an invasive beetle introduced from China (Bray et al., 2011), was identified as the cause of ash (Fraxinus spp.) mortality in southeast Michigan and nearby Ontario in 2002 (Haack et al., 2002; Federal Register, 2003; Cappaert et al., 2005)....

  17. In-situ observations of Eyjafjallajökull ash particles by hot-air balloon

    NASA Astrophysics Data System (ADS)

    Petäjä, T.; Laakso, L.; Grönholm, T.; Launiainen, S.; Evele-Peltoniemi, I.; Virkkula, A.; Leskinen, A.; Backman, J.; Manninen, H. E.; Sipilä, M.; Haapanala, S.; Hämeri, K.; Vanhala, E.; Tuomi, T.; Paatero, J.; Aurela, M.; Hakola, H.; Makkonen, U.; Hellén, H.; Hillamo, R.; Vira, J.; Prank, M.; Sofiev, M.; Siitari-Kauppi, M.; Laaksonen, A.; lehtinen, K. E. J.; Kulmala, M.; Viisanen, Y.; Kerminen, V.-M.

    2012-03-01

    The volcanic ash cloud from Eyjafjallajökull volcanic eruption seriously distracted aviation in Europe. Due to the flight ban, there were only few in-situ measurements of the properties and dispersion of the ash cloud. In this study we show in-situ observations onboard a hot air balloon conducted in Central Finland together with regional dispersion modelling with SILAM-model during the eruption. The modeled and measured mass concentrations were in a qualitative agreement but the exact elevation of the layer was slightly distorted. Some of this discrepancy can be attributed to the uncertainty in the initial emission height and strength. The observed maximum mass concentration varied between 12 and 18 μg m -3 assuming a density of 2 g m -3, whereas the gravimetric analysis of the integrated column showed a maximum of 45 μg m -3 during the first two descents through the ash plume. Ion chromatography data indicated that a large fraction of the mass was insoluble to water, which is in qualitative agreement with single particle X-ray analysis. A majority of the super-micron particles contained Si, Al, Fe, K, Na, Ca, Ti, S, Zn and Cr, which are indicative for basalt-type rock material. The number concentration profiles indicated that there was secondary production of particles possibly from volcano-emitted sulfur dioxide oxidized to sulfuric acid during the transport.

  18. Effects of trap type, placement and ash distribution on emerald ash borer captures in a low density site.

    PubMed

    McCullough, Deborah G; Siegert, Nathan W; Poland, Therese M; Pierce, Steven J; Ahn, Su Zie

    2011-10-01

    Effective methods for early detection of newly established, low density emerald ash borer (Agrilus planipennis Fairmaire) infestations are critically needed in North America. We assessed adult A. planipennis captures on four types of traps in a 16-ha site in central Michigan. The site was divided into 16 blocks, each comprised of four 50- by 50-m cells. Green ash trees (Fraxinus pennsylvanica Marshall) were inventoried by diameter class and ash phloem area was estimated for each cell. One trap type was randomly assigned to each cell in each block. Because initial sampling showed that A. planipennis density was extremely low, infested ash logs were introduced into the center of the site. In total, 87 beetles were captured during the summer. Purple double-decker traps baited with a blend of ash leaf volatiles, Manuka oil, and ethanol captured 65% of all A. planipennis beetles. Similarly baited, green double-decker traps captured 18% of the beetles, whereas sticky bands on girdled trees captured 11% of the beetles. Purple traps baited with Manuka oil and suspended in the canopies of live ash trees captured only 5% of the beetles. At least one beetle was captured on 81% of the purple double-decker traps, 56% of the green double-decker traps, 42% of sticky bands, and 25% of the canopy traps. Abundance of ash phloem near traps had no effect on captures and trap location and sun exposure had only weak effects on captures. Twelve girdled and 29 nongirdled trees were felled and sampled in winter. Current-year larvae were present in 100% of the girdled trees and 72% of the nongirdled trees, but larval density was five times higher on girdled than nongirdled trees.

  19. SLAM: A multi-agency pilot project to SL.ow A.sh M.ortality caused by emerald ash borer in outlier sites

    Treesearch

    Therese M. Poland; Deborah G. McCullough

    2010-01-01

    Since its discovery in southeast Michigan in 2002, the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has continued to spread and kill ash (Fraxinus) trees at an alarming rate. As of February 2010, EAB has killed tens of millions of ash trees in Michigan, at least 12 additional U.S. states, and the...

  20. COAL-FIRED POWER PLANT ASH UTILIZATION IN THE TVA REGION

    EPA Science Inventory

    The report gives results of a study: (1) to summarize (a) production of coal ash nationally and by TVA's 12 major ash-producing steam/electric power plants, and (b) the physical/chemical characteristics of coal ash that affect ash disposal and/or use; (2) to review reported metho...

  1. Meteorological Controls on Local and Regional Volcanic Ash Dispersal.

    PubMed

    Poulidis, Alexandros P; Phillips, Jeremy C; Renfrew, Ian A; Barclay, Jenni; Hogg, Andrew; Jenkins, Susanna F; Robertson, Richard; Pyle, David M

    2018-05-02

    Volcanic ash has the capacity to impact human health, livestock, crops and infrastructure, including international air traffic. For recent major eruptions, information on the volcanic ash plume has been combined with relatively coarse-resolution meteorological model output to provide simulations of regional ash dispersal, with reasonable success on the scale of hundreds of kilometres. However, to predict and mitigate these impacts locally, significant improvements in modelling capability are required. Here, we present results from a dynamic meteorological-ash-dispersion model configured with sufficient resolution to represent local topographic and convectively-forced flows. We focus on an archetypal volcanic setting, Soufrière, St Vincent, and use the exceptional historical records of the 1902 and 1979 eruptions to challenge our simulations. We find that the evolution and characteristics of ash deposition on St Vincent and nearby islands can be accurately simulated when the wind shear associated with the trade wind inversion and topographically-forced flows are represented. The wind shear plays a primary role and topographic flows a secondary role on ash distribution on local to regional scales. We propose a new explanation for the downwind ash deposition maxima, commonly observed in volcanic eruptions, as resulting from the detailed forcing of mesoscale meteorology on the ash plume.

  2. Thermal properties and unfrozen water content of frozen volcanic ash as a modelling input parameters in mountainous volcanic areas

    NASA Astrophysics Data System (ADS)

    Kuznetsova, E.

    2016-12-01

    Volcanic eruptions are one of the major causes of the burial of ice and snow in volcanic areas. This has been demonstrated on volcanoes, e.g. in Iceland, Russia, USA and Chile, where the combination of a permafrost-favorable climate and a thin layer of tephra is sufficient to reduce the sub-tephra layer snow ablation substantially, even to zero, causing ground ice formation and permafrost aggradation. Many numerical models that have been used to investigate and predict the evolution of cold regions as the result of climatic changes are lacking the accurate data of the thermal properties —thermal conductivity, heat capacity, thermal diffusivity—of soils or debris layers involved. The angular shape of the fragments that make up ash and scoria makes it inappropriate to apply existing models to estimate bulk thermal conductivity. The lack of experimental data on the thermal conductivity of volcanic deposits will hinder the development of realistic models. The decreasing thermal conductivity of volcanic ash in the frozen state is associated with the development and presence of unfrozen water films that may have a direct mechanical impact on the movement or slippage between ice and particle, and thus, change the stress transfer. This becomes particularly significant during periods of climate change when enhanced temperatures and associated melting could weaken polythermal glaciers and affect areas with warm and discontinuous permafrost, and induce ice or land movements, perhaps on a catastrophic scale. In the presentation, we will summarize existing data regarding: (i) the thermal properties and unfrozen water content in frozen volcanic ash and cinder, (ii) the effects of cold temperatures on weathering processes of volcanic glass, (iii) the relationship between the mineralogy of frozen volcanic deposits and their thermal properties —and then discusses their significance in relation to the numerical modelling of glaciers and permafrost's thermal behavior.

  3. Emerald Ash Borer Threat Reveals Ecohydrologic Feedbacks in Northern U.S. Black Ash Wetlands

    NASA Astrophysics Data System (ADS)

    Diamond, J.; Mclaughlin, D. L.; Slesak, R.

    2016-12-01

    Hydrology is a primary driver of wetland structure and process that can be modified by abiotic and biotic feedbacks, leading to self-organization of wetland systems. Large-scale disturbance to these feedbacks, such as loss of vegetation, can thus be expected to impact wetland hydrology. The Emerald Ash Borer is an invasive beetle that is expected to cause widespread-loss of ash trees throughout the northern U.S. and Canada. To predict ecosystem response to this threat of vegetation loss, we ask if and how Black Ash (Fraxinus nigra), a ubiquitous facultative-wetland ash species, actively controls wetland hydrology to determine if Black Ash creates favorable hydrologic regimes for growth (i.e., evidence for ecohydrologic feedbacks). We do this by taking advantage of plot-level tree removal experiments in Black Ash-dominated (75-100% basal area) wetlands in the Chippewa National Forest, Minnesota. The monospecies dominance in these systems minimizes variation associated with species-specific effects, allowing for clearer interpretation of results regarding ecohydrologic feedbacks. Here, we present an analysis of six years of water table and soil moisture time series in experimental plots with the following treatments: 1) clear cut, 2) girdling, 3) group-selection thinning, and 4) control. We also present evapotranspiration (ET) time series estimates for each experimental plot using analysis of diel water level variation. Results show elevated water tables in treatment plots relative to control plots for all treatments for several years after treatments were applied, with differences as great as 50 cm. Some recovery of water table to pre-treatment levels was observed over time, but only the group-selection thinning treatment showed near-complete recovery to pre-treatment levels, and clear-cut treatments indicate sustained elevated water tables over five years. Differences among treatments are directly attributed to variably reduced ET relative to controls. Results also

  4. Flue gas desulfurization gypsum and fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-05-01

    The Cumberland Fossil Plant (CUF) is located in Stewart County, Tennessee, and began commercial operation in 1972. This is the Tennessee Valley Authority`s newest fossil (coal-burning) steam electric generating plant. Under current operating conditions, the plant burns approximately seven million tons of coal annually. By-products from the combustion of coal are fly ash, approximately 428,000 tons annually, and bottom ash, approximately 115,000 tons annually. Based on historical load and projected ash production rates, a study was initially undertaken to identify feasible alternatives for marketing, utilization and disposal of ash by-products. The preferred alternative to ensure that facilities are planned formore » all by-products which will potentially be generated at CUF is to plan facilities to handle wet FGD gypsum and dry fly ash. A number of different sites were evaluated for their suitability for development as FGD gypsum and ash storage facilities. LAW Engineering was contracted to conduct onsite explorations of sites to develop information on the general mature of subsurface soil, rock and groundwater conditions in the site areas. Surveys were also conducted on each site to assess the presence of endangered and threatened species, wetlands and floodplains, archaeological and cultural resources, prime farmland and other site characteristics which must be considered from an environmental perspective.« less

  5. Assessing fly ash treatment: remediation and stabilization of heavy metals.

    PubMed

    Lima, A T; Ottosen, Lisbeth M; Ribeiro, Alexandra B

    2012-03-01

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Use of Biomass Ash as a stabilization agent for expansive marly soils (SE Spain)

    NASA Astrophysics Data System (ADS)

    Ureña, C.; Azañón, J. M.; Caro, J. M.; Irigaray, C.; Corpas, F.; Ramirez, A.; Rivas, F.; Salazar, L. M.; Mochón, I.

    2012-04-01

    environment which, as reviewed literature points out, helps to the development of pozzolanic reactions and stabilization process. Finally, XRD tests indicated a sharp decrease in the intensity of reflection of the Smectite peak, suggesting a reduction in the amount of this expansive mineral in treated soils. This positive and durable effect may be related to cation exchange from Na+ to smaller cations or even the formation of mixed-layered clay minerals. A further research must be conducted to determine the pozzolanic properties of biomass ash (i.e., its suitability for concrete composites), the optimum dosages, etc. The further research is also necessary to better understand the mineralogy changes occurred within the crystalline structure. Nevertheless, these first results let us infer that biomass ash from power plants has a high capacity to enhance mechanical properties of expansive soils. Given the widespread use of biomass in industry today, the secondary use of biomass ash might improve the sustainability and efficiency of the biomass generation, incineration and waste management process.

  7. Optimization of soil stabilization with class C fly ash.

    DOT National Transportation Integrated Search

    1987-01-01

    Previous Iowa DOT sponsored research has shown that some Class : C fly ashes are cementitious (because calcium is combined as calcium : aluminates) while other Class C ashes containing similar amounts of : elemental calcium are not (1). Fly ashes fro...

  8. Volcanic ash modeling with the NMMB-MONARCH-ASH model: quantification of offline modeling errors

    NASA Astrophysics Data System (ADS)

    Marti, Alejandro; Folch, Arnau

    2018-03-01

    Volcanic ash modeling systems are used to simulate the atmospheric dispersion of volcanic ash and to generate forecasts that quantify the impacts from volcanic eruptions on infrastructures, air quality, aviation, and climate. The efficiency of response and mitigation actions is directly associated with the accuracy of the volcanic ash cloud detection and modeling systems. Operational forecasts build on offline coupled modeling systems in which meteorological variables are updated at the specified coupling intervals. Despite the concerns from other communities regarding the accuracy of this strategy, the quantification of the systematic errors and shortcomings associated with the offline modeling systems has received no attention. This paper employs the NMMB-MONARCH-ASH model to quantify these errors by employing different quantitative and categorical evaluation scores. The skills of the offline coupling strategy are compared against those from an online forecast considered to be the best estimate of the true outcome. Case studies are considered for a synthetic eruption with constant eruption source parameters and for two historical events, which suitably illustrate the severe aviation disruptive effects of European (2010 Eyjafjallajökull) and South American (2011 Cordón Caulle) volcanic eruptions. Evaluation scores indicate that systematic errors due to the offline modeling are of the same order of magnitude as those associated with the source term uncertainties. In particular, traditional offline forecasts employed in operational model setups can result in significant uncertainties, failing to reproduce, in the worst cases, up to 45-70 % of the ash cloud of an online forecast. These inconsistencies are anticipated to be even more relevant in scenarios in which the meteorological conditions change rapidly in time. The outcome of this paper encourages operational groups responsible for real-time advisories for aviation to consider employing computationally

  9. Comparison of emerald ash borer preference for ash of different species, sun exposure, age, and stress treatments in relation to foliar volatiles and nutrition

    Treesearch

    Therese M. Poland; Deepa S. Pureswaran; Yigen Chen

    2009-01-01

    We investigated the host selection behavior and feeding preference of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) on six different species of ash including Manchurian ash (F...

  10. Optimizing use of girdled ash trees for management of low-density emerald ash borer (Coleoptera: Buprestidae) populations

    Treesearch

    Nathan W. Siegert; Deborah G. McCullough; Therese M. Poland; Robert L. Heyd

    2017-01-01

    Effective survey methods to detect and monitor recently established, low-density infestations of emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), remain a high priority because they provide land managers and property owners with time to implement tactics to slow emerald ash borer population growth and the progression of...

  11. Progress and challenges of protecting North American ash trees from the emerald ash borer using biological control

    Treesearch

    Jian Duan; Leah Bauer; Roy van Driesche; Juli Gould

    2018-01-01

    After emerald ash borer (EAB), Agrilus planipennis Fairmaire, was discovered in the United States, a classical biological control program was initiated against this destructive pest of ash trees (Fraxinus spp.). This biocontrol program began in 2007 after federal regulatory agencies and the state of Michigan approved release of...

  12. Mineral resource of the month: soda ash

    USGS Publications Warehouse

    Kostic, Dennis S.

    2006-01-01

    Soda ash, also known as sodium carbonate, is an alkali chemical that can be refined from the mineral trona and from sodium carbonate-bearing brines. Several chemical processes exist for manufacturing synthetic soda ash.

  13. Emerald ash borer in Russia: 2009 situation update

    Treesearch

    Y. Baranchikov; Y. Gninenko; G. Yurchenko

    2011-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire, is a beetle native to East Asia and the Russian Far East where it is considered a minor pest, attacking weakened or dying ash trees. In 2006, EAB was found to be responsible for enormous damage of ash species in Moscow, which causes serious concern for Europe. Recently we reviewed the EAB...

  14. Predicting and validating the motion of an ash cloud during the 2006 eruption of Mount Augustine volcano

    USGS Publications Warehouse

    Collins, Richard L.; Fochesatto, Javier; Sassen, Kenneth; Webley, Peter W.; Atkinson, David E.; Dean, Kenneson G.; Cahill, Catherine F.; Mizutani, Kohei

    2007-01-01

    still a significant hazard. Validation is the key to assessing the accuracy of any predictions. The study highlights the use of multiple and complementary observations used in detecting the trajectory ash cloud, both at the surface and aloft in the atmosphere.

  15. Emerald ash borer survival in firewood

    Treesearch

    Robert A. Haack; Toby R. Petrice

    2005-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is native to Asia and was first discovered in Michigan and Ontario in 2002. As of October 2004, EAB was only found to breed in ash (Fraxinus) trees in North America. EAB is spreading naturally through adult flight as well as artificially through...

  16. Mazama ash in the Northeastern Pacific

    USGS Publications Warehouse

    Nelson, C.H.; Kulm, L.D.; Carlson, P.R.; Duncan, J.R.

    1968-01-01

    Volcanic glass in marine sediments off Oregon and Washington correlates with continental deposits of Mount Mazama ash by stratigraphic position, refractive index, and radiocarbon dating. Ash deposited in the abyssal regions by turbidity currents is used for tracing of the dispersal routes of postglacial sediments and for evaluation of marine sedimentary processes.

  17. Key Terrain: Application to the Layers of Cyberspace

    DTIC Science & Technology

    2017-03-01

    in the early stages and exploration into better integrating military strategies could prove beneficial to those working to develop relevant and...200 words) The concept of key terrain is a common fixture in military strategy and tactics. The emergence of cyberspace, with characteristics unseen...concept of key terrain is a common fixture in military strategy and tactics. The emergence of cyberspace, with characteristics unseen in any

  18. Physical and biological studies of coal and oil fly ash.

    PubMed Central

    Fisher, G L; McNeill, K L; Prentice, B A; McFarland, A R

    1983-01-01

    Studies were performed to compare the physical and chemical characteristics and the in vitro macrophage cytotoxicity of oil and coal fly ash. Sampling methodology was developed to collect size-fractionated particulate matter from the smokestack of either a coal-fired or an oil-fired power plant. Morphological studies demonstrated particle heterogeneity, although most coal fly ash particles appeared to be spherical. Oil fly ash contained two major morphologies; nonopaque amorphous particles and opaque amorphous particles. Elemental analysis indicates that the coal ash is predominantly composed of aluminosilicate particles, while the oil ash is predominantly inorganic sulfates and carbonaceous particles. In vitro macrophage assays demonstrate that the finest coal fly ash particles are the most cytotoxic; the cytotoxicity is significantly less than that of alpha-quartz, the positive control particle. In contrast, the oil fly ash particles are more cytotoxic than quartz. The cytotoxicity of oil fly ash is due to soluble components, possibly vanadium salts. Images FIGURE 2. A FIGURE 2. B FIGURE 2. C FIGURE 2. D PMID:6641653

  19. Pore Structure Characterization in Concrete Prepared with Carbonated Fly Ash

    NASA Astrophysics Data System (ADS)

    Sahoo, Sanjukta

    2018-03-01

    Carbon dioxide capture and storage (CCS) is a technique to address the global concern of continuously rising CO2 level in the atmosphere. Fly ash is considered as a suitable medium for CCS due to presence of metal oxides. The fly ash which has already sequestered carbon dioxide is referred to as carbonated fly ash. Recent research reveals better durability of concretes using carbonated fly ash as part replacement of cement. In the present research pore structure characterization of the carbonated fly ash concrete has been carried out. Mercury Intrusion porosimetry test has been conducted on control concrete and concrete specimens using fly ash and carbonated fly ash at replacement levels of 25% and 40%. The specimens have been water cured for 28 days and 90 days. It is observed that porosity reduction rate is more pronounced in carbonated fly ash concrete compared to control concrete at higher water curing age. Correlation analysis is also carried out which indicates moderately linear relationship between porosity % and pore distribution with particle size and water curing.

  20. Study on cement mortar and concrete made with sewage sludge ash.

    PubMed

    Chang, F C; Lin, J D; Tsai, C C; Wang, K S

    2010-01-01

    This study investigated the feasibility of reusing wastewater sludge ash in construction materials to replace partial materials. Wastewater sludge sampled from thermal power plant was burned into sludge ash at 800°C in the laboratory. The sludge incineration ash has low heavy metal including Pb, Cd, Cr and Cu, so it belongs to general enterprise waste. The chemical composition of sludge incineration ash was summed up in SiO₂, CaO, Fe₂O₃ and MgO. Then the wastewater sludge ash is also found to be a porous material with irregular surface. When the sludge ash was used to replace mortar or concrete cement, its water-adsorption capability will result in the reduction of mortar workability and compressive strength. Cement is being substituted for sludge ash, and 10 percent of sludge ash is more appropriate. Sludge ash is reused to take the place of construction materials and satisfies the requests of standard specification except for higher water absorption.

  1. Patterns of Coarse Woody Debris in Hardwood Forests across a Chronosequence of Ash Mortality Due to the Emerald Ash Borer (Agrilus planipennis)

    Treesearch

    Matt Higham; Brian M. Hoven; David L. Gorchov; Kathleen S. Knight

    2017-01-01

    The invasive emerald ash borer (Agrilus planipennis) (EAB) is causing widespread ash (Fraxinus spp.) mortality in 25 U.S. states and two Canadian provinces. We investigated the impact of EAB on coarse woody debris (CWD) volume across 24 sites in western and central Ohio, USA, representing a chronosequence of ash mortality,...

  2. Protection of individual ash trees from emerald ash borer (Coleoptera: Buprestidae) with basal soil applications of imidacloprid.

    PubMed

    Smitley, D R; Rebek, E J; Royalty, R N; Davis, T W; Newhouse, K F

    2010-02-01

    We conducted field trials at five different locations over a period of 6 yr to investigate the efficacy of imidacloprid applied each spring as a basal soil drench for protection against emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Canopy thinning and emerald ash borer larval density were used to evaluate efficacy for 3-4 yr at each location while treatments continued. Test sites included small urban trees (5-15 cm diameter at breast height [dbh]), medium to large (15-65 cm dbh) trees at golf courses, and medium to large street trees. Annual basal drenches with imidacloprid gave complete protection of small ash trees for three years. At three sites where the size of trees ranged from 23 to 37 cm dbh, we successfully protected all ash trees beginning the test with <60% canopy thinning. Regression analysis of data from two sites reveals that tree size explains 46% of the variation in efficacy of imidacloprid drenches. The smallest trees (<30 cm dbh) remained in excellent condition for 3 yr, whereas most of the largest trees (>38 cm dbh) declined to a weakened state and undesirable appearance. The five-fold increase in trunk and branch surface area of ash trees as the tree dbh doubles may account for reduced efficacy on larger trees, and suggests a need to increase treatment rates for larger trees.

  3. Evaluation of Fly Ash Quality Control Tools : Technical Summary

    DOT National Transportation Integrated Search

    2010-06-01

    Many entities currently use fl y ash in portland cement concrete (PCC) pavements and structures. Although : the body of knowledge is great concerning the use of fl y ash, several projects per year are subject to poor : performance where fl y ash is n...

  4. Evaluation of fly ash quality control tools : tech summary.

    DOT National Transportation Integrated Search

    2010-06-01

    Many entities currently use fl y ash in portland cement concrete (PCC) pavements and structures. Although : the body of knowledge is great concerning the use of fl y ash, several projects per year are subject to poor : performance where fl y ash is n...

  5. Hypocotyl derived in vitro regeneration of pumpkin ash (Fraxinus profunda)

    Treesearch

    Micah E. Stevens; Paula M. Pijut

    2012-01-01

    Pumpkin ash (Fraxinus profunda (Bush) Bush) is at risk for extirpation by an exotic insect, the emerald ash borer (EAB). Pumpkin ash is limited to wetland areas of the Eastern United States, and has been listed as an endangered species because of EAB activity. Pumpkin ash provides many benefits to the ecosystem, and its wood is used in the...

  6. The impact of the characteristics of volcanic ash on forecasting.

    NASA Astrophysics Data System (ADS)

    Beckett, Frances; Hort, Matthew; Millington, Sarah; Stevenson, John; Witham, Claire

    2013-04-01

    The eruption of Eyjafjallajökull during April - May 2010 and Grímsvötn in May 2011, Iceland, caused the widespread dispersion of volcanic ash across the NE Atlantic, and ultimately into UK and European airspace. This resulted in thousands of flights to and from affected countries across Europe to be cancelled. The Met Office, UK, is the home of the London VAAC, a Volcanic Ash Advisory Centre, and as such is responsible for providing reports and forecasts for the movement of volcanic ash clouds covering the UK, Iceland and the north-eastern part of the North Atlantic ocean. To forecast the dispersion of volcanic ash requires that the sedimentation of ash particles through the atmosphere is effectively modelled. The settling velocity of an ash particle is a function of its size, shape and density, plus the density and viscosity of the air through which it is falling. We consider the importance of characterising the physical properties of ash when modelling the long range dispersion of ash particles through the atmosphere. Using the Reynolds number dependent scheme employed by NAME, the Lagrangian particle model used operationally by the Met Office, we calculate the settling velocity and thus the maximum travel distance of an ash particle through an idealised atmosphere as a function of its size, shape and density. The results are compared to measured particle sizes from deposits across Europe following the eruption of Eyjafjallajökull in 2010. Further, the particle size distribution (PSD) of ash in a volcanic cloud with time is modelled using NAME: the particle density distribution and particle shape factor are varied and the modelled PSD compared to the PSD measured in the ash cloud during the eruption of Eyjafjallajökull in 2010 by the FAAM research aircraft. The influence of the weather on PSD is also considered by comparing model output using an idealised atmosphere to output using NWP driven meteorological fields. We discuss the sensitivity of forecasts of

  7. Emerald ash borer survival in firewood

    Treesearch

    Robert A. Haack; Toby R. Petrice

    2003-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is native to several countries in Asia (e.g., China, Korea, and Japan). EAB was discovered in Michigan and Ontario in 2002, and then in Ohio, Maryland, and Virginia in 2003. As of November 2003, EAB has only been found to infest ash (Fraxinus)...

  8. Emerald ash borer aftermath forests: The dynamics of ash mortality and the responses of other plant species

    Treesearch

    Kathleen S. Knight; Daniel A. Herms; John Cardina; Robert Long; Joanne Rebbeck; Kamal J.K. Gandhi; Annemarie Smith; Wendy S. Klooster; Catherine P. Herms; Alejandro A. Royo

    2010-01-01

    The effects of emerald ash borer (EAB) (Agrilus planipennis) on forest ecosystems are being studied through a collaborative research program involving the U.S. Forest Service's Northern Research Station and The Ohio State University. We are monitoring the decline and mortality of >4,500 ash trees and saplings, EAB population density, changes...

  9. Can ash communities and their dependent species be partially protected through biological control of emerald ash borer

    USDA-ARS?s Scientific Manuscript database

    Ash trees were once relatively free of serious, major diseases and insect pests in North America until the arrival of the emerald ash borer (EAB), Agrilus planipennis Fairmaire, which was first detected in North America in Michigan in 2002 and has been detected in 32 U.S. states and two Canadian pro...

  10. AL(0) in municipal waste incinerator ash

    NASA Astrophysics Data System (ADS)

    Stipp, S. L.; Ronsbo, J. G.; Zunic, T. B.; Christensen, T. H.

    2003-04-01

    Disposal of municipal waste is a challenge to society. Waste volume is substantially decreased by incineration but residual ash usually contains a number of toxic components which must be immobilised to insure environmental protection. One element, chromium, is mobile and toxic in its oxidised state as Cr(VI) but it can be reduced to Cr(III) and immobilised. Reduction can be promoted by ash treatment with Fe(0) or Fe(II), but recent evidence shows that at least some Cr(VI) is reduced spontaneously in the ash. Aspects of ash behaviour suggest metallic aluminium as the reducing agent, but no direct evidence of Al(0) has been found until now. We examined filter ash from an energy-producing, municipal-waste incinerator (Vest-forbrænding) near Copenhagen. X-ray diffraction (XRD) identified expected salts of Na, K and Ca such as halite, sylvite, calcite, anhydrite and gypsum as well as quartz, feldspar and some hematite. Wave-dispersive electron microprobe produced elemen-tal maps of the ash; Al-rich areas were analysed quantitatively by comparison with standards. We identified metallic Al particles, averaging 50 to 100 micrometers in di-ameter, often with a fractured, glassy border of aluminum oxide. The particles were porous, explaining fast Cr(VI) reduction and they contained thin exsolution lamellae of Al-alloys of Pb and Cu or Mn, Fe and Ag, which provide clues of the Al(0) origin in the waste. Sometimes Al(0) occurred inside glassy globes of Al2O3. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) proved that surface Al concentrations on ash particles were below detection, confirming reactivity of the Al(0) bulk. The persistence of reduced Al through the highly oxidising combustion procedure comes as a surprise and is a benefit in the immobilisation of Cr(VI) from municipal-waste incineration residues.

  11. Fly-ash geo-polymer foamed concrete

    NASA Astrophysics Data System (ADS)

    Kargin, Aleksey; Baev, Vladimir; Mashkin, Nikolay

    2017-01-01

    In recent years, the interest of researchrs in using fly-ash as a raw material for the geo-polymer synthesis is increasing. Kuzbass region (in Russia) has a large amount of ash wastes generated, which defined the relevace of the study performed in this paper. Results of investigating load-bearing capacity of structural insulating material produced by geo-polymerization of fly-ash of Kemerovo hydro-electric power plant with the addition of complex activator are described in the paper. Hydrogen peroxide solution was used as the foaming agent. The activation time, the temperature of isothermal holding and hardening in normal conditions for all samples were constant. The compressive strength and the mean density of geo-polymer foamed concrete were determined. The influence of the material composition on its properties was revealed. It is found that of the geo-polymer foamed concrete with the optimum composition has hardness of 1,1-3,5 MPa at the density of 400 to 900 kg/m3. Thus, the production of the fly-ash geo-polymer concretes and mortars is feasible, justified and promising.

  12. Preparation of Functionally Graded Materials (FGMs) Using Coal Fly Ash and NiCr-Based Alloy Powder by Spark Plasma Sintering (SPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, Gen-yo; Kitagawa, Hiroyuki; Hasezaki, Kazuhiro

    2008-02-15

    Functionally Graded Materials (FGMs) were prepared by spark plasma sintering (SPS) using coal fly ash and NiCr alloy powder. The coal fly ash was produced by the Misumi Coal Thermal Power Station (Chugoku Electric Power Co., Inc.), with 80 wt% nickel and 20 wt% chromium (Fukuda Metal Foil and Powder Co., Ltd.) used as source materials. The sintering temperature in the graphite die was 1000 deg. C. X-ray diffraction patterns of the sintered coal fly ash materials indicated that mullite (3Al{sub 2}O{sub 3}{center_dot}2SiO{sub 2}) and silica (SiO{sub 2}) phases were predominant. Direct joining of coal fly ash and NiCr causesmore » fracture at the interface. This is due to the mismatch in the thermal expansion coefficients (CTE). A crack in the FGM was observed between the two layers with a CTE difference of over 4.86x10{sup -6} K{sup -1}, while a crack in the FGM was difficult to detect when the CTE difference was less than 2.77x10{sup -6} K{sup -1}.« less

  13. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency

    USGS Publications Warehouse

    Kostova, I.J.; Hower, J.C.; Mastalerz, Maria; Vassilev, S.V.

    2011-01-01

    Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture. ?? 2010 Elsevier Ltd.

  14. Effects of the emerald ash borer invasion on the community composition of arthropods associated with ash tree boles

    USDA-ARS?s Scientific Manuscript database

    Emerald ash borer (EAB), Agrilus planipennis Fairmaire is an invasive non-native wood-boring beetle that has killed hundreds of millions of ash trees (Fraxinus spp.) in North America, and threatens to extirpate the ecological services provided by the genus. Identifying the arthropod community assoc...

  15. Metal roof corrosion related to volcanic ash deposition

    NASA Astrophysics Data System (ADS)

    Oze, C.; Cole, J. W.; Scott, A.; Wilson, T.; Wilson, G.; Gaw, S.; Hampton, S.; Doyle, C.; Li, Z.

    2013-12-01

    Volcanoes produce a wide range of hazards capable of leading to increased rates of corrosion to the built environment. Specifically, widely distributed volcanic ash derived from explosive volcanic eruptions creates both short- and long-term hazards to infrastructure including increased corrosion to exposed building materials such as metal roofing. Corrosion has been attributed to volcanic ash in several studies, but these studies are observational and are beset by limitations such as not accounting for pre-existing corrosion damage and/or other factors that may have also directly contributed to corrosion. Here, we evaluate the corrosive effects of volcanic ash, specifically focusing on the role of ash leachates, on a variety of metal roofing materials via weathering chamber experiments. Weathering chamber tests were carried out for up to 30 days using a synthetic ash dosed with an acidic solution to produce a leachate comparable to a real volcanic ash. Visual, chemical and surface analyses did not definitively identify significant corrosion in any of the test roofing metal samples. These experiments attempted to provide quantitative information with regards to the rates of corrosion of different types of metal roof materials. However, they demonstrate that no significant corrosion was macroscopically or microscopically present on any of the roofing surfaces despite the presence of corrosive salts after a duration of thirty days. These results suggest ash leachate-related corrosion is not a major or immediate concern in the short-term (< 1 month).

  16. Volcanic ash as an oceanic iron source and sink

    NASA Astrophysics Data System (ADS)

    Rogan, Nicholas; Achterberg, Eric P.; Le Moigne, Frédéric A. C.; Marsay, Chris M.; Tagliabue, Alessandro; Williams, Richard G.

    2016-03-01

    Volcanic ash deposition to the ocean forms a natural source of iron (Fe) to surface water microbial communities. Inputs of lithogenic material may also facilitate Fe removal through scavenging. Combining dissolved Fe (dFe) and thorium-234 observations alongside modeling, we investigate scavenging of Fe in the North Atlantic following the Eyjafjallajökull volcanic eruption. Under typical conditions biogenic particles dominate scavenging, whereas ash particles dominate during the eruption. The size of particles is important as smaller scavenging particles can become saturated with surface-associated ions. Model simulations indicate that ash deposition associated with Eyjafjallajökull likely led to net Fe removal. Our model suggests a threefold greater stimulation of biological activity if ash deposition had occurred later in the growing season when the region was Fe limited. The implications of ash particle scavenging, eruption timing, and particle saturation need to be considered when assessing the impact of ash deposition on the ocean Fe cycle and productivity.

  17. A regional assessment of emerald ash borer impacts in the Eastern United States: ash mortality and abundance trends in time and space

    Treesearch

    Randall S. Morin; Scott A. Pugh; Andrew M. Liebhold; Susan J. Crocker

    2015-01-01

    The nonnative insect, emerald ash borer (Agrilus plannipennis Fairmaire), has caused extensive mortality of ash tree species (Fraxinus spp.) in the eastern United States. As of 2012, the pest had been detected in about 15 percent of the counties in the 37 states that comprise the natural range of ash in forests of the eastern...

  18. Sap flow of black ash in wetland forests of northern Minnesota, USA: Hydrologic implications of tree mortality due to emerald ash borer

    Treesearch

    Andrew C. Telander; Robert A. Slesak; Anthony W. D' Amato; Brian J. Palik; Kenneth N. Brooks; Christian F. Lenhart

    2015-01-01

    Black ash (Fraxinus nigra) mortality caused by the invasive emerald ash borer (EAB) is of concern to land managers in the upper Great Lakes region, given the large areas of ash-dominated forest and potential alteration of wetland hydrology following loss of this foundation tree species. The importance of changes in evapotranspiration (ET) following...

  19. Volcanic ash and meteorological clouds detection by neural networks

    NASA Astrophysics Data System (ADS)

    Picchiani, Matteo; Del Frate, Fabio; Stefano, Corradini; Piscini, Alessandro; Merucci, Luca; Chini, Marco

    2014-05-01

    The recent eruptions of the Icelandic Eyjafjallajokull and Grímsvötn volcanoes occurred in 2010 and 2011 respectively have been highlighted the necessity to increase the accuracy of the ash detection and retrieval. Follow the evolution of the ash plume is crucial for aviation security. Indeed from the accuracy of the algorithms applied to identify the ash presence may depend the safety of the passengers. The difference between the brightness temperatures (BTD) of thermal infrared channels, centered around 11 µm and 12 µm, is suitable to distinguish the ash plume from the meteorological clouds [Prata, 1989] on satellite images. Anyway in some condition an accurate interpretation is essential to avoid false alarms. In particular Corradini et al. (2008) have developed a correction procedure aimed to avoid the atmospheric water vapour effect that tends to mask, or cancel-out, the ash plume effects on the BTD. Another relevant issue is due to the height of the meteorological clouds since their brightness temperatures is affected by this parameter. Moreover the overlapping of ash plume and meteorological clouds may affects the retrieval result since this latter is dependent by the physical temperature of the surface below the ash cloud. For this reason the correct identification of such condition, that can require a proper interpretation by the analyst, is crucial to address properly the inversion of ash parameters. In this work a fast and automatic procedure based on multispectral data from MODIS and a neural network algorithm is applied to the recent eruptions of Eyjafjallajokull and Grímsvötn volcanoes. A similar approach has been already tested with encouraging results in a previous work [Picchiani et al., 2011]. The algorithm is now improved in order to distinguish the meteorological clouds from the ash plume, dividing the latter between ash above sea and ash overlapped to meteorological clouds. The results have been compared to the BTD ones, properly

  20. Elaboration of new ceramic microfiltration membranes from mineral coal fly ash applied to waste water treatment.

    PubMed

    Jedidi, Ilyes; Saïdi, Sami; Khemakhem, Sabeur; Larbot, André; Elloumi-Ammar, Najwa; Fourati, Amine; Charfi, Aboulhassan; Salah, Abdelhamid Ben; Amar, Raja Ben

    2009-12-15

    This work aims to develop a new mineral porous tubular membrane based on mineral coal fly ash. Finely ground mineral coal powder was calcinated at 700 degrees C for about 3 h. The elaboration of the mesoporous layer was performed by the slip-casting method using a suspension made of the mixture of fly-ash powder, water and polyvinyl alcohol (PVA). The obtained membrane was submitted to a thermal treatment which consists in drying at room temperature for 24 h then a sintering at 800 degrees C. SEM photographs indicated that the membrane surface was homogeneous and did not present any macrodefects (cracks, etc...). The average pore diameter of the active layer was 0.25 microm and the thickness was around 20 microm. The membrane permeability was 475 l/h m(2) bar. This membrane was applied to the treatment of the dying effluents generated by the washing baths in the textile industry. The performances in term of permeate flux and efficiency were determined and compared to those obtained using a commercial alumina microfiltration membrane. Almost the same stabilised permeate flux was obtained (about 100 l h(-1)m(-2)). The quality of permeate was almost the same with the two membranes: the COD and color removal was 75% and 90% respectively.

  1. Interactive influence of leaf age, light intensity, and girdling on green ash foliar chemistry and emerald ash borer development.

    PubMed

    Chen, Yigen; Poland, Therese M

    2009-07-01

    Biotic and abiotic environmental factors affect plant nutritional quality and defensive compounds that confer plant resistance to herbivory. Influence of leaf age, light availability, and girdling on foliar nutrition and defense of green ash (Fraxinus pennsylvanica Marsh) was examined in this study. Longevity of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), adults reared on green ash foliage subjected to these factors was assayed. Mature leaves generally were more nutritious with greater amino acids and a greater ratio of protein to non-structural carbohydrate (P:C) than young leaves, in particular when trees were grown in shade. On the other hand, mature leaves had lower amounts of trypsin and chymotrypsin inhibitors, and total phenolics compared to young leaves. Lower defense of mature leaves alone, or along with higher nutritional quality may lead to increased survival and longevity of emerald ash borer feeding on mature leaves. Sunlight reduced amino acids and P:C ratio, irrespective of leaf age and girdling, and elevated total protein of young foliage, but not protein of mature leaves. Sunlight also dramatically increased all investigated defensive compounds of young, but not mature leaves. Girdling reduced green ash foliar nutrition, especially, of young leaves grown in shade and of mature leaves grown in sun. However emerald ash borer performance did not differ when fed leaves from trees grown in sun or shade, or from girdled or control trees. One explanation is that emerald ash borer reared on lower nutritional quality food may compensate for nutrient deficiency by increasing its consumption rate. The strong interactions among leaf age, light intensity, and girdling on nutrition and defense highlight the need for caution when interpreting data without considering possible interactions.

  2. Invasion genetics of emerald ash borer (Agrilus planipennis Fairmaire)

    Treesearch

    Alicia M. Bray; Leah S. Bauer; Therese M. Poland; Bob A. Haack; James J. Smith

    2011-01-01

    Emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is a devastating invasive pest of North American ash trees (Fraxinus spp.) that was first discovered outside of its native range of northeastern Asia in 2002 (Haack et al. 2002). With unintended assistance from human movement of infested ash material...

  3. Higher Activities of Defense-Associated Enzymes may Contribute to Greater Resistance of Manchurian Ash to Emerald Ash Borer Than A closely Related and Susceptible Congener.

    PubMed

    Rigsby, Chad M; Herms, Daniel A; Bonello, Pierluigi; Cipollini, Don

    2016-08-01

    Emerald ash borer (EAB) is an invasive beetle native to Asia that infests and kills ash (Fraxinus spp.) in North America. Previous experiments indicated that larvae feeding on co-evolved, resistant Manchurian ash (F. mandshurica) have increased antioxidant and quinone-protective enzyme activities compared to larvae feeding on susceptible North American species. Here, we examined mechanisms of host-generated oxidative and quinone-based stress and other putative defenses in Manchurian ash and the closely related and chemically similar, but susceptible, black ash (F. nigra), with and without exogenous application of methyl jasmonate (MeJA) to induce resistance mechanisms. Peroxidase activities were 4.6-13.3 times higher in Manchurian than black ash, although both species appeared to express the same three peroxidase isozymes. Additionally, peroxidase-mediated protein cross-linking activity was stronger in Manchurian ash. Polyphenol oxidase, β-glucosidase, chitinase, and lipoxygenase activities also were greater in Manchurian ash, but only lipoxygenase activity increased with MeJA application. Phloem H 2 O 2 levels were similar and were increased by MeJA application in both species. Lastly, trypsin inhibitor activity was detected in methanol and water extracts that were not allowed to oxidize, indicating the presence of phenolic-based trypsin inhibitors. However, no proteinaceous trypsin inhibitor activity was detected in either species. In response to MeJA application, Manchurian ash had higher trypsin inhibitor activity than black ash using the unoxidized water extracts, but no treatment effects were detected using methanol extracts. Based on these results we hypothesize that peroxidases, lignin polymerization, and quinone generation contribute to the greater resistance to EAB displayed by Manchurian ash.

  4. Optimising Ambient Setting Bayer Derived Fly Ash Geopolymers

    PubMed Central

    Jamieson, Evan; Kealley, Catherine S.; van Riessen, Arie; Hart, Robert D.

    2016-01-01

    The Bayer process utilises high concentrations of caustic and elevated temperature to liberate alumina from bauxite, for the production of aluminium and other chemicals. Within Australia, this process results in 40 million tonnes of mineral residues (Red mud) each year. Over the same period, the energy production sector will produce 14 million tonnes of coal combustion products (Fly ash). Both industrial residues require impoundment storage, yet combining some of these components can produce geopolymers, an alternative to cement. Geopolymers derived from Bayer liquor and fly ash have been made successfully with a compressive strength in excess of 40 MPa after oven curing. However, any product from these industries would require large volume applications with robust operational conditions to maximise utilisation. To facilitate potential unconfined large-scale production, Bayer derived fly ash geopolymers have been optimised to achieve ambient curing. Fly ash from two different power stations have been successfully trialled showing the versatility of the Bayer liquor-ash combination for making geopolymers. PMID:28773513

  5. Optimising Ambient Setting Bayer Derived Fly Ash Geopolymers.

    PubMed

    Jamieson, Evan; Kealley, Catherine S; van Riessen, Arie; Hart, Robert D

    2016-05-19

    The Bayer process utilises high concentrations of caustic and elevated temperature to liberate alumina from bauxite, for the production of aluminium and other chemicals. Within Australia, this process results in 40 million tonnes of mineral residues (Red mud) each year. Over the same period, the energy production sector will produce 14 million tonnes of coal combustion products (Fly ash). Both industrial residues require impoundment storage, yet combining some of these components can produce geopolymers, an alternative to cement. Geopolymers derived from Bayer liquor and fly ash have been made successfully with a compressive strength in excess of 40 MPa after oven curing. However, any product from these industries would require large volume applications with robust operational conditions to maximise utilisation. To facilitate potential unconfined large-scale production, Bayer derived fly ash geopolymers have been optimised to achieve ambient curing. Fly ash from two different power stations have been successfully trialled showing the versatility of the Bayer liquor-ash combination for making geopolymers.

  6. Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material.

    PubMed

    del Valle-Zermeño, R; Formosa, J; Chimenos, J M; Martínez, M; Fernández, A I

    2013-03-01

    The main goal of this paper is to obtain a granular material formulated with Municipal Solid Waste Incineration (MSWI) bottom ash (BA) and air pollution control (APC) fly ash to be used as secondary building material. Previously, an optimum concrete mixture using both MSWI residues as aggregates was formulated. A compromise between the environmental behavior whilst maximizing the reuse of APC fly ash was considered and assessed. Unconfined compressive strength and abrasion resistance values were measured in order to evaluate the mechanical properties. From these results, the granular mixture was not suited for certain applications owing to the high BA/APC fly ash content and low cement percentages used to reduce the costs of the final product. Nevertheless, the leaching test performed showed that the concentrations of all heavy metals were below the limits established by the current Catalan legislation for their reutilization. Therefore, the material studied might be mainly used in embankments, where high mechanical properties are not needed and environmental safety is assured. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Bottom ash as aggregate replacement in concrete.

    DOT National Transportation Integrated Search

    2013-06-01

    The objective of the proposed study is to evaluate bottom ash as a partial or total replacement of the fine and coarse aggregate in : concrete. This program will characterize and evaluate available bottom ash sources as potential replacement of both ...

  8. Evaluation of the mechanical properties of class-F fly ash.

    PubMed

    Kim, Bumjoo; Prezzi, Monica

    2008-01-01

    Coal-burning power plants in the United States (US) generate more than 70 million tons of fly ash as a by-product annually. Recycling large volumes of fly ash in geotechnical applications may offer an attractive alternative to the disposal problem as most of it is currently dumped in ponds or landfills. Class-F fly ash, resulting from burning of bituminous or anthracite coals, is the most common type of fly ash in the US. In the present study, the mechanical characteristics (compaction response, compressibility, and shear strength) of class-F fly ash were investigated by performing various laboratory tests (compaction test, one-dimensional compression test, direct shear test and consolidated-drained triaxial compression test) on fly ash samples collected from three power plants in the state of Indiana (US). Test results have shown that despite some morphological differences, class-F fly ash exhibits mechanical properties that are, in general, comparable to those observed in natural sandy soils.

  9. Water holding capacities of fly ashes: Effect of size fractionation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, A.; Rano, R.

    2007-07-01

    Water holding capacities of fly ashes from different thermal power plants in Eastern India have been compared. Moreover, the effect of size fractionation (sieving) on the water holding capacities has also been determined. The desorption rate of water held by the fly ash fractions at ambient temperature (25-30{sup o}C) has been investigated. The effect of mixing various size fractions of fly ash in increasing the water holding capacities of fly ash has been studied. It is observed that the fly ash obtained from a thermal power plant working on stoker-fired combustor has the highest water holding capacity, followed by themore » one that works on pulverized fuel combustor. Fly ash collected from super thermal power plant has the least water holding capacity (40.7%). The coarser size fractions of fly ashes in general have higher water holding capacities than the finer ones. An attempt has been made to correlate the results obtained, with the potential use in agriculture.« less

  10. Issuance of Volcanic Ash Advisories: Washington VAAC Perspective

    NASA Astrophysics Data System (ADS)

    Salemi, A.; Ruminski, M. G.

    2011-12-01

    In the event of a volcanic eruption, one of the nine Volcanic Ash Advisory Centers (VAAC) across the globe is responsible for issuing a Volcanic Ash Advisory (VAA). The VAA contains information about which volcano is erupting, the volcanoes location, as well as the time and duration of the eruption. If ash is observed in satellite imagery, a 6, 12 and 18 hour forecast are provided to specify the possible location of ash. The goal of the VAA is to help airlines create accurate flight guidance for their aircraft. The priority of each VAAC is to prevent aircraft from flying through ash with a secondary priority of minimizing unnecessary diversions. Remote sensing platforms provide a unique perspective for volcanic ash detection especially in the cases of remote and unmonitored volcanoes. This includes monitoring of multispectral satellite imagery (Visible, Infrared) from both geostationary and polar orbiting platforms as well as derived products such as SO2, Volcanic Ash Masks/Loading and LIDAR data. To generate the VAA, satellite analysts use the satellite imagery in combination with observations from local Meteorological Watch Offices (MWO), Volcano Observatories, Pilot Reports (PIREP), seismic stations, web cameras and meteorological forecast grids. Challenges arise in regard to availability of data for each individual volcano, reliability of model wind fields over data sparse regions, as well as timeliness and availability of satellite imagery and products. These challenges become further exacerbated when volcanic ash crosses VAAC and MWO boundaries and interagency communication becomes essential. While working through multi-lingual communications and operational variation (e.g. data availability, standard operation procedures), VAACs face the challenge of maintaining coordination and avoiding the pitfalls of break downs in communication and guidance confusion. This talk will discuss these issues and pose potential communication and coordination efforts from the

  11. Magmatic and fragmentation controls on volcanic ash surface chemistry

    NASA Astrophysics Data System (ADS)

    Ayris, Paul M.; Diplas, Spyros; Damby, David E.; Hornby, Adrian J.; Cimarelli, Corrado; Delmelle, Pierre; Scheu, Bettina; Dingwell, Donald B.

    2016-04-01

    The chemical effects of silicate ash ejected by explosive volcanic eruptions on environmental systems are fundamentally mediated by ash particle surfaces. Ash surfaces are a composite product of magmatic properties and fragmentation mechanisms, as well as in-plume and atmospheric alteration processes acting upon those surfaces during and after the eruption. Recent attention has focused on the capacity of alteration processes to shape ash surfaces; most notably, several studies have utilised X-ray photoelectron spectroscopy (XPS), a technique probing the elemental composition and coordination state of atoms within the top 10 nm of ash surfaces, to identify patterns of elemental depletions and enrichments relative to bulk ash chemical composition. Under the presumption of surface and bulk equivalence, any disparities have been previously attributed to surface alteration processes, but the ubiquity of some depletions (e.g., Ca, Fe) across multiple ash studies, irrespective of eruptive origin, could suggest these to be features of the surface produced at the instant of magma fragmentation. To investigate this possibility further, we conducted rapid decompression experiments at different pressure conditions and at ambient and magmatic temperature on porous andesitic rocks. These experiments produced fragmented ash material untouched by secondary alteration, which were compared to particles produced by crushing of large clasts from the same experiments. We investigated a restricted size fraction (63-90 μm) from both fragmented and crushed materials, determining bulk chemistry and mineralogy via XRF, SEM-BSE and EPMA, and investigated the chemical composition of the ash surface by XPS. Analyses suggest that fragmentation under experimental conditions partitioned a greater fraction of plagioclase-rich particles into the selected size fraction, relative to particles produced by crushing. Trends in surface chemical composition in fragmented and crushed particles mirror that

  12. Community ash densities and economic impact potential of emerald ash borer (Agrilus planipennis) in four midwestern states

    Treesearch

    T. Davis Sydnor; Matthew Bumgardner; Sakthi. Subburayalu

    2011-01-01

    A survey of 586 community representatives with urban tree canopy responsibilities was conducted to provide data on ash density within four states in the Midwestern U.S., and to examine potential economic losses should emerald ash borer (EAB) become established in their communities. One hundred twenty-three responses were received from communities of various sizes. Data...

  13. Effects of cutting time, stump height, and herbicide application on ash (Fraxinus spp.) stump sprouting and colonization by emerald ash borer (Agrilus planipennis)

    Treesearch

    Toby R. Petrice; Robert A. Haack

    2011-01-01

    Efforts to eradicate or slow the spread of emerald ash borer (EAB) (Agrilus planipennis Fairmaire [Coleoptera: Buprestidae]) include cutting infested and nearby uninfested ash (Fraxinus spp.) trees. However, ash trees readily sprout after they have been cut, providing potential host material for EAB. In 2004-2005, we conducted...

  14. Experimental aggregation of volcanic ash: the role of liquid bonding

    NASA Astrophysics Data System (ADS)

    Mueller, S.; Kueppers, U.; Jacob, M.; Ayris, P. M.; Dingwell, D. B.

    2015-12-01

    Explosive volcanic eruptions may release vast quantities of ash. Because of its size, it has the greatest dispersal potential and can be distributed globally. Ash may pose severe risks for 1) air traffic, 2) human and animal health, 3) agriculture and 4) infrastructure. Such ash particles can however cluster and form ash aggregates that range in size from millimeters to centimeters. During their growth, weight and aerodynamic properties change. This leads to significantly changed transport and settling behavior. The physico-chemical processes involved in aggregation are quantitatively poorly constrained. We have performed laboratory ash aggregation experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH. Solid particles are set into motion in a fluidized bed over a range of well-controlled boundary conditions (e.g., air flow rate, gas temperature, humidity, liquid composition). In this manner we simulate the variable gas-particle flow conditions expected in eruption plumes and pyroclastic density currents. We have used 1) soda-lime glass beads as an analogue material and 2) natural volcanic ash from Laacher See Volcano (Germany). In order to influence form, size, stability and the production rate of aggregates, a range of experimental conditions (e.g., particle concentration, degree of turbulence, temperature and moisture in the process chamber and the composition of the liquid phase) have been employed. We have successfully reproduced several features of natural ash aggregates, including round, internally structured ash pellets up to 3 mm in diameter. These experimental results help to constrain the boundary conditions required for the generation of spherical, internally-structured ash aggregates that survive deposition and are preserved in the volcanological record. These results should also serve as input parameters for models of ash transport and ash mass distribution.

  15. Characterization of ash in algae and other materials by determination of wet acid indigestible ash and microscopic examination

    USDA-ARS?s Scientific Manuscript database

    Algae are known for high ash content. It is important to properly characterize their ash for value added utilization of algae as food, feed, and feedstock for biofuels. In this study, 12 algae of different sources were measured for proximate composition and mineral profile. Results showed that the r...

  16. Evaluation of Vitrification Processing Step for Rocky Flats Incinerator Ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wigent, W.L.; Luey, J.K.; Scheele, R.D.

    In 1997, Pacific Northwest National Laboratory (PNNL) staff developed a processing option for incinerator ash at the Rocky Flats Environmental Technology Sites (RFETS). This work was performed with support from Los Alamos National Laboratory (LANL) and Safe Sites of Colorado (SSOC). A description of the remediation needs for the RFETS incinerator ash is provided in a report summarizing the recommended processing option for treatment of the ash (Lucy et al. 1998). The recommended process flowsheet involves a calcination pretreatment step to remove carbonaceous material followed by a vitrification processing step for a mixture of glass tit and calcined incinerator ash.more » Using the calcination pretreatment step to remove carbonaceous material reduced process upsets for the vitrification step, allowed for increased waste loading in the final product, and improved the quality of the final product. Figure 1.1 illustrates the flow sheet for the recommended processing option for treatment of RFETS incinerator ash. In 1998, work at PNNL further developed the recommended flow sheet through a series of studies to better define the vitrification operating parameters and to address secondary processing issues (such as characterizing the offgas species from the calcination process). Because a prototypical rotary calciner was not available for use, studies to evaluate the offgas from the calcination process were performed using a benchtop rotary calciner and laboratory-scale equipment (Lucy et al. 1998). This report focuses on the vitrification process step after ash has been calcined. Testing with full-scale containers was performed using ash surrogates and a muffle furnace similar to that planned for use at RFETS. Small-scale testing was performed using plutonium-bearing incinerator ash to verify performance of the waste form. Ash was not obtained from RFETS because of transportation requirements to calcine the incinerator ash prior to shipment of the material. Because

  17. Evaluation of the Biotoxicity of Tree Wood Ashes in Zebrafish Embryos.

    PubMed

    Consigli, Veronica; Guarienti, Michela; Bilo, Fabjola; Benassi, Laura; Depero, Laura E; Bontempi, Elza; Presta, Marco

    2016-10-01

    Ashes derived from biomass combustion and used as soil fertilizers can generate negative environmental and human health risks, related to leaching of heavy metals and other putative toxic elements. Tree wood ash composition may vary depending on geographical location and surrounding industrial processes. In this study, we evaluated the biotoxicity of lixiviated tree wood ash samples from trees of the Ash (Fraxinus), Cherry (Pronus), Hazel (Corylus), and Black locust (Robinia) genus collected in an industrialized region in Northern Italy. Elemental chemical analysis of the samples was performed by total reflection X-ray fluorescence technique and their biotoxicity was assessed in zebrafish (Danio rerio) embryos. Ashes from Ash, Cherry, and Hazel trees, but not Black locust trees, had a high concentration of heavy metals and other putative toxic elements. Accordingly, a dose-dependent increase in mortality rate and morphological and teratogenic defects was observed in zebrafish embryos treated with lixiviated Ash, Cherry, and Hazel tree wood samples, whereas the toxicity of Black locust tree wood ashes was negligible. In conclusion, lixiviated wood ashes from different plants show a different content of toxic elements that correlate with their biotoxic effects on zebrafish embryos. Tree wood ashes derived from biomass combustion may represent a potential risk for the environment and human health.

  18. Genetic transformation of Fraxinus spp. for resistance to the emerald ash borer

    Treesearch

    Paula M. Pijut; Rochelle R. Beasley; Kaitlin J. Palla

    2010-01-01

    The emerald ash borer (EAB; Agrilus planipennis Fairmaire) (Coleoptera; Buprestidae) is a wood-boring beetle that poses substantial risk to the ash resource in North America. Ash species native to the United States and known to be susceptible to EAB are Fraxinus pennsylvanica (green ash), F. americana (white ash...

  19. Size distribution of rare earth elements in coal ash

    USGS Publications Warehouse

    Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.

    2015-01-01

    Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported. 

  20. Evaluation of fly ash in water reduced paving mixtures.

    DOT National Transportation Integrated Search

    1985-06-01

    Fly ash was used to replace 15% of the cement in C3WR and C6WR concrete : paving mixes containing ASTM C494 Type A water reducin9 admixtures. Two Class : C ashes and one Class F ash from Iowa approved sources were examined in each : mix. When Class C...

  1. Ash Leachate Can Reduce Surface Erosion

    Treesearch

    George J. Holcomb; Philip B. Durgin

    1979-01-01

    In laboratory analyses of the Larabee soil from north-western California, ash leachate flocculated the clay fractions. As a result, the soil quickly settled out of suspension. To test the hypothesis that field plots on disturbed areas treated with ash leachate would be more resistant to erosion than nontreated plots, a study was done in July and August 1978, on two...

  2. Research on the architecture and key technologies of SIG

    NASA Astrophysics Data System (ADS)

    Fu, Zhongliang; Meng, Qingxiang; Huang, Yan; Liu, Shufan

    2007-06-01

    Along with the development of computer network, Grid has become one of the hottest issues of researches on sharing and cooperation of Internet resources throughout the world. This paper illustrates a new architecture of SIG-a five-hierarchy architecture (including Data Collecting Layer, Grid Layer, Service Layer, Application Layer and Client Layer) of SIG from the traditional three hierarchies (only including resource layer, service layer and client layer). In the paper, the author proposes a new mixed network mode of Spatial Information Grid which integrates CAG (Certificate Authority of Grid) and P2P (Peer to Peer) in the Grid Layer, besides, the author discusses some key technologies of SIG and analysis the functions of these key technologies.

  3. Volcanic ash aggregation in the lab - can we mimic natural processes?

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Jacob, Michael; Ayris, Paul; Cimarelli, Corrado; Dingwell, Donald B.; Guttzeit, Melanie; Hess, Kai-Uwe; Walter, Ulrich

    2015-04-01

    Explosive volcanic eruptions release large amounts of particles into the atmosphere. Volcanic ash, by definition pyroclasts smaller than 2 mm, can be distributed around the globe by prevailing winds. Ash poses hazards to aviation industry by melting in jet turbines, to human health by entering respiration systems and to society by damaging infrastructure. Under certain circumstances, ash particles can cluster together and build ash aggregates. Aggregates range in size from few mm to few cm and may exhibit complex internal stratigraphy. During growth, weight, density and aerodynamic properties change, leading to a significantly different settling behavior compared to individual ash particles. Although ash aggregation has been frequently observed in the geologic record, the physical and chemical mechanisms generating the aggregates remain poorly understood. During several field campaigns, we collected numerous ash aggregates and analyzed their textural, chemical and mechanical properties. Based on this knowledge, we have designed experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH, Germany. In this device, a continuous fluidized bed can be applied on solid particles and simulate gas-particle flow conditions as they would be expected in volcanic plumes or pyroclastic density currents. The geological record and direct observations have shown that both processes are capable of producing ash aggregates. As starting material we used Na-glass beads as an analogue and volcanic ash from Laacher See Volcano, Eifel Volcanic Field, Germany. We define parameters such as grainsize, specific surface area and concentration of the starting material, degree of turbulence, temperature and moisture in the process chamber and the composition of the liquid phase to influence form, size, stability and production rate of aggregates. We were able to experimentally produce round, unstructured ash pellets up to 5mm in diameter. A detailed textural description highlights

  4. Bottom ash test section evaluation Erwinville, LA.

    DOT National Transportation Integrated Search

    2009-02-01

    Bottom ash is a by-product of the energy industry and the residual of burning coal in a kiln : firing process. Bottom ash is black and the consistency of coarse sand with gravel clinker : traces. The product is used in other states as embankment mate...

  5. Mapping ash properties using principal components analysis

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Brevik, Eric; Cerda, Artemi; Ubeda, Xavier; Novara, Agata; Francos, Marcos; Rodrigo-Comino, Jesus; Bogunovic, Igor; Khaledian, Yones

    2017-04-01

    In post-fire environments ash has important benefits for soils, such as protection and source of nutrients, crucial for vegetation recuperation (Jordan et al., 2016; Pereira et al., 2015a; 2016a,b). The thickness and distribution of ash are fundamental aspects for soil protection (Cerdà and Doerr, 2008; Pereira et al., 2015b) and the severity at which was produced is important for the type and amount of elements that is released in soil solution (Bodi et al., 2014). Ash is very mobile material, and it is important were it will be deposited. Until the first rainfalls are is very mobile. After it, bind in the soil surface and is harder to erode. Mapping ash properties in the immediate period after fire is complex, since it is constantly moving (Pereira et al., 2015b). However, is an important task, since according the amount and type of ash produced we can identify the degree of soil protection and the nutrients that will be dissolved. The objective of this work is to apply to map ash properties (CaCO3, pH, and select extractable elements) using a principal component analysis (PCA) in the immediate period after the fire. Four days after the fire we established a grid in a 9x27 m area and took ash samples every 3 meters for a total of 40 sampling points (Pereira et al., 2017). The PCA identified 5 different factors. Factor 1 identified high loadings in electrical conductivity, calcium, and magnesium and negative with aluminum and iron, while Factor 3 had high positive loadings in total phosphorous and silica. Factor 3 showed high positive loadings in sodium and potassium, factor 4 high negative loadings in CaCO3 and pH, and factor 5 high loadings in sodium and potassium. The experimental variograms of the extracted factors showed that the Gaussian model was the most precise to model factor 1, the linear to model factor 2 and the wave hole effect to model factor 3, 4 and 5. The maps produced confirm the patternd observed in the experimental variograms. Factor 1 and 2

  6. Ash dispersal dynamics: state of the art and perspectives

    NASA Astrophysics Data System (ADS)

    Sulpizio, R.

    2013-05-01

    Volcanic ash, during dispersal and deposition, is among the major hazards from explosive eruptions. Volcanic ash fallout can disrupt communities downwind, interrupt surface transportation networks and lead to closure of airports. Airborne ash seriously threatens modern jet aircraft in flight. In several documented cases, encounters between aircraft and volcanic clouds have resulted in engine flameout and near crashes, so there is a need to accurately predict the trajectory of volcanic ash clouds in order to improve aviation safety and reduce economic losses. The ash clouds affect aviation even in distal regions, as demonstrated by several eruptions with far-range dispersal. Recent examples include Crater Peak 1992, Tungurahua 1999-2001, Mount Cleveland 2001, Chaitén 2008, Eyjafjallajökull 2010, Grimsvötn 2011, and Cordón-Caulle 2011. Amongst these, the April-May 2010 eruption of Eyjafjallajökull in Iceland provoked the largest civil aviation breakdown. Accumulation of tephra can produce roof collapse, interruption of lifelines (roads, railways, etc.), disruption to airport operations, and damage to communications and electrical power lines. Deposition of ash decreases soil permeability, increases surface runoff, and promotes floods. Ash leaching can result in the pollution of water resources, damage to agriculture, pastures, and livestock, impinge on aquatic ecosystems, and alteration of the geochemical environment on the seafloor. Despite the potential big impact, the dispersal dynamics of volcanic ash is still an unsolved problem for volcanologists, which claims for fiture high level research. Here, a critical overview about models (field, experimental and numerical) for inversion of field data to gain insights on physics of dispersal of volcanic ash is proposed. A special focus is devoted to some physical parameters that are far from a satisfactory inversion (e.g. reconstruction of total grain size distribution), and clues for future research are suggested.

  7. Wood ash to treat sewage sludge for agricultural use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R.K.

    About 90% of the three million tons of wood ash generated in the United States from wood burning facilities is being landfilled. Many landfills are initiated tipping fees and/or restrictions on the disposal of special wastes such as ash. The purpose of this work was to evaluate (1) the feasibility of using wood ash to stabilize sewage sludge and (2) the fertilizer and liming value of the sludge/ash mixture on plant response and soil pH. Research showed that wood ash, when mixed with sludge, will produce a pH above 12.0, which meets US EPA criteria for pathogen reduction for landmore » application on non-direct food chain crops. Different ratios of wood ash to sludge mixtures were tested and the 1:1 ratio (by weight) was found to be optimal. Five replications of wood ash from four sources were tested for moisture content, pH and fertilizer nutrients. The pH of the ash/sludge mixture (1:1) on day one ranged from 12.4 to 13.2. In most cases the pH remained the same over a 21 day test or only dropped 0.1 to 0.3 units. Analyses of the mixtures showed that heavy metal concentrations (As, B, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, S, Se, Zn) were low. The 1:1 ash/sludge mixture had a calcium carbonate equivalency of 17%. Green house pot studies using tall fescue grass were loadings of 300 to 750 pounds per acre of TKN-N than for 500 lb/acre of 10-10-10 commercial fertilizer. Plant tissue analysis showed N, P, K, Ca, and Mg levels to be within the sufficiency range for tall fescue.« less

  8. Effective use of fly ash slurry as fill material.

    PubMed

    Horiuchi, S; Kawaguchi, M; Yasuhara, K

    2000-09-15

    A lot of effort has been put into increasing coal ash utilization; however, 50% of total amount is disposed of on land and in the sea. Several attempts have been reported recently concerning slurried coal fly ash use for civil engineering materials, such as for structural fill and backfill. The authors have studied this issue for more than 15 years and reported its potential for (1) underwater fills, (2) light weight backfills, and (3) light weight structural fills, through both laboratory tests and construction works. This paper is an overview of the results obtained for slurry, focusing on the following. (1) Coal fly ash reclaimed by slurry placement shows lower compressibility, higher ground density, and higher strength than by the other methods. This higher strength increases stability against liquefaction during earthquake. (2) Higher stability of the fly ash ground formed by slurry placement is caused by higher density and its self-hardening property. (3) Stability of fly ash reclaimed ground can be increased by increasing density and also by strength enhancement by cement addition. (4) Technical data obtained through a man-made island construction project shows the advantages of fly ash slurry in terms of mechanical properties such as higher stability against sliding failure, sufficient ground strength, and also in terms of cost saving. (5) Concentration in leachates from the placed slurry is lower than the Japanese environmental law. (6) In order to enlarge the fly ash slurry application toward a lightweight fill, mixtures of air foam, cement and fly ash were examined. Test results shows sufficient durability of this material against creep failure. This material was then used as lightweight structural fill around a high-rise building, and showed sufficient quality. From the above data, it can be concluded that coal fly ash slurry can be effectively utilized in civil engineering projects.

  9. Coal ash in Israel: Natural resource or environmental hazard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheps, S.; Davidi, S.; Cohen, H.

    1997-12-31

    Coal combustion in Israeli power plants produces 1,000,000 tonnes of ash annually. Most of the ash (55%) is used as cement additive. Since the expansion of coal combustion is much faster than the development of cement production, large amounts of fly ash are expected to accumulate in the next decade. Thus the environmental problem may be exacerbated if other means of utilization (e. g. embankments and marine reclamation or utilization as a chemical reagent) will not be possible in the future. Unlike other countries overseas, coal ash is defined in Israel as hazardous material, thus any disposal or utilization schememore » requires a special permit. The main concern is that pollution from the ash will leach out and contaminate the proximal ground water. The authors have decided to check the leaching behavior of South-African and Colombian fly ashes (the most abundant in Israel) using the following methods: (a) the improved EPA-TCLP 1311 (used in the US); (b) the EU-CEN/TC292/WG2 (declared recently as the method in the European Community); and (c) the NVN2508 method. The first two methods are batch methods and the third a flow through column method. The main constituents of the ash are listed along with the trace elements found. It has been observed that no appreciable amount of most trace elements are dissolved from the ash except that of chromium which exceeds the drinking water limits. Furthermore most of the leached chromium is in the hexavalent form which is considered as carcinogenic. The effect of different parameters and the risk involved in leaching out of trace elements from the fly ash to the underground water aquifer will be discussed in detail.« less

  10. The environmental status of coal ash produced in Israel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, L.A.

    1996-12-31

    From the 6.1 million tons of coal ash produced by Israeli power stations during the 1982--95 period, 65% were utilized for cement production, 18% served to construct embankments around the Hadera coastal power station, and the remaining 17% were disposed to the sea, according to permits issued by the governmental authorities. The coal imported to Israel is typically low-sulfur, beneficiated bituminous coal, and ash produced from it is alkaline and characterized by low concentrations of trace elements. According to the results of leaching tests, the potential release of trace elements from the ash is low, thus there is only amore » minor risk of contaminating groundwater under disposal or utilization sites. However, while the annual ash production increases and is planned to reach one million tons in the year 2000, the promotion of ash employment for new applications, for example as a road base material or for shore extension projects, is still prevented by the absence of regulations fixing the environmental status of coal ash.« less

  11. Tephra layers of blind Spring Valley and related upper pliocene and pleistocene tephra layers, California, Nevada, and Utah: isotopic ages, correlation, and magnetostratigraphy

    USGS Publications Warehouse

    Sarna-Wojcicki, Andrei M.; Reheis, Marith C.; Pringle, Malcolm S.; Fleck, Robert J.; Burbank, Doug; Meyer, Charles E.; Slate, Janet L.; Wan, Elmira; Budahn, James R.; Troxel, Bennie; Walker, James P.

    2005-01-01

    Numerical ages have been determined for a stratigraphic sequence of silicic tephra layers exposed at the Cowan Pumice Mine in Blind Spring Valley, near Benton Hot Springs, east-central California, as well as at Chalk Cliffs, north of Bishop, Calif. The tephra layers at these sites were deposited after eruptions from nearby sources, most of them from near Glass Mountain, and some from unknown sources. The ages were determined primarily by the laser-fusion 40Ar/39Ar method, mostly on sanidine feldspar; two were determined by conventional K-Ar analysis on obsidian clasts. These tephra layers, all underlying the Bishop ash bed and listed in order of concordant age and stratigraphic position, are: Tephra Unit Method Material Age Bishop Tuff (air-fall pumice) Ar/Ar sanidine 0.759?0.002 Ma* Upper tuffs of Glass Mountain Ar/Ar sanidine 0.87?0.02 Ma Upper tuffs of Glass Mountain Ar/Ar sanidine 1.13?0.19 Ma Lower tuffs of Glass Mountain K-Ar obsidian 1.86?0.09 Ma (avg of 2 dates) Ar/Ar sanidine 1.92?0.02 Ma (avg of 2 dates) Tuffs of Blind Spring Valley Ar/Ar sanidine 2.135?0.02 to sanidine 2.219?0.006 Ma (10 dates) Tuffs of Benton Hot Springs Ar/Ar plagioclase 2.81?0.02 Ma *Date published previously The above tephra layers were also petrographically examined and the volcanic glass shards of the layers were chemically analyzed using the electron microprobe and, for some samples, instrumental neutron activation analysis and X-ray fluorescence. The same types of chemical and petrographic analyses were conducted on stratigraphic sequences of tephra layers of suspected upper Pliocene and Pleistocene age in several past and present depositional basins within the region outside of Blind Spring Valley. Chemical characterization, combined with additional dates and with magnetostratigraphy of thick sections at two of the distal sites, allow correlation of the tephra layers at the Cowan Pumice Mine with layers present at the distal sites and provide age constraints for other

  12. Hierarchical zeolites from class F coal fly ash

    NASA Astrophysics Data System (ADS)

    Chitta, Pallavi

    Fly ash, a coal combustion byproduct is classified as types class C and class F. Class C fly ash is traditionally recycled for concrete applications and Class F fly ash often disposed in landfills. Class F poses an environmental hazard due to disposal and leaching of heavy metals into ground water and is important to be recycled in order to mitigate the environmental challenges. A major recycling option is to reuse the fly ash as a low-cost raw material for the production of crystalline zeolites, which serve as catalysts, detergents and adsorbents in the chemical industry. Most of the prior literature of fly ash conversion to zeolites does not focus on creating high zeolite surface area zeolites specifically with hierarchical pore structure, which are very important properties in developing a heterogeneous catalyst for catalysis applications. This research work aids in the development of an economical process for the synthesis of high surface area hierarchical zeolites from class F coal fly ash. In this work, synthesis of zeolites from fly ash using classic hydrothermal treatment approach and fusion pretreatment approach were examined. The fusion pretreatment method led to higher extent of dissolution of silica from quartz and mullite phases, which in turn led to higher surface area and pore size of the zeolite. A qualitative kinetic model developed here attributes the difference in silica content to Si/Al ratio of the beginning fraction of fly ash. At near ambient crystallization temperatures and longer crystallization times, the zeolite formed is a hierarchical faujasite with high surface area of at least 360 m2/g. This work enables the large scale recycling of class F coal fly ash to produce zeolites and mitigate environmental concerns. Design of experiments was used to predict surface area and pore sizes of zeolites - thus obviating the need for intense experimentation. The hierarchical zeolite catalyst supports tested for CO2 conversion, yielded hydrocarbons

  13. Flight potential of the emerald ash borer

    Treesearch

    Leah S. Bauer; Deborah L. Miller; Robin A.J. Taylor; Robert A. Haack

    2004-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an invasive pest of ash trees (Fraxinus spp.) in North America. Native to several Asian countries, EAB was discovered in six southeastern Michigan counties and southwestern Ontario in 2002. EAB presumably emerged from infested solid wood...

  14. Behavioral and electrophysiological responses of the emerald ash borer, Agrilus planipennis, to induced volatiles of Manchurian ash, Fraxinus mandshurica

    Treesearch

    Cesar Rodriguez-Saona; Therese M. Poland; James R. Miller; Lukasz L. Stelinski; Gary G. Grant; Peter de Groot; Linda Buchan; Linda Mac Donald

    2006-01-01

    We investigated the volatile emissions of Manchurian ash seedlings, Fraxinus mandshurica, in response to feeding by the emerald ash borer, Agrilus planipennis, and to exogenous application of methyl jasmonate (MeJA). Feeding damage by adult A. planipennis and MeJA treatment increased volatile emissions compared...

  15. Clay Improvement with Burned Olive Waste Ash

    PubMed Central

    Mutman, Utkan

    2013-01-01

    Olive oil is concentrated in the Mediterranean basin countries. Since the olive oil industries are incriminated for a high quantity of pollution, it has become imperative to solve this problem by developing optimized systems for the treatment of olive oil wastes. This study proposes a solution to the problem. Burned olive waste ash is evaluated for using it as clay stabilizer. In a laboratory, bentonite clay is used to improve olive waste ash. Before the laboratory, the olive waste is burned at 550°C in the high temperature oven. The burned olive waste ash was added to bentonite clay with increasing 1% by weight from 1% to 10%. The study consisted of the following tests on samples treated with burned olive waste ash: Atterberg Limits, Standard Proctor Density, and Unconfined Compressive Strength Tests. The test results show promise for this material to be used as stabilizer and to solve many of the problems associated with its accumulation. PMID:23766671

  16. The aggregation efficiency of very fine volcanic ash

    NASA Astrophysics Data System (ADS)

    Del Bello, E.; Taddeucci, J.; Scarlato, P.

    2013-12-01

    Explosive volcanic eruptions can discharge large amounts of very small sized pyroclasts (under 0.090 mm) into the atmosphere that may cause problems to people, infrastructures and environment. The transport and deposition of fine ash are ruled by aggregation that causes premature settling of fine ash and, as consequence, significantly reduces the concentration of airborne material over long distances. Parameterizing the aggregation potential of fine ash is then needed to provide accurate modelling of ash transport and deposition from volcanic plumes. Here we present the first results of laboratory experiments investigating the aggregation efficiency of very fine volcanic particles. Previous laboratory experiments have shown that collision kinetic and relative humidity provide the strongest effect on aggregation behaviour but were only limited to particles with size > 0.125 mm. In our work, we focus on natural volcanic ash at ambient humidity with particles size < 0.090 mm, by taking into account the effect of grain size distribution on aggregation potential. Two types of ash were used in our experiments: fresh ash, collected during fall-out from a recent plume-forming eruption at Sakurajima (Japan -July 2013) and old ash, collected from fall-out tephra deposits at Campi Flegrei (Italy, ca. 10 ka), to account for the different chemical composition and morphoscopic effects of altered ash on aggregation efficiency. Total samples were hand sieved to obtain three classes with unimodal grain size distributions (<0.090 mm, <0.063 mm, <0.032 mm). Bimodal grain size distributions were also obtained by mixing the three classes in different proportions. During each experiments, particles were sieved from the top of a transparent tank where a fan, placed at the bottom, allows turbulent dispersion of particles. Collision and sticking of particles on a vertical glass slide were filmed with a high speed cameras at 6000 fps. Our lenses arrangement provide high image resolution

  17. AATSR Based Volcanic Ash Plume Top Height Estimation

    NASA Astrophysics Data System (ADS)

    Virtanen, Timo H.; Kolmonen, Pekka; Sogacheva, Larisa; Sundstrom, Anu-Maija; Rodriguez, Edith; de Leeuw, Gerrit

    2015-11-01

    The AATSR Correlation Method (ACM) height estimation algorithm is presented. The algorithm uses Advanced Along Track Scanning Radiometer (AATSR) satellite data to detect volcanic ash plumes and to estimate the plume top height. The height estimate is based on the stereo-viewing capability of the AATSR instrument, which allows to determine the parallax between the satellite's nadir and 55◦ forward views, and thus the corresponding height. AATSR provides an advantage compared to other stereo-view satellite instruments: with AATSR it is possible to detect ash plumes using brightness temperature difference between thermal infrared (TIR) channels centered at 11 and 12 μm. The automatic ash detection makes the algorithm efficient in processing large quantities of data: the height estimate is calculated only for the ash-flagged pixels. Besides ash plumes, the algorithm can be applied to any elevated feature with sufficient contrast to the background, such as smoke and dust plumes and clouds. The ACM algorithm can be applied to the Sea and Land Surface Temperature Radiometer (SLSTR), scheduled for launch at the end of 2015.

  18. Modeling ash fall distribution from a Yellowstone supereruption

    USGS Publications Warehouse

    Mastin, Larry G.; Van Eaton, Alexa R.; Lowenstern, Jacob B.

    2014-01-01

    We used the volcanic ash transport and dispersion model Ash3d to estimate the distribution of ashfall that would result from a modern-day Plinian supereruption at Yellowstone volcano. The simulations required modifying Ash3d to consider growth of a continent-scale umbrella cloud and its interaction with ambient wind fields. We simulated eruptions lasting 3 days, 1 week, and 1 month, each producing 330 km3 of volcanic ash, dense-rock equivalent (DRE). Results demonstrate that radial expansion of the umbrella cloud is capable of driving ash upwind (westward) and crosswind (N-S) in excess of 1500 km, producing more-or-less radially symmetric isopachs that are only secondarily modified by ambient wind. Deposit thicknesses are decimeters to meters in the northern Rocky Mountains, centimeters to decimeters in the northern Midwest, and millimeters to centimeters on the East, West, and Gulf Coasts. Umbrella cloud growth may explain the extremely widespread dispersal of the ∼640 ka and 2.1 Ma Yellowstone tephra deposits in the eastern Pacific, northeastern California, southern California, and South Texas.

  19. [MSW incineration fly ash melting by DSC-DTA].

    PubMed

    Li, Rundong; Chi, Yong; Li, Shuiqing; Wang, Lei; Yan, Jianhua; Cen, Kefa

    2002-07-01

    Melting characteristics of two kinds of municipal solid waste incineration(MSWI) fly ash were studied in this paper by high temperature differential scanning calorimetry and differential temperature analysis. MSWI fly ash was considered as hazardous waste because it contains heavy metals and dioxins. The experiments were performed in either N2 or O2 atmosphere in temperature range of 20 degrees C-1450 degrees C at various heating rates. Two different MSW incineration fly ashes used in the experiments were collected from our country and France respectively. The process of fly ash melting exhibits two reactions occurring at temperature ranges of about 480 degrees C-670 degrees C and 1136 degrees C-1231 degrees C, respectively. The latent heat of polymorphic transformation and fusion were approximately 20 kJ/kg and 700 kJ/kg, while the total heat required for melting process was about 1800 kJ/kg. The paper also studied effect of CaO to melting. A heat flux thermodynamic model for fly ash melting was put forward and it agrees well with experimental data.

  20. Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards: Part I. Validation of satellite-derived Volcanic Ash Levels.

    NASA Astrophysics Data System (ADS)

    Koukouli, MariLiza; Balis, Dimitris; Simopoulos, Spiros; Siomos, Nikos; Clarisse, Lieven; Carboni, Elisa; Wang, Ping; Siddans, Richard; Marenco, Franco; Mona, Lucia; Pappalardo, Gelsomina; Spinetti, Claudia; Theys, Nicolas; Tampellini, Lucia; Zehner, Claus

    2014-05-01

    The 2010 eruption of the Icelandic volcano Eyjafjallajökull attracted the attention of the public and the scientific community to the vulnerability of the European airspace to volcanic eruptions. Major disruptions in European air traffic were observed for several weeks surrounding the two eruptive episodes, which had a strong impact on the everyday life of many Europeans as well as a noticable economic loss of around 2-3 billion Euros in total. The eruptions made obvious that the decision-making bodies were not informed properly and timely about the commercial aircraft capabilities to ash-leaden air, and that the ash monitoring and prediction potential is rather limited. After the Eyjafjallajökull eruptions new guidelines for aviation, changing from zero tolerance to newly established ash threshold values, were introduced. Within this spirit, the European Space Agency project Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards, called for the creation of an optimal End-to-End System for Volcanic Ash Plume Monitoring and Prediction . This system is based on improved and dedicated satellite-derived ash plume and sulphur dioxide level assessments, as well as an extensive validation using auxiliary satellite, aircraft and ground-based measurements. The validation of volcanic ash levels extracted from the sensors GOME-2/MetopA, IASI/MetopA and MODIS/Terra and MODIS/Aqua is presented in this work with emphasis on the ash plume height and ash optical depth levels. Co-located aircraft flights, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation [CALIPSO] soundings and well as European Aerosol Research Lidar Network [EARLINET] measurements were compared to the different satellite estimates for the those two eruptive episodes. The validation results are extremely promising with most satellite sensors performing quite well and within the estimated uncertainties compared to the comparative datasets. The findings are

  1. ULTRAFINE ASH AEROSOLS FROM COAL COMBUSTION: CHARACTERIZATION AND HEALTH EFFECTS

    EPA Science Inventory

    Ultrafine coal fly ash particles, defined here as those with diameters less than 0.5 micrometer, typically comprise less than 1% of the total fly ash mass. These particles are formed almost exclusively through ash vaporization, nucleation, and coagulation/condensation mechanisms,...

  2. Biomass ashes from pyrolytic wood liquefaction as novel soil amendments

    NASA Astrophysics Data System (ADS)

    Fernández-Delgado Juárez, Marina; Gómez Brandón, María; Mazzier, Thomas; Schönegger, Deborah; Hermanns, Roy; Leijenhorst, Evert; Insam, Heribert

    2017-04-01

    What happens when an old soil amendment is in fact a new one? Traditionally, ashes from biomass combustion were considered as a valuable resource, and widely used as an agricultural soil amendment. However, in recent decades we have been reluctant to apply them to soils, despite the increase in the production of combustion ashes resulting from the development of new fuels derived from biomass residues. The production of Fast Pyrolysis Bio Oil (FPBO) out of various lignocellulosic biomass streams is one of the newest technologies for gaining a liquid biofuel that can be seen as a future substitute for mineral oils. During the pyrolysis process, the by-products (charcoal and low calorific gases) are combusted to generate energy, resulting in the production of ashes that contain the majority of the minerals and salts originally present in the feedstock. The main objective of the present work is to investigate if the recovered ashes from the pyrolysis process can be used as a soil amendment. A greenhouse trial was set up in order to evaluate the impact of the ashes on an acid grassland soil (eutric Cambisol) from the region of Tyrol (Austria). A two-level experimental design (ash treatment, and plant effect) was set up. The ashes were mixed with the soil columns at a ratio of 1% (w:w, fresh weight). A control treatment that consisted of soil without the addition of ashes was also included. Moreover, to understand the effect that the ashes would have on crop growth, ten seeds of a traditional wheat variety (Tiroler Früher Dinkel; Triticum aestivum subsp. spelta), were placed in half of the columns with and without ashes, so as to determine the seed germination index and plant growth. Moreover, specific microbial groups related to N cycle were quantified by real-time PCR. A total of 24 experimental units (2 ash treatments x 2 incubation times x 2 plant levels x 3 replicates) were analysed. After an equilibration period of 24 h at 4 °C (referred as time zero), the

  3. Risk to ash from emerald ash borer: can biological control prevent the loss of ash stands?

    Treesearch

    Jian J. Duan; Roy G. Van Driesche; Leah S. Bauer; Daniel M. Kashian; Daniel A. Herms

    2015-01-01

    Ash trees (Fraxinus spp.) are an important components of both natural forests and urban plantings in the United States and Canada (Federal Register, 2003; Nowak et al., 2003). There are approximately 16 species of Fraxinus native to North America (Harlow et al., 1996; USGS, 2014), each adapted to different ecological niches across...

  4. Industrial Application Study on New-Type Mixed-Flow Fluidized Bed Bottom Ash Cooler

    NASA Astrophysics Data System (ADS)

    Zeng, B.; Lu, X. F.; Liu, H. Z.

    As a key auxiliary device of CFB boiler, the bottom ash cooler (BAC) has a direct influence on secure and economic operation of the boiler. The operating situation of domestic CFB power plant is complex and changeable with a bad coal-fired condition. The principle for designing BAC suitable for the bad coal-fired condition and high parameter CFB boilers was summarized in this paper. Meanwhile, a new-type mixed-flow fluidized bed bottom ash cooler was successfully designed on the basis of the comprehensive investigation on the existing BAC s merits and drawbacks. Using coarse/fine slag separation technology and micro-bubbling fluidization are the significant characteristics of this new BAC. This paper also puts great emphasis on its industrial test in a 460t/h CFB boiler. The results indicate that it achieves significant separation of the coarse/fine slag, an obvious cooling effect, no slag block and coking phenomenon, and continuous stable operation. Figs 7, Tabs 4 and Refs 11.

  5. The 1815 Tambora ash fall: implications for transport and deposition of distal ash on land and in the deep sea

    NASA Astrophysics Data System (ADS)

    Kandlbauer, Jessica; Carey, Steven N.; Sparks, R. Stephen J.

    2013-04-01

    Tambora volcano lies on the Sanggar Peninsula of Sumbawa Island in the Indonesian archipelago. During the great 1815 explosive eruption, the majority of the erupted pyroclastic material was dispersed and subsequently deposited into the Indian Ocean and Java Sea. This study focuses on the grain size distribution of distal 1815 Tambora ash deposited in the deep sea compared to ash fallen on land. Grain size distribution is an important factor in assessing potential risks to aviation and human health, and provides additional information about the ash transport mechanisms within volcanic umbrella clouds. Grain size analysis was performed using high precision laser diffraction for a particle range of 0.2 μm-2 mm diameter. The results indicate that the deep-sea samples provide a smooth transition to the land samples in terms of grain size distributions despite the different depositional environments. Even the very fine ash fraction (<10 μm) is deposited in the deep sea, suggesting vertical density currents as a fast and effective means of transport to the seafloor. The measured grain size distribution is consistent with an improved atmospheric gravity current sedimentation model that takes into account the finite duration of an eruption. In this model, the eruption time and particle fall velocity are the critical parameters for assessing the ash component depositing while the cloud advances versus the ash component depositing once the eruption terminates. With the historical data on eruption duration (maximum 24 h) and volumetric flow rate of the umbrella cloud (˜1.5-2.5 × 1011 m3/s) as input to the improved model, and assuming a combination of 3 h Plinian phase and 21 h co-ignimbrite phase, it reduces the mean deviation of the predicted versus observed grain size distribution by more than half (˜9.4 % to ˜3.7 %) if both ash components are considered.

  6. Combined disc pelletisation and thermal treatment of MSWI fly ash.

    PubMed

    Huber, Florian; Herzel, Hannes; Adam, Christian; Mallow, Ole; Blasenbauer, Dominik; Fellner, Johann

    2018-03-01

    An environmentally friendly and cost efficient way for the management of municipal solid waste incineration (MSWI) fly ash represents its thermal co-treatment together with combustible waste. However, the safe introduction and storage of MSWI fly ash in the waste bunker is challenging and associated with severe problems (e.g. dust emissions, generation of undefined lumps and heat in case of moistened MSWI fly ash). Therefore, the aim of this study is to investigate the suitability of pelletisation as a pretreatment of MSWI fly ash. In particular, MSWI fly ash was characterised after sampling, pelletisation and thermal treatment and the transfer of constituents to secondary fly ash and flue gas was investigated. For this purpose, MSWI fly ash pellets with a water content of about 0.15 kg/kg and a diameter of about 8 mm have been produced by disc pelletiser and treated in an electrically heated pilot-scale rotary kiln at different temperatures, ranging from 450 °C to 1050 °C. The total contents of selected elements in the MSWI fly ash before and after thermal treatment and in the generated secondary fly ash have been analysed in order to understand the fate of each element. Furthermore, leachable contents of selected elements and total content of persistent organic pollutants of the thermally treated MSWI fly ash were determined. Due to the low total content of Hg (0.7 mg/kg) and the low leachate content of Pb (<0.36 mg/kg), even at the lowest treatment temperature of 450 °C, thermally treated MSWI fly ash pellets can be classified as non-hazardous waste. However, temperatures of at least 650 °C are necessary to decrease the toxic equivalency of PCDD/F and DL-PCB. The removal of toxic heavy metals like Cd and Pb is significantly improved at temperatures of 850 °C, 950 °C or even 1050 °C. The observed metal removal led to relatively high contents of e.g. Cu (up to 11,000 mg/kg), Pb (up to 91,000 mg/kg) and Zn (up to 21,000 mg/kg) in

  7. Chemical composition and properties of ashes from combustion plants using Miscanthus as fuel.

    PubMed

    Lanzerstorfer, Christof

    2017-04-01

    Miscanthus giganteus is one of the energy crops considered to show potential for a substantial contribution to sustainable energy production. In the literature there is little data available about the chemical composition of ashes from the combustion of Miscanthus and practically no data about their physical properties. However, for handling, treatment and utilization of the ashes this information is important. In this study ashes from two biomass combustion plants using Miscanthus as fuel were investigated. The density of the ashes was 2230±35kg/m 3 , which was similar to the density of ashes from straw combustion. Also the bulk densities were close to those reported for straw ashes. The flowability of the ashes was a little worse than the flowability of ashes from wood combustion. The measured heavy metal concentrations were below the usual limits for utilization of the ashes as soil conditioner. The concentrations in the bottom ash were similar to those reported for ash from forest residue combustion plants. In comparison with cyclone fly ashes from forest residue combustion the measured heavy metal concentrations in the cyclone fly ash were considerably lower. Cl - , S and Zn were enriched in the cyclone fly ash which is also known for ashes from wood combustion. In comparison with literature data obtained from Miscanthus plant material the concentrations of K, Cl - and S were lower. This can be attributed to the fact that the finest fly ash is not collected by the cyclone de-dusting system of the Miscanthus combustion plants. Copyright © 2016. Published by Elsevier B.V.

  8. Comparative Effect of Bio-waste Ashes on Strength Properties of Cement Mortar

    NASA Astrophysics Data System (ADS)

    Ajay, Goyal; Hattori, Kunio; Ogata, Hidehiko; Ashraf, Muhammad; Ahmed, Mohamed Anwar

    Biomass fuels produce about 400 million tonnes of ashes as waste material. This paper discusses the pozzolanic character of bio-waste ashes obtained from dry tree leaves (AML), Korai grass (KRI) and Tifton grass (TFT). Ashes were obtained by control incineration of the wastes at 600°C for 5 hours and mortar specimens were prepared by substituting cement with 10, 20 and 30% ash. Strength development of ash-blended mortar specimens was evaluated by conducting destructive tests as well as non-destructive tests till 91 days. X-ray diffraction, scanning electron microscopic and thermo-gravimetric techniques were used to analyze the influence of ash substitution on strength properties of blended-mortar. Pozzolanic reactivity of AML- and KRI-ash was confirmed, but TFT-ash did not show enough reactivity. Overall results confirmed that up to 20% substitution of cement can be made with AML- or KRI-ash with strength approaching 90% of that of control.

  9. Spreading dynamic of viscous volcanic ash in stimulated jet engine conditions

    NASA Astrophysics Data System (ADS)

    song, wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado

    2016-04-01

    The ingestion of volcanic ash is widely recognised as a potentially fatal hazard for aircraft operation. The volcanic ash deposition process in a jet turbine is potentially complex. Volcanic ash in the air stream enters the inner liners of the combustors and partially or completely melts under the flames up to 2000 °C, at which point part of the ash deposits in the combustor fuel nozzle. Molten volcanic particles within high energy airflow escape the combustor to enter the turbine and impact the stationary (e.g., inlet nozzle guide vanes) and rotating airfoils (e.g., first stage high-pressure turbine blades) at high speed (up to Mach 1.25) in different directions, with the result that ash may stick, flow and remain liquid or solidify. Thus, the wetting behaviour of molten volcanic ash particle is fundamental to investigate impingement phenomena of ash droplet on the surface of real jet engine operation. The topic of wetting has received tremendous interest from both fundamental and applied points of view. However, due to the interdisciplinary gap between jet engine engineering and geology science, explicit investigation of wetting behaviour of volcanic ash at high temperature is in its infancy. We have taken a big step towards meeting this challenge. Here, we experimentally and theoretically investigate the wetting behaviour of viscous volcanic ash over a wide temperature range from 1100 to 1550 °C using an improved sessile-drop method. The results of our experiment demonstrate that temperature and viscosity play a critical role in determining the wetting possibility and governing the spreading kinetics of volcanic ash at high temperatures. Our systemic analysis of spreading of molten volcanic ash systems allows us to report on the fundamental differences between the mechanisms controlling spreading of organic liquids at room temperature and molten volcanic ash droplets.

  10. Exploration for emerald ash borer in China

    Treesearch

    Houping Liu; Toby R. Petrice; Leah S. Bauer; Robert A. Haack; Ruitong Gao; Tonghai Zhao

    2003-01-01

    In June 2002, the emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), native to several Asian countries, was identified as the cause of ash (Fraxinus spp.) mortality in greater than 2,500 square miles of southeastern Michigan and southwestern Ontario; more recent infestations were found in Ohio,...

  11. How New York State saved its ash

    Treesearch

    C.L. Holmes; M. Marquand; E.M. Toth

    2017-01-01

    Across the United States, forest communities are faced with the prospect of extirpation of Fraxinus (ash) species owing to mortality caused by invasion of the emerald ash borer (Agrilus planipennis). However, with the advancement of ex situ seed conservation practices, we have the opportunity to conserve the ecoregional-based...

  12. Microbial control of the emerald ash borer

    Treesearch

    Leah S. Bauer; Houping Liu; Deborah L. Miller

    2004-01-01

    In June 2002, emerald ash borer (EAB), Agrilus planipennis Fairmaire, a buprestid native to several Asian countries, was identified as the causative agent of ash (Fraxinus spp.) mortality in southeastern Michigan and southwestern Ontario. Currently, the only method known to control EAB is limited to identifying and destroying...

  13. Lunar ash flow with heat transfer.

    NASA Technical Reports Server (NTRS)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    The most important heat-transfer process in the ash flow under consideration is heat convection. Besides the four important nondimensional parameters of isothermal ash flow (Pai et al., 1972), we have three additional important nondimensional parameters: the ratio of the specific heat of the gas, the ratio of the specific heat of the solid particles to that of gas, and the Prandtl number. We reexamine the one dimensional steady ash flow discussed by Pai et al. (1972) by including the effects of heat transfer. Numerical results for the pressure, temperature, density of the gas, velocities of gas and solid particles, and volume fraction of solid particles as function of altitude for various values of the Jeffreys number, initial velocity ratio, and two different gas species (steam and hydrogen) are presented.

  14. White Fringetree as a Novel Larval Host for Emerald Ash Borer.

    PubMed

    Cipollini, Don

    2015-02-01

    Emerald ash borer is an invasive Asian pest of ash species in North America. All North American species of ash tested so far are susceptible to it, but there are no published reports of this insect developing fully in non-ash hosts in the field in North America. I report here evidence that emerald ash borer can attack and complete development in white fringetree, Chionanthus virginicus L., a species native to the southeastern United States that is also planted ornamentally. Four of 20 mature ornamental white fringetrees examined in the Dayton, Ohio area showed external symptoms of emerald ash borer attack, including the presence of adult exit holes, canopy dieback, and bark splitting and other deformities. Removal of bark from one of these trees yielded evidence of at least three generations of usage by emerald ash borer larvae, several actively feeding live larvae, and a dead adult confirmed as emerald ash borer. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Emerald ash borer biological control release and recovery guidelines

    Treesearch

    Juli S. Gould; Leah S. Bauer; Jian Duan

    2016-01-01

    Emerald ash borer (EAB), a beetle from Asia that feeds on ash trees, was discovered as the cause of extensive ash mortality in southeast Michigan and adjacent areas of Canada in 2002. It is thought that this destructive pest was introduced in the early 1990's in infested solid wood packing material originating in Asia. Shortly after EAB was discovered in North...

  16. Emerald ash borer biological control release and recovery guidelines

    Treesearch

    Juli S. Gould; Leah S. Bauer; Jian Duan

    2015-01-01

    Emerald ash borer (EAB), a beetle from Asia that feeds on ash trees, was discovered as the cause of extensive ash mortality in southeast Michigan and adjacent areas of Canada in 2002. It is thought that this destructive pest was introduced in the early 1990's in infested solid wood packing material originating in Asia. Shortly after EAB was discovered in North...

  17. Emerald ash borer biological control release and recovery guidelines

    Treesearch

    Juli S. Gould; Leah S. Bauer; Jonathan Lelito; Jian Duan

    2012-01-01

    Emerald ash borer (EAB), a beetle from Asia that feeds on ash trees, was discovered as the cause of extensive ash mortality in southeast Michigan and adjacent areas of Canada in 2002. It is thought that this destructive pest was introduced in the early 1990's in infested solid wood packing material originating in Asia. Shortly after EAB was discovered in North...

  18. Aquatic ecotoxicity of ashes from Brazilian savanna wildfires.

    PubMed

    Brito, Darlan Q; Passos, Carlos José S; Muniz, Daphne H F; Oliveira-Filho, Eduardo C

    2017-08-01

    In a global scenario of climate change, several studies have predicted an increase in fires in different parts of the world. With the occurrence of rains following the fires in the Brazilian savanna (Cerrado biome), the compounds present in ashes may enter aquatic environments and cause adverse effects to these ecosystems. In this context, this study evaluated the potential toxicity of ashes from two areas of Cerrado and an area of pasture, through ecotoxicological bioassays and using three aquatic species from distinct trophic levels, which were exposed to different dilutions of ashes: the microcrustacean Ceriodaphnia dubia, the fish Danio rerio and the mollusc Biomphalaria glabrata. The ashes from the three sampled areas showed higher concentrations of some elements in relation to the soil samples (B, Ca, K, Mg, Mn, P, S, Si, Sr, Zn), but only a small quantity of these compounds was solubilised. Our data showed that all ash samples caused acute toxicity to C. dubia (48hs-LC 50  = 13.4 g L -1 ; 48hs-LC 50  = 6.33 g L -1 ; 48hs-LC 50  = 9.73 g L -1 respectively for transition area, pasture, typical cerrado areas), while in relation to D. rerio and B. glabrata, no acute toxicity was observed when they were exposed to ashes from native Cerrado vegetation and pasture areas. Ashes from a transition area showed toxicity for D. rerio (48hs-LC 50  = 25.0 g L -1 ); possibly, this was due to the combination of multiple preponderant inorganic elements of ashes with other organic compounds not analysed, such as polycyclic aromatic hydrocarbons (PAHs). In summary, these results suggest that wildfires may pose risks to zooplankton communities and emphasize the need for more studies to better understand the complexity of the ecological effects of fire on aquatic ecosystems.

  19. Distribution of arsenic and mercury in lime spray dryer ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panuwat Taerakul; Ping Sun; Danold W. Golightly

    The partitioning of As and Hg in various components of lime spray dryer (LSD) ash samples from a coal-fired boiler was characterized to better understand the form and fate of these elements in flue gas desulfurization byproducts. LSD ash samples, collected from the McCracken Power Plant on the Ohio State University campus, were separated by a 140-mesh (106 {mu}m) sieve into two fractions: a fly-ash-/unburned-carbon-enriched fraction (> 106 {mu}m) and a calcium-enriched fraction (< 106 {mu}m). Unburned carbon and fly ash in the material > 106 {mu}m were subsequently separated by density using a lithium heteropolytungstate solution. The concentrations ofmore » As and Hg were significant in all fractions. The level of As was consistently greater in the calcium-enriched fraction, while Hg was evenly distributed in all components of LSD ash. Specific surface area was an important factor controlling the distribution of Hg in the different components of LSD ash, but not for As. Comparing the LSD ash data to samples collected from the economizer suggests that As was effectively captured by fly ash at 600{sup o}C, while Hg was not. Leaching tests demonstrated that As and Hg were more stable in the calcium-enriched fraction than in the fly-ash- or carbon-enriched fractions, potentially because of the greater pH of the leachate and subsequently greater stability of small amounts of calcium solids containing trace elements in these fractions. 37 refs., 8 figs., 2 tabs.« less

  20. Retention of elemental mercury in fly ashes in different atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.A. Lopez-Anton; M. Diaz-Somoano; M.R. Martinez-Tarazona

    2007-01-15

    Mercury is an extremely volatile element, which is emitted from coal combustion to the environment mostly in the vapor phase. To avoid the environmental problems that the toxic species of this element may cause, control technologies for the removal of mercury are necessary. Recent research has shown that certain fly ash materials have an affinity for mercury. Moreover, it has been observed that fly ashes may catalyze the oxidation of elemental mercury and facilitate its capture. However, the exact nature of Hg-fly ash interactions is still unknown, and mercury oxidation through fly ash needs to be investigated more thoroughly. Inmore » this work, the influence of a gas atmosphere on the retention of elemental mercury on fly ashes of different characteristics was evaluated. The retention capacity was estimated comparatively in inert and two gas atmospheres containing species present in coal gasification and coal combustion. Fly ashes produced in two pulverized coal combustion (PCC) plants, produced from coals of different rank (CTA and CTSR), and a fly ash (CTP) produced in a fluidized bed combustion (FBC) plant were used as raw materials. The mercury retention capacity of these fly ashes was compared to the retention obtained in different activated carbons. Although the capture of mercury is very similar in the gasification atmosphere and N{sub 2}, it is much more efficient in a coal combustion retention, being greater in fly ashes from PCC than those from FBC plants. 22 refs., 6 figs., 3 tabs.« less

  1. Recoverable immobilization of transuranic elements in sulfate ash

    DOEpatents

    Greenhalgh, Wilbur O.

    1985-01-01

    Disclosed is a method of reversibly immobilizing sulfate ash at least about 20% of which is sulfates of transuranic elements. The ash is mixed with a metal which can be aluminum, cerium, samarium, europium, or a mixture thereof, in amounts sufficient to form an alloy with the transuranic elements, plus an additional amount to reduce the transuranic element sulfates to elemental form. Also added to the ash is a fluxing agent in an amount sufficient to lower the percentage of the transuranic element sulfates to about 1% to about 10%. The mixture of the ash, metal, and fluxing agent is heated to a temperature sufficient to melt the fluxing agent and the metal. The mixture is then cooled and the alloy is separated from the remainder of the mixture.

  2. On the removal of hexavalent chromium from a Class F fly ash.

    PubMed

    Huggins, F E; Rezaee, M; Honaker, R Q; Hower, J C

    2016-05-01

    Coarse and fine samples of a Class F fly ash obtained from commercial combustion of Illinois bituminous coal have been exposed to two long-term leaching tests designed to simulate conditions in waste impoundments. ICP-AES analysis indicated that the coarse and fine fly ash samples contained 135 and 171mg/kg Cr, respectively. Measurements by XAFS spectroscopy showed that the ash samples originally contained 5 and 8% of the chromium, respectively, in the hexavalent oxidation state, Cr(VI). After exposure to water for more than four months, the percentage of chromium as Cr(VI) in the fly-ash decreased significantly for the coarse and fine fly-ash in both tests. Combining the XAFS data with ICP-AES data on the concentration of chromium in the leachates indicated that, after the nineteen-week-long, more aggressive, kinetic test on the coarse fly ash, approximately 60% of the Cr(VI) had been leached, 20% had been reduced to Cr(III) and retained in the ash, and 20% remained as Cr(VI) in the ash. In contrast, during the six-month-long baseline test, very little Cr was actually leached from either the coarse or the fine fly-ash (<0.1mg/kg); rather, about 66% and 20%, respectively, of the original Cr(VI) in the coarse and fine fly-ash was retained in the ash in that form, while the remainder, 34% and 80%, respectively, was reduced and retained in the ash as Cr(III). The results are interpreted as indicating that Cr(VI) present in Class F fly-ash can be reduced to Cr(III) when in contact with water and that such chemical reduction can compete with physical removal of Cr(VI) from the ash by aqueous leaching. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Nitrogen mineralization from sludge in an alkaline, saline coal gasification ash environment.

    PubMed

    Mbakwe, Ikenna; De Jager, Pieter C; Annandale, John G; Matema, Taurai

    2013-01-01

    Rehabilitating coal gasification ash dumps by amendment with waste-activated sludge has been shown to improve the physical and chemical properties of ash and to facilitate the establishment of vegetation. However, mineralization of organic N from sludge in such an alkaline and saline medium and the effect that ash weathering has on the process are poorly understood and need to be ascertained to make decisions regarding the suitability of this rehabilitation option. This study investigated the rate and pattern of N mineralization from sludge in a coal gasification ash medium to determine the prevalent inorganic N form in the system and assess the effect of ash weathering on N mineralization. An incubation experiment was performed in which fresh ash, weathered ash, and soil were amended with the equivalent of 90 Mg ha sludge, and N mineralization was evaluated over 63 d. More N (24%) was mineralized in fresh ash than in weathered ash and soil, both of which mineralized 15% of the initial organic N in sludge. More nitrification occurred in soil, and most of the N mineralized in ash was in the form of ammonium, indicating an inhibition of nitrifying organisms in the ash medium and suggesting that, at least initially, plants used for rehabilitation of coal gasification ash dumps will take up N mostly as ammonium. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. MEASURE OF FLY ASH RESISTIVITY USING SIMULATED FLUE GAS ENVIRONMENTS

    EPA Science Inventory

    The report, describing the apparatus and laboratory procedures used to determine resistivity for a number of fly ashes under a variety of test conditions, supports research to develop a technique for predicting fly ash resistivity from chemical analyses of coal and coal ash. This...

  5. Interactive influence of leaf age, light intensity, and girdling on green ash foliar chemistry and emerald ash borer development

    Treesearch

    Yigen Chen; Therese M. Poland

    2009-01-01

    Biotic and abiotic environmental factors affect plant nutritional quality and defensive compounds that confer plant resistance to herbivory. Influence of leaf age, light availability, and girdling on foliar nutrition and defense of green ash (Fraxinus pennsylvanica Marsh) was examined in this study. Longevity of the emerald ash borer, ...

  6. Leaching of mixtures of biochar and fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palumbo, Anthony V.; Porat, Iris; Phillips, Jana R.

    2009-06-22

    Increasing atmospheric levels of greenhouse gases, especially CO2, and their effects on global temperature have led to interest in the possibility of carbon storage in terrestrial environments. Both the residual char from biomass pyrolysis (biochar) and fly ash from coal combustion have the potential to significantly expand terrestrial sequestration options. Both biochar and fly ash also have potentially beneficial effects on soil properties. Fly ash has been shown to increase porosity, water-holding capacity, pH, conductivity, and dissolved SO42-, CO32-, Cl- and basic cations. Adding biochar to soil generally raises pH, increases total nitrogen and total phosphorous, encourages greater root development,more » improves cation exchange capacity and decreases available aluminum. A combination of these benefits likely is responsible for observed increases in yields for crops such as corn and sugarcane. In addition, it has been found that soils with added biochar emit lower amounts of other greenhouse gases (methane and nitrous oxide) than do unamended soils. Biochar and fly ash amendments may be useful in promoting terrestrial carbon sequestration on currently underutilized and degraded lands. For example, about 1% of the US surface lands consist of previously mined lands or highway rights-of-way. Poorly managed lands could count for another 15% of US area. Biochar and fly ash amendments could increase productivity of these lands and increase carbon storage in the soil. Previous results showed minimal leaching of organic carbon and metals from a variety of fly ashes. In the present study, we examined the properties of mixtures of biochar, fly ash, and soil and evaluated the leaching of organic carbon and metals from these mixtures. The carbon sorption experiments showed release of carbon from biochar, rather than sorption, except at the highest concentrations in the Biochar HW sample. Similar results were obtained by others for oxidative leaching of bituminous coal

  7. Formation of Humic Substances in Weathered MSWI Bottom Ash

    PubMed Central

    Zhang, Haixia; Shimaoka, Takayuki

    2013-01-01

    The study aimed at evaluating the humic substances (HSs) content from municipal solid waste incinerator (MSWI) bottom ash and its variation with time and the effect of temperature on HSs formation. The process suggested by IHSS was applied to extract HSs from two different bottom ash samples, and the extracted efficiency with NaOH and Na4P2O7 was compared. MSWI bottom ash samples were incubated at 37°C and 50°C for 1 year. HSs and nonhumic substances were extracted from the bottom ash sample with different incubated period by 0.1 M NaOH/Na4P2O7. Results show that the rate of humic acid formation increased originally with incubation time, reached a maximum at 12th week under 37°C and at 18th week under 50°C, and then decreased with time. More humic acid in MSWI bottom ash was formed under 50°C incubated condition compared with that incubated under 37°C. Also, the elemental compositions of HSs extracted from bottom ash are reported. PMID:23844394

  8. Artificial cloud test confirms volcanic ash detection using infrared spectral imaging

    PubMed Central

    Prata, A. J.; Dezitter, F.; Davies, I.; Weber, K.; Birnfeld, M.; Moriano, D.; Bernardo, C.; Vogel, A.; Prata, G. S.; Mather, T. A.; Thomas, H. E.; Cammas, J.; Weber, M.

    2016-01-01

    Airborne volcanic ash particles are a known hazard to aviation. Currently, there are no means available to detect ash in flight as the particles are too fine (radii < 30 μm) for on-board radar detection and, even in good visibility, ash clouds are difficult or impossible to detect by eye. The economic cost and societal impact of the April/May 2010 Icelandic eruption of Eyjafjallajökull generated renewed interest in finding ways to identify airborne volcanic ash in order to keep airspace open and avoid aircraft groundings. We have designed and built a bi-spectral, fast-sampling, uncooled infrared camera device (AVOID) to examine its ability to detect volcanic ash from commercial jet aircraft at distances of more than 50 km ahead. Here we report results of an experiment conducted over the Atlantic Ocean, off the coast of France, confirming the ability of the device to detect and quantify volcanic ash in an artificial ash cloud created by dispersal of volcanic ash from a second aircraft. A third aircraft was used to measure the ash in situ using optical particle counters. The cloud was composed of very fine ash (mean radii ~10 μm) collected from Iceland immediately after the Eyjafjallajökull eruption and had a vertical thickness of ~200 m, a width of ~2 km and length of between 2 and 12 km. Concentrations of ~200 μg m−3 were identified by AVOID at distances from ~20 km to ~70 km. For the first time, airborne remote detection of volcanic ash has been successfully demonstrated from a long-range flight test aircraft. PMID:27156701

  9. Artificial cloud test confirms volcanic ash detection using infrared spectral imaging.

    PubMed

    Prata, A J; Dezitter, F; Davies, I; Weber, K; Birnfeld, M; Moriano, D; Bernardo, C; Vogel, A; Prata, G S; Mather, T A; Thomas, H E; Cammas, J; Weber, M

    2016-05-09

    Airborne volcanic ash particles are a known hazard to aviation. Currently, there are no means available to detect ash in flight as the particles are too fine (radii < 30 μm) for on-board radar detection and, even in good visibility, ash clouds are difficult or impossible to detect by eye. The economic cost and societal impact of the April/May 2010 Icelandic eruption of Eyjafjallajökull generated renewed interest in finding ways to identify airborne volcanic ash in order to keep airspace open and avoid aircraft groundings. We have designed and built a bi-spectral, fast-sampling, uncooled infrared camera device (AVOID) to examine its ability to detect volcanic ash from commercial jet aircraft at distances of more than 50 km ahead. Here we report results of an experiment conducted over the Atlantic Ocean, off the coast of France, confirming the ability of the device to detect and quantify volcanic ash in an artificial ash cloud created by dispersal of volcanic ash from a second aircraft. A third aircraft was used to measure the ash in situ using optical particle counters. The cloud was composed of very fine ash (mean radii ~10 μm) collected from Iceland immediately after the Eyjafjallajökull eruption and had a vertical thickness of ~200 m, a width of ~2 km and length of between 2 and 12 km. Concentrations of ~200 μg m(-3) were identified by AVOID at distances from ~20 km to ~70 km. For the first time, airborne remote detection of volcanic ash has been successfully demonstrated from a long-range flight test aircraft.

  10. Chemical ecology and behavioral studies on the emerald ash borer: an update

    Treesearch

    Deepa Pureswaran; Therese Poland

    2008-01-01

    In 2006, we tested host selection and feeding preference of the emerald ash borer (EAB) on four species of ash species (green, black, white, and blue ash) that are native to North America but exotic to the beetle. For comparison, we also included Manchurian ash (which is native to the beetle) and European ash (which is exotic to the beetle) in the test. Beetles were...

  11. Ash from Kilauea Eruption Viewed by NASA's MISR

    Atmospheric Science Data Center

    2018-06-07

    ... title:  Ash from Kilauea Eruption Viewed by NASA's MISR View Larger Image   Ash ... Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite captured this view of the island as it passed overhead. ...

  12. Illinois basin coal fly ashes. 2. Equilibria relationships and qualitative modeling of ash-water reactions

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.

    1984-01-01

    Alkaline and acidic Illinois Basin coal fly ash samples were each mixed with deionized water and equilibrated for about 140 days to simulate ash ponding environments. Common to both equilibrated solutions, anhydrite solubility dominated Ca2+ activities, and Al3+ activities were in equilibrium with both matrix mullite and insoluble aluminum hydroxide phases. Aqueous silica activities were controlled by both mullite and matrix silicates. The pH of the extract of the acidic fly ash was 4.1 after 24 h but increased to a pH value of 6.4 as the H2SO4, assumed to be adsorbed to the particle surfaces, was exhausted by the dissolution of matrix iron oxides and aluminosilicates. The activities of aqueous Al3+ and iron, initially at high levels during the early stages of equilibration, decreased to below analytical detection limits as the result of the formation of insoluble Fe and Al hydroxide phases. The pH of the extract of the alkaline fly ash remained above a pH value of 10 during the entire equilibration interval as a result of the hydrolysis of matrix oxides. As with the acidic system, Al3+ activities were controlled by amorphous aluminum hydroxide phases that began to form after about 7 days of equilibration. The proposed mechanisms and their interrelations are discussed in addition to the solubility diagrams used to deduce these relationships. ?? 1984 American Chemical Society.

  13. Molecular recognition of emerald ash borer infestation using leaf spray mass spectrometry.

    PubMed

    Falcone, Caitlin E; Cooks, R Graham

    2016-06-15

    The introduction of the emerald ash borer (Agrilus planipennis) (EAB) from Asia to Michigan, USA, in the 1990s caused the widespread death of ash trees in two Canadian provinces and 24 US states. The three current methods for the detection of emerald ash borer infestation, visual surveys, tree girdling and artificial traps, can be unreliable, and there is clearly a need for a rapid, dependable technique for the detection of emerald ash borer infestation. Leaf spray, an ambient ionization method for mass spectrometry (MS), gives direct chemical information on a leaf sample by applying a high voltage to a naturally or artificially sharply pointed leaf piece causing ions to be generated directly from the leaf tip for MS analysis. Leaflets from 23 healthy and EAB-infested ash trees were analyzed by leaf spray mass spectrometry in an attempt to distinguish healthy and EAB-infested ash trees. In negative ion mode, healthy ash trees showed an increased abundance of ions m/z 455.5, 471.5 and 487.5, and ash trees infested with the EAB displayed an increased abundance of ions m/z 181 and 217. The identities of the chemical discriminators ursolic acid and oleanolic acid in healthy ash trees, and six-carbon sugar alcohols in infested ash trees, were determined by tandem mass spectrometry and confirmed with standards. This preliminary study suggests that leaf spray mass spectrometry of ash tree leaflets provides a potential tool for the early detection of ash tree infestation by the emerald ash borer. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Methods for studying emerald ash borer parasitoids in the field

    Treesearch

    Leah Bauer; Jian Duan; Juli Gould; Kristopher Abell; Deborah Miller; Jason Hansen; Roy. Van Driesche

    2011-01-01

    The emerald ash borer (EAB), Agrilus planipennis (Coleoptera: Buprestidae), is an invasive phloemfeeding beetle from Asia that attacks ash (Fraxinus spp.) trees. EAB was determined to be the cause of extensive ash tree mortality throughout southeast Michigan and nearby Ontario in 2002. For several years, regulatory agencies...

  15. Modeling volcanic ash dispersal

    ScienceCinema

    Macedonio, Giovanni

    2018-05-22

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  16. Effectiveness of fly ash for strength and durability of concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, D.W.S.; Lewis, R.K.

    1985-09-01

    The effectiveness, K, of a fly ash can be defined as the ratio of the amount of cement replaced to the amount of fly ash added, provided the specified requirements of the concrete are maintained. It is generally assumed that the effectiveness of a fly ash can be treated as a constant. This paper presents results on concrete made with various mix proportions using three different cements and fly ash from three different sources. It was found that the K factor of each fly ash in achieving common 28-day compressive strength varies over a wide range depending on the amountmore » of fly ash used, the type of cement, the incorporation of chemical admixtures and the particular strength level chosen. Besides strength, K can also be calculated for other properties. For the materials used in this investigation, the K factors with respect to carbonation were found to be unequal to K factors for strength.« less

  17. Emerald ash borer biology and invasion history

    Treesearch

    Robert A. Haack; Yuri Baranchikov; Leah S. Bauer; Therese M. Poland

    2015-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is native to eastern Asia and is primarily a pest of ash (Fraxinus) trees (Fig. 1). Established populations of EAB were first detected in the United States and Canada in 2002 (Haack et al., 2002), and based on a dendrochronology study by Siegert...

  18. Mutagenicity and genotoxicity of coal fly ash water leachate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, R.; Mukherjee, A.

    2009-03-15

    Fly ash is a by-product of coal-fired electricity generation plants. The prevalent practice of disposal is as slurry of ash and water to storage or ash ponds located near power stations. This has lain to waste thousands of hectares of land all over the world. Since leaching is often the cause of off-site contamination and pathway of introduction into the human environment, a study on the genotoxic effects of fly ash leachate is essential. Leachate prepared from the fly ash sample was analyzed for metal content, and tested for mutagenicity and genotoxicity. Analyses of metals show predominance of the metalsmore » - sodium, silicon, potassium, calcium, magnesium, iron, manganese, zinc, and sulphate. The Ames Salmonella mutagenicity assay, a short-term bacterial reverse mutation assay, was conducted on two-tester strains of Salmonella typhimurium strains TA97a and TA102. For genotoxicity, the alkaline version of comet assay on fly ash leachate was carried in vitro on human blood cells and in vivo on Nicotiana plants. The leachate was directly mutagenic and induced significantconcentration-dependent increases in DNA damage in whole blood cells, lymphocytes, and in Nicotiana plants. The comet parameters show increases in tail DNA percentage (%), tail length (mu m), and olive tail moment (arbitrary units). Our results indicate that leachate from fly ash dumpsites has the genotoxic potential and may lead to adverse effects on vegetation and on the health of exposed human populations.« less

  19. Leaching of Mixtures of Biochar and Fly Ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palumbo, Anthony Vito; Porat, Iris; Phillips, Jana Randolph

    2009-01-01

    Increasing atmospheric levels of greenhouse gases, especially CO2, and their effects on global temperature have led to interest in the possibility of carbon storage in terrestrial environments.2, 5, 6 Both the residual char from biomass pyrolysis7-9, 12 (biochar) and fly ash from coal combustion1, 13, 14 have the potential to significantly expand terrestrial sequestration options. Both biochar and fly ash also have potentially beneficial effects on soil properties. Fly ash has been shown to increase porosity, water-holding capacity, pH, conductivity, and dissolved SO42-, CO32-, Cl- and basic cations.10, 11, 16 Adding biochar to soil generally raises pH, increases total nitrogenmore » and total phosphorous, encourages greater root development, improves cation exchange capacity and reduces available aluminum.3, 17 Combinations of these benefits likely lead to the observed increased yields for crops including corn and sugarcane.17 with biochar addition to soil. In addition, it has been found that soils with added biochar emit lower amounts of other greenhouse gases (methane and nitrous oxide) 8, 17 than do unammended soils. Biochar and fly ash amendments may be useful in promoting terrestrial carbon sequestration on currently underutilized and degraded lands. For example, about 1% of the US surface lands consist of previously mined lands or highway rights-of-way.18 Poorly managed lands could count for another 15% of US area. Biochar and fly ash amendments could increase productivity of these lands and increase carbon storage in the soil Previous results showed minimal leaching of organic carbon and metals from a variety of fly ashes.15 Here, we are examining the properties of mixtures of biochar, fly ash, and soil and evaluating leaching of organic carbon and metals from the mixtures.« less

  20. Strength Performance of Blended Ash Based Geopolymer Mortar

    NASA Astrophysics Data System (ADS)

    Zahib, Zaidahtulakmal M.; Kamaruddin, Kartini; Saman, Hamidah M.

    2018-03-01

    Geopolymer is a based on inorganic alumino-silicate binder system. Geopolymeric materials are formed using materials that containing silica and aluminium such as fly ash and rice husk ash, which activated by alkaline solution. This paper presents the study on the effect of replacement of SSA in RHA based geopolymer, types of curing and different molarity of NaOH used on the strength of Sewage Sludge Ash (SSA) and Rice Husk Ash (RHA) based geopolymer mortar incorporating with three (3) different mix proportions. Based geopolymer mortar was synthesized from treated sewage sludge and rice husk undergoing incineration process in producing ashes, activated with sodium silicate and sodium hydroxide solution by ratio of 2.5:1 and solution to ash ratio of 1:1. Molarity of 8M and 10M NaOH were used. The percentages of SSA replacement were 0%, 10% and 20% by weight. Compressive strength was conducted at age 7, 14 and 28 days to see the development of strength with two curing regimes, which are air curing and oven curing (60°C for 24 hours). From the research conducted, the ultimate compressive strength (6.28MPa) was obtained at zero replacement of SSA taken at 28 days of oven curing with 10M of NaOH. This shows that RHA, which is rich in silica content is enough to enhance the strength of geopolymer mortar especially with high molarity of NaOH.