Sample records for key autophagic proteins

  1. The endosomal protein CHARGED MULTIVESICULAR BODY PROTEIN1 regulates the autophagic turnover of plastids in Arabidopsis.

    PubMed

    Spitzer, Christoph; Li, Faqiang; Buono, Rafael; Roschzttardtz, Hannetz; Chung, Taijoon; Zhang, Min; Osteryoung, Katherine W; Vierstra, Richard D; Otegui, Marisa S

    2015-02-01

    Endosomal Sorting Complex Required for Transport (ESCRT)-III proteins mediate membrane remodeling and the release of endosomal intraluminal vesicles into multivesicular bodies. Here, we show that the ESCRT-III subunit paralogs CHARGED MULTIVESICULAR BODY PROTEIN1 (CHMP1A) and CHMP1B are required for autophagic degradation of plastid proteins in Arabidopsis thaliana. Similar to autophagy mutants, chmp1a chmp1b (chmp1) plants hyperaccumulated plastid components, including proteins involved in plastid division. The autophagy machinery directed the release of bodies containing plastid material into the cytoplasm, whereas CHMP1A and B were required for delivery of these bodies to the vacuole. Autophagy was upregulated in chmp1 as indicated by an increase in vacuolar green fluorescent protein (GFP) cleavage from the autophagic reporter GFP-ATG8. However, autophagic degradation of the stromal cargo RECA-GFP was drastically reduced in the chmp1 plants upon starvation, suggesting that CHMP1 mediates the efficient delivery of autophagic plastid cargo to the vacuole. Consistent with the compromised degradation of plastid proteins, chmp1 plastids show severe morphological defects and aberrant division. We propose that CHMP1 plays a direct role in the autophagic turnover of plastid constituents. © 2015 American Society of Plant Biologists. All rights reserved.

  2. Selective autophagy mediated by autophagic adapter proteins

    PubMed Central

    Lamark, Trond

    2011-01-01

    Mounting evidence suggests that autophagy is a more selective process than originally anticipated. The discovery and characterization of autophagic adapters, like p62 and NBR1, has provided mechanistic insight into this process. p62 and NBR1 are both selectively degraded by autophagy and able to act as cargo receptors for degradation of ubiquitinated substrates. A direct interaction between these autophagic adapters and the autophagosomal marker protein LC3, mediated by a so-called LIR (LC3-interacting region) motif, their inherent ability to polymerize or aggregate as well as their ability to specifically recognize substrates are required for efficient selective autophagy. These three required features of autophagic cargo receptors are evolutionarily conserved and also employed in the yeast cytoplasm-to-vacuole targeting (Cvt) pathway and in the degradation of P granules in C. elegans. Here, we review the mechanistic basis of selective autophagy in mammalian cells discussing the degradation of misfolded proteins, p62 bodies, aggresomes, mitochondria and invading bacteria. The emerging picture of selective autophagy affecting the regulation of cell signaling with consequences for oxidative stress responses, tumorigenesis and innate immunity is also addressed. PMID:21189453

  3. Mutant p53 proteins counteract autophagic mechanism sensitizing cancer cells to mTOR inhibition.

    PubMed

    Cordani, Marco; Oppici, Elisa; Dando, Ilaria; Butturini, Elena; Dalla Pozza, Elisa; Nadal-Serrano, Mercedes; Oliver, Jordi; Roca, Pilar; Mariotto, Sofia; Cellini, Barbara; Blandino, Giovanni; Palmieri, Marta; Di Agostino, Silvia; Donadelli, Massimo

    2016-08-01

    Mutations in TP53 gene play a pivotal role in tumorigenesis and cancer development. Here, we report that gain-of-function mutant p53 proteins inhibit the autophagic pathway favoring antiapoptotic effects as well as proliferation of pancreas and breast cancer cells. We found that mutant p53 significantly counteracts the formation of autophagic vesicles and their fusion with lysosomes throughout the repression of some key autophagy-related proteins and enzymes as BECN1 (and P-BECN1), DRAM1, ATG12, SESN1/2 and P-AMPK with the concomitant stimulation of mTOR signaling. As a paradigm of this mechanism, we show that atg12 gene repression was mediated by the recruitment of the p50 NF-κB/mutant p53 protein complex onto the atg12 promoter. Either mutant p53 or p50 NF-κB depletion downregulates atg12 gene expression. We further correlated the low expression levels of autophagic genes (atg12, becn1, sesn1, and dram1) with a reduced relapse free survival (RFS) and distant metastasis free survival (DMFS) of breast cancer patients carrying TP53 gene mutations conferring a prognostic value to this mutant p53-and autophagy-related signature. Interestingly, the mutant p53-driven mTOR stimulation sensitized cancer cells to the treatment with the mTOR inhibitor everolimus. All these results reveal a novel mechanism through which mutant p53 proteins promote cancer cell proliferation with the concomitant inhibition of autophagy. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. zVAD-fmk prevents cisplatin-induced cleavage of autophagy proteins but impairs autophagic flux and worsens renal function

    PubMed Central

    Herzog, Christian; Yang, Cheng; Holmes, Alexandrea

    2012-01-01

    Cisplatin injury to renal tubular epithelial cells (RTEC) is accompanied by autophagy and caspase activation. However, autophagy gradually decreases during the course of cisplatin injury. The role of autophagy and the mechanism of its decrease during cisplatin injury are not well understood. This study demonstrated that autophagy proteins beclin-1, Atg5, and Atg12 were cleaved and degraded during the course of cisplatin injury in RTEC and the kidney. zVAD-fmk, a widely used pancaspase inhibitor, blocked cleavage of autophagy proteins suggesting that zVAD-fmk would promote the autophagy pathway. Unexpectedly, zVAD-fmk blocked clearance of the autophagosomal cargo, indicating lysosomal dysfunction. zVAD-fmk markedly inhibited cisplatin-induced lysosomal cathepsin B and calpain activities and therefore impaired autophagic flux. In a mouse model of cisplatin nephrotoxicity, zVAD-fmk impaired autophagic flux by blocking autophagosomal clearance as revealed by accumulation of key autophagic substrates p62 and LC3-II. Furthermore, zVAD-fmk worsened cisplatin-induced renal dysfunction. Chloroquine, a lysomotropic agent that is known to impair autophagic flux, also exacerbated cisplatin-induced decline in renal function. These findings demonstrate that impaired autophagic flux induced by zVAD-fmk or a lysomotropic agent worsened renal function in cisplatin acute kidney injury (AKI) and support a protective role of autophagy in AKI. These studies also highlight that the widely used antiapoptotic agent zVAD-fmk may be contraindicated as a therapeutic agent for preserving renal function in AKI. PMID:22896037

  5. Testosterone regulates the autophagic clearance of androgen binding protein in rat Sertoli cells

    PubMed Central

    Ma, Yi; Yang, Hao-Zheng; Xu, Long-Mei; Huang, Yi-Ran; Dai, Hui-Li; Kang, Xiao-Nan

    2015-01-01

    Dysregulation of androgen-binding protein (ABP) is associated with a number of endocrine and andrology diseases. However, the ABP metabolism in Sertoli cells is largely unknown. We report that autophagy degrades ABP in rat Sertoli cells, and the autophagic clearance of ABP is regulated by testosterone, which prolongs the ABP biological half-life by inhibiting autophagy. Further studies identified that the autophagic clearance of ABP might be selectively regulated by testosterone, independent of stress (hypoxia)-induced autophagic degradation. These data demonstrate that testosterone up-regulates ABP expression at least partially by suppressing the autophagic degradation. We report a novel finding with respect to the mechanisms by which ABP is cleared, and by which the process is regulated in Sertoli cells. PMID:25745956

  6. The different roles of selective autophagic protein degradation in mammalian cells.

    PubMed

    Wang, Da-wei; Peng, Zhen-ju; Ren, Guang-fang; Wang, Guang-xin

    2015-11-10

    Autophagy is an intracellular pathway for bulk protein degradation and the removal of damaged organelles by lysosomes. Autophagy was previously thought to be unselective; however, studies have increasingly confirmed that autophagy-mediated protein degradation is highly regulated. Abnormal autophagic protein degradation has been associated with multiple human diseases such as cancer, neurological disability and cardiovascular disease; therefore, further elucidation of protein degradation by autophagy may be beneficial for protein-based clinical therapies. Macroautophagy and chaperone-mediated autophagy (CMA) can both participate in selective protein degradation in mammalian cells, but the process is quite different in each case. Here, we summarize the various types of macroautophagy and CMA involved in determining protein degradation. For this summary, we divide the autophagic protein degradation pathways into four categories: the post-translational modification dependent and independent CMA pathways and the ubiquitin dependent and independent macroautophagy pathways, and describe how some non-canonical pathways and modifications such as phosphorylation, acetylation and arginylation can influence protein degradation by the autophagy lysosome system (ALS). Finally, we comment on why autophagy can serve as either diagnostics or therapeutic targets in different human diseases.

  7. Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation

    PubMed Central

    Chang, Jaerak; Lee, Seongju; Blackstone, Craig

    2014-01-01

    Autophagy allows cells to adapt to changes in their environment by coordinating the degradation and recycling of cellular components and organelles to maintain homeostasis. Lysosomes are organelles critical for terminating autophagy via their fusion with mature autophagosomes to generate autolysosomes that degrade autophagic materials; therefore, maintenance of the lysosomal population is essential for autophagy-dependent cellular clearance. Here, we have demonstrated that the two most common autosomal recessive hereditary spastic paraplegia gene products, the SPG15 protein spastizin and the SPG11 protein spatacsin, are pivotal for autophagic lysosome reformation (ALR), a pathway that generates new lysosomes. Lysosomal targeting of spastizin required an intact FYVE domain, which binds phosphatidylinositol 3-phosphate. Loss of spastizin or spatacsin resulted in depletion of free lysosomes, which are competent to fuse with autophagosomes, and an accumulation of autolysosomes, reflecting a failure in ALR. Moreover, spastizin and spatacsin were essential components for the initiation of lysosomal tubulation. Together, these results link dysfunction of the autophagy/lysosomal biogenesis machinery to neurodegeneration. PMID:25365221

  8. Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation.

    PubMed

    Chang, Jaerak; Lee, Seongju; Blackstone, Craig

    2014-12-01

    Autophagy allows cells to adapt to changes in their environment by coordinating the degradation and recycling of cellular components and organelles to maintain homeostasis. Lysosomes are organelles critical for terminating autophagy via their fusion with mature autophagosomes to generate autolysosomes that degrade autophagic materials; therefore, maintenance of the lysosomal population is essential for autophagy-dependent cellular clearance. Here, we have demonstrated that the two most common autosomal recessive hereditary spastic paraplegia gene products, the SPG15 protein spastizin and the SPG11 protein spatacsin, are pivotal for autophagic lysosome reformation (ALR), a pathway that generates new lysosomes. Lysosomal targeting of spastizin required an intact FYVE domain, which binds phosphatidylinositol 3-phosphate. Loss of spastizin or spatacsin resulted in depletion of free lysosomes, which are competent to fuse with autophagosomes, and an accumulation of autolysosomes, reflecting a failure in ALR. Moreover, spastizin and spatacsin were essential components for the initiation of lysosomal tubulation. Together, these results link dysfunction of the autophagy/lysosomal biogenesis machinery to neurodegeneration.

  9. Autophagic flux is required for the synthesis of triacylglycerols and ribosomal protein turnover in Chlamydomonas.

    PubMed

    Couso, Inmaculada; Pérez-Pérez, María Esther; Martínez-Force, Enrique; Kim, Hee-Sik; He, Yonghua; Umen, James G; Crespo, José L

    2018-03-14

    Autophagy is an intracellular catabolic process that allows cells to recycle unneeded or damaged material to maintain cellular homeostasis. This highly dynamic process is characterized by the formation of double-membrane vesicles called autophagosomes, which engulf and deliver the cargo to the vacuole. Flow of material through the autophagy pathway and its degradation in the vacuole is known as autophagic flux, and reflects the autophagic degradation activity. A number of assays have been developed to determine autophagic flux in yeasts, mammals, and plants, but it has not been examined yet in algae. Here we analyzed autophagic flux in the model green alga Chlamydomonas reinhardtii. By monitoring specific autophagy markers such as ATG8 lipidation and using immunofluorescence and electron microscopy techniques, we show that concanamycin A, a vacuolar ATPase inhibitor, blocks autophagic flux in Chlamydomonas. Our results revealed that vacuolar lytic function is needed for the synthesis of triacylglycerols and the formation of lipid bodies in nitrogen- or phosphate-starved cells. Moreover, we found that concanamycin A treatment prevented the degradation of ribosomal proteins RPS6 and RPL37 under nitrogen or phosphate deprivation. These results indicate that autophagy might play an important role in the regulation of lipid metabolism and the recycling of ribosomal proteins under nutrient limitation in Chlamydomonas.

  10. Protein kinase C alpha drives fibroblast activation and kidney fibrosis by stimulating autophagic flux.

    PubMed

    Xue, Xian; Ren, Jiafa; Sun, Xiaoli; Gui, Yuan; Feng, Ye; Shu, Bingyan; Wei, Wei; Lu, Qingmiao; Liang, Yan; He, Weichun; Yang, Junwei; Dai, Chunsun

    2018-05-23

    Kidney fibrosis is a histological hallmark of chronic kidney disease and arises in large part through excessive extracellular matrix (ECM) deposition by activated fibroblasts. The signaling protein complex mTOR complex 2 (mTORC2) plays a critical role in fibroblast activation and kidney fibrosis. Protein kinase C alpha (PKCα) is one of the major sub-pathways of mTORC2, but its role in fibroblast activation and kidney fibrosis remains to be determined. Here, we found that transforming growth factor beta 1 (TGFβ1) activates PKCα signaling in cultured NRK-49F cells in a time-dependent manner. Blocking PKCα signaling with the chemical inhibitor Go6976 or by transfection with PKCα siRNA largely reduced expression of the autophagy-associated protein lysosomal-associated membrane protein 2 (LAMP2) and also inhibited autophagosome-lysosome fusion and autophagic flux in the cells. Similarly to chloroquine, Go6976 treatment and PKCα siRNA transfection also markedly inhibited TGFβ1-induced fibroblast activation. In murine fibrotic kidneys with unilateral ureteral obstruction (UUO) nephropathy, PKCα signaling is activated in the interstitial myofibroblasts. Go6976 administration largely blocked autophagic flux in fibroblasts in the fibrotic kidneys and attenuated the UUO nephropathy. Together, our findings suggest that blocking PKCα activity may retard autophagic flux and thereby prevent fibroblast activation and kidney fibrosis. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Autophagic pathways and metabolic stress

    PubMed Central

    Kaushik, S.; Singh, R.; Cuervo, A. M.

    2014-01-01

    Autophagy is an essential intracellular process that mediates degradation of intracellular proteins and organelles in lysosomes. Autophagy was initially identified for its role as alternative source of energy when nutrients are scarce but, in recent years, a previously unknown role for this degradative pathway in the cellular response to stress has gained considerable attention. In this review, we focus on the novel findings linking autophagic function with metabolic stress resulting either from proteins or lipids. Proper autophagic activity is required in the cellular defense against proteotoxicity arising in the cytosol and also in the endoplasmic reticulum, where a vast amount of proteins are synthesized and folded. In addition, autophagy contributes to mobilization of intracellular lipid stores and may be central to lipid metabolism in certain cellular conditions. In this review, we focus on the interrelation between autophagy and different types of metabolic stress, specifically the stress resulting from the presence of misbehaving proteins within the cytosol or in the endoplasmic reticulum and the stress following a lipogenic challenge. We also comment on the consequences that chronic exposure to these metabolic stressors could have on autophagic function and on how this effect may underlie the basis of some common metabolic disorders. PMID:21029294

  12. Autophagic pathways and metabolic stress.

    PubMed

    Kaushik, S; Singh, R; Cuervo, A M

    2010-10-01

    Autophagy is an essential intracellular process that mediates degradation of intracellular proteins and organelles in lysosomes. Autophagy was initially identified for its role as alternative source of energy when nutrients are scarce but, in recent years, a previously unknown role for this degradative pathway in the cellular response to stress has gained considerable attention. In this review, we focus on the novel findings linking autophagic function with metabolic stress resulting either from proteins or lipids. Proper autophagic activity is required in the cellular defense against proteotoxicity arising in the cytosol and also in the endoplasmic reticulum, where a vast amount of proteins are synthesized and folded. In addition, autophagy contributes to mobilization of intracellular lipid stores and may be central to lipid metabolism in certain cellular conditions. In this review, we focus on the interrelation between autophagy and different types of metabolic stress, specifically the stress resulting from the presence of misbehaving proteins within the cytosol or in the endoplasmic reticulum and the stress following a lipogenic challenge. We also comment on the consequences that chronic exposure to these metabolic stressors could have on autophagic function and on how this effect may underlie the basis of some common metabolic disorders. © 2010 Blackwell Publishing Ltd.

  13. Autophagic activity in BC3H1 cells exposed to yessotoxin.

    PubMed

    Korsnes, Mónica Suárez; Kolstad, Hilde; Kleiveland, Charlotte Ramstad; Korsnes, Reinert; Ørmen, Elin

    2016-04-01

    The marine toxin yessotoxin (YTX) can induce programmed cell death through both caspase-dependent and -independent pathways in various cellular systems. It appears to stimulate different forms of cellular stress causing instability among cell death mechanisms and making them overlap and cross-talk. Autophagy is one of the key pathways that can be stimulated by multiple forms of cellular stress which may determine cell survival or death. The present work evaluates a plausible link between ribotoxic stress and autophagic activity in BC3H1 cells treated with YTX. Such treatment produces massive cytoplasmic compartments as well as double-membrane vesicles termed autophagosomes which are typically observed in cells undergoing autophagy. The observed autophagosomes contain a large amount of ribosomes associated with the endoplasmic reticulum (ER). Western blotting analysis of Atg proteins and detection of the autophagic markers LC3-II and SQSTM1/p62 by flow cytometry and immunofluorescence verified autophagic activity during YTX-treatment. The present work supports the idea that autophagic activity upon YTX exposure may represent a response to ribotoxic stress. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Is trehalose an autophagic inducer? Unraveling the roles of non-reducing disaccharides on autophagic flux and alpha-synuclein aggregation.

    PubMed

    Yoon, Ye-Seul; Cho, Eun-Duk; Jung Ahn, Woo; Won Lee, Kyung; Lee, Seung-Jae; Lee, He-Jin

    2017-10-05

    Autophagy is a pivotal intracellular process by which cellular macromolecules are degraded upon various stimuli. A failure in the degradation of autophagic substrates such as impaired organelles and protein aggregates leads to their accumulations, which are characteristics of many neurodegenerative diseases. Pharmacological activation of autophagy has thus been considered a prospective therapeutic approach for treating neurodegenerative diseases. Among a number of autophagy-inducing agents, trehalose has received attention for its beneficial effects in different disease models of neurodegeneration. However, how trehalose promotes autophagy has not been fully revealed. We investigated the influence of trehalose and other disaccharides upon autophagic flux and aggregation of α-synuclein, a protein linked to Parkinson's disease. In differentiated human neuroblastoma and primary rat cortical neuron culture models, treatment with trehalose and other disaccharides resulted in accumulation of lipidated LC3 (LC3-II), p62, and autophagosomes, whereas it decreased autolysosomes. On the other hand, addition of Bafilomycin A1 to trehalose treatments had relatively marginal effect, an indicative of autophagic flux blockage. In concordance with these results, the cells treated with trehalose exhibited an incremental tendency in α-synuclein aggregation. Secretion of α-synuclein was also elevated in the culture medium upon trehalose treatment, thereby significantly increasing intercellular transmission of this protein. Despite the substantial increase in α-synuclein aggregation, which normally leads to cell death, cell viability was not affected upon treatment with trehalose, suggesting an autophagy-independent protective function of trehalose against protein aggregates. This study demonstrates that, although trehalose has been widely considered an autophagic inducer, it may be actually a potent blocker of the autophagic flux.

  15. Methods for assessing autophagy and autophagic cell death.

    PubMed

    Tasdemir, Ezgi; Galluzzi, Lorenzo; Maiuri, M Chiara; Criollo, Alfredo; Vitale, Ilio; Hangen, Emilie; Modjtahedi, Nazanine; Kroemer, Guido

    2008-01-01

    Autophagic (or type 2) cell death is characterized by the massive accumulation of autophagic vacuoles (autophagosomes) in the cytoplasm of cells that lack signs of apoptosis (type 1 cell death). Here we detail and critically assess a series of methods to promote and inhibit autophagy via pharmacological and genetic manipulations. We also review the techniques currently available to detect autophagy, including transmission electron microscopy, half-life assessments of long-lived proteins, detection of LC3 maturation/aggregation, fluorescence microscopy, and colocalization of mitochondrion- or endoplasmic reticulum-specific markers with lysosomal proteins. Massive autophagic vacuolization may cause cellular stress and represent a frustrated attempt of adaptation. In this case, cell death occurs with (or in spite of) autophagy. When cell death occurs through autophagy, on the contrary, the inhibition of the autophagic process should prevent cellular demise. Accordingly, we describe a strategy for discriminating cell death with autophagy from cell death through autophagy.

  16. Development of a novel method for quantification of autophagic protein degradation by AHA labeling.

    PubMed

    Zhang, Jianbin; Wang, Jigang; Ng, Shukie; Lin, Qingsong; Shen, Han-Ming

    2014-05-01

    Autophagy is a catabolic process during which cellular components including protein aggregates and organelles are degraded via a lysosome-dependent process to sustain metabolic homeostasis during nutrient or energy deprivation. Measuring the rate of proteolysis of long-lived proteins is a classical assay for measurement of autophagic flux. However, traditional methods, such as a radioisotope labeling assay, are technically tedious and have low sensitivity. Here, we report a novel method for quantification of long-lived protein degradation based on L-azidohomoalanine (AHA) labeling in mouse embryonic fibroblasts (MEFs) and in human cancer cells. AHA is a surrogate for L-methionine, containing a bio-orthogonalazide moiety. When added to cultured cells, AHA is incorporated into proteins during active protein synthesis. After a click reaction between an azide and an alkyne, the azide-containing proteins can be detected with an alkyne-tagged fluorescent dye, coupled with flow cytometry. Induction of autophagy by starvation or mechanistic target of rapamycin (MTOR) inhibitors was able to induce a significant reduction of the fluorescence intensity, consistent with other autophagic markers. Coincidently, inhibition of autophagy by pharmacological agents or by Atg gene deletion abolished the reduction of the fluorescence intensity. Compared with the classical radioisotope pulse-labeling method, we think that our method is sensitive, quantitative, nonradioactive, and easy to perform, and can be applied to both human and animal cell culture systems.

  17. Development of a novel method for quantification of autophagic protein degradation by AHA labeling

    PubMed Central

    Zhang, Jianbin; Wang, Jigang; Ng, Shukie; Lin, Qingsong; Shen, Han-Ming

    2014-01-01

    Autophagy is a catabolic process during which cellular components including protein aggregates and organelles are degraded via a lysosome-dependent process to sustain metabolic homeostasis during nutrient or energy deprivation. Measuring the rate of proteolysis of long-lived proteins is a classical assay for measurement of autophagic flux. However, traditional methods, such as a radioisotope labeling assay, are technically tedious and have low sensitivity. Here, we report a novel method for quantification of long-lived protein degradation based on L-azidohomoalanine (AHA) labeling in mouse embryonic fibroblasts (MEFs) and in human cancer cells. AHA is a surrogate for L-methionine, containing a bio-orthogonalazide moiety. When added to cultured cells, AHA is incorporated into proteins during active protein synthesis. After a click reaction between an azide and an alkyne, the azide-containing proteins can be detected with an alkyne-tagged fluorescent dye, coupled with flow cytometry. Induction of autophagy by starvation or mechanistic target of rapamycin (MTOR) inhibitors was able to induce a significant reduction of the fluorescence intensity, consistent with other autophagic markers. Coincidently, inhibition of autophagy by pharmacological agents or by Atg gene deletion abolished the reduction of the fluorescence intensity. Compared with the classical radioisotope pulse-labeling method, we think that our method is sensitive, quantitative, nonradioactive, and easy to perform, and can be applied to both human and animal cell culture systems. PMID:24675368

  18. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms.

    PubMed

    Pareja, Maria Eugenia Mansilla; Colombo, Maria I

    2013-01-01

    Autophagy is involved in several physiological and pathological processes. One of the key roles of the autophagic pathway is to participate in the first line of defense against the invasion of pathogens, as part of the innate immune response. Targeting of intracellular bacteria by the autophagic machinery, either in the cytoplasm or within vacuolar compartments, helps to control bacterial proliferation in the host cell, controlling also the spreading of the infection. In this review we will describe the means used by diverse bacterial pathogens to survive intracellularly and how they are recognized by the autophagic molecular machinery, as well as the mechanisms used to avoid autophagic clearance.

  19. Monitoring protein turnover during phosphate starvation-dependent autophagic degradation using a photoconvertible fluorescent protein aggregate in tobacco BY-2 cells

    PubMed Central

    Tasaki, Maiko; Asatsuma, Satoru; Matsuoka, Ken

    2014-01-01

    We have developed a system for quantitative monitoring of autophagic degradation in transformed tobacco BY-2 cells using an aggregate-prone protein comprised of cytochrome b5 (Cyt b5) and a tetrameric red fluorescent protein (RFP). Unfortunately, this system is of limited use for monitoring the kinetics of autophagic degradation because the proteins synthesized before and after induction of autophagy cannot be distinguished. To overcome this problem, we developed a system using kikume green-red (KikGR), a photoconvertible and tetrameric fluorescent protein that changes its fluorescence from green to red upon irradiation with purple light. Using the fusion protein of Cyt b5 and KikGR together with a method for the bulk conversion of KikGR, which we had previously used to convert the Golgi-localized monomeric KikGR fusion protein, we were able to monitor both the growth and de novo formation of aggregates. Using this system, we found that tobacco cells do not cease protein synthesis under conditions of phosphate (Pi)-starvation. Induction of autophagy under Pi-starvation, but not under sugar- or nitrogen-starvation, was specifically inhibited by phosphite, which is an analog of Pi with a different oxidation number. Therefore, the mechanism by which BY-2 cells can sense Pi-starvation and induce autophagy does not involve sensing a general decrease in energy supply and a specific Pi sensor might be involved in the induction of autophagy under Pi-starvation. PMID:24817874

  20. Monitoring protein turnover during phosphate starvation-dependent autophagic degradation using a photoconvertible fluorescent protein aggregate in tobacco BY-2 cells.

    PubMed

    Tasaki, Maiko; Asatsuma, Satoru; Matsuoka, Ken

    2014-01-01

    We have developed a system for quantitative monitoring of autophagic degradation in transformed tobacco BY-2 cells using an aggregate-prone protein comprised of cytochrome b5 (Cyt b5) and a tetrameric red fluorescent protein (RFP). Unfortunately, this system is of limited use for monitoring the kinetics of autophagic degradation because the proteins synthesized before and after induction of autophagy cannot be distinguished. To overcome this problem, we developed a system using kikume green-red (KikGR), a photoconvertible and tetrameric fluorescent protein that changes its fluorescence from green to red upon irradiation with purple light. Using the fusion protein of Cyt b5 and KikGR together with a method for the bulk conversion of KikGR, which we had previously used to convert the Golgi-localized monomeric KikGR fusion protein, we were able to monitor both the growth and de novo formation of aggregates. Using this system, we found that tobacco cells do not cease protein synthesis under conditions of phosphate (Pi)-starvation. Induction of autophagy under Pi-starvation, but not under sugar- or nitrogen-starvation, was specifically inhibited by phosphite, which is an analog of Pi with a different oxidation number. Therefore, the mechanism by which BY-2 cells can sense Pi-starvation and induce autophagy does not involve sensing a general decrease in energy supply and a specific Pi sensor might be involved in the induction of autophagy under Pi-starvation.

  1. The arginylation branch of the N-end rule pathway positively regulates cellular autophagic flux and clearance of proteotoxic proteins

    PubMed Central

    Jiang, Yanxialei; Lee, Jeeyoung; Lee, Jung Hoon; Lee, Joon Won; Kim, Ji Hyeon; Choi, Won Hoon; Yoo, Young Dong; Cha-Molstad, Hyunjoo; Kim, Bo Yeon; Kwon, Yong Tae; Noh, Sue Ah; Kim, Kwang Pyo; Lee, Min Jae

    2016-01-01

    ABSTRACT The N-terminal amino acid of a protein is an essential determinant of ubiquitination and subsequent proteasomal degradation in the N-end rule pathway. Using para-chloroamphetamine (PCA), a specific inhibitor of the arginylation branch of the pathway (Arg/N-end rule pathway), we identified that blocking the Arg/N-end rule pathway significantly impaired the fusion of autophagosomes with lysosomes. Under ER stress, ATE1-encoded Arg-tRNA-protein transferases carry out the N-terminal arginylation of the ER heat shock protein HSPA5 that initially targets cargo proteins, along with SQSTM1, to the autophagosome. At the late stage of autophagy, however, proteasomal degradation of arginylated HSPA5 might function as a critical checkpoint for the proper progression of autophagic flux in the cells. Consistently, the inhibition of the Arg/N-end rule pathway with PCA significantly elevated levels of MAPT and huntingtin aggregates, accompanied by increased numbers of LC3 and SQSTM1 puncta. Cells treated with the Arg/N-end rule inhibitor became more sensitized to proteotoxic stress-induced cytotoxicity. SILAC-based quantitative proteomics also revealed that PCA significantly alters various biological pathways, including cellular responses to stress, nutrient, and DNA damage, which are also closely involved in modulation of autophagic responses. Thus, our results indicate that the Arg/N-end rule pathway may function to actively protect cells from detrimental effects of cellular stresses, including proteotoxic protein accumulation, by positively regulating autophagic flux. PMID:27560450

  2. Progress on the autophagic regulators and receptors in plants.

    PubMed

    Zeng, Xiao-wei; Liu, Cui-cui; Han, Ning; Bian, Hong-wu; Zhu, Mu-yuan

    2016-07-20

    Autophagy is an evolutionarily highly conserved catabolic pathway among eukaryotic cells that protects the organisms against environmental stress. Normally, autophagy is mainly involved with autophagy-related proteins(ATGs) and autophagic regulators including a series of cytoplasmic proteins and small molecules. Besides, the selective autophagy, which targets damaged organalles or protein aggregates, is mediated by the additional receptors to help the ATGs recognize different substrates. In this review, we summarize recent advances in autophagic regulators like ROS(Reactive oxygen species), TOR(Target of rapamycin) and receptors like NBR1(Neighbor of BRCA1 gene protein), RPN10(Regulatory particle non-ATPase 10) as well as their functional mechanisms mainly in Arabidopsis thaliana.

  3. Mifepristone increases mRNA translation rate, triggers the unfolded protein response, increases autophagic flux, and kills ovarian cancer cells in combination with proteasome or lysosome inhibitors.

    PubMed

    Zhang, Lei; Hapon, Maria B; Goyeneche, Alicia A; Srinivasan, Rekha; Gamarra-Luques, Carlos D; Callegari, Eduardo A; Drappeau, Donis D; Terpstra, Erin J; Pan, Bo; Knapp, Jennifer R; Chien, Jeremy; Wang, Xuejun; Eyster, Kathleen M; Telleria, Carlos M

    2016-08-01

    The synthetic steroid mifepristone blocks the growth of ovarian cancer cells, yet the mechanism driving such effect is not entirely understood. Unbiased genomic and proteomic screenings using ovarian cancer cell lines of different genetic backgrounds and sensitivities to platinum led to the identification of two key genes upregulated by mifepristone and involved in the unfolded protein response (UPR): the master chaperone of the endoplasmic reticulum (ER), glucose regulated protein (GRP) of 78 kDa, and the CCAAT/enhancer binding protein homologous transcription factor (CHOP). GRP78 and CHOP were upregulated by mifepristone in ovarian cancer cells regardless of p53 status and platinum sensitivity. Further studies revealed that the three UPR-associated pathways, PERK, IRE1α, and ATF6, were activated by mifepristone. Also, the synthetic steroid acutely increased mRNA translation rate, which, if prevented, abrogated the splicing of XBP1 mRNA, a non-translatable readout of IRE1α activation. Moreover, mifepristone increased LC3-II levels due to increased autophagic flux. When the autophagic-lysosomal pathway was inhibited with chloroquine, mifepristone was lethal to the cells. Lastly, doses of proteasome inhibitors that are inadequate to block the activity of the proteasomes, caused cell death when combined with mifepristone; this phenotype was accompanied by accumulation of poly-ubiquitinated proteins denoting proteasome inhibition. The stimulation by mifepristone of ER stress and autophagic flux offers a therapeutic opportunity for utilizing this compound to sensitize ovarian cancer cells to proteasome or lysosome inhibitors. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Disturbance of proteasomal and autophagic protein degradation pathways by amyotrophic lateral sclerosis-linked mutations in ubiquilin 2.

    PubMed

    Osaka, Mayuko; Ito, Daisuke; Suzuki, Norihiro

    2016-04-01

    Ubiquilin (UBQLN), a member of the ubiquitin-like (UBL)-ubiquitin-associated (UBA) family, is a dual regulator of both the proteasomal and autophagic branches of the cellular protein degradation system. Mutations in the UBQLN2 gene encoding ubiquilin 2 cause X-linked amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD), and UBQLN2-positive inclusions have been identified in ALS patients with UBQLN2 mutations as well as in cases of both familial and sporadic ALS without UBQLN2 mutations. Compelling evidence links UBQLN2 to disturbance of the protein quality control network in neurons, but the pathomechanisms remain obscure. This study aimed to clarify how ALS-linked mutations in UBQLN2 affect the protein degradation system. Overexpression of a UBQLN2 with ALS-associated mutations resulted in the accumulation of polyubiquitinated proteins in neuronal cells, including the ALS-associated protein TDP-43. This effect was dependent on the UBA domain but not on inclusion formation. Immunocytochemistry and protein fractionation analysis of IVm-UBQLN2 cellular distribution indicated that it sequesters ubiquitinated substrates from both the proteasomal and autophagic branches of the protein degradation system, resulting in accumulation of polyubiquitinated substrates. These findings provide a molecular basis for the development of ALS/FTD-associated proteinopathy and establish novel therapeutic targets for ALS. Copyright © 2016. Published by Elsevier Inc.

  5. HMGCS2 promotes autophagic degradation of the amyloid-β precursor protein through ketone body-mediated mechanisms.

    PubMed

    Hu, Li-Tian; Zhu, Bing-Lin; Lai, Yu-Jie; Long, Yan; Zha, Jing-Si; Hu, Xiao-Tong; Zhang, John H; Chen, Guo-Jun

    2017-04-29

    HMGCS2 (mitochondrial 3-hydroxy-3-methylglutaryl-COA synthase 2) is a control enzyme in ketogenesis. The mitochondrial localization and interaction with APP (β-amyloid precursor protein) suggest that HMGCS2 may play a role in the pathophysiology of AD (Alzheimer's disease). Here we report that overexpression of HMGCS2 decreased levels of APP and related CTFs (carboxy-terminal fragments), which was largely prevented by an autophagic inhibitor chloroquine. In addition, HMGCS2 enhancement of autophagic marker LC3II was diminished by rapamycin, an inhibitor of mechanistic target of rapamycin. Moreover, deprivation of EBSS (Earle's Balanced Salt Solution) significantly augmented the effect of HMGCS2 on LC3II, while acetoacetate reversed the reduction of LC3II, APP and CTFs which was induced by HMGCS2 knockdown. In the presence of acetoacetate, rapamycin failed to induce further increase of LC3II, which mimicked the effect of HMGCS2 overexpression. Finally, HMGCS2 enhanced the antioxidant response. Collectively, HMGCS2 shares with ketone bodies common features in autophagic clearance of APP and CTFs, suggesting that ketone bodies play an important role in HMGCS2 regulation of the autophagy. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Acute high-caffeine exposure increases autophagic flux and reduces protein synthesis in C2C12 skeletal myotubes.

    PubMed

    Hughes, M A; Downs, R M; Webb, G W; Crocker, C L; Kinsey, S T; Baumgarner, Bradley L

    2017-04-01

    Caffeine is a highly catabolic dietary stimulant. High caffeine concentrations (1-10 mM) have previously been shown to inhibit protein synthesis and increase protein degradation in various mammalian cell lines. The purpose of this study was to examine the effect of short-term caffeine exposure on cell signaling pathways that regulate protein metabolism in mammalian skeletal muscle cells. Fully differentiated C2C12 skeletal myotubes either received vehicle (DMSO) or 5 mM caffeine for 6 h. Our analysis revealed that caffeine promoted a 40% increase in autolysosome formation and a 25% increase in autophagic flux. In contrast, caffeine treatment did not significantly increase the expression of the skeletal muscle specific ubiquitin ligases MAFbx and MuRF1 or 20S proteasome activity. Caffeine treatment significantly reduced mTORC1 signaling, total protein synthesis and myotube diameter in a CaMKKβ/AMPK-dependent manner. Further, caffeine promoted a CaMKII-dependent increase in myostatin mRNA expression that did not significantly contribute to the caffeine-dependent reduction in protein synthesis. Our results indicate that short-term caffeine exposure significantly reduced skeletal myotube diameter by increasing autophagic flux and promoting a CaMKKβ/AMPK-dependent reduction in protein synthesis.

  7. Lung autophagic response following exposure of mice to whole body irradiation, with and without amifostine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zois, Christos E.; Giatromanolaki, Alexandra; Kainulainen, Heikki

    2011-01-07

    Research highlights: {yields} We investigated the effect 6 Gy of WBI on the autophagic machinery of normal mouse lung. {yields} Irradiation induces dysfunction of the autophagic machinery in normal lung, characterized by decreased transcription of the LC3A/Beclin-1 mRNA and accumulation of the LC3A, and p62 proteins. {yields} The membrane bound LC3A-II protein levels increased in the cytosolic fraction (not in the pellet), contrasting the patterns noted after starvation-induced autophagy. {yields} Administration of amifostine, reversed all the LC3A and p62 findings, suggesting protection of the normal autophagic function. -- Abstract: Purpose: The effect of ionizing irradiation on the autophagic response ofmore » normal tissues is largely unexplored. Abnormal autophagic function may interfere the protein quality control leading to cell degeneration and dysfunction. This study investigates its effect on the autophagic machinery of normal mouse lung. Methods and materials: Mice were exposed to 6 Gy of whole body {gamma}-radiation and sacrificed at various time points. The expression of MAP1LC3A/LC3A/Atg8, beclin-1, p62/sequestosome-1 and of the Bnip3 proteins was analyzed. Results: Following irradiation, the LC3A-I and LC3A-II protein levels increased significantly at 72 h and 7 days. Strikingly, LC3A-II protein was increased (5.6-fold at 7 days; p < 0.001) only in the cytosolic fraction, but remained unchanged in the membrane fraction. The p62 protein, was significantly increased in both supernatant and pellet fraction (p < 0.001), suggesting an autophagosome turnover deregulation. These findings contrast the patterns of starvation-induced autophagy up-regulation. Beclin-1 levels remained unchanged. The Bnip3 protein was significantly increased at 8 h, but it sharply decreased at 72 h (p < 0.05). Administration of amifostine (200 mg/kg), 30 min before irradiation, reversed all the LC3A and p62 findings on blots, suggesting restoration of the normal autophagic

  8. Modulation of apoptosis sensitivity through the interplay with autophagic and proteasomal degradation pathways

    PubMed Central

    Delgado, M E; Dyck, L; Laussmann, M A; Rehm, M

    2014-01-01

    Autophagic and proteasomal degradation constitute the major cellular proteolysis pathways. Their physiological and pathophysiological adaptation and perturbation modulates the relative abundance of apoptosis-transducing proteins and thereby can positively or negatively adjust cell death susceptibility. In addition to balancing protein expression amounts, components of the autophagic and proteasomal degradation machineries directly interact with and co-regulate apoptosis signal transduction. The influence of autophagic and proteasomal activity on apoptosis susceptibility is now rapidly gaining more attention as a significant modulator of cell death signalling in the context of human health and disease. Here we present a concise and critical overview of the latest knowledge on the molecular interplay between apoptosis signalling, autophagy and proteasomal protein degradation. We highlight that these three pathways constitute an intricate signalling triangle that can govern and modulate cell fate decisions between death and survival. Owing to rapid research progress in recent years, it is now possible to provide detailed insight into the mechanisms of pathway crosstalk, common signalling nodes and the role of multi-functional proteins in co-regulating both protein degradation and cell death. PMID:24457955

  9. A role for autophagic protein beclin 1 early in lymphocyte development.

    PubMed

    Arsov, Ivica; Adebayo, Adeola; Kucerova-Levisohn, Martina; Haye, Joanna; MacNeil, Margaret; Papavasiliou, F Nina; Yue, Zhenyu; Ortiz, Benjamin D

    2011-02-15

    Autophagy is a highly regulated and evolutionarily conserved process of cellular self-digestion. Recent evidence suggests that this process plays an important role in regulating T cell homeostasis. In this study, we used Rag1(-/-) (recombination activating gene 1(-/-)) blastocyst complementation and in vitro embryonic stem cell differentiation to address the role of Beclin 1, one of the key autophagic proteins, in lymphocyte development. Beclin 1-deficient Rag1(-/-) chimeras displayed a dramatic reduction in thymic cellularity compared with control mice. Using embryonic stem cell differentiation in vitro, we found that the inability to maintain normal thymic cellularity is likely caused by impaired maintenance of thymocyte progenitors. Interestingly, despite drastically reduced thymocyte numbers, the peripheral T cell compartment of Beclin 1-deficient Rag1(-/-) chimeras is largely normal. Peripheral T cells displayed normal in vitro proliferation despite significantly reduced numbers of autophagosomes. In addition, these chimeras had greatly reduced numbers of early B cells in the bone marrow compared with controls. However, the peripheral B cell compartment was not dramatically impacted by Beclin 1 deficiency. Collectively, our results suggest that Beclin 1 is required for maintenance of undifferentiated/early lymphocyte progenitor populations. In contrast, Beclin 1 is largely dispensable for the initial generation and function of the peripheral T and B cell compartments. This indicates that normal lymphocyte development involves Beclin 1-dependent, early-stage and distinct, Beclin 1-independent, late-stage processes.

  10. Differing susceptibility to autophagic degradation of two LC3-binding proteins: SQSTM1/p62 and TBC1D25/OATL1.

    PubMed

    Hirano, Satoshi; Uemura, Takefumi; Annoh, Hiromichi; Fujita, Naonobu; Waguri, Satoshi; Itoh, Takashi; Fukuda, Mitsunori

    2016-01-01

    MAP1LC3/LC3 (a mammalian ortholog family of yeast Atg8) is a ubiquitin-like protein that is essential for autophagosome formation. LC3 is conjugated to phosphatidylethanolamine on phagophores and ends up distributed both inside and outside the autophagosome membrane. One of the well-known functions of LC3 is as a binding partner for receptor proteins, which target polyubiquitinated organelles and proteins to the phagophore through direct interaction with LC3 in selective autophagy, and their LC3-binding ability is essential for degradation of the polyubiquitinated substances. Although a number of LC3-binding proteins have been identified, it is unknown whether they are substrates of autophagy or how their interaction with LC3 is regulated. We previously showed that one LC3-binding protein, TBC1D25/OATL1, plays an inhibitory role in the maturation step of autophagosomes and that this function depends on its binding to LC3. Interestingly, TBC1D25 seems not to be a substrate of autophagy, despite being present on the phagophore. In this study we investigated the molecular basis for the escape of TBC1D25 from autophagic degradation by performing a chimeric analysis between TBC1D25 and SQSTM1/p62 (sequestosome 1), and the results showed that mutant TBC1D25 with an intact LC3-binding site can become an autophagic substrate when TBC1D25 is forcibly oligomerized. In addition, an ultrastructural analysis showed that TBC1D25 is mainly localized outside autophagosomes, whereas an oligomerized TBC1D25 mutant rather uniformly resides both inside and outside the autophagosomes. Our findings indicate that oligomerization is a key factor in the degradation of LC3-binding proteins and suggest that lack of oligomerization ability of TBC1D25 results in its asymmetric localization at the outer autophagosome membrane.

  11. Aneuploidy-induced cellular stresses limit autophagic degradation

    PubMed Central

    Santaguida, Stefano; Vasile, Eliza; White, Eileen; Amon, Angelika

    2015-01-01

    An unbalanced karyotype, a condition known as aneuploidy, has a profound impact on cellular physiology and is a hallmark of cancer. Aneuploid cells experience a number of stresses that are caused by aneuploidy-induced proteomic changes. How the aneuploidy-associated stresses affect cells and whether cells respond to them are only beginning to be understood. Here we show that autophagosomal cargo such as protein aggregates accumulate within lysosomes in aneuploid cells. This causes a lysosomal stress response. Aneuploid cells activate the transcription factor TFEB, a master regulator of autophagic and lysosomal gene expression, thereby increasing the expression of genes needed for autophagy-mediated protein degradation. Accumulation of autophagic cargo within the lysosome and activation of TFEB-responsive genes are also observed in cells in which proteasome function is inhibited, suggesting that proteotoxic stress causes TFEB activation. Our results reveal a TFEB-mediated lysosomal stress response as a universal feature of the aneuploid state. PMID:26404941

  12. Nanoparticles modulate autophagic effect in a dispersity-dependent manner

    NASA Astrophysics Data System (ADS)

    Huang, Dengtong; Zhou, Hualu; Gao, Jinhao

    2015-09-01

    Autophagy plays a key role in human health and disease, especially in cancer and neurodegeneration. Many autophagy regulators are developed for therapy. Diverse nanomaterials have been reported to induce autophagy. However, the underlying mechanisms and universal rules remain unclear. Here, for the first time, we show a reliable and general mechanism by which nanoparticles induce autophagy and then successfully modulate autophagy via tuning their dispersity. Various well-designed univariate experiments demonstrate that nanomaterials induce autophagy in a dispersity-dependent manner. Aggregated nanoparticles induce significant autophagic effect in comparison with well-dispersed nanoparticles. As the highly stable nanoparticles may block autophagic degradation in autolysosomes, endocytosis and intracellular accumulation of nanoparticles can be responsible for this interesting phenomenon. Our results suggest dispersity-dependent autophagic effect as a common cellular response to nanoparticles, reveal the relationship between properties of nanoparticles and autophagy, and offer a new alternative way to modulate autophagy.

  13. Inhibition of mTOR improves the impairment of acidification in autophagic vesicles caused by hepatic steatosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakadera, Eisuke; Yamashina, Shunhei, E-mail: syamashi@juntendo.ac.jp; Izumi, Kousuke

    Recent investigations revealed that dysfunction of autophagy involved in the progression of chronic liver diseases such as alcoholic and nonalcoholic steatohepatitis and hepatocellular neoplasia. Previously, it was reported that hepatic steatosis disturbs autophagic proteolysis via suppression of both autophagic induction and lysosomal function. Here, we demonstrate that autophagic acidification was altered by a decrease in lysosomal proton pump vacuolar-ATPase (V-ATPase) in steatohepatitis. The number of autophagic vesicles was increased in hepatocytes from obese KKAy mice as compared to control. Similarly, autophagic membrane protein LC3-II and lysosomal protein LAMP-2 expression were enhanced in KKAy mice liver. Nevertheless, both phospho-mTOR and p62more » expression were augmented in KKAy mice liver. More than 70% of autophagosomes were stained by LysoTracker Red (LTR) in hepatocytes from control mice; however, the percentage of acidic autolysosomes was decreased in hepatocytes from KKAy mice significantly (40.1 ± 3.48%). Both protein and RNA level of V-ATPase subunits ATP6v1a, ATP6v1b, ATP6v1d in isolated lysosomes were suppressed in KKAy mice as compared to control. Interestingly, incubation with mTOR inhibitor rapamycin increased in the rate of LTR-positive autolysosomes in hepatocytes from KKAy mice and suppressed p62 accumulation in the liver from KKAy mice which correlated to an increase in the V-ATPase subunits expression. These results indicate that down-regulation of V-ATPase due to hepatic steatosis causes autophagic dysfunction via disruption of lysosomal and autophagic acidification. Moreover, activation of mTOR plays a pivotal role on dysregulation of lysosomal and autophagic acidification by modulation of V-ATPase expression and could therefore be a useful therapeutic target to ameliorate dysfunction of autophagy in NAFLD. - Highlights: • Hepatic steatosis causes accumulation of autophagic vesicles in hepatocytes. • Hepatic steatosis

  14. Monitoring autophagic flux by an improved tandem fluorescent-tagged LC3 (mTagRFP-mWasabi-LC3) reveals that high-dose rapamycin impairs autophagic flux in cancer cells.

    PubMed

    Zhou, Cuihong; Zhong, Wu; Zhou, Jun; Sheng, Fugeng; Fang, Ziyuan; Wei, Yue; Chen, Yingyu; Deng, Xiaoyan; Xia, Bin; Lin, Jian

    2012-08-01

    Monitoring autophagic flux is important for the analysis of autophagy. Tandem fluorescent-tagged LC3 (mRFP-EGFP-LC3) is a convenient assay for monitoring autophagic flux based on different pH stability of EGFP and mRFP fluorescent proteins. However, it has been reported that there is still weak fluorescence of EGFP in acidic environments (pH between 4 and 5) or acidic lysosomes. So it is possible that autolysosomes are labeled with yellow signals (GFP(+)RFP(+) puncta), which results in misinterpreting autophagic flux results. Therefore, it is desirable to choose a monomeric green fluorescent protein that is more acid sensitive than EGFP in the assay of autophagic flux. Here, we report on an mTagRFP-mWasabi-LC3 reporter, in which mWasabi is more acid sensitive than EGFP and has no fluorescence in acidic lysosomes. Meanwhile, mTagRFP-mWasabi-LC3ΔG was constructed as the negative control for this assay. Compared with mRFP-EGFP-LC3, our results showed that this reporter is more sensitive and accurate in detecting the accumulation of autophagosomes and autolysosomes. Using this reporter, we find that high-dose rapamycin (30 μM) will impair autophagic flux, inducing many more autophagosomes than autolysosomes in HeLa cells, while low-dose rapamycin (500 nM) has an opposite effect. In addition, other chemical autophagy inducers (cisplatin, staurosporine and Z18) also elicit much more autophagosomes at high doses than those at low doses. Our results suggest that the dosage of chemical autophagy inducers would obviously influence autophagic flux in cells.

  15. Binding preference of p62 towards LC3-ll during dopaminergic neurotoxin-induced impairment of autophagic flux.

    PubMed

    Lim, Junghyun; Kim, Hyun-Wook; Youdim, Moussa B H; Rhyu, Im Joo; Choe, Kwang-Min; Oh, Young J

    2011-01-01

    Accumulating evidence has revealed that autophagy may be beneficial for treatment of neurodegenerative diseases through removal of abnormal protein aggregates. However, the critical autophagic events during neurodegeneration remain to be elucidated. Here, we investigated whether prototypic autophagic events occur in the MN9D dopaminergic neuronal cell line upon exposure to N-methyl-4-phenylpyridinium (MPP (+) ), a well-known dopaminergic neurotoxin. MPP (+) treatment induced both morphological and biochemical characteristics of autophagy, such as accumulation of autophagic vacuoles and LC3-II form and decreased p62 levels. Further investigation revealed that these phenomena were largely the consequences of blocked autophagic flux. Following MPP (+) treatment, levels of LC3-II formed and p62 dramatically increased in the Triton X-100-insoluble fraction. Levels of ubiquitinated proteins also increased in this fraction. Further colocalization analyses revealed that the punctated spots positive for both p62 and LC3 were more intense following MPP (+) treatment, suggesting drug-induced enrichment of these two proteins in the insoluble fraction. Intriguingly, reciprocal immunoprecipitation analysis revealed that p62 mainly precipitated with LC3-II form following MPP (+) treatment. Transient transfection of the mutant form of Atg4B, Atg4B (C74A) , which inhibits LC3 processing, dramatically decreased binding between p62 and LC3-II form. Taken together, our results indicate that p62 can be efficiently localized to autophagic compartments via preferential binding with LC3-II form. This colocalization may assist in removal of detergent-insoluble forms of damaged cellular proteins during dopaminergic neurotoxin-induced impairment of autophagic flux.

  16. Quantitative analysis of autophagic flux by confocal pH-imaging of autophagic intermediates

    PubMed Central

    Maulucci, Giuseppe; Chiarpotto, Michela; Papi, Massimiliano; Samengo, Daniela; Pani, Giovambattista; De Spirito, Marco

    2015-01-01

    Although numerous techniques have been developed to monitor autophagy and to probe its cellular functions, these methods cannot evaluate in sufficient detail the autophagy process, and suffer limitations from complex experimental setups and/or systematic errors. Here we developed a method to image, contextually, the number and pH of autophagic intermediates by using the probe mRFP-GFP-LC3B as a ratiometric pH sensor. This information is expressed functionally by AIPD, the pH distribution of the number of autophagic intermediates per cell. AIPD analysis reveals how intermediates are characterized by a continuous pH distribution, in the range 4.5–6.5, and therefore can be described by a more complex set of states rather than the usual biphasic one (autophagosomes and autolysosomes). AIPD shape and amplitude are sensitive to alterations in the autophagy pathway induced by drugs or environmental states, and allow a quantitative estimation of autophagic flux by retrieving the concentrations of autophagic intermediates. PMID:26506895

  17. Lipidation of BmAtg8 is required for autophagic degradation of p62 bodies containing ubiquitinated proteins in the silkworm, Bombyx mori.

    PubMed

    Ji, Ming-Ming; Lee, Jae Man; Mon, Hiroaki; Iiyama, Kazuhiro; Tatsuke, Tsuneyuki; Morokuma, Daisuke; Hino, Masato; Yamashita, Mami; Hirata, Kazuma; Kusakabe, Takahiro

    2017-10-01

    p62/Sequestosome-1 (p62/SQSTM1, hereafter referred to as p62) is a major adaptor that allows ubiquitinated proteins to be degraded by autophagy, and Atg8 homologs are required for p62-mediated autophagic degradation, but their relationship is still not understood in Lepidopteran insects. Here it is clearly demonstrated that the silkworm homolog of mammalian p62, Bombyx mori p62 (Bmp62), forms p62 bodies depending on its Phox and Bem1p (PB1) and ubiquitin-associated (UBA) domains. These two domains are associated with Bmp62 binding to ubiquitinated proteins to form the p62 bodies, and the UBA domain is essential for the binding, but Bmp62 still self-associates without the PB1 or UBA domain. The p62 bodies in Bombyx cells are enclosed by BmAtg9-containing membranes and degraded via autophagy. It is revealed that the interaction between the Bmp62 AIM motif and BmAtg8 is critical for the autophagic degradation of the p62 bodies. Intriguingly, we further demonstrate that lipidation of BmAtg8 is required for the Bmp62-mediated complete degradation of p62 bodies by autophagy. Our results should be useful in future studies of the autophagic mechanism in Lepidopteran insects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The two Dictyostelium discoideum autophagy 8 proteins have distinct autophagic functions.

    PubMed

    Meßling, Susanne; Matthias, Jan; Xiong, Qiuhong; Fischer, Sarah; Eichinger, Ludwig

    2017-06-01

    Autophagy is a highly conserved cellular degradation pathway which is crucial for various cellular processes. The autophagic process is subdivided in the initiation, autophagosome maturation and lysosomal degradation phases and involves more than forty core and accessory autophagy-related (ATG) proteins. Autophagy 8 (ATG8, in mammals LC3) is a well-established marker of autophagy and is linked to the autophagic membrane from initiation until fusion with the lysosome. We generated single and double knock-out mutants of the two Dictyostelium paralogues, ATG8a and ATG8b, as well as strains that expressed RFP-ATG8a and/or GFP-ATG8b, RFP-ATG8b, RFP-GFP-ATG8a or RFP-GFP-ATG8b in different knock-out mutants. The ATG8b¯ mutant displayed only subtle phenotypic changes in comparison to AX2 wild-type cells. In contrast, deletion of ATG8a resulted in a complex phenotype with delayed development, reduced growth, phagocytosis and cell viability, an increase in ubiquitinylated proteins and a concomitant decrease in proteasomal activity. The phenotype of the ATG8a¯/b¯ strain was, except for cell viability, in all aforementioned aspects more severe, showing that both proteins function in parallel during most analysed cellular processes. Immunofluorescence analysis of knock-out strains expressing either RFP-GFP-ATG8a or RFP-GFP-ATG8b suggests a crucial function for ATG8b in autophagosome-lysosome fusion. Quantitative analysis of strains expressing RFP-ATG8a, RFP-ATG8b, or RFP-ATG8a and GFP-ATG8b revealed that ATG8b generally localised to small and large vesicles, whereas ATG8a preferentially co-localised with ATG8b on large vesicles, indicating that ATG8b associated with nascent autophagosomes before ATG8a, which is supported by previous results (Matthias et al., 2016). Deconvoluted confocal fluorescence images showed that ATG8b localised around ATG8a and was presumably mainly present on the outer membrane of the autophagosome while ATG8a appears to be mainly associated with the

  19. Curcumin induces autophagic cell death in Spodoptera frugiperda cells.

    PubMed

    Veeran, Sethuraman; Shu, Benshui; Cui, Gaofeng; Fu, Shengjiao; Zhong, Guohua

    2017-06-01

    The increasing interest in the role of autophagy (type II cell death) in the regulation of insect toxicology has propelled study of investigating autophagic cell death pathways. Turmeric, the rhizome of the herb Curcuma longa (Mañjaḷ in Tamil, India and Jiānghuáng in Chinese) have been traditionally used for the pest control either alone or combination with other botanical pesticides. However, the mechanisms by which Curcuma longa or curcumin exerts cytotoxicity in pests are not well understood. In this study, we investigated the potency of Curcuma longa (curcumin) as a natural pesticide employing Sf9 insect line. Autophagy induction effect of curcumin on Spodoptera frugiperda (Sf9) cells was investigated using various techniques including cell proliferation assay, morphology analysis with inverted phase contrast microscope and Transmission Electron Microscope (TEM) analysis. Autophagy was evaluated using the fluorescent dye monodansylcadaverine (MDC). Cell death measurement was examined using 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) within the concentrations of 5-15μg/mL. Curcumin inhibited the growth of the Sf9 cells and induced autophagic cell death in a time and dose dependent manner. Staining the cells with MDC showed the presence of autophagic vacuoles while increased in a dose and time dependent manner. At the ultrastructural level transmission electron microscopy, cells revealed massive autophagy vacuole accumulation and absence of chromatin condensation. Protein expression levels of ATG8-I and ATG8-II, well-established markers of autophagy related protein were elevated in a time dependent manner after curcumin treatment. The present study proves that curcumin induces autophagic cell death in Sf9 insect cell line and this is the first report of cytotoxic effect of curcumin in insect cells and that will be utilized as natural pesticides in future. Copyright © 2017. Published by Elsevier Inc.

  20. Phagocytosis of Candida albicans Inhibits Autophagic Flux in Macrophages.

    PubMed

    Duan, Zhimin; Chen, Qing; Du, Leilei; Tong, Jianbo; Xu, Song; Zeng, Rong; Ma, Yuting; Chen, Xu; Li, Min

    2018-01-01

    Autophagy machinery has roles in the defense against microorganisms such as Candida albicans . Lipidated LC3, the marker protein of autophagy, participates in the elimination of C. albicans by forming a single-membrane phagosome; this process is called LC3-associated phagocytosis (LAP). However, the influence of C. albicans on autophagic flux is not clear. In this study, we found that C. albicans inhibited LC3 turnover in macrophages. After the phagocytosis of C. albicans in macrophages, we observed fewer acridine orange-positive vacuoles and RFP-GFP-LC3 puncta without colocalization with phagocytized C. albicans . However, phagocytosis of C. albicans led to LC3 recruitment, but p62 and ATG9A did not colocalize with LC3 or C. albicans . These effects are due to an MTOR-independent pathway. Nevertheless, we found that the C. albicans pattern-associated molecular pattern β -glucan increased LC3 turnover. In addition, phagocytosis of C. albicans caused a decrease in BrdU incorporation. Blocking autophagic flux aggravated this effect. Our findings suggest that phagocytosis of C. albicans decreases autophagic flux but induces LAP in an MTOR-independent manner in macrophages. Occupation of LC3 by recruiting engulfed C. albicans might contribute to the inhibition of autophagic flux. Our study highlights the coordinated machinery between canonical autophagy and LAP that defends against C. albicans challenge.

  1. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyu, Qing; Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055; Tou, Fangfang

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary,more » our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway.« less

  2. Fatty Acids Suppress Autophagic Turnover in β-Cells*

    PubMed Central

    Las, Guy; Serada, Sam B.; Wikstrom, Jakob D.; Twig, Gilad; Shirihai, Orian S.

    2011-01-01

    Recent studies have shown that autophagy is essential for proper β-cell function and survival. However, it is yet unclear under what pathogenic conditions autophagy is inhibited in β-cells. Here, we report that long term exposure to fatty acids and glucose block autophagic flux in β-cells, contributing to their toxic effect. INS1 cells expressing GFP-LC3 (an autophagosome marker) were treated with 0.4 mm palmitate, 0.4 mm oleate, and various concentrations of glucose for 22 h. Kinetics of the effect of fatty acids on autophagy showed a biphasic response. During the second phase of autophagy, the size of autophagosomes and the content of autophagosome substrates (GFP-LC3, p62) and endogenous LC3 was increased. During the same phase, fatty acids suppressed autophagic degradation of long lived protein in both INS1 cells and islets. In INS1 cells, palmitate induced a 3-fold decrease in the number and the acidity of Acidic Vesicular Organelles. This decrease was associated with a suppression of hydrolase activity, suppression of endocytosis, and suppression of oxidative phosphorylation. The combination of fatty acids with glucose synergistically suppressed autophagic turnover, concomitantly suppressing insulin secretion. Rapamycin treatment resulted in partial reversal of the inhibition of autophagic flux, the inhibition of insulin secretion, and the increase in cell death. Our results indicate that excess nutrient could impair autophagy in the long term, hence contributing to nutrient-induced β-cell dysfunction. This may provide a novel mechanism that connects diet-induced obesity and diabetes. PMID:21859708

  3. Autophagic machinery activated by dengue virus enhances virus replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.-R.; Lei, H.-Y.; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan

    2008-05-10

    Autophagy is a cellular response against stresses which include the infection of viruses and bacteria. We unravel that Dengue virus-2 (DV2) can trigger autophagic process in various infected cell lines demonstrated by GFP-LC3 dot formation and increased LC3-II formation. Autophagosome formation was also observed under the transmission electron microscope. DV2-induced autophagy further enhances the titers of extracellular and intracellular viruses indicating that autophagy can promote viral replication in the infected cells. Moreover, our data show that ATG5 protein is required to execute DV2-induced autophagy. All together, we are the first to demonstrate that DV can activate autophagic machinery that ismore » favorable for viral replication.« less

  4. Coronary atherosclerosis: Significance of autophagic armour.

    PubMed

    Arora, Mansi; Kaul, Deepak

    2012-09-26

    Autophagy is a lysosomal degradation pathway of cellular components such as organelles and long-lived proteins. Though a protective role for autophagy has been established in various patho-physiologic conditions such as cancer, neurodegeneration, aging and heart failure, a growing body of evidence now reveals a protective role for autophagy in atherosclerosis, mainly by removing oxidatively damaged organelles and proteins and also by promoting cholesterol egress from the lipid-laden cells. Recent studies by Razani et al and Liao et al unravel novel pathways that might be involved in autophagic protection and in this commentary we highlight the importance of autophagy in atherosclerosis in the light of these two recent papers.

  5. Monitoring autophagic flux using p62/SQSTM1 based luciferase reporters in glioma cells.

    PubMed

    Min, Zhang; Ting, Yao; Mingtao, Gong; Xiaofei, Tang; Dong, Yan; Chenguang, Zhang; Wei, Ding

    2018-02-01

    Autophagy is a highly dynamic process characterized with the term of autophagic flux. In the present study, we developed a quantifiable luciferase reporter system to measure the capacity as well as the dynamics of autophagic flux. Briefly, a luciferase variant of Luc2p was fused with p62/SQSTM1 or its UBA domain deletion mutant (p62ΔU) and transfected into cells. The expressed Luc2p-p62 fusion protein was primarily degraded via autophagy, while Luc2p-p62ΔU was employed as a normalization control due to its resistance to autophagic degradation. The luciferase activity of the lysates from two parallel populations of glioma cells expressing either Luc2p-p62 or Luc2p-p62ΔU was determined and the ratio of Luc2p-p62ΔU/Luc2p-p62 was used to assay the autophagic flux. By this approach, the induction of autophagy was manifested as an increased Luc2p-p62ΔU/Luc2p-p62 ratio, which could be neutralized by autophagy inhibitors or knockdown of ATG5. The performance of our autophagic flux detection system was comparable to a recently reported GFP-LC3-RFP-LC3ΔG probe. We tested the system in TMZ treated glioma cells, and found that coadministration of chloroquine to attenuate cellular autophagic flux significantly improved the TMZ efficacy by triggering more early apoptosis. Collectively, our luciferase-based autophagic flux assay may serve as a useful alternative yet sensitive method for autophagic flux detection in tumor cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Autophagic flux is highly active in early mitosis and differentially regulated throughout the cell cycle

    PubMed Central

    Li, Zhiyuan; Ji, Xinmiao; Wang, Dongmei; Liu, Juanjuan; Zhang, Xin

    2016-01-01

    Mitosis is a fast process that involves dramatic cellular remodeling and has a high energy demand. Whether autophagy is active or inactive during the early stages of mitosis in a naturally dividing cell is still debated. Here we aimed to use multiple assays to resolve this apparent discrepancy. Although the LC3 puncta number was reduced in mitosis, the four different cell lines we tested all have active autophagic flux in both interphase and mitosis. In addition, the autophagic flux was highly active in nocodazole-induced, double-thymidine synchronization released as well as naturally occurring mitosis in HeLa cells. Multiple autophagy proteins are upregulated in mitosis and the increased Beclin-1 level likely contributes to the active autophagic flux in early mitosis. It is interesting that although the autophagic flux is active throughout the cell cycle, early mitosis and S phase have relatively higher autophagic flux than G1 and late G2 phases, which might be helpful to degrade the damaged organelles and provide energy during S phase and mitosis. PMID:27213594

  7. Autophagic flux is highly active in early mitosis and differentially regulated throughout the cell cycle.

    PubMed

    Li, Zhiyuan; Ji, Xinmiao; Wang, Dongmei; Liu, Juanjuan; Zhang, Xin

    2016-06-28

    Mitosis is a fast process that involves dramatic cellular remodeling and has a high energy demand. Whether autophagy is active or inactive during the early stages of mitosis in a naturally dividing cell is still debated. Here we aimed to use multiple assays to resolve this apparent discrepancy. Although the LC3 puncta number was reduced in mitosis, the four different cell lines we tested all have active autophagic flux in both interphase and mitosis. In addition, the autophagic flux was highly active in nocodazole-induced, double-thymidine synchronization released as well as naturally occurring mitosis in HeLa cells. Multiple autophagy proteins are upregulated in mitosis and the increased Beclin-1 level likely contributes to the active autophagic flux in early mitosis. It is interesting that although the autophagic flux is active throughout the cell cycle, early mitosis and S phase have relatively higher autophagic flux than G1 and late G2 phases, which might be helpful to degrade the damaged organelles and provide energy during S phase and mitosis.

  8. Analysis of autophagic flux in response to sulforaphane in metastatic prostate cancer cells

    PubMed Central

    Watson, Gregory W; Wickramasekara, Samanthi; Fang, Yufeng; Palomera-Sanchez, Zoraya; Maier, Claudia S; Williams, David E; Dashwood, Roderick H; Perez, Viviana I; Ho, Emily

    2015-01-01

    Scope The phytochemical sulforaphane has been shown to decrease prostate cancer metastases in a genetic mouse model of prostate carcinogenesis, though the mechanism of action is not fully known. Sulforaphane has been reported to stimulate autophagy, and modulation of autophagy has been proposed to influence sulforaphane cytotoxicity; however, no conclusions about autophagy can be drawn without assessing autophagic flux, which has not been characterized in prostate cancer cells following sulforaphane treatment. Methods and Results We conducted an investigation to assess the impact of sulforaphane on autophagic flux in two metastatic prostate cancer cell lines at a concentration shown to decrease metastasis in vivo. Autophagic flux was assessed by multiple autophagy related proteins and substrates. We found that sulforaphane can stimulate autophagic flux and cell death only at high concentrations, above what has been observed in vivo. Conclusion These results suggest that sulforaphane does not directly stimulate autophagy or cell death in metastatic prostate cancer cells under physiologically relevant conditions, but instead supports the involvement of in vivo factors as important effectors of sulforaphane- mediated prostate cancer suppression. PMID:26108801

  9. Monitoring autophagic flux using Ref(2)P, the Drosophila p62 ortholog.

    PubMed

    DeVorkin, Lindsay; Gorski, Sharon M

    2014-09-02

    Human p62, also known as Sequestome-1 (SQSTM1), is a multifunctional scaffold protein that contains many domains, including a Phox/Bem1P (PB1) multimerization domain, an ubiquitin-associated (UBA) domain, and a light chain 3 (LC3) recognition sequence. p62 binds ubiquitinated proteins and targets them for degradation by the proteasome. In addition, p62 directly binds LC3; this may serve as a mechanism to deliver ubiquitinated proteins for degradation by autophagy. During this process, p62 itself is degraded. The inhibition of autophagy leads to the accumulation of p62, indicating that it can be used as a marker of autophagic flux. Ref(2)P (refractory to sigma P), the Drosophila ortholog of p62, is also required for the formation of ubiquitinated protein aggregates. Ref(2)P contains a putative LC3-interacting region, and genetic inhibition of autophagy in Drosophila leads to the accumulation of Ref(2)P protein levels. Thus, like p62, Ref(2)P may serve as a marker of autophagic flux. Here we provide two procedures to examine Ref(2)P protein levels in Drosophila ovaries. © 2014 Cold Spring Harbor Laboratory Press.

  10. Protein-protein interaction networks identify targets which rescue the MPP+ cellular model of Parkinson’s disease

    NASA Astrophysics Data System (ADS)

    Keane, Harriet; Ryan, Brent J.; Jackson, Brendan; Whitmore, Alan; Wade-Martins, Richard

    2015-11-01

    Neurodegenerative diseases are complex multifactorial disorders characterised by the interplay of many dysregulated physiological processes. As an exemplar, Parkinson’s disease (PD) involves multiple perturbed cellular functions, including mitochondrial dysfunction and autophagic dysregulation in preferentially-sensitive dopamine neurons, a selective pathophysiology recapitulated in vitro using the neurotoxin MPP+. Here we explore a network science approach for the selection of therapeutic protein targets in the cellular MPP+ model. We hypothesised that analysis of protein-protein interaction networks modelling MPP+ toxicity could identify proteins critical for mediating MPP+ toxicity. Analysis of protein-protein interaction networks constructed to model the interplay of mitochondrial dysfunction and autophagic dysregulation (key aspects of MPP+ toxicity) enabled us to identify four proteins predicted to be key for MPP+ toxicity (P62, GABARAP, GBRL1 and GBRL2). Combined, but not individual, knockdown of these proteins increased cellular susceptibility to MPP+ toxicity. Conversely, combined, but not individual, over-expression of the network targets provided rescue of MPP+ toxicity associated with the formation of autophagosome-like structures. We also found that modulation of two distinct proteins in the protein-protein interaction network was necessary and sufficient to mitigate neurotoxicity. Together, these findings validate our network science approach to multi-target identification in complex neurological diseases.

  11. Autophagic-lysosomal dysregulation downstream of cathepsin B inactivation in human skin fibroblasts exposed to UVA

    PubMed Central

    Lamore, Sarah D.; Wondrak, Georg T.

    2014-01-01

    Recently, using 2D-DIGE proteomics we have identified cathepsin B as a novel target of UVA in human Hs27 skin fibroblasts. In response to chronic exposure to noncytotoxic doses of UVA (9.9 J/cm2, twice a week, 3 weeks), photooxidative impairment of cathepsin B enzymatic activity occurred with accumulation of autofluorescent aggregates colocalizing with lysosomes, an effect mimicked by pharmacological antagonism of cathepsin B using the selective inhibitor CA074Me. Here, we have further explored the mechanistic involvement of cathepsin B inactivation in UVA-induced autophagic-lysosomal alterations using autophagy-directed PCR expression array analysis as a discovery tool. Consistent with lysosomal expansion, UVA upregulated cellular protein levels of the lysosomal marker glycoprotein Lamp-1, and increased levels of the lipidated autophagosomal membrane constituent LC3-II were detected. UVA did not alter expression of beclin 1 (BECN1), an essential factor for initiation of autophagy, but upregulation of p62 (sequestosome 1, SQSTM1), a selective autophagy substrate, and α-synuclein (SNCA), an autophagic protein substrate and aggresome component, was observed at the mRNA and protein level. Moreover, UVA downregulated transglutaminase-2 (TGM2), an essential enzyme involved in autophagolysosome maturation. Strikingly, UVA effects on Lamp-1, LC3-II, beclin 1, p62, α-synuclein, and transglutaminase-2 were mimicked by CA074Me treatment. Taken together, our data suggest that UVA-induced autophagic-lysosomal alterations occur as a consequence of impaired autophagic flux downstream of cathepsin B inactivation, a novel molecular mechanism potentially involved in UVA-induced skin photodamage. PMID:21773629

  12. Turnover of Lipidated LC3 and Autophagic Cargoes in Mammalian Cells.

    PubMed

    Rodríguez-Arribas, M; Yakhine-Diop, S M S; González-Polo, R A; Niso-Santano, M; Fuentes, J M

    2017-01-01

    Macroautophagy (usually referred to as autophagy) is the most important degradation system in mammalian cells. It is responsible for the elimination of protein aggregates, organelles, and other cellular content. During autophagy, these materials (i.e., cargo) must be engulfed by a double-membrane structure called an autophagosome, which delivers the cargo to the lysosome to complete its degradation. Autophagy is a very dynamic pathway called autophagic flux. The process involves all the steps that are implicated in cargo degradation from autophagosome formation. There are several techniques to monitor autophagic flux. Among them, the method most used experimentally to assess autophagy is the detection of LC3 protein processing and p62 degradation by Western blotting. In this chapter, we provide a detailed and straightforward protocol for this purpose in cultured mammalian cells, including a brief set of notes concerning problems associated with the Western-blotting detection of LC3 and p62. © 2017 Elsevier Inc. All rights reserved.

  13. Berberine-induced autophagic cell death by elevating GRP78 levels in cancer cells.

    PubMed

    La, Xiaoqin; Zhang, Lichao; Li, Zhuoyu; Yang, Peng; Wang, Yingying

    2017-03-28

    Berberine, an isoquinoline alkaloid extracted from Coptidis Rhizoma, has been shown to induce cancer cell autophagic death. Glucose regulated protein 78 (GRP78) is associated with stress-induced autophagy. However, the related mechanisms between berberine-induced cancer cell autophagy and GRP78 remain to be elucidated. Here, we report that berberine can induce autophagic cancer cell death by elevating levels of GRP78. These results further demonstrated that berberine enhanced GRP78 by suppression of ubiquitination / proteasomal degradation of GRP78 and activation of ATF6. Moreover, fluorescence spectrum assay revealed that berberine could bind to GRP78 and form complexes. Finally, co-IP analysis showed that the ability of GRP78 to bind to VPS34 was increased with berberine treatment. Taken together, our results suggest that berberine induces autophagic cancer cell death via enhancing GRP78 levels and the ability of GRP78 to bind to VPS34.

  14. Berberine-induced autophagic cell death by elevating GRP78 levels in cancer cells

    PubMed Central

    Li, Zhuoyu; Yang, Peng; Wang, Yingying

    2017-01-01

    Berberine, an isoquinoline alkaloid extracted from Coptidis Rhizoma, has been shown to induce cancer cell autophagic death. Glucose regulated protein 78 (GRP78) is associated with stress-induced autophagy. However, the related mechanisms between berberine-induced cancer cell autophagy and GRP78 remain to be elucidated. Here, we report that berberine can induce autophagic cancer cell death by elevating levels of GRP78. These results further demonstrated that berberine enhanced GRP78 by suppression of ubiquitination / proteasomal degradation of GRP78 and activation of ATF6. Moreover, fluorescence spectrum assay revealed that berberine could bind to GRP78 and form complexes. Finally, co-IP analysis showed that the ability of GRP78 to bind to VPS34 was increased with berberine treatment. Taken together, our results suggest that berberine induces autophagic cancer cell death via enhancing GRP78 levels and the ability of GRP78 to bind to VPS34. PMID:28157699

  15. Establishment of monitoring methods for autophagy in rice reveals autophagic recycling of chloroplasts and root plastids during energy limitation.

    PubMed

    Izumi, Masanori; Hidema, Jun; Wada, Shinya; Kondo, Eri; Kurusu, Takamitsu; Kuchitsu, Kazuyuki; Makino, Amane; Ishida, Hiroyuki

    2015-04-01

    Autophagy is an intracellular process leading to vacuolar or lysosomal degradation of cytoplasmic components in eukaryotes. Establishment of proper methods to monitor autophagy was a key step in uncovering its role in organisms, such as yeast (Saccharomyces cerevisiae), mammals, and Arabidopsis (Arabidopsis thaliana), in which chloroplastic proteins were found to be recycled by autophagy. Chloroplast recycling has been predicted to function in nutrient remobilization for growing organs or grain filling in cereal crops. Here, to develop our understanding of autophagy in cereals, we established monitoring methods for chloroplast autophagy in rice (Oryza sativa). We generated transgenic rice-expressing fluorescent protein (FP) OsAuTophaGy8 (OsATG8) fusions as autophagy markers. FP-ATG8 signals were delivered into the vacuolar lumen in living cells of roots and leaves mainly as vesicles corresponding to autophagic bodies. This phenomenon was not observed upon the addition of wortmannin, an inhibitor of autophagy, or in an ATG7 knockout mutant. Markers for the chloroplast stroma, stromal FP, and FP-labeled Rubisco were delivered by a type of autophagic body called the Rubisco-containing body (RCB) in the same manner. RCB production in excised leaves was suppressed by supply of external sucrose or light. The release of free FP caused by autophagy-dependent breakdown of FP-labeled Rubisco was induced during accelerated senescence in individually darkened leaves. In roots, nongreen plastids underwent both RCB-mediated and entire organelle types of autophagy. Therefore, our newly developed methods to monitor autophagy directly showed autophagic degradation of leaf chloroplasts and root plastids in rice plants and its induction during energy limitation. © 2015 American Society of Plant Biologists. All Rights Reserved.

  16. Natural small-molecule enhancers of autophagy induce autophagic cell death in apoptosis-defective cells.

    PubMed

    Law, Betty Yuen Kwan; Chan, Wai Kit; Xu, Su Wei; Wang, Jing Rong; Bai, Li Ping; Liu, Liang; Wong, Vincent Kam Wai

    2014-07-01

    Resistance of cancer cells to chemotherapy is a significant problem in oncology, and the development of sensitising agents or small-molecules with new mechanisms of action to kill these cells is needed. Autophagy is a cellular process responsible for the turnover of misfolded proteins or damaged organelles, and it also recycles nutrients to maintain energy levels for cell survival. In some apoptosis-resistant cancer cells, autophagy can also enhance the efficacy of anti-cancer drugs through autophagy-mediated mechanisms of cell death. Because the modulation of autophagic processes can be therapeutically useful to circumvent chemoresistance and enhance the effects of cancer treatment, the identification of novel autophagic enhancers for use in oncology is highly desirable. Many novel anti-cancer compounds have been isolated from natural products; therefore, we worked to discover natural, anti-cancer small-molecule enhancers of autophagy. Here, we have identified a group of natural alkaloid small-molecules that function as novel autophagic enhancers. These alkaloids, including liensinine, isoliensinine, dauricine and cepharanthine, stimulated AMPK-mTOR dependent induction of autophagy and autophagic cell death in a panel of apoptosis-resistant cells. Taken together, our work provides novel insights into the biological functions, mechanisms and potential therapeutic values of alkaloids for the induction of autophagy.

  17. Acupuncture promotes mTOR-independent autophagic clearance of aggregation-prone proteins in mouse brain.

    PubMed

    Tian, Tian; Sun, Yanhong; Wu, Huangan; Pei, Jian; Zhang, Jing; Zhang, Yi; Wang, Lu; Li, Bin; Wang, Lihua; Shi, Jiye; Hu, Jun; Fan, Chunhai

    2016-01-21

    Acupuncture has historically been practiced to treat medical disorders by mechanically stimulating specific acupoints with fine needles. Despite its well-documented efficacy, its biological basis remains largely elusive. In this study, we found that mechanical stimulation at the acupoint of Yanglingquan (GB34) promoted the autophagic clearance of α-synuclein (α-syn), a well known aggregation-prone protein closely related to Parkinson's disease (PD), in the substantia nigra par compacta (SNpc) of the brain in a PD mouse model. We found the protein clearance arose from the activation of the autophagy-lysosome pathway (ALP) in a mammalian target of rapamycin (mTOR)-independent approach. Further, we observed the recovery in the activity of dopaminergic neurons in SNpc, and improvement in the motor function at the behavior level of PD mice. Whereas acupuncture and rapamycin, a chemical mTOR inhibitor, show comparable α-syn clearance and therapeutic effects in the PD mouse model, the latter adopts a distinctly different, mTOR-dependent, autophagy induction process. Due to this fundamental difference, acupuncture may circumvent adverse effects of the rapamycin treatment. The newly discovered connection between acupuncture and autophagy not only provides a new route to understanding the molecular mechanism of acupuncture but also sheds new light on cost-effective and safe therapy of neurodegenerative diseases.

  18. High LC3/Beclin Expression Correlates with Poor Survival in Glioma: a Definitive Role for Autophagy as Evidenced by In Vitro Autophagic Flux.

    PubMed

    Cj, Padmakrishnan; Hv, Easwer; Vijayakurup, Vinod; R Menon, Girish; Nair, Suresh; Gopala, Srinivas

    2017-10-11

    Recent studies suggest the role of autophagy, an evolutionarily conserved catabolic process, in determining the response of gliomas to treatment either positively or negatively. The study attempts to characterize autophagy in low and high-grade glioma by investigating the autophagic flux and clinical significance of autophagy proteins (LC3 and beclin 1) in a group of glioma patients. We evaluated the expression of autophagic markers in resected specimens of low-grade glioma (LGG) and high-grade glioma (HGG) tissues, by immunohistochemistry and Western blotting. Our results show that expression of autophagy proteins were more prominent in HGG than in LGG. Increased level of autophagic proteins in HGG can be due to an increased rate of autophagy or can be because of blockage in the final degradation step of autophagy (defective autophagy). To distinguish these possibilities, the autophagic flux assay which helps to determine the rate of degradation/synthesis of autophagic proteins (LC3-II and p62) over a period of time by blocking the final degradation step of autophagy using bafilomycin A1 was used . The assessment of autophagic flux in ex vivo culture of primary glioma cells revealed for the first time increased turnover of autophagy in high grade compared to low grade-glioma. Though autophagic markers were reduced in LGG, functionally autophagy was non defective in both grades of glioma. We then investigated whether autophagy in gliomas is regulated by nutrient sensing pathways including mTOR and promote cell survival by providing an alternate energy source in response to metabolic stress. The results depicted that the role of autophagy during stress varies with tissue and has a negative correlation with mTOR substrate phosphorylation. We also evaluated the expression of LC3 and beclin 1 with progression free survival (PFS) using Kaplan-Meier survival analysis and have found that patients with low LC3/beclin 1 expression had better PFS than those with high

  19. Evidence for autophagic gridlock in aging and neurodegeneration.

    PubMed

    Bakhoum, Mathieu F; Bakhoum, Christine Y; Ding, Zhixia; Carlton, Susan M; Campbell, Gerald A; Jackson, George R

    2014-07-01

    Autophagy is essential to neuronal homeostasis, and its impairment is implicated in the development of neurodegenerative pathology. However, the underlying mechanisms and consequences of this phenomenon remain a matter of conjecture. We show that misexpression of human tau in Drosophila induces accumulation of autophagic intermediates with a preponderance of large vacuoles, which we term giant autophagic bodies (GABs), which are reminiscent of dysfunctional autophagic entities. Lowering basal autophagy reduces GABs, whereas increasing autophagy decreases mature autolysosomes. Induction of autophagy is also associated with rescue of the tauopathy phenotype, suggesting that formation of GABs may be a compensatory mechanism rather than a trigger of neurodegeneration. Last, we show that the peculiar Biondi bodies observed in the choroid epithelium of both elderly and Alzheimer's disease human brains express immunoreactive markers similar to those of GABs. Collectively, these data indicate that autophagic gridlock contributes to the development of pathology in aging and neurodegeneration. Published by Mosby, Inc.

  20. NADPH oxidase promotes Parkinsonian phenotypes by impairing autophagic flux in an mTORC1-independent fashion in a cellular model of Parkinson’s disease

    PubMed Central

    Pal, Rituraj; Bajaj, Lakshya; Sharma, Jaiprakash; Palmieri, Michela; Di Ronza, Alberto; Lotfi, Parisa; Chaudhury, Arindam; Neilson, Joel; Sardiello, Marco; Rodney, George G.

    2016-01-01

    Oxidative stress and aberrant accumulation of misfolded proteins in the cytosol are key pathological features associated with Parkinson’s disease (PD). NADPH oxidase (Nox2) is upregulated in the pathogenesis of PD; however, the underlying mechanism(s) of Nox2-mediated oxidative stress in PD pathogenesis are still unknown. Using a rotenone-inducible cellular model of PD, we observed that a short exposure to rotenone (0.5 μM) resulted in impaired autophagic flux through activation of a Nox2 dependent Src/PI3K/Akt axis, with a consequent disruption of a Beclin1-VPS34 interaction that was independent of mTORC1 activity. Sustained exposure to rotenone at a higher dose (10 μM) decreased mTORC1 activity; however, autophagic flux was still impaired due to dysregulation of lysosomal activity with subsequent induction of the apoptotic machinery. Cumulatively, our results highlight a complex pathogenic mechanism for PD where short- and long-term oxidative stress alters different signaling pathways, ultimately resulting in anomalous autophagic activity and disease phenotype. Inhibition of Nox2-dependent oxidative stress attenuated the impaired autophagy and cell death, highlighting the importance and therapeutic potential of these pathways for treating patients with PD. PMID:26960433

  1. N-Desmethyldauricine Induces Autophagic Cell Death in Apoptosis-Defective Cells via Ca2+ Mobilization.

    PubMed

    Law, Betty Y K; Mok, Simon W F; Chen, Juan; Michelangeli, Francesco; Jiang, Zhi-Hong; Han, Yu; Qu, Yuan Q; Qiu, Alena C L; Xu, Su-Wei; Xue, Wei-Wei; Yao, Xiao-Jun; Gao, Jia Y; Javed, Masood-Ul-Hassan; Coghi, Paolo; Liu, Liang; Wong, Vincent K W

    2017-01-01

    Resistance of cancer cells to chemotherapy remains a significant problem in oncology. Mechanisms regulating programmed cell death, including apoptosis, autophagy or necrosis, in the treatment of cancers have been extensively investigated over the last few decades. Autophagy is now emerging as an important pathway in regulating cell death or survival in cancer therapy. Recent studies demonstrated variety of natural small-molecules could induce autophagic cell death in apoptosis-resistant cancer cells, therefore, discovery of novel autophagic enhancers from natural products could be a promising strategy for treatment of chemotherapy-resistant cancer. By computational virtual docking analysis, biochemical assays, and advanced live-cell imaging techniques, we have identified N -desmethyldauricine (LP-4), isolated from rhizoma of Menispermum dauricum DC as a novel inducer of autophagy. LP-4 was shown to induce autophagy via the Ulk-1-PERK and Ca 2+ /Calmodulin-dependent protein kinase kinase β (CaMKKβ)-AMPK-mTOR signaling cascades, via mobilizing calcium release through inhibition of SERCA, and importantly, lead to autophagic cell death in a panel of cancer cells, apoptosis-defective and apoptosis-resistant cells. Taken together, this study provides detailed insights into the cytotoxic mechanism of a novel autophagic compound that targeting the apoptosis resistant cancer cells, and new implication on drug discovery from natural products for drug resistant cancer therapy.

  2. Leishmania mexicana differentiation involves a selective plasma membrane autophagic-like process.

    PubMed

    Dagger, Francehuli; Bengio, Camila; Martinez, Angel; Ayesta, Carlos

    2017-11-23

    Parasites of the Leishmania genus, which are the causative agents of leishmaniasis, display a complex life cycle, from a flagellated form (promastigotes) residing in the midgut of the phlebotomine vector to a non-flagellated form (amastigote) invading the mammalian host. The cellular process for the conversion between these forms is an interesting biological phenomenon involving modulation of the plasma membrane. In this study, we describe a selective autophagic-like process during the in vitro differentiation of Leishmania mexicana promastigote to amastigote-like cells. This process is responsible for size reduction and shape change of the promastigote (15-20 μm long) to the rounded amastigote-like form (4-5 μm long), identical to the one that infects host macrophages. This autophagic-like process is characterized by a profound folding of the plasma membrane and the presence of abundant cytoplasmic lipid droplets that may be the product of changes in the lipid metabolism. The key feature for the differentiation process at either pH 7.0 or pH 5.5 is the shift in temperature from 25 to 35 °C. Flagella shortening during the differentiation process appears as the product of continuous flagellar microtubular disassembly that is also accompanied by changes in mitochondrion localization. Drugs directed at blocking the parasite autophagic-like process could be important as new strategies to fight the disease.

  3. An Autophagic Flux Probe that Releases an Internal Control.

    PubMed

    Kaizuka, Takeshi; Morishita, Hideaki; Hama, Yutaro; Tsukamoto, Satoshi; Matsui, Takahide; Toyota, Yuichiro; Kodama, Akihiko; Ishihara, Tomoaki; Mizushima, Tohru; Mizushima, Noboru

    2016-11-17

    Macroautophagy is an intracellular degradation system that utilizes the autophagosome to deliver cytoplasmic components to the lysosome. Measuring autophagic activity is critically important but remains complicated and challenging. Here, we have developed GFP-LC3-RFP-LC3ΔG, a fluorescent probe to evaluate autophagic flux. This probe is cleaved by endogenous ATG4 proteases into equimolar amounts of GFP-LC3 and RFP-LC3ΔG. GFP-LC3 is degraded by autophagy, while RFP-LC3ΔG remains in the cytosol, serving as an internal control. Thus, autophagic flux can be estimated by calculating the GFP/RFP signal ratio. Using this probe, we re-evaluated previously reported autophagy-modulating compounds, performed a high-throughput screen of an approved drug library, and identified autophagy modulators. Furthermore, we succeeded in measuring both induced and basal autophagic flux in embryos and tissues of zebrafish and mice. The GFP-LC3-RFP-LC3ΔG probe is a simple and quantitative method to evaluate autophagic flux in cultured cells and whole organisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway.

    PubMed

    Wang, Wei-jia; Wang, Yuan; Chen, Hang-zi; Xing, Yong-zhen; Li, Feng-wei; Zhang, Qian; Zhou, Bo; Zhang, Hong-kui; Zhang, Jie; Bian, Xue-li; Li, Li; Liu, Yuan; Zhao, Bi-xing; Chen, Yan; Wu, Rong; Li, An-zhong; Yao, Lu-ming; Chen, Ping; Zhang, Yi; Tian, Xu-yang; Beermann, Friedrich; Wu, Mian; Han, Jiahuai; Huang, Pei-qiang; Lin, Tianwei; Wu, Qiao

    2014-02-01

    Autophagy is linked to cell death, yet the associated mechanisms are largely undercharacterized. We discovered that melanoma, which is generally resistant to drug-induced apoptosis, can undergo autophagic cell death with the participation of orphan nuclear receptor TR3. A sequence of molecular events leading to cellular demise is launched by a specific chemical compound, 1-(3,4,5-trihydroxyphenyl)nonan-1-one, newly acquired from screening a library of TR3-targeting compounds. The autophagic cascade comprises TR3 translocation to mitochondria through interaction with the mitochondrial outer membrane protein Nix, crossing into the mitochondrial inner membrane through Tom40 and Tom70 channel proteins, dissipation of mitochondrial membrane potential by the permeability transition pore complex ANT1-VDAC1 and induction of autophagy. This process leads to excessive mitochondria clearance and irreversible cell death. It implicates a new approach to melanoma therapy through activation of a mitochondrial signaling pathway that integrates a nuclear receptor with autophagy for cell death.

  5. Trehalose ameliorates oxidative stress-mediated mitochondrial dysfunction and ER stress via selective autophagy stimulation and autophagic flux restoration in osteoarthritis development.

    PubMed

    Tang, Qian; Zheng, Gang; Feng, Zhenhua; Chen, Yu; Lou, Yiting; Wang, Chenggui; Zhang, Xiaolei; Zhang, Yu; Xu, Huazi; Shang, Ping; Liu, Haixiao

    2017-10-05

    Oxidative stress-related apoptosis and autophagy play crucial roles in the development of osteoarthritis (OA), a progressive cartilage degenerative disease with multifactorial etiologies. Here, we determined autophagic flux changes and apoptosis in human OA and tert-Butyl hydroperoxide (TBHP)-treated chondrocytes. In addition, we explored the potential protective effects of trehalose, a novel Mammalian Target of Rapamycin (mTOR)-independent autophagic inducer, in TBHP-treated mouse chondrocytes and a destabilized medial meniscus (DMM) mouse OA model. We found aberrant p62 accumulation and increased apoptosis in human OA cartilage and chondrocytes. Consistently, p62 and cleaved caspase-3 levels increased in mouse chondrocytes under oxidative stress. Furthermore, trehalose restored oxidative stress-induced autophagic flux disruption and targeted autophagy selectively by activating BCL2 interacting protein 3 (BNIP3) and Phosphoglycerate mutase family member 5 (PGAM5). Trehalose could ameliorate oxidative stress-mediated mitochondrial membrane potential collapse, ATP level decrease, dynamin-related protein 1 (drp-1) translocation into the mitochondria, and the upregulation of proteins involved in mitochondria and endoplasmic reticulum (ER) stress-related apoptosis pathway. In addition, trehalose suppressed the cleavage of caspase 3 and poly(ADP-ribose) polymerase (PARP) and prevented DNA damage under oxidative stress. However, the anti-apoptotic effects of trehalose in TBHP-treated chondrocytes were partially abolished by autophagic flux inhibitor chloroquine and BNIP3- siRNA. The protective effect of trehalose was also found in mouse OA model. Taken together, these results indicate that trehalose has anti-apoptotic effects through the suppression of oxidative stress-induced mitochondrial injury and ER stress which is dependent on the promotion of autophagic flux and the induction of selective autophagy. Thus, trehalose is a promising therapeutic agent for OA.

  6. Dynamic autophagic activity affected the development of thoracic aortic dissection by regulating functional properties of smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yang; Zhao, Zhi-Min; Zhang, Guan-Xin

    The aortic medial degeneration is the key histopathologic feature of Thoracic aortic dissection (TAD). The aim of this study was to identify the change of autophagic activity in the aortic wall during TAD development, and to explore the roles of autophagy on regulating functional properties of smooth muscle cells (SMCs). Firstly, compared with control group (n = 11), the increased expression of autophagic markers Beclin1 and LC3 was detected in the aortic wall from TAD group (n = 23) by immunochemistry and western blot. We found that more autophagic vacuoles were present in the aortic wall of TAD patients using Transmission electron microscopy. Next,more » autophagic activity was examined in AD mice model established by β-aminopropionitrile fumarate (BAPN) and angiotensin II. Immunochemistry proved that autophagic activity was dynamically changed during AD development. Beclin1 and LC3 were detected up-regulated in the aortic wall in the second week after BAPN feeding, earlier than the fragmentation or loss of elastic fibers. When AD occurred in the 4th week, the expression of Beclin1 and LC3 began to decrease, but still higher than the control. Furthermore, autophagy was found to inhibit starvation-induced apoptosis of SMCs. Meanwhile, blockage of autophagy could suppress PDGF-induced phenotypic switch of SMCs. Taken together, autophagic activity was dynamically changed in the aortic wall during TAD development. The abnormal autophagy could regulate the functional properties of aortic SMCs, which might be the potential pathogenesis of TAD. - Highlights: • Autophagy is up-regulated in aorta wall from thoracic aorta dissection (TAD) patient. • Autophagic activity is dynamically changed during TAD development. • Dynamically change of autophagy is associated with pathological process of TAD. • Autophagy participate in the development of TAD by regulating function of SMCs.« less

  7. Clinical Utility of LC3 and p62 Immunohistochemistry in Diagnosis of Drug-Induced Autophagic Vacuolar Myopathies: A Case-Control Study

    PubMed Central

    Lee, Han S.; Daniels, Brianne H.; Salas, Eduardo; Bollen, Andrew W.; Debnath, Jayanta; Margeta, Marta

    2012-01-01

    Background Some patients treated with chloroquine, hydroxychloroquine, or colchicine develop autophagic vacuolar myopathy, the diagnosis of which currently requires electron microscopy. The goal of the current study was to develop an immunohistochemical diagnostic marker for this pathologic entity. Methodology Microtubule-associated protein light chain 3 (LC3) has emerged as a robust marker of autophagosomes. LC3 binds p62/SQSTM1, an adapter protein that is selectively degraded via autophagy. In this study, we evaluated the utility of immunohistochemical stains for LC3 and p62 as diagnostic markers of drug-induced autophagic vacuolar myopathy. The staining was performed on archival muscle biopsy material, with subject assignment to normal control, drug-treated control, and autophagic myopathy groups based on history of drug use and morphologic criteria. Principal Findings In all drug-treated subjects, but not in normal controls, LC3 and p62 showed punctate staining characteristic of autophagosome buildup. In the autophagic myopathy subjects, puncta were coarser and tended to coalesce into linear structures aligned with the longitudinal axis of the fiber, often in the vicinity of vacuoles. The percentage of LC3- and p62-positive fibers was significantly higher in the autophagic myopathy group compared to either the normal control (p<0.001) or the drug-treated control group (p<0.05). With the diagnostic threshold set between 8% and 15% positive fibers (depending on the desired level of sensitivity and specificity), immunohistochemical staining for either LC3 or p62 could be used to identify subjects with autophagic vacuolar myopathy within the drug-treated subject group (p≤0.001). Significance Immunohistochemistry for LC3 and p62 can facilitate tissue-based diagnosis of drug-induced autophagic vacuolar myopathies. By limiting the need for electron microscopy (a time consuming and costly technique with high specificity, but low sensitivity), clinical use of these

  8. Clinical utility of LC3 and p62 immunohistochemistry in diagnosis of drug-induced autophagic vacuolar myopathies: a case-control study.

    PubMed

    Lee, Han S; Daniels, Brianne H; Salas, Eduardo; Bollen, Andrew W; Debnath, Jayanta; Margeta, Marta

    2012-01-01

    Some patients treated with chloroquine, hydroxychloroquine, or colchicine develop autophagic vacuolar myopathy, the diagnosis of which currently requires electron microscopy. The goal of the current study was to develop an immunohistochemical diagnostic marker for this pathologic entity. Microtubule-associated protein light chain 3 (LC3) has emerged as a robust marker of autophagosomes. LC3 binds p62/SQSTM1, an adapter protein that is selectively degraded via autophagy. In this study, we evaluated the utility of immunohistochemical stains for LC3 and p62 as diagnostic markers of drug-induced autophagic vacuolar myopathy. The staining was performed on archival muscle biopsy material, with subject assignment to normal control, drug-treated control, and autophagic myopathy groups based on history of drug use and morphologic criteria. In all drug-treated subjects, but not in normal controls, LC3 and p62 showed punctate staining characteristic of autophagosome buildup. In the autophagic myopathy subjects, puncta were coarser and tended to coalesce into linear structures aligned with the longitudinal axis of the fiber, often in the vicinity of vacuoles. The percentage of LC3- and p62-positive fibers was significantly higher in the autophagic myopathy group compared to either the normal control (p<0.001) or the drug-treated control group (p<0.05). With the diagnostic threshold set between 8% and 15% positive fibers (depending on the desired level of sensitivity and specificity), immunohistochemical staining for either LC3 or p62 could be used to identify subjects with autophagic vacuolar myopathy within the drug-treated subject group (p ≤ 0.001). Immunohistochemistry for LC3 and p62 can facilitate tissue-based diagnosis of drug-induced autophagic vacuolar myopathies. By limiting the need for electron microscopy (a time consuming and costly technique with high specificity, but low sensitivity), clinical use of these markers will improve the speed and accuracy of

  9. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress

    NASA Astrophysics Data System (ADS)

    Chiu, Hui-Wen; Xia, Tian; Lee, Yu-Hsuan; Chen, Chun-Wan; Tsai, Jui-Chen; Wang, Ying-Jan

    2014-12-01

    Nanoparticles (NPs) have been used to produce a wide range of products that have applications in imaging and drug delivery in medicine. Due to their chemical stability, well-controlled sizes and surface charges, polystyrene (PS) NPs have been developed as biosensors and drug delivery carriers. However, the possible adverse biological effects and underlying mechanisms are still unclear. Recently, autophagy has been implicated in the regulation of cell death. In this study, we evaluated a library of PS NPs with different surface charges. We found that NH2-labeled polystyrene (NH2-PS) nanospheres were highly toxic with enhanced uptake in macrophage (RAW 264.7) and lung epithelial (BEAS-2B) cells. Furthermore, NH2-PS could induce autophagic cell death. NH2-PS increased autophagic flux due to reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress caused by misfolded protein aggregation. The inhibition of ER stress decreased cytotoxicity and autophagy in the NH2-PS-treated cells. In addition, the Akt/mTOR and AMPK signaling pathways were involved in the regulation of NH2-PS-triggered autophagic cell death. These results suggest an important role of autophagy in cationic NP-induced cell death and provide mechanistic insights into the inhibition of the toxicity and safe material design.Nanoparticles (NPs) have been used to produce a wide range of products that have applications in imaging and drug delivery in medicine. Due to their chemical stability, well-controlled sizes and surface charges, polystyrene (PS) NPs have been developed as biosensors and drug delivery carriers. However, the possible adverse biological effects and underlying mechanisms are still unclear. Recently, autophagy has been implicated in the regulation of cell death. In this study, we evaluated a library of PS NPs with different surface charges. We found that NH2-labeled polystyrene (NH2-PS) nanospheres were highly toxic with enhanced uptake in macrophage (RAW 264.7) and lung

  10. Regulation of MicroRNAs-Mediated Autophagic Flux: A New Regulatory Avenue for Neurodegenerative Diseases With Focus on Prion Diseases

    PubMed Central

    Shah, Syed Zahid Ali; Zhao, Deming; Hussain, Tariq; Sabir, Naveed; Yang, Lifeng

    2018-01-01

    Prion diseases are fatal neurological disorders affecting various mammalian species including humans. Lack of proper diagnostic tools and non-availability of therapeutic remedies are hindering the control strategies for prion diseases. MicroRNAs (miRNAs) are abundant endogenous short non-coding essential RNA molecules that negatively regulate the target genes after transcription. Several biological processes depend on miRNAs, and altered profiles of these miRNAs are potential biomarkers for various neurodegenerative diseases, including prion diseases. Autophagic flux degrades the misfolded prion proteins to reduce chronic endoplasmic reticulum stress and enhance cell survival. Recent evidence suggests that specific miRNAs target and regulate the autophagic mechanism, which is critical for alleviating cellular stress. miRNAs-mediated regulation of these specific proteins involved in the autophagy represents a new target with highly significant therapeutic prospects. Here, we will briefly describe the biology of miRNAs, the use of miRNAs as potential biomarkers with their credibility, the regulatory mechanism of miRNAs in major neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and prion diseases, degradation pathways for aggregated prion proteins, the role of autophagy in prion diseases. Finally, we will discuss the miRNAs-modulated autophagic flux in neurodegenerative diseases and employ them as potential therapeutic intervention strategy in prion diseases. PMID:29867448

  11. Cerebrospinal Fluid Concentration of Key Autophagy Protein Lamp2 Changes Little During Normal Aging

    PubMed Central

    Loeffler, David A.; Klaver, Andrea C.; Coffey, Mary P.; Aasly, Jan O.

    2018-01-01

    Autophagy removes both functional and damaged intracellular macromolecules from cells via lysosomal degradation. Three autophagic mechanisms, namely macroautophagy, chaperone-mediated autophagy (CMA), and microautophagy, have been described in mammals. Studies in experimental systems have found macroautophagy and CMA to decrease with normal aging, despite the fact that oxidative stress, which can activate both processes, increases with normal aging. Whether autophagic mechanisms decrease in the human brain during normal aging is unclear. The primary objective of this study was to examine the association of a major autophagy protein, lysosome-associated membrane glycoprotein (lamp2), with age in cerebrospinal fluid (CSF) samples from healthy subjects. Lamp2 consists of three isoforms, lamp2a, 2b and 2c, all of which participate in autophagy. Lamp2’s CSF concentration decreases in Parkinson’s disease (PD) and increases in Alzheimer’s disease (AD), but whether its CSF concentration changes during normal aging has not been investigated. Our secondary objectives were to examine the associations of lamp2’s CSF concentration with CSF levels of the molecular chaperone heat shock 70-kDa protein (HSPA8), which interacts with lamp2a in CMA, and oxidative stress markers 8-hydroxy-2′-deoxyguanosine (8-OHdG), 8-isoprostane (8-ISO) and Total Antioxidant Capacity (TAC) in healthy subjects. We found lamp2’s observed associations with these variables to be weak, with all Kendall’s tau-b absolute values ≤0.20. These results suggest that CSF lamp2 concentration changes little during normal aging and does not appear to be associated with HSPA8 or oxidative stress. Further studies are indicated to determine the relationship between CSF lamp2 concentration and brain autophagic processes.

  12. Listeria phospholipases subvert host autophagic defenses by stalling pre-autophagosomal structures

    PubMed Central

    Tattoli, Ivan; Sorbara, Matthew T; Yang, Chloe; Tooze, Sharon A; Philpott, Dana J; Girardin, Stephen E

    2013-01-01

    Listeria can escape host autophagy defense pathways through mechanisms that remain poorly understood. We show here that in epithelial cells, Listeriolysin (LLO)-dependent cytosolic escape of Listeria triggered a transient amino-acid starvation host response characterized by GCN2 phosphorylation, ATF3 induction and mTOR inhibition, the latter favouring a pro-autophagic cellular environment. Surprisingly, rapid recovery of mTOR signalling was neither sufficient nor necessary for Listeria avoidance of autophagic targeting. Instead, we observed that Listeria phospholipases PlcA and PlcB reduced autophagic flux and phosphatidylinositol 3-phosphate (PI3P) levels, causing pre-autophagosomal structure stalling and preventing efficient targeting of cytosolic bacteria. In co-infection experiments, wild-type Listeria protected PlcA/B-deficient bacteria from autophagy-mediated clearance. Thus, our results uncover a critical role for Listeria phospholipases C in the inhibition of autophagic flux, favouring bacterial escape from host autophagic defense. PMID:24162724

  13. In vivo imaging and quantitative monitoring of autophagic flux in tobacco BY-2 cells.

    PubMed

    Hanamata, Shigeru; Kurusu, Takamitsu; Okada, Masaaki; Suda, Akiko; Kawamura, Koki; Tsukada, Emi; Kuchitsu, Kazuyuki

    2013-01-01

    Autophagy has been shown to play essential roles in the growth, development and survival of eukaryotic cells. However, simple methods for quantification and visualization of autophagic flux remain to be developed in living plant cells. Here, we analyzed the autophagic flux in transgenic tobacco BY-2 cell lines expressing fluorescence-tagged NtATG8a as a marker for autophagosome formation. Under sucrose-starved conditions, the number of punctate signals of YFP-NtATG8a increased, and the fluorescence intensity of the cytoplasm and nucleoplasm decreased. Conversely, these changes were not observed in BY-2 cells expressing a C-terminal glycine deletion mutant of the NtATG8a protein (NtATG8aΔG). To monitor the autophagic flux more easily, we generated a transgenic BY-2 cell line expressing NtATG8a fused to a pH-sensitive fluorescent tag, a tandem fusion of the acid-insensitive RFP and the acid-sensitive YFP. In sucrose-rich conditions, both fluorescent signals were detected in the cytoplasm and only weakly in the vacuole. In contrast, under sucrose-starved conditions, the fluorescence intensity of the cytoplasm decreased, and the RFP signal clearly increased in the vacuole, corresponding to the fusion of the autophagosome to the vacuole and translocation of ATG8 from the cytoplasm to the vacuole. Moreover, we introduce a novel simple easy way to monitor the autophagic flux non-invasively by only measuring the ratio of fluorescence of RFP and YFP in the cell suspension using a fluorescent image analyzer without microscopy. The present in vivo quantitative monitoring system for the autophagic flux offers a powerful tool for determining the physiological functions and molecular mechanisms of plant autophagy induced by environmental stimuli.

  14. In vivo imaging and quantitative monitoring of autophagic flux in tobacco BY-2 cells

    PubMed Central

    Hanamata, Shigeru; Kurusu, Takamitsu; Okada, Masaaki; Suda, Akiko; Kawamura, Koki; Tsukada, Emi; Kuchitsu, Kazuyuki

    2013-01-01

    Autophagy has been shown to play essential roles in the growth, development and survival of eukaryotic cells. However, simple methods for quantification and visualization of autophagic flux remain to be developed in living plant cells. Here, we analyzed the autophagic flux in transgenic tobacco BY-2 cell lines expressing fluorescence-tagged NtATG8a as a marker for autophagosome formation. Under sucrose-starved conditions, the number of punctate signals of YFP-NtATG8a increased, and the fluorescence intensity of the cytoplasm and nucleoplasm decreased. Conversely, these changes were not observed in BY-2 cells expressing a C-terminal glycine deletion mutant of the NtATG8a protein (NtATG8aΔG). To monitor the autophagic flux more easily, we generated a transgenic BY-2 cell line expressing NtATG8a fused to a pH-sensitive fluorescent tag, a tandem fusion of the acid-insensitive RFP and the acid-sensitive YFP. In sucrose-rich conditions, both fluorescent signals were detected in the cytoplasm and only weakly in the vacuole. In contrast, under sucrose-starved conditions, the fluorescence intensity of the cytoplasm decreased, and the RFP signal clearly increased in the vacuole, corresponding to the fusion of the autophagosome to the vacuole and translocation of ATG8 from the cytoplasm to the vacuole. Moreover, we introduce a novel simple easy way to monitor the autophagic flux non-invasively by only measuring the ratio of fluorescence of RFP and YFP in the cell suspension using a fluorescent image analyzer without microscopy. The present in vivo quantitative monitoring system for the autophagic flux offers a powerful tool for determining the physiological functions and molecular mechanisms of plant autophagy induced by environmental stimuli. PMID:23123450

  15. 6-shogaol induces autophagic cell death then triggered apoptosis in colorectal adenocarcinoma HT-29 cells.

    PubMed

    Li, Ting-Yi; Chiang, Been-Huang

    2017-09-01

    6-shogaol is a phytochemical of dietary ginger, we found that 6-shogaol could induced both autophagic and apoptotic death in human colon adenocarcinoma (HT-29) cells. Results of this study showed that 6-shogal induced cell cycle arrest, autophagy, and apoptosis in HT-29 cells in a time sequence. After 6h, 6-shogal induced apparent G2/M arrest, then the HT-29 cells formed numerous autophagosomes in each phase of the cell cycle. After 18h, increases in acidic vesicles and LAMP-1 (Lysosome-associated membrane proteins 1) showed that 6-shogaol had caused autophagic cell death. After 24h, cell shrinkage and Caspase-3/7 activities rising, suggesting that apoptotic cell death had increased. And after 48h, the result of TUNEL assay indicated the highest occurrence of apoptosis upon 6-shogaol treatment. It appeared that apoptosis is triggered by autophagy in 6-shogaol treated HT-29 cells, the damage of autophagic cell death initiated apoptosis program. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Tetraspanin CD63 Bridges Autophagic and Endosomal Processes To Regulate Exosomal Secretion and Intracellular Signaling of Epstein-Barr Virus LMP1

    PubMed

    Hurwitz, Stephanie N; Cheerathodi, Mujeeb R; Nkosi, Dingani; York, Sara B; Meckes, David G

    2018-03-01

    The tetraspanin protein CD63 has been recently described as a key factor in extracellular vesicle (EV) production and endosomal cargo sorting. In the context of Epstein-Barr virus (EBV) infection, CD63 is required for the efficient packaging of the major viral oncoprotein latent membrane protein 1 (LMP1) into exosomes and other EV populations and acts as a negative regulator of LMP1 intracellular signaling. Accumulating evidence has also pointed to intersections of the endosomal and autophagy pathways in maintaining cellular secretory processes and as sites for viral assembly and replication. Indeed, LMP1 can activate the mammalian target of rapamycin (mTOR) pathway to suppress host cell autophagy and facilitate cell growth and proliferation. Despite the growing recognition of cross talk between endosomes and autophagosomes and its relevance to viral infection, little is understood about the molecular mechanisms governing endosomal and autophagy convergence. Here, we demonstrate that CD63-dependent vesicle protein secretion directly opposes intracellular signaling activation downstream of LMP1, including mTOR-associated proteins. Conversely, disruption of normal autolysosomal processes increases LMP1 secretion and dampens signal transduction by the viral protein. Increases in mTOR activation following CD63 knockout are coincident with the development of serum-dependent autophagic vacuoles that are acidified in the presence of high LMP1 levels. Altogether, these findings suggest a key role of CD63 in regulating the interactions between endosomal and autophagy processes and limiting cellular signaling activity in both noninfected and virally infected cells. IMPORTANCE The close connection between extracellular vesicles and viruses is becoming rapidly and more widely appreciated. EBV, a human gamma herpesvirus that contributes to the progression of a multitude of lymphomas and carcinomas in immunocompromised or genetically susceptible populations, packages its major

  17. Isogambogenic acid induces apoptosis-independent autophagic cell death in human non-small-cell lung carcinoma cells.

    PubMed

    Yang, Jianhong; Zhou, Yongzhao; Cheng, Xia; Fan, Yi; He, Shichao; Li, Shucai; Ye, Haoyu; Xie, Caifeng; Wu, Wenshuang; Li, Chunyan; Pei, Heying; Li, Luyuan; Wei, Zhe; Peng, Aihua; Wei, Yuquan; Li, Weimin; Chen, Lijuan

    2015-01-09

    To overcome drug resistance caused by apoptosis deficiency in patients with non-small cell lung carcinoma (NSCLC), there is a need to identify other means of triggering apoptosis-independent cancer cell death. We are the first to report that isogambogenic acid (iso-GNA) can induce apoptosis-independent autophagic cell death in human NSCLC cells. Several features of the iso-GNA-treated NSCLC cells indicated that iso-GNA induced autophagic cell death. First, there was no evidence of apoptosis or cleaved caspase 3 accumulation and activation. Second, iso-GNA treatment induced the formation of autophagic vacuoles, increased LC3 conversion, caused the appearance of autophagosomes and increased the expression of autophagy-related proteins. These findings provide evidence that iso-GNA induces autophagy in NSCLC cells. Third, iso-GNA-induced cell death was inhibited by autophagic inhibitors or by selective ablation of Atg7 and Beclin 1 genes. Furthermore, the mTOR inhibitor rapamycin increased iso-GNA-induced cell death by enhancing autophagy. Finally, a xenograft model provided additional evidence that iso-GNA exhibited anticancer effect through inducing autophagy-dependent cell death in NSCLC cells. Taken together, our results demonstrated that iso-GNA exhibited an anticancer effect by inducing autophagy-dependent cell death in NSCLC cells, which may be an effective chemotherapeutic agent that can be used against NSCLC in a clinical setting.

  18. Isogambogenic acid induces apoptosis-independent autophagic cell death in human non-small-cell lung carcinoma cells

    PubMed Central

    Yang, Jianhong; Zhou, Yongzhao; Cheng, Xia; Fan, Yi; He, Shichao; Li, Shucai; Ye, Haoyu; Xie, Caifeng; Wu, Wenshuang; Li, Chunyan; Pei, Heying; Li, Luyuan; Wei, Zhe; Peng, Aihua; Wei, Yuquan; Li, Weimin; Chen, Lijuan

    2015-01-01

    To overcome drug resistance caused by apoptosis deficiency in patients with non-small cell lung carcinoma (NSCLC), there is a need to identify other means of triggering apoptosis-independent cancer cell death. We are the first to report that isogambogenic acid (iso-GNA) can induce apoptosis-independent autophagic cell death in human NSCLC cells. Several features of the iso-GNA-treated NSCLC cells indicated that iso-GNA induced autophagic cell death. First, there was no evidence of apoptosis or cleaved caspase 3 accumulation and activation. Second, iso-GNA treatment induced the formation of autophagic vacuoles, increased LC3 conversion, caused the appearance of autophagosomes and increased the expression of autophagy-related proteins. These findings provide evidence that iso-GNA induces autophagy in NSCLC cells. Third, iso-GNA-induced cell death was inhibited by autophagic inhibitors or by selective ablation of Atg7 and Beclin 1 genes. Furthermore, the mTOR inhibitor rapamycin increased iso-GNA-induced cell death by enhancing autophagy. Finally, a xenograft model provided additional evidence that iso-GNA exhibited anticancer effect through inducing autophagy-dependent cell death in NSCLC cells. Taken together, our results demonstrated that iso-GNA exhibited an anticancer effect by inducing autophagy-dependent cell death in NSCLC cells, which may be an effective chemotherapeutic agent that can be used against NSCLC in a clinical setting. PMID:25571970

  19. Identification of novel autophagic Radix Polygalae fraction by cell membrane chromatography and UHPLC-(Q)TOF-MS for degradation of neurodegenerative disease proteins

    PubMed Central

    Wu, An-Guo; Kam-Wai Wong, Vincent; Zeng, Wu; Liu, Liang; Yuen-Kwan Law, Betty

    2015-01-01

    With its traditional use in relieving insomnia and anxiety, our previous study has identified onjisaponin B from Radix Polygalae (RP), as a novel autophagic enhancer with potential neuroprotective effects. In current study, we have further identified a novel active fraction from RP, contains 17 major triterpenoid saponins including the onjisaponin B, by the combinational use of cell membrane chromatography (CMC) and ultra-performance liquid chromatography coupled to (quadrupole) time-of-flight mass spectrometry {UHPLC-(Q)TOF-MS}. By exhibiting more potent autophagic effect in cells, the active fraction enhances the clearance of mutant huntingtin, and reduces protein level and aggregation of α-synuclein in a higher extent when compared with onjisaponin B. Here, we have reported for the first time the new application of cell-based CMC and UHPLC-(Q)TOF-MS analysis in identifying new autophagy inducers with neuroprotective effects from Chinese medicinal herb. This result has provided novel insights into the possible pharmacological actions of the active components present in the newly identified active fraction of RP, which may help to improve the efficacy of the traditional way of prescribing RP, and also provide new standard for the quality control of decoction of RP or its medicinal products in the future. PMID:26598009

  20. miR-34a Modulates Angiotensin II-Induced Myocardial Hypertrophy by Direct Inhibition of ATG9A Expression and Autophagic Activity

    PubMed Central

    Huang, He; Ye, Jing; Pan, Wei; Zhong, Yun; Cheng, Chuanfang; You, Xiangyu; Liu, Benrong; Xiong, Longgen; Liu, Shiming

    2014-01-01

    Cardiac hypertrophy is characterized by thickening myocardium and decreasing in heart chamber volume in response to mechanical or pathological stress, but the underlying molecular mechanisms remain to be defined. This study investigated altered miRNA expression and autophagic activity in pathogenesis of cardiac hypertrophy. A rat model of myocardial hypertrophy was used and confirmed by heart morphology, induction of cardiomyocyte autophagy, altered expression of autophagy-related ATG9A, LC3 II/I and p62 proteins, and decrease in miR-34a expression. The in vitro data showed that in hypertrophic cardiomyocytes induced by Ang II, miR-34a expression was downregulated, whereas ATG9A expression was up-regulated. Moreover, miR-34a was able to bind to ATG9A 3′-UTR, but not to the mutated 3′-UTR and inhibited ATG9A protein expression and autophagic activity. The latter was evaluated by autophagy-related LC3 II/I and p62 levels, TEM, and flow cytometry in rat cardiomyocytes. In addition, ATG9A expression induced either by treatment of rat cardiomyocytes with Ang II or ATG9A cDNA transfection upregulated autophagic activity and cardiomyocyte hypertrophy in both morphology and expression of hypertrophy-related genes (i.e., ANP and β-MHC), whereas knockdown of ATG9A expression downregulated autophagic activity and cardiomyocyte hypertrophy. However, miR-34a antagonized Ang II-stimulated myocardial hypertrophy, whereas inhibition of miR-34a expression aggravated Ang II-stimulated myocardial hypertrophy (such as cardiomyocyte hypertrophy-related ANP and β-MHC expression and cardiomyocyte morphology). This study indicates that miR-34a plays a role in regulation of Ang II-induced cardiomyocyte hypertrophy by inhibition of ATG9A expression and autophagic activity. PMID:24728149

  1. Fluorescence-based visualization of autophagic activity predicts mouse embryo viability

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Satoshi; Hara, Taichi; Yamamoto, Atsushi; Kito, Seiji; Minami, Naojiro; Kubota, Toshiro; Sato, Ken; Kokubo, Toshiaki

    2014-03-01

    Embryo quality is a critical parameter in assisted reproductive technologies. Although embryo quality can be evaluated morphologically, embryo morphology does not correlate perfectly with embryo viability. To improve this, it is important to understand which molecular mechanisms are involved in embryo quality control. Autophagy is an evolutionarily conserved catabolic process in which cytoplasmic materials sequestered by autophagosomes are degraded in lysosomes. We previously demonstrated that autophagy is highly activated after fertilization and is essential for further embryonic development. Here, we developed a simple fluorescence-based method for visualizing autophagic activity in live mouse embryos. Our method is based on imaging of the fluorescence intensity of GFP-LC3, a versatile marker for autophagy, which is microinjected into the embryos. Using this method, we show that embryonic autophagic activity declines with advancing maternal age, probably due to a decline in the activity of lysosomal hydrolases. We also demonstrate that embryonic autophagic activity is associated with the developmental viability of the embryo. Our results suggest that embryonic autophagic activity can be utilized as a novel indicator of embryo quality.

  2. The Autophagic Machinery in Enterovirus Infection

    PubMed Central

    Lai, Jeffrey K. F.; Sam, I-Ching; Chan, Yoke Fun

    2016-01-01

    The Enterovirus genus of the Picornaviridae family comprises many important human pathogens, including polioviruses, rhinovirus, enterovirus A71, and enterovirus D68. They cause a wide variety of diseases, ranging from mild to severe life-threatening diseases. Currently, no effective vaccine is available against enteroviruses except for poliovirus. Enteroviruses subvert the autophagic machinery to benefit their assembly, maturation, and exit from host. Some enteroviruses spread between cells via a process described as autophagosome-mediated exit without lysis (AWOL). The early and late phases of autophagy are regulated through various lipids and their metabolizing enzymes. Some of these lipids and enzymes are specifically regulated by enteroviruses. In the present review, we summarize the current understanding of the regulation of autophagic machinery by enteroviruses, and provide updates on recent developments in this field. PMID:26828514

  3. The Autophagic Machinery in Enterovirus Infection.

    PubMed

    Lai, Jeffrey K F; Sam, I-Ching; Chan, Yoke Fun

    2016-01-27

    The Enterovirus genus of the Picornaviridae family comprises many important human pathogens, including polioviruses, rhinovirus, enterovirus A71, and enterovirus D68. They cause a wide variety of diseases, ranging from mild to severe life-threatening diseases. Currently, no effective vaccine is available against enteroviruses except for poliovirus. Enteroviruses subvert the autophagic machinery to benefit their assembly, maturation, and exit from host. Some enteroviruses spread between cells via a process described as autophagosome-mediated exit without lysis (AWOL). The early and late phases of autophagy are regulated through various lipids and their metabolizing enzymes. Some of these lipids and enzymes are specifically regulated by enteroviruses. In the present review, we summarize the current understanding of the regulation of autophagic machinery by enteroviruses, and provide updates on recent developments in this field.

  4. Interplay of pathogenic forms of human tau with different autophagic pathways.

    PubMed

    Caballero, Benjamin; Wang, Yipeng; Diaz, Antonio; Tasset, Inmaculada; Juste, Yves Robert; Stiller, Barbara; Mandelkow, Eva-Maria; Mandelkow, Eckhard; Cuervo, Ana Maria

    2018-02-01

    Loss of neuronal proteostasis, a common feature of the aging brain, is accelerated in neurodegenerative disorders, including different types of tauopathies. Aberrant turnover of tau, a microtubule-stabilizing protein, contributes to its accumulation and subsequent toxicity in tauopathy patients' brains. A direct toxic effect of pathogenic forms of tau on the proteolytic systems that normally contribute to their turnover has been proposed. In this study, we analyzed the contribution of three different types of autophagy, macroautophagy, chaperone-mediated autophagy, and endosomal microautophagy to the degradation of tau protein variants and tau mutations associated with this age-related disease. We have found that the pathogenic P301L mutation inhibits degradation of tau by any of the three autophagic pathways, whereas the risk-associated tau mutation A152T reroutes tau for degradation through a different autophagy pathway. We also found defective autophagic degradation of tau when using mutations that mimic common posttranslational modifications in tau or known to promote its aggregation. Interestingly, although most mutations markedly reduced degradation of tau through autophagy, the step of this process preferentially affected varies depending on the type of tau mutation. Overall, our studies unveil a complex interplay between the multiple modifications of tau and selective forms of autophagy that may determine its physiological degradation and its faulty clearance in the disease context. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  5. Rapid screening of potential autophagic inductor agents using mammalian cell lines.

    PubMed

    Martins, Waleska K; Severino, Divinomar; Souza, Cleidiane; Stolf, Beatriz S; Baptista, Maurício S

    2013-06-01

    Recent progress in understanding the molecular basis of autophagy has demonstrated its importance in several areas of human health. Affordable screening techniques with higher sensitivity and specificity to identify autophagy are, however, needed to move the field forward. In fact, only laborious and/or expensive methodologies such as electron microscopy, dye-staining of autophagic vesicles, and LC3-II immunoblotting or immunoassaying are available for autophagy identification. Aiming to fulfill this technical gap, we describe here the association of three widely used assays to determine cell viability - Crystal Violet staining (CVS), 3-[4, 5-dimethylthiaolyl]-2, 5-diphenyl-tetrazolium bromide (MTT) reduction, and neutral red uptake (NRU) - to predict autophagic cell death in vitro. The conceptual framework of the method is the superior uptake of NR in cells engaging in autophagy. NRU was then weighted by the average of MTT reduction and CVS allowing the calculation of autophagic arbitrary units (AAU), a numeric variable that correlated specifically with the autophagic cell death. The proposed strategy is very useful for drug discovery, allowing the investigation of potential autophagic inductor agents through a rapid screening using mammalian cell lines B16-F10, HaCaT, HeLa, MES-SA, and MES-SA/Dx5 in a unique single microplate. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Disruption in the autophagic process underlies the sensory neuropathy in dystonia musculorum mice

    PubMed Central

    Ferrier, Andrew; De Repentigny, Yves; Lynch-Godrei, Anisha; Gibeault, Sabrina; Eid, Walaa; Kuo, Daniel; Zha, Xiaohui; Kothary, Rashmi

    2015-01-01

    A homozygous mutation in the DST (dystonin) gene causes a newly identified lethal form of hereditary sensory and autonomic neuropathy in humans (HSAN-VI). DST loss of function similarly leads to sensory neuron degeneration and severe ataxia in dystonia musculorum (Dstdt) mice. DST is involved in maintaining cytoskeletal integrity and intracellular transport. As autophagy is highly reliant upon stable microtubules and motor proteins, we assessed the influence of DST loss of function on autophagy using the Dstdt-Tg4 mouse model. Electron microscopy (EM) revealed an accumulation of autophagosomes in sensory neurons from these mice. Furthermore, we demonstrated that the autophagic flux was impaired. Levels of LC3-II, a marker of autophagosomes, were elevated. Consequently, Dstdt-Tg4 sensory neurons displayed impaired protein turnover of autophagosome substrate SQTSM1/p62 and of polyubiquitinated proteins. Interestingly, in a previously described Dstdt-Tg4 mouse model that is partially rescued by neuronal specific expression of the DST-A2 isoform, autophagosomes, autolysosomes, and damaged organelles were reduced when compared to Dstdt-Tg4 mutant mice. LC3-II, SQTSM1, polyubiquitinated proteins and autophagic flux were also restored to wild-type levels in the rescued mice. Finally, a significant decrease in DNAIC1 (dynein, axonemal, intermediate chain 1; the mouse ortholog of human DNAI1), a member of the DMC (dynein/dynactin motor complex), was noted in Dstdt-Tg4 dorsal root ganglia and sensory neurons. Thus, DST-A2 loss of function perturbs late stages of autophagy, and dysfunctional autophagy at least partially underlies Dstdt pathogenesis. We therefore conclude that the DST-A2 isoform normally facilitates autophagy within sensory neurons to maintain cellular homeostasis. PMID:26043942

  7. Hypercalcemia induces targeted autophagic degradation of aquaporin-2 at the onset of nephrogenic diabetes insipidus.

    PubMed

    Khositseth, Sookkasem; Charngkaew, Komgrid; Boonkrai, Chatikorn; Somparn, Poorichaya; Uawithya, Panapat; Chomanee, Nusara; Payne, D Michael; Fenton, Robert A; Pisitkun, Trairak

    2017-05-01

    Hypercalcemia can cause renal dysfunction such as nephrogenic diabetes insipidus (NDI), but the mechanisms underlying hypercalcemia-induced NDI are not well understood. To elucidate the early molecular changes responsible for this disorder, we employed mass spectrometry-based proteomic analysis of inner medullary collecting ducts (IMCD) isolated from parathyroid hormone-treated rats at onset of hypercalcemia-induced NDI. Forty-one proteins, including the water channel aquaporin-2, exhibited significant changes in abundance, most of which were decreased. Bioinformatic analysis revealed that many of the downregulated proteins were associated with cytoskeletal protein binding, regulation of actin filament polymerization, and cell-cell junctions. Targeted LC-MS/MS and immunoblot studies confirmed the downregulation of 16 proteins identified in the initial proteomic analysis and in additional experiments using a vitamin D treatment model of hypercalcemia-induced NDI. Evaluation of transcript levels and estimated half-life of the downregulated proteins suggested enhanced protein degradation as the possible regulatory mechanism. Electron microscopy showed defective intercellular junctions and autophagy in the IMCD cells from both vitamin D- and parathyroid hormone-treated rats. A significant increase in the number of autophagosomes was confirmed by immunofluorescence labeling of LC3. Colocalization of LC3 and Lamp1 with aquaporin-2 and other downregulated proteins was found in both models. Immunogold electron microscopy revealed aquaporin-2 in autophagosomes in IMCD cells from both hypercalcemia models. Finally, parathyroid hormone withdrawal reversed the NDI phenotype, accompanied by termination of aquaporin-2 autophagic degradation and normalization of both nonphoshorylated and S256-phosphorylated aquaporin-2 levels. Thus, enhanced autophagic degradation of proteins plays an important role in the initial mechanism of hypercalcemic-induced NDI. Copyright © 2016

  8. Mild hypothermia protects hippocampal neurons against oxygen-glucose deprivation/reperfusion-induced injury by improving lysosomal function and autophagic flux.

    PubMed

    Zhou, Tianen; Liang, Lian; Liang, Yanran; Yu, Tao; Zeng, Chaotao; Jiang, Longyuan

    2017-09-15

    Mild hypothermia has been proven to be useful to treat brain ischemia/reperfusion injury. However, the underlying mechanisms have not yet been fully elucidated. The present study was undertaken to determine whether mild hypothermia protects hippocampal neurons against oxygen-glucose deprivation/reperfusion(OGD/R)-induced injury via improving lysosomal function and autophagic flux. The results showed that OGD/R induced the occurrence of autophagy, while the acidic environment inside the lysosomes was altered. The autophagic flux assay with RFP-GFP tf-LC3 was impeded in hippocampal neurons after OGD/R. Mild hypothermia recovered the lysosomal acidic fluorescence and the lysosomal marker protein expression of LAMP2, which decreased after OGD/R.Furthermore, we found that mild hypothermia up-regulated autophagic flux and promoted the fusion of autophagosomes and lysosomes in hippocampal neurons following OGD/R injury, but could be reversed by treatment with chloroquine, which acts as a lysosome inhibitor. We also found that mild hypothermia improved mitochondrial autophagy in hippocampal neurons following OGD/R injury. Finally,we found that chloroquine blocked the protective effects of mild hypothermia against OGD/R-induced cell death and injury. Taken together, the present study indicates that mild hypothermia protects hippocampal neurons against OGD/R-induced injury by improving lysosomal function and autophagic flux. Copyright © 2017. Published by Elsevier Inc.

  9. Rab2 promotes autophagic and endocytic lysosomal degradation

    PubMed Central

    Boda, Attila; Glatz, Gábor; Zobel, Martina; Bisi, Sara; Hegedűs, Krisztina; Scita, Giorgio

    2017-01-01

    Rab7 promotes fusion of autophagosomes and late endosomes with lysosomes in yeast and metazoan cells, acting together with its effector, the tethering complex HOPS. Here we show that another small GTPase, Rab2, is also required for autophagosome and endosome maturation and proper lysosome function in Drosophila melanogaster. We demonstrate that Rab2 binds to HOPS, and that its active, GTP-locked form associates with autolysosomes. Importantly, expression of active Rab2 promotes autolysosomal fusions unlike that of GTP-locked Rab7, suggesting that its amount is normally rate limiting. We also demonstrate that RAB2A is required for autophagosome clearance in human breast cancer cells. In conclusion, we identify Rab2 as a key factor for autophagic and endocytic cargo delivery to and degradation in lysosomes. PMID:28483915

  10. Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer's disease.

    PubMed

    Lee, Jong Kil; Jin, Hee Kyung; Park, Min Hee; Kim, Bo-ra; Lee, Phil Hyu; Nakauchi, Hiromitsu; Carter, Janet E; He, Xingxuan; Schuchman, Edward H; Bae, Jae-sung

    2014-07-28

    In Alzheimer's disease (AD), abnormal sphingolipid metabolism has been reported, although the pathogenic consequences of these changes have not been fully characterized. We show that acid sphingomyelinase (ASM) is increased in fibroblasts, brain, and/or plasma from patients with AD and in AD mice, leading to defective autophagic degradation due to lysosomal depletion. Partial genetic inhibition of ASM (ASM(+/-)) in a mouse model of familial AD (FAD; amyloid precursor protein [APP]/presenilin 1 [PS1]) ameliorated the autophagocytic defect by restoring lysosomal biogenesis, resulting in improved AD clinical and pathological findings, including reduction of amyloid-β (Aβ) deposition and improvement of memory impairment. Similar effects were noted after pharmacologic restoration of ASM to the normal range in APP/PS1 mice. Autophagic dysfunction in neurons derived from FAD patient induced pluripotent stem cells (iPSCs) was restored by partial ASM inhibition. Overall, these results reveal a novel mechanism of ASM pathogenesis in AD that leads to defective autophagy due to impaired lysosomal biogenesis and suggests that partial ASM inhibition is a potential new therapeutic intervention for the disease. © 2014 Lee et al.

  11. Inhibition of Cyclooxygenase-2 (COX-2) Initiates Autophagy and Potentiates MPTP-Induced Autophagic Cell Death of Human Neuroblastoma Cells, SH-SY5Y: an Inside in the Pathology of Parkinson's Disease.

    PubMed

    Niranjan, Rituraj; Mishra, Kaushal Prasad; Thakur, Ashwani Kumar

    2018-03-01

    Cyclooxygenase-2 or COX-2 has been known to be crucial for Parkinson's disease (PD) pathogenesis; however, its exact role is still not known. We first time report that inhibition of COX-2 promotes 1-methyl-4-phenyl 1,2,3,6 tetrahydropyridine (MPTP)-induced neuronal cell death via induction of autophagic mechanisms. We found that treatment with MPTP induced cell death of neuroblastoma cells SH-SY5Y in a dose dependent manner. Treatment of MPTP has also upregulated the expressions of autophagic proteins such as LC3, beclin, ATG-5, and p62. Interestingly, nimesulide, a preferential COX-2 inhibitor, further potentiated the MPTP-induced cell death of human neuroblastoma cells. Treatment of nimesulide with MPTP further potentiated expressions of p62, ATG-5, beclin-1, LC3 autophagic proteins. Furthermore, nimesulide with MPTP increased apoptotic protein cleaved caspase-3 and also induced expression of p53 gene. Interestingly, it was observed that Akt inhibitor significantly increased MPTP-induced cell death of neuroblastoma cells. However, (-) deprenyl, a monoamine oxidase B (MAO B) inhibitor, attenuated MPTP-induced autophagic response and protected cell death. The prior treatment with prostaglandin E2 protected against nimesulide induced-death of neuronal cells. This study confirms that neuroinflammation is associated to the autophagy and may be one of the main pathological mechanisms in Parkinson's disease and other inflammation-associated disorders.

  12. A role for the membrane Golgi protein Ema in autophagy.

    PubMed

    Kim, Sungsu; DiAntonio, Aaron

    2012-08-01

    Autophagy is a cellular homeostatic response that involves degradation of self-components by the double-membraned autophagosome. The biogenesis of autophagosomes has been well described, but the ensuing processes after autophagosome formation are not clear. In our recent study, we proposed a model in which the Golgi complex contributes to the growth of autophagic structures, and that the Drosophila melanogaster membrane protein Ema promotes this process. In fat body cells of the D. melanogaster ema mutant, the recruitment of the Golgi complex protein Lava lamp (Lva) to autophagic structures is impaired and autophagic structures are very small. In addition, in the ema mutant autophagic turnover of SQSTM1/p62 and mitophagy are impaired. Our study not only identifies a role for Ema in autophagy, but also supports the hypothesis that the Golgi complex may be a potential membrane source for the biogenesis and development of autophagic structures.

  13. Disruption in the autophagic process underlies the sensory neuropathy in dystonia musculorum mice.

    PubMed

    Ferrier, Andrew; De Repentigny, Yves; Lynch-Godrei, Anisha; Gibeault, Sabrina; Eid, Walaa; Kuo, Daniel; Zha, Xiaohui; Kothary, Rashmi

    2015-01-01

    A homozygous mutation in the DST (dystonin) gene causes a newly identified lethal form of hereditary sensory and autonomic neuropathy in humans (HSAN-VI). DST loss of function similarly leads to sensory neuron degeneration and severe ataxia in dystonia musculorum (Dst(dt)) mice. DST is involved in maintaining cytoskeletal integrity and intracellular transport. As autophagy is highly reliant upon stable microtubules and motor proteins, we assessed the influence of DST loss of function on autophagy using the Dst(dt-Tg4) mouse model. Electron microscopy (EM) revealed an accumulation of autophagosomes in sensory neurons from these mice. Furthermore, we demonstrated that the autophagic flux was impaired. Levels of LC3-II, a marker of autophagosomes, were elevated. Consequently, Dst(dt-Tg4) sensory neurons displayed impaired protein turnover of autophagosome substrate SQTSM1/p62 and of polyubiquitinated proteins. Interestingly, in a previously described Dst(dt-Tg4) mouse model that is partially rescued by neuronal specific expression of the DST-A2 isoform, autophagosomes, autolysosomes, and damaged organelles were reduced when compared to Dst(dt-Tg4) mutant mice. LC3-II, SQTSM1, polyubiquitinated proteins and autophagic flux were also restored to wild-type levels in the rescued mice. Finally, a significant decrease in DNAIC1 (dynein, axonemal, intermediate chain 1; the mouse ortholog of human DNAI1), a member of the DMC (dynein/dynactin motor complex), was noted in Dst(dt-Tg4) dorsal root ganglia and sensory neurons. Thus, DST-A2 loss of function perturbs late stages of autophagy, and dysfunctional autophagy at least partially underlies Dst(dt) pathogenesis. We therefore conclude that the DST-A2 isoform normally facilitates autophagy within sensory neurons to maintain cellular homeostasis.

  14. Vitamin K3 attenuates cerulein-induced acute pancreatitis through inhibition of the autophagic pathway.

    PubMed

    Chinzei, Ryo; Masuda, Atsuhiro; Nishiumi, Shin; Nishida, Masayuki; Onoyama, Mitsuko; Sanuki, Tsuyoshi; Fujita, Tsuyoshi; Moritoh, Satoshi; Itoh, Tomoo; Kutsumi, Hiromu; Mizuno, Shigeto; Azuma, Takeshi; Yoshida, Masaru

    2011-01-01

    The discovery of novel and effective treatment methods would be of great help to patients with acute pancreatitis. The aims of this study were to determine the inhibitory effects of vitamin K3 (VK3) against cerulein-induced acute pancreatitis in mice and to examine the mechanisms behind these effects. Acute pancreatitis in mice was induced by intraperitoneal injection of cerulein 6 times at hourly intervals. Vitamin K3 was administered once before the first injection of cerulein or twice before and after the first injection of cerulein. The degrees of inflammation and autophagy in the pancreatic tissue were estimated by histological examination, measurement of enzyme activity, confocal microscopy, and Western blotting. The inhibitory effects of VK3 against rapamycin-induced autophagy were also examined using HeLa cells stably expressing green fluorescent protein LC3. Cerulein-induced acute pancreatitis was markedly attenuated by the administration of VK3. In addition, VK3 led to the inhibition of cerulein-evoked autophagic changes and colocalization of autophagosomes and lysosomes in the pancreatic tissue. Vitamin K3 also reduced rapamycin-induced autophagy in HeLa/green fluorescent protein LC3 cells. Our data suggest that the administration of VK3 reduces pancreatic inflammation in acute pancreatitis through inhibition of the autophagic pathway. Vitamin K3 may be an effective therapeutic strategy against acute pancreatitis.

  15. Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer’s disease

    PubMed Central

    Lee, Jong Kil; Jin, Hee Kyung; Park, Min Hee; Kim, Bo-ra; Lee, Phil Hyu; Nakauchi, Hiromitsu; Carter, Janet E.; He, Xingxuan; Schuchman, Edward H.

    2014-01-01

    In Alzheimer’s disease (AD), abnormal sphingolipid metabolism has been reported, although the pathogenic consequences of these changes have not been fully characterized. We show that acid sphingomyelinase (ASM) is increased in fibroblasts, brain, and/or plasma from patients with AD and in AD mice, leading to defective autophagic degradation due to lysosomal depletion. Partial genetic inhibition of ASM (ASM+/−) in a mouse model of familial AD (FAD; amyloid precursor protein [APP]/presenilin 1 [PS1]) ameliorated the autophagocytic defect by restoring lysosomal biogenesis, resulting in improved AD clinical and pathological findings, including reduction of amyloid-β (Aβ) deposition and improvement of memory impairment. Similar effects were noted after pharmacologic restoration of ASM to the normal range in APP/PS1 mice. Autophagic dysfunction in neurons derived from FAD patient induced pluripotent stem cells (iPSCs) was restored by partial ASM inhibition. Overall, these results reveal a novel mechanism of ASM pathogenesis in AD that leads to defective autophagy due to impaired lysosomal biogenesis and suggests that partial ASM inhibition is a potential new therapeutic intervention for the disease. PMID:25049335

  16. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inami, Yoshihiro; Yamashina, Shunhei, E-mail: syamashi@juntendo.ac.jp; Izumi, Kousuke

    2011-09-09

    Highlights: {yields} Acidification of autophagosome was blunted in steatotic hepatocytes. {yields} Hepatic steatosis did not disturb fusion of isolated autophagosome and lysosome. {yields} Proteinase activity of cathepsin B and L in autolysosomes was inhibited by steatosis. {yields} Hepatic expression of cathepsin B and L was suppressed by steatosis. -- Abstract: Autophagy, one of protein degradation system, contributes to maintain cellular homeostasis and cell defense. Recently, some evidences indicated that autophagy and lipid metabolism are interrelated. Here, we demonstrate that hepatic steatosis impairs autophagic proteolysis. Though accumulation of autophagosome is observed in hepatocytes from ob/ob mice, expression of p62 was augmentedmore » in liver from ob/ob mice more than control mice. Moreover, degradation of the long-lived protein leucine was significantly suppressed in hepatocytes isolated from ob/ob mice. More than 80% of autophagosomes were stained by LysoTracker Red (LTR) in hepatocytes from control mice; however, rate of LTR-stained autophagosomes in hepatocytes were suppressed in ob/ob mice. On the other hand, clearance of autolysosomes loaded with LTR was blunted in hepatocytes from ob/ob mice. Although fusion of isolated autophagosome and lysosome was not disturbed, proteinase activity of cathepsin B and L in autolysosomes and cathepsin B and L expression of liver were suppressed in ob/ob mice. These results indicate that lipid accumulation blunts autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression.« less

  17. Autophagic Regulation of Lipid Homeostasis in Cardiometabolic Syndrome.

    PubMed

    Yang, Mingjie; Zhang, Yingmei; Ren, Jun

    2018-01-01

    As an important protein quality control process, autophagy is essential for the degradation and removal of long-lived or injured cellular components and organelles. Autophagy is known to participate in a number of pathophysiological processes including cardiometabolic syndrome. Recent findings have shown compelling evidence for the intricate interplay between autophagy and lipid metabolism. Autophagy serves as a major regulator of lipid homeostasis while lipid can also influence autophagosome formation and autophagic signaling. Lipophagy is a unique form of selective autophagy and functions as a fundamental mechanism for clearance of lipid excess in atherosclerotic plaques. Ample of evidence has denoted a novel therapeutic potential for autophagy in deranged lipid metabolism and management of cardiometabolic diseases such as atherosclerosis and diabetic cardiomyopathy. Here we will review the interplays between cardiac autophagy and lipid metabolism in an effort to seek new therapeutic options for cardiometabolic diseases.

  18. AoAtg26, a putative sterol glucosyltransferase, is required for autophagic degradation of peroxisomes, mitochondria, and nuclei in the filamentous fungus Aspergillus oryzae.

    PubMed

    Kikuma, Takashi; Tadokoro, Takayuki; Maruyama, Jun-Ichi; Kitamoto, Katsuhiko

    2017-02-01

    Autophagy is a conserved process in eukaryotic cells for degradation of cellular proteins and organelles. In filamentous fungi, autophagic degradation of organelles such as peroxisomes, mitochondria, and nuclei occurs in basal cells after the prolonged culture, but its mechanism is not well understood. Here, we functionally analyzed the filamentous fungus Aspergillus oryzae AoAtg26, an ortholog of the sterol glucosyltransferase PpAtg26 involved in pexophagy in the yeast Pichia pastoris. Deletion of Aoatg26 caused a severe decrease in conidiation and aerial hyphae formation, which is typically observed in the autophagy-deficient A. oryzae strains. In addition, cup-shaped AoAtg8-positive membrane structures were accumulated in the Aoatg26 deletion strain, indicating that autophagic process is impaired. Indeed, the Aoatg26 deletion strain was defective in the degradation of peroxisomes, mitochondria, and nuclei. Taken together, AoAtg26 plays an important role for autophagic degradation of organelles in A. oryzae, which may physiologically contribute to the differentiation in filamentous fungi.

  19. Complete activation of autophagic process attenuates liver injury and improves survival in septic mice.

    PubMed

    Lin, Chih-Wen; Lo, Steven; Perng, Daw-Shyong; Wu, David Bin-Chia; Lee, Po-Huang; Chang, Ya-Fang; Kuo, Po-Lin; Yu, Ming-Lung; Yuan, Shyng-Shiou F; Hsieh, Ya-Ching

    2014-03-01

    The accumulation of autophagosomes in the terminal step of the autophagic process has recently emerged as a potentially maladaptive process in the septic heart and lung. However, the role of autophagy in the septic liver has not been ascertained. This study was investigated by first examining the entire sequence of the autophagic process in the liver of septic mice. Second, a novel pharmacotherapeutic approach was utilized to treat sepsis with autophagy enhancer/inhibitor. Sepsis was induced by cecal ligation and puncture (CLP). C57BL/6 mice received autophagy enhancer carbamazepine (CBZ), autophagy inhibitor 3-methyladenine (inhibition of autophagosomal formation), or chloroquine (impairment of autophagosomal clearance). We found that the whole autophagic process was activated at 4 h after CLP; however, it did not proceed to completion during the 4- to 24-h time period, as indicated by accumulated autophagosomes and decreased autophagic flux. Carbamazepine, which induced complete activation of the autophagic process, improved CLP survival. This protective effect was also associated with decreased cell death, inflammatory responses, and hepatic injury. However, disruption of autophagosomal clearance with chloroquine abolished the above protective effects in CBZ-treated CLP mice. 3-Methyladenine, which resulted in inhibition of the autophagosomal formation, did not show any above beneficial effects in CLP mice. Impaired autophagosome-lysome fusion resulting in incomplete activation of autophagy may contribute to sepsis-induced liver injury. Treatment with CBZ may serve a protective role in the septic liver, possibly through the effect of complete activation of autophagic process.

  20. Glycogen Synthase Kinase 3 Inhibition Promotes Lysosomal Biogenesis and Autophagic Degradation of the Amyloid-β Precursor Protein

    PubMed Central

    Parr, Callum; Carzaniga, Raffaela; Gentleman, Steve M.; Van Leuven, Fred; Walter, Jochen

    2012-01-01

    Alzheimer's disease (AD) has been associated with altered activity of glycogen synthase kinase 3 (GSK3) isozymes, which are proposed to contribute to both neurofibrillary tangles and amyloid plaque formation. However, the molecular basis by which GSK3 affects the formation of Aβ remains unknown. Our aim was to identify the underlying mechanisms of GSK3-dependent effects on the processing of amyloid precursor protein (APP). For this purpose, N2a cells stably expressing APP carrying the Swedish mutation were treated with specific GSK3 inhibitors or transfected with GSK3α/β short interfering RNA. We show that inhibition of GSK3 leads to decreased expression of APP by enhancing its degradation via an increase in the number of lysosomes. This induction of the lysosomal/autophagy pathway was associated with nuclear translocation of transcription factor EB (TFEB), a master regulator of lysosomal biogenesis. Our data indicate that GSK3 inhibition reduces Aβ through an increase of the degradation of APP and its carboxy-terminal fragment (CTF) by activation of the lysosomal/autophagy pathway. These results suggest that an increased propensity toward autophagic/lysosomal alterations in AD patients could have consequences for neuronal function. PMID:22927642

  1. Naringin Attenuates Autophagic Stress and Neuroinflammation in Kainic Acid-Treated Hippocampus In Vivo

    PubMed Central

    Jeong, Kyoung Hoon; Jung, Un Ju; Kim, Sang Ryong

    2015-01-01

    Kainic acid (KA) is well known as a chemical compound to study epileptic seizures and neuronal excitotoxicity. KA-induced excitotoxicity causes neuronal death by induction of autophagic stress and microglia-derived neuroinflammation, suggesting that the control of KA-induced effects may be important to inhibit epileptic seizures with neuroprotection. Naringin, a flavonoid in grapefruit and citrus fruits, has anti-inflammatory and antioxidative activities, resulting in neuroprotection in animal models from neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. In the present study, we examined its beneficial effects involved in antiautophagic stress and antineuroinflammation in the KA-treated hippocampus. Our results showed that naringin treatment delayed the onset of KA-induced seizures and decreased the occurrence of chronic spontaneous recurrent seizures (SRS) in KA-treated mice. Moreover, naringin treatment protected hippocampal CA1 neurons in the KA-treated hippocampus, ameliorated KA-induced autophagic stress, confirmed by the expression of microtubule-associated protein light chain 3 (LC3), and attenuated an increase in tumor necrosis factor-α (TNFα) in activated microglia. These results suggest that naringin may have beneficial effects of preventing epileptic events and neuronal death through antiautophagic stress and antineuroinflammation in the hippocampus in vivo. PMID:26124853

  2. HMGB1 promotes the starvation-induced autophagic degradation of α-synuclein in SH-SY5Y cells Atg 5-dependently.

    PubMed

    Guan, Yi; Li, Yiping; Zhao, Gang; Li, Yunqian

    2018-06-01

    Impaired autophagic clearance of aggregated α-synuclein is considered as one of key mechanisms underlining Parkinson disease (PD). High-mobility group protein B1 (HMGB1) has recently been demonstrated to mediate persistent neuroinflammation and consequent progressive neurodegeneration by promoting multiple inflammatory and neurotoxic factors. In this study, we examined the influence of the overexpression of wild-type (WT) and mutant-type (MT, A53T and A30P) α-synuclein on the autophagy in neuroblastoma SH-SY5Y cells under starvation, and then investigated the regulation of endogenous HMGB1 on the α-synuclein degradation and on the starvation-induced autophagy in the α-synuclein-overexpressed SH-SY5Y cells. It was demonstrated that the overexpression of WT or MT α-synuclein significantly downregulated the starvation-induced conversion of LC3I to LC3II and autophagy protein (Atg) 5 expression, whereas markedly inhibited the starvation-downregulated mTOR in SH-SY5Y cells. On the other side, the lentivirus-mediated upregulation of endogenous HMGB1 promoted the degradation of WT or MT α-synuclein in SH-SY5Y cells autophagy-dependently via promoting Atg 5, but not mTOR, the Atg 5 knockdown downregulated the HMGB1-mediated promotion to α-synuclein degeneration. Thus, we concluded that α-synuclein inhibited the starvation-induced autophagy in neuroblastoma SH-SY5Y cells via inhibiting the mTOR/Atg 5 signaling. However, the endogenous HMGB1 promoted the autophagic degradation of α-synuclein via the Atg 5-dependent autophagy-initiation pathway, implying the protective role of endogenous HMGB1 in the neuroblastoma cells against the α-synuclein accumulation. Copyright © 2018. Published by Elsevier Inc.

  3. Impaired retrograde transport of axonal autophagosomes contributes to autophagic stress in Alzheimer’s disease neurons

    PubMed Central

    Tammineni, Prasad; Ye, Xuan; Feng, Tuancheng; Aikal, Daniyal; Cai, Qian

    2017-01-01

    Neurons face unique challenges of transporting nascent autophagic vacuoles (AVs) from distal axons toward the soma, where mature lysosomes are mainly located. Autophagy defects have been linked to Alzheimer’s disease (AD). However, the mechanisms underlying altered autophagy remain unknown. Here, we demonstrate that defective retrograde transport contributes to autophagic stress in AD axons. Amphisomes predominantly accumulate at axonal terminals of mutant hAPP mice and AD patient brains. Amyloid-β (Aβ) oligomers associate with AVs in AD axons and interact with dynein motors. This interaction impairs dynein recruitment to amphisomes through competitive interruption of dynein-Snapin motor-adaptor coupling, thus immobilizing them in distal axons. Consistently, deletion of Snapin in mice causes AD-like axonal autophagic stress, whereas overexpressing Snapin in hAPP neurons reduces autophagic accumulation at presynaptic terminals by enhancing AV retrograde transport. Altogether, our study provides new mechanistic insight into AD-associated autophagic stress, thus establishing a foundation for ameliorating axonal pathology in AD. DOI: http://dx.doi.org/10.7554/eLife.21776.001 PMID:28085665

  4. Autophagic Turnover of Inactive 26S Proteasomes in Yeast Is Directed by the Ubiquitin Receptor Cue5 and the Hsp42 Chaperone

    DOE PAGES

    Marshall, Richard S.; McLoughlin, Fionn; Vierstra, Richard D.

    2016-07-28

    The autophagic clearance of 26S proteasomes (proteaphagy) is an important homeostatic mechanism within the ubiquitin system that modulates proteolytic capacity and eliminates damaged particles. Here, we define two proteaphagy routes in yeast that respond to either nitrogen starvation or particle inactivation. Whereas the core autophagic machineries required for Atg8 lipidation and vesiculation are essential for both routes, the upstream Atg1 kinase participates only in starvation-induced proteaphagy. Following inactivation, 26S proteasomes become extensively modified with ubiquitin. Although prior studies with Arabidopsis implicated RPN10 in tethering ubiquitylated proteasomes to ATG8 lining the autophagic membranes, yeast proteaphagy employs the evolutionarily distinct receptor Cue5,more » which simultaneously binds ubiquitin and Atg8. Proteaphagy of inactivated proteasomes also requires the oligomeric Hsp42 chaperone, suggesting that ubiquitylated proteasomes are directed by Hsp42 to insoluble protein deposit (IPOD)-type structures before encapsulation. Together, Cue5 and Hsp42 provide a quality control checkpoint in yeast directed at recycling dysfunctional 26S proteasomes.« less

  5. Autophagic Turnover of Inactive 26S Proteasomes in Yeast Is Directed by the Ubiquitin Receptor Cue5 and the Hsp42 Chaperone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Richard S.; McLoughlin, Fionn; Vierstra, Richard D.

    The autophagic clearance of 26S proteasomes (proteaphagy) is an important homeostatic mechanism within the ubiquitin system that modulates proteolytic capacity and eliminates damaged particles. Here, we define two proteaphagy routes in yeast that respond to either nitrogen starvation or particle inactivation. Whereas the core autophagic machineries required for Atg8 lipidation and vesiculation are essential for both routes, the upstream Atg1 kinase participates only in starvation-induced proteaphagy. Following inactivation, 26S proteasomes become extensively modified with ubiquitin. Although prior studies with Arabidopsis implicated RPN10 in tethering ubiquitylated proteasomes to ATG8 lining the autophagic membranes, yeast proteaphagy employs the evolutionarily distinct receptor Cue5,more » which simultaneously binds ubiquitin and Atg8. Proteaphagy of inactivated proteasomes also requires the oligomeric Hsp42 chaperone, suggesting that ubiquitylated proteasomes are directed by Hsp42 to insoluble protein deposit (IPOD)-type structures before encapsulation. Together, Cue5 and Hsp42 provide a quality control checkpoint in yeast directed at recycling dysfunctional 26S proteasomes.« less

  6. Autophagic flux without a block differentiates varicella-zoster virus infection from herpes simplex virus infection.

    PubMed

    Buckingham, Erin M; Carpenter, John E; Jackson, Wallen; Zerboni, Leigh; Arvin, Ann M; Grose, Charles

    2015-01-06

    Autophagy is a process by which misfolded and damaged proteins are sequestered into autophagosomes, before degradation in and recycling from lysosomes. We have extensively studied the role of autophagy in varicella-zoster virus (VZV) infection, and have observed that vesicular cells are filled with >100 autophagosomes that are easily detectable after immunolabeling for the LC3 protein. To confirm our hypothesis that increased autophagosome formation was not secondary to a block, we examined all conditions of VZV infection as well as carrying out two assessments of autophagic flux. We first investigated autophagy in human skin xenografts in the severe combined immunodeficiency (SCID) mouse model of VZV pathogenesis, and observed that autophagosomes were abundant in infected human skin tissues. We next investigated autophagy following infection with sonically prepared cell-free virus in cultured cells. Under these conditions, autophagy was detected in a majority of infected cells, but was much less than that seen after an infected-cell inoculum. In other words, inoculation with lower-titered cell-free virus did not reflect the level of stress to the VZV-infected cell that was seen after inoculation of human skin in the SCID mouse model or monolayers with higher-titered infected cells. Finally, we investigated VZV-induced autophagic flux by two different methods (radiolabeling proteins and a dual-colored LC3 plasmid); both showed no evidence of a block in autophagy. Overall, therefore, autophagy within a VZV-infected cell was remarkably different from autophagy within an HSV-infected cell, whose genome contains two modifiers of autophagy, ICP34.5 and US11, not present in VZV.

  7. Protein analysis: key to the future.

    PubMed

    Boodhun, Nawsheen

    2018-05-01

    Protein analysis is crucial to elucidating the function of proteins and understanding the impact of their presence, absence and alteration. This is key to advancing knowledge about diseases, providing the opportunity for biomarker discovery and development of therapeutics. In this issue of Tech News, Nawsheen Boodhun explores the various means of protein analysis.

  8. Intermittent fasting is neuroprotective in focal cerebral ischemia by minimizing autophagic flux disturbance and inhibiting apoptosis.

    PubMed

    Jeong, Ji Heun; Yu, Kwang Sik; Bak, Dong Ho; Lee, Je Hun; Lee, Nam Seob; Jeong, Young Gil; Kim, Dong Kwan; Kim, Jwa-Jin; Han, Seung-Yun

    2016-11-01

    Previous studies have demonstrated that autophagy induced by caloric restriction (CR) is neuroprotective against cerebral ischemia. However, it has not been determined whether intermittent fasting (IF), a variation of CR, can exert autophagy-related neuroprotection against cerebral ischemia. Therefore, the neuroprotective effect of IF was evaluated over the course of two weeks in a rat model of focal cerebral ischemia, which was induced by middle cerebral artery occlusion and reperfusion (MCAO/R). Specifically, the role of autophagy modulation as a potential underlying mechanism for this phenomenon was investigated. It was demonstrated that IF reduced infarct volume and brain edema, improved neurobehavioral deficits, and rescued neuronal loss after MCAO/R. Furthermore, neuronal apoptosis was decreased by IF in the rat cortex. An increase in the number of autophagosomes (APs) was demonstrated in the cortices of IF-treated rats, using immunofluorescence staining and transmission electron microscopy. Using immunoblots, an IF-induced increase was detected in microtubule-associated protein 1 light chain 3 (LC3)-II, Rab7, and cathepsin D protein levels, which corroborated previous morphological studies. Notably, IF reduced the accumulation of APs and p62, demonstrating that IF attenuated the MCAO/R-induced disturbance of autophagic flux in neurons. The findings of the present study suggest that IF-induced neuroprotection in focal cerebral ischemia is due, at least in part, to the minimization of autophagic flux disturbance and inhibition of apoptosis.

  9. Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification.

    PubMed

    Li, Dan L; Wang, Zhao V; Ding, Guanqiao; Tan, Wei; Luo, Xiang; Criollo, Alfredo; Xie, Min; Jiang, Nan; May, Herman; Kyrychenko, Viktoriia; Schneider, Jay W; Gillette, Thomas G; Hill, Joseph A

    2016-04-26

    The clinical use of doxorubicin is limited by cardiotoxicity. Histopathological changes include interstitial myocardial fibrosis and the appearance of vacuolated cardiomyocytes. Whereas dysregulation of autophagy in the myocardium has been implicated in a variety of cardiovascular diseases, the role of autophagy in doxorubicin cardiomyopathy remains poorly defined. Most models of doxorubicin cardiotoxicity involve intraperitoneal injection of high-dose drug, which elicits lethargy, anorexia, weight loss, and peritoneal fibrosis, all of which confound the interpretation of autophagy. Given this, we first established a model that provokes modest and progressive cardiotoxicity without constitutional symptoms, reminiscent of the effects seen in patients. We report that doxorubicin blocks cardiomyocyte autophagic flux in vivo and in cardiomyocytes in culture. This block was accompanied by robust accumulation of undegraded autolysosomes. We go on to localize the site of block as a defect in lysosome acidification. To test the functional relevance of doxorubicin-triggered autolysosome accumulation, we studied animals with diminished autophagic activity resulting from haploinsufficiency for Beclin 1. Beclin 1(+/-) mice exposed to doxorubicin were protected in terms of structural and functional changes within the myocardium. Conversely, animals overexpressing Beclin 1 manifested an amplified cardiotoxic response. Doxorubicin blocks autophagic flux in cardiomyocytes by impairing lysosome acidification and lysosomal function. Reducing autophagy initiation protects against doxorubicin cardiotoxicity. © 2016 American Heart Association, Inc.

  10. LC3 and p62 as diagnostic markers of drug-induced autophagic vacuolar cardiomyopathy: a study of 3 cases.

    PubMed

    Daniels, Brianne H; McComb, Rodney D; Mobley, Bret C; Gultekin, Sakir Humayun; Lee, Han S; Margeta, Marta

    2013-07-01

    Autophagic vacuolar cardiomyopathy is an underrecognized, but potentially fatal, complication of treatment with chloroquine (CQ) and its derivative hydroxychloroquine (HCQ), which are used as therapy for malaria and common connective tissue disorders. Currently, the diagnosis of autophagic vacuolar cardiomyopathy is established through an endomyocardial biopsy and requires electron microscopy, which is not widely available and has a significant potential for sampling error. Recently, we have reported that immunohistochemistry for autophagic markers LC3 and p62 can replace electron microscopy in the diagnosis of HCQ-induced and colchicine-induced autophagic vacuolar skeletal myopathies. In the current study, we use 3 cases of CQ-induced or HCQ-induced cardiomyopathy and 1 HCQ-treated control case to show that the same two markers can be used to diagnose autophagic vacuolar cardiomyopathies by light microscopy. CQ-induced or HCQ-induced autophagic vacuolar cardiomyopathy is not universally fatal, but successful treatment requires early detection. By lowering the barriers to diagnosis, the application of these immunohistochemical markers will decrease the number of misdiagnosed patients, thus increasing the likelihood of favorable clinical outcomes.

  11. Trehalose protects against cadmium-induced cytotoxicity in primary rat proximal tubular cells via inhibiting apoptosis and restoring autophagic flux

    PubMed Central

    Wang, Xin-Yu; Yang, Heng; Wang, Min-Ge; Yang, Du-Bao; Wang, Zhen-Yong; Wang, Lin

    2017-01-01

    Autophagy has an important renoprotective function and we recently found that autophagy inhibition is involved in cadmium (Cd)-induced nephrotoxicity. Here, we aimed to investigate the protective effect of trehalose (Tre), a novel autophagy activator, against Cd-induced cytotoxicity in primary rat proximal tubular (rPT) cells. First, data showed that Tre treatment significantly decreased Cd-induced apoptotic cell death of rPT cells via inhibiting caspase-dependent apoptotic pathway, evidenced by morphological analysis, flow cytometric and immunoblot assays. Also, administration with Tre protected rPT cells against Cd-induced lipid peroxidation. Inhibition of autophagic flux in Cd-exposed rPT cells was markedly restored by Tre administration, demonstrated by immunoblot analysis of autophagy marker proteins and GFP and RFP tandemly tagged LC3 method. Resultantly, Cd-induced autophagosome accumulation was obviously alleviated by Tre treatment. Meanwhile, blockage of autophagosome–lysosome fusion by Cd exposure was noticeably restored by Tre, which promoted the autophagic degradation in Cd-exposed rPT cells. Moreover, Tre treatment markedly recovered Cd-induced lysosomal alkalinization and impairment of lysosomal degradation capacity in rPT cells, demonstrating that Tre has the ability to restore Cd-impaired lysosomal function. Collectively, these findings demonstrate that Tre treatment alleviates Cd-induced cytotoxicity in rPT cells by inhibiting apoptosis and restoring autophagic flux. PMID:29022917

  12. Crocetin shifts autophagic cell survival to death of breast cancer cells in chemotherapy.

    PubMed

    Zhang, Ailian; Li, Jincheng

    2017-03-01

    The chemotherapy with fluorouracil is not always effective, in which some breast cancer cells may survive the fluorouracil treatment through enhanced autophagy. Crocetin is the major constituent of saffron, a Chinese traditional herb, which has recently found to have multiple pharmacological effects, including anticancer. However, the effects of Crocetin on the outcome of fluorouracil therapy for breast cancer have not been studied. Here, we showed that fluorouracil treatment inhibited the growth of breast cancer cells, in either a Cell Counting Kit-8 assay or an MTT assay. Inhibition of autophagy further suppressed breast cancer cell growth, suggesting that the breast cancer cells increased autophagic cell survival during fluorouracil treatment. However, Crocetin significantly increased the suppressive effects of fluorouracil on breast cancer cell growth, without affecting either cell apoptosis or autophagy. Inhibition of autophagy at the presence of Crocetin partially abolished the suppressive effects on breast cancer cell growth, suggesting that Crocetin may increase autophagic cell death in fluorouracil-treated breast cancer cells. Furthermore, Crocetin decreased Beclin-1 levels but increased ATG1 levels in fluorouracil-treated breast cancer cells. Together, these data suggest that Crocetin may shift autophagic cell survival to autophagic cell death in fluorouracil-treated breast cancer cells, possibly through modulation of the expression of ATG1 and Beclin-1.

  13. Cellular Metabolic and Autophagic Pathways: Traffic Control by Redox Signaling

    PubMed Central

    Dodson, Matthew; Darley-Usmar, Victor; Zhang, Jianhua

    2013-01-01

    It has been established that the key metabolic pathways of glycolysis and oxidative phosphorylation are intimately related to redox biology through control of cell signaling. Under physiological conditions glucose metabolism is linked to control of the NADH/NAD redox couple, as well as providing the major reductant, NADPH, for thiol-dependent antioxidant defenses. Retrograde signaling from the mitochondrion to the nucleus or cytosol controls cell growth and differentiation. Under pathological conditions mitochondria are targets for reactive oxygen and nitrogen species and are critical in controlling apoptotic cell death. At the interface of these metabolic pathways, the autophagy-lysosomal pathway functions to maintain mitochondrial quality, and generally serves an important cytoprotective function. In this review we will discuss the autophagic response to reactive oxygen and nitrogen species that are generated from perturbations of cellular glucose metabolism and bioenergetic function. PMID:23702245

  14. Mild MPP+ exposure impairs autophagic degradation through a novel lysosomal acidity-independent mechanism.

    PubMed

    Miyara, Masatsugu; Kotake, Yaichiro; Tokunaga, Wataru; Sanoh, Seigo; Ohta, Shigeru

    2016-10-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder, but its underlying cause remains unknown. Although recent studies using PD-related neurotoxin MPP + suggest autophagy involvement in the pathogenesis of PD, the effect of MPP + on autophagic processes under mild exposure, which mimics the slow progressive nature of PD, remains largely unclear. We examined the effect of mild MPP + exposure (10 and 200 μM for 48 h), which induces a more slowly developing cell death, on autophagic processes and the mechanistic differences with acute MPP + toxicity (2.5 and 5 mM for 24 h). In SH-SY5Y cells, mild MPP + exposure predominantly inhibited autophagosome degradation, whereas acute MPP + exposure inhibited both autophagosome degradation and basal autophagy. Mild MPP + exposure reduced lysosomal hydrolase cathepsin D activity without changing lysosomal acidity, whereas acute exposure decreased lysosomal density. Lysosome biogenesis enhancers trehalose and rapamycin partially alleviated mild MPP + exposure induced impaired autophagosome degradation and cell death, but did not prevent the pathogenic response to acute MPP + exposure, suggesting irreversible lysosomal damage. We demonstrated impaired autophagic degradation by MPP + exposure and mechanistic differences between mild and acute MPP + toxicities. Mild MPP + toxicity impaired autophagosome degradation through novel lysosomal acidity-independent mechanisms. Sustained mild lysosomal damage may contribute to PD. We examined the effects of MPP + on autophagic processes under mild exposure, which mimics the slow progressive nature of Parkinson's disease, in SH-SY5Y cells. This study demonstrated impaired autophagic degradation through a reduction in lysosomal cathepsin D activity without altering lysosomal acidity by mild MPP + exposure. Mechanistic differences between acute and mild MPP + toxicity were also observed. Sustained mild damage of lysosome may be an underlying cause of Parkinson

  15. Phellinus linteus Mycelium Alleviates Myocardial Ischemia-Reperfusion Injury through Autophagic Regulation.

    PubMed

    Su, Hsing-Hui; Chu, Ya-Chun; Liao, Jiuan-Miaw; Wang, Yi-Hsin; Jan, Ming-Shiou; Lin, Chia-Wei; Wu, Chiu-Yeh; Tseng, Chin-Yin; Yen, Jiin-Cherng; Huang, Shiang-Suo

    2017-01-01

    The incidence of myocardial ischemia-reperfusion (IR) injury is rapidly increasing around the world and this disease is a major contributor to global morbidity and mortality. It is known that regulation of programmed cell death including apoptosis and autophagy reduces the impact of myocardial IR injury. In this study, the cardioprotective effects and underlying mechanisms of Phellinus linteus (Berk. and Curt.) Teng, Hymenochaetaceae (PL), a type of medicinal mushroom, were examined in rats subjected to myocardial IR injury. The left main coronary artery of rats was ligated for 1 h and reperfused for 3 h. The arrhythmia levels were monitored during the entire process and the infarct size was evaluated after myocardial IR injury. Furthermore, the expression levels of proteins in apoptotic and autophagic pathways were observed. Pretreatment with PL mycelium (PLM) significantly reduced ventricular arrhythmia and mortality due to myocardial IR injury. PLM also significantly decreased myocardial infarct size and plasma lactate dehydrogenase level after myocardial IR injury. Moreover, PLM administration resulted in decreased caspase 3 and caspase 9 activation and increased Bcl-2/Bax ratio. Phosphorylation level of AMPK was elevated while mTOR level was reduced. Becline-1 and p62 levels decreased. These findings suggest that PLM is effective in protecting the myocardium against IR injury. The mechanism involves mediation through suppressed pro-apoptotic signaling and regulation of autophagic signaling, including stimulation of AMPK-dependent pathway and inhibition of beclin-1-dependent pathway, resulting in enhancement of protective autophagy and inhibition of excessive autophagy.

  16. Dengue Virus Inhibition of Autophagic Flux and Dependency of Viral Replication on Proteasomal Degradation of the Autophagy Receptor p62

    PubMed Central

    Metz, Philippe; Chiramel, Abhilash; Chatel-Chaix, Laurent; Alvisi, Gualtiero; Bankhead, Peter; Mora-Rodríguez, Rodrigo; Long, Gang; Hamacher-Brady, Anne

    2015-01-01

    ABSTRACT Autophagic flux involves formation of autophagosomes and their degradation by lysosomes. Autophagy can either promote or restrict viral replication. In the case of Dengue virus (DENV), several studies report that autophagy supports the viral replication cycle, and describe an increase of autophagic vesicles (AVs) following infection. However, it is unknown how autophagic flux is altered to result in increased AVs. To address this question and gain insight into the role of autophagy during DENV infection, we established an unbiased, image-based flow cytometry approach to quantify autophagic flux under normal growth conditions and in response to activation by nutrient deprivation or the mTOR inhibitor Torin1. We found that DENV induced an initial activation of autophagic flux, followed by inhibition of general and specific autophagy. Early after infection, basal and activated autophagic flux was enhanced. However, during established replication, basal and Torin1-activated autophagic flux was blocked, while autophagic flux activated by nutrient deprivation was reduced, indicating a block to AV formation and reduced AV degradation capacity. During late infection AV levels increased as a result of inefficient fusion of autophagosomes with lysosomes. In addition, endolysosomal trafficking was suppressed, while lysosomal activities were increased. We further determined that DENV infection progressively reduced levels of the autophagy receptor SQSTM1/p62 via proteasomal degradation. Importantly, stable overexpression of p62 significantly suppressed DENV replication, suggesting a novel role for p62 as a viral restriction factor. Overall, our findings indicate that in the course of DENV infection, autophagy shifts from a supporting to an antiviral role, which is countered by DENV. IMPORTANCE Autophagic flux is a dynamic process starting with the formation of autophagosomes and ending with their degradation after fusion with lysosomes. Autophagy impacts the

  17. Abnormality of autophagic function and cathepsin expression in the liver from patients with non-alcoholic fatty liver disease.

    PubMed

    Fukuo, Yuka; Yamashina, Shunhei; Sonoue, Hiroshi; Arakawa, Atsushi; Nakadera, Eisuke; Aoyama, Tomonori; Uchiyama, Akira; Kon, Kazuyoshi; Ikejima, Kenichi; Watanabe, Sumio

    2014-09-01

    Recent evidences indicate that hepatic steatosis suppresses autophagic proteolysis. The present study evaluated the correlation between autophagic function and cathepsin expression in the liver from patients with non-alcoholic fatty liver disease (NAFLD). Liver biopsy specimens were obtained from patients with chronic liver diseases (chronic hepatitis C [CHC; n = 20], chronic hepatitis B [CHB; n = 16], primary biliary cirrhosis [PBC; n = 23], NAFLD [n = 22] and control [n = 14]). The number of autophagic vesicles in hepatocytes was counted by using transmission electron microscopy. Expression of cathepsin B, D, L and p62 in the liver section was analyzed by immunohistochemical staining. The histological severity of NAFLD is assessed by NAFLD activity score (NAS). The number of autophagic vesicles in hepatocytes was significantly increased in both CHC and NAFLD groups, but not CHB and PBC, more than control. Although hepatocytes with aggregation of p62 were observed in less than 15% of CHC, p62 aggregation was detected in approximately 65% of NAFLD. Cathepsin B, D and L expression was significantly suppressed in the liver from NAFLD patients. Suppression of cathepsin B, D and L expression was not observed in CHB, CHC and PBC. In NAFLD patients, p62 aggregation was correlated with serum alanine aminotransferase value and inflammatory activity by NAS. These results indicate that a decrease in hepatic cathepsin expression in NAFLD is associated with autophagic dysfunction. Hepatic inflammation correlates with autophagic dysfunction in NAFLD. These findings indicate that the suppression of autophagic proteolysis by hepatic steatosis is involved in the pathogenesis of NAFLD. © 2013 The Japan Society of Hepatology.

  18. HIV-1 Tat protein induces glial cell autophagy through enhancement of BAG3 protein levels.

    PubMed

    Bruno, Anna Paola; De Simone, Francesca Isabella; Iorio, Vittoria; De Marco, Margot; Khalili, Kamel; Sariyer, Ilker Kudret; Capunzo, Mario; Nori, Stefania Lucia; Rosati, Alessandra

    2014-01-01

    BAG3 protein has been described as an anti-apoptotic and pro-autophagic factor in several neoplastic and normal cells. We previously demonstrated that BAG3 expression is elevated upon HIV-1 infection of glial and T lymphocyte cells. Among HIV-1 proteins, Tat is highly involved in regulating host cell response to viral infection. Therefore, we investigated the possible role of Tat protein in modulating BAG3 protein levels and the autophagic process itself. In this report, we show that transfection with Tat raises BAG3 levels in glioblastoma cells. Moreover, BAG3 silencing results in highly reducing Tat- induced levels of LC3-II and increasing the appearance of sub G0/G1 apoptotic cells, in keeping with the reported role of BAG3 in modulating the autophagy/apoptosis balance. These results demonstrate for the first time that Tat protein is able to stimulate autophagy through increasing BAG3 levels in human glial cells.

  19. Crystalloids in apparent autophagic plastids: remnants of plastids or peroxisomes?

    PubMed

    Papini, Alessio; van Doorn, Wouter G

    2015-02-01

    Plant macroautophagy is carried out by autophagosome-type organelles. Recent evidence suggests that plastids also can carry out macroautophagy. The double membrane at the surface of plastids apparently invaginates, forming an intraplastidial space. This space contains a portion of cytoplasm that apparently becomes degraded. Here we report, in Tillandsia sp. and Aechmaea sp., the presence of almost square or diamond-shaped crystalloids inside what seems the intraplastidial space of autophagous plastids. The same type of crystalloids were observed in chloroplasts and other plastids, but were not found in the cytoplasm or the vacuole. Peroxisomes contained smaller and more irregularly shaped crystalloids compared to the ones observed in 'autophagous' plastids. It is hypothesized that plastids are able to sequester chloroplasts and other plastids. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Autophagic Vacuolation Induced by Excess ROS Generation in HABP1/p32/gC1qR Overexpressing Fibroblasts and Its Reversal by Polymeric Hyaluronan

    PubMed Central

    Saha, Paramita; Chowdhury, Anindya Roy; Dutta, Shubhra; Chatterjee, Soumya; Ghosh, Ilora; Datta, Kasturi

    2013-01-01

    The ubiquitous hyaladherin, hyaluronan-binding protein 1 (HABP1/p32/gC1qR) upon stable overexpression in normal fibroblasts (F-HABP07) has been reported to induce mitochondrial dysfunction, growth retardation and apoptosis after 72 h of growth. HABP1 has been observed to accumulate in the mitochondria resulting in generation of excess Reactive Oxygen Species (ROS), mitochondrial Ca++ efflux and drop in mitochondrial membrane potential. In the present study, autophagic vacuolation was detected with monodansylcadaverin (MDC) staining from 36 h to 60 h of culture period along with elevated level of ROS in F-HABP07 cells. Increased expression of autophagic markers like MAP-LC3-II, Beclin 1 and autophagic modulator, DRAM confirmed the occurrence of the phenomenon. Reduced vacuole formation was observed upon treatment with 3-MA, a known PI3 kinase inhibitor, only at 32 h and was ineffective if treated later, as high ROS level was already attained. Treatment of F111 and F-HABP07 cells with bafilomycin A1 further indicated an increase in autophagosome formation along with autophagic degradation in HABP1 overexpressed fibroblasts. Comparison between normal fibroblast (F111) and F-HABP07 cells indicate reduced level of polymeric HA, its depolymerization and perturbed HA-HABP1 interaction in F-HABP07. Interestingly, supplementation of polymeric HA, an endogenous ROS scavenger, in the culture medium prompted reduction in number of vacuoles in F-HABP07 along with drop in ROS level, implying that excess ROS generation triggers initiation of autophagic vacuole formation prior to apoptosis due to overexpression of HABP1. Thus, the phenomenon of autophagy takes place prior to apoptosis induction in the HABP1 overexpressing cell line, F-HABP07. PMID:24205125

  1. Autophagic compound database: A resource connecting autophagy-modulating compounds, their potential targets and relevant diseases.

    PubMed

    Deng, Yiqi; Zhu, Lingjuan; Cai, Haoyang; Wang, Guan; Liu, Bo

    2018-06-01

    Autophagy, a highly conserved lysosomal degradation process in eukaryotic cells, can digest long-lived proteins and damaged organelles through vesicular trafficking pathways. Nowadays, mechanisms of autophagy have been gradually elucidated and thus the discovery of small-molecule drugs targeting autophagy has always been drawing much attention. So far, some autophagy-related web servers have been available online to facilitate scientists to obtain the information relevant to autophagy conveniently, such as HADb, CTLPScanner, iLIR server and ncRDeathDB. However, to the best of our knowledge, there is not any web server available about the autophagy-modulating compounds. According to published articles, all the compounds and their relations with autophagy were anatomized. Subsequently, an online Autophagic Compound Database (ACDB) (http://www.acdbliulab.com/) was constructed, which contained information of 357 compounds with 164 corresponding signalling pathways and potential targets in different diseases. We achieved a great deal of information of autophagy-modulating compounds, including compounds, targets/pathways and diseases. ACDB is a valuable resource for users to access to more than 300 curated small-molecule compounds correlated with autophagy. Autophagic compound database will facilitate to the discovery of more novel therapeutic drugs in the near future. © 2017 John Wiley & Sons Ltd.

  2. Ischemic preconditioning enhances autophagy but suppresses autophagic cell death in rat spinal neurons following ischemia-reperfusion.

    PubMed

    Fan, Jin; Zhang, Zitao; Chao, Xie; Gu, Jun; Cai, Weihua; Zhou, Wei; Yin, Guoyong; Li, Qingqing

    2014-05-08

    Autophagy serves to eliminate damaged proteins and organelles under normal physiological conditions and can be accelerated by pathological stress, possibly as a cytoprotective mechanism. Brief periods of ischemia (ischemic preconditioning or IPC) can reduce neuronal death in response to subsequent severe ischemic insults. Ischemic preconditioning also induces autophagy, but the contribution of autophagy to IPC-associated neuroprotection remains unclear. We investigated the contribution of autophagy to IPC-mediated neuroprotection in rats subjected to ischemic spinal cord injury. Fifty adult rats were randomly assigned to either (1) a sham group receiving anesthesia and surgical preparation (n=5), (2) an ischemia/reperfusion (I/R) group (n=20) subjected to 0.5 h ischemia followed by 3, 6, 12, or 24 h reperfusion, (3) an IPC group receiving three cycles of 5 min ischemia followed by 5 min of reperfusion (n=5), or (4) an IPC+I/R group (n=20). Hematoxylin-eosin (HE) and immunohistochemical staining were performed to evaluate spinal neuron survival in the four treatment groups. Autophagic activity was investigated by electron microscopy and by immunohistochemical and Western blot analyses of the autophagosome marker LC3-II and the autophagy-associated BH3 protein Beclin-1. Changes in Bcl-2/Beclin-1 complex association and Bcl-2 phosphorylation (p-Bcl-2) were examined by co-immunoprecipitation and Western blot analyses. In the I/R group, LC3-II was significantly elevated after 3h of reperfusion, but declined significantly by 24 h. At 24 h, I/R rats exhibited extensive spinal damage and decreased neuronal survival. In the IPC+IR group, neuronal death was reduced and expression of LC3-II sustained throughout the 24 h reperfusion period. In the I/R group, expression of (inactive) p-Bcl-2(Ser70) was increased significantly during reperfusion and was accompanied by dissociation of the Bcl-2/Beclin-1 complex and increased Beclin-1 expression. Preconditioning inhibited these

  3. Serratia marcescens Is Able to Survive and Proliferate in Autophagic-Like Vacuoles inside Non-Phagocytic Cells

    PubMed Central

    Colombo, María Isabel; García Véscovi, Eleonora

    2011-01-01

    Serratia marcescens is an opportunistic human pathogen that represents a growing problem for public health, particularly in hospitalized or immunocompromised patients. However, little is known about factors and mechanisms that contribute to S. marcescens pathogenesis within its host. In this work, we explore the invasion process of this opportunistic pathogen to epithelial cells. We demonstrate that once internalized, Serratia is able not only to persist but also to multiply inside a large membrane-bound compartment. This structure displays autophagic-like features, acquiring LC3 and Rab7, markers described to be recruited throughout the progression of antibacterial autophagy. The majority of the autophagic-like vacuoles in which Serratia resides and proliferates are non-acidic and have no degradative properties, indicating that the bacteria are capable to either delay or prevent fusion with lysosomal compartments, altering the expected progression of autophagosome maturation. In addition, our results demonstrate that Serratia triggers a non-canonical autophagic process before internalization. These findings reveal that S. marcescens is able to manipulate the autophagic traffic, generating a suitable niche for survival and proliferation inside the host cell. PMID:21901159

  4. Delicaflavone induces autophagic cell death in lung cancer via Akt/mTOR/p70S6K signaling pathway.

    PubMed

    Sui, Yuxia; Yao, Hong; Li, Shaoguang; Jin, Long; Shi, Peiying; Li, Zhijun; Wang, Gang; Lin, Shilan; Wu, Youjia; Li, Yuxiang; Huang, Liying; Liu, Qicai; Lin, Xinhua

    2017-03-01

    Searching for potential anticancer agents from natural sources is an effective strategy for developing novel chemotherapeutic agents. In this study, data supporting the in vitro and in vivo anticancer effects of delicaflavone, a rarely occurring biflavonoid from Selaginella doederleinii, were reported. Delicaflavone exhibited favorable anticancer properties, as shown by the MTT assay and xenograft model of human non-small cell lung cancer in male BALB/c nude mice without observable adverse effect. By transmission electron microscopy with acridine orange and Cyto-ID®Autophagy detection dyes, Western blot analysis, and RT-PCR assay, we confirmed that delicaflavone induces autophagic cell death by increasing the ratio of LC3-II to LC3-I, which are autophagy-related proteins, and promoting the generation of acidic vesicular organelles and autolysosomes in the cytoplasm of human lung cancer A549 and PC-9 cells in a time- and dose-dependent manner. Delicaflavone downregulated the expression of phospho-Akt, phospho-mTOR, and phospho-p70S6K in a time- and dose-dependent manner, suggesting that it induced autophagy by inhibiting the Akt/mTOR/p70S6K pathway in A549 and PC-9 cells. Delicaflavone is a potential anticancer agent that can induce autophagic cell death in human non-small cell lung cancer via the Akt/mTOR/p70S6K signaling pathway. Delicaflavone showed anti-lung cancer effects in vitro and in vivo. Delicaflavone induced autophagic cell death via Akt/mTOR/p70S6K signaling pathway. Delicaflavone did not show observable side effects in a xenograft mouse model. Delicaflavone may represent a potential therapeutic agent for lung cancer. Delicaflavone showed anti-lung cancer effects in vitro and in vivo. Delicaflavone induced autophagic cell death via Akt/mTOR/p70S6K signaling pathway. Delicaflavone did not show observable side effects in a xenograft mouse model. Delicaflavone may represent a potential therapeutic agent for lung cancer.

  5. Bacteroides fragilis Enterotoxin Induces Formation of Autophagosomes in Endothelial Cells but Interferes with Fusion with Lysosomes for Complete Autophagic Flux through a Mitogen-Activated Protein Kinase-, AP-1-, and C/EBP Homologous Protein-Dependent Pathway.

    PubMed

    Ko, Su Hyuk; Jeon, Jong Ik; Myung, Hyun Soo; Kim, Young-Jeon; Kim, Jung Mogg

    2017-10-01

    Bacteroides fragilis enterotoxin (BFT), a virulence factor of enterotoxigenic B. fragilis (ETBF), plays an essential role in mucosal inflammation. Although autophagy contributes to the pathogenesis of diverse infectious diseases, little is known about autophagy in ETBF infection. This study was conducted to investigate the role of BFT in the autophagic process in endothelial cells (ECs). Stimulation of human umbilical vein ECs (HUVECs) with BFT increased light chain 3 protein II (LC3-II) conversion from LC3-I and protein expression of p62, Atg5, and Atg12. In addition, BFT-exposed ECs showed increased indices of autophagosomal fusion with lysosomes such as LC3-lysosome-associated protein 2 (LAMP2) colocalization and the percentage of red vesicles monitored by the expression of dual-tagged LC3B. BFT also upregulated expression of C/EBP homologous protein (CHOP), and inhibition of CHOP significantly increased indices of autophagosomal fusion with lysosomes. BFT activated an AP-1 transcription factor, in which suppression of AP-1 activity significantly downregulated CHOP and augmented autophagosomal fusion with lysosomes. Furthermore, suppression of Jun N-terminal protein kinase (JNK) mitogen-activated protein kinase (MAPK) significantly inhibited the AP-1 and CHOP signals, leading to an increase in autophagosomal fusion with lysosomes in BFT-stimulated ECs. These results suggest that BFT induced accumulation of autophagosomes in ECs, but activation of a signaling pathway involving JNK, AP-1, and CHOP may interfere with complete autophagy. Copyright © 2017 American Society for Microbiology.

  6. Autophagy-mediated Regulation of BACE1 Protein Trafficking and Degradation*

    PubMed Central

    Feng, Tuancheng; Tammineni, Prasad; Agrawal, Chanchal; Jeong, Yu Young

    2017-01-01

    β-Site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is the major neuronal β-secretase for amyloid-β generation and is degraded in lysosomes. The autophagy-lysosomal system plays a key role in the maintenance of cellular homeostasis in neurons. Recent studies established that nascent autophagosomes in distal axons move predominantly in the retrograde direction toward the soma, where mature lysosomes are mainly located. However, it remains unknown whether autophagy plays a critical role in regulation of BACE1 trafficking and degradation. Here, we report that induction of neuronal autophagy enhances BACE1 turnover, which is suppressed by lysosomal inhibition. A significant portion of BACE1 is recruited to the autophagy pathway and co-migrates robustly with autophagic vacuoles along axons. Moreover, we reveal that autophagic vacuole-associated BACE1 is accumulated in the distal axon of Alzheimer's disease-related mutant human APP transgenic neurons and mouse brains. Inducing autophagy in mutant human APP neurons augments autophagic retention of BACE1 in distal axons, leading to enhanced β-cleavage of APP. This phenotype can be reversed by Snapin-enhanced retrograde transport, which facilitates BACE1 trafficking to lysosomes for degradation. Therefore, our study provides new insights into autophagy-mediated regulation of BACE1 turnover and APP processing, thus building a foundation for future development of potential Alzheimer's disease therapeutic strategies. PMID:28028177

  7. HBV subgenotypes F1b and F4 replication induces an incomplete autophagic process in hepatocytes: Role of BCP and preCore mutations.

    PubMed

    Elizalde, María Mercedes; Pérez, Paula Soledad; Sevic, Ina; Grasso, Daniel; Ropolo, Alejandro; Barbini, Luciana; Campos, Rodolfo Héctor; Vaccaro, María Inés; Flichman, Diego Martín

    2018-01-01

    Hepatitis B virus (HBV) genotypes and mutants have been associated with differences in clinical and virological characteristics. Autophagy is a cellular process that degrades long-lived proteins and damaged organelles. Viruses have evolved mechanisms to alter this process to survive in host cells. In this work, we studied the modulation of autophagy by the replication of HBV subgenotypes F1b and F4, and the naturally occurring mutants BCP and preCore. HBV subgenotypes F1b and F4 replication induced accumulation of autophagosomes in hepatoma cells. However, no autophagic protein degradation was observed, indicating a blockage of autophagic flux at later stages. This inhibition of autophagy flux might be due to an impairment of lysosomal acidification in hepatoma cells. Moreover, HBV-mediated autophagy modulation was independent of the viral subgenotypes and enhanced in viruses with BCP and preCore naturally occurring mutations. These results contribute to understand the mechanisms by which different HBV variants contribute to the pathogenesis of HBV infections. In addition, this study is the first to describe the role that two highly prevalent naturally occurring mutations exert on the modulation of HBV-induced autophagy.

  8. HBV subgenotypes F1b and F4 replication induces an incomplete autophagic process in hepatocytes: Role of BCP and preCore mutations

    PubMed Central

    Pérez, Paula Soledad; Sevic, Ina; Ropolo, Alejandro; Barbini, Luciana; Campos, Rodolfo Héctor; Vaccaro, María Inés; Flichman, Diego Martín

    2018-01-01

    Hepatitis B virus (HBV) genotypes and mutants have been associated with differences in clinical and virological characteristics. Autophagy is a cellular process that degrades long-lived proteins and damaged organelles. Viruses have evolved mechanisms to alter this process to survive in host cells. In this work, we studied the modulation of autophagy by the replication of HBV subgenotypes F1b and F4, and the naturally occurring mutants BCP and preCore. HBV subgenotypes F1b and F4 replication induced accumulation of autophagosomes in hepatoma cells. However, no autophagic protein degradation was observed, indicating a blockage of autophagic flux at later stages. This inhibition of autophagy flux might be due to an impairment of lysosomal acidification in hepatoma cells. Moreover, HBV-mediated autophagy modulation was independent of the viral subgenotypes and enhanced in viruses with BCP and preCore naturally occurring mutations. These results contribute to understand the mechanisms by which different HBV variants contribute to the pathogenesis of HBV infections. In addition, this study is the first to describe the role that two highly prevalent naturally occurring mutations exert on the modulation of HBV-induced autophagy. PMID:29738548

  9. Loss of the starvation-induced gene Rack1 leads to glycogen deficiency and impaired autophagic responses in Drosophila.

    PubMed

    Erdi, Balázs; Nagy, Péter; Zvara, Agnes; Varga, Agnes; Pircs, Karolina; Ménesi, Dalma; Puskás, László G; Juhász, Gábor

    2012-07-01

    Autophagy delivers cytoplasmic material for lysosomal degradation in eukaryotic cells. Starvation induces high levels of autophagy to promote survival in the lack of nutrients. We compared genome-wide transcriptional profiles of fed and starved control, autophagy-deficient Atg7 and Atg1 null mutant Drosophila larvae to search for novel regulators of autophagy. Genes involved in catabolic processes including autophagy were transcriptionally upregulated in all cases. We also detected repression of genes involved in DNA replication in autophagy mutants compared with control animals. The expression of Rack1 (receptor of activated protein kinase C 1) increased 4.1- to 5.5-fold during nutrient deprivation in all three genotypes. The scaffold protein Rack1 plays a role in a wide range of processes including translation, cell adhesion and migration, cell survival and cancer. Loss of Rack1 led to attenuated autophagic response to starvation, and glycogen stores were decreased 11.8-fold in Rack1 mutant cells. Endogenous Rack1 partially colocalized with GFP-Atg8a and early autophagic structures on the ultrastructural level, suggesting its involvement in autophagosome formation. Endogenous Rack1 also showed a high degree of colocalization with glycogen particles in the larval fat body, and with Shaggy, the Drosophila homolog of glycogen synthase kinase 3B (GSK-3B). Our results, for the first time, demonstrated the fundamental role of Rack1 in autophagy and glycogen synthesis.

  10. Endurance exercise training induces fat depot-specific differences in basal autophagic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Goki; Kato, Hisashi; Izawa, Tetsuya, E-mail: tizawa@mail.doshisha.ac.jp

    The purpose of this study was to uncover the effect of exercise training on the expression of autophagy marker proteins in epididymal white adipose tissue (eWAT), inguinal WAT (iWAT), and the stromal vascular fraction (SVF) collected from eWAT. Male Wistar rats aged 4–5 weeks were randomly divided into two groups, sedentary control (n = 7) and exercise-trained (n = 7). Rats in the exercise-trained group were exercised on a treadmill set at a 5° incline 5 days/week for 9 weeks. We determined that the expression levels of an autophagosome-associating form of microtubule-associated protein 1 light chain 3 (LC3)-II and of p62 were significantly highermore » in eWAT from exercise-trained than from control rats, while those of adipose-specific deletion of autophagy-related protein (ATG7) and lysosomal-associated membrane protein type 2A (LAMP2a) showed no difference between groups. However, in iWAT, the expression levels of LC3-II and ATG7 were significantly higher in exercise-trained than in control rats. The expression of p62 was highly correlated with that of peroxisome proliferator-activated receptor γ (PPARγ), a master regulator of adipogenesis and lipid metabolism, in both WAT types (eWAT, r = 0.856, P < 0.05; iWAT, r = 0.762, P < 0.05), whereas LC3-II and PPARγ levels were highly correlated in eWAT (r = 0.765, P < 0.05) but not in iWAT (r = −0.306, ns). In SVF, the expression levels of LC3II, ATG7, and LAMP2a were significantly higher in exercise-trained than in control rats. These results suggest that exercise training suppresses basal autophagy activity in eWAT, but that this activity is enhanced in iWAT and SVF collected from eWAT. Thus, the adaptation of basal autophagic activity following exercise training exhibits fat depot-specific differences. - Highlights: • Autophagy has been associated with obesity and associated diseases. • We examined exercise-associated rat white adipose tissue (WAT) autophagy markers. • Exercise

  11. Identifying Key Attributes for Protein Beverages.

    PubMed

    Oltman, A E; Lopetcharat, K; Bastian, E; Drake, M A

    2015-06-01

    This study identified key attributes of protein beverages and evaluated effects of priming on liking of protein beverages. An adaptive choice-based conjoint study was conducted along with Kano analysis to gain insight on protein beverage consumers (n = 432). Attributes evaluated included label claim, protein type, amount of protein, carbohydrates, sweeteners, and metabolic benefits. Utility scores for levels and importance scores for attributes were determined. Subsequently, two pairs of clear acidic whey protein beverages were manufactured that differed by age of protein source or the amount of whey protein per serving. Beverages were evaluated by 151 consumers on two occasions with or without priming statements. One priming statement declared "great flavor," the other priming statement declared 20 g protein per serving. A two way analysis of variance was applied to discern the role of each priming statement. The most important attribute for protein beverages was sweetener type, followed by amount of protein, followed by type of protein followed by label claim. Beverages with whey protein, naturally sweetened, reduced sugar and ≥15 g protein per serving were most desired. Three consumer clusters were identified, differentiated by their preferences for protein type, sweetener and amount of protein. Priming statements positively impacted concept liking (P < 0.05) but had no effect on overall liking (P > 0.05). Consistent with trained panel profiles of increased cardboard flavor with higher protein content, consumers liked beverages with 10 g protein more than beverages with 20 g protein (6.8 compared with 5.7, P < 0.05). Protein beverages must have desirable flavor for wide consumer appeal. © 2015 Institute of Food Technologists®

  12. Inhibition of glioma growth by minocycline is mediated through endoplasmic reticulum stress-induced apoptosis and autophagic cell death

    PubMed Central

    Liu, Wei-Ting; Huang, Chih-Yuan; Lu, I-Chen; Gean, Po-Wu

    2013-01-01

    Background We have reported that minocycline (Mino) induced autophagic death in glioma cells. In the present study, we characterize the upstream regulators that control autophagy and switch cell death from autophagic to apoptotic. Methods Western blotting and immunofluorescence were used to detect the expressions of eukaryotic translation initiation factor 2α (eIF2α), transcription factor GADD153 (CHOP), and glucose-regulated protein 78 (GRP78). Short hairpin (sh)RNA was used to knock down eIF2α or CHOP expression. Autophagy was assessed by the conversion of light chain (LC)3-I to LC3-II and green fluorescent protein puncta formation. An intracranial mouse model and bioluminescent imaging were used to assess the effect of Mino on tumor growth and survival time of mice. Results The expression of GRP78 in glioma was high, whereas in normal glia it was low. Mino treatment increased GRP78 expression and reduced binding of GRP78 with protein kinase-like endoplasmic reticulum kinase. Subsequently, Mino increased eIF2α phosphorylation and CHOP expression. Knockdown of eIF2α or CHOP reduced Mino-induced LC3-II conversion and glioma cell death. When autophagy was inhibited, Mino induced cell death in a caspase-dependent manner. Rapamycin in combination with Mino produced synergistic effects on LC3 conversion, reduction of the Akt/mTOR/p70S6K pathway, and glioma cell death. Bioluminescent imaging showed that Mino inhibited the growth of glioma and prolonged survival time and that these effects were blocked by shCHOP. Conclusions Mino induced autophagy by eliciting endoplasmic reticulum stress response and switched cell death from autophagy to apoptosis when autophagy was blocked. These results coupled with clinical availability and a safe track record make Mino a promising agent for the treatment of malignant gliomas. PMID:23787763

  13. The Ketone Body, β-Hydroxybutyrate Stimulates the Autophagic Flux and Prevents Neuronal Death Induced by Glucose Deprivation in Cortical Cultured Neurons.

    PubMed

    Camberos-Luna, Lucy; Gerónimo-Olvera, Cristian; Montiel, Teresa; Rincon-Heredia, Ruth; Massieu, Lourdes

    2016-03-01

    Glucose is the major energy substrate in brain, however, during ketogenesis induced by starvation or prolonged hypoglycemia, the ketone bodies (KB), acetoacetate and β-hydroxybutyrate (BHB) can substitute for glucose. KB improve neuronal survival in diverse injury models, but the mechanisms by which KB prevent neuronal damage are still not well understood. In the present study we have investigated whether protection by the D isomer of BHB (D-BHB) against neuronal death induced by glucose deprivation (GD), is related to autophagy. Autophagy is a lysosomal-dependent degradation process activated during nutritional stress, which leads to the digestion of damaged proteins and organelles providing energy for cell survival. Results show that autophagy is activated in cortical cultured neurons during GD, as indicated by the increase in the levels of the lipidated form of the microtubule associated protein light chain 3 (LC3-II), and the number of autophagic vesicles. At early phases of glucose reintroduction (GR), the levels of p62 declined suggesting that the degradation of the autophagolysosomal content takes place at this time. In cultures exposed to GD and GR in the presence of D-BHB, the levels of LC3-II and p62 rapidly declined and remained low during GR, suggesting that the KB stimulates the autophagic flux preventing autophagosome accumulation and improving neuronal survival.

  14. Proteasome storage granules protect proteasomes from autophagic degradation upon carbon starvation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Richard S.; Vierstra, Richard D.

    26S proteasome abundance is tightly regulated at multiple levels, including the elimination of excess or inactive particles by autophagy. In yeast, this proteaphagy occurs upon nitrogen starvation but not carbon starvation, which instead stimulates the rapid sequestration of proteasomes into cytoplasmic puncta termed proteasome storage granules (PSGs). Here, we show that PSGs help protect proteasomes from autophagic degradation. Both the core protease and regulatory particle sub-complexes are sequestered separately into PSGs via pathways dependent on the accessory proteins Blm10 and Spg5, respectively. Modulating PSG formation, either by perturbing cellular energy status or pH, or by genetically eliminating factors required formore » granule assembly, not only influences the rate of proteasome degradation, but also impacts cell viability upon recovery from carbon starvation. PSG formation and concomitant protection against proteaphagy also occurs in Arabidopsis, suggesting that PSGs represent an evolutionarily conserved cache of proteasomes that can be rapidly re-mobilized based on energy availability.« less

  15. Proteasome storage granules protect proteasomes from autophagic degradation upon carbon starvation

    DOE PAGES

    Marshall, Richard S.; Vierstra, Richard D.

    2018-04-06

    26S proteasome abundance is tightly regulated at multiple levels, including the elimination of excess or inactive particles by autophagy. In yeast, this proteaphagy occurs upon nitrogen starvation but not carbon starvation, which instead stimulates the rapid sequestration of proteasomes into cytoplasmic puncta termed proteasome storage granules (PSGs). Here, we show that PSGs help protect proteasomes from autophagic degradation. Both the core protease and regulatory particle sub-complexes are sequestered separately into PSGs via pathways dependent on the accessory proteins Blm10 and Spg5, respectively. Modulating PSG formation, either by perturbing cellular energy status or pH, or by genetically eliminating factors required formore » granule assembly, not only influences the rate of proteasome degradation, but also impacts cell viability upon recovery from carbon starvation. PSG formation and concomitant protection against proteaphagy also occurs in Arabidopsis, suggesting that PSGs represent an evolutionarily conserved cache of proteasomes that can be rapidly re-mobilized based on energy availability.« less

  16. Autophagic effects of Hibiscus sabdariffa leaf polyphenols and epicatechin gallate (ECG) against oxidized LDL-induced injury of human endothelial cells.

    PubMed

    Chen, Jing-Hsien; Lee, Ming-Shih; Wang, Chi-Ping; Hsu, Cheng-Chin; Lin, Hui-Hsuan

    2017-08-01

    Oxidized low-density lipoprotein (ox-LDL) contributes to the pathogenesis of atherosclerosis by promoting vascular endothelial cell injury. Hibiscus sabdariffa leaf polyphenols (HLP), rich in flavonoids, have been shown to possess antioxidant and antiatherosclerotic activities. In this study, we examined the protective role of HLP and its main compound (-)-epicatechin gallate (ECG) in human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL in vitro. In a model of ox-LDL-impaired HUVECs, assessments of cell viability, cytotoxicity, cell proliferation, apoptosis, and autophagy were detected. To highlight the mechanisms of the antiapoptotic effects of HLP and ECG, the expressions of molecular proteins were measured by Western blotting, real-time PCR, and so on. HLP or ECG improved the survival of HUVECs from ox-LDL-induced viability loss. In addition, HLP or ECG showed potential in reducing ox-LDL-dependent apoptosis. Next, the ox-LDL-induced formation of acidic vesicular organelles and upregulation of the autophagy-related genes were increased by HLP or ECG. The HLP-triggered autophagic flux was further confirmed by increasing the LC3-II level under the pretreatment of an autophagy inhibitor chloroquine. Molecular data indicated the autophagic effect of HLP or ECG might be mediated via class III PI3K/Beclin-1 and PTEN/class I PI3K/Akt cascade signaling, as demonstrated by the usage of a class III PI3K inhibitor 3-methyladenine (3-MA) and a PTEN inhibitor SF1670. Our data imply that ECG-enriched HLP upregulates the autophagic pathway, which in turn led to reduce ox-LDL-induced HUVECs injury and apoptosis and provide a new mechanism for its antiatherosclerotic activity.

  17. Autophagic degradation of aquaporin-2 is an early event in hypokalemia-induced nephrogenic diabetes insipidus.

    PubMed

    Khositseth, Sookkasem; Uawithya, Panapat; Somparn, Poorichaya; Charngkaew, Komgrid; Thippamom, Nattakan; Hoffert, Jason D; Saeed, Fahad; Michael Payne, D; Chen, Shu-Hui; Fenton, Robert A; Pisitkun, Trairak

    2015-12-17

    Hypokalemia (low serum potassium level) is a common electrolyte imbalance that can cause a defect in urinary concentrating ability, i.e., nephrogenic diabetes insipidus (NDI), but the molecular mechanism is unknown. We employed proteomic analysis of inner medullary collecting ducts (IMCD) from rats fed with a potassium-free diet for 1 day. IMCD protein quantification was performed by mass spectrometry using a label-free methodology. A total of 131 proteins, including the water channel AQP2, exhibited significant changes in abundance, most of which were decreased. Bioinformatic analysis revealed that many of the down-regulated proteins were associated with the biological processes of generation of precursor metabolites and energy, actin cytoskeleton organization, and cell-cell adhesion. Targeted LC-MS/MS and immunoblotting studies further confirmed the down regulation of 18 selected proteins. Electron microscopy showed autophagosomes/autophagolysosomes in the IMCD cells of rats deprived of potassium for only 1 day. An increased number of autophagosomes was also confirmed by immunofluorescence, demonstrating co-localization of LC3 and Lamp1 with AQP2 and several other down-regulated proteins in IMCD cells. AQP2 was also detected in autophagosomes in IMCD cells of potassium-deprived rats by immunogold electron microscopy. Thus, enhanced autophagic degradation of proteins, most notably including AQP2, is an early event in hypokalemia-induced NDI.

  18. Autophagic degradation of aquaporin-2 is an early event in hypokalemia-induced nephrogenic diabetes insipidus

    PubMed Central

    Khositseth, Sookkasem; Uawithya, Panapat; Somparn, Poorichaya; Charngkaew, Komgrid; Thippamom, Nattakan; Hoffert, Jason D.; Saeed, Fahad; Michael Payne, D.; Chen, Shu-Hui; Fenton, Robert A.; Pisitkun, Trairak

    2015-01-01

    Hypokalemia (low serum potassium level) is a common electrolyte imbalance that can cause a defect in urinary concentrating ability, i.e., nephrogenic diabetes insipidus (NDI), but the molecular mechanism is unknown. We employed proteomic analysis of inner medullary collecting ducts (IMCD) from rats fed with a potassium-free diet for 1 day. IMCD protein quantification was performed by mass spectrometry using a label-free methodology. A total of 131 proteins, including the water channel AQP2, exhibited significant changes in abundance, most of which were decreased. Bioinformatic analysis revealed that many of the down-regulated proteins were associated with the biological processes of generation of precursor metabolites and energy, actin cytoskeleton organization, and cell-cell adhesion. Targeted LC-MS/MS and immunoblotting studies further confirmed the down regulation of 18 selected proteins. Electron microscopy showed autophagosomes/autophagolysosomes in the IMCD cells of rats deprived of potassium for only 1 day. An increased number of autophagosomes was also confirmed by immunofluorescence, demonstrating co-localization of LC3 and Lamp1 with AQP2 and several other down-regulated proteins in IMCD cells. AQP2 was also detected in autophagosomes in IMCD cells of potassium-deprived rats by immunogold electron microscopy. Thus, enhanced autophagic degradation of proteins, most notably including AQP2, is an early event in hypokalemia-induced NDI. PMID:26674602

  19. Tor1 regulates protein solubility in Saccharomyces cerevisiae

    PubMed Central

    Peters, Theodore W.; Rardin, Matthew J.; Czerwieniec, Gregg; Evani, Uday S.; Reis-Rodrigues, Pedro; Lithgow, Gordon J.; Mooney, Sean D.; Gibson, Bradford W.; Hughes, Robert E.

    2012-01-01

    Accumulation of insoluble protein in cells is associated with aging and aging-related diseases; however, the roles of insoluble protein in these processes are uncertain. The nature and impact of changes to protein solubility during normal aging are less well understood. Using quantitative mass spectrometry, we identify 480 proteins that become insoluble during postmitotic aging in Saccharomyces cerevisiae and show that this ensemble of insoluble proteins is similar to those that accumulate in aging nematodes. SDS-insoluble protein is present exclusively in a nonquiescent subpopulation of postmitotic cells, indicating an asymmetrical distribution of this protein. In addition, we show that nitrogen starvation of young cells is sufficient to cause accumulation of a similar group of insoluble proteins. Although many of the insoluble proteins identified are known to be autophagic substrates, induction of macroautophagy is not required for insoluble protein formation. However, genetic or chemical inhibition of the Tor1 kinase is sufficient to promote accumulation of insoluble protein. We conclude that target of rapamycin complex 1 regulates accumulation of insoluble proteins via mechanisms acting upstream of macroautophagy. Our data indicate that the accumulation of proteins in an SDS-insoluble state in postmitotic cells represents a novel autophagic cargo preparation process that is regulated by the Tor1 kinase. PMID:23097491

  20. Identification of key residues for protein conformational transition using elastic network model.

    PubMed

    Su, Ji Guo; Xu, Xian Jin; Li, Chun Hua; Chen, Wei Zu; Wang, Cun Xin

    2011-11-07

    Proteins usually undergo conformational transitions between structurally disparate states to fulfill their functions. The large-scale allosteric conformational transitions are believed to involve some key residues that mediate the conformational movements between different regions of the protein. In the present work, a thermodynamic method based on the elastic network model is proposed to predict the key residues involved in protein conformational transitions. In our method, the key functional sites are identified as the residues whose perturbations largely influence the free energy difference between the protein states before and after transition. Two proteins, nucleotide binding domain of the heat shock protein 70 and human/rat DNA polymerase β, are used as case studies to identify the critical residues responsible for their open-closed conformational transitions. The results show that the functionally important residues mainly locate at the following regions for these two proteins: (1) the bridging point at the interface between the subdomains that control the opening and closure of the binding cleft; (2) the hinge region between different subdomains, which mediates the cooperative motions between the corresponding subdomains; and (3) the substrate binding sites. The similarity in the positions of the key residues for these two proteins may indicate a common mechanism in their conformational transitions.

  1. Proteolysis in isolated autophagic vacuoles from the rat pancreas. Effects of chloroquine administration.

    PubMed

    Yucel-Lindberg, T; Jansson, H; Glaumann, H

    1991-01-01

    Administration of the antimalaria drug chloroquine increased the number of autophagic vacuoles (AVs) in the rat pancreas. Ultrastructural analysis showed that AVs contained segregated organelles such as mitochondria, zymogen granules, peroxisomes and small portions of cytoplasm. The maximum number of AVs was observed after 3 h of chloroquine treatment. The effect lasted for 12 h and almost disappeared after 16 h. The increase in AVs caused by chloroquine made it possible to isolate them in a discontinuous Metrizamide gradient with high purity. The proteolytic capacity of the AVs isolated after different chloroquine exposure times was measured after prelabeling pancreatic proteins with an injection of L-(1-14C)leucine 16 h before sacrifice. Protein degradation in isolated AVs increased during the first 6 h of chloroquine exposure and then returned to control values 16 h after the administration. In addition, the activities of two lysosomal enzymes, acid phosphatase and cathepsin B, increased in the AV-fractions following chloroquine treatment. It is concluded that the augmented proteolysis in the isolated AVs is due to a combination of increased substrate content and increased proteolytic lysosomal enzyme activities.

  2. MP Resulting in Autophagic Cell Death of Microglia through Zinc Changes against Spinal Cord Injury

    PubMed Central

    Li, Dingding; Wang, Guannan; Han, Donghe; Bi, Jing; Li, Chenyuan; Wang, Hongyu; Liu, Zhiyuan; Gao, Wei; Gao, Kai; Yao, Tianchen; Wan, Zhanghui; Li, Haihong; Mei, Xifan

    2016-01-01

    Methylprednisolone pulse therapy (MPPT), as a public recognized therapy of spinal cord injury (SCI), is doubted recently, and the exact mechanism of MP on SCI is unclear. This study sought to investigate the exact effect of MP on SCI. We examined the effect of MP in a model of SCI in vivo and an LPS induced model in vitro. We found that administration of MP produced an increase in the Basso, Beattie, and Bresnahan scores and motor neurons counts of injured rats. Besides the number of activated microglia was apparently reduced by MP in vivo, and Beclin-1 dependent autophagic cell death of microglia was induced by MP in LPS induced model. At the same time, MP increases cellular zinc concentration and level of ZIP8, and TPEN could revert effect of MP on autophagic cell death of microglia. Finally, we have found that MP could inhibit NF-κβ in LPS induced model. These results show that the MP could result in autophagic cell death of microglia, which mainly depends on increasing cellular labile zinc, and may be associated with inhibition of NF-κβ, and that MP can produce neuroprotective effect in SCI. PMID:27057544

  3. Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis.

    PubMed

    Nezis, Ioannis P; Shravage, Bhupendra V; Sagona, Antonia P; Lamark, Trond; Bjørkøy, Geir; Johansen, Terje; Rusten, Tor Erik; Brech, Andreas; Baehrecke, Eric H; Stenmark, Harald

    2010-08-23

    Autophagy is an evolutionarily conserved pathway responsible for degradation of cytoplasmic material via the lysosome. Although autophagy has been reported to contribute to cell death, the underlying mechanisms remain largely unknown. In this study, we show that autophagy controls DNA fragmentation during late oogenesis in Drosophila melanogaster. Inhibition of autophagy by genetically removing the function of the autophagy genes atg1, atg13, and vps34 resulted in late stage egg chambers that contained persisting nurse cell nuclei without fragmented DNA and attenuation of caspase-3 cleavage. The Drosophila inhibitor of apoptosis (IAP) dBruce was found to colocalize with the autophagic marker GFP-Atg8a and accumulated in autophagy mutants. Nurse cells lacking Atg1 or Vps34 in addition to dBruce contained persisting nurse cell nuclei with fragmented DNA. This indicates that autophagic degradation of dBruce controls DNA fragmentation in nurse cells. Our results reveal autophagic degradation of an IAP as a novel mechanism of triggering cell death and thereby provide a mechanistic link between autophagy and cell death.

  4. Andrographolide alleviates imiquimod-induced psoriasis in mice via inducing autophagic proteolysis of MyD88.

    PubMed

    Shao, Fenli; Tan, Tao; Tan, Yang; Sun, Yang; Wu, Xingxin; Xu, Qiang

    2016-09-01

    Psoriasis is a chronic inflammatory skin disease with excessive activation of toll-like receptors (TLRs), which play important roles in developing psoriasis. Targeting TLR signaling remains a challenge for treating psoriasis. Here, we found that andrographolide (Andro), a small-molecule natural product, alleviated imiquimod- but not interleukin 23 (IL-23)-induced psoriasis in mice with reducing expressions of IL-23 and IL-1β in the skin. The improvement in imiquimod-induced psoriasis by Andro was not observed in microtubule-associated protein 1 light chain 3 beta (MAP1LC3B) knockout mice. Furthermore, Andro inhibited mRNA expressions of IL-23, IL-6 and IL-1β but not CD80 and CD86 in bone-marrow derived dendritic cells (BMDCs) treated with lipopolysaccharide (LPS) in a MAP1LC3B-dependent manner. In addition, Andro inhibited imiquimod-induced mRNA expressions of IL-23, IL-6, IL-1β, CD80 and CD86 in BMDCs from mice. Interestingly, Andro induced a degradation of myeloid differentiation factor 88 (MyD88) and blocked the recruitment of TNF receptor-associated factor 6 (TRAF6) to MyD88 upon LPS stimulation in BMDCs from mice. Blockade of autophagic proteolysis using NH4Cl or MAP1LC3B(-/-) BMDCs abolished the Andro-induced MyD88 degradation. In conclusion, Andro controls activation of MyD88-dependent cytokines and alleviates psoriasis in mice via inducing autophagic proteolysis of MyD88, which could be a novel strategy to treat psoriasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Dying neurons in thalamus of asphyxiated term newborns and rats are autophagic.

    PubMed

    Ginet, Vanessa; Pittet, Marie P; Rummel, Coralie; Osterheld, Maria Chiara; Meuli, Reto; Clarke, Peter G H; Puyal, Julien; Truttmann, Anita C

    2014-11-01

    Neonatal hypoxic-ischemic encephalopathy (HIE) still carries a high burden by its mortality and long-term neurological morbidity in survivors. Apart from hypothermia, there is no acknowledged therapy for HIE, reflecting the lack of mechanistic understanding of its pathophysiology. (Macro)autophagy, a physiological intracellular process of lysosomal degradation, has been proposed to be excessively activated in excitotoxic conditions such as HIE. The present study examines whether neuronal autophagy in the thalamus of asphyxiated human newborns or P7 rats is enhanced and related to neuronal death processes. Neuronal autophagy and cell death were evaluated in the thalamus (frequently injured in severe HIE) of both human newborns who died after severe HIE (n = 5) and P7 hypoxic-ischemic rats (Rice-Vannuci model). Autophagic (LC3, p62), lysosomal (LAMP1, cathepsins), and cell death (TUNEL, caspase-3) markers were studied by immunohistochemistry in human and rat brain sections, and by additional methods in rats (immunoblotting, histochemistry, and electron microscopy). Following severe perinatal asphyxia in both humans and rats, thalamic neurons displayed up to 10-fold (p < 0.001) higher numbers of autophagosomes and lysosomes, implying an enhanced autophagic flux. The highly autophagic neurons presented strong features of apoptosis. These findings were confirmed and elucidated in more detail in rats. These results show for the first time that autophagy is enhanced in severe HIE in dying thalamic neurons of human newborns, as in rats. Experimental neuroprotective strategies targeting autophagy could thus be a promising lead to follow for the development of future therapeutic approaches. © 2014 American Neurological Association.

  6. 5'-Monophosphate-activated protein kinase (AMPK) improves autophagic activity in diabetes and diabetic complications

    PubMed Central

    Yao, Fan; Zhang, Ming; Chen, Li

    2015-01-01

    Diabetes mellitus (DM), an endocrine disorder, will be one of the leading causes of death world-wide in about two decades. Cellular injuries and disorders of energy metabolism are two key factors in the pathogenesis of diabetes, which also become the important causes for the process of diabetic complications. AMPK is a key enzyme in maintaining metabolic homeostasis and has been implicated in the activation of autophagy in distinct tissues. An increasing number of researchers have confirmed that autophagy is a potential factor to affect or induce diabetes and its complications nowadays, which could remove cytotoxic proteins and dysfunctional organelles. This review will summarize the regulation of autophagy and AMPK in diabetes and its complications, and explore how AMPK stimulates autophagy in different diabetic syndromes. A deeper understanding of the regulation and activity of AMPK in autophagy would enhance its development as a promising therapeutic target for diabetes treatment. PMID:26904395

  7. 5'-Monophosphate-activated protein kinase (AMPK) improves autophagic activity in diabetes and diabetic complications.

    PubMed

    Yao, Fan; Zhang, Ming; Chen, Li

    2016-01-01

    Diabetes mellitus (DM), an endocrine disorder, will be one of the leading causes of death world-wide in about two decades. Cellular injuries and disorders of energy metabolism are two key factors in the pathogenesis of diabetes, which also become the important causes for the process of diabetic complications. AMPK is a key enzyme in maintaining metabolic homeostasis and has been implicated in the activation of autophagy in distinct tissues. An increasing number of researchers have confirmed that autophagy is a potential factor to affect or induce diabetes and its complications nowadays, which could remove cytotoxic proteins and dysfunctional organelles. This review will summarize the regulation of autophagy and AMPK in diabetes and its complications, and explore how AMPK stimulates autophagy in different diabetic syndromes. A deeper understanding of the regulation and activity of AMPK in autophagy would enhance its development as a promising therapeutic target for diabetes treatment.

  8. Cell survival under nutrient stress is dependent on metabolic conditions regulated by Akt and not by autophagic vacuoles.

    PubMed

    Bruno, P; Calastretti, A; Priulla, M; Asnaghi, L; Scarlatti, F; Nicolin, A; Canti, G

    2007-10-01

    Akt activation assists tumor cell survival and promotes resistance to chemotherapy. Here we show that constitutively active Akt (CA-Akt) cells are highly sensitized to cell death induced by nutrient and growth factor deprivation, whereas dominant-negative Akt (DN-Akt) cells have a high rate of survival. The content of autophagosomes in starved CA-Akt cells was high, while DN-Akt cells expressed autophagic vacuoles constitutively, independently of nutrition conditions. Thus Akt down-regulation and downstream events can induce autophagosomes which were not directly determinants of cell death. Biochemical analysis in Akt-mutated cells show that (i) Akt and mTOR proteins were degraded more rapidly than the housekeeping proteins, (ii) mTOR phosphorylation at position Thr(2446) was relatively high in DN-Akt and low in CA-Akt cells, induced by starvation in mock cells only, which suggests reduced autoregulation of these pathways in Akt-mutated cells, (iii) both protein synthesis and protein degradation were significantly higher in starved CA-Akt cells than in starved DN-Akt cells or mock cells. In conclusion, constitutively active Akt, unable to control synthesis and wasting of proteins, accelerates the death of starved cells.

  9. Endo-lysosomal and autophagic dysfunction: a driving factor in Alzheimer's disease?

    PubMed

    Whyte, Lauren S; Lau, Adeline A; Hemsley, Kim M; Hopwood, John J; Sargeant, Timothy J

    2017-03-01

    Alzheimer's disease (AD) is the most common cause of dementia, and its prevalence will increase significantly in the coming decades. Although important progress has been made, fundamental pathogenic mechanisms as well as most hereditary contributions to the sporadic form of the disease remain unknown. In this review, we examine the now substantial links between AD pathogenesis and lysosomal biology. The lysosome hydrolyses and processes cargo delivered by multiple pathways, including endocytosis and autophagy. The endo-lysosomal and autophagic networks are central to clearance of cellular macromolecules, which is important given there is a deficit in clearance of amyloid-β in AD. Numerous studies show prominent lysosomal dysfunction in AD, including perturbed trafficking of lysosomal enzymes and accumulation of the same substrates that accumulate in lysosomal storage disorders. Examination of the brain in lysosomal storage disorders shows the accumulation of amyloid precursor protein metabolites, which further links lysosomal dysfunction with AD. This and other evidence leads us to hypothesise that genetic variation in lysosomal genes modifies the disease course of sporadic AD. © 2016 International Society for Neurochemistry.

  10. Ursodeoxycholic acid effectively kills drug-resistant gastric cancer cells through induction of autophagic death.

    PubMed

    Lim, Sung-Chul; Han, Song Iy

    2015-09-01

    Carcinoma cells that have acquired drug resistance often exhibit cross-resistance to various other cytotoxic stimuli. Here, we investigated the effects of ursodeoxycholic acid (UDCA), a gastrointestinal tumor-suppressor, on a cisplatin‑resistant SNU601 gastric cancer subline (SNU601/R). While other anticancer drugs, including L-OHP, etoposide, and death ligand TRAIL, had minimal effects on the viability of these resistant cells, they were sensitive to UDCA. The UDCA‑induced reduction in the viability of the SNU601/R cells was accomplished through autophagy while the primary means of cell death in the parental SNU601 cells (SNU601/WT) was apoptosis. Previously, we demonstrated that the UDCA-triggered apoptosis of gastric cancer cells was regulated by a cell surface death receptor, TRAIL-R2/DR5, which was upregulated and re-distributed on lipid rafts. The UDCA stimulation of TRAIL-R2/DR5 also occurred in the SNU601/R cells despite the lack of apoptosis. In the present study, we found that CD95/Fas, another cell surface death receptor, was also translocated into lipid rafts in response to UDCA although it was not involved in the decrease in cell viability. Specifically, raft relocalization of CD95/Fas was triggered by UDCA in the SNU601/WT cells in which apoptosis occurred, but not in the SNU601/R cells where autophagic death occurred. Notably, UDCA reduced ATG5 levels, an essential component of autophagy, in the SNU601/WT, but not in the SNU601/R cell line. Moreover, in CD95/Fas-silenced SNU601/WT cells, UDCA did not decrease ATG5 levels and induced autophagic cell death rather than apoptosis. These results imply that raft‑distributed CD95/Fas may support UDCA-induced apoptosis via downregulation of ATG5 levels, preventing the autophagic pathway. Taken together, these results suggest that UDCA induces both apoptotic and autophagic cell death depending on the intracellular signaling environment, thereby conferring the advantage to overcome drug resistance

  11. The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease.

    PubMed

    Stürner, Elisabeth; Behl, Christian

    2017-01-01

    In neurons, but also in all other cells the complex proteostasis network is monitored and tightly regulated by the cellular protein quality control (PQC) system. Beyond folding of newly synthesized polypeptides and their refolding upon misfolding the PQC also manages the disposal of aberrant proteins either by the ubiquitin-proteasome machinery or by the autophagic-lysosomal system. Aggregated proteins are primarily degraded by a process termed selective macroautophagy (or aggrephagy). One such recently discovered selective macroautophagy pathway is mediated by the multifunctional HSP70 co-chaperone BAG3 ( BCL-2-associated athanogene 3 ). Under acute stress and during cellular aging, BAG3 in concert with the molecular chaperones HSP70 and HSPB8 as well as the ubiquitin receptor p62/SQSTM1 specifically targets aggregation-prone proteins to autophagic degradation. Thereby, BAG3-mediated selective macroautophagy represents a pivotal adaptive safeguarding and emergency system of the PQC which is activated under pathophysiological conditions to ensure cellular proteostasis. Interestingly, BAG3-mediated selective macroautophagy is also involved in the clearance of aggregated proteins associated with age-related neurodegenerative disorders, like Alzheimer's disease (tau-protein), Huntington's disease (mutated huntingtin/polyQ proteins), and amyotrophic lateral sclerosis (mutated SOD1). In addition, based on its initial description BAG3 is an anti-apoptotic protein that plays a decisive role in other widespread diseases, including cancer and myopathies. Therefore, in the search for novel therapeutic intervention avenues in neurodegeneration, myopathies and cancer BAG3 is a promising candidate.

  12. ATG13: just a companion, or an executor of the autophagic program?

    PubMed

    Alers, Sebastian; Wesselborg, Sebastian; Stork, Björn

    2014-06-01

    During the past 20 years, autophagy signaling has entered the main stage of the cell biological theater. Autophagy represents an intracellular degradation process that is involved in both the bulk recycling of cytoplasmic components and the selective removal of organelles, protein aggregates, or intracellular pathogens. The understanding of autophagy has been greatly facilitated by the characterization of the molecular machinery governing this process. In yeast, initiation of autophagy is controlled by the Atg1 kinase complex, which is composed of the Ser/Thr kinase Atg1, the adaptor protein Atg13, and the ternary complex of Atg17-Atg31-Atg29. In vertebrates, the orthologous ULK1 kinase complex contains the Ser/Thr kinase ULK1 and the accessory proteins ATG13, RB1CC1, and ATG101. Among these components, Atg1/ULK1 have gained major attention in the past, i.e., for the identification of upstream regulatory kinases, the characterization of downstream substrates controlling the autophagic flux, or as a druggable target for the modulation of autophagy. However, accumulating data indicate that the function of Atg13/ATG13 has been likely underestimated so far. In addition to ensuring proper Atg1/ULK1 recruitment and activity, this adaptor molecule has been implicated in ULK1-independent autophagy processes. Furthermore, recent data have identified additional binding partners of Atg13/ATG13 besides the components of the Atg1/ULK1 complex, e.g., Atg8 family proteins or acidic phospholipids. Therefore, in this review we will center the spotlight on Atg13/ATG13 and summarize the role that Atg13/ATG13 assumes in the autophagy stage play.

  13. Simultaneous induction of apoptotic, autophagic, and necrosis-like cell death by monoclonal antibodies recognizing chicken transferrin receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, Yoshiya; Yagi, Hideki; Nakamura, Masanori

    Programmed cell death (PCD) is categorized as apoptotic, autophagic, or necrosis-like. Although the possibility that plural (two or three) death signals could be induced by a given stimulus has been reported, the precise mechanisms regulating PCD are not well understood. Recently, we have obtained two anti-chicken transferrin receptor (TfR) monoclonal antibodies (mAbs; D18 and D19) inducing a unique cell death. Although the cell death had several features of apoptosis, autophagic and necrosis-like morphological alterations were simultaneously observed in electron microphotographs. In addition to cells with condensed chromatin and an intact plasma membrane (apoptotic cells), cells having many vacuoles in themore » cytoplasm (autophagic cells), and enlarged cells with ruptured plasma membranes (necrosis-like cells) were observed in DT40 cells treated with the mAbs, however, the latter two types of dead cells were not detected upon treatment with staurosporine, a typical apoptosis inducer. In autophagic cells, numerous membrane-bound vesicles occupying most of the cytoplasmic space, which frequently contained electron-dense materials from cytoplasmic fragments and organelles, were observed. The simultaneous induction of multiple death signals from a stimulus via the TfR is of great interest to those researching cell death. In addition, activation of caspases was observed in DT40 cells treated with D19, however, the cell death was not inhibited with z-VAD-fmk, a pan-caspase inhibitor, suggesting that at least in part, a caspase-independent pathway is involved in the TfR-mediated cell death.« less

  14. Advanced glycation end-products suppress autophagic flux in podocytes by activating mammalian target of rapamycin and inhibiting nuclear translocation of transcription factor EB.

    PubMed

    Zhao, Xingchen; Chen, Yuanhan; Tan, Xiaofan; Zhang, Li; Zhang, Hong; Li, Zhilian; Liu, Shuangxin; Li, Ruizhao; Lin, Ting; Liao, Ruyi; Zhang, Qianmei; Dong, Wei; Shi, Wei; Liang, Xinling

    2018-06-01

    Insufficient autophagy in podocytes is related to podocyte injury in diabetic nephropathy (DN). Advanced glycation end-products (AGEs) are major factors of podocyte injury in DN. However, the role and mechanism of AGEs in autophagic dysfunction remain unknown. We investigated autophagic flux in AGE-stimulated cultured podocytes using multiple assays: western blotting, reverse transcription-quantitative PCR, immunofluorescence staining, and electron microscopy. We also utilized chloroquine and a fluorescent probe to monitor the formation and turnover of autophagosomes. Mice of the db/db strain were used to model diabetes mellitus (DM) with high levels of AGEs. To mimic DM with normal levels of AGEs as a control, we treated db/db mice with pyridoxamine to block AGE formation. AGEs impaired autophagic flux in the cultured podocytes. Compared with db/db mice with normal AGEs but high glucose levels, db/db mice with high AGEs and high glucose levels exhibited lower autophagic activity. Aberrant autophagic flux was related to hyperactive mammalian target of rapamycin (mTOR), a major suppressor of autophagy. Pharmacologic inhibition of mTOR activity restored impaired autophagy. AGEs inhibited the nuclear translocation and activity of the pro-autophagic transcription factor EB (TFEB) and thus suppressed transcription of its several autophagic target genes. Conversely, TFEB overexpression prevented AGE-induced autophagy insufficiency. Attenuating mTOR activity recovered TFEB nuclear translocation under AGE stimulation. Co-immunoprecipitation assays further demonstrated the interaction between mTOR and TFEB in AGE-stimulated podocytes and in glomeruli from db/db mice. In conclusion, AGEs play a crucial part in suppressing podocyte autophagy under DM conditions. AGEs inhibited the formation and turnover of autophagosomes in podocytes by activating mTOR and inhibiting the nuclear translocation of TFEB. © 2018 The Authors. The Journal of Pathology published by John Wiley

  15. The proton pump inhibitor pantoprazole disrupts protein degradation systems and sensitizes cancer cells to death under various stresses.

    PubMed

    Cao, Yu; Chen, Min; Tang, Dehua; Yan, Hongli; Ding, Xiwei; Zhou, Fan; Zhang, Mingming; Xu, Guifang; Zhang, Weijie; Zhang, Shu; Zhuge, Yuzheng; Wang, Lei; Zou, Xiaoping

    2018-05-22

    Proton pump inhibitors (PPIs) play a role in antitumor activity, with studies showing specialized impacts of PPIs on cancer cell apoptosis, metastasis, and autophagy. In this study, we demonstrated that pantoprazole (PPI) increased autophagosomes formation and affected autophagic flux depending on the pH conditions. PPI specifically elevated SQSTM1 protein levels by increasing SQSTM1 transcription via NFE2L2 activation independent of the specific effect of PPI on autophagic flux. Via decreasing proteasome subunits expression, PPI significantly impaired the function of the proteasome, accompanied by the accumulation of undegraded poly-ubiquitinated proteins. Notably, PPI-induced autophagy functioned as a downstream response of proteasome inhibition by PPI, while suppressing protein synthesis abrogated autophagy. Blocking autophagic flux in neutral pH condition or further impairing proteasome function with proteasome inhibitors, significantly aggravated PPI cytotoxicity by worsening protein degradation ability. Interestingly, under conditions of mitochondrial stress, PPI showed significant synergism when combined with Bcl-2 inhibitors. Taken together, these findings provide a new understanding of the impact of PPIs on cancer cells' biological processes and highlight the potential to develop more efficient and effective combination therapies.

  16. Autophagic cell death induced by reactive oxygen species is involved in hyperthermic sensitization to ionizing radiation in human hepatocellular carcinoma cells.

    PubMed

    Yuan, Guang-Jin; Deng, Jun-Jian; Cao, De-Dong; Shi, Lei; Chen, Xin; Lei, Jin-Ju; Xu, Xi-Ming

    2017-08-14

    To investigate whether autophagic cell death is involved in hyperthermic sensitization to ionizing radiation in human hepatocellular carcinoma cells, and to explore the underlying mechanism. Human hepatocellular carcinoma cells were treated with hyperthermia and ionizing radiation. MTT and clonogenic assays were performed to determine cell survival. Cell autophagy was detected using acridine orange staining and flow cytometric analysis, and the expression of autophagy-associated proteins, LC3 and p62, was determined by Western blot analysis. Intracellular reactive oxygen species (ROS) were quantified using the fluorescent probe DCFH-DA. Treatment with hyperthermia and ionizing radiation significantly decreased cell viability and surviving fraction as compared with hyperthermia or ionizing radiation alone. Cell autophagy was significantly increased after ionizing radiation combined with hyperthermia treatment, as evidenced by increased formation of acidic vesicular organelles, increased expression of LC3II and decreased expression of p62. Intracellular ROS were also increased after combined treatment with hyperthermia and ionizing radiation. Pretreatment with N-acetylcysteine, an ROS scavenger, markedly inhibited the cytotoxicity and cell autophagy induced by hyperthermia and ionizing radiation. Autophagic cell death is involved in hyperthermic sensitization of cancer cells to ionizing radiation, and its induction may be due to the increased intracellular ROS.

  17. XIAP Limits Autophagic Degradation of Sox2 and Is A Therapeutic Target in Nasopharyngeal Carcinoma Stem Cells

    PubMed Central

    Ji, Jiao; Yu, Yan; Li, Zhi-Ling; Chen, Ming-Yuan; Deng, Rong; Huang, Xiang; Wang, Guang-Feng; Zhang, Meng-Xia; Yang, Qi; Ravichandran, Senthilkumar; Feng, Gong-Kan; Xu, Xue-Lian; Yang, Chen-Lu; Qiu, Miao-Zhen; Jiao, Lin; Yang, Dajun; Zhu, Xiao-Feng

    2018-01-01

    Rationale: Nasopharyngeal carcinoma (NPC) is the most frequent head and neck tumor in South China. The presence of cancer stem cells (CSCs) in NPC contributes to tumor maintenance and therapeutic resistance, while the ability of CSCs to escape from the apoptosis pathway may render them the resistant property to the therapies. Inhibitor of apoptosis proteins family proteins (IAPs), which are overexpressed in nasopharyngeal carcinoma stem cells, may play an important role in maintaining nasopharyngeal cancer stem cell properties. Here, we develop a novel CSC-targeting strategy to treat NPC through inhibiting IAPs. Methods: Human NPC S-18 and S-26 cell lines were used as the model system in vitro and in vivo. Fluorescence activated cell sorting (FACS) assay was used to detect nasopharyngeal SP cells and CD44+ cells. The characteristics of CSCs were defined by sphere suspension culture, colony formation assay and cell migration. The role of XIAP on the regulation of Sox2 protein stability and ERK1-mediated phosphorylation of Sox2 signaling pathway were analyzed using immunoblotting, immunoprecipitation, immunofluorescence, phosphorylation mass spectrometry, siRNA silencing and plasmid overexpression. The correlation between XIAP and Sox2 in NPC biopsies and their role in prognosis was performed by immunohistochemistry. APG-1387 or chemotherapies-induced cell death and apoptosis in S-18 and S-26 were determined by WST, immunoblotting and flow cytometry assay. Results: IAPs, especially X chromosome-linked IAP (XIAP), were elevated in CSCs of NPC, and these proteins were critically involved in the maintenance of CSCs properties by enhancing the stability of Sox2. Mechanistically, ERK1 kinase promoted autophagic degradation of Sox2 via phosphorylation of Sox2 at Ser251 and further SUMOylation of Sox2 at Lys245 in non-CSCs. However, XIAP blocked autophagic degradation of Sox2 by inhibiting ERK1 activation in CSCs. Additionally, XIAP was positively correlated with Sox2

  18. Paraquat, but Not Maneb, Induces Synucleinopathy and Tauopathy in Striata of Mice through Inhibition of Proteasomal and Autophagic Pathways

    PubMed Central

    Wills, Jonathan; Credle, Joel; Oaks, Adam W.; Duka, Valeriy; Lee, Jae-Hoon; Jones, Jessica; Sidhu, Anita

    2012-01-01

    SNCA and MAPT genes and environmental factors are important risk factors of Parkinson's disease [PD], the second-most common neurodegenerative disease. The agrichemicals maneb and paraquat selectively target dopaminergic neurons, leading to parkinsonism, through ill-defined mechanisms. In the current studies we have analyzed the ability of maneb and paraquat, separately and together, to induce synucleinopathy and tauopathy in wild type mice. Maneb was ineffective in increasing α-synuclein [α-Syn] or p-Tau levels. By contrast, paraquat treatment of mice resulted in robust accumulation of α-Syn and hyperphosphorylation of Tau in striata, through activation of p-GSK-3β, a major Tau kinase. Co-treatment with maneb did not enhance the effects of paraquat. Increased hyperacetylation of α-tubulin was observed in paraquat-treated mice, suggesting cytoskeleton remodeling. Paraquat, but not maneb, inhibited soluble proteasomal activity on a peptide substrate but this was not associated with a decreased expression of 26S proteasome subunits. Both paraquat and maneb treatments increased levels of the autophagy inhibitor, mammalian target of rapamycin, mTOR, suggesting impaired axonal autophagy, despite increases in certain autophagic proteins, such as beclin 1 and Agt12. Autophagic flux was also impaired, as ratios of LC3 II to LC3 I were reduced in treated animals. Increased mTOR was also observed in postmortem human PD striata, where there was a reduction in the LC3 II to LC3 I ratio. Heat shock proteins were either increased or unchanged upon paraquat-treatment suggesting that chaperone-mediated autophagy is not hampered by the agrichemicals. These studies provide novel insight into the mechanisms of action of these agrichemicals, which indicate that paraquat is much more toxic than maneb, via its inhibitory effects on proteasomes and autophagy, which lead to accumulation of α-Syn and p-Tau. PMID:22292029

  19. Autophagy initiation correlates with the autophagic flux in 3D models of mesothelioma and with patient outcome.

    PubMed

    Follo, Carlo; Barbone, Dario; Richards, William G; Bueno, Raphael; Broaddus, V Courtney

    2016-07-02

    Understanding the role of autophagy in cancer has been limited by the inability to measure this dynamic process in formalin-fixed tissue. We considered that 3-dimensional models including ex vivo tumor, such as we have developed for studying mesothelioma, would provide valuable insights. Using these models, in which we could use lysosomal inhibitors to measure the autophagic flux, we sought a marker of autophagy that would be valid in formalin-fixed tumor and be used to assess the role of autophagy in patient outcome. Autophagy was studied in mesothelioma cell lines, as 2-dimensional (2D) monolayers and 3-dimensional (3D) multicellular spheroids (MCS), and in tumor from 25 chemonaive patients, both as ex vivo 3D tumor fragment spheroids (TFS) and as formalin-fixed tissue. Autophagy was evaluated as autophagic flux by detection of the accumulation of LC3 after lysosomal inhibition and as autophagy initiation by detection of ATG13 puncta. We found that autophagic flux in 3D, but not in 2D, correlated with ATG13 positivity. In each TFS, ATG13 positivity was similar to that of the original tumor. When tested in tissue microarrays of 109 chemonaive patients, higher ATG13 positivity correlated with better prognosis and provided information independent of known prognostic factors. Our results show that ATG13 is a static marker of the autophagic flux in 3D models of mesothelioma and may also reflect autophagy levels in formalin-fixed tumor. If confirmed, this marker would represent a novel prognostic factor for mesothelioma, supporting the notion that autophagy plays an important role in this cancer.

  20. In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11

    PubMed Central

    Varga, Rita-Eva; Khundadze, Mukhran; Damme, Markus; Nietzsche, Sandor; Hoffmann, Birgit; Stauber, Tobias; Koch, Nicole; Hennings, J. Christopher; Franzka, Patricia; Huebner, Antje K.; Kessels, Michael M.; Biskup, Christoph; Jentsch, Thomas J.; Qualmann, Britta; Braulke, Thomas; Kurth, Ingo; Beetz, Christian; Hübner, Christian A.

    2015-01-01

    Hereditary spastic paraplegia (HSP) is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs). Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice. PMID:26284655

  1. In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11.

    PubMed

    Varga, Rita-Eva; Khundadze, Mukhran; Damme, Markus; Nietzsche, Sandor; Hoffmann, Birgit; Stauber, Tobias; Koch, Nicole; Hennings, J Christopher; Franzka, Patricia; Huebner, Antje K; Kessels, Michael M; Biskup, Christoph; Jentsch, Thomas J; Qualmann, Britta; Braulke, Thomas; Kurth, Ingo; Beetz, Christian; Hübner, Christian A

    2015-08-01

    Hereditary spastic paraplegia (HSP) is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs). Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice.

  2. Disruption of the vacuolar-type H+-ATPase complex in liver causes MTORC1-independent accumulation of autophagic vacuoles and lysosomes.

    PubMed

    Kissing, Sandra; Rudnik, Sönke; Damme, Markus; Lüllmann-Rauch, Renate; Ichihara, Atsuhiro; Kornak, Uwe; Eskelinen, Eeva-Liisa; Jabs, Sabrina; Heeren, Jörg; De Brabander, Jef K; Haas, Albert; Saftig, Paul

    2017-04-03

    The vacuolar-type H + -translocating ATPase (v-H + -ATPase) has been implicated in the amino acid-dependent activation of the mechanistic target of rapamycin complex 1 (MTORC1), an important regulator of macroautophagy. To reveal the mechanistic links between the v-H + -ATPase and MTORC1, we destablilized v-H + -ATPase complexes in mouse liver cells by induced deletion of the essential chaperone ATP6AP2. ATP6AP2-mutants are characterized by massive accumulation of endocytic and autophagic vacuoles in hepatocytes. This cellular phenotype was not caused by a block in endocytic maturation or an impaired acidification. However, the degradation of LC3-II in the knockout hepatocytes appeared to be reduced. When v-H + -ATPase levels were decreased, we observed lysosome association of MTOR and normal signaling of MTORC1 despite an increase in autophagic marker proteins. To better understand why MTORC1 can be active when v-H + -ATPase is depleted, the activation of MTORC1 was analyzed in ATP6AP2-deficient fibroblasts. In these cells, very little amino acid-elicited activation of MTORC1 was observed. In contrast, insulin did induce MTORC1 activation, which still required intracellular amino acid stores. These results suggest that in vivo the regulation of macroautophagy depends not only on v-H + -ATPase-mediated regulation of MTORC1.

  3. Nrf2-mediated induction of p62 controls Toll-like receptor-4–driven aggresome-like induced structure formation and autophagic degradation

    PubMed Central

    Fujita, Ken-ichi; Maeda, Daisuke; Xiao, Qi; Srinivasula, Srinivasa M.

    2011-01-01

    Toll-like receptors (TLRs) play a crucial role in several innate immune responses by regulating autophagy, but little is known about how TLR signaling controls autophagy. Here we demonstrate that p62/SQSTM1 is required for TLR4-mediated autophagy, which we show as selective autophagy of aggresome-like induced structures (ALIS). Treatment with LPS or Escherichia coli induced LC3+ dot-like structures, and their assembly, but not lysosomal degradation, occurred independently of classic autophagic machinery. Microscopic and ultrastructural analyses showed that p62 is a component of the induced LC3+ dots and these TLR4-induced p62+ structures resemble ALIS. The levels of p62 mRNA and protein were increased in TLR4-activated cells and knockdown of p62 suppressed the ALIS formation and LC3-II conversion. The accumulation of p62 and ALIS required activation of Nrf2 by reactive oxygen species-p38 axis-dependent TLR4/MyD88 signaling, suggesting a link between innate immune and oxidative-stress responses. These findings indicate that TLR4-driven induction of p62 plays an essential role in the formation and the autophagic degradation of ALIS, which might be critical for regulating host defense. PMID:21220332

  4. Altered expression of p97/Valosin containing protein and impaired autophagy in preeclamptic human placenta.

    PubMed

    Ozsoy, Asker Zeki; Cayli, Sevil; Sahin, Cansu; Ocakli, Seda; Sanci, Tuba Ozdemir; Ilhan, Delibas Bahri

    2018-07-01

    Autophagy increases in placenta-related obstetrical diseases such as preeclampsia and intrauterine growth retardation but the regulation of autophagy by ubiquitin proteasome pathway (UPP) proteins, p97/Valosin containing protein (VCP) and ubiquitin (Ub) have not been previuosly studied in preeclampsia. The objective of this study is to investigate the expression of UPP (p97/VCP and Ub), autophagosomal (p62 and LC3) and autolysosomal proteins (Lamp1 and Lamp2) in the normal and preeclamptic human placentas and to explore the regulatory mechanism of these proteins in autophagic pathway. Different portions of normal term placentas (n = 20) and preeclamptic placentas (n = 10) were snap-frozen in liquid nitrogen for Western blotting and coimmunoprecipitation and others were fixed-embedded in paraffin for immunohistochemistry. Colocalization and coimmunoprecipitation experiments were done for the detection of interaction between p97/VCP and autophagic proteins. Compared with normal placentas, expression of p97/VCP was significantly reduced; however accumulation of ubiquitinlated proteins were significantly increased in preeclamptic placentas. The expression of autophagosomal proteins (LC3-II and p62) were significantly increased and no significant alterations of the expression of autolysosomal proteins were observed in preeclamptic placentas. Additionally, p97/VCP was found to colocalized and interact with autophagosomal and autolysosomal markers in normal and preeclamptic placentas. Autophagosome maturation diminished and autophagosomes had decreased localization with lysosomal markers in preeclamptic human placentas. Decreased expression of p97/VCP and increased expression of Ub in preeclampsia might be related to impaired autophagy and pathophysiology of preeclampsia. Therefore, our study highlights an important potential relationship between p97/VCP and autophagic proteins in preeclampsia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Skeletal muscle myotubes of the severely obese exhibit altered ubiquitin-proteasome and autophagic/lysosomal proteolytic flux

    PubMed Central

    Bollinger, Lance M.; Powell, Jonathan J. S.; Houmard, Joseph A.; Witczak, Carol A.; Brault, Jeffrey J.

    2015-01-01

    Objective Whole-body protein metabolism is dysregulated with obesity. Our goal was to determine if activity and expression of major protein degradation pathways are compromised specifically in human skeletal muscle with obesity. Methods We utilized primary Human Skeletal Muscle cell (HSkM) cultures since cellular mechanisms can be studied absent of hormones and contractile activity that could independently influence metabolism. HSkM from 10 lean (BMI ≤ 26.0 kg/m2) and 8 severely obese (BMI ≥ 39.0) women were examined basally and when stimulated to atrophy (serum and amino acid starvation). Results HSkM from obese donors had a lower proportion of type I myosin heavy chain and slower flux through the autophagic/lysosomal pathway. During starvation, flux through the ubiquitin-proteasome system diverged according to obesity status, with a decrease in the lean and an increase in HSkM from obese subjects. HSkMC from the obese also displayed elevated proteasome activity despite no difference in proteasome content. Atrophy-related gene expression and myotube area were similar in myotubes derived from lean and obese individuals under basal and starved conditions. Conclusions Our data indicate that muscle cells of the lean and severely obese have innate differences in management of protein degradation, which may explain their metabolic differences. PMID:26010327

  6. Anti-cancer Effect of Luminacin, a Marine Microbial Extract, in Head and Neck Squamous Cell Carcinoma Progression via Autophagic Cell Death.

    PubMed

    Shin, Yoo Seob; Cha, Hyun Young; Lee, Bok-Soon; Kang, Sung Un; Hwang, Hye Sook; Kwon, Hak Cheol; Kim, Chul-Ho; Choi, Eun Chang

    2016-04-01

    The purpose of this study is to determine whether luminacin, a marine microbial extract from the Streptomyces species, has anti-tumor effects on head and neck squamous cell carcinoma (HNSCC) cell lines via autophagic cell death. Inhibition of cell survival and increased cell death was measured using cell viability, colony forming, and apoptosis assays. Migration and invasion abilities of head and cancer cells were evaluated using wound healing, scattering, and invasion assays. Changes in the signal pathway related to autophagic cell death were investigated. Drug toxicity of luminacin was examined in in vitro HaCaT cells and an in vivo zebrafish model. Luminacin showed potent cytotoxicity in HNSCC cells in cell viability, colony forming, and fluorescence-activated cell sorting analysis. In vitro migration and invasion of HNSCC cells were attenuated by luminacin treatment. Combined with Beclin-1 and LC3B, Luminacin induced autophagic cell death in head and neck cancer cells. In addition, in a zebrafish model and human keratinocyte cell line used for toxicity testing, luminacin treatment with a cytotoxic concentration to HNSCC cells did not cause toxicity. Taken together, these results demonstrate that luminacin induces the inhibition of growth and cancer progression via autophagic cell death in HNSCC cell lines, indicating a possible alternative chemotherapeutic approach for treatment of HNSCC.

  7. The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease

    PubMed Central

    Stürner, Elisabeth; Behl, Christian

    2017-01-01

    In neurons, but also in all other cells the complex proteostasis network is monitored and tightly regulated by the cellular protein quality control (PQC) system. Beyond folding of newly synthesized polypeptides and their refolding upon misfolding the PQC also manages the disposal of aberrant proteins either by the ubiquitin-proteasome machinery or by the autophagic-lysosomal system. Aggregated proteins are primarily degraded by a process termed selective macroautophagy (or aggrephagy). One such recently discovered selective macroautophagy pathway is mediated by the multifunctional HSP70 co-chaperone BAG3 (BCL-2-associated athanogene 3). Under acute stress and during cellular aging, BAG3 in concert with the molecular chaperones HSP70 and HSPB8 as well as the ubiquitin receptor p62/SQSTM1 specifically targets aggregation-prone proteins to autophagic degradation. Thereby, BAG3-mediated selective macroautophagy represents a pivotal adaptive safeguarding and emergency system of the PQC which is activated under pathophysiological conditions to ensure cellular proteostasis. Interestingly, BAG3-mediated selective macroautophagy is also involved in the clearance of aggregated proteins associated with age-related neurodegenerative disorders, like Alzheimer’s disease (tau-protein), Huntington’s disease (mutated huntingtin/polyQ proteins), and amyotrophic lateral sclerosis (mutated SOD1). In addition, based on its initial description BAG3 is an anti-apoptotic protein that plays a decisive role in other widespread diseases, including cancer and myopathies. Therefore, in the search for novel therapeutic intervention avenues in neurodegeneration, myopathies and cancer BAG3 is a promising candidate. PMID:28680391

  8. Relationship between bcl-2, bax, beclin-1, and cathepsin-D proteins during postovulatory follicular regression in fish ovary.

    PubMed

    Morais, Roberto D V S; Thomé, Ralph G; Santos, Hélio B; Bazzoli, Nilo; Rizzo, Elizete

    2016-04-01

    In fish ovaries, postovulatory follicles (POFs) are key biomarkers of breeding and provide an interesting model for studying the relationship between autophagy and apoptosis. In this study, we investigated the immunohistochemical expression of autophagic and apoptotic proteins to improve the knowledge on the mechanisms regulating ovarian remodeling after spawning. Females from three neotropical fish species kept in captivity were submitted to hormonal induction. After ova stripping, ovarian sections were sampled daily until 5 days postspawning (dps). Similar events of POF regression were detected by histology, terminal transferase-mediated dUTP nick-end labeling (TUNEL), and electron microscopy in the three species: follicular cells hypertrophy, progressive disintegration of the basement membrane, gradual closing of the follicular lumen, theca thickening, and formation of large autophagic vacuoles preceding apoptosis of the follicular cells. Autophagic and apoptotic proteins were assessed by immunohistochemistry. Morphometric analysis of the immunolabeling revealed a more intense reaction for bcl-2 and beclin-1 (BECN1) in POFs at 0 to 1 dps and for bax at 2 to 3 dps (P < 0.001), the later period being the peak of apoptosis of the follicular cells. The immunostaining for cathepsin-D was more elevated until 2 to 3 dps and decreased significantly at 4 to 5 dps, when the POFs were in late stage of regression. Double labeling for BECN1 and caspase-3 indicated a shift in the relationship between autophagy and apoptosis at 2 to 3 dps, a critical period in determining the fate of follicular cells in POFs. Together, these results indicate that the bcl-2 family, BECN1, and cathepsin-D can be involved in the regulation of ovarian remodeling in teleost fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Bovine seminal ribonuclease triggers Beclin1-mediated autophagic cell death in pancreatic cancer cells.

    PubMed

    Fiorini, Claudia; Gotte, Giovanni; Donnarumma, Federica; Picone, Delia; Donadelli, Massimo

    2014-05-01

    Among the large number of variants belonging to the pancreatic-type secretory ribonuclease (RNase) superfamily, bovine pancreatic ribonuclease (RNase A) is the proto-type and bovine seminal RNase (BS-RNase) represents the unique natively dimeric member. In the present manuscript, we evaluate the anti-tumoral property of these RNases in pancreatic adenocarcinoma cell lines and in nontumorigenic cells as normal control. We demonstrate that BS-RNase stimulates a strong anti-proliferative and pro-apoptotic effect in cancer cells, while RNase A is largely ineffective. Notably, we reveal for the first time that BS-RNase triggers Beclin1-mediated autophagic cancer cell death, providing evidences that high proliferation rate of cancer cells may render them more susceptible to autophagy by BS-RNase treatment. Notably, to improve the autophagic response of cancer cells to BS-RNase we used two different strategies: the more basic (as compared to WT enzyme) G38K mutant of BS-RNase, known to interact more strongly than wt with the acidic membrane of cancer cells, or BS-RNase oligomerization (tetramerization or formation of larger oligomers). Both mutant BS-RNase and BS-RNase oligomers potentiated autophagic cell death as compared to WT native dimer of BS-RNase, while the various RNase A oligomers remained completely ineffective. Altogether, our results shed more light on the mechanisms lying at the basis of BS-RNase antiproliferative effect in cancer cells, and support its potential use to develop new anti-cancer strategies. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Loss of a membrane trafficking protein αSNAP induces non-canonical autophagy in human epithelia

    PubMed Central

    Naydenov, Nayden G.; Harris, Gianni; Morales, Victor; Ivanov, Andrei I.

    2012-01-01

    Autophagy is a catabolic process that sequesters intracellular proteins and organelles within membrane vesicles called autophagosomes with their subsequent delivery to lyzosomes for degradation. This process involves multiple fusions of autophagosomal membranes with different vesicular compartments; however, the role of vesicle fusion in autophagosomal biogenesis remains poorly understood. This study addresses the role of a key vesicle fusion regulator, soluble N-ethylmaleimide-sensitive factor attachment protein α (αSNAP), in autophagy. Small interfering RNA-mediated downregulation of αSNAP expression in cultured epithelial cells stimulated the autophagic flux, which was manifested by increased conjugation of microtubule-associated protein light chain 3 (LC3-II) and accumulation of LC3-positive autophagosomes. This enhanced autophagy developed via a non-canonical mechanism that did not require beclin1-p150-dependent nucleation, but involved Atg5 and Atg7-mediated elongation of autophagosomal membranes. Induction of autophagy in αSNAP-depleted cells was accompanied by decreased mTOR signaling but appeared to be independent of αSNAP-binding partners, N-ethylmaleimide-sensitive factor and BNIP1. Loss of αSNAP caused fragmentation of the Golgi and downregulation of the Golgi-specific GTP exchange factors, GBF1, BIG1 and BIG2. Pharmacological disruption of the Golgi and genetic inhibition of GBF1 recreated the effects of αSNAP depletion on the autophagic flux. Our study revealed a novel role for αSNAP as a negative regulator of autophagy that acts by enhancing mTOR signaling and regulating the integrity of the Golgi complex. PMID:23187805

  11. Megestrol acetate improves cardiac function in a model of cancer cachexia-induced cardiomyopathy by autophagic modulation.

    PubMed

    Musolino, Vincenzo; Palus, Sandra; Tschirner, Anika; Drescher, Cathleen; Gliozzi, Micaela; Carresi, Cristina; Vitale, Cristiana; Muscoli, Carolina; Doehner, Wolfram; von Haehling, Stephan; Anker, Stefan D; Mollace, Vincenzo; Springer, Jochen

    2016-12-01

    Cachexia is a complex metabolic syndrome associated with cancer. One of the features of cachexia is the loss of muscle mass, characterized by an imbalance between protein synthesis and protein degradation. Muscle atrophy is caused by the hyperactivation of some of the main cellular catabolic pathways, including autophagy. Cachexia also affects the cardiac muscle. As a consequence of the atrophy of the heart, cardiac function is impaired and mortality is increased. Anti-cachectic therapy in patients with cancer cachexia is so far limited to nutritional support and anabolic steroids. The use of the appetite stimulant megestrol acetate (MA) has been discussed as a treatment for cachexia. In this study the effects of MA were tested in cachectic tumour-bearing rats (Yoshida AH-130 ascites hepatoma). Rats were treated daily with 100 mg/kg of MA or placebo starting one day after tumour inoculation, and for a period of 16 days. Body weight and body composition were assessed at baseline and at the end of the study. Cardiac function was analysed by echocardiography at baseline and at day 11. Locomotor activity and food intake were assessed before tumour inoculation and at day 11. Autophagic markers were assessed in gastrocnemius muscle and heart by western blot analysis. Treatment with 100 mg/kg/day MA significantly attenuated the loss of body weight (-9 ± 12%, P  < 0.05) and the wasting of lean and fat mass (-7.0 ± 6% and -22.4 ± 3 %, P  < 0.001 and P  < 0.05, respectively). Administration of 100 mg/kg/day MA significantly protected the heart from general atrophy (633.8 ± 30 mg vs. placebo 474 ± 13 mg, P  < 0.001). Tumour-bearing rats displayed cardiac dysfunction, as indicated by the significant impairment of the left ventricular ejection fraction, the left ventricular fractional shortening, the stroke volume, the end dyastolic volume, and the end systolic volume. In contrast, MA significantly improved left ventricular

  12. Phosphorylation of NBR1 by GSK3 modulates protein aggregation

    PubMed Central

    Nicot, Anne-Sophie; Lo Verso, Francesca; Ratti, Francesca; Pilot-Storck, Fanny; Streichenberger, Nathalie; Sandri, Marco; Schaeffer, Laurent; Goillot, Evelyne

    2014-01-01

    The autophagy receptor NBR1 (neighbor of BRCA1 gene 1) binds UB/ubiquitin and the autophagosome-conjugated MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) proteins, thereby ensuring ubiquitinated protein degradation. Numerous neurodegenerative and neuromuscular diseases are associated with inappropriate aggregation of ubiquitinated proteins and GSK3 (glycogen synthase kinase 3) activity is involved in several of these proteinopathies. Here we show that NBR1 is a substrate of GSK3. NBR1 phosphorylation by GSK3 at Thr586 prevents the aggregation of ubiquitinated proteins and their selective autophagic degradation. Indeed, NBR1 phosphorylation decreases protein aggregation induced by puromycin or by the DES/desmin N342D mutant found in desminopathy patients and stabilizes ubiquitinated proteins. Importantly, decrease of protein aggregates is due to an inhibition of their formation and not to their autophagic degradation as confirmed by data on Atg7 knockout mice. The relevance of NBR1 phosphorylation in human pathology was investigated. Analysis of muscle biopsies of sporadic inclusion body myositis (sIBM) patients revealed a strong decrease of NBR1 phosphorylation in muscles of sIBM patients that directly correlated with the severity of protein aggregation. We propose that phosphorylation of NBR1 by GSK3 modulates the formation of protein aggregates and that this regulation mechanism is defective in a human muscle proteinopathy. PMID:24879152

  13. Zanthoxylum fruit extract from Japanese pepper promotes autophagic cell death in cancer cells.

    PubMed

    Nozaki, Reo; Kono, Toru; Bochimoto, Hiroki; Watanabe, Tsuyoshi; Oketani, Kaori; Sakamaki, Yuichi; Okubo, Naoto; Nakagawa, Koji; Takeda, Hiroshi

    2016-10-25

    Zanthoxylum fruit, obtained from the Japanese pepper plant (Zanthoxylum piperitum De Candolle), and its extract (Zanthoxylum fruit extract, ZFE) have multiple physiological activities (e.g., antiviral activity). However, the potential anticancer activity of ZFE has not been fully examined. In this study, we investigated the ability of ZFE to induce autophagic cell death (ACD). ZFE caused remarkable autophagy-like cytoplasmic vacuolization, inhibited cell proliferation, and ultimately induced cell death in the human cancer cell lines DLD-1, HepG2, and Caco-2, but not in A549, MCF-7, or WiDr cells. ZFE increased the level of LC3-II protein, a marker of autophagy. Knockdown of ATG5 using siRNA inhibited ZFE-induced cytoplasmic vacuolization and cell death. Moreover, in cancer cells that could be induced to undergo cell death by ZFE, the extract increased the phosphorylation of c-Jun N-terminal kinase (JNK), and the JNK inhibitor SP600125 attenuated both vacuolization and cell death. Based on morphology and expression of marker proteins, ZFE-induced cell death was neither apoptosis nor necrosis. Normal intestinal cells were not affected by ZFE. Taken together, our findings show that ZFE induces JNK-dependent ACD, which appears to be the main mechanism underlying its anticancer activity, suggesting a promising starting point for anticancer drug development.

  14. Hyperthermia enhances radiosensitivity of colorectal cancer cells through ROS inducing autophagic cell death.

    PubMed

    Ba, Ming-Chen; Long, Hui; Wang, Shuai; Wu, Yin-Bing; Zhang, Bo-Huo; Yan, Zhao-Fei; Yu, Fei-Hong; Cui, Shu-Zhong

    2018-04-01

    Hyperthermia (HT) enhances the anti-cancer effects of radiotherapy (RT), but the precise biochemical mechanisms involved are unclear. This study was aim to investigate if mild HT sensitizes colorectal cancer cells to RT through reactive oxygen species (ROS)-inducing autophagic cell death in a mice model of HCT116 human colorectal cancer. HCT116 mice model were randomly divided into five groups: mock group, hyperthermia group (HT), radiotherapy group (RT), HT + RT group, and HT + RT +N-acetyl L-cysteine (NAC) group (HT + CT + NAC). After four weeks of treatment, cancer growth inhibition, rate and mitochondrial membrane potential were measured with MTT and JC-1 assays, respectively, while ROS were estimated fluorimetrically. The relationship of these parameters to expressions of autophagy-related genes Beclin1, LC3B, and mTOR was analyzed. Gene expression was measured by Real-Time polymerase chain reaction (RT-PCR). There were significant increases in ROS levels and mitochondrial membrane potential in the HT + RT group. ROS levels in the HT + RT group increased more significantly than in any other group. In contrast, ROS levels in the HT + RT + NAC group were significantly decreased relative to the HT + RT group. The number of autophagic bodies in HT + RT group was higher than that of mock group. There were significant increases in the expression of Beclin1 and LC3B genes, while mTOR expression was significantly decreased in the HT + CT group. Treatment with NAC reversed the pattern of these changes. These results indicate that HT enhances the radiosensitivity of colorectal cancer cells to RT through ROS inducing autophagic cell death. © 2017 Wiley Periodicals, Inc.

  15. Endocytic vesicle rupture is a conserved mechanism of cellular invasion by amyloid proteins.

    PubMed

    Flavin, William P; Bousset, Luc; Green, Zachary C; Chu, Yaping; Skarpathiotis, Stratos; Chaney, Michael J; Kordower, Jeffrey H; Melki, Ronald; Campbell, Edward M

    2017-10-01

    Numerous pathological amyloid proteins spread from cell to cell during neurodegenerative disease, facilitating the propagation of cellular pathology and disease progression. Understanding the mechanism by which disease-associated amyloid protein assemblies enter target cells and induce cellular dysfunction is, therefore, key to understanding the progressive nature of such neurodegenerative diseases. In this study, we utilized an imaging-based assay to monitor the ability of disease-associated amyloid assemblies to rupture intracellular vesicles following endocytosis. We observe that the ability to induce vesicle rupture is a common feature of α-synuclein (α-syn) assemblies, as assemblies derived from WT or familial disease-associated mutant α-syn all exhibited the ability to induce vesicle rupture. Similarly, different conformational strains of WT α-syn assemblies, but not monomeric or oligomeric forms, efficiently induced vesicle rupture following endocytosis. The ability to induce vesicle rupture was not specific to α-syn, as amyloid assemblies of tau and huntingtin Exon1 with pathologic polyglutamine repeats also exhibited the ability to induce vesicle rupture. We also observe that vesicles ruptured by α-syn are positive for the autophagic marker LC3 and can accumulate and fuse into large, intracellular structures resembling Lewy bodies in vitro. Finally, we show that the same markers of vesicle rupture surround Lewy bodies in brain sections from PD patients. These data underscore the importance of this conserved endocytic vesicle rupture event as a damaging mechanism of cellular invasion by amyloid assemblies of multiple neurodegenerative disease-associated proteins, and suggest that proteinaceous inclusions such as Lewy bodies form as a consequence of continued fusion of autophagic vesicles in cells unable to degrade ruptured vesicles and their amyloid contents.

  16. Evaluation of apoptotic- and autophagic-related protein expressions before and after IVM of fresh, slow-frozen and vitrified pre-pubertal mouse testicular tissue.

    PubMed

    Dumont, L; Chalmel, F; Oblette, A; Berby, B; Rives, A; Duchesne, V; Rondanino, C; Rives, N

    2017-11-01

    Do freezing and in vitro culture procedures enhance the expression of proteins involved in apoptotic or autophagic pathways in murine pre-pubertal testicular tissue? IVM strongly modified apoptosis- and autophagy-related relative protein levels in mice testicular tissue whereas the impact of cryopreservation procedures was minimal at the end of the culture. In vitro spermatogenesis remains a challenging technical issue as it imposes to find a very close balance between survival and death of germ cell natural precursors (i.e. gonocytes and spermatogonia), which will eventually undergo a complete spermatogenesis close to in vivo conditions. The establishment of efficient culture conditions coupled with suitable cryopreservation procedures (e.g. controlled slow freezing [CSF] and solid surface vitrification [SSV]) of pre-pubertal testicular tissue is a crucial step in the fields of fertility preservation and restoration to improve the spermatic yield obtained in vitro. Here, we study cryopreservation procedures (i.e. CSF or SSV) and the impact of culture media compositions. A first set of 66 mouse pre-pubertal testes were directly cultured during 30, 36, 38 and 60 days (D) from 2.5 to 6.5-day-old CD-1 mice to evaluate the impact of time-aspect of culture and to endorse the reverse phase protein microarrays (RPPM) technique as an adapted experimental tool for the field of in vitro spermatogenesis. Ninety others fresh, slow-frozen and vitrified pre-pubertal testes were cultured during 30 days for the principal study to evaluate the impact of cryopreservation procedures before and after culture. Thirty-four testes dissected from 2.5, 6.5, 36.5, 40.5, 42.5 and 62.5 days postpartum (dpp) mice, corresponding to the time frames of spermatogenesis orchestrated in vitro, were used as in vivo controls. After in vitro culture, testicular tissue samples originated from 2.5 or 6.5-day-old CD-1 male mice were analyzed using RPPM. This targeted proteomic technique allowed us to

  17. 8-C-(E-phenylethenyl)quercetin from onion/beef soup induces autophagic cell death in colon cancer cells through ERK activation.

    PubMed

    Zhao, Yueliang; Fan, Daming; Zheng, Zong-Ping; Li, Edmund T S; Chen, Feng; Cheng, Ka-Wing; Wang, Mingfu

    2017-02-01

    Quercetin, a flavonoid, widely distributed in edible fruits and vegetables, was reported to effectively inhibit 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine (PhIP) formation in a food model (roast beef patties) with itself being converted into a novel compound 8-C-(E-phenylethenyl)quercetin (8-CEPQ). Here we investigated whether 8-CEPQ could be formed in a real food system, and tested its anticancer activity in human colon cancer cell lines. LC-MS was applied for the determination of 8-CEPQ formation in onion/beef soup. Anticancer activity of 8-CEPQ was evaluated by using cell viability assay and flow cytometry. Results showed that 8-CEPQ suppressed proliferation and caused G 2 phase arrest in colon cancer cells. Based on immunofluorescent staining assay, western blot assay, and RNA knockdown data, we found that 8-CEPQ did not cause apoptotic cell death. Instead, it induced autophagic cell death. Moreover, treatment with 8-CEPQ induced phosphorylation of extracellular signal-regulated kinase (ERK). Inhibition of ERK phosphorylation by the mitogen-activated protein kinase kinase (MEK)/ERK inhibitor U0126 attenuated 8-CEPQ-induced autophagy and reversed 8-CEPQ-mediated cell growth inhibition. Our results demonstrate that 8-CEPQ, a novel quercetin derivative, could be formed in onion/beef soup. 8-CEPQ inhibited colon cancer cell growth by inducing autophagic cell death through ERK activation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Dissection of autophagy in tobacco BY-2 cells under sucrose starvation conditions using the vacuolar H+-ATPase inhibitor concanamycin A and the autophagy-related protein Atg8

    PubMed Central

    Yano, Kanako; Yanagisawa, Takahiro; Mukae, Kyosuke; Niwa, Yasuo; Inoue, Yuko; Moriyasu, Yuji

    2015-01-01

    Tobacco BY-2 cells undergo autophagy in sucrose-free culture medium, which is the process mostly responsible for intracellular protein degradation under these conditions. Autophagy was inhibited by the vacuolar H+-ATPase inhibitors concanamycin A and bafilomycin A1, which caused the accumulation of autophagic bodies in the central vacuoles. Such accumulation did not occur in the presence of the autophagy inhibitor 3-methyladenine, and concanamycin in turn inhibited the accumulation of autolysosomes in the presence of the cysteine protease inhibitor E-64c. Electron microscopy revealed not only that the autophagic bodies were accumulated in the central vacuole, but also that autophagosome-like structures were more frequently observed in the cytoplasm in treatments with concanamycin, suggesting that concanamycin affects the morphology of autophagosomes in addition to raising the pH of the central vacuole. Using BY-2 cells that constitutively express a fusion protein of autophagosome marker protein Atg8 and green fluorescent protein (GFP), we observed the appearance of autophagosomes by fluorescence microscopy, which is a reliable morphological marker of autophagy, and the processing of the fusion protein to GFP, which is a biochemical marker of autophagy. Together, these results suggest the involvement of vacuole type H+-ATPase in the maturation step of autophagosomes to autolysosomes in the autophagic process of BY-2 cells. The accumulation of autophagic bodies in the central vacuole by concanamycin is a marker of the occurrence of autophagy; however, it does not necessarily mean that the central vacuole is the site of cytoplasm degradation. PMID:26368310

  19. Dissection of autophagy in tobacco BY-2 cells under sucrose starvation conditions using the vacuolar H(+)-ATPase inhibitor concanamycin A and the autophagy-related protein Atg8.

    PubMed

    Yano, Kanako; Yanagisawa, Takahiro; Mukae, Kyosuke; Niwa, Yasuo; Inoue, Yuko; Moriyasu, Yuji

    2015-01-01

    Tobacco BY-2 cells undergo autophagy in sucrose-free culture medium, which is the process mostly responsible for intracellular protein degradation under these conditions. Autophagy was inhibited by the vacuolar H(+)-ATPase inhibitors concanamycin A and bafilomycin A1, which caused the accumulation of autophagic bodies in the central vacuoles. Such accumulation did not occur in the presence of the autophagy inhibitor 3-methyladenine, and concanamycin in turn inhibited the accumulation of autolysosomes in the presence of the cysteine protease inhibitor E-64c. Electron microscopy revealed not only that the autophagic bodies were accumulated in the central vacuole, but also that autophagosome-like structures were more frequently observed in the cytoplasm in treatments with concanamycin, suggesting that concanamycin affects the morphology of autophagosomes in addition to raising the pH of the central vacuole. Using BY-2 cells that constitutively express a fusion protein of autophagosome marker protein Atg8 and green fluorescent protein (GFP), we observed the appearance of autophagosomes by fluorescence microscopy, which is a reliable morphological marker of autophagy, and the processing of the fusion protein to GFP, which is a biochemical marker of autophagy. Together, these results suggest the involvement of vacuole type H(+)-ATPase in the maturation step of autophagosomes to autolysosomes in the autophagic process of BY-2 cells. The accumulation of autophagic bodies in the central vacuole by concanamycin is a marker of the occurrence of autophagy; however, it does not necessarily mean that the central vacuole is the site of cytoplasm degradation.

  20. A Founder Mutation in VPS11 Causes an Autosomal Recessive Leukoencephalopathy Linked to Autophagic Defects.

    PubMed

    Zhang, Jinglan; Lachance, Véronik; Schaffner, Adam; Li, Xianting; Fedick, Anastasia; Kaye, Lauren E; Liao, Jun; Rosenfeld, Jill; Yachelevich, Naomi; Chu, Mary-Lynn; Mitchell, Wendy G; Boles, Richard G; Moran, Ellen; Tokita, Mari; Gorman, Elizabeth; Bagley, Kaytee; Zhang, Wei; Xia, Fan; Leduc, Magalie; Yang, Yaping; Eng, Christine; Wong, Lee-Jun; Schiffmann, Raphael; Diaz, George A; Kornreich, Ruth; Thummel, Ryan; Wasserstein, Melissa; Yue, Zhenyu; Edelmann, Lisa

    2016-04-01

    Genetic leukoencephalopathies (gLEs) are a group of heterogeneous disorders with white matter abnormalities affecting the central nervous system (CNS). The causative mutation in ~50% of gLEs is unknown. Using whole exome sequencing (WES), we identified homozygosity for a missense variant, VPS11: c.2536T>G (p.C846G), as the genetic cause of a leukoencephalopathy syndrome in five individuals from three unrelated Ashkenazi Jewish (AJ) families. All five patients exhibited highly concordant disease progression characterized by infantile onset leukoencephalopathy with brain white matter abnormalities, severe motor impairment, cortical blindness, intellectual disability, and seizures. The carrier frequency of the VPS11: c.2536T>G variant is 1:250 in the AJ population (n = 2,026). VPS11 protein is a core component of HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering) protein complexes involved in membrane trafficking and fusion of the lysosomes and endosomes. The cysteine 846 resides in an evolutionarily conserved cysteine-rich RING-H2 domain in carboxyl terminal regions of VPS11 proteins. Our data shows that the C846G mutation causes aberrant ubiquitination and accelerated turnover of VPS11 protein as well as compromised VPS11-VPS18 complex assembly, suggesting a loss of function in the mutant protein. Reduced VPS11 expression leads to an impaired autophagic activity in human cells. Importantly, zebrafish harboring a vps11 mutation with truncated RING-H2 domain demonstrated a significant reduction in CNS myelination following extensive neuronal death in the hindbrain and midbrain. Thus, our study reveals a defect in VPS11 as the underlying etiology for an autosomal recessive leukoencephalopathy disorder associated with a dysfunctional autophagy-lysosome trafficking pathway.

  1. Physalin B not only inhibits the ubiquitin-proteasome pathway but also induces incomplete autophagic response in human colon cancer cells in vitro

    PubMed Central

    Ma, Yi-ming; Han, Wei; Li, Jia; Hu, Li-hong; Zhou, Yu-bo

    2015-01-01

    Aim: To investigate the effects of physalin B insolated from Physalis divericata on human colon cancer cells in vitro and its anticancer mechanisms. Methods: Human HCT116 colon cancer cell line was tested. Cell viability and apoptosis were detected, and relevant proteins were measured using Western blot analyses. Autophagosomes were observed in stable GFP-LC3 HCT116 cells. Localization of autophagosomes and lysosomes was evaluated in GFP-LC3/RFP-LAMP1-co-transfected cells. Microtubules and F-actin microfilaments were observed with confocal microscope. Mitochondrial ROS (mito-ROS) was detected with flow cytometry in the cells stained with MitoSox dye. Results: Physalin B inhibited the viability of HCT116 cells with an IC50 value of 1.35 μmol/L. Treatment of the cells with physalin B (2.5–10 μmol/L) induced apoptosis and the cleavage of PARP and caspase-3. Meanwhile, physalin B treatment induced autophagosome formation, and accumulation of LC3-II and p62, but decreased Beclin 1 protein level. Marked changes of microtubules and F-actin microfilaments were observed in physalin B-treated cells, which led to the blockage of co-localization of autophagosomes and lysosomes. Physalin B treatment dose-dependently increased the phosphorylation of p38, ERK and JNK in the cells, whereas the p38 inhibitor SB202190, ERK inhibitor U0126 or JNK inhibitor SP600125 could partially reduce physalin B-induced PARP cleavage and p62 accumulation. Moreover, physalin B treatment dose-dependently increased mito-ROS production in the cells, whereas the ROS scavenger NAC could reverse physalin B-induced effects, including incomplete autophagic response, accumulation of ubiquitinated proteins, changes of microtubules and F-actin, activation of p38, ERK and JNK, as well as cell death and apoptosis. Conclusion: Physalin B induces mito-ROS, which not only inhibits the ubiquitin-proteasome pathway but also induces incomplete autophagic response in HCT116 cells in vitro. PMID:25832431

  2. Defects of Vps15 in skeletal muscles lead to autophagic vacuolar myopathy and lysosomal disease

    PubMed Central

    Nemazanyy, Ivan; Blaauw, Bert; Paolini, Cecilia; Caillaud, Catherine; Protasi, Feliciano; Mueller, Amelie; Proikas-Cezanne, Tassula; Russell, Ryan C; Guan, Kun-Liang; Nishino, Ichizo; Sandri, Marco; Pende, Mario; Panasyuk, Ganna

    2013-01-01

    The complex of Vacuolar Protein Sorting 34 and 15 (Vps34 and Vps15) has Class III phosphatidylinositol 3-kinase activity and putative roles in nutrient sensing, mammalian Target Of Rapamycin (mTOR) activation by amino acids, cell growth, vesicular trafficking and autophagy. Contrary to expectations, here we show that Vps15-deficient mouse tissues are competent for LC3-positive autophagosome formation and maintain mTOR activation. However, an impaired lysosomal function in mutant cells is traced by accumulation of adaptor protein p62, LC3 and Lamp2 positive vesicles, which can be reverted to normal levels after ectopic overexpression of Vps15. Mice lacking Vps15 in skeletal muscles, develop a severe myopathy. Distinct from the autophagy deficient Atg7−/− mutants, pathognomonic morphological hallmarks of autophagic vacuolar myopathy (AVM) are observed in Vps15−/− mutants, including elevated creatine kinase plasma levels, accumulation of autophagosomes, glycogen and sarcolemmal features within the fibres. Importantly, Vps34/Vps15 overexpression in myoblasts of Danon AVM disease patients alleviates the glycogen accumulation. Thus, the activity of the Vps34/Vps15 complex is critical in disease conditions such as AVMs, and possibly a variety of other lysosomal storage diseases. PMID:23630012

  3. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation.

    PubMed

    Han, Xiaojuan; Tai, Haoran; Wang, Xiaobo; Wang, Zhe; Zhou, Jiao; Wei, Xiawei; Ding, Yi; Gong, Hui; Mo, Chunfen; Zhang, Jie; Qin, Jianqiong; Ma, Yuanji; Huang, Ning; Xiang, Rong; Xiao, Hengyi

    2016-06-01

    AMPK activation is beneficial for cellular homeostasis and senescence prevention. However, the molecular events involved in AMPK activation are not well defined. In this study, we addressed the mechanism underlying the protective effect of AMPK on oxidative stress-induced senescence. The results showed that AMPK was inactivated in senescent cells. However, pharmacological activation of AMPK by metformin and berberine significantly prevented the development of senescence and, accordingly, inhibition of AMPK by Compound C was accelerated. Importantly, AMPK activation prevented hydrogen peroxide-induced impairment of the autophagic flux in senescent cells, evidenced by the decreased p62 degradation, GFP-RFP-LC3 cancellation, and activity of lysosomal hydrolases. We also found that AMPK activation restored the NAD(+) levels in the senescent cells via a mechanism involving mostly the salvage pathway for NAD(+) synthesis. In addition, the mechanistic relationship of autophagic flux and NAD(+) synthesis and the involvement of mTOR and Sirt1 activities were assessed. In summary, our results suggest that AMPK prevents oxidative stress-induced senescence by improving autophagic flux and NAD(+) homeostasis. This study provides a new insight for exploring the mechanisms of aging, autophagy and NAD(+) homeostasis, and it is also valuable in the development of innovative strategies to combat aging. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  4. Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity[S

    PubMed Central

    Jaishy, Bharat; Zhang, Quanjiang; Chung, Heaseung S.; Riehle, Christian; Soto, Jamie; Jenkins, Stephen; Abel, Patrick; Cowart, L. Ashley; Van Eyk, Jennifer E.; Abel, E. Dale

    2015-01-01

    Autophagy is a catabolic process involved in maintaining energy and organelle homeostasis. The relationship between obesity and the regulation of autophagy is cell type specific. Despite adverse consequences of obesity on cardiac structure and function, the contribution of altered cardiac autophagy in response to fatty acid overload is incompletely understood. Here, we report the suppression of autophagosome clearance and the activation of NADPH oxidase (Nox)2 in both high fat-fed murine hearts and palmitate-treated H9C2 cardiomyocytes (CMs). Defective autophagosome clearance is secondary to superoxide-dependent impairment of lysosomal acidification and enzyme activity in palmitate-treated CMs. Inhibition of Nox2 prevented superoxide overproduction, restored lysosome acidification and enzyme activity, and reduced autophagosome accumulation in palmitate-treated CMs. Palmitate-induced Nox2 activation was dependent on the activation of classical protein kinase Cs (PKCs), specifically PKCβII. These findings reveal a novel mechanism linking lipotoxicity with a PKCβ-Nox2-mediated impairment in pH-dependent lysosomal enzyme activity that diminishes autophagic turnover in CMs. PMID:25529920

  5. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy.

    PubMed

    Pankiv, Serhiy; Clausen, Terje Høyvarde; Lamark, Trond; Brech, Andreas; Bruun, Jack-Ansgar; Outzen, Heidi; Øvervatn, Aud; Bjørkøy, Geir; Johansen, Terje

    2007-08-17

    Protein degradation by basal constitutive autophagy is important to avoid accumulation of polyubiquitinated protein aggregates and development of neurodegenerative diseases. The polyubiquitin-binding protein p62/SQSTM1 is degraded by autophagy. It is found in cellular inclusion bodies together with polyubiquitinated proteins and in cytosolic protein aggregates that accumulate in various chronic, toxic, and degenerative diseases. Here we show for the first time a direct interaction between p62 and the autophagic effector proteins LC3A and -B and the related gamma-aminobutyrate receptor-associated protein and gamma-aminobutyrate receptor-associated-like proteins. The binding is mediated by a 22-residue sequence of p62 containing an evolutionarily conserved motif. To monitor the autophagic sequestration of p62- and LC3-positive bodies, we developed a novel pH-sensitive fluorescent tag consisting of a tandem fusion of the red, acid-insensitive mCherry and the acid-sensitive green fluorescent proteins. This approach revealed that p62- and LC3-positive bodies are degraded in autolysosomes. Strikingly, even rather large p62-positive inclusion bodies (2 microm diameter) become degraded by autophagy. The specific interaction between p62 and LC3, requiring the motif we have mapped, is instrumental in mediating autophagic degradation of the p62-positive bodies. We also demonstrate that the previously reported aggresome-like induced structures containing ubiquitinated proteins in cytosolic bodies are dependent on p62 for their formation. In fact, p62 bodies and these structures are indistinguishable. Taken together, our results clearly suggest that p62 is required both for the formation and the degradation of polyubiquitin-containing bodies by autophagy.

  6. Excessive ER stress and the resulting autophagic flux dysfunction contribute to fluoride-induced neurotoxicity.

    PubMed

    Niu, Qiang; Chen, Jingwen; Xia, Tao; Li, Pei; Zhou, Guoyu; Xu, Chunyan; Zhao, Qian; Dong, Lixin; Zhang, Shun; Wang, Aiguo

    2018-02-01

    Fluoride is capable of inducing neurotoxicity, but its mechanisms remain elusive. This study aimed to explore the roles of endoplasmic reticulum (ER) stress and autophagy in sodium fluoride (NaF)-induced neurotoxicity, focusing on the regulating role of ER stress in autophagy. The in vivo results demonstrated that NaF exposure impaired the learning and memory capabilities of rats, and resulted in histological and ultrastructural abnormalities in rat hippocampus. Moreover, NaF exposure induced excessive ER stress and associated apoptosis, as manifested by elevated IRE1α, GRP78, cleaved caspase-12 and cleaved-caspase-3, as well as defective autophagy, as shown by increased Beclin1, LC3-II and p62 expression in hippocampus. Consistently, the in vitro results further verified the findings of in vivo study that NaF induced excessive ER stress and defective autophagy in SH-SY5Y cells. Notably, inhibition of autophagy in NaF-treated SH-SY5Y cells with Wortmannin or Chloroquine decreased, while induction of autophagy by Rapamycin increased the cell viability. These results were correlated well with the immunofluorescence observations, thus confirming the pivotal role of autophagic flux dysfunction in NaF-induced cell death. Importantly, mitigation of ER stress by 4-phenylbutyrate in NaF-treated SH-SY5Y cells inhibited the expressions of autophagy markers, and decreased cell apoptosis. Taken together, these data suggest that neuronal death resulted from excessive ER stress and autophagic flux dysfunction contributes to fluoride-elicited neurotoxicity. Moreover, the autophagic flux dysfunction was mediated by excessive ER stress, which provided novel insight into a better understanding of fluoride-induced neurotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Coordinated activation of AMP-activated protein kinase, extracellular signal-regulated kinase, and autophagy regulates phorbol myristate acetate-induced differentiation of SH-SY5Y neuroblastoma cells.

    PubMed

    Zogovic, Nevena; Tovilovic-Kovacevic, Gordana; Misirkic-Marjanovic, Maja; Vucicevic, Ljubica; Janjetovic, Kristina; Harhaji-Trajkovic, Ljubica; Trajkovic, Vladimir

    2015-04-01

    We explored the interplay between the intracellular energy sensor AMP-activated protein kinase (AMPK), extracellular signal-regulated kinase (ERK), and autophagy in phorbol myristate acetate (PMA)-induced neuronal differentiation of SH-SY5Y human neuroblastoma cells. PMA-triggered expression of neuronal markers (dopamine transporter, microtubule-associated protein 2, β-tubulin) was associated with an autophagic response, measured by the conversion of microtubule-associated protein light chain 3 (LC3)-I to autophagosome-bound LC3-II, increase in autophagic flux, and expression of autophagy-related (Atg) proteins Atg7 and beclin-1. This coincided with the transient activation of AMPK and sustained activation of ERK. Pharmacological inhibition or RNA interference-mediated silencing of AMPK suppressed PMA-induced expression of neuronal markers, as well as ERK activation and autophagy. A selective pharmacological blockade of ERK prevented PMA-induced neuronal differentiation and autophagy induction without affecting AMPK phosphorylation. Conversely, the inhibition of autophagy downstream of AMPK/ERK, either by pharmacological agents or LC3 knockdown, promoted the expression of neuronal markers, thus indicating a role of autophagy in the suppression of PMA-induced differentiation of SH-SY5Y cells. Therefore, PMA-induced neuronal differentiation of SH-SY5Y cells depends on a complex interplay between AMPK, ERK, and autophagy, in which the stimulatory effects of AMPK/ERK signaling are counteracted by the coinciding autophagic response. Phorbol myristate acetate (PMA) induces the expression of dopamine transporter, microtubule-associated protein 2, and β-tubulin, and subsequent neuronal differentiation of SH-SY5Y neuroblastoma cells through AMP-activated protein kinase (AMPK)-dependent activation of extracellular signal-regulated kinase (ERK). The activation of AMPK/ERK axis also induces the expression of beclin-1 and Atg7, and increases LC3 conversion, thereby triggering

  8. Characterization of CAA0225, a novel inhibitor specific for cathepsin L, as a probe for autophagic proteolysis.

    PubMed

    Takahashi, Katsuyuki; Ueno, Takashi; Tanida, Isei; Minematsu-Ikeguchi, Naoko; Murata, Mitsuo; Kominami, Eiki

    2009-03-01

    We screened a series of new epoxysuccinyl peptides for the development of a lysosomal cathepsin L-specific inhibitor. Among the compounds tested, (2S,3S)-oxirane-2,3-dicarboxylic acid 2-[((S)-1-benzylcarbamoyl-2-phenyl-ethyl)-amide] 3-{[2-(4-hydroxy-phenyl)-ethyl]-amide} (compound CAA0225) was the most potent inhibitor of cathepsin L. CAA0225 inhibited rat liver cathepsin L with IC50 values of 1.9 nM, but not rat liver cathepsin B (IC50, >1000-5000 nM). To assess the contribution of cathepsin L to lysosomal proteolysis, we evaluated autophagy, which is the process of lysosomal self-degradation of cell constituents. In HeLa and Huh-7 cells cultured under nutrient-deprived conditions CAA0225 significantly inhibited degradation of long-lived proteins; however, the magnitude of inhibition was comparable to that in the presence of CA-074-OMe, which is a cathepsin B-specific inhibitor. Thus the contributions of cathepsin L and cathepsin B to autophagic protein degradation of cytoplasmic proteins are nearly equal. During autophagy, microtubule-associated protein IA/IB light chain 3-II (LC3-II) and gamma-aminobutyric acid (A) receptor-associated protein (GABARAP)-II, which are specific markers of autophagosomal membranes that engulf cytoplasmic components, also undergo degradation upon fusion of autophagosomes with lysosomes. CAA0225 effectively inhibited degradation of LC3-II and GABARAP, whereas CA-074-OMe had only a marginal effect on their levels. Therefore we conclude that cathepsin L does not play a general role in the degradation of proteins in the lumen of autophagosomes, but rather is involved specifically in the degradation of autophagosomal membrane markers.

  9. The hypertension drug, verapamil, activates Nrf2 by promoting p62-dependent autophagic Keap1 degradation and prevents acetaminophen-induced cytotoxicity.

    PubMed

    Lee, Da Hyun; Park, Jeong Su; Lee, Yu Seol; Sung, Su Haeng; Lee, Yong-Ho; Bae, Soo Han

    2017-02-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) provides a cellular defense against oxidative stress by inducing the expression of antioxidant and detoxification enzymes. The calcium antagonist, verapamil, is an FDA-approved drug prescribed for the treatment of hypertension. Here, we show that verapamil acts as a potent Nrf2 activator without causing cytotoxicity, through degradation of Kelch-like ECH-associated protein 1 (Keap1), a Nrf2 repressor. Furthermore, verapamilinduced Keap1 degradation is prominently mediated by a p62-dependent autophagic pathway. Correspondingly, verapamil protects cells from acetaminophen-induced oxidative damage through Nrf2 activation. These results demonstrated the underlying mechanisms for the protective role of verapamil against acetaminophen-induced cytotoxicity. [BMB Reports 2017; 50(2): 91-96].

  10. Studying p53 family proteins in yeast: Induction of autophagic cell death and modulation by interactors and small molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leão, Mariana; Gomes, Sara; Bessa, Cláudia

    In this work, the yeast Saccharomyces cerevisiae was used to individually study human p53, p63 (full length and truncated forms) and p73. Using this cell system, the effect of these proteins on cell proliferation and death, and the influence of MDM2 and MDMX on their activities were analyzed. When expressed in yeast, wild-type p53, TAp63, ΔNp63 and TAp73 induced growth inhibition associated with S-phase cell cycle arrest. This growth inhibition was accompanied by reactive oxygen species production and autophagic cell death. Furthermore, they stimulated rapamycin-induced autophagy. On the contrary, none of the tested p53 family members induced apoptosis either permore » se or after apoptotic stimuli. As previously reported for p53, also TAp63, ΔNp63 and TAp73 increased actin expression levels and its depolarization, suggesting that ACT1 is also a p63 and p73 putative yeast target gene. Additionally, MDM2 and MDMX inhibited the activity of all tested p53 family members in yeast, although the effect was weaker on TAp63. Moreover, Nutlin-3a and SJ-172550 were identified as potential inhibitors of the p73 interaction with MDM2 and MDMX, respectively. Altogether, the yeast-based assays herein developed can be envisaged as a simplified cell system to study the involvement of p53 family members in autophagy, the modulation of their activities by specific interactors (MDM2 and MDMX), and the potential of new small molecules to modulate these interactions. - Highlights: • p53, p63 and p73 are individually studied in the yeast S. cerevisiae. • p53 family members induce ROS production, cell cycle arrest and autophagy in yeast. • p53 family members increase actin depolarization and expression levels in yeast. • MDM2 and MDMX inhibit the activity of p53 family members in yeast. • Yeast can be a useful tool to study the biology and drugability of p53, p63 and p73.« less

  11. Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing

    PubMed Central

    Kola, Vijaya Sudhakara Rao; Renuka, P.; Madhav, Maganti Sheshu; Mangrauthia, Satendra K.

    2015-01-01

    RNA interference (RNAi) is a mechanism of homology dependent gene silencing present in plants and animals. It operates through 21–24 nucleotides small RNAs which are processed through a set of core enzymatic machinery that involves Dicer and Argonaute proteins. In recent past, the technology has been well appreciated toward the control of plant pathogens and insects through suppression of key genes/proteins of infecting organisms. The genes encoding key enzymes/proteins with the great potential for developing an effective insect control by RNAi approach are actylcholinesterase, cytochrome P450 enzymes, amino peptidase N, allatostatin, allatotropin, tryptophan oxygenase, arginine kinase, vacuolar ATPase, chitin synthase, glutathione-S-transferase, catalase, trehalose phosphate synthase, vitellogenin, hydroxy-3-methylglutaryl coenzyme A reductase, and hormone receptor genes. Through various studies, it is demonstrated that RNAi is a reliable molecular tool which offers great promises in meeting the challenges imposed by crop insects with careful selection of key enzymes/proteins. Utilization of RNAi tool to target some of these key proteins of crop insects through various approaches is described here. The major challenges of RNAi based insect control such as identifying potential targets, delivery methods of silencing trigger, off target effects, and complexity of insect biology are very well illustrated. Further, required efforts to address these challenges are also discussed. PMID:25954206

  12. Novel Basic Protein, PfN23, Functions as Key Macromolecule during Nacre Formation*

    PubMed Central

    Fang, Dong; Pan, Cong; Lin, Huijuan; Lin, Ya; Zhang, Guiyou; Wang, Hongzhong; He, Maoxian; Xie, Liping; Zhang, Rongqing

    2012-01-01

    The fine microstructure of nacre (mother of pearl) illustrates the beauty of nature. Proteins found in nacre were believed to be “natural hands” that control nacre formation. In the classical view of nacre formation, nucleation of the main minerals, calcium carbonate, is induced on and by the acidic proteins in nacre. However, the basic proteins were not expected to be components of nacre. Here, we reported that a novel basic protein, PfN23, was a key accelerator in the control over crystal growth in nacre. The expression profile, in situ immunostaining, and in vitro immunodetection assays showed that PfN23 was localized within calcium carbonate crystals in the nacre. Knocking down the expression of PfN23 in adults via double-stranded RNA injection led to a disordered nacre surface in adults. Blocking the translation of PfN23 in embryos using morpholino oligomers led to the arrest of larval development. The in vitro crystallization assay showed that PfN23 increases the rate of calcium carbonate deposition and induced the formation of aragonite crystals with characteristics close to nacre. In addition, we constructed the peptides and truncations of different regions of this protein and found that the positively charged C-terminal region was a key region for the function of PfN23 Taken together, the basic protein PfN23 may be a key accelerator in the control of crystal growth in nacre. This provides a valuable balance to the classic view that acidic proteins control calcium carbonate deposition in nacre. PMID:22416139

  13. A novel mechanism of autophagic cell death in dystrophic muscle regulated by P2RX7 receptor large-pore formation and HSP90.

    PubMed

    Young, Christopher N J; Sinadinos, Anthony; Lefebvre, Alexis; Chan, Philippe; Arkle, Stephen; Vaudry, David; Gorecki, Dariusz C

    2015-01-01

    P2RX7 is an ATP-gated ion channel, which can also exhibit an open state with a considerably wider permeation. However, the functional significance of the movement of molecules through the large pore (LP) and the intracellular signaling events involved are not known. Here, analyzing the consequences of P2RX7 activation in primary myoblasts and myotubes from the Dmd(mdx) mouse model of Duchenne muscular dystrophy, we found ATP-induced P2RX7-dependent autophagic flux, leading to CASP3-CASP7-independent cell death. P2RX7-evoked autophagy was triggered by LP formation but not Ca(2+) influx or MAPK1-MAPK3 phosphorylation, 2 canonical P2RX7-evoked signals. Phosphoproteomics, protein expression inference and signaling pathway prediction analysis of P2RX7 signaling mediators pointed to HSPA2 and HSP90 proteins. Indeed, specific HSP90 inhibitors prevented LP formation, LC3-II accumulation, and cell death in myoblasts and myotubes but not in macrophages. Pharmacological blockade or genetic ablation of p2rx7 also proved protective against ATP-induced death of muscle cells, as did inhibition of autophagy with 3-MA. The functional significance of the P2RX7 LP is one of the great unknowns of purinergic signaling. Our data demonstrate a novel outcome--autophagy--and show that molecules entering through the LP can be targeted to phagophores. Moreover, we show that in muscles but not in macrophages, autophagy is needed for the formation of this LP. Given that P2RX7-dependent LP and HSP90 are critically interacting in the ATP-evoked autophagic death of dystrophic muscles, treatments targeting this axis could be of therapeutic benefit in this debilitating and incurable form of muscular dystrophy.

  14. Autophagic kinases SmVPS34 and SmVPS15 are required for viability in the filamentous ascomycete Sordaria macrospora.

    PubMed

    Voigt, Oliver; Herzog, Britta; Jakobshagen, Antonia; Pöggeler, Stefanie

    2014-01-01

    Autophagy is a tightly controlled degradation process of all eukaryotes. It includes the sequestration of cytoplasmic contents and organelles within a double-membraned autophagosome. Autophagy involves core autophagy related (atg) genes as well as genes regulating vesicle trafficking. Previously, we analyzed the impact of proteins of the core autophagic machinery SmATG7, SmATG8 and SmATG4 on the sexual and vegetative development of the filamentous ascomycete Sordaria macrospora. While deletion of Smatg8 and Smatg4 abolished fruiting-body formation and impaired vegetative growth, Smatg7 is required for viability. In yeast, the phosphatidylinositol 3-kinase vacuolar protein sorting 34 (Vps34) and its myristoylated membrane targeting unit, the protein kinase Vps15 have been shown to be important regulators of autophagy and vacuolar protein sorting. However, their exact role in filamentous ascomycetes remains elusive. To determine the function of Smvps34 and Smvps15 we isolated genes with high sequence similarity to Saccharomyces cerevisiae VPS34 and VPS15. For both genes we were not able to generate a homokaryotic knockout mutant in S. macrospora, suggesting that Smvps34 and Smvps15 are required for viability. Furthermore, we analyzed the repertoire of vps genes encoded by S. macrospora and could identify putative homologs of nearly all of the 61 VPS genes of S. cerevisiae. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Autophagic clearance of mitochondria in the kidney copes with metabolic acidosis.

    PubMed

    Namba, Tomoko; Takabatake, Yoshitsugu; Kimura, Tomonori; Takahashi, Atsushi; Yamamoto, Takeshi; Matsuda, Jun; Kitamura, Harumi; Niimura, Fumio; Matsusaka, Taiji; Iwatani, Hirotsugu; Matsui, Isao; Kaimori, Junya; Kioka, Hidetaka; Isaka, Yoshitaka; Rakugi, Hiromi

    2014-10-01

    Metabolic acidosis, a common complication of CKD, causes mitochondrial stress by undefined mechanisms. Selective autophagy of impaired mitochondria, called mitophagy, contributes toward maintaining cellular homeostasis in various settings. We hypothesized that mitophagy is involved in proximal tubular cell adaptations to chronic metabolic acidosis. In transgenic mice expressing green fluorescent protein-tagged microtubule-associated protein 1 light chain 3 (GFP-LC3), NH4Cl loading increased the number of GFP puncta exclusively in the proximal tubule. In vitro, culture in acidic medium produced similar results in proximal tubular cell lines stably expressing GFP-LC3 and facilitated the degradation of SQSTM1/p62 in wild-type cells, indicating enhanced autophagic flux. Upon acid loading, proximal tubule-specific autophagy-deficient (Atg5-deficient) mice displayed significantly reduced ammonium production and severe metabolic acidosis compared with wild-type mice. In vitro and in vivo, acid loading caused Atg5-deficient proximal tubular cells to exhibit reduced mitochondrial respiratory chain activity, reduced mitochondrial membrane potential, and fragmented morphology with marked swelling in mitochondria. GFP-LC3-tagged autophagosomes colocalized with ubiquitinated mitochondria in proximal tubular cells cultured in acidic medium, suggesting that metabolic acidosis induces mitophagy. Furthermore, restoration of Atg5-intact nuclei in Atg5-deficient proximal tubular cells increased mitochondrial membrane potential and ammoniagenesis. In conclusion, metabolic acidosis induces autophagy in proximal tubular cells, which is indispensable for maintaining proper mitochondrial functions including ammoniagenesis, and thus for adapted urinary acid excretion. Our results provide a rationale for the beneficial effect of alkali supplementation in CKD, a condition in which autophagy may be reduced, and suggest a new therapeutic option for acidosis by modulating autophagy. Copyright

  16. Downregulation of VRK1 by p53 in Response to DNA Damage Is Mediated by the Autophagic Pathway

    PubMed Central

    Valbuena, Alberto; Castro-Obregón, Susana; Lazo, Pedro A.

    2011-01-01

    Human VRK1 induces a stabilization and accumulation of p53 by specific phosphorylation in Thr18. This p53 accumulation is reversed by its downregulation mediated by Hdm2, requiring a dephosphorylated p53 and therefore also needs the removal of VRK1 as stabilizer. This process requires export of VRK1 to the cytosol and is inhibited by leptomycin B. We have identified that downregulation of VRK1 protein levels requires DRAM expression, a p53-induced gene. DRAM is located in the endosomal-lysosomal compartment. Induction of DNA damage by UV, IR, etoposide and doxorubicin stabilizes p53 and induces DRAM expression, followed by VRK1 downregulation and a reduction in p53 Thr18 phosphorylation. DRAM expression is induced by wild-type p53, but not by common human p53 mutants, R175H, R248W and R273H. Overexpression of DRAM induces VRK1 downregulation and the opposite effect was observed by its knockdown. LC3 and p62 were also downregulated, like VRK1, in response to UV-induced DNA damage. The implication of the autophagic pathway was confirmed by its requirement for Beclin1. We propose a model with a double regulatory loop in response to DNA damage, the accumulated p53 is removed by induction of Hdm2 and degradation in the proteasome, and the p53-stabilizer VRK1 is eliminated by the induction of DRAM that leads to its lysosomal degradation in the autophagic pathway, and thus permitting p53 degradation by Hdm2. This VRK1 downregulation is necessary to modulate the block in cell cycle progression induced by p53 as part of its DNA damage response. PMID:21386980

  17. Autophagic control of RLR signaling

    PubMed Central

    Tal, Michal Caspi; Iwasaki, Akiko

    2013-01-01

    Innate immunity to viral infection is initiated within the infected cells through the recognition of unique viral signatures by pattern recognition receptors (PRRs) that mediate the induction of potent antiviral factor, type I interferons (IFNs). Infection with RNA viruses is recognized by the members of the retinoic acid inducible gene I (RIG-I)-like receptor (RLR) family in the cytosol. Our recent study demonstrates that IFN production in response to RNA viral ligands is increased in the absence of autophagy. The process of autophagy functions as an internal clean-up crew within the cell, shuttling damaged cellular organelles and long-lived proteins to the lysosomes for degradation. Our data show that the absence of autophagy leads to the amplification of RLR signaling in two ways. First, in the absence of autophagy, mitochondria accumulate within the cell leading to the build up of mitochondrial associated protein, IPS-1, a key signaling protein for RLRs. Second, damaged mitochondria that are not degraded in the absence of autophagy provide a source of reactive oxygen species (ROS), which amplify RLR signaling in Atg5 knockout cells. Our study provides the first link between ROS and cytosolic signaling mediated by the RLRs, and suggests the importance of autophagy in the regulation of signaling emanating from mitochondria. PMID:19571662

  18. GRP78 is implicated in the modulation of tumor aerobic glycolysis by promoting autophagic degradation of IKKβ.

    PubMed

    Li, Zongwei; Wang, Yingying; Newton, Ian P; Zhang, Lichao; Ji, Pengyu; Li, Zhuoyu

    2015-06-01

    Compared with normal differentiated cells, cancer cells take up much more glucose and metabolize it mainly via aerobic glycolysis. This metabolic phenotype is characterized with high expression of glucose transporters (Gluts) and pyruvate kinase M2 (PKM2). Glucose regulated protein 78 (GRP78) is a glucose-sensing protein and frequently up-regulated in cancer cells, however, whether it is directly implicated in glucose metabolism remains to be elucidated. Here we report that upon glucose deficiency, the induction of GRP78 resulted in enhanced HIF-1α transcription, accompanied by a transient increased expression of Glut-1. In addition, GRP78 was likely to facilitate the membrane translocation of Glut-1 via protein-protein interaction. Glucose starvation-stimulated GRP78 also impaired the expression of PKM2 but promoted the expression of mitochondrial pyruvate dehydrogenase A (PDHA) and B (PDHB), resulting in the metabolic shift from glycolysis to the TCA cycle. Interestingly, the inhibition of PKM2 by GRP78 was abrogated when glucose supply was restored, suggesting that GRP78 and PKM2 expressions are adaptable to the nutritional levels in the microenvironment. Further mechanistic study indicated that GRP78 overexpression activated the Class III PI3K-mediated autophagy pathway and induced autophagic degradation of IKKβ, which caused inactivation of NF-κB pathway and subsequently altered the expression of PKM2 and HIF-1α. Our study establishes GRP78 and PKM2 as the crucial molecular links between cancer cell glucose metabolism and tumor microenvironment alterations. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Vapb/Amyotrophic lateral sclerosis 8 knock-in mice display slowly progressive motor behavior defects accompanying ER stress and autophagic response.

    PubMed

    Larroquette, Frédérique; Seto, Lesley; Gaub, Perrine L; Kamal, Brishna; Wallis, Deeann; Larivière, Roxanne; Vallée, Joanne; Robitaille, Richard; Tsuda, Hiroshi

    2015-11-15

    Missense mutations (P56S) in Vapb are associated with autosomal dominant motor neuron diseases: amyotrophic lateral sclerosis and lower motor neuron disease. Although transgenic mice overexpressing the mutant vesicle-associated membrane protein-associated protein B (VAPB) protein with neuron-specific promoters have provided some insight into the toxic properties of the mutant proteins, their role in pathogenesis remains unclear. To identify pathological defects in animals expressing the P56S mutant VAPB protein at physiological levels in the appropriate tissues, we have generated Vapb knock-in mice replacing wild-type Vapb gene with P56S mutant Vapb gene and analyzed the resulting pathological phenotypes. Heterozygous P56S Vapb knock-in mice show mild age-dependent defects in motor behaviors as characteristic features of the disease. The homozygous P56S Vapb knock-in mice show more severe defects compared with heterozygous mice reflecting the dominant and dose-dependent effects of P56S mutation. Significantly, the knock-in mice demonstrate accumulation of P56S VAPB protein and ubiquitinated proteins in cytoplasmic inclusions, selectively in motor neurons. The mutant mice demonstrate induction of ER stress and autophagic response in motor neurons before obvious onset of behavioral defects, suggesting that these cellular biological defects might contribute to the initiation of the disease. The P56S Vapb knock-in mice could be a valuable tool to gain a better understanding of the mechanisms by which the disease arises. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Involvement of interleukin-1β in the autophagic process of microglia: relevance to Alzheimer’s disease

    PubMed Central

    2013-01-01

    Background Autophagy is a major pathway of protein and organelle degradation in the lysosome. Autophagy exists at basal constitutive level and can be induced as a defense mechanism under stress conditions. Molecular relationships between autophagy and inflammation at the periphery were recently evidenced, highlighting a role of autophagy in the regulation of inflammation. Impairment of autophagy (with accumulation of autophagic vacuoles) and substantial inflammation are found in neurodegenerative diseases such as Alzheimer’s Disease (AD). However, the links between autophagy and inflammation in AD remain to be determined. Methods Here, we examined the inflammatory reaction and autophagy in murine tri-cultures of neurons, astrocytes, and microglia. Tri-cultures were exposed to various inflammatory stresses (lipopolysaccharide (LPS), amyloid peptide (Aβ42) with or without cytokines) for 48 hours. Furthermore, the relationships between inflammation and autophagy were also analyzed in astrocyte- and microglia-enriched cultures. Data for multiple variable comparisons were analyzed by a one-way ANOVA followed by a Newman-keuls’ test. Results Aβ42 induced a low inflammation without accumulation of acidic vesicles contrary to moderate or severe inflammation induced by LPS or the cytokine cocktail (IL-1β, TNF-α, and IL-6) or IL-1β alone which led to co-localization of p62 and LC3, two markers of autophagy, with acidic vesicles stained with Lyso-ID Red dye. Moreover, the study reveals a major role of IL-1β in the induction of autophagy in tri-cultures in the presence or absence of Aβ42. However, the vulnerability of the autophagic process in purified microglia to IL-1β was prevented by Aβ42. Conclusion These findings show a close relationship between inflammation and autophagy, in particular a major role of IL-1β in the induction of the microglial autophagy which could be the case in AD. New therapeutic strategies could target inflammasome and autophagy in

  1. Macroautophagy-generated increase of lysosomal amyloid β-protein mediates oxidant-induced apoptosis of cultured neuroblastoma cells

    PubMed Central

    Terman, Alexei; Hallbeck, Martin; Dehvari, Nodi; Cowburn, Richard F.; Benedikz, Eirikur; Kågedal, Katarina; Cedazo-Minguez, Angel; Marcusson, Jan

    2011-01-01

    Increasing evidence suggests the toxicity of intracellular amyloid β-protein (Aβ) to neurons, as well as the involvement of oxidative stress in Alzheimer disease (AD). Here we show that normobaric hyperoxia (exposure of cells to 40% oxygen for five days), and consequent activation of macroautophagy and accumulation of Aβ within lysosomes, induced apoptosis in differentiated SH-SY5Y neuroblastoma cells. Cells under hyperoxia showed: (1) increased numbers of autophagic vacuoles that contained amyloid precursor protein (APP) as well as Aβ monomers and oligomers, (2) increased reactive oxygen species production, and (3) enhanced apoptosis. Oxidant-induced apoptosis positively correlated with cellular Aβ production, being the highest in cells that were stably transfected with APP Swedish KM670/671NL double mutation. Inhibition of γ-secretase, prior and/or in parallel to hyperoxia, suggested that the increase of lysosomal Aβ resulted mainly from its autophagic uptake, but also from APP processing within autophagic vacuoles. The oxidative stress-mediated effects were prevented by macroautophagy inhibition using 3-methyladenine or ATG5 downregulation. Our results suggest that upregulation of macroautophagy and resulting lysosomal Aβ accumulation are essential for oxidant-induced apoptosis in cultured neuroblastoma cells and provide additional support for the interactive role of oxidative stress and the lysosomal system in AD-related neurodegeneration. PMID:22108004

  2. Lysosomotropic cationic drugs induce cytostatic and cytotoxic effects: Role of liposolubility and autophagic flux and antagonism by cholesterol ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, Alexandre; Marceau, François, E-mail: franc

    Cation trapping in acidic cell compartments determines an antiproliferative effect that has a potential interest in oncology, as shown by clinical data and trials involving chloroquine and hydroxychloroquine. To further characterize the mechanism of this effect, we studied a series of 6 substituted triethylamine (s-Et{sub 3}N) drugs that encompasses a wide range of liposolubility (amiodarone, quinacrine, chloroquine, hydroxychloroquine, lidocaine, and procainamide). Three tumor cell lines and primary human endothelial cells were exploited in proliferation assays (48 h, cell counts). Accumulation of the autophagic effector LC3 II and the apoptotic marker cleaved PARP1 (immunoblots), cytotoxicity, cell cycle analysis and endocytic functionmore » were further tested in the p53-null histiocytic lymphoma U937 line. A profound and desynchronized antiproliferative effect was observed in response to all s-Et{sub 3}Ns with essentially no cell type specificity. Predictors of s-Et{sub 3}N potency were liposolubility and the acute accumulation of the autophagic effector LC3 II (6 h-treatments). For each s-Et{sub 3}N, there was an antiproliferative concentration range where cytotoxicity and apoptosis were not triggered in U937 cells (24–48 h-treatments). Quinacrine was the most potent cytostatic drug (1–5 μM). Co-treatment of cells with inhibitors of cholesterol, β-cyclodextrin or lovastatin, partially reversed the antiproliferative effect of each s-Et{sub 3}N. The cytopathology induced by cationic drug accumulation includes a cytostatic effect. Its intensity is cell type- and p53-independent, but predicted by the inhibition of autophagic flux and by the liposolubility of individual drugs and alleviated by cholesterol ablation. The superiority of quinacrine, biomarker value of LC3 II and antagonism by a statin may be clinically relevant. - Highlights: • Cation trapping in acidic cell compartments induces a cytostatic effect. • A series of substituted triethylamines

  3. Impairment of Atg5-Dependent Autophagic Flux Promotes Paraquat- and MPP+-Induced Apoptosis But Not Rotenone or 6-Hydroxydopamine Toxicity

    PubMed Central

    Franco, Rodrigo

    2013-01-01

    Controversial reports on the role of autophagy as a survival or cell death mechanism in dopaminergic cell death induced by parkinsonian toxins exist. We investigated the alterations in autophagic flux and the role of autophagy protein 5 (Atg5)-dependent autophagy in dopaminergic cell death induced by parkinsonian toxins. Dopaminergic cell death induced by the mitochondrial complex I inhibitors 1-methyl-4-phenylpyridinium (MPP+) and rotenone, the pesticide paraquat, and the dopamine analog 6-hydroxydopamine (6-OHDA) was paralleled by increased autophagosome accumulation. However, when compared with basal autophagy levels using chloroquine, autophagosome accumulation was a result of impaired autophagic flux. Only 6-OHDA induced an increase in autophagosome formation. Overexpression of a dominant negative form of Atg5 increased paraquat- and MPP+-induced cell death. Stimulation of mammalian target of rapamycin (mTOR)-dependent signaling protected against cell death induced by paraquat, whereas MPP+-induced toxicity was enhanced by wortmannin, a phosphoinositide 3-kinase class III inhibitor, rapamycin, and trehalose, an mTOR-independent autophagy activator. Modulation of autophagy by either pharmacological or genetic approaches had no effect on rotenone or 6-OHDA toxicity. Cell death induced by parkinsonian neurotoxins was inhibited by the pan caspase inhibitor (Z-VAD), but only caspase-3 inhibition was able to decrease MPP+-induced cell death. Finally, inhibition of the lysosomal hydrolases, cathepsins, increased the toxicity by paraquat and MPP+, supporting a protective role of Atg5-dependent autophagy and lysosomes degradation pathways on dopaminegic cell death. These results demonstrate that in dopaminergic cells, Atg5-dependent autophagy acts as a protective mechanism during apoptotic cell death induced by paraquat and MPP+ but not during rotenone or 6-OHDA toxicity. PMID:23997112

  4. Regulation of Ca(2+)-dependent protein turnover in skeletal muscle by thyroxine

    NASA Technical Reports Server (NTRS)

    Zeman, Richard J.; Bernstein, Paul L.; Ludemann, Robert; Etlinger, Joseph D.

    1986-01-01

    Dantrolene, an agent that inhibits Ca(2+) mobilization, improved protein balance in skeletal muscle, as thyroid status was increased, by altering rates of protein synthesis and degradation. Thyroxine (T4) caused increases in protein degradation that were blocked by leupeptin, a proteinase inhibitor previously shown to inhibit Ca(2+)-dependent nonlysosomal proteolysis in these muscles. In addition, T4 abolished sensitivity to the lysosomotropic agent methylamine and the autophagy inhibitor 3-methyladenine, suggesting that T4 inhibits autophagic/lysosomal proteolysis.

  5. Assessing Autophagic Flux by Measuring LC3, p62, and LAMP1 Co-localization Using Multispectral Imaging Flow Cytometry.

    PubMed

    Pugsley, Haley R

    2017-07-21

    Autophagy is a catabolic pathway in which normal or dysfunctional cellular components that accumulate during growth and differentiation are degraded via the lysosome and are recycled. During autophagy, cytoplasmic LC3 protein is lipidated and recruited to the autophagosomal membranes. The autophagosome then fuses with the lysosome to form the autolysosome, where the breakdown of the autophagosome vesicle and its contents occurs. The ubiquitin-associated protein p62, which binds to LC3, is also used to monitor autophagic flux. Cells undergoing autophagy should demonstrate the co-localization of p62, LC3, and lysosomal markers. Immunofluorescence microscopy has been used to visually identify LC3 puncta, p62, and/or lysosomes on a per-cell basis. However, an objective and statistically rigorous assessment can be difficult to obtain. To overcome these problems, multispectral imaging flow cytometry was used along with an analytical feature that compares the bright detail images from three autophagy markers (LC3, p62 and lysosomal LAMP1) and quantifies their co-localization, in combination with LC3 spot counting to measure autophagy in an objective, quantitative, and statistically robust manner.

  6. Assessing Autophagic Flux by Measuring LC3, p62, and LAMP1 Co-localization Using Multispectral Imaging Flow Cytometry

    PubMed Central

    Pugsley, Haley R.

    2017-01-01

    Autophagy is a catabolic pathway in which normal or dysfunctional cellular components that accumulate during growth and differentiation are degraded via the lysosome and are recycled. During autophagy, cytoplasmic LC3 protein is lipidated and recruited to the autophagosomal membranes. The autophagosome then fuses with the lysosome to form the autolysosome, where the breakdown of the autophagosome vesicle and its contents occurs. The ubiquitin-associated protein p62, which binds to LC3, is also used to monitor autophagic flux. Cells undergoing autophagy should demonstrate the co-localization of p62, LC3, and lysosomal markers. Immunofluorescence microscopy has been used to visually identify LC3 puncta, p62, and/or lysosomes on a per-cell basis. However, an objective and statistically rigorous assessment can be difficult to obtain. To overcome these problems, multispectral imaging flow cytometry was used along with an analytical feature that compares the bright detail images from three autophagy markers (LC3, p62 and lysosomal LAMP1) and quantifies their co-localization, in combination with LC3 spot counting to measure autophagy in an objective, quantitative, and statistically robust manner. PMID:28784946

  7. KML001 Induces Apoptosis and Autophagic Cell Death in Prostate Cancer Cells via Oxidative Stress Pathway

    PubMed Central

    You, Dalsan; Kim, Yunlim; Jang, Myoung Jin; Lee, Chunwoo; Jeong, In Gab; Cho, Yong Mee; Hwang, Jung Jin; Hong, Jun Hyuk; Ahn, Hanjong; Kim, Choung-Soo

    2015-01-01

    We investigated the effects of KML001 (NaAsO2, sodium metaarsenite, Kominox), an orally bioavailable arsenic compound, on the growth and death of human prostate cancer cells and its mechanism of action. Growth inhibition was assessed by cytotoxicity assays in the presence or absence of inhibitor of apoptosis, inhibitor of autophagy or antioxidant N-Acetyl-L-cysteine to study mechanism of cell death induced by KML001 in PC3, DU145 and LNCaP prostate cancer cell lines. Electron microscopy, flow cytometry and Western blotting were used to study apoptotic and autophagic mechanisms. The DU145 xenograft model was used to determine the efficacy of KML001 in vivo. KML001 decreased the viability of cells and increased the percentage of annexin V-positive cells dose-dependently in prostate cancer cells, and LNCaP cells were more sensitive to KML001 than PC3 or DU145 cells. Electron microscopy revealed typical apoptotic characters and autophagic vacuoles in cells treated with KML001. Exposure to KML001 in prostate cancer cells induced apoptosis and autophagy in a time- and dose-dependent manner. KML001 induced dose-dependent accumulation of reactive oxygen species, and scavenging the reactive oxygen species with N-Acetyl-L-cysteine reduced LC3 and cleaved poly (ADP-ribose) polymerase. KML001 significantly inhibited tumor growth in the DU145 xenograft model. In addition, significant decrease of proliferation and significant increases of apoptosis and autophagy were observed in KML001-treated tumors than in vehicle-treated tumors. Exposure of human prostate cancer cells to KML001 induced both apoptosis and autophagic cell death via oxidative stress pathway. And KML001 had an antiproliferative effect on DU145 cells in xenograft mice. PMID:26352139

  8. KML001 Induces Apoptosis and Autophagic Cell Death in Prostate Cancer Cells via Oxidative Stress Pathway.

    PubMed

    You, Dalsan; Kim, Yunlim; Jang, Myoung Jin; Lee, Chunwoo; Jeong, In Gab; Cho, Yong Mee; Hwang, Jung Jin; Hong, Jun Hyuk; Ahn, Hanjong; Kim, Choung-Soo

    2015-01-01

    We investigated the effects of KML001 (NaAsO2, sodium metaarsenite, Kominox), an orally bioavailable arsenic compound, on the growth and death of human prostate cancer cells and its mechanism of action. Growth inhibition was assessed by cytotoxicity assays in the presence or absence of inhibitor of apoptosis, inhibitor of autophagy or antioxidant N-Acetyl-L-cysteine to study mechanism of cell death induced by KML001 in PC3, DU145 and LNCaP prostate cancer cell lines. Electron microscopy, flow cytometry and Western blotting were used to study apoptotic and autophagic mechanisms. The DU145 xenograft model was used to determine the efficacy of KML001 in vivo. KML001 decreased the viability of cells and increased the percentage of annexin V-positive cells dose-dependently in prostate cancer cells, and LNCaP cells were more sensitive to KML001 than PC3 or DU145 cells. Electron microscopy revealed typical apoptotic characters and autophagic vacuoles in cells treated with KML001. Exposure to KML001 in prostate cancer cells induced apoptosis and autophagy in a time- and dose-dependent manner. KML001 induced dose-dependent accumulation of reactive oxygen species, and scavenging the reactive oxygen species with N-Acetyl-L-cysteine reduced LC3 and cleaved poly (ADP-ribose) polymerase. KML001 significantly inhibited tumor growth in the DU145 xenograft model. In addition, significant decrease of proliferation and significant increases of apoptosis and autophagy were observed in KML001-treated tumors than in vehicle-treated tumors. Exposure of human prostate cancer cells to KML001 induced both apoptosis and autophagic cell death via oxidative stress pathway. And KML001 had an antiproliferative effect on DU145 cells in xenograft mice.

  9. Fluoxetine induces autophagic cell death via eEF2K-AMPK-mTOR-ULK complex axis in triple negative breast cancer.

    PubMed

    Sun, Dejuan; Zhu, Lingjuan; Zhao, Yuqian; Jiang, Yingnan; Chen, Lixia; Yu, Yang; Ouyang, Liang

    2018-04-01

    Triple negative breast cancer (TNBC) is a complex and intrinsically aggressive tumour with poor prognosis, and the discovery of targeted small-molecule drugs for TNBC treatment still remains in its infancy. In this study, we aimed to discover a small-molecule agent for TNBC treatment and illuminate its potential mechanisms. Cell viability was detected by using methylthiazoltetrazolium (MTT) assay. Electron microscopy, GFP-LC3 transfection, monodansylcadaverine staining and apoptosis assay were performed to determine Fluoxetine-induced autophagy and apoptosis. Western blotting and siRNA transfection were carried out to investigate the mechanisms of Fluoxetine-induced autophagy. iTRAQ-based proteomics analysis was used to explore the underlying mechanisms. We have demonstrated that Fluoxetine had remarkable anti-proliferative activities and induced autophagic cell death in MDA-MB-231 and MDA-MB-436 cells. The mechanism for Fluoxetine-induced autophagic cell death was associated with inhibition of eEF2K and activation of AMPK-mTOR-ULK complex axis. Further iTRAQ-based proteomics and network analyses revealed that Fluoxetine-induced mechanism was involved in BIRC6, BNIP1, SNAP29 and Bif-1. These results demonstrate that Fluoxetine induces apoptosis and autophagic cell death in TNBC, which will hold a promise for the future TNBC therapy. © 2017 John Wiley & Sons Ltd.

  10. Hydrogen peroxide impairs autophagic flux in a cell model of nonalcoholic fatty liver disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Pengtao; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049; Huang, Zhen

    2013-04-19

    Highlights: •Free fatty acids exposure induces elevated autophagy. •H{sub 2}O{sub 2} inhibits autophagic flux through impairing the fusion between autophagosomes and lysosomes. •Inhibition of autophagy potentiates H{sub 2}O{sub 2}-induced cell death. -- Abstract: Nonalcoholic fatty liver disease (NAFLD) has become the leading cause of chronic liver disease, but the pathogenesis of NAFLD is not fully clear. The aim of this study was to determine whether autophagy plays a role in the pathogenesis of NAFLD. We found that the levels of autophagy were elevated in hepatoma cells upon exposure to free fatty acids, as confirmed by the increase in the numbermore » of autophagosomes. However, exposure of hepatoma cells to H{sub 2}O{sub 2} and TNF-α, two typical “second hit” factors, increased the initiation of autophagy but inhibited the autophagic flux. The inhibition of autophagy sensitized cells to pro-apoptotic stimuli. Taken together, our results suggest that autophagy acts as a protective mechanism in the pathogenesis of NAFLD and that impairment of autophagy might induce more severe lesions of the liver. These findings will be a benefit to the understanding of the pathogenesis of NAFLD and might suggest a strategy for the prevention and cure of NAFLD.« less

  11. TRIM-directed selective autophagy regulates immune activation.

    PubMed

    Kimura, Tomonori; Jain, Ashish; Choi, Seong Won; Mandell, Michael A; Johansen, Terje; Deretic, Vojo

    2017-05-04

    Selectivity of autophagy is achieved by target recognition; however, the number of autophagy receptors identified so far is limited. In this study we demonstrate that a subset of tripartite motif (TRIM) proteins mediate selective autophagy of key regulators of inflammatory signaling. MEFV/TRIM20, and TRIM21 act as autophagic receptors recognizing their cognate targets and delivering them for autophagic degradation. MEFV recognizes the inflammasome components NLRP3, CASP1 and NLRP1, whereas TRIM21 specifically recognizes the activated, dimeric from of IRF3 inducing type I interferon gene expression. MEFV and TRIM21 have a second activity, whereby they act not only as receptors but also recruit and organize key components of autophagic machinery consisting of ULK1, BECN1, ATG16L1, and mammalian homologs of Atg8, with a preference for GABARAP. MEFV capacity to organize the autophagy apparatus is affected by common mutations causing familial Mediterranean fever. These findings reveal a general mode of action of TRIMs as autophagic receptor-regulators performing a highly-selective type of autophagy (precision autophagy), with MEFV specializing in the suppression of inflammasome and CASP1 activation engendering IL1B/interleukin-1β production and implicated in the form of cell death termed pyroptosis, whereas TRIM21 dampens type I interferon responses.

  12. Autophagy-linked FYVE protein (Alfy) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS).

    PubMed

    Han, Huihui; Wei, Wanyi; Duan, Weisong; Guo, Yansu; Li, Yi; Wang, Jie; Bi, Yue; Li, Chunyan

    2015-03-01

    Autophagy-linked FYVE (Alfy) is a protein implicated in the selective degradation of aggregated proteins. In our present study, we found that Alfy was recruited into the aggregated G93A-SOD1 in transgenic mice with amyotrophic lateral sclerosis (ALS). We demonstrated that Alfy overexpression could decrease the expression of mutant proteins via the autophagosome-lysosome pathway, and thereby, the toxicity of mutant proteins was reduced. The clearance of the mutant proteins in NSC34 cells was significantly inhibited in an Alfy knockdown cellular model. We therefore deduced that Alfy translocalization likely is involved in the pathogenesis of ALS. Alfy may be developed into a useful target for ALS therapy.

  13. Inference of epistatic effects in a key mitochondrial protein

    NASA Astrophysics Data System (ADS)

    Nelson, Erik D.; Grishin, Nick V.

    2018-06-01

    We use Potts model inference to predict pair epistatic effects in a key mitochondrial protein—cytochrome c oxidase subunit 2—for ray-finned fishes. We examine the effect of phylogenetic correlations on our predictions using a simple exact fitness model, and we find that, although epistatic effects are underpredicted, they maintain a roughly linear relationship to their true (model) values. After accounting for this correction, epistatic effects in the protein are still relatively weak, leading to fitness valleys of depth 2 N s ≃-5 in compensatory double mutants. Interestingly, positive epistasis is more pronounced than negative epistasis, and the strongest positive effects capture nearly all sites subject to positive selection in fishes, similar to virus proteins evolving under selection pressure in the context of drug therapy.

  14. Autophagic Regulation of p62 is Critical for Cancer Therapy

    PubMed Central

    Islam, Md. Ariful; Sooro, Mopa Alina

    2018-01-01

    Sequestosome1 (p62/SQSTM 1) is a multidomain protein that interacts with the autophagy machinery as a key adaptor of target cargo. It interacts with phagophores through the LC3-interacting (LIR) domain and with the ubiquitinated protein aggregates through the ubiquitin-associated domain (UBA) domain. It sequesters the target cargo into inclusion bodies by its PB1 domain. This protein is further the central hub that interacts with several key signaling proteins. Emerging evidence implicates p62 in the induction of multiple cellular oncogenic transformations. Indeed, p62 upregulation and/or reduced degradation have been implicated in tumor formation, cancer promotion as well as in resistance to therapy. It has been established that the process of autophagy regulates the levels of p62. Autophagy-dependent apoptotic activity of p62 is recently being reported. It is evident that p62 plays a critical role in both autophagy and apoptosis. Therefore in this review we discuss the role of p62 in autophagy, apoptosis and cancer through its different domains and outline the importance of modulating cellular levels of p62 in cancer therapeutics. PMID:29738493

  15. Autophagic Regulation of p62 is Critical for Cancer Therapy.

    PubMed

    Islam, Md Ariful; Sooro, Mopa Alina; Zhang, Pinghu

    2018-05-08

    Sequestosome1 (p62/SQSTM 1) is a multidomain protein that interacts with the autophagy machinery as a key adaptor of target cargo. It interacts with phagophores through the LC3-interacting (LIR) domain and with the ubiquitinated protein aggregates through the ubiquitin-associated domain (UBA) domain. It sequesters the target cargo into inclusion bodies by its PB1 domain. This protein is further the central hub that interacts with several key signaling proteins. Emerging evidence implicates p62 in the induction of multiple cellular oncogenic transformations. Indeed, p62 upregulation and/or reduced degradation have been implicated in tumor formation, cancer promotion as well as in resistance to therapy. It has been established that the process of autophagy regulates the levels of p62. Autophagy-dependent apoptotic activity of p62 is recently being reported. It is evident that p62 plays a critical role in both autophagy and apoptosis. Therefore in this review we discuss the role of p62 in autophagy, apoptosis and cancer through its different domains and outline the importance of modulating cellular levels of p62 in cancer therapeutics.

  16. Autophagic activity in the mouse urinary bladder urothelium as a response to starvation.

    PubMed

    Erman, Andreja; Resnik, Nataša; Romih, Rok

    2013-02-01

    The urinary bladder urothelium is subjected to mechanical forces during cycles of distension and contraction, and its superficial cells are constantly flushed by toxic urine. Yet, the urothelium shows a very slow turnover of cells and superficial cells are extremely long lived. Autophagy has a well-known role in tissue homeostasis and serves as a protective mechanism against cellular stress. Therefore, the presence of autophagy as one of possible processes of survival in an unpleasant environment and during long lifetime of superficial cells was examined in mouse urothelium. We detected and evaluated autophagic activity of superficial urothelial cells under normal and stress conditions, caused by short-term starvation of newborn and 24-h-starved adult mice. Immunolabeling and Western blotting of essential effectors of autophagy, LC3 and Beclin 1, showed a weak signal in superficial urothelial cells. On the other hand, ultrastructural analysis, which proved to be the most reliable method in our study, revealed the presence of autophagic vacuoles, some of them containing specific urothelial structures, fusiform vesicles. Quantitative analysis showed increased autophagy in newborn and starved mice in comparison to a low basic level of autophagy in the urothelium of normal mice. Interestingly, some superficial cells of adults and neonates exhibit intense immunoreactions against LC3 and Beclin 1 and the typical ultrastructural characteristics of autophagy-dependent cell death. We conclude that autophagy, despite low basic activity under physiological conditions, plays an important role in urothelial homeostasis and stability under stress.

  17. Uncoupling of Protein Aggregation and Neurodegeneration in a Mouse Amyotrophic Lateral Sclerosis Model.

    PubMed

    Lee, Joo-Yong; Kawaguchi, Yoshiharu; Li, Ming; Kapur, Meghan; Choi, Su Jin; Kim, Hak-June; Park, Song-Yi; Zhu, Haining; Yao, Tso-Pang

    2015-01-01

    Aberrant accumulation of protein aggregates is a pathological hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Although a buildup of protein aggregates frequently leads to cell death, whether it is the key pathogenic factor in driving neurodegenerative disease remains controversial. HDAC6, a cytosolic ubiquitin-binding deacetylase, has emerged as an important regulator of ubiquitin-dependent quality control autophagy, a lysosome-dependent degradative system responsible for the disposal of misfolded protein aggregates and damaged organelles. Here, we show that in cell models HDAC6 plays a protective role against multiple disease-associated and aggregation-prone cytosolic proteins by facilitating their degradation. We further show that HDAC6 is required for efficient localization of lysosomes to protein aggregates, indicating that lysosome targeting to autophagic substrates is regulated. Supporting a critical role of HDAC6 in protein aggregate disposal in vivo, genetic ablation of HDAC6 in a transgenic SOD1G93A mouse, a model of ALS, leads to dramatic accumulation of ubiquitinated SOD1G93A protein aggregates. Surprisingly, despite a robust buildup of SOD1G93A aggregates, deletion of HDAC6 only moderately modified the motor phenotypes. These findings indicate that SOD1G93A aggregation is not the only determining factor to drive neurodegeneration in ALS, and that HDAC6 likely modulates neurodegeneration through additional mechanisms beyond protein aggregate clearance. © 2015 S. Karger AG, Basel.

  18. Exercise training improves cardiac function in infarcted rabbits: involvement of autophagic function and fatty acid utilization.

    PubMed

    Chen, Ching-Yi; Hsu, Hsiu-Ching; Lee, Bai-Chin; Lin, Hung-Ju; Chen, Ying-Hsien; Huang, Hui-Chun; Ho, Yi-Lwun; Chen, Ming-Fong

    2010-04-01

    To explore whether exercise can improve cardiac function in a post-myocardial infarction (MI) rabbit model and to determine contributing factors in the left ventricle (LV). Adult male New Zealand White rabbits (2.5-3 kg) underwent MI by ligation of the left anterior descending coronary artery. For 8 weeks after surgery, sham-operated, and post-MI rabbits were housed under sedentary conditions or assigned to a 4-week treadmill exercise protocol at a speed of 1.0 km/h for 30 min 5 days per week, then sacrificed. The non-infarcted region of the LV was harvested for further analysis. MI decreased left ventricular ejection fraction (LVEF) and increased thiobarbituric acid reactive substances (TBARS) generation in the LV. Exercise improved the cardiac function of MI rabbits. Left ventricular LC3II/LC3I (microtubule-associated protein light chain 3) in the MI group was 2.1-fold higher than that of the sham group, exercise significantly decreased LC3II/LC3I in the MI group. MI down-regulated the expression of heart-type fatty acid binding protein (h-FABP), and exercise up-regulated h-FABP. In addition, LVEF had a significantly positive correlation with h-FABP and a negative correlation with LC3II/LC3I. Exercise induced change in autophagic function and fatty acid utilization may contribute to the improvement in ventricular function in the infarcted heart.

  19. The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions.

    PubMed

    Gorojod, R M; Alaimo, A; Porte Alcon, S; Pomilio, C; Saravia, F; Kotler, M L

    2015-10-01

    Manganese (Mn) overexposure is frequently associated with the development of a neurodegenerative disorder known as Manganism. The Mn-mediated generation of reactive oxygen species (ROS) promotes cellular damage, finally leading to apoptotic cell death in rat astrocytoma C6 cells. In this scenario, the autophagic pathway could play an important role in preventing cytotoxicity. In the present study, we found that Mn induced an increase in the amount and total volume of acidic vesicular organelles (AVOs), a process usually related to the activation of the autophagic pathway. Particularly, the generation of enlarged AVOs was a ROS- dependent event. In this report we demonstrated for the first time that Mn induces autophagy in glial cells. This conclusion emerged from the results obtained employing a battery of autophagy markers: a) the increase in LC3-II expression levels, b) the formation of autophagic vesicles labeled with monodansylcadaverine (MDC) or LC3 and, c) the increase in Beclin 1/ Bcl-2 and Beclin 1/ Bcl-X(L) ratio. Autophagy inhibition employing 3-MA and mAtg5(K130R) resulted in decreased cell viability indicating that this event plays a protective role in Mn- induced cell death. In addition, mitophagy was demonstrated by an increase in LC3 and TOM-20 colocalization. On the other hand, we proposed the occurrence of lysosomal membrane permeabilization (LMP) based in the fact that cathepsins B and D activities are essential for cell death. Both cathepsin B inhibitor (Ca-074 Me) or cathepsin D inhibitor (Pepstatin A) completely prevented Mn- induced cytotoxicity. In addition, low dose of Bafilomycin A1 showed a similar effect, a finding that adds evidence about the lysosomal role in Mn cytotoxicity. Finally, in vivo experiments demonstrated that Mn induces injury and alters LC3 expression levels in rat striatal astrocytes. In summary, our results demonstrated that autophagy is activated to counteract the harmful effect caused by Mn. These data is valuable to

  20. Asparagine slows down the breakdown of storage lipid and degradation of autophagic bodies in sugar-starved embryo axes of germinating lupin seeds.

    PubMed

    Borek, Sławomir; Paluch-Lubawa, Ewelina; Pukacka, Stanisława; Pietrowska-Borek, Małgorzata; Ratajczak, Lech

    2017-02-01

    The research was conducted on embryo axes of yellow lupin (Lupinus luteus L.), white lupin (Lupinus albus L.) and Andean lupin (Lupinus mutabilis Sweet), which were isolated from imbibed seeds and cultured for 96h in vitro under different conditions of carbon and nitrogen nutrition. Isolated embryo axes were fed with 60mM sucrose or were sugar-starved. The effect of 35mM asparagine (a central amino acid in the metabolism of germinating lupin seeds) and 35mM nitrate (used as an inorganic kind of nitrogen) on growth, storage lipid breakdown and autophagy was investigated. The sugar-starved isolated embryo axes contained more total lipid than axes fed with sucrose, and the content of this storage compound was even higher in sugar-starved isolated embryo axes fed with asparagine. Ultrastructural observations showed that asparagine significantly slowed down decomposition of autophagic bodies, and this allowed detailed analysis of their content. We found peroxisomes inside autophagic bodies in cells of sugar-starved Andean lupin embryo axes fed with asparagine, which led us to conclude that peroxisomes may be degraded during autophagy in sugar-starved isolated lupin embryo axes. One reason for the slower degradation of autophagic bodies was the markedly lower lipolytic activity in axes fed with asparagine. Copyright © 2016 The Author(s). Published by Elsevier GmbH.. All rights reserved.

  1. Tissue-specific autophagy responses to aging and stress in C. elegans.

    PubMed

    Chapin, Hannah C; Okada, Megan; Merz, Alexey J; Miller, Dana L

    2015-06-01

    Cellular function relies on a balance between protein synthesis and breakdown. Macromolecular breakdown through autophagy is broadly required for cellular and tissue development, function, and recovery from stress. While Caenorhabditis elegans is frequently used to explore cellular responses to development and stress, the most common assays for autophagy in this system lack tissue-level resolution. Different tissues within an organism have unique functional characteristics and likely vary in their reliance on autophagy under different conditions. To generate a tissue-specific map of autophagy in C. elegans we used a dual fluorescent protein (dFP) tag that releases monomeric fluorescent protein (mFP) upon arrival at the lysosome. Tissue-specific expression of dFP::LGG-1 revealed autophagic flux in all tissues, but mFP accumulation was most dramatic in the intestine. We also observed variable responses to stress: starvation increased autophagic mFP release in all tissues, whereas anoxia primarily increased intestinal autophagic flux. We observed autophagic flux with tagged LGG-1, LGG-2, and two autophagic cargo reporters: a soluble cytoplasmic protein, and mitochondrial TOMM-7. Finally, an increase in mFP in older worms was consistent with an age-dependent shift in proteostasis. These novel measures of autophagic flux in C. elegans reveal heterogeneity in autophagic response across tissues during stress and aging.

  2. Use of conserved key amino acid positions to morph protein folds.

    PubMed

    Reddy, Boojala V B; Li, Wilfred W; Bourne, Philip E

    2002-07-15

    By using three-dimensional (3D) structure alignments and a previously published method to determine Conserved Key Amino Acid Positions (CKAAPs) we propose a theoretical method to design mutations that can be used to morph the protein folds. The original Paracelsus challenge, met by several groups, called for the engineering of a stable but different structure by modifying less than 50% of the amino acid residues. We have used the sequences from the Protein Data Bank (PDB) identifiers 1ROP, and 2CRO, which were previously used in the Paracelsus challenge by those groups, and suggest mutation to CKAAPs to morph the protein fold. The total number of mutations suggested is less than 40% of the starting sequence theoretically improving the challenge results. From secondary structure prediction experiments of the proposed mutant sequence structures, we observe that each of the suggested mutant protein sequences likely folds to a different, non-native potentially stable target structure. These results are an early indicator that analyses using structure alignments leading to CKAAPs of a given structure are of value in protein engineering experiments. Copyright 2002 Wiley Periodicals, Inc.

  3. Honokiol induces autophagic cell death in malignant glioma through reactive oxygen species-mediated regulation of the p53/PI3K/Akt/mTOR signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chien-Ju

    Honokiol, an active constituent extracted from the bark of Magnolia officinalis, possesses anticancer effects. Apoptosis is classified as type I programmed cell death, while autophagy is type II programmed cell death. We previously proved that honokiol induces cell cycle arrest and apoptosis of U87 MG glioma cells. Subsequently in this study, we evaluated the effect of honokiol on autophagy of glioma cells and examined the molecular mechanisms. Administration of honokiol to mice with an intracranial glioma increased expressions of cleaved caspase 3 and light chain 3 (LC3)-II. Exposure of U87 MG cells to honokiol also induced autophagy in concentration- andmore » time-dependent manners. Results from the addition of 3-methyladenine, an autophagy inhibitor, and rapamycin, an autophagy inducer confirmed that honokiol-induced autophagy contributed to cell death. Honokiol decreased protein levels of PI3K, phosphorylated (p)-Akt, and p-mammalian target of rapamycin (mTOR) in vitro and in vivo. Pretreatment with a p53 inhibitor or transfection with p53 small interfering (si)RNA suppressed honokiol-induced autophagy by reversing downregulation of p-Akt and p-mTOR expressions. In addition, honokiol caused generation of reactive oxygen species (ROS), which was suppressed by the antioxidant, vitamin C. Vitamin C also inhibited honokiol-induced autophagic and apoptotic cell death. Concurrently, honokiol-induced alterations in levels of p-p53, p53, p-Akt, and p-mTOR were attenuated following vitamin C administration. Taken together, our data indicated that honokiol induced ROS-mediated autophagic cell death through regulating the p53/PI3K/Akt/mTOR signaling pathway. - Highlights: • Exposure of mice with intracranial gliomas to honokiol induces cell apoptosis and autophagy. • Honokiol triggers autophagy of human glioma cells via the PISK/AKT/mTOR signaling pathway. • P53 induces autophagy via regulating the AKT/mTOR pathway in honokiol-treated glioma cells. • ROS

  4. Nrbf2 protein suppresses autophagy by modulating Atg14L protein-containing Beclin 1-Vps34 complex architecture and reducing intracellular phosphatidylinositol-3 phosphate levels.

    PubMed

    Zhong, Yu; Morris, Deanna H; Jin, Lin; Patel, Mittul S; Karunakaran, Senthil K; Fu, You-Jun; Matuszak, Emily A; Weiss, Heidi L; Chait, Brian T; Wang, Qing Jun

    2014-09-19

    Autophagy is a tightly regulated lysosomal degradation pathway for maintaining cellular homeostasis and responding to stresses. Beclin 1 and its interacting proteins, including the class III phosphatidylinositol-3 kinase Vps34, play crucial roles in autophagy regulation in mammals. We identified nuclear receptor binding factor 2 (Nrbf2) as a Beclin 1-interacting protein from Becn1(-/-);Becn1-EGFP/+ mouse liver and brain. We also found that Nrbf2-Beclin 1 interaction required the N terminus of Nrbf2. We next used the human retinal pigment epithelial cell line RPE-1 as a model system and showed that transiently knocking down Nrbf2 by siRNA increased autophagic flux under both nutrient-rich and starvation conditions. To investigate the mechanism by which Nrbf2 regulates autophagy, we demonstrated that Nrbf2 interacted and colocalized with Atg14L, suggesting that Nrbf2 is a component of the Atg14L-containing Beclin 1-Vps34 complex. Moreover, ectopically expressed Nrbf2 formed cytosolic puncta that were positive for isolation membrane markers. These results suggest that Nrbf2 is involved in autophagosome biogenesis. Furthermore, we showed that Nrbf2 deficiency led to increased intracellular phosphatidylinositol-3 phosphate levels and diminished Atg14L-Vps34/Vps15 interactions, suggesting that Nrbf2-mediated Atg14L-Vps34/Vps15 interactions likely inhibit Vps34 activity. Therefore, we propose that Nrbf2 may interact with the Atg14L-containing Beclin 1-Vps34 protein complex to modulate protein-protein interactions within the complex, leading to suppression of Vps34 activity, autophagosome biogenesis, and autophagic flux. This work reveals a novel aspect of the intricate mechanism for the Beclin 1-Vps34 protein-protein interaction network to achieve precise control of autophagy. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Neuroprotective effects of hydrogen sulfide on sodium azide‑induced autophagic cell death in PC12 cells.

    PubMed

    Shan, Haiyan; Chu, Yang; Chang, Pan; Yang, Lijun; Wang, Yi; Zhu, Shaohua; Zhang, Mingyang; Tao, Luyang

    2017-11-01

    Sodium azide (NaN3) is a chemical of rapidly growing commercial importance. It is very acutely toxic and inhibits cytochrome oxidase (COX) by binding irreversibly to the heme cofactor. A previous study from our group demonstrated that hydrogen sulfide (H2S), the third endogenous gaseous mediator identified, had protective effects against neuronal damage induced by traumatic brain injury (TBI). It is well‑known that TBI can reduce the activity of COX and have detrimental effects on the central nervous system metabolism. Therefore, in the present study, it was hypothesized that H2S may provide neuroprotection against NaN3 toxicity. The current results revealed that NaN3 treatment induced non‑apoptotic cell death, namely autophagic cell death, in PC12 cells. Expression of the endogenous H2S‑producing enzymes, cystathionine‑β‑synthase and 3‑mercaptopyruvate sulfurtransferase, decreased in a dose‑dependent manner following NaN3 treatment. Pretreatment with H2S markedly attenuated the NaN3‑induced cell viability loss and autophagic cell death in a dose‑dependent manner. The present study suggests that H2S‑based strategies may have future potential in the prevention and/or therapy of neuronal damage following NaN3 exposure.

  6. High mobility group A1 protein modulates autophagy in cancer cells.

    PubMed

    Conte, Andrea; Paladino, Simona; Bianco, Gaia; Fasano, Dominga; Gerlini, Raffaele; Tornincasa, Mara; Renna, Maurizio; Fusco, Alfredo; Tramontano, Donatella; Pierantoni, Giovanna Maria

    2017-11-01

    High Mobility Group A1 (HMGA1) is an architectural chromatin protein whose overexpression is a feature of malignant neoplasias with a causal role in cancer initiation and progression. HMGA1 promotes tumor growth by several mechanisms, including increase of cell proliferation and survival, impairment of DNA repair and induction of chromosome instability. Autophagy is a self-degradative process that, by providing energy sources and removing damaged organelles and misfolded proteins, allows cell survival under stress conditions. On the other hand, hyper-activated autophagy can lead to non-apoptotic programmed cell death. Autophagy deregulation is a common feature of cancer cells in which has a complex role, showing either an oncogenic or tumor suppressor activity, depending on cellular context and tumor stage. Here, we report that depletion of HMGA1 perturbs autophagy by different mechanisms. HMGA1-knockdown increases autophagosome formation by constraining the activity of the mTOR pathway, a major regulator of autophagy, and transcriptionally upregulating the autophagy-initiating kinase Unc-51-like kinase 1 (ULK1). Consistently, functional experiments demonstrate that HMGA1 binds ULK1 promoter region and negatively regulates its transcription. On the other hand, the increase in autophagosomes is not associated to a proportionate increase in their maturation. Overall, the effects of HMGA1 depletion on autophagy are associated to a decrease in cell proliferation and ultimately impact on cancer cells viability. Importantly, silencing of ULK1 prevents the effects of HMGA1-knockdown on cellular proliferation, viability and autophagic activity, highlighting how these effects are, at least in part, mediated by ULK1. Interestingly, this phenomenon is not restricted to skin cancer cells, as similar results have been observed also in HeLa cells silenced for HMGA1. Taken together, these results clearly indicate HMGA1 as a key regulator of the autophagic pathway in cancer cells

  7. Hepatitis C virus core protein activates autophagy through EIF2AK3 and ATF6 UPR pathway-mediated MAP1LC3B and ATG12 expression

    PubMed Central

    Wang, Ji; Kang, Rongyan; Huang, He; Xi, Xueyan; Wang, Bei; Wang, Jianwei; Zhao, Zhendong

    2014-01-01

    HCV infection induces autophagy, but how this occurs is unclear. Here, we report the induction of autophagy by the structural HCV core protein and subsequent endoplasmic reticular (ER) stress in Huh7 hepatoma cells. During ER stress, both the EIF2AK3 and ATF6 pathways of the unfolded protein response (UPR) were activated by HCV core protein. Then, these pathways upregulated transcription factors ATF4 and DDIT3. The ERN1-XBP1 pathway was not activated. Through ATF4 in the EIF2AK3 pathway, the autophagy gene ATG12 was upregulated. DDIT3 upregulated the transcription of autophagy gene MAP1LC3B (LC3B) by directly binding to the –253 to –99 base region of the LC3B promoter, contributing to the development of autophagy. Collectively, these data suggest not only a novel role for the HCV core protein in autophagy but also offer new insight into detailed molecular mechanisms with respect to HCV-induced autophagy, specifically how downstream UPR molecules regulate key autophagic gene expression. PMID:24589849

  8. Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis

    DOE PAGES

    Marshall, Richard S.; Li, Faqiang; Gemperline, David C.; ...

    2015-05-21

    Autophagic turnover of intracellular constituents is critical for cellular housekeeping, nutrient recycling, and various aspects of growth and development in eukaryotes. In this paper, we show that autophagy impacts the other major degradative route involving the ubiquitin-proteasome system by eliminating 26S proteasomes, a process we termed proteaphagy. Using Arabidopsis proteasomes tagged with GFP, we observed their deposition into vacuoles via a route requiring components of the autophagy machinery. This transport can be initiated separately by nitrogen starvation and chemical or genetic inhibition of the proteasome, implying distinct induction mechanisms. Proteasome inhibition stimulates comprehensive ubiquitylation of the complex, with the ensuingmore » proteaphagy requiring the proteasome subunit RPN10, which can simultaneously bind both ATG8 and ubiquitin. Finally and collectively, we propose that Arabidopsis RPN10 acts as a selective autophagy receptor that targets inactive 26S proteasomes by concurrent interactions with ubiquitylated proteasome subunits/targets and lipidated ATG8 lining the enveloping autophagic membranes.« less

  9. L-Lysine suppresses myofibrillar protein degradation and autophagy in skeletal muscles of senescence-accelerated mouse prone 8.

    PubMed

    Sato, Tomonori; Ito, Yoshiaki; Nagasawa, Takashi

    2017-02-01

    Sarcopenia is a condition of the loss of muscle mass that is associated with aging and that increases the risk for bedridden state, thereby warranting studies of interventions that attenuate sarcopenia. Here the effects of 2-month dietary L-lysine (Lys) supplementation (1.5-3.0 %) on myofibrillar protein degradation and major proteolytic systems were investigated in senescence-accelerated mouse prone 8 (SAMP8). At 36 weeks of age, skeletal muscle and lean body mass was reduced in SAMP8 when compared with control senescence-accelerated mouse resistant 1 (SAMR1). The myofibrillar protein degradation, which was evaluated by the release of 3-methylhistidine, was stimulated in SAMP8, and the autophagy activity, which was evaluated by light chain 3-II, was stimulated in the skeletal muscle of SAMP8. The activation of ubiquitin-proteasome system was not observed in the muscles of SAMP8. However, myofibrillar protein degradation and autophagic activity in skeletal muscles of SAMP8 were suppressed by dietary intake of 3.0 % Lys. The present data indicate that myofibrillar protein degradation by bulk autophagy is stimulated in the skeletal muscles of SAMP8 and that dietary Lys supplementation attenuates sarcopenia in SAMP8 by suppressing autophagic proteolysis.

  10. Interplay between the key proteins of serotonin system in SSRI antidepressants efficacy.

    PubMed

    Kulikov, Alexander V; Gainetdinov, Raul R; Ponimaskin, Evgeni; Kalueff, Allan V; Naumenko, Vladimir S; Popova, Nina K

    2018-04-01

    Selective serotonin reuptake inhibitors (SSRIs) are the most effective and most used antidepressant drugs. Acting by inhibiting serotonin (5-HT) transporter, SSRIs display a typical 3-4-week delay in their therapeutic effects, with nearly 40% of depressed patients remaining treatment-resistant. Recent evidence suggests complex interplay between 5-HT receptors and key proteins of 5-HT metabolism in molecular mechanisms of such delay and resistance to SSRIs. Area covered: This paper concentrates on the interplay between 5-HT receptors in the delay of therapeutic effect of SSRIs, and the interaction between tryptophan hydroxylase 2 and 5-HT transporter in the SSRI resistance. Specifically, it discusses: (1) the data on the association between antidepressant drug efficacy and genetically defined characteristics of key proteins in the 5-HT signaling (TPH2, MAOA, SERT and 5-HT 1A receptor), (2) the effect of dimerization of 5-HT 7 and 5-HT 1A receptors on the internalization and functioning of 5-HT 1A presynaptic receptors, (3) the role of Tph2 deficiency in the resistance to SSRIs treatment. We shift the emphasis from individual proteins to their interactions in explaining antidepressant action of SSRI. Expert opinion: These interactions should be considered when developing more effective antidepressant drugs as well as for predicting and improving the efficacy of antidepressant therapies.

  11. Viral metagenomics, protein structure, and reverse genetics: Key strategies for investigating coronaviruses.

    PubMed

    Johnson, Bryan A; Graham, Rachel L; Menachery, Vineet D

    2018-04-01

    Viral metagenomics, modeling of protein structure, and manipulation of viral genetics are key approaches that have laid the foundations of our understanding of coronavirus biology. In this review, we discuss the major advances each method has provided and discuss how future studies should leverage these strategies synergistically to answer novel questions. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The Prediction of Key Cytoskeleton Components Involved in Glomerular Diseases Based on a Protein-Protein Interaction Network.

    PubMed

    Ding, Fangrui; Tan, Aidi; Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie

    2016-01-01

    Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet

  13. The Prediction of Key Cytoskeleton Components Involved in Glomerular Diseases Based on a Protein-Protein Interaction Network

    PubMed Central

    Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie

    2016-01-01

    Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet

  14. Adipose tissue conditioned media support macrophage lipid-droplet biogenesis by interfering with autophagic flux.

    PubMed

    Bechor, Sapir; Nachmias, Dikla; Elia, Natalie; Haim, Yulia; Vatarescu, Maayan; Leikin-Frenkel, Alicia; Gericke, Martin; Tarnovscki, Tanya; Las, Guy; Rudich, Assaf

    2017-09-01

    Obesity promotes the biogenesis of adipose tissue (AT) foam cells (FC), which contribute to AT insulin resistance. Autophagy, an evolutionarily-conserved house-keeping process, was implicated in cellular lipid handling by either feeding and/or degrading lipid-droplets (LDs). We hypothesized that beyond phagocytosis of dead adipocytes, AT-FC biogenesis is supported by the AT microenvironment by regulating autophagy. Non-polarized ("M0") RAW264.7 macrophages exposed to AT conditioned media (AT-CM) exhibited a markedly enhanced LDs biogenesis rate compared to control cells (8.3 Vs 0.3 LDs/cells/h, p<0.005). Autophagic flux was decreased by AT-CM, and fluorescently following autophagosomes over time revealed ~20% decline in new autophagic vesicles' formation rate, and 60-70% decrease in autophagosomal growth rate, without marked alternations in the acidic lysosomal compartment. Suppressing autophagy by either targeting autophagosome formation (pharmacologically, with 3-methyladenine or genetically, with Atg12±Atg7-siRNA), decreased the rate of LD formation induced by oleic acid. Conversely, interfering with late autophago-lysosomal function, either pharmacologically with bafilomycin-A1, chloroquine or leupeptin, enhanced LD formation in macrophages without affecting LD degradation rate. Similarly enhanced LD biogenesis rate was induced by siRNA targeting Lamp-1 or the V-ATPase. Collectively, we propose that secreted products from AT interrupt late autophagosome maturation in macrophages, supporting enhanced LDs biogenesis and AT-FC formation, thereby contributing to AT dysfunction in obesity. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  15. Characterization of Autophagic Responses in Drosophila melanogaster.

    PubMed

    Xu, T; Kumar, S; Denton, D

    2017-01-01

    Drosophila is an excellent model system for studying autophagy during animal development due to the availability of genetic reagents and opportunity for in vivo cell biological analysis. The regulation and mechanism of autophagy are highly evolutionarily conserved and the role of autophagy has been characterized during various stages of Drosophila development as well as following starvation. Studies in Drosophila have revealed novel insights into the role of distinct components of the autophagy machinery. This chapter describes protocols for examining autophagy during Drosophila development. A crucial step in the induction of autophagy is the incorporation of Atg8a into the autophagosome. This can be measured as autophagic puncta using live fluorescent imaging, immunostaining, or immunoblot analysis of LC3/Atg8a processing. The level of autophagy can also be examined using other specific components of the autophagy pathway as markers detected by immunofluorescent imaging. Based on the distinct morphology of autophagy, it can also be examined by transmission electron microscopy. In addition, one of the advantages of using Drosophila as a model is the ability to undertake genetic analysis of individual components of the autophagy machinery. Current approaches that can be used to monitor autophagy, including the overall flux and individual steps in Drosophila melanogaster, will be discussed. © 2017 Elsevier Inc. All rights reserved.

  16. Comparative proteomics analysis of Bacillus amyloliquefaciens SQR9 revealed the key proteins involved in in situ root colonization.

    PubMed

    Qiu, Meihua; Xu, Zhihui; Li, Xingxing; Li, Qing; Zhang, Nan; Shen, Qirong; Zhang, Ruifu

    2014-12-05

    Bacillus Amyloliquefaciens SQR9 is a well-investigated plant growth-promoting rhizobacteria with strong root colonization capability. To identify the key proteins involved in in situ root colonization and biofilm formation, the proteomic profiles of planktonic and root colonized SQR9 cells were compared. A total of 755 proteins were identified, of which 78 and 95 proteins were significantly increased and deceased, respectively, when SQR9 was colonized on the root. The proteins that were closely affiliated with the root colonization belonged to the functional categories of biocontrol, detoxification, biofilm formation, cell motility and chemotaxis, transport, and degradation of plant polysaccharides. A two-component system protein ResE was increased 100-fold when compared to the planktonic status; impairment of the resE gene postponed the formation of cell biofilm and decreased the root colonization capability, which may be regulated through the spo0A-sinI-yqxM pathway. The SQR9 proteomic data provide valuable clues for screening key proteins in the plant-rhizobacteria interaction.

  17. Charge Segregation and Low Hydrophobicity Are Key Features of Ribosomal Proteins from Different Organisms*

    PubMed Central

    Fedyukina, Daria V.; Jennaro, Theodore S.; Cavagnero, Silvia

    2014-01-01

    Ribosomes are large and highly charged macromolecular complexes consisting of RNA and proteins. Here, we address the electrostatic and nonpolar properties of ribosomal proteins that are important for ribosome assembly and interaction with other cellular components and may influence protein folding on the ribosome. We examined 50 S ribosomal subunits from 10 species and found a clear distinction between the net charge of ribosomal proteins from halophilic and non-halophilic organisms. We found that ∼67% ribosomal proteins from halophiles are negatively charged, whereas only up to ∼15% of ribosomal proteins from non-halophiles share this property. Conversely, hydrophobicity tends to be lower for ribosomal proteins from halophiles than for the corresponding proteins from non-halophiles. Importantly, the surface electrostatic potential of ribosomal proteins from all organisms, especially halophiles, has distinct positive and negative regions across all the examined species. Positively and negatively charged residues of ribosomal proteins tend to be clustered in buried and solvent-exposed regions, respectively. Hence, the majority of ribosomal proteins is characterized by a significant degree of intramolecular charge segregation, regardless of the organism of origin. This key property enables the ribosome to accommodate proteins within its complex scaffold regardless of their overall net charge. PMID:24398678

  18. Methods for Studying Interactions Between Atg8/LC3/GABARAP and LIR-Containing Proteins.

    PubMed

    Johansen, T; Birgisdottir, Å B; Huber, J; Kniss, A; Dötsch, V; Kirkin, V; Rogov, V V

    2017-01-01

    LC3/GABARAP proteins (LC3/GABARAPs) are mammalian orthologues of yeast Atg8, small ubiquitin (Ub)-like proteins (UBLs) whose covalent attachment to lipid membranes is crucial for the growth and closure of the double membrane vesicle called the autophagosome. In the past decade, it was demonstrated that Atg8/LC3/GABARAPs are also required for autophagic degradation of cargos in a selective fashion. Cargo selectivity is ensured by receptor proteins, such as p62/SQSTM1, NBR1, Cue5, Atg19, NIX, Atg32, NCOA4, and FAM134B, which simultaneously bind Atg8/LC3/GABARAPs and the cargo together, thereby linking the core autophagic machinery to the target structure: a protein, an organelle, or a pathogen. LC3-interacting regions (LIRs) are short linear motifs within selective autophagy receptors and some other structural and signaling proteins (e.g., ULK1, ATG13, FIP200, and Dvl2), which mediate binding to Atg8/LC3/GABARAPs. Identification and characterization of LIR-containing proteins have provided important insights into the biology of the autophagy pathway, and studying their interactions with the core autophagy machinery represents a growing area of autophagy research. Here, we present protocols for the identification of LIR-containing proteins, i.e., by yeast-two-hybrid screening, glutathione S-transferase (GST) pulldown experiments, and peptide arrays. The use of two-dimensional peptide arrays also represents a powerful method to identify the residues of the LIR motif that are critical for binding. We also describe a biophysical method for studying interactions between Atg8/LC3/GABARAP and LIR-containing proteins and a protocol for preparation and purification of LIR peptides. © 2017 Elsevier Inc. All rights reserved.

  19. Anti-autophagic and anti-apoptotic effects of memantine in a SH-SY5Y cell model of Alzheimer's disease via mammalian target of rapamycin-dependent and -independent pathways

    PubMed Central

    SONG, GUIJUN; LI, YU; LIN, LULU; CAO, YUNPENG

    2015-01-01

    Memantine non-competitively blocks the N-methyl-d-aspartate receptor in order to inhibit beta-amyloid (Aβ) secretion, and has been used to treat moderate-to-severe Alzheimer's disease (AD). However, the mechanisms underlying the role of memantine in the autophagy and apoptosis of neuronal cells in AD, as well as the association between neuronal autophagy and apoptosis have yet to be elucidated. The present study aimed to establish an AD cell model overexpressing the 695-amino-acid Swedish mutant of Aβ precursor protein (APP695swe) in order to observe the effects of memantine on the cell viability, autophagy and apoptosis of SH-SY5Y cells in the AD model, and to investigate the associated underlying mechanisms. A pcDNA3.1-APP695 plasmid was transfected into the SH-SY5Y cells. Reverse transcription-quantitative polymerase chain reaction and western blot analyses demonstrated that the AD cell model was successfully established. MTT assays demonstrated that memantine was able to upregulate neuronal cell survival, and acridine orange staining and flow cytometry demonstrated that memantine (5 µM) was able to inhibit neuronal autophagy and apoptosis. Following neuronal autophagy induction by rapamycin, cell apoptosis rates increased significantly. Further experiments revealed that memantine was able to upregulate the expression of signaling molecules phosphorylated (p)-phosphoinositide 3-kinase, p-Akt and p-mammalian target of rapamycin (mTOR), and also inhibited the phosphorylation of the B-cell lymphoma 2/Beclin-1 complex via mitogen-activated protein kinase 8. In conclusion, the results of the present study demonstrated that in the AD cell model, autophagy was able to promote apoptosis. Memantine exerted anti-autophagic and anti-apoptotic functions, and mTOR-dependent as well as-independent autophagic signaling pathways were involved in this process. Therefore, these results of the present study strongly supported the use of memantine as a potential therapeutic

  20. The Proteins API: accessing key integrated protein and genome information

    PubMed Central

    Antunes, Ricardo; Alpi, Emanuele; Gonzales, Leonardo; Liu, Wudong; Luo, Jie; Qi, Guoying; Turner, Edd

    2017-01-01

    Abstract The Proteins API provides searching and programmatic access to protein and associated genomics data such as curated protein sequence positional annotations from UniProtKB, as well as mapped variation and proteomics data from large scale data sources (LSS). Using the coordinates service, researchers are able to retrieve the genomic sequence coordinates for proteins in UniProtKB. This, the LSS genomics and proteomics data for UniProt proteins is programmatically only available through this service. A Swagger UI has been implemented to provide documentation, an interface for users, with little or no programming experience, to ‘talk’ to the services to quickly and easily formulate queries with the services and obtain dynamically generated source code for popular programming languages, such as Java, Perl, Python and Ruby. Search results are returned as standard JSON, XML or GFF data objects. The Proteins API is a scalable, reliable, fast, easy to use RESTful services that provides a broad protein information resource for users to ask questions based upon their field of expertise and allowing them to gain an integrated overview of protein annotations available to aid their knowledge gain on proteins in biological processes. The Proteins API is available at (http://www.ebi.ac.uk/proteins/api/doc). PMID:28383659

  1. Identification of a key structural element for protein folding within beta-hairpin turns.

    PubMed

    Kim, Jaewon; Brych, Stephen R; Lee, Jihun; Logan, Timothy M; Blaber, Michael

    2003-05-09

    Specific residues in a polypeptide may be key contributors to the stability and foldability of the unique native structure. Identification and prediction of such residues is, therefore, an important area of investigation in solving the protein folding problem. Atypical main-chain conformations can help identify strains within a folded protein, and by inference, positions where unique amino acids may have a naturally high frequency of occurrence due to favorable contributions to stability and folding. Non-Gly residues located near the left-handed alpha-helical region (L-alpha) of the Ramachandran plot are a potential indicator of structural strain. Although many investigators have studied mutations at such positions, no consistent energetic or kinetic contributions to stability or folding have been elucidated. Here we report a study of the effects of Gly, Ala and Asn substitutions found within the L-alpha region at a characteristic position in defined beta-hairpin turns within human acidic fibroblast growth factor, and demonstrate consistent effects upon stability and folding kinetics. The thermodynamic and kinetic data are compared to available data for similar mutations in other proteins, with excellent agreement. The results have identified that Gly at the i+3 position within a subset of beta-hairpin turns is a key contributor towards increasing the rate of folding to the native state of the polypeptide while leaving the rate of unfolding largely unchanged.

  2. Clusterin in the protein corona plays a key role in the stealth effect of nanoparticles against phagocytes.

    PubMed

    Aoyama, Michihiko; Hata, Katsutomo; Higashisaka, Kazuma; Nagano, Kazuya; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2016-11-25

    In biological fluids, nanoparticles interact with biological components such as proteins, and a layer called the "protein corona" forms around the nanoparticles. It is believed that the composition of the protein corona affects the cellular uptake and in vivo biodistribution of nanoparticles; however, the key proteins of the protein corona that control the biological fate of nanoparticles remain unclear. Recently, it was reported that clusterin binding to pegylated nanoparticles is important for the stealth effect of pegylated nanoparticles in phagocytes. However, the effect of clusterin on non-pegylated nanoparticles is unknown, although it is known that clusterin is present in the protein corona of non-pegylated nanoparticles. Here, we assessed the stealth effect of clusterin in the corona of non-pegylated silver nanoparticles and silica nanoparticles. We found that serum- and plasma-protein corona inhibited the cellular uptake of silver nanoparticles and silica nanoparticles in phagocytes and that the plasma-protein corona showed a greater stealth effect compared with the serum-protein corona. Clusterin was present in both the serum- and plasma-protein corona, but was present at a higher level in the plasma-protein corona than in the serum-protein corona. Clusterin binding to silver nanoparticles and silica nanoparticles suppressed the cellular uptake of nanoparticles in human macrophage-like cells (THP-1 cells). Although further studies are required to determine how clusterin suppresses non-specific cellular uptake in phagocytes, our data suggest that clusterin plays a key role in the stealth effect of not only pegylated nanoparticles but also non-pegylated nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The Proteins API: accessing key integrated protein and genome information.

    PubMed

    Nightingale, Andrew; Antunes, Ricardo; Alpi, Emanuele; Bursteinas, Borisas; Gonzales, Leonardo; Liu, Wudong; Luo, Jie; Qi, Guoying; Turner, Edd; Martin, Maria

    2017-07-03

    The Proteins API provides searching and programmatic access to protein and associated genomics data such as curated protein sequence positional annotations from UniProtKB, as well as mapped variation and proteomics data from large scale data sources (LSS). Using the coordinates service, researchers are able to retrieve the genomic sequence coordinates for proteins in UniProtKB. This, the LSS genomics and proteomics data for UniProt proteins is programmatically only available through this service. A Swagger UI has been implemented to provide documentation, an interface for users, with little or no programming experience, to 'talk' to the services to quickly and easily formulate queries with the services and obtain dynamically generated source code for popular programming languages, such as Java, Perl, Python and Ruby. Search results are returned as standard JSON, XML or GFF data objects. The Proteins API is a scalable, reliable, fast, easy to use RESTful services that provides a broad protein information resource for users to ask questions based upon their field of expertise and allowing them to gain an integrated overview of protein annotations available to aid their knowledge gain on proteins in biological processes. The Proteins API is available at (http://www.ebi.ac.uk/proteins/api/doc). © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Phosphate homeostasis in the yeast Saccharomyces cerevisiae, the key role of the SPX domain-containing proteins.

    PubMed

    Secco, David; Wang, Chuang; Shou, Huixia; Whelan, James

    2012-02-17

    In the yeast Saccharomyces cerevisiae, a working model for nutrient homeostasis in eukaryotes, inorganic phosphate (Pi) homeostasis is regulated by the PHO pathway, a set of phosphate starvation induced genes, acting to optimize Pi uptake and utilization. Among these, a subset of proteins containing the SPX domain has been shown to be key regulators of Pi homeostasis. In this review, we summarize the recent progresses in elucidating the mechanisms controlling Pi homeostasis in yeast, focusing on the key roles of the SPX domain-containing proteins in these processes, as well as describing the future challenges and opportunities in this fast-moving field. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Fullerenol Cytotoxicity in Kidney Cells is Associated with Cytoskeleton Disruption, Autophagic Vacuole Accumulation, and Mitochondrial Dysfunction

    PubMed Central

    Johnson-Lyles, Denise N.; Peifley, Kimberly; Lockett, Stephen; Neun, Barry W.; Hansen, Matthew; Clogston, Jeffrey; Stern, Stephan T.; McNeil, Scott E.

    2010-01-01

    Water soluble fullerenes, such as the hydroxylated fullerene, fullerenol (C60OHx), are currently under development for diagnostic and therapeutic biomedical applications in the field of nanotechnology. These molecules have been shown to undergo urinary clearance, yet there is limited data available on their renal biocompatibility. Here we examine the biological responses of renal proximal tubule cells (LLC-PK1) exposed to fullerenol. Fullerenol was found to be cytotoxic in the millimolar range, with viability assessed by the sulforhodamine B and trypan blue assays. Fullerenol-induced cell death was associated with cytoskeleton disruption and autophagic vacuole accumulation. Interaction with the autophagy pathway was evaluated in vitro by Lysotracker Red dye uptake, LC3-II marker expression and TEM. Fullerenol treatment also resulted in coincident loss of cellular mitochondrial membrane potential and ATP depletion, as measured by the Mitotracker Red dye and the luciferin-luciferase assays, respectively. Fullerenol-induced ATP depletion and loss of mitochondrial potential were partially ameliorated by co-treatment with the autophagy inhibitor, 3-methyladenine. In vitro fullerenol treatment did not result in appreciable oxidative stress, as measured by lipid peroxide and glutathione content. Based on these data, it is hypothesized that cytoskeleton disruption may be an initiating event in fullerenol cytotoxicity, leading to subsequent autophagy dysfunction and loss of mitochondrial capacity. As nanoparticle-induced cytoskeleton disruption, autophagic vacuole accumulation and mitochondrial dysfunction are commonly reported in the literature, the proposed mechanism may be relevant for a variety of nanomaterials. PMID:20713077

  6. The in vitro cleavage of the hAtg proteins by cell death proteases.

    PubMed

    Norman, Joanna M; Cohen, Gerald M; Bampton, Edward T W

    2010-11-01

    It is becoming increasingly clear that there is crosstalk between the apoptotic and autophagic pathways, with autophagy helping to contribute to cell death by providing energy to allow the energy-requiring programmed cell death process to complete, as well as degrading cellular material in its own right. Recent evidence has suggested that Atg proteins can themselves be targets of caspases, providing potential regulation of autophagy as well as uncovering novel functions for fragments derived from Atg proteins. However, to date there has not been a detailed examination of which Atg proteins may be the targets of which death proteases. We show that the majority of human Atg (hAtg) proteins can be cleaved by calpain 1, which is activated in some apoptotic paradigms, as well as other forms of death. We also show that hAtg3 is cleaved by caspases-3, -6 and -8, hAtg6 (Beclin 1) is cleaved by caspase-3 and -6, while hAtg9, hAtg7 and the hAtg4 homologues can be cleaved by caspase-3. Cleavage of Beclin 1 was also seen in apoptosis of HeLa cells induced by staurosporine and TRAIL, along with cleavage of Atg3 and Atg4C. There were subtle effects of caspase inhibition on GFP-LC3 lipidation but more marked effects on the formation of GFP-LC3 puncta (a marker of autophagosome formation) and p62 degradation, indicating that caspase cleavage of autophagy-related proteins can affect the autophagic process. Notably we show that p62 is a target for caspase-6 and -8 cleavage.

  7. Attenuation of iron-binding proteins in ARPE-19 cells reduces their resistance to oxidative stress.

    PubMed

    Karlsson, Markus; Kurz, Tino

    2016-09-01

    Oxidative stress-related damage to retinal pigment epithelial (RPE) cells is an important feature in the development of age-related macular degeneration. Iron-catalysed intralysosomal production of hydroxyl radicals is considered a major pathogenic factor, leading to lipofuscin formation with ensuing depressed cellular autophagic capacity, lysosomal membrane permeabilization and apoptosis. Previously, we have shown that cultured immortalized human RPE (ARPE-19) cells are extremely resistant to exposure to bolus doses of hydrogen peroxide and contain considerable amounts of the iron-binding proteins metallothionein (MT), heat-shock protein 70 (HSP70) and ferritin (FT). According to previous findings, autophagy of these proteins depresses lysosomal redox-active iron. The aim of this study was to investigate whether up- or downregulation of these proteins would affect the resistance of ARPE-19 cells to oxidative stress. The sensitivity of ARPE-19 cells to H2 O2 exposure was tested following upregulation of MT, HSP70 and/or FT by pretreatment with ZnSO4 , heat shock or FeCl3 , as well as siRNA-mediated downregulation of the same proteins. Upregulation of MT, HSP70 and FT did not improve survival following exposure to H2 O2 . This was interpreted as existence of an already maximal protection. Combined siRNA-mediated attenuation of both FT chains (H and L), or simultaneous downregulation of all three proteins, made the cells significantly more susceptible to oxidative stress confirming the importance of iron-binding proteins. The findings support our hypothesis that the oxidative stress resistance exhibited by RPE cells may be explained by a high autophagic influx of iron-binding proteins that would keep levels of redox-active lysosomal iron low. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  8. Pharmacological activation of autophagy favors the clearing of intracellular aggregates of misfolded prion protein peptide to prevent neuronal death.

    PubMed

    Thellung, Stefano; Scoti, Beatrice; Corsaro, Alessandro; Villa, Valentina; Nizzari, Mario; Gagliani, Maria Cristina; Porcile, Carola; Russo, Claudio; Pagano, Aldo; Tacchetti, Carlo; Cortese, Katia; Florio, Tullio

    2018-02-07

    According to the "gain-of-toxicity mechanism", neuronal loss during cerebral proteinopathies is caused by accumulation of aggregation-prone conformers of misfolded cellular proteins, although it is still debated which aggregation state actually corresponds to the neurotoxic entity. Autophagy, originally described as a variant of programmed cell death, is now emerging as a crucial mechanism for cell survival in response to a variety of cell stressors, including nutrient deprivation, damage of cytoplasmic organelles, or accumulation of misfolded proteins. Impairment of autophagic flux in neurons often associates with neurodegeneration during cerebral amyloidosis, suggesting a role in clearing neurons from aggregation-prone misfolded proteins. Thus, autophagy may represent a target for innovative therapies. In this work, we show that alterations of autophagy progression occur in neurons following in vitro exposure to the amyloidogenic and neurotoxic prion protein-derived peptide PrP90-231. We report that the increase of autophagic flux represents a strategy adopted by neurons to survive the intracellular accumulation of misfolded PrP90-231. In particular, PrP90-231 internalization in A1 murine mesencephalic neurons occurs in acidic structures, showing electron microscopy hallmarks of autophagosomes and autophagolysosomes. However, these structures do not undergo resolution and accumulate in cytosol, suggesting that, in the presence of PrP90-231, autophagy is activated but its progression is impaired; the inability to clear PrP90-231 via autophagy induces cytotoxicity, causing impairment of lysosomal integrity and cytosolic diffusion of hydrolytic enzymes. Conversely, the induction of autophagy by pharmacological  blockade of mTOR kinase or trophic factor deprivation restored autophagy resolution, reducing intracellular PrP90-231 accumulation and neuronal death. Taken together, these data indicate that PrP90-231 internalization induces an autophagic defensive response

  9. Key Structures and Interactions for Binding of Mycobacterium tuberculosis Protein Kinase B Inhibitors from Molecular Dynamics Simulation.

    PubMed

    Punkvang, Auradee; Kamsri, Pharit; Saparpakorn, Patchreenart; Hannongbua, Supa; Wolschann, Peter; Irle, Stephan; Pungpo, Pornpan

    2015-07-01

    Substituted aminopyrimidine inhibitors have recently been introduced as antituberculosis agents. These inhibitors show impressive activity against protein kinase B, a Ser/Thr protein kinase that is essential for cell growth of M. tuberculosis. However, up to now, X-ray structures of the protein kinase B enzyme complexes with the substituted aminopyrimidine inhibitors are currently unavailable. Consequently, structural details of their binding modes are questionable, prohibiting the structural-based design of more potent protein kinase B inhibitors in the future. Here, molecular dynamics simulations, in conjunction with molecular mechanics/Poisson-Boltzmann surface area binding free-energy analysis, were employed to gain insight into the complex structures of the protein kinase B inhibitors and their binding energetics. The complex structures obtained by the molecular dynamics simulations show binding free energies in good agreement with experiment. The detailed analysis of molecular dynamics results shows that Glu93, Val95, and Leu17 are key residues responsible to the binding of the protein kinase B inhibitors. The aminopyrazole group and the pyrimidine core are the crucial moieties of substituted aminopyrimidine inhibitors for interaction with the key residues. Our results provide a structural concept that can be used as a guide for the future design of protein kinase B inhibitors with highly increased antagonistic activity. © 2014 John Wiley & Sons A/S.

  10. Network-Based Methods for Identifying Key Active Proteins in the Extracellular Electron Transfer Process in Shewanella oneidensis MR-1.

    PubMed

    Ding, Dewu; Sun, Xiao

    2018-01-16

    Shewanella oneidensis MR-1 can transfer electrons from the intracellular environment to the extracellular space of the cells to reduce the extracellular insoluble electron acceptors (Extracellular Electron Transfer, EET). Benefiting from this EET capability, Shewanella has been widely used in different areas, such as energy production, wastewater treatment, and bioremediation. Genome-wide proteomics data was used to determine the active proteins involved in activating the EET process. We identified 1012 proteins with decreased expression and 811 proteins with increased expression when the EET process changed from inactivation to activation. We then networked these proteins to construct the active protein networks, and identified the top 20 key active proteins by network centralization analysis, including metabolism- and energy-related proteins, signal and transcriptional regulatory proteins, translation-related proteins, and the EET-related proteins. We also constructed the integrated protein interaction and transcriptional regulatory networks for the active proteins, then found three exclusive active network motifs involved in activating the EET process-Bi-feedforward Loop, Regulatory Cascade with a Feedback, and Feedback with a Protein-Protein Interaction (PPI)-and identified the active proteins involved in these motifs. Both enrichment analysis and comparative analysis to the whole-genome data implicated the multiheme c -type cytochromes and multiple signal processing proteins involved in the process. Furthermore, the interactions of these motif-guided active proteins and the involved functional modules were discussed. Collectively, by using network-based methods, this work reported a proteome-wide search for the key active proteins that potentially activate the EET process.

  11. Heat Shock Proteins and Autophagy Pathways in Neuroprotection: From Molecular Bases to Pharmacological Interventions

    PubMed Central

    Penke, Botond; Bogár, Ferenc; Sántha, Miklós; Tóth, Melinda E.; Vígh, László

    2018-01-01

    Neurodegenerative diseases (NDDs) such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease (HD), amyotrophic lateral sclerosis, and prion diseases are all characterized by the accumulation of protein aggregates (amyloids) into inclusions and/or plaques. The ubiquitous presence of amyloids in NDDs suggests the involvement of disturbed protein homeostasis (proteostasis) in the underlying pathomechanisms. This review summarizes specific mechanisms that maintain proteostasis, including molecular chaperons, the ubiquitin-proteasome system (UPS), endoplasmic reticulum associated degradation (ERAD), and different autophagic pathways (chaperon mediated-, micro-, and macro-autophagy). The role of heat shock proteins (Hsps) in cellular quality control and degradation of pathogenic proteins is reviewed. Finally, putative therapeutic strategies for efficient removal of cytotoxic proteins from neurons and design of new therapeutic targets against the progression of NDDs are discussed. PMID:29361800

  12. Cold PSM, but not TRAIL, triggers autophagic cell death: A therapeutic advantage of PSM over TRAIL.

    PubMed

    Ito, Tomohisa; Ando, Takashi; Suzuki-Karasaki, Miki; Tokunaga, Tomohiko; Yoshida, Yukihiro; Ochiai, Toyoko; Tokuhashi, Yasuaki; Suzuki-Karasaki, Yoshihiro

    2018-05-21

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and cold plasma-stimulated medium (PSM) are promising novel anticancer tools due to their strong anticancer activities and high tumor-selectivity. The present study demonstrated that PSM and TRAIL may trigger autophagy in human malignant melanoma and osteosarcoma cells. Live-cell imaging revealed that even under nutritional and stress-free conditions, these cells possessed a substantial level of autophagosomes, which were localized in the cytoplasm separately from tubular mitochondria. In response to cytotoxic levels of PSM, the mitochondria became highly fragmented, and aggregated and colocalized with the autophagosomes. The cytotoxic effects of PSM were suppressed in response to various pharmacological autophagy inhibitors, including 3-methyladenine (3-MA) and bafilomycin A1, thus indicating the induction of autophagic cell death (ACD). Lethal levels of PSM also resulted in non-apoptotic, non-autophagic cell death in a reactive oxygen species-dependent manner under certain circumstances. Furthermore, TRAIL exhibited only a modest cytotoxicity toward these tumor cells, and did not induce ACD and mitochondrial aberration. The combined use of TRAIL and subtoxic concentrations of 3-MA resulted in decreased basal autophagy, increased mitochondrial aberration, colocalization with autophagosomes and apoptosis. These results indicated that PSM may induce ACD, whereas TRAIL may trigger cytoprotective autophagy that compromises apoptosis. To the best of our knowledge, the present study is the first to demonstrate that PSM can induce ACD in human cancer cells. These findings provide a rationale for the advantage of PSM over TRAIL in the destruction of apoptosis-resistant melanoma and osteosarcoma cells.

  13. Autophagy is induced through the ROS-TP53-DRAM1 pathway in response to mitochondrial protein synthesis inhibition.

    PubMed

    Xie, Xiaolei; Le, Li; Fan, Yanxin; Lv, Lin; Zhang, Junjie

    2012-07-01

    Mitoribosome in mammalian cells is responsible for synthesis of 13 mtDNA-encoded proteins, which are integral parts of four mitochondrial respiratory chain complexes (I, III, IV and V). ERAL1 is a nuclear-encoded GTPase important for the formation of the 28S small mitoribosomal subunit. Here, we demonstrate that knockdown of ERAL1 by RNA interference inhibits mitochondrial protein synthesis and promotes reactive oxygen species (ROS) generation, leading to autophagic vacuolization in HeLa cells. Cells that lack ERAL1 expression showed a significant conversion of LC3-I to LC3-II and an enhanced accumulation of autophagic vacuoles carrying the LC3 marker, all of which were blocked by the autophagy inhibitor 3-MA as well as by the ROS scavenger NAC. Inhibition of mitochondrial protein synthesis either by ERAL1 siRNA or chloramphenicol (CAP), a specific inhibitor of mitoribosomes, induced autophagy in HTC-116 TP53 (+/+) cells, but not in HTC-116 TP53 (-/-) cells, indicating that tumor protein 53 (TP53) is essential for the autophagy induction. The ROS elevation resulting from mitochondrial protein synthesis inhibition induced TP53 expression at transcriptional levels by enhancing TP53 promoter activity, and increased TP53 protein stability by suppressing TP53 ubiquitination through MAPK14/p38 MAPK-mediated TP53 phosphorylation. Upregulation of TP53 and its downstream target gene DRAM1, but not CDKN1A/p21, was required for the autophagy induction in ERAL1 siRNA or CAP-treated cells. Altogether, these data indicate that autophagy is induced through the ROS-TP53-DRAM1 pathway in response to mitochondrial protein synthesis inhibition.

  14. Three key residues form a critical contact network in a protein folding transition state

    NASA Astrophysics Data System (ADS)

    Vendruscolo, Michele; Paci, Emanuele; Dobson, Christopher M.; Karplus, Martin

    2001-02-01

    Determining how a protein folds is a central problem in structural biology. The rate of folding of many proteins is determined by the transition state, so that a knowledge of its structure is essential for understanding the protein folding reaction. Here we use mutation measurements-which determine the role of individual residues in stabilizing the transition state-as restraints in a Monte Carlo sampling procedure to determine the ensemble of structures that make up the transition state. We apply this approach to the experimental data for the 98-residue protein acylphosphatase, and obtain a transition-state ensemble with the native-state topology and an average root-mean-square deviation of 6Å from the native structure. Although about 20 residues with small positional fluctuations form the structural core of this transition state, the native-like contact network of only three of these residues is sufficient to determine the overall fold of the protein. This result reveals how a nucleation mechanism involving a small number of key residues can lead to folding of a polypeptide chain to its unique native-state structure.

  15. NFκB is a central regulator of protein quality control in response to protein aggregation stresses via autophagy modulation

    PubMed Central

    Nivon, Mathieu; Fort, Loïc; Muller, Pascale; Richet, Emma; Simon, Stéphanie; Guey, Baptiste; Fournier, Maëlenn; Arrigo, André-Patrick; Hetz, Claudio; Atkin, Julie D.; Kretz-Remy, Carole

    2016-01-01

    During cell life, proteins often misfold, depending on particular mutations or environmental changes, which may lead to protein aggregates that are toxic for the cell. Such protein aggregates are the root cause of numerous diseases called “protein conformational diseases,” such as myofibrillar myopathy and familial amyotrophic lateral sclerosis. To fight against aggregates, cells are equipped with protein quality control mechanisms. Here we report that NFκB transcription factor is activated by misincorporation of amino acid analogues into proteins, inhibition of proteasomal activity, expression of the R120G mutated form of HspB5 (associated with myofibrillar myopathy), or expression of the G985R and G93A mutated forms of superoxide dismutase 1 (linked to familial amyotrophic lateral sclerosis). This noncanonical stimulation of NFκB triggers the up-regulation of BAG3 and HspB8 expression, two activators of selective autophagy, which relocalize to protein aggregates. Then NFκB-dependent autophagy allows the clearance of protein aggregates. Thus NFκB appears as a central and major regulator of protein aggregate clearance by modulating autophagic activity. In this context, the pharmacological stimulation of this quality control pathway might represent a valuable strategy for therapies against protein conformational diseases. PMID:27075172

  16. Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key.

    PubMed

    Haupt, V Joachim; Daminelli, Simone; Schroeder, Michael

    2013-01-01

    Drug repositioning applies established drugs to new disease indications with increasing success. A pre-requisite for drug repurposing is drug promiscuity (polypharmacology) - a drug's ability to bind to several targets. There is a long standing debate on the reasons for drug promiscuity. Based on large compound screens, hydrophobicity and molecular weight have been suggested as key reasons. However, the results are sometimes contradictory and leave space for further analysis. Protein structures offer a structural dimension to explain promiscuity: Can a drug bind multiple targets because the drug is flexible or because the targets are structurally similar or even share similar binding sites? We present a systematic study of drug promiscuity based on structural data of PDB target proteins with a set of 164 promiscuous drugs. We show that there is no correlation between the degree of promiscuity and ligand properties such as hydrophobicity or molecular weight but a weak correlation to conformational flexibility. However, we do find a correlation between promiscuity and structural similarity as well as binding site similarity of protein targets. In particular, 71% of the drugs have at least two targets with similar binding sites. In order to overcome issues in detection of remotely similar binding sites, we employed a score for binding site similarity: LigandRMSD measures the similarity of the aligned ligands and uncovers remote local similarities in proteins. It can be applied to arbitrary structural binding site alignments. Three representative examples, namely the anti-cancer drug methotrexate, the natural product quercetin and the anti-diabetic drug acarbose are discussed in detail. Our findings suggest that global structural and binding site similarity play a more important role to explain the observed drug promiscuity in the PDB than physicochemical drug properties like hydrophobicity or molecular weight. Additionally, we find ligand flexibility to have a minor

  17. The autophagic tumor stroma model of cancer or "battery-operated tumor growth": A simple solution to the autophagy paradox.

    PubMed

    Martinez-Outschoorn, Ubaldo E; Whitaker-Menezes, Diana; Pavlides, Stephanos; Chiavarina, Barbara; Bonuccelli, Gloria; Casey, Trimmer; Tsirigos, Aristotelis; Migneco, Gemma; Witkiewicz, Agnieszka; Balliet, Renee; Mercier, Isabelle; Wang, Chengwang; Flomenberg, Neal; Howell, Anthony; Lin, Zhao; Caro, Jaime; Pestell, Richard G; Sotgia, Federica; Lisanti, Michael P

    2010-11-01

    The role of autophagy in tumorigenesis is controversial. Both autophagy inhibitors (chloroquine) and autophagy promoters (rapamycin) block tumorigenesis by unknown mechanism(s). This is called the "Autophagy Paradox". We have recently reported a simple solution to this paradox. We demonstrated that epithelial cancer cells use oxidative stress to induce autophagy in the tumor microenvironment. As a consequence, the autophagic tumor stroma generates recycled nutrients that can then be used as chemical building blocks by anabolic epithelial cancer cells. This model results in a net energy transfer from the tumor stroma to epithelial cancer cells (an energy imbalance), thereby promoting tumor growth. This net energy transfer is both unilateral and vectorial, from the tumor stroma to the epithelial cancer cells, representing a true host-parasite relationship. We have termed this new paradigm "The Autophagic Tumor Stroma Model of Cancer Cell Metabolism" or "Battery-Operated Tumor Growth". In this sense, autophagy in the tumor stroma serves as a "battery" to fuel tumor growth, progression and metastasis, independently of angiogenesis. Using this model, the systemic induction of autophagy will prevent epithelial cancer cells from using recycled nutrients, while the systemic inhibiton of autophagy will prevent stromal cells from producing recycled nutrients-both effectively "starving" cancer cells. We discuss the idea that tumor cells could become resistant to the systemic induction of autophagy, by the upregulation of natural endogenous autophagy inhibitors in cancer cells. Alternatively, tumor cells could also become resistant to the systemic induction of autophagy, by the genetic silencing/deletion of pro-autophagic molecules, such as Beclin1. If autophagy resistance develops in cancer cells, then the systemic inhibition of autophagy would provide a therapeutic solution to this type of drug resistance, as it would still target autophagy in the tumor stroma. As such, an

  18. Cardiomyocyte-Restricted Low Density Lipoprotein Receptor-Related Protein 6 (LRP6) Deletion Leads to Lethal Dilated Cardiomyopathy Partly Through Drp1 Signaling

    PubMed Central

    Chen, Zhidan; Li, Yang; Wang, Ying; Qian, Juying; Ma, Hong; Wang, Xiang; Jiang, Guoliang; Liu, Ming; An, Yanpeng; Ma, Leilei; Kang, Le; Jia, Jianguo; Yang, Chunjie; Zhang, Guoping; Chen, Ying; Gao, Wei; Fu, Mingqiang; Huang, Zheyong; Tang, Huiru; Zhu, Yichun; Ge, Junbo; Gong, Hui; Zou, Yunzeng

    2018-01-01

    Low density lipoprotein receptor-related protein 6 (LRP6), a wnt co-receptor, regulates multiple functions in various organs. However, the roles of LRP6 in the adult heart are not well understood. Methods: We observed LRP6 expression in heart with end-stage dilated cardiomyopathy (DCM) by western blot. Tamoxifen-inducible cardiac-specific LRP6 knockout mouse was constructed. Hemodynamic and echocardiographic analyses were performed to these mice. Results: Cardiac LRP6 expression was dramatically decreased in patients with end-stage dilated cardiomyopathy (DCM) compared to control group. Tamoxifen-inducible cardiac-specific LRP6 knockout mice developed acute heart failure and mitochondrial dysfunction with reduced survival. Proteomic analysis suggests the fatty acid metabolism disorder involving peroxisome proliferator-activated receptors (PPARs) signaling in the LRP6 deficient heart. Accumulation of mitochondrial targeting to autophagosomes and lipid droplet were observed in LRP6 deletion hearts. Further analysis revealed cardiac LRP6 deletion suppressed autophagic degradation and fatty acid utilization, coinciding with activation of dynamin-related protein 1 (Drp1) and downregulation of nuclear TFEB (Transcription factor EB). Injection of Mdivi-1, a Drp1 inhibitor, not only promoted nuclear translocation of TFEB, but also partially rescued autophagic degradation, improved PPARs signaling, and attenuated cardiac dysfunction induced by cardiac specific LRP6 deletion. Conclusions: Cardiac LRP6 deficiency greatly suppressed autophagic degradation and fatty acid utilization, and subsequently leads to lethal dilated cardiomyopathy and cardiac dysfunction through activation of Drp1 signaling. It suggests that heart failure progression may be attenuated by therapeutic modulation of LRP6 expression. PMID:29344294

  19. Fucosylation of LAMP-1 and LAMP-2 by FUT1 correlates with lysosomal positioning and autophagic flux of breast cancer cells.

    PubMed

    Tan, Keng-Poo; Ho, Ming-Yi; Cho, Huan-Chieh; Yu, John; Hung, Jung-Tung; Yu, Alice Lin-Tsing

    2016-08-25

    Alpha1,2-fucosyltransferases, FUT1 and FUT2, which transfer fucoses onto the terminal galactose of N-acetyl-lactosamine via α1,2-linkage have been shown to be highly expressed in various types of cancers. A few studies have shown the involvement of FUT1 substrates in tumor cell proliferation and migration. Lysosome-associated membrane protein 1, LAMP-1, has been reported to carry alpha1,2-fucosylated Lewis Y (LeY) antigens in breast cancer cells, however, the biological functions of LeY on LAMP-1 remain largely unknown. Whether or not its family member, LAMP-2, displays similar modifications and functions as LAMP-1 has not yet been addressed. In this study, we have presented evidence supporting that both LAMP-1 and 2 are substrates for FUT1, but not FUT2. We have also demonstrated the presence of H2 and LeY antigens on LAMP-1 by a targeted nanoLC-MS(3) and the decreased levels of fucosylation on LAMP-2 by MALDI-TOF analysis upon FUT1 knockdown. In addition, we found that the expression of LeY was substantial in less invasive ER+/PR+/HER- breast cancer cells (MCF-7 and T47D) but negligible in highly invasive triple-negative MDA-MB-231 cells, of which LeY levels were correlated with the levels of LeY carried by LAMP-1 and 2. Intriguingly, we also observed a striking change in the subcellular localization of lysosomes upon FUT1 knockdown from peripheral distribution of LAMP-1 and 2 to a preferential perinuclear accumulation. Besides that, knockdown of FUT1 led to an increased rate of autophagic flux along with diminished activity of mammalian target of rapamycin complex 1 (mTORC1) and enhanced autophagosome-lysosome fusion. This may be associated with the predominantly perinuclear distribution of lysosomes mediated by FUT1 knockdown as lysosomal positioning has been reported to regulate mTOR activity and autophagy. Taken together, our results suggest that downregulation of FUT1, which leads to the perinuclear localization of LAMP-1 and 2, is correlated with increased

  20. Fucosylation of LAMP-1 and LAMP-2 by FUT1 correlates with lysosomal positioning and autophagic flux of breast cancer cells

    PubMed Central

    Tan, Keng-Poo; Ho, Ming-Yi; Cho, Huan-Chieh; Yu, John; Hung, Jung-Tung; Yu, Alice Lin-Tsing

    2016-01-01

    Alpha1,2-fucosyltransferases, FUT1 and FUT2, which transfer fucoses onto the terminal galactose of N-acetyl-lactosamine via α1,2-linkage have been shown to be highly expressed in various types of cancers. A few studies have shown the involvement of FUT1 substrates in tumor cell proliferation and migration. Lysosome-associated membrane protein 1, LAMP-1, has been reported to carry alpha1,2-fucosylated Lewis Y (LeY) antigens in breast cancer cells, however, the biological functions of LeY on LAMP-1 remain largely unknown. Whether or not its family member, LAMP-2, displays similar modifications and functions as LAMP-1 has not yet been addressed. In this study, we have presented evidence supporting that both LAMP-1 and 2 are substrates for FUT1, but not FUT2. We have also demonstrated the presence of H2 and LeY antigens on LAMP-1 by a targeted nanoLC-MS3 and the decreased levels of fucosylation on LAMP-2 by MALDI-TOF analysis upon FUT1 knockdown. In addition, we found that the expression of LeY was substantial in less invasive ER+/PR+/HER− breast cancer cells (MCF-7 and T47D) but negligible in highly invasive triple-negative MDA-MB-231 cells, of which LeY levels were correlated with the levels of LeY carried by LAMP-1 and 2. Intriguingly, we also observed a striking change in the subcellular localization of lysosomes upon FUT1 knockdown from peripheral distribution of LAMP-1 and 2 to a preferential perinuclear accumulation. Besides that, knockdown of FUT1 led to an increased rate of autophagic flux along with diminished activity of mammalian target of rapamycin complex 1 (mTORC1) and enhanced autophagosome–lysosome fusion. This may be associated with the predominantly perinuclear distribution of lysosomes mediated by FUT1 knockdown as lysosomal positioning has been reported to regulate mTOR activity and autophagy. Taken together, our results suggest that downregulation of FUT1, which leads to the perinuclear localization of LAMP-1 and 2, is correlated with

  1. A novel mitochondrial nuclease-associated protein: a major executor of the programmed nuclear death in Tetrahymena thermophila.

    PubMed

    Osada, Eriko; Akematsu, Takahiko; Asano, Tomoya; Endoh, Hiroshi

    2014-03-01

    Programmed nuclear death (PND) in the ciliate Tetrahymena is an apoptosis-like phenomenon that occurs in a restricted space of cytoplasm during conjugation. In the process, only the parental macronucleus is selectively eliminated from the progeny cytoplasm, in conjunction with differentiation of new macronuclei for the next generation. For the last decade, mitochondria have been elucidated to be a crucial executioner like apoptosis: apoptosis-inducing factor and yet-unidentified nucleases localised in mitochondria are major factors for PND. To identify such nucleases, we performed a DNase assay in a PAGE (SDS-DNA-PAGE) using total mitochondrial proteins. Some proteins showed DNase activity, but particularly a 17 kDa protein exhibited the highest and predominant activity. Mass spectrometric analysis revealed a novel mitochondrial nuclease, named TMN1, whose homologue has been discovered only in the ciliate Paramecium tetraurelia, but not in other eukaryotes. Gene disruption of TMN1 led to a drastic reduction of mitochondrial nuclease activity and blocked nuclear degradation during conjugation, but did not affect accumulation of autophagic and lysosomal machinery around the parental macronucleus. These observations strongly suggest that the mitochondrial nuclease-associated protein plays a key role in PND as a major executor. Taking the novel protein specific to ciliates in consideration, Tetrahymena would have diverted a different protein from common apoptotic factors shared in eukaryotes to PND in the course of ciliate evolution. © 2014 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  2. Carbon and nitrogen depletion-induced nucleophagy and selective autophagic sequestration of a whole nucleus in multinucleate cells of the filamentous fungus Aspergillus oryzae.

    PubMed

    Kikuma, Takashi; Mitani, Takahiro; Kohara, Takahiro; Maruyama, Jun-Ichi; Kitamoto, Katsuhiko

    2017-05-12

    Autophagy is a conserved cellular degradation process in eukaryotes, in which cytoplasmic components and organelles are digested in vacuoles/lysosomes. Recently, autophagic degradation of nuclear materials, termed "nucleophagy", has been reported. In the multinucleate filamentous fungus Aspergillus oryzae, a whole nucleus is degraded by nucleophagy after prolonged culture. While developing an H2B-EGFP processing assay for the evaluation of nucleophagy in A. oryzae, we found that nucleophagy is efficiently induced by carbon or nitrogen depletion. Microscopic observations in a carbon depletion condition clearly demonstrated that autophagosomes selectively sequester a particular nucleus, despite the presence of multiple nuclei in the same cell. Furthermore, AoNsp1, the A. oryzae homolog of the yeast nucleoporin Nsp1p, mainly localized at the nuclear periphery, but its localization was restricted to the opposite side of the autophagosome being formed around a nucleus. In contrast, the perinuclear ER visualized with the calnexin AoClxA was not morphologically affected by nucleophagy. The findings of nucleophagy-inducing conditions enabled us to characterize the morphological process of autophagic degradation of a whole nucleus in multinucleate cells.

  3. EHD proteins: Key conductors of endocytic transport

    PubMed Central

    Naslavsky, Naava; Caplan, Steve

    2010-01-01

    Regulation of endocytic transport is controlled by an elaborate network of proteins. Rab GTP-binding proteins and their effectors have well-defined roles in mediating specific endocytic transport steps, but until recently, less was known about the four mammalian dynamin-like C-terminal Eps15 Homology Domain (EHD) proteins that also regulate endocytic events. In recent years, however, great strides have been made in understanding the structure and function of these unique proteins. Indeed, a growing body of literature addresses EHD protein structure, interactions with binding partners, functions in mammalian cells, and the generation of various new model systems. Accordingly, this is now an opportune time to pause and review the function and mechanisms of action of EHD proteins, and to highlight some of the challenges and future directions for the field. PMID:21067929

  4. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits.

    PubMed

    Yang, Dun-Sheng; Stavrides, Philip; Mohan, Panaiyur S; Kaushik, Susmita; Kumar, Asok; Ohno, Masuo; Schmidt, Stephen D; Wesson, Daniel; Bandyopadhyay, Urmi; Jiang, Ying; Pawlik, Monika; Peterhoff, Corrinne M; Yang, Austin J; Wilson, Donald A; St George-Hyslop, Peter; Westaway, David; Mathews, Paul M; Levy, Efrat; Cuervo, Ana M; Nixon, Ralph A

    2011-01-01

    Autophagy, a major degradative pathway for proteins and organelles, is essential for survival of mature neurons. Extensive autophagic-lysosomal pathology in Alzheimer's disease brain contributes to Alzheimer's disease pathogenesis, although the underlying mechanisms are not well understood. Here, we identified and characterized marked intraneuronal amyloid-β peptide/amyloid and lysosomal system pathology in the Alzheimer's disease mouse model TgCRND8 similar to that previously described in Alzheimer's disease brains. We further establish that the basis for these pathologies involves defective proteolytic clearance of neuronal autophagic substrates including amyloid-β peptide. To establish the pathogenic significance of these abnormalities, we enhanced lysosomal cathepsin activities and rates of autophagic protein turnover in TgCRND8 mice by genetically deleting cystatin B, an endogenous inhibitor of lysosomal cysteine proteases. Cystatin B deletion rescued autophagic-lysosomal pathology, reduced abnormal accumulations of amyloid-β peptide, ubiquitinated proteins and other autophagic substrates within autolysosomes/lysosomes and reduced intraneuronal amyloid-β peptide. The amelioration of lysosomal function in TgCRND8 markedly decreased extracellular amyloid deposition and total brain amyloid-β peptide 40 and 42 levels, and prevented the development of deficits of learning and memory in fear conditioning and olfactory habituation tests. Our findings support the pathogenic significance of autophagic-lysosomal dysfunction in Alzheimer's disease and indicate the potential value of restoring normal autophagy as an innovative therapeutic strategy for Alzheimer's disease.

  5. HEPES activates a MiT/TFE-dependent lysosomal-autophagic gene network in cultured cells: A call for caution.

    PubMed

    Tol, Marc J; van der Lienden, Martijn J C; Gabriel, Tanit L; Hagen, Jacob J; Scheij, Saskia; Veenendaal, Tineke; Klumperman, Judith; Donker-Koopman, Wilma E; Verhoeven, Arthur J; Overkleeft, Hermen; Aerts, Johannes M; Argmann, Carmen A; van Eijk, Marco

    2018-01-01

    In recent years, the lysosome has emerged as a highly dynamic, transcriptionally regulated organelle that is integral to nutrient-sensing and metabolic rewiring. This is coordinated by a lysosome-to-nucleus signaling nexus in which MTORC1 controls the subcellular distribution of the microphthalmia-transcription factor E (MiT/TFE) family of "master lysosomal regulators". Yet, despite the importance of the lysosome in cellular metabolism, the impact of traditional in vitro culture media on lysosomal dynamics and/or MiT/TFE localization has not been fully appreciated. Here, we identify HEPES, a chemical buffering agent that is broadly applied in cell culture, as a potent inducer of lysosome biogenesis. Supplementation of HEPES to cell growth media is sufficient to decouple the MiT/TFE family members-TFEB, TFE3 and MITF-from regulatory mechanisms that control their cytosolic retention. Increased MiT/TFE nuclear import in turn drives the expression of a global network of lysosomal-autophagic and innate host-immune response genes, altering lysosomal dynamics, proteolytic capacity, autophagic flux, and inflammatory signaling. In addition, siRNA-mediated MiT/TFE knockdown effectively blunted HEPES-induced lysosome biogenesis and gene expression profiles. Mechanistically, we show that MiT/TFE activation in response to HEPES requires its macropinocytic ingestion and aberrant lysosomal storage/pH, but is independent of MTORC1 signaling. Altogether, our data underscore the cautionary use of chemical buffering agents in cell culture media due to their potentially confounding effects on experimental results.

  6. Function of inhibitor of Bruton's tyrosine kinase isoform α (IBTKα) in nonalcoholic steatohepatitis links autophagy and the unfolded protein response.

    PubMed

    Willy, Jeffrey A; Young, Sara K; Mosley, Amber L; Gawrieh, Samer; Stevens, James L; Masuoka, Howard C; Wek, Ronald C

    2017-08-25

    Nonalcoholic fatty liver disease (steatosis) is the most prevalent liver disease in the Western world. One of the advanced pathologies is nonalcoholic steatohepatitis (NASH), which is associated with induction of the unfolded protein response (UPR) and disruption of autophagic flux. However, the mechanisms by which these processes contribute to the pathogenesis of human diseases are unclear. Herein, we identify the α isoform of the inhibitor of Bruton's tyrosine kinase (IBTKα) as a member of the UPR, whose expression is preferentially translated during endoplasmic reticulum (ER) stress. We found that IBTKα is located in the ER and associates with proteins LC3b, SEC16A, and SEC31A and plays a previously unrecognized role in phagophore initiation from ER exit sites. Depletion of IBTKα helps prevent accumulation of autophagosome intermediates stemming from exposure to saturated free fatty acids and rescues hepatocytes from death. Of note, induction of IBTKα and the UPR, along with inhibition of autophagic flux, was associated with progression from steatosis to NASH in liver biopsies. These results indicate a function for IBTKα in NASH that links autophagy with activation of the UPR. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Redox Proteomics: A Key Tool for New Insights into Protein Modification with Relevance to Disease.

    PubMed

    Butterfield, D Allan; Perluigi, Marzia

    2017-03-01

    Oxidatively modified proteins are characterized by elevations in protein-resident carbonyls or 3-nitrotyrosine, measures of protein oxidation, or protein bound reactive alkenals such as 4-hydroxy-2-nonenal, a measure of lipid peroxidation. Oxidatively modified proteins nearly always have altered structure and function. Redox proteomics is that branch of proteomics used to identify oxidized proteins and determine the extent and location of oxidative modifications in the proteomes of interest. This technique nearly always employs mass spectrometry as the major platform to achieve the goals of identifying the target proteins. Once identified, oxidatively modified proteins can be placed in specific molecular pathways to provide insights into protein oxidation and human disease. Both original research and review articles are included in this Forum on Redox Proteomics. The topics related to redox proteomics range from basic chemistry of sulfur radical-induced redox modifications in proteins, to the thiol secretome and inflammatory network, to reversible thiol oxidation in proteomes, to the role of glutamine synthetase in peripheral and central environments on inflammation and insulin resistance, to bioanalytical aspects of tyrosine nitrated proteins, to protein oxidation in human smokers and models thereof, and to Alzheimer disease, including articles on the brain ubiquitinylome and the "triangle of death" composed of oxidatively modified proteins involved in energy metabolism, mammalian target of rampamycin activation, and the proteostasis network. This Forum on Redox Proteomics is both timely and a critically important resource to highlight one of the key tools needed to better understand protein structure and function in oxidative environments in health and disease. Antioxid. Redox Signal. 26, 277-279.

  8. Identification of autophagy genes participating in zinc-induced necrotic cell death in Saccharomyces cerevisiae.

    PubMed

    Dziedzic, Slawomir A; Caplan, Allan B

    2011-05-01

    Eukaryotes use a common set of genes to perform two mechanistically similar autophagic processes. Bulk autophagy harvests proteins nonselectively and reuses their constitutents when nutrients are scarce. In contrast, different forms of selective autophagy target protein aggregates or damaged organelles that threaten to interfere with growth. Yeast uses one form of selective autophagy, called cytoplasm-to-vacuole targeting (Cvt), to engulf two vacuolar enzymes in Cvt vesicles ("CVT-somes") within which they are transported to vacuoles for maturation. While both are dispensable normally, bulk and selective autophagy help sustain life under stressful conditions. Consistent with this view, knocking out several genes participating in Cvt and specialized autophagic pathways heightened the sensitivity of Saccharomyces cerevisiae to inhibitory levels of Zn(2+). The loss of other autophagic genes, and genes responsible for apoptotic cell death, had no such effect. Unexpectedly, the loss of members of a third set of autophagy genes heightened cellular resistance to zinc as if they encoded proteins that actively contributed to zinc-induced cell death. Further studies showed that both sensitive and resistant strains accumulated similar amounts of H2O2 during zinc treatments, but that more sensitive strains showed signs of necrosis sooner. Although zinc lethality depended on autophagic proteins, studies with several reporter genes failed to reveal increased autophagic activity. In fact, microscopy analysis indicated that Zn(2+) partially inhibited fusion of Cvt vesicles with vacuoles. Further studies into how the loss of autophagic processes suppressed necrosis in yeast might reveal whether a similar process could occur in plants and animals.

  9. FNL Scientists and Collaborators Solve 3-D Structure of Key Protein in Alzheimer’s Disease | FNLCR Staging

    Cancer.gov

    Researchers at the Frederick National Lab (FNL) have collaborated in solving the three-dimensional structure of a key protein in Alzheimer’s disease, providing new insight into the basic mechanisms that give rise to the devastating illness. The pro

  10. Involvement of Autophagic Pathway in the Progression of Retinal Degeneration in a Mouse Model of Diabetes.

    PubMed

    Piano, Ilaria; Novelli, Elena; Della Santina, Luca; Strettoi, Enrica; Cervetto, Luigi; Gargini, Claudia

    2016-01-01

    The notion that diabetic retinopathy (DR) is essentially a micro-vascular disease has been recently challenged by studies reporting that vascular changes are preceded by signs of damage and loss of retinal neurons. As to the mode by which neuronal death occurs, the evidence that apoptosis is the main cause of neuronal loss is far from compelling. The objective of this study was to investigate these controversies in a mouse model of streptozotocin (STZ) induced diabetes. Starting from 8 weeks after diabetes induction there was loss of rod but not of cone photoreceptors, together with reduced thickness of the outer and inner synaptic layers. Correspondingly, rhodopsin expression was downregulated and the scotopic electroretinogram (ERG) is suppressed. In contrast, cone opsin expression and photopic ERG response were not affected. Suppression of the scotopic ERG preceded morphological changes as well as any detectable sign of vascular alteration. Only sparse apoptotic figures were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and glia was not activated. The physiological autophagy flow was altered instead, as seen by increased LC3 immunostaining at the level of outer plexiform layer (OPL) and upregulation of the autophagic proteins Beclin-1 and Atg5. Collectively, our results show that the streptozotocin induced DR in mouse initiates with a functional loss of the rod visual pathway. The pathogenic pathways leading to cell death develop with the initial dysregulation of autophagy well before the appearance of signs of vascular damage and without strong involvement of apoptosis.

  11. Involvement of Autophagic Pathway in the Progression of Retinal Degeneration in a Mouse Model of Diabetes

    PubMed Central

    Piano, Ilaria; Novelli, Elena; Della Santina, Luca; Strettoi, Enrica; Cervetto, Luigi; Gargini, Claudia

    2016-01-01

    The notion that diabetic retinopathy (DR) is essentially a micro-vascular disease has been recently challenged by studies reporting that vascular changes are preceded by signs of damage and loss of retinal neurons. As to the mode by which neuronal death occurs, the evidence that apoptosis is the main cause of neuronal loss is far from compelling. The objective of this study was to investigate these controversies in a mouse model of streptozotocin (STZ) induced diabetes. Starting from 8 weeks after diabetes induction there was loss of rod but not of cone photoreceptors, together with reduced thickness of the outer and inner synaptic layers. Correspondingly, rhodopsin expression was downregulated and the scotopic electroretinogram (ERG) is suppressed. In contrast, cone opsin expression and photopic ERG response were not affected. Suppression of the scotopic ERG preceded morphological changes as well as any detectable sign of vascular alteration. Only sparse apoptotic figures were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and glia was not activated. The physiological autophagy flow was altered instead, as seen by increased LC3 immunostaining at the level of outer plexiform layer (OPL) and upregulation of the autophagic proteins Beclin-1 and Atg5. Collectively, our results show that the streptozotocin induced DR in mouse initiates with a functional loss of the rod visual pathway. The pathogenic pathways leading to cell death develop with the initial dysregulation of autophagy well before the appearance of signs of vascular damage and without strong involvement of apoptosis. PMID:26924963

  12. KPNA2 is a nuclear export protein that contributes to aberrant localisation of key proteins and poor prognosis of breast cancer.

    PubMed

    Alshareeda, A T; Negm, O H; Green, A R; Nolan, C C; Tighe, P; Albarakati, N; Sultana, R; Madhusudan, S; Ellis, I O; Rakha, E A

    2015-06-09

    It is recognised that modulations of the nuclear import of macromolecules have a role in changing cellular phenotypes and carcinogenesis. We and others have noticed that aberrant subcellular localisation of DNA damage response (DDR) proteins in breast cancer (BC) is associated with loss-of-function phenotype. This study aims to investigate the biological and clinical significance of the nucleocytoplasmic transport protein karyopherin α-2 (KPNA2), and its role in controlling DDR proteins subcellular localisation in BC. A large (n=1494) and well-characterised series of early-stage invasive BC with a long-term follow-up was assessed for KPNA2 protein by using immunohistochemistry. KPNA2 expression was associated with the subcellular localisation of key DDR proteins that showed cytoplasmic expression including BRCA1, RAD51, SMC6L1, γH2AX, BARD1, UBC9, PIAS1 and CHK1. High level of KPNA2 was associated not only with cytoplasmic localisation of these proteins but also with their low/negative nuclear expression. Positive KPNA2 expression was associated with negative oestrogen receptor and triple-negative phenotype. Survival analysis showed that KPNA2 was associated with poor outcome (P<0.0001), but this effect was not independent of other prognostic variables. This study provides further evidence for the complexity of DDR mechanism in BC, and that KNPA2 has a role in the aberrant subcellular localisation of DDR proteins with subsequent impaired function.

  13. HEPES activates a MiT/TFE-dependent lysosomal-autophagic gene network in cultured cells: A call for caution

    PubMed Central

    Tol, Marc J.; van der Lienden, Martijn J.C.; Gabriel, Tanit L.; Hagen, Jacob J.; Scheij, Saskia; Veenendaal, Tineke; Klumperman, Judith; Donker-Koopman, Wilma E.; Verhoeven, Arthur J.; Overkleeft, Hermen; Aerts, Johannes M.; Argmann, Carmen A.; van Eijk, Marco

    2018-01-01

    ABSTRACT In recent years, the lysosome has emerged as a highly dynamic, transcriptionally regulated organelle that is integral to nutrient-sensing and metabolic rewiring. This is coordinated by a lysosome-to-nucleus signaling nexus in which MTORC1 controls the subcellular distribution of the microphthalmia-transcription factor E (MiT/TFE) family of “master lysosomal regulators”. Yet, despite the importance of the lysosome in cellular metabolism, the impact of traditional in vitro culture media on lysosomal dynamics and/or MiT/TFE localization has not been fully appreciated. Here, we identify HEPES, a chemical buffering agent that is broadly applied in cell culture, as a potent inducer of lysosome biogenesis. Supplementation of HEPES to cell growth media is sufficient to decouple the MiT/TFE family members–TFEB, TFE3 and MITF–from regulatory mechanisms that control their cytosolic retention. Increased MiT/TFE nuclear import in turn drives the expression of a global network of lysosomal-autophagic and innate host-immune response genes, altering lysosomal dynamics, proteolytic capacity, autophagic flux, and inflammatory signaling. In addition, siRNA-mediated MiT/TFE knockdown effectively blunted HEPES-induced lysosome biogenesis and gene expression profiles. Mechanistically, we show that MiT/TFE activation in response to HEPES requires its macropinocytic ingestion and aberrant lysosomal storage/pH, but is independent of MTORC1 signaling. Altogether, our data underscore the cautionary use of chemical buffering agents in cell culture media due to their potentially confounding effects on experimental results. PMID:29455584

  14. Identification of TOEFAZ1-interacting proteins reveals key regulators of Trypanosoma brucei cytokinesis.

    PubMed

    Hilton, Nicholas A; Sladewski, Thomas E; Perry, Jenna A; Pataki, Zemplen; Sinclair-Davis, Amy N; Muniz, Richard S; Tran, Holly L; Wurster, Jenna I; Seo, Jiwon; de Graffenried, Christopher L

    2018-05-21

    The protist parasite Trypanosoma brucei is an obligate extracellular pathogen that retains its highly-polarized morphology during cell division and has evolved a novel cytokinetic process independent of non-muscle myosin II. The polo-like kinase homolog TbPLK is essential for transmission of cell polarity during division and for cytokinesis. We previously identified a putative TbPLK substrate named Tip of the Extending FAZ 1 (TOEFAZ1) as an essential kinetoplastid-specific component of the T. brucei cytokinetic machinery. We performed a proximity-dependent biotinylation (BioID) screen using TOEFAZ1 as a means to identify additional proteins that are involved in cytokinesis. Using quantitative proteomic methods, we identified nearly 500 TOEFAZ1-proximal proteins and characterized 59 in further detail. Among the candidates, we identified an essential putative phosphatase that regulates the expression level and localization of both TOEFAZ1 and TbPLK, a previously uncharacterized protein that is necessary for the assembly of a new cell posterior, and a microtubule plus-end directed orphan kinesin that is required for completing cleavage furrow ingression. The identification of these proteins provides new insight into T. brucei cytokinesis and establishes TOEFAZ1 as a key component of this essential and uniquely-configured process in kinetoplastids. This article is protected by copyright. All rights reserved. © 2018 John Wiley & Sons Ltd.

  15. MURF2B, a Novel LC3-Binding Protein, Participates with MURF2A in the Switch between Autophagy and Ubiquitin Proteasome System during Differentiation of C2C12 Muscle Cells

    PubMed Central

    Pizon, Véronique; Rybina, Sofia; Gerbal, Fabien; Delort, Florence; Vicart, Patrick; Baldacci, Giuseppe; Karsenti, Eric

    2013-01-01

    The ubiquitin proteasome system and macroautophagy are proteolytic pathways essential in the maintenance of cellular homeostasis during differentiation and remodelling of skeletal muscle. In both pathways, proteins to be degraded are tagged with polyubiquitin. In skeletal muscles, the MURF2 proteins display E3 ubiquitin ligase structure suggesting that they may covalently attach ubiquitin polypeptides to still unknown target proteins. So far only MURF2A isoforms were studied and shown to interact with p62/SQSTM1, a protein implicated in macroautophagic and ubiquitin proteasome system degradations. Here, we analyzed the MURF2B and MURF2A proteins and show that the ratio of the isoforms changes during differentiation of muscle C2C12 cells and that the shift of the isoforms expression follows the sequential activation of autophagic or proteasomal degradation. We also show that MURF2B has a functional domain needed for its interaction with LC3, a protein needed for autophagic vesicles formation. Using specific MURF2 RNAi cells we observed that MURF2A and MURF2B are both needed for the formation of autophagosomes and that in the absence of MURF2B, the cells expressing MURF2A display an activated ubiquitin proteasome system implicated in the degradation of p62/SQSTM1 by UPS. Altogether, our results indicate that MURF2A and MURF2B proteins could participate in the molecular switch between the two ubiquitin degradative pathways. PMID:24124537

  16. The role of autophagy in Parkinson's disease: rotenone-based modeling

    PubMed Central

    2013-01-01

    Background Autophagy-mediated self-digestion of cytoplasmic inclusions may be protective against neurodegenerative diseases such as Parkinson’s disease (PD). However, excessive autophagic activation evokes autophagic programmed cell death. Methods In this study, we aimed at exploring the role of autophagy in the pathogenesis of rotenone-induced cellular and animal models for PD. Results Reactive oxygen species over-generation, mitochondrial membrane potential reduction or apoptosis rate elevation occurred in a dose-dependent fashion in rotenone-treated human neuroblastoma cell line SH-SY5Y. The time- and dose-dependent increases in autophagic marker microtubule-associated protein1 light chain 3 (LC3) expression and decreases in autophagic adaptor protein P62 were observed in this cellular model. LC3-positive autophagic vacuoles were colocalized with alpha-synuclein-overexpressed aggregations. Moreover, the number of autophagic vacuoles was increased in rotenone-based PD models in vitro and in vivo. Conclusions These data, along with our previous finding showing rotenone-induced toxicity was prevented by the autophagy enhancers and was aggravated by the autophagy inhibitors in SH-SY5Y, suggest that autophagy contributes to the pathogenesis of PD, attenuates the rotenone toxicity and possibly represents a new subcellular target for treating PD. PMID:23497442

  17. Carbamazepine suppresses calpain-mediated autophagy impairment after ischemia/reperfusion in mouse livers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jae-Sung, E-mail: Jae.Kim@surgery.ufl.edu; Wang, Jin-Hee, E-mail: jin-hee.wang@surgery.ufl.edu; Biel, Thomas G., E-mail: Thomas.Biel@surgery.ufl.edu

    Onset of the mitochondrial permeability transition (MPT) plays a causative role in ischemia/reperfusion (I/R) injury. Current therapeutic strategies for reducing reperfusion injury remain disappointing. Autophagy is a lysosome-mediated, catabolic process that timely eliminates abnormal or damaged cellular constituents and organelles such as dysfunctional mitochondria. I/R induces calcium overloading and calpain activation, leading to degradation of key autophagy-related proteins (Atg). Carbamazepine (CBZ), an FDA-approved anticonvulsant drug, has recently been reported to increase autophagy. We investigated the effects of CBZ on hepatic I/R injury. Hepatocytes and livers from male C57BL/6 mice were subjected to simulated in vitro, as well as in vivomore » I/R, respectively. Cell death, intracellular calcium, calpain activity, changes in autophagy-related proteins (Atg), autophagic flux, MPT and mitochondrial membrane potential after I/R were analyzed in the presence and absence of 20 μM CBZ. CBZ significantly increased hepatocyte viability after reperfusion. Confocal microscopy revealed that CBZ prevented calcium overloading, the onset of the MPT and mitochondrial depolarization. Immunoblotting and fluorometric analysis showed that CBZ blocked calpain activation, depletion of Atg7 and Beclin-1 and loss of autophagic flux after reperfusion. Intravital multiphoton imaging of anesthetized mice demonstrated that CBZ substantially reversed autophagic defects and mitochondrial dysfunction after I/R in vivo. In conclusion, CBZ prevents calcium overloading and calpain activation, which, in turn, suppresses Atg7 and Beclin-1 depletion, defective autophagy, onset of the MPT and cell death after I/R. - Highlights: • A mechanism of carbamazepine (CBZ)-induced cytoprotection in livers is proposed. • Impaired autophagy is a key event contributing to lethal reperfusion injury. • The importance of autophagy is extended and confirmed in an in vivo model. • CBZ is a

  18. Proteomics investigation reveals cell death-associated proteins of basidiomycete fungus Trametes versicolor treated with Ferruginol.

    PubMed

    Chen, Yu-Han; Yeh, Ting-Feng; Chu, Fang-Hua; Hsu, Fu-Lan; Chang, Shang-Tzen

    2015-01-14

    Ferruginol has antifungal activity against wood-rot fungi (basidiomycetes). However, specific research on the antifungal mechanisms of ferruginol is scarce. Two-dimensional gel electrophoresis and fluorescent image analysis were employed to evaluate the differential protein expression of wood-rot fungus Trametes versicolor treated with or without ferruginol. Results from protein identification of tryptic peptides via liquid chromatography–electrospray ionization tandem mass spectrometry (LC–ESI-MS/MS) analyses revealed 17 protein assignments with differential expression. Downregulation of cytoskeleton β-tubulin 3 indicates that ferruginol has potential to be used as a microtubule-disrupting agent. Downregulation of major facilitator superfamily (MFS)–multiple drug resistance (MDR) transporter and peroxiredoxin TSA1 were observed, suggesting reduction in self-defensive capabilities of T. versicolor. In addition, the proteins involved in polypeptide sorting and DNA repair were also downregulated, while heat shock proteins and autophagy-related protein 7 were upregulated. These observations reveal that such cellular dysfunction and damage caused by ferruginol lead to growth inhibition and autophagic cell death of fungi.

  19. Ubiquitination of exposed glycoproteins by SCFFBXO27 directs damaged lysosomes for autophagy

    PubMed Central

    Yoshida, Yukiko; Yasuda, Sayaka; Fujita, Toshiharu; Hamasaki, Maho; Murakami, Arisa; Kawawaki, Junko; Iwai, Kazuhiro; Saeki, Yasushi; Yoshimori, Tamotsu; Matsuda, Noriyuki; Tanaka, Keiji

    2017-01-01

    Ubiquitination functions as a signal to recruit autophagic machinery to damaged organelles and induce their clearance. Here, we report the characterization of FBXO27, a glycoprotein-specific F-box protein that is part of the SCF (SKP1/CUL1/F-box protein) ubiquitin ligase complex, and demonstrate that SCFFBXO27 ubiquitinates glycoproteins in damaged lysosomes to regulate autophagic machinery recruitment. Unlike F-box proteins in other SCF complexes, FBXO27 is subject to N-myristoylation, which localizes it to membranes, allowing it to accumulate rapidly around damaged lysosomes. We also screened for proteins that are ubiquitinated upon lysosomal damage, and identified two SNARE proteins, VAMP3 and VAMP7, and five lysosomal proteins, LAMP1, LAMP2, GNS, PSAP, and TMEM192. Ubiquitination of all glycoproteins identified in this screen increased upon FBXO27 overexpression. We found that the lysosomal protein LAMP2, which is ubiquitinated preferentially on lysosomal damage, enhances autophagic machinery recruitment to damaged lysosomes. Thus, we propose that SCFFBXO27 ubiquitinates glycoproteins exposed upon lysosomal damage to induce lysophagy. PMID:28743755

  20. Inhibition of Nogo-B promotes cardiac hypertrophy via endoplasmic reticulum stress.

    PubMed

    Li, Junli; Wu, Wenchao; Xin, Yanguo; Zhao, Mingyue; Liu, Xiaojing

    2018-05-14

    Nogo-B is a key endoplasmic reticulum (ER) protein that regulates ER stress signaling. However, its role in cardiac hypertrophy remains poorly understood. ER stress is interrelated with autophagy in the process of cardiac hypertrophy. Therefore, we aimed to test the hypothesis that both ER stress and autophagy signaling mediate the function of Nogo-B in cardiac hypertrophy. Rat models of transverse aortic constriction (TAC), neonatal rat cardiomyocytes (NRCMs) stimulated with norepinephrine (Ne) and primary cardiac fibroblasts treated with transforming growth factor β1 (TGF-β1) were used in this study. The expression of Nogo-B and markers of ER stress were determined by quantitative RT-PCR, western blotting and immunofluorescence. Autophagy was measured by monitoring autophagic flux. Specific small interfering RNA (siRNA) of Nogo-B was transfected to investigate the role of Nogo-B in regulating cardiac hypertrophy. In TAC-induced hypertrophic heart tissues, Ne-treated hypertrophic cardiomyocytes and TGF-β1-stimulated cardiac fibroblasts, the expression of Nogo-B, and markers of ER stress were significantly elevated. Impairment of autophagic flux was observed in the activated cardiac fibroblasts. Down-regulation of Nogo-B by siRNA further exacerbated Ne-induced cardiomyocyte hypertrophy and TGF-β1-induced cardiac fibroblast activation. Gene silencing of Nogo-B promoted the activation of the ER stress pathway and the impairment of autophagic flux. Moreover, inhibition of Nogo-B activated the protein kinase RNA-like ER kinase (PERK)/activating transcriptional factor 4 (ATF4) and activating transcriptional factor 6 (ATF6) branches of ER stress pathways. These findings suggest that inhibition of Nogo-B promotes cardiomyocyte hypertrophy and cardiac fibroblast activation by activating the PERK/ATF4 signaling pathway and defects of autophagic flux. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger

    PubMed Central

    Schäpe, Paul; Müller-Hagen, Dirk; Ouedraogo, Jean-Paul; Heiderich, Caroline; Jedamzick, Johanna; van den Hondel, Cees A.; Ram, Arthur F.; Meyer, Vera

    2016-01-01

    Understanding the genetic, molecular and evolutionary basis of cysteine-stabilized antifungal proteins (AFPs) from fungi is important for understanding whether their function is mainly defensive or associated with fungal growth and development. In the current study, a transcriptome meta-analysis of the Aspergillus niger γ-core protein AnAFP was performed to explore co-expressed genes and pathways, based on independent expression profiling microarrays covering 155 distinct cultivation conditions. This analysis uncovered that anafp displays a highly coordinated temporal and spatial transcriptional profile which is concomitant with key nutritional and developmental processes. Its expression profile coincides with early starvation response and parallels with genes involved in nutrient mobilization and autophagy. Using fluorescence- and luciferase reporter strains we demonstrated that the anafp promoter is active in highly vacuolated compartments and foraging hyphal cells during carbon starvation with CreA and FlbA, but not BrlA, as most likely regulators of anafp. A co-expression network analysis supported by luciferase-based reporter assays uncovered that anafp expression is embedded in several cellular processes including allorecognition, osmotic and oxidative stress survival, development, secondary metabolism and autophagy, and predicted StuA and VelC as additional regulators. The transcriptomic resources available for A. niger provide unparalleled resources to investigate the function of proteins. Our work illustrates how transcriptomic meta-analyses can lead to hypotheses regarding protein function and predict a role for AnAFP during slow growth, allorecognition, asexual development and nutrient recycling of A. niger and propose that it interacts with the autophagic machinery to enable these processes. PMID:27835655

  2. A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger.

    PubMed

    Paege, Norman; Jung, Sascha; Schäpe, Paul; Müller-Hagen, Dirk; Ouedraogo, Jean-Paul; Heiderich, Caroline; Jedamzick, Johanna; Nitsche, Benjamin M; van den Hondel, Cees A; Ram, Arthur F; Meyer, Vera

    2016-01-01

    Understanding the genetic, molecular and evolutionary basis of cysteine-stabilized antifungal proteins (AFPs) from fungi is important for understanding whether their function is mainly defensive or associated with fungal growth and development. In the current study, a transcriptome meta-analysis of the Aspergillus niger γ-core protein AnAFP was performed to explore co-expressed genes and pathways, based on independent expression profiling microarrays covering 155 distinct cultivation conditions. This analysis uncovered that anafp displays a highly coordinated temporal and spatial transcriptional profile which is concomitant with key nutritional and developmental processes. Its expression profile coincides with early starvation response and parallels with genes involved in nutrient mobilization and autophagy. Using fluorescence- and luciferase reporter strains we demonstrated that the anafp promoter is active in highly vacuolated compartments and foraging hyphal cells during carbon starvation with CreA and FlbA, but not BrlA, as most likely regulators of anafp. A co-expression network analysis supported by luciferase-based reporter assays uncovered that anafp expression is embedded in several cellular processes including allorecognition, osmotic and oxidative stress survival, development, secondary metabolism and autophagy, and predicted StuA and VelC as additional regulators. The transcriptomic resources available for A. niger provide unparalleled resources to investigate the function of proteins. Our work illustrates how transcriptomic meta-analyses can lead to hypotheses regarding protein function and predict a role for AnAFP during slow growth, allorecognition, asexual development and nutrient recycling of A. niger and propose that it interacts with the autophagic machinery to enable these processes.

  3. Adiponectin improves insulin sensitivity via activation of autophagic flux.

    PubMed

    Ahlstrom, Penny; Rai, Esther; Chakma, Suharto; Cho, Hee Ho; Rengasamy, Palanivel; Sweeney, Gary

    2017-11-01

    Skeletal muscle insulin resistance is known to play an important role in the pathogenesis of diabetes, and one potential causative cellular mechanism is endoplasmic reticulum (ER) stress. Adiponectin mediates anti-diabetic effects via direct metabolic actions and by improving insulin sensitivity, and we recently demonstrated an important role in stimulation of autophagy by adiponectin. However, there is limited knowledge on crosstalk between autophagy and ER stress in skeletal muscle and in particular how they are regulated by adiponectin. Here, we utilized the model of high insulin/glucose (HIHG)-induced insulin resistance, determined by measuring Akt phosphorylation (T308 and S473) and glucose uptake in L6 skeletal muscle cells. HIHG reduced autophagic flux measured by LC3 and p62 Western blotting and tandem fluorescent RFP/GFP-LC3 immunofluorescence (IF). HIHG also induced ER stress assessed by thioflavin T/KDEL IF, pIRE1, pPERK, peIF2α and ATF6 Western blotting and induction of a GRP78-mCherry reporter. Induction of autophagy by adiponectin or rapamycin attenuated HIHG-induced ER stress and improved insulin sensitivity. The functional significance of enhanced autophagy was validated by demonstrating a lack of improved insulin sensitivity in response to adiponectin in autophagy-deficient cells generated by overexpression of dominant negative mutant of Atg5. In summary, adiponectin-induced autophagy in skeletal muscle cells alleviated HIHG-induced ER stress and insulin resistance. © 2017 Society for Endocrinology.

  4. O-GlcNAcylation is a key modulator of skeletal muscle sarcomeric morphometry associated to modulation of protein-protein interactions.

    PubMed

    Lambert, Matthias; Richard, Elodie; Duban-Deweer, Sophie; Krzewinski, Frederic; Deracinois, Barbara; Dupont, Erwan; Bastide, Bruno; Cieniewski-Bernard, Caroline

    2016-09-01

    The sarcomere structure of skeletal muscle is determined through multiple protein-protein interactions within an intricate sarcomeric cytoskeleton network. The molecular mechanisms involved in the regulation of this sarcomeric organization, essential to muscle function, remain unclear. O-GlcNAcylation, a post-translational modification modifying several key structural proteins and previously described as a modulator of the contractile activity, was never considered to date in the sarcomeric organization. C2C12 skeletal myotubes were treated with Thiamet-G (OGA inhibitor) in order to increase the global O-GlcNAcylation level. Our data clearly showed a modulation of the O-GlcNAc level more sensitive and dynamic in the myofilament-enriched fraction than total proteome. This fine O-GlcNAc level modulation was closely related to changes of the sarcomeric morphometry. Indeed, the dark-band and M-line widths increased, while the I-band width and the sarcomere length decreased according to the myofilament O-GlcNAc level. Some structural proteins of the sarcomere such as desmin, αB-crystallin, α-actinin, moesin and filamin-C have been identified within modulated protein complexes through O-GlcNAc level variations. Their interactions seemed to be changed, especially for desmin and αB-crystallin. For the first time, our findings clearly demonstrate that O-GlcNAcylation, through dynamic regulations of the structural interactome, could be an important modulator of the sarcomeric structure and may provide new insights in the understanding of molecular mechanisms of neuromuscular diseases characterized by a disorganization of the sarcomeric structure. In the present study, we demonstrated a role of O-GlcNAcylation in the sarcomeric structure modulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Ubenimex enhances Brd4 inhibition by suppressing HEXIM1 autophagic degradation and suppressing the Akt pathway in glioma cells.

    PubMed

    Han, Liping; Zhao, Qingwei; Liang, Xianhong; Wang, Xiaoqing; Zhang, Zhen; Ma, Zhiguo; Zhao, Miaoqing; Wang, Aihua; Liu, Shuai

    2017-07-11

    Inhibition of Brd4 by JQ1 treatment showed potential in the treatment of glioma, however, some cases showed low sensitivity of JQ1. In addition, the pre-clinical analysis showed its limitation by demonstrating that transient treatment with JQ1 leads to aggressive tumor development. Thus, an improved understanding of the mechanisms underlying JQ1 is urgently required to design strategies to improve its efficiency, as well as overcome its limitation. HEXIM1 has been confirmed to have an important role in regulating JQ1 sensitivity. In our study, ubenimex, a classical anti-cancer drug showed potential in regulating the JQ1 sensitivity of glioma cells using the WST-1 proliferation assay. Further studies demonstrated that ubenimex inhibited autophagy and downregulated the autophagic degradation of HEXIM1. The role of HEXIM1 in regulating JQ1 sensitivity was verified by the HEXIM1 knockdown. Since ubenimex was verified as an Akt inhibitor, we further studied the role of Akt inhibition in regulating JQ1 sensitivity and migration of glioma cells. Data showed that ubenimex improved the efficiency of JQ1 treatment and suppressed migration both in the in vitro and in vivo xenografts models. The Akt agonist attenuated these effects, pointing to the role of Akt inhibition in JQ1 sensitivity and suppressed migration. Our findings suggest the potential of ubenimex adjuvant treatment to enhance JQ1 efficiency and attenuate parts of its side effect (enhancing tumor aggressive) by regulating the autophagic degradation of HEXIM1 and Akt inhibition.

  6. Multiple functions of the SNARE protein Snap29 in autophagy, endocytic, and exocytic trafficking during epithelial formation in Drosophila.

    PubMed

    Morelli, Elena; Ginefra, Pierpaolo; Mastrodonato, Valeria; Beznoussenko, Galina V; Rusten, Tor Erik; Bilder, David; Stenmark, Harald; Mironov, Alexandre A; Vaccari, Thomas

    2014-01-01

    How autophagic degradation is linked to endosomal trafficking routes is little known. Here we screened a collection of uncharacterized Drosophila mutants affecting membrane transport to identify new genes that also have a role in autophagy. We isolated a loss of function mutant in Snap29 (Synaptosomal-associated protein 29 kDa), the gene encoding the Drosophila homolog of the human protein SNAP29 and have characterized its function in vivo. Snap29 contains 2 soluble NSF attachment protein receptor (SNARE) domains and a asparagine-proline-phenylalanine (NPF motif) at its N terminus and rescue experiments indicate that both SNARE domains are required for function, whereas the NPF motif is in part dispensable. We find that Snap29 interacts with SNARE proteins, localizes to multiple trafficking organelles, and is required for protein trafficking and for proper Golgi apparatus morphology. Developing tissue lacking Snap29 displays distinctive epithelial architecture defects and accumulates large amounts of autophagosomes, highlighting a major role of Snap29 in autophagy and secretion. Mutants for autophagy genes do not display epithelial architecture or secretion defects, suggesting that the these alterations of the Snap29 mutant are unlikely to be caused by the impairment of autophagy. In contrast, we find evidence of elevated levels of hop-Stat92E (hopscotch-signal transducer and activator of transcription protein at 92E) ligand, receptor, and associated signaling, which might underlie the epithelial defects. In summary, our findings support a role of Snap29 at key steps of membrane trafficking, and predict that signaling defects may contribute to the pathogenesis of cerebral dysgenesis, neuropathy, ichthyosis, and palmoplantar keratoderma (CEDNIK), a human congenital syndrome due to loss of Snap29.

  7. Dietary fat composition influences glomerular and proximal convoluted tubule cell structure and autophagic processes in kidneys from calorie-restricted mice.

    PubMed

    Calvo-Rubio, Miguel; Burón, M Isabel; López-Lluch, Guillermo; Navas, Plácido; de Cabo, Rafael; Ramsey, Jon J; Villalba, José M; González-Reyes, José A

    2016-06-01

    Calorie restriction (CR) has been repeatedly shown to prevent cancer, diabetes, hypertension, and other age-related diseases in a wide range of animals, including non-human primates and humans. In rodents, CR also increases lifespan and is a powerful tool for studying the aging process. Recently, it has been reported in mice that dietary fat plays an important role in determining lifespan extension with 40% CR. In these conditions, animals fed lard as dietary fat showed an increased longevity compared with mice fed soybean or fish oils. In this paper, we study the effect of these dietary fats on structural and physiological parameters of kidney from mice maintained on 40% CR for 6 and 18 months. Analyses were performed using quantitative electron microcopy techniques and protein expression in Western blots. CR mitigated most of the analyzed age-related parameters in kidney, such as glomerular basement membrane thickness, mitochondrial mass in convoluted proximal tubules and autophagic markers in renal homogenates. The lard group showed improved preservation of several renal structures with aging when compared to the other CR diet groups. These results indicate that dietary fat modulates renal structure and function in CR mice and plays an essential role in the determination of health span in rodents. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  8. Endolysosomal two‐pore channels regulate autophagy in cardiomyocytes

    PubMed Central

    García‐Rúa, Vanessa; Feijóo‐Bandín, Sandra; Rodríguez‐Penas, Diego; Mosquera‐Leal, Ana; Abu‐Assi, Emad; Beiras, Andrés; María Seoane, Luisa; Lear, Pamela; Parrington, John; Portolés, Manuel; Roselló‐Lletí, Esther; Rivera, Miguel; Gualillo, Oreste; Parra, Valentina; Hill, Joseph A.; Rothermel, Beverly; González‐Juanatey, José Ramón

    2016-01-01

    Key points Two‐pore channels (TPCs) were identified as a novel family of endolysosome‐targeted calcium release channels gated by nicotinic acid adenine dinucleotide phosphate, as also as intracellular Na+ channels able to control endolysosomal fusion, a key process in autophagic flux.Autophagy, an evolutionarily ancient response to cellular stress, has been implicated in the pathogenesis of a wide range of cardiovascular pathologies, including heart failure.We report direct evidence indicating that TPCs are involved in regulating autophagy in cardiomyocytes, and that TPC knockout mice show alterations in the cardiac lysosomal system. TPC downregulation implies a decrease in the viability of cardiomyocytes under starvation conditions. In cardiac tissues from both humans and rats, TPC transcripts and protein levels were higher in females than in males, and correlated negatively with markers of autophagy.We conclude that the endolysosomal channels TPC1 and TPC2 are essential for appropriate basal and induced autophagic flux in cardiomyocytes, and also that they are differentially expressed in male and female hearts. Abstract Autophagy participates in physiological and pathological remodelling of the heart. The endolysosomal two‐pore channels (TPCs), TPC1 and TPC2, have been implicated in the regulation of autophagy. The present study aimed to investigate the role of TPC1 and TPC2 in basal and induced cardiac autophagic activity. In cultured cardiomyocytes, starvation induced a significant increase in TPC1 and TPC2 transcripts and protein levels that paralleled the increase in autophagy identified by increased LC3‐II and decreased p62 levels. Small interfering RNA depletion of TPC2 alone or together with TPC1 increased both LC3II and p62 levels under basal conditions and in response to serum starvation, suggesting that, under conditions of severe energy depletion (serum plus glucose starvation), changes in the autophagic flux (as assessed by use of bafilomycin

  9. Comparison of the aggregation of homologous β2-microglobulin variants reveals protein solubility as a key determinant of amyloid formation

    PubMed Central

    Pashley, Clare L.; Hewitt, Eric W.; Radford, Sheena E.

    2016-01-01

    The mouse and human β2-microglobulin protein orthologs are 70 % identical in sequence and share 88 % sequence similarity. These proteins are predicted by various algorithms to have similar aggregation and amyloid propensities. However, whilst human β2m (hβ2m) forms amyloid-like fibrils in denaturing conditions (e.g. pH 2.5) in the absence of NaCl, mouse β2m (mβ2m) requires the addition of 0.3 M NaCl to cause fibrillation. Here, the factors which give rise to this difference in amyloid propensity are investigated. We utilise structural and mutational analyses, fibril growth kinetics and solubility measurements under a range of pH and salt conditions, to determine why these two proteins have different amyloid propensities. The results show that, although other factors influence the fibril growth kinetics, a striking difference in the solubility of the proteins is a key determinant of the different amyloidogenicity of hβ2m and mβ2m. The relationship between protein solubility and lag time of amyloid formation is not captured by current aggregation or amyloid prediction algorithms, indicating a need to better understand the role of solubility on the lag time of amyloid formation. The results demonstrate the key contribution of protein solubility in determining amyloid propensity and lag time of amyloid formation, highlighting how small differences in protein sequence can have dramatic effects on amyloid formation. PMID:26780548

  10. Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1.

    PubMed

    Scarlatti, Francesca; Bauvy, Chantal; Ventruti, Annamaria; Sala, Giusy; Cluzeaud, Françoise; Vandewalle, Alain; Ghidoni, Riccardo; Codogno, Patrice

    2004-04-30

    The sphingolipid ceramide is involved in the cellular stress response. Here we demonstrate that ceramide controls macroautophagy, a major lysosomal catabolic pathway. Exogenous C(2)-ceramide stimulates macroautophagy (proteolysis and accumulation of autophagic vacuoles) in the human colon cancer HT-29 cells by increasing the endogenous pool of long chain ceramides as demonstrated by the use of the ceramide synthase inhibitor fumonisin B(1). Ceramide reverted the interleukin 13-dependent inhibition of macroautophagy by interfering with the activation of protein kinase B. In addition, C(2)-ceramide stimulated the expression of the autophagy gene product beclin 1. Ceramide is also the mediator of the tamoxifen-dependent accumulation of autophagic vacuoles in the human breast cancer MCF-7 cells. Monodansylcadaverine staining and electron microscopy showed that this accumulation was abrogated by myriocin, an inhibitor of de novo synthesis ceramide. The tamoxifen-dependent accumulation of vacuoles was mimicked by 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, an inhibitor of glucosylceramide synthase. 1-Phenyl-2-decanoylamino-3-morpholino-1-propanol, tamoxifen, and C(2)-ceramide stimulated the expression of beclin 1, whereas myriocin antagonized the tamoxifen-dependent up-regulation. Tamoxifen and C(2)-ceramide interfere with the activation of protein kinase B, whereas myriocin relieved the inhibitory effect of tamoxifen. In conclusion, the control of macroautophagy by ceramide provides a novel function for this lipid mediator in a cell process with major biological outcomes.

  11. Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles

    PubMed Central

    Hafrén, Anders; Macia, Jean-Luc; Love, Andrew J.; Milner, Joel J.; Drucker, Martin; Hofius, Daniel

    2017-01-01

    Autophagy plays a paramount role in mammalian antiviral immunity including direct targeting of viruses and their individual components, and many viruses have evolved measures to antagonize or even exploit autophagy mechanisms for the benefit of infection. In plants, however, the functions of autophagy in host immunity and viral pathogenesis are poorly understood. In this study, we have identified both anti- and proviral roles of autophagy in the compatible interaction of cauliflower mosaic virus (CaMV), a double-stranded DNA pararetrovirus, with the model plant Arabidopsis thaliana. We show that the autophagy cargo receptor NEIGHBOR OF BRCA1 (NBR1) targets nonassembled and virus particle-forming capsid proteins to mediate their autophagy-dependent degradation, thereby restricting the establishment of CaMV infection. Intriguingly, the CaMV-induced virus factory inclusions seem to protect against autophagic destruction by sequestering capsid proteins and coordinating particle assembly and storage. In addition, we found that virus-triggered autophagy prevents extensive senescence and tissue death of infected plants in a largely NBR1-independent manner. This survival function significantly extends the timespan of virus production, thereby increasing the chances for virus particle acquisition by aphid vectors and CaMV transmission. Together, our results provide evidence for the integration of selective autophagy into plant immunity against viruses and reveal potential viral strategies to evade and adapt autophagic processes for successful pathogenesis. PMID:28223514

  12. Protein Oxidation: Key to Bacterial Desiccation Resistance?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredrickson, Jim K.; Li, Shu-Mei W.; Gaidamakova, E.

    For extremely ionizing radiation resistant bacteria, survival has been attributed to protection of proteins from oxidative damage during irradiation, with the result that repair systems survive and function with far greater efficiency during recovery than in sensitive bacteria. Here we examined the relationship between survival of dry-climate soil bacteria and the level of cellular protein oxidation induced by desiccation. Bacteria were isolated from surface soils of the shrub-steppe of the U.S. Department of Energy’s Hanford Site in Washington state. A total of 63 isolates were used for phylogenetic analysis. The majority of isolates were closely related to members of themore » genus Deinococcus, with Chelatococcus, Methylobacterium and Bosea also among the genera identified. Desiccation-resistant isolates accumulated high intracellular manganese and low iron concentrations compared to sensitive bacteria. In vivo, proteins of desiccation-resistant bacteria were protected from oxidative modifications that introduce carbonyl groups in sensitive bacteria during drying. We present the case that survival of bacteria that inhabit dry-climate soils are highly dependent on mechanisms which limit protein oxidation during dehydration.« less

  13. The Autophagic Degradation of Chloroplasts via Rubisco-Containing Bodies Is Specifically Linked to Leaf Carbon Status But Not Nitrogen Status in Arabidopsis1[W][OA

    PubMed Central

    Izumi, Masanori; Wada, Shinya; Makino, Amane; Ishida, Hiroyuki

    2010-01-01

    Autophagy is an intracellular process facilitating the vacuolar degradation of cytoplasmic components and is important for nutrient recycling during starvation. We previously demonstrated that chloroplasts can be partially mobilized to the vacuole by autophagy via spherical bodies named Rubisco-containing bodies (RCBs). Although chloroplasts contain approximately 80% of total leaf nitrogen and represent a major carbon and nitrogen source for new growth, the relationship between leaf nutrient status and RCB production remains unclear. We examined the effects of nutrient factors on the appearance of RCBs in leaves of transgenic Arabidopsis (Arabidopsis thaliana) expressing stroma-targeted fluorescent proteins. In excised leaves, the appearance of RCBs was suppressed by the presence of metabolic sugars, which were added externally or were produced during photosynthesis in the light. The light-mediated suppression was relieved by the inhibition of photosynthesis. During a diurnal cycle, RCB production was suppressed in leaves excised at the end of the day with high starch content. Starchless mutants phosphoglucomutase and ADP-Glc pyrophosphorylase1 produced a large number of RCBs, while starch-excess mutants starch-excess1 and maltose-excess1 produced fewer RCBs. In nitrogen-limited plants, as leaf carbohydrates were accumulated, RCB production was suppressed. We propose that there exists a close relationship between the degradation of chloroplast proteins via RCBs and leaf carbon but not nitrogen status in autophagy. We also found that the appearance of non-RCB-type autophagic bodies was not suppressed in the light and somewhat responded to nitrogen in excised leaves, unlike RCBs. These results imply that the degradation of chloroplast proteins via RCBs is specifically controlled in autophagy. PMID:20807997

  14. A butyrolactone derivative suppressed lipopolysaccharide-induced autophagic injury through inhibiting the autoregulatory loop of p8 and p53 in vascular endothelial cells.

    PubMed

    Meng, Ning; Zhao, Jing; Su, Le; Zhao, Baoxiang; Zhang, Yun; Zhang, Shangli; Miao, Junying

    2012-02-01

    Lipopolysaccharide (LPS)-induced vascular endothelial cell (VEC) dysfunction is an important contributing factor in vascular diseases. Recently, we found that LPS impaired VEC by inducing autophagy. Our previous researches showed that a butyrolactone derivative, 3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3H)-one (3BDO) selectively protected VEC function. The objective of the present study is to investigate whether and how 3BDO inhibits LPS-induced VEC autophagic injury. Our results showed that LPS induced autophagy and led to increase of reactive oxygen species (ROS) and decrease of mitochondrial membrane potential (MMP) in Human umbilical vein vascular endothelial cells (HUVECs). Furthermore, LPS significantly increased p8 and p53 protein levels and the nuclear translocation of p53. All of these effects of LPS on HUVECs were strongly inhibited by 3BDO. Importantly, the ROS scavenger N-acetylcysteine (NAC) could inhibited LPS-induced autophagy and knockdown of p8 by RNA interference inhibited the autophagy, p53 protein level increase, the translocation of p53 into nuclei and the ROS level increase induced by LPS in HUVECs. The data suggested that 3BDO inhibited LPS-induced autophagy in HUVECs through inhibiting the ROS overproduction, the increase of p8 and p53 expression and the nuclear translocation of p53. Our findings provide a potential tool for understanding the mechanism underlying LPS-induced autophagy in HUVECs and open the door to a novel therapeutic drug for LPS-induced vascular diseases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Doxorubicin resistance mediated by cytoplasmic macrophage colony-stimulating factor is associated with switch from apoptosis to autophagic cell death in MCF-7 breast cancer cells

    PubMed Central

    Zhang, Mengxia; Zhang, Hailiang; Tang, Fan; Wang, Yuhua; Mo, Zhongcheng; Lei, Xiaoyong

    2016-01-01

    Macrophage colony-stimulating factor is a vital factor in maintaining the biological function of monocyte–macrophage lineage. It is expressed in many tumor tissues and cancer cells. Recent findings indicate that macrophage colony-stimulating factor might contribute to chemoresistance, but the precise mechanisms are unclear. This study was to explore the effect of macrophage colony-stimulating factor on doxorubicin resistance in MCF-7 breast cancer cells and the possible mechanism. In the study, the human breast cancer cells, MCF-7, were transfected with macrophage colony-stimulating factor. We document that cytoplasmic macrophage colony-stimulating factor induces doxorubicin resistance and inhibits apoptosis in MCF-7 cells. Further studies demonstrated that cytoplasmic macrophage colony-stimulating factor-mediated apoptosis inhibition was dependent on the activation of PI3K/Akt/Survivin pathway. More importantly, we found that macrophage colony-stimulating factor-induced autophagic cell death in doxorubicin-treated MCF-7 cells. Taken together, we show for the first time that macrophage colony-stimulating factor-induced doxorubicin resistance is associated with the changes in cell death response with defective apoptosis and promotion of autophagic cell death. PMID:27439542

  16. LC3- and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells.

    PubMed

    Jiang, Peidu; Mizushima, Noboru

    2015-03-01

    Autophagy is an intracellular degradation system that delivers cytoplasmic materials to the lysosome or vacuole. This system plays a crucial role in various physiological and pathological processes in living organisms ranging from yeast to mammals. Thus, an accurate and reliable measure of autophagic activity is necessary. However, autophagy involves dynamic and complicated processes that make it difficult to analyze. The term "autophagic flux" is used to denote overall autophagic degradation (i.e., delivery of autophagic cargo to the lysosome) rather than autophagosome formation. Immunoblot analysis of LC3 and p62/SQSTM1, among other proteins, has been widely used to monitor autophagic flux. Here, we describe basic protocols to measure the levels of endogenous LC3 and p62 by immunoblotting in cultured mammalian cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. High muscle lipid content in obesity is not due to enhanced activation of key triglyceride esterification enzymes or the suppression of lipolytic proteins

    PubMed Central

    Li, Minghua; Paran, Christopher; Wolins, Nathan E.

    2011-01-01

    The mechanisms underlying alterations in muscle lipid metabolism in obesity are poorly understood. The primary aim of this study was to compare the abundance and/or activities of key proteins that regulate intramyocellular triglyceride (IMTG) concentration in the skeletal muscle obtained from obese (OB; n = 8, BMI 38 ± 1 kg/m2) and nonobese (NOB; n = 9, BMI 23 ± 1 kg/m2) women. IMTG concentration was nearly twofold greater in OB vs. NOB subjects (75 ± 15 vs. 40 ± 8 μmol/g dry wt, P < 0.05). In contrast, the activity and protein abundance of key enzymes that regulate the esterification of IMTG (i.e., glycerol-3-phosphate acyltransferase and diacylglycerol acyltransferase) were not elevated. We also found no differences between groups in muscle adipose triglyceride lipase and hormone-sensitive lipase (HSL) protein abundance and no differences in phosphorylation of specific sites known to affect HSL activity. However, we did find the elevated IMTG in obesity to be accompanied by a greater abundance of the fatty acid transporter FAT/CD36 in the membrane fraction of muscle from OB vs. NOB subjects (P < 0.05), suggestive of an elevated fatty acid transport capacity. Additionally, protein abundance of the lipid-trafficking protein perilipin 3 was lower (P < 0.05) in muscle from OB vs. NOB when expressed relative to IMTG content. Our findings indicate that the elevated IMTG content found in obese women was not due to an upregulation of key lipogenic proteins or to the suppression of lipolytic proteins. The impact of a low perilipin protein abundance relative to the amount of IMTG in obesity remains to be clarified. PMID:21285405

  18. Comparison of the aggregation of homologous β2-microglobulin variants reveals protein solubility as a key determinant of amyloid formation.

    PubMed

    Pashley, Clare L; Hewitt, Eric W; Radford, Sheena E

    2016-02-13

    The mouse and human β2-microglobulin protein orthologs are 70% identical in sequence and share 88% sequence similarity. These proteins are predicted by various algorithms to have similar aggregation and amyloid propensities. However, whilst human β2m (hβ2m) forms amyloid-like fibrils in denaturing conditions (e.g. pH2.5) in the absence of NaCl, mouse β2m (mβ2m) requires the addition of 0.3M NaCl to cause fibrillation. Here, the factors which give rise to this difference in amyloid propensity are investigated. We utilise structural and mutational analyses, fibril growth kinetics and solubility measurements under a range of pH and salt conditions, to determine why these two proteins have different amyloid propensities. The results show that, although other factors influence the fibril growth kinetics, a striking difference in the solubility of the proteins is a key determinant of the different amyloidogenicity of hβ2m and mβ2m. The relationship between protein solubility and lag time of amyloid formation is not captured by current aggregation or amyloid prediction algorithms, indicating a need to better understand the role of solubility on the lag time of amyloid formation. The results demonstrate the key contribution of protein solubility in determining amyloid propensity and lag time of amyloid formation, highlighting how small differences in protein sequence can have dramatic effects on amyloid formation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. HACE1-dependent protein degradation provides cardiac protection in response to haemodynamic stress

    NASA Astrophysics Data System (ADS)

    Zhang, Liyong; Chen, Xin; Sharma, Parveen; Moon, Mark; Sheftel, Alex D.; Dawood, Fayez; Nghiem, Mai P.; Wu, Jun; Li, Ren-Ke; Gramolini, Anthony O.; Sorensen, Poul H.; Penninger, Josef M.; Brumell, John H.; Liu, Peter P.

    2014-03-01

    The HECT E3 ubiquitin ligase HACE1 is a tumour suppressor known to regulate Rac1 activity under stress conditions. HACE1 is increased in the serum of patients with heart failure. Here we show that HACE1 protects the heart under pressure stress by controlling protein degradation. Hace1 deficiency in mice results in accelerated heart failure and increased mortality under haemodynamic stress. Hearts from Hace1-/- mice display abnormal cardiac hypertrophy, left ventricular dysfunction, accumulation of LC3, p62 and ubiquitinated proteins enriched for cytoskeletal species, indicating impaired autophagy. Our data suggest that HACE1 mediates p62-dependent selective autophagic turnover of ubiquitinated proteins by its ankyrin repeat domain through protein-protein interaction, which is independent of its E3 ligase activity. This would classify HACE1 as a dual-function E3 ligase. Our finding that HACE1 has a protective function in the heart in response to haemodynamic stress suggests that HACE1 may be a potential diagnostic and therapeutic target for heart disease.

  20. Depletion of key protein components of the RISC pathway impairs pre-ribosomal RNA processing.

    PubMed

    Liang, Xue-Hai; Crooke, Stanley T

    2011-06-01

    Little is known about whether components of the RNA-induced silencing complex (RISC) mediate the biogenesis of RNAs other than miRNA. Here, we show that depletion of key proteins of the RISC pathway by antisense oligonucleotides significantly impairs pre-rRNA processing in human cells. In cells depleted of Drosha or Dicer, different precursors to 5.8S rRNA strongly accumulated, without affecting normal endonucleolytic cleavages. Moderate yet distinct processing defects were also observed in Ago2-depleted cells. Physical links between pre-rRNA and these proteins were identified by co-immunoprecipitation analyses. Interestingly, simultaneous depletion of Dicer and Drosha led to a different processing defect, causing slower production of 28S rRNA and its precursor. Both Dicer and Ago2 were detected in the nuclear fraction, and reduction of Dicer altered the structure of the nucleolus, where pre-rRNA processing occurs. Together, these results suggest that Drosha and Dicer are implicated in rRNA biogenesis.

  1. Entropy driven key-lock assembly.

    PubMed

    Odriozola, G; Jiménez-Angeles, F; Lozada-Cassou, M

    2008-09-21

    The effective interaction between a sphere with an open cavity (lock) and a spherical macroparticle (key), both immersed in a hard sphere fluid, is studied by means of Monte Carlo simulations. As a result, a two-dimensional map of the key-lock effective interaction potential is constructed, which leads to the proposal of a self-assembling mechanism: There exists trajectories through which the key-lock pair could assemble avoiding trespassing potential barriers. Hence, solely the entropic contribution can induce their self-assembling even in the absence of attractive forces. This study points out the solvent contribution within the underlying mechanisms of substrate-protein assemblydisassembly processes, which are important steps of the enzyme catalysis and protein mediated transport.

  2. Entropy driven key-lock assembly

    NASA Astrophysics Data System (ADS)

    Odriozola, G.; Jiménez-Ángeles, F.; Lozada-Cassou, M.

    2008-09-01

    The effective interaction between a sphere with an open cavity (lock) and a spherical macroparticle (key), both immersed in a hard sphere fluid, is studied by means of Monte Carlo simulations. As a result, a two-dimensional map of the key-lock effective interaction potential is constructed, which leads to the proposal of a self-assembling mechanism: There exists trajectories through which the key-lock pair could assemble avoiding trespassing potential barriers. Hence, solely the entropic contribution can induce their self-assembling even in the absence of attractive forces. This study points out the solvent contribution within the underlying mechanisms of substrate-protein assembly/disassembly processes, which are important steps of the enzyme catalysis and protein mediated transport.

  3. 4-Acetylantroquinonol B suppresses autophagic flux and improves cisplatin sensitivity in highly aggressive epithelial cancer through the PI3K/Akt/mTOR/p70S6K signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Mingche

    Targeting residual self-renewing, chemoresistant cancerous cells may represent the key to overcoming therapy resistance. The entry of these quiescent cells into an activated state is associated with high metabolic demand and autophagic flux. Therefore, modulating the autophagy pathway in aggressive carcinomas may be beneficial as a therapeutic modality. In this study, we evaluated the anti-tumor activities of 4-acetylantroquinonol B (4-AAQB) in chemoresistant ovarian cancer cells, particularly its ability to modulate autophagy through autophagy-related genes (Atg). Atg-5 was overexpressed in invasive ovarian cancer cell lines and tissue (OR: 5.133; P = 0.027) and depleting Atg-5 in ES-2 cell lines significantly inducedmore » apoptosis. 4-AAQB effectively suppressed viability of various subtypes of ovarian cancer. Cells with higher cisplatin-resistance were more responsive to 4-AAQB. For the first time, we demonstrate that 4-AAQB significantly suppress Atg-5 and Atg-7 expression with decreased autophagic flux in ovarian cancer cells via inhibition of the PI3K/Akt/mTOR/p70S6K signaling pathway. Similar to Atg-5 silencing, 4-AAQB-induced autophagy inhibition significantly enhanced cell death in vitro. These results are comparable to those of hydroxychloroquine (HCQ). In addition, 4-AAQB/cisplatin synergistically induced apoptosis in ovarian cancer cells. In vivo, 4-AAQB/cisplatin also significantly induced apoptosis and autophagy in an ES-2 mouse xenografts model. This is the first report demonstrating the efficacy of 4-AAQB alone or in combination with cisplatin on the suppression of ovarian cancer via Atg-5-dependent autophagy. We believe these findings will be beneficial in the development of a novel anti-ovarian cancer therapeutic strategy. - Highlights: • Atg-5 is overexpressed in ovarian cancer and silencing Atg-5 induces apoptosis. • 4-AAQB suppresses autophagy and PI3K/Akt/mTOR pathway. • 4-AAQB + cisplatin synergistically suppresses ovarian cancer via

  4. Trehalose Alters Subcellular Trafficking and the Metabolism of the Alzheimer-associated Amyloid Precursor Protein*

    PubMed Central

    Tien, Nguyen T.; Karaca, Ilker; Tamboli, Irfan Y.

    2016-01-01

    The disaccharide trehalose is commonly considered to stimulate autophagy. Cell treatment with trehalose could decrease cytosolic aggregates of potentially pathogenic proteins, including mutant huntingtin, α-synuclein, and phosphorylated tau that are associated with neurodegenerative diseases. Here, we demonstrate that trehalose also alters the metabolism of the Alzheimer disease-related amyloid precursor protein (APP). Cell treatment with trehalose decreased the degradation of full-length APP and its C-terminal fragments. Trehalose also reduced the secretion of the amyloid-β peptide. Biochemical and cell biological experiments revealed that trehalose alters the subcellular distribution and decreases the degradation of APP C-terminal fragments in endolysosomal compartments. Trehalose also led to strong accumulation of the autophagic marker proteins LC3-II and p62, and decreased the proteolytic activation of the lysosomal hydrolase cathepsin D. The combined data indicate that trehalose decreases the lysosomal metabolism of APP by altering its endocytic vesicular transport. PMID:26957541

  5. PPARβ/δ attenuates palmitate-induced endoplasmic reticulum stress and induces autophagic markers in human cardiac cells.

    PubMed

    Palomer, Xavier; Capdevila-Busquets, Eva; Botteri, Gaia; Salvadó, Laia; Barroso, Emma; Davidson, Mercy M; Michalik, Liliane; Wahli, Walter; Vázquez-Carrera, Manuel

    2014-06-01

    Chronic endoplasmic reticulum (ER) stress contributes to the apoptotic cell death in the myocardium, thereby playing a critical role in the development of cardiomyopathy. ER stress has been reported to be induced after high-fat diet feeding in mice and also after saturated fatty acid treatment in vitro. Therefore, since several studies have shown that peroxisome proliferator-activated receptor (PPAR)β/δ inhibits ER stress, the main goal of this study consisted in investigating whether activation of this nuclear receptor was able to prevent lipid-induced ER stress in cardiac cells. Wild-type and transgenic mice with reduced PPARβ/δ expression were fed a standard diet or a high-fat diet for two months. For in vitro studies, a cardiomyocyte cell line of human origin, AC16, was treated with palmitate and the PPARβ/δ agonist GW501516. Our results demonstrate that palmitate induced ER stress in AC16 cells, a fact which was prevented after PPARβ/δ activation with GW501516. Interestingly, the effect of GW501516 on ER stress occurred in an AMPK-independent manner. The most striking result of this study is that GW501516 treatment also upregulated the protein levels of beclin 1 and LC3II, two well-known markers of autophagy. In accordance with this, feeding on a high-fat diet or suppression of PPARβ/δ in knockout mice induced ER stress in the heart. Moreover, PPARβ/δ knockout mice also displayed a reduction in autophagic markers. Our data indicate that PPARβ/δ activation might be useful to prevent the harmful effects of ER stress induced by saturated fatty acids in the heart by inducing autophagy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. ATG16L1: A multifunctional susceptibility factor in Crohn disease

    PubMed Central

    Salem, Mohammad; Ammitzboell, Mette; Nys, Kris; Seidelin, Jakob Benedict; Nielsen, Ole Haagen

    2015-01-01

    Genetic variations in the autophagic pathway influence genetic predispositions to Crohn disease. Autophagy, the major lysosomal pathway for degrading and recycling cytoplasmic material, constitutes an important homeostatic cellular process. Of interest, single-nucleotide polymorphisms in ATG16L1 (autophagy-related 16-like 1 [S. cerevisiae]), a key component in the autophagic response to invading pathogens, have been associated with an increased risk of developing Crohn disease. The most common and well-studied genetic variant of ATG16L1 (rs2241880; leading to a T300A conversion) exhibits a strong association with risk for developing Crohn disease. The rs2241880 variant plays a crucial role in pathogen clearance, resulting in imbalanced cytokine production, and is linked to other biological processes, such as the endoplasmic reticulum stress/unfolded protein response. In this review, we focus on the importance of ATG16L1 and its genetic variant (T300A) within the elementary biological processes linked to Crohn disease. PMID:25906181

  7. ATG16L1: A multifunctional susceptibility factor in Crohn disease.

    PubMed

    Salem, Mohammad; Ammitzboell, Mette; Nys, Kris; Seidelin, Jakob Benedict; Nielsen, Ole Haagen

    2015-04-03

    Genetic variations in the autophagic pathway influence genetic predispositions to Crohn disease. Autophagy, the major lysosomal pathway for degrading and recycling cytoplasmic material, constitutes an important homeostatic cellular process. Of interest, single-nucleotide polymorphisms in ATG16L1 (autophagy-related 16-like 1 [S. cerevisiae]), a key component in the autophagic response to invading pathogens, have been associated with an increased risk of developing Crohn disease. The most common and well-studied genetic variant of ATG16L1 (rs2241880; leading to a T300A conversion) exhibits a strong association with risk for developing Crohn disease. The rs2241880 variant plays a crucial role in pathogen clearance, resulting in imbalanced cytokine production, and is linked to other biological processes, such as the endoplasmic reticulum stress/unfolded protein response. In this review, we focus on the importance of ATG16L1 and its genetic variant (T300A) within the elementary biological processes linked to Crohn disease.

  8. Neuroprotective Effect of TAT-14-3-3ε Fusion Protein against Cerebral Ischemia/Reperfusion Injury in Rats

    PubMed Central

    Liu, Xiaoyan; Hu, Wenhui; Wang, Yinye

    2014-01-01

    Stroke is the major cause of death and disability worldwide, and the thrombolytic therapy currently available was unsatisfactory. 14-3-3ε is a well characterized member of 14-3-3 family, and has been reported to protect neurons against apoptosis in cerebral ischemia. However, it cannot transverse blood brain barrier (BBB) due to its large size. A protein transduction domain (PTD) of HIV TAT protein, is capable of delivering a large variety of proteins into the brain. In this study, we generated a fusion protein TAT-14-3-3ε, and evaluated its potential neuroprotective effect in rat focal ischemia/reperfusion (I/R) model. Western blot analysis validated the efficient transduction of TAT-14-3-3ε fusion protein into brain via a route of intravenous injection. TAT-14-3-3ε pre-treatment 2 h before ischemia significantly reduced cerebral infarction volume and improved neurologic score, while post-treatment 2 h after ischemia was less effective. Importantly, pre- or post-ischemic treatment with TAT-14-3-3ε significantly increased the number of surviving neurons as determined by Nissl staining, and attenuated I/R-induced neuronal apoptosis as showed by the decrease in apoptotic cell numbers and the inhibition of caspase-3 activity. Moreover, the introduction of 14-3-3ε into brain by TAT-mediated delivering reduced the formation of autophagosome, attenuated LC3B-II upregulation and reversed p62 downregulation induced by ischemic injury. Such inhibition of autophagy was reversed by treatment with an autophagy inducer rapamycin (RAP), which also attenuated the neuroprotective effect of TAT-14-3-3ε. Conversely, autophagy inhibitor 3-methyladenine (3-MA) inhibited I/R-induced the increase in autophagic activity, and attenuated I/R-induced brain infarct. These results suggest that TAT-14-3-3ε can be efficiently transduced into brain and exert significantly protective effect against brain ischemic injury through inhibiting neuronal apoptosis and autophagic activation. PMID

  9. The BEACH-containing protein WDR81 coordinates p62 and LC3C to promote aggrephagy.

    PubMed

    Liu, Xuezhao; Li, Yang; Wang, Xin; Xing, Ruxiao; Liu, Kai; Gan, Qiwen; Tang, Changyong; Gao, Zhiyang; Jian, Youli; Luo, Shouqing; Guo, Weixiang; Yang, Chonglin

    2017-05-01

    Autophagy-dependent clearance of ubiquitinated and aggregated proteins is critical to protein quality control, but the underlying mechanisms are not well understood. Here, we report the essential role of the BEACH (beige and Chediak-Higashi) and WD40 repeat-containing protein WDR81 in eliminating ubiquitinated proteins through autophagy. WDR81 associates with ubiquitin (Ub)-positive protein foci, and its loss causes accumulation of Ub proteins and the autophagy cargo receptor p62. WDR81 interacts with p62, facilitating recognition of Ub proteins by p62. Furthermore, WDR81 interacts with LC3C through canonical LC3-interacting regions in the BEACH domain, promoting LC3C recruitment to ubiquitinated proteins. Inactivation of LC3C or defective autophagy results in accumulation of Ub protein aggregates enriched for WDR81. In mice, WDR81 inactivation causes accumulation of p62 bodies in cortical and striatal neurons in the brain. These data suggest that WDR81 coordinates p62 and LC3C to facilitate autophagic removal of Ub proteins, and provide important insights into CAMRQ2 syndrome, a WDR81-related developmental disorder. © 2017 Liu et al.

  10. The BEACH-containing protein WDR81 coordinates p62 and LC3C to promote aggrephagy

    PubMed Central

    Xing, Ruxiao; Tang, Changyong; Gao, Zhiyang

    2017-01-01

    Autophagy-dependent clearance of ubiquitinated and aggregated proteins is critical to protein quality control, but the underlying mechanisms are not well understood. Here, we report the essential role of the BEACH (beige and Chediak–Higashi) and WD40 repeat-containing protein WDR81 in eliminating ubiquitinated proteins through autophagy. WDR81 associates with ubiquitin (Ub)-positive protein foci, and its loss causes accumulation of Ub proteins and the autophagy cargo receptor p62. WDR81 interacts with p62, facilitating recognition of Ub proteins by p62. Furthermore, WDR81 interacts with LC3C through canonical LC3-interacting regions in the BEACH domain, promoting LC3C recruitment to ubiquitinated proteins. Inactivation of LC3C or defective autophagy results in accumulation of Ub protein aggregates enriched for WDR81. In mice, WDR81 inactivation causes accumulation of p62 bodies in cortical and striatal neurons in the brain. These data suggest that WDR81 coordinates p62 and LC3C to facilitate autophagic removal of Ub proteins, and provide important insights into CAMRQ2 syndrome, a WDR81-related developmental disorder. PMID:28404643

  11. Modulating autophagy in cancer therapy: Advancements and challenges for cancer cell death sensitization.

    PubMed

    Bhat, Punya; Kriel, Jurgen; Shubha Priya, Babu; Basappa; Shivananju, Nanjunda Swamy; Loos, Ben

    2018-01-01

    Autophagy is a major protein degradation pathway capable of upholding cellular metabolism under nutrient limiting conditions, making it a valuable resource to highly proliferating tumour cells. Although the regulatory machinery of the autophagic pathway has been well characterized, accurate modulation of this pathway remains complex in the context of clinical translatability for improved cancer therapies. In particular, the dynamic relationship between the rate of protein degradation through autophagy, i.e. autophagic flux, and the susceptibility of tumours to undergo apoptosis remains largely unclear. Adding to inefficient clinical translation is the lack of measurement techniques that accurately depict autophagic flux. Paradoxically, both increased autophagic flux as well as autophagy inhibition have been shown to sensitize cancer cells to undergo cell death, indicating the highly context dependent nature of this pathway. In this article, we aim to disentangle the role of autophagy modulation in tumour suppression by assessing existing literature in the context of autophagic flux and cellular metabolism at the interface of mitochondrial function. We highlight the urgency to not only assess autophagic flux more accurately, but also to center autophagy manipulation within the unique and inherent metabolic properties of cancer cells. Lastly, we discuss the challenges faced when targeting autophagy in the clinical setting. In doing so, it is hoped that a better understanding of autophagy in cancer therapy is revealed in order to overcome tumour chemoresistance through more controlled autophagy modulation in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The tyrosine kinase inhibitor, sunitinib malate, induces cognitive impairment in vivo via dysregulating VEGFR signaling, apoptotic and autophagic machineries.

    PubMed

    Abdel-Aziz, Amal Kamal; Mantawy, Eman M; Said, Riham Soliman; Helwa, Reham

    2016-09-01

    Chemobrain refers to a cluster of cognitive deficits which affects almost 4-75% of chemotherapy-treated cancer patients. Sunitinib, an FDA-approved multityrosine kinase inhibitor, is currently used in treating different types of tumors. Despite being regarded as targeted therapy which blunts sustained angiogenesis in cancer milieu through inhibiting vascular endothelial growth factor receptor 2 (VEGFR2) signaling, the latter has a cardinal role in cognition. Recent clinical reports warned that sunitinib adversely affected memory processing in cancer patients. Nevertheless, the underlying mechanisms have not been investigated yet. Hence, we explored the impact of a clinically relevant dose of sunitinib on memory processing in vivo and questioned the implication of VEGFR2 signaling, autophagy and apoptosis. Strikingly, sunitinib preferentially impaired spatial cognition as evidenced in Morris water maze, T-maze and passive avoidance task. Consistently, sunitinib degenerated cortical and hippocampal neurons as assessed by histopathological examination and toluidine blue staining. Ultrastructural examination also depicted chromatin condensation, mitochondrial damage and accumulated autophagosomes. Digging deeper, central VEGF/VEGFR2/mTOR signaling was robustly suppressed. Besides, sunitinib boosted cortical and hippocampal p53 and executioner caspase-3 and decreased nuclear factor kappa B and Bcl-2 levels promoting apoptotic cell death. It also profoundly impeded neuronal autophagic flux as shown by decreased beclin-1 and Atg5 and increased p62/SQTSM1 levels. To our knowledge, this is the first study to provide molecular insights into sunitinib-induced chemofog where impeded VEGFR2 signaling and autophagic and hyperactivated apoptotic machineries act in neurodegenerative concert. Importantly, our findings shed light on potential therapeutic strategies to be exploited in the management of sunitinib-induced chemobrain. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Autophagy up and down by outsmarting the incredible ULK.

    PubMed

    Nazio, Francesca; Cecconi, Francesco

    2017-05-04

    Macroautophagy/autophagy initiation is finely regulated by post-translational modifications of key proteins, to comply with the fast kinetics of the cellular response to several stress stimuli. Phosphorylation and ubiquitination play a central role in controlling autophagy by influencing the activity, recruitment and turnover of autophagic components. Recently, we found that, upon autophagy progression, ULK1 kinase is specifically ubiquitinated by the E3 ligase NEDD4L and then degraded via the proteasome. However, during prolonged autophagy, while the ULK1 protein undergoes this inhibition, ULK1 mRNA is actively transcribed, translated and then inhibited again by MTOR-dependent inhibitory phosphorylation. This regulation is essential to promptly restore the ULK1 protein to its original levels to keep autophagy under a safe and physiological threshold.

  14. Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles.

    PubMed

    Su, Yinglong; Zheng, Xiong; Chen, Yinguang; Li, Mu; Liu, Kun

    2015-10-28

    The increasing production and utilization of copper oxide nanoparticles (CuO NPs) result in the releases into the environment. However, the influence of CuO NPs on bacterial denitrification, one of the most important pathways to transform nitrate to dinitrogen in environment, has seldom been studied. Here we reported that CuO NPs caused a significant alteration of key protein expressions of a model denitrifier, Paracoccus denitrificans, leading to severe inhibition to denitrification. Total nitrogen removal efficiency was decreased from 98.3% to 62.1% with the increase of CuO NPs from 0.05 to 0.25 mg/L. Cellular morphology and integrity studies indicated that nanoparticles entered the cells. The proteomic bioinformatics analysis showed that CuO NPs caused regulation of proteins involved in nitrogen metabolism, electron transfer and substance transport. The down-regulation of GtsB protein (responsible for glucose transport) decreased the production of NADH (electron donor for denitrification). Also, the expressions of key electron-transfer proteins (including NADH dehydrogenase and cytochrome) were suppressed by CuO NPs, which adversely affected electrons transfer for denitrification. Further investigation revealed that CuO NPs significantly inhibited the expressions and catalytic activities of nitrate reductase and nitrite reductase. These results provided a fundamental understanding of the negative influences of CuO NPs on bacterial denitrification.

  15. Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles

    PubMed Central

    Su, Yinglong; Zheng, Xiong; Chen, Yinguang; Li, Mu; Liu, Kun

    2015-01-01

    The increasing production and utilization of copper oxide nanoparticles (CuO NPs) result in the releases into the environment. However, the influence of CuO NPs on bacterial denitrification, one of the most important pathways to transform nitrate to dinitrogen in environment, has seldom been studied. Here we reported that CuO NPs caused a significant alteration of key protein expressions of a model denitrifier, Paracoccus denitrificans, leading to severe inhibition to denitrification. Total nitrogen removal efficiency was decreased from 98.3% to 62.1% with the increase of CuO NPs from 0.05 to 0.25 mg/L. Cellular morphology and integrity studies indicated that nanoparticles entered the cells. The proteomic bioinformatics analysis showed that CuO NPs caused regulation of proteins involved in nitrogen metabolism, electron transfer and substance transport. The down-regulation of GtsB protein (responsible for glucose transport) decreased the production of NADH (electron donor for denitrification). Also, the expressions of key electron-transfer proteins (including NADH dehydrogenase and cytochrome) were suppressed by CuO NPs, which adversely affected electrons transfer for denitrification. Further investigation revealed that CuO NPs significantly inhibited the expressions and catalytic activities of nitrate reductase and nitrite reductase. These results provided a fundamental understanding of the negative influences of CuO NPs on bacterial denitrification. PMID:26508362

  16. Trehalose Alters Subcellular Trafficking and the Metabolism of the Alzheimer-associated Amyloid Precursor Protein.

    PubMed

    Tien, Nguyen T; Karaca, Ilker; Tamboli, Irfan Y; Walter, Jochen

    2016-05-13

    The disaccharide trehalose is commonly considered to stimulate autophagy. Cell treatment with trehalose could decrease cytosolic aggregates of potentially pathogenic proteins, including mutant huntingtin, α-synuclein, and phosphorylated tau that are associated with neurodegenerative diseases. Here, we demonstrate that trehalose also alters the metabolism of the Alzheimer disease-related amyloid precursor protein (APP). Cell treatment with trehalose decreased the degradation of full-length APP and its C-terminal fragments. Trehalose also reduced the secretion of the amyloid-β peptide. Biochemical and cell biological experiments revealed that trehalose alters the subcellular distribution and decreases the degradation of APP C-terminal fragments in endolysosomal compartments. Trehalose also led to strong accumulation of the autophagic marker proteins LC3-II and p62, and decreased the proteolytic activation of the lysosomal hydrolase cathepsin D. The combined data indicate that trehalose decreases the lysosomal metabolism of APP by altering its endocytic vesicular transport. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Nutrient excess and autophagic deficiency: explaining metabolic diseases in obesity.

    PubMed

    van Niekerk, Gustav; du Toit, André; Loos, Ben; Engelbrecht, Anna-Mart

    2018-05-01

    Over-nutrition and a sedentary lifestyle are the driving forces behind the development of metabolic diseases. Conversely, caloric restriction and exercise have proven to be the most effective strategies in combating metabolic diseases. Interestingly, exercise and caloric restriction share a common feature: both represent a potent mechanism for upregulating autophagy. Autophagy is rapidly induced by nutrient deprivation, and conversely, inactivated by amino acids as well as growth factors (e.g. insulin). Here, we review evidence demonstrating that autophagy may indeed be attenuated in metabolic tissue such as liver, muscle, and adipose, in the context of obesity. We also highlight the mechanistic basis by which defective autophagy may contribute to the manifestation of metabolic diseases. This includes a compromised ability of the cell to perform quality control on the mitochondrial matrix, since autophagy plays a pivotal role in the degradation of defective mitochondria. Similarly, autophagy also plays an indispensable role in the clearance of protein aggregates and redundant large protein platforms such as inflammasomes. Autophagy might also play a key role in the metabolism of endotoxins, implicating the importance of autophagy in the pathogenesis of metabolic endotoxemia. These observations underpin an unprecedented role of autophagy in the manifestation of obesity-induced metabolic derangement. Copyright © 2017. Published by Elsevier Inc.

  18. Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33AD251E mutation

    PubMed Central

    Zhen, Yuanli; Li, Wei

    2015-01-01

    The HOPS (homotypic fusion and protein sorting) complex functions in endocytic and autophagic pathways in both lower eukaryotes and mammalian cells through its involvement in fusion events between endosomes and lysosomes or autophagosomes and lysosomes. However, the differential molecular mechanisms underlying these fusion processes are largely unknown. Buff (bf) is a mouse mutant that carries an Asp251-to-Glu point mutation (D251E) in the VPS33A protein, a tethering protein and a core subunit of the HOPS complex. Bf mice showed impaired spontaneous locomotor activity, motor learning, and autophagic activity. Although the gross anatomy of the brain was apparently normal, the number of Purkinje cells was significantly reduced. Furthermore, we found that fusion between autophagosomes and lysosomes was defective in bf cells without compromising the endocytic pathway. The direct association of mutant VPS33AD251E with the autophagic SNARE complex, STX17 (syntaxin 17)-VAMP8-SNAP29, was enhanced. In addition, the VPS33AD251E mutation enhanced interactions with other HOPS subunits, namely VPS41, VPS39, VPS18, and VPS11, except for VPS16. Reduction of the interactions between VPS33AY440D and several other HOPS subunits led to decreased association with STX17. These results suggest that the VPS33AD251E mutation plays dual roles by increasing the HOPS complex assembly and its association with the autophagic SNARE complex, which selectively affects the autophagosome-lysosome fusion that impairs basal autophagic activity and induces Purkinje cell loss. PMID:26259518

  19. LC3/GABARAP family proteins: autophagy-(un)related functions.

    PubMed

    Schaaf, Marco B E; Keulers, Tom G; Vooijs, Marc A; Rouschop, Kasper M A

    2016-12-01

    From yeast to mammals, autophagy is an important mechanism for sustaining cellular homeostasis through facilitating the degradation and recycling of aged and cytotoxic components. During autophagy, cargo is captured in double-membraned vesicles, the autophagosomes, and degraded through lysosomal fusion. In yeast, autophagy initiation, cargo recognition, cargo engulfment, and vesicle closure is Atg8 dependent. In higher eukaryotes, Atg8 has evolved into the LC3/GABARAP protein family, consisting of 7 family proteins [LC3A (2 splice variants), LC3B, LC3C, GABARAP, GABARAPL1, and GABARAPL2]. LC3B, the most studied family protein, is associated with autophagosome development and maturation and is used to monitor autophagic activity. Given the high homology, the other LC3/GABARAP family proteins are often presumed to fulfill similar functions. Nevertheless, substantial evidence shows that the LC3/GABARAP family proteins are unique in function and important in autophagy-independent mechanisms. In this review, we discuss the current knowledge and functions of the LC3/GABARAP family proteins. We focus on processing of the individual family proteins and their role in autophagy initiation, cargo recognition, vesicle closure, and trafficking, a complex and tightly regulated process that requires selective presentation and recruitment of these family proteins. In addition, functions unrelated to autophagy of the LC3/GABARAP protein family members are discussed.-Schaaf, M. B. E., Keulers, T. G, Vooijs, M. A., Rouschop, K. M. A. LC3/GABARAP family proteins: autophagy-(un)related functions. © FASEB.

  20. Attenuation of Aβ{sub 25–35}-induced parallel autophagic and apoptotic cell death by gypenoside XVII through the estrogen receptor-dependent activation of Nrf2/ARE pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Xiangbao; Wang, Min; Sun, Guibo, E-mail: sunguibo@126.com

    Amyloid-beta (Aβ) has a pivotal function in the pathogenesis of Alzheimer's disease. To investigate Aβ neurotoxicity, we used an in vitro model that involves Aβ{sub 25–35}-induced cell death in the nerve growth factor-induced differentiation of PC12 cells. Aβ{sub 25–35} (20 μM) treatment for 24 h caused apoptotic cell death, as evidenced by significant cell viability reduction, LDH release, phosphatidylserine externalization, mitochondrial membrane potential disruption, cytochrome c release, caspase-3 activation, PARP cleavage, and DNA fragmentation in PC12 cells. Aβ{sub 25–35} treatment led to autophagic cell death, as evidenced by augmented GFP-LC3 puncta, conversion of LC3-I to LC3-II, and increased LC3-II/LC3-I ratio.more » Aβ{sub 25–35} treatment induced oxidative stress, as evidenced by intracellular ROS accumulation and increased production of mitochondrial superoxide, malondialdehyde, protein carbonyl, and 8-OHdG. Phytoestrogens have been proved to be protective against Aβ-induced neurotoxicity and regarded as relatively safe targets for AD drug development. Gypenoside XVII (GP-17) is a novel phytoestrogen isolated from Gynostemma pentaphyllum or Panax notoginseng. Pretreatment with GP-17 (10 μM) for 12 h increased estrogen response element reporter activity, activated PI3K/Akt pathways, inhibited GSK-3β, induced Nrf2 nuclear translocation, augmented antioxidant responsive element enhancer activity, upregulated heme oxygenase 1 (HO-1) expression and activity, and provided protective effects against Aβ{sub 25–35}-induced neurotoxicity, including oxidative stress, apoptosis, and autophagic cell death. In conclusion, GP-17 conferred protection against Aβ{sub 25–35}-induced neurotoxicity through estrogen receptor-dependent activation of PI3K/Akt pathways, inactivation of GSK-3β and activation of Nrf2/ARE/HO-1 pathways. This finding might provide novel insights into understanding the mechanism for neuroprotective effects of

  1. Key Nutrients.

    ERIC Educational Resources Information Center

    Federal Extension Service (USDA), Washington, DC.

    Lessons written to help trainer agents prepare aides for work with families in the Food and Nutrition Program are presented in this booklet. The key nutrients discussed in the 10 lessons are protein, carbohydrates, fat, calcium, iron, iodine, and Vitamins A, B, C, and D. the format of each lesson is as follows: Purpose, Presentation, Application…

  2. Augmenting brain metabolism to increase macro- and chaperone-mediated autophagy for decreasing neuronal proteotoxicity and aging.

    PubMed

    Loos, Ben; Klionsky, Daniel J; Wong, Esther

    2017-09-01

    Accumulation of toxic protein aggregates in the nerve cells is a hallmark of neuronal diseases and brain aging. Mechanisms to enhance neuronal surveillance to improve neuronal proteostasis have a direct impact on promoting neuronal health and forestalling age-related decline in brain function. Autophagy is a lysosomal degradative pathway pivotal for neuronal protein quality control. Different types of autophagic mechanisms participate in protein handling in neurons. Macroautophagy targets misfolded and aggregated proteins in autophagic vesicles to the lysosomes for destruction, while chaperone-mediated autophagy (CMA) degrades specific soluble cytosolic proteins delivered to the lysosomes by chaperones. Dysfunctions in macroautophagy and CMA contribute to proteo- and neuro-toxicity associated with neurodegeneration and aging. Thus, augmenting or preserving both autophagic mechanisms pose significant benefits in delaying physiological and pathological neuronal demises. Recently, life-style interventions that modulate metabolite ketone bodies, energy intake by caloric restriction and energy expenditure by exercise have shown to enhance both autophagy and brain health. However, to what extent these interventions affect neuronal autophagy to promote brain fitness remains largely unclear. Here, we review the functional connections of how macroautophagy and CMA are affected by ketone bodies, caloric restriction and exercise in the context of neurodegeneration. A concomitant assessment of yeast Saccharomyces cerevisiae is performed to reveal the conserved nature of such autophagic responses to substrate perturbations. In doing so, we provide novel insights and integrated evidence for a potential adjuvant therapeutic strategy to intervene in the neuronal decline in neurodegenerative diseases by controlling both macroautophagy and CMA fluxes favorably. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Adipocyte Fatty Acid Binding Protein Potentiates Toxic Lipids-Induced Endoplasmic Reticulum Stress in Macrophages via Inhibition of Janus Kinase 2-dependent Autophagy

    PubMed Central

    Hoo, Ruby L. C.; Shu, Lingling; Cheng, Kenneth K. Y.; Wu, Xiaoping; Liao, Boya; Wu, Donghai; Zhou, Zhiguang; Xu, Aimin

    2017-01-01

    Lipotoxicity is implicated in the pathogenesis of obesity-related inflammatory complications by promoting macrophage infiltration and activation. Endoplasmic reticulum (ER) stress and adipocyte fatty acid binding protein (A-FABP) play key roles in obesity and mediate inflammatory activity through similar signaling pathways. However, little is known about their interplay in lipid-induced inflammatory responses. Here, we showed that prolonged treatment of palmitic acid (PA) increased ER stress and expression of A-FABP, which was accompanied by reduced autophagic flux in macrophages. Over-expression of A-FABP impaired PA-induced autophagy associating with enhanced ER stress and pro-inflammatory cytokine production, while genetic ablation or pharmacological inhibition of A-FABP reversed the conditions. PA-induced expression of autophagy-related protein (Atg)7 was attenuated in A-FABP over-expressed macrophages, but was elevated in A-FABP-deficient macrophages. Mechanistically, A-FABP potentiated the effects of PA by inhibition of Janus Kinase (JAK)2 activity, thus diminished PA-induced Atg7 expression contributing to impaired autophagy and further augmentation of ER stress. These findings suggest that A-FABP acts as autophagy inhibitor to instigate toxic lipids-induced ER stress through inhibition of JAK2-dependent autophagy, which in turn triggers inflammatory responses in macrophages. A-FABP-JAK2 axis may represent an important pathological pathway contributing to obesity-related inflammatory diseases. PMID:28094778

  4. Origin and spread of photosynthesis based upon conserved sequence features in key bacteriochlorophyll biosynthesis proteins.

    PubMed

    Gupta, Radhey S

    2012-11-01

    The origin of photosynthesis and how this capability has spread to other bacterial phyla remain important unresolved questions. I describe here a number of conserved signature indels (CSIs) in key proteins involved in bacteriochlorophyll (Bchl) biosynthesis that provide important insights in these regards. The proteins BchL and BchX, which are essential for Bchl biosynthesis, are derived by gene duplication in a common ancestor of all phototrophs. More ancient gene duplication gave rise to the BchX-BchL proteins and the NifH protein of the nitrogenase complex. The sequence alignment of NifH-BchX-BchL proteins contain two CSIs that are uniquely shared by all NifH and BchX homologs, but not by any BchL homologs. These CSIs and phylogenetic analysis of NifH-BchX-BchL protein sequences strongly suggest that the BchX homologs are ancestral to BchL and that the Bchl-based anoxygenic photosynthesis originated prior to the chlorophyll (Chl)-based photosynthesis in cyanobacteria. Another CSI in the BchX-BchL sequence alignment that is uniquely shared by all BchX homologs and the BchL sequences from Heliobacteriaceae, but absent in all other BchL homologs, suggests that the BchL homologs from Heliobacteriaceae are primitive in comparison to all other photosynthetic lineages. Several other identified CSIs in the BchN homologs are commonly shared by all proteobacterial homologs and a clade consisting of the marine unicellular Cyanobacteria (Clade C). These CSIs in conjunction with the results of phylogenetic analyses and pair-wise sequence similarity on the BchL, BchN, and BchB proteins, where the homologs from Clade C Cyanobacteria and Proteobacteria exhibited close relationship, provide strong evidence that these two groups have incurred lateral gene transfers. Additionally, phylogenetic analyses and several CSIs in the BchL-N-B proteins that are uniquely shared by all Chlorobi and Chloroflexi homologs provide evidence that the genes for these proteins have also been

  5. Inhibition of protein ubiquitination by paraquat and 1-methyl-4-phenylpyridinium impairs ubiquitin-dependent protein degradation pathways

    PubMed Central

    Navarro-Yepes, Juliana; Anandhan, Annadurai; Bradley, Erin; Bohovych, Iryna; Yarabe, Bo; de Jong, Annemieke; Ovaa, Huib; Zhou, You; Khalimonchuk, Oleh; Quintanilla-Vega, Betzabet; Franco, Rodrigo

    2016-01-01

    Intracytoplasmic inclusions of protein aggregates in dopaminergic cells (Lewy bodies) are the pathological hallmark of Parkinson’s disease (PD). Ubiquitin (Ub), alpha [α]-synuclein, p62/sequestosome 1 and oxidized proteins are major components of Lewy bodies. However, the mechanisms involved in the impairment of misfolded/oxidized protein degradation pathways in PD are still unclear. PD is linked to mitochondrial dysfunction and environmental pesticide exposure. In this work, we evaluated the effect of the pesticide paraquat (PQ) and the mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP+) on Ub-dependent protein degradation pathways. No increase in the accumulation of Ub-bound proteins or aggregates was observed in dopaminergic cells (SK-N-SH) treated with PQ or MPP+, or in mice chronically exposed to PQ. PQ decreased Ub protein content, but not its mRNA transcription. Protein synthesis inhibition with cycloheximide depleted Ub levels and potentiated PQ–induced cell death. Inhibition of proteasomal activity by PQ was found to be a late event in cell death progression, and had no effect on either the toxicity of MPP+ or PQ, or the accumulation of oxidized sulfenylated, sulfonylated (DJ-1/PARK7 and peroxiredoxins) and carbonylated proteins induced by PQ. PQ- and MPP+-induced Ub protein depletion prompted the dimerization/inactivation of the Ub-binding protein p62 that regulates the clearance of ubiquitinated proteins by autophagic. We confirmed that PQ and MPP+ impaired autophagy flux, and that the blockage of autophagy by the overexpression of a dominant-negative form of the autophagy protein 5 (dnAtg5) stimulated their toxicity, but there was no additional effect upon inhibition of the proteasome. PQ induced an increase in the accumulation of α-synuclein in dopaminergic cells and membrane associated foci in yeast cells. Our results demonstrate that inhibition of protein ubiquitination by PQ and MPP+ is involved in the dysfunction of Ub-dependent protein

  6. Constitutive upregulation of chaperone-mediated autophagy in Huntington's disease.

    PubMed

    Koga, Hiroshi; Martinez-Vicente, Marta; Arias, Esperanza; Kaushik, Susmita; Sulzer, David; Cuervo, Ana Maria

    2011-12-14

    Autophagy contributes to the removal of prone-to-aggregate proteins, but in several instances these pathogenic proteins have been shown to interfere with autophagic activity. In the case of Huntington's disease (HD), a congenital neurodegenerative disorder resulting from mutation in the huntingtin protein, we have previously described that the mutant protein interferes with the ability of autophagic vacuoles to recognize cytosolic cargo. Growing evidence supports the existence of cross talk among autophagic pathways, suggesting the possibility of functional compensation when one of them is compromised. In this study, we have identified a compensatory upregulation of chaperone-mediated autophagy (CMA) in different cellular and mouse models of HD. Components of CMA, namely the lysosome-associated membrane protein type 2A (LAMP-2A) and lysosomal-hsc70, are markedly increased in HD models. The increase in LAMP-2A is achieved through both an increase in the stability of this protein at the lysosomal membrane and transcriptional upregulation of this splice variant of the lamp-2 gene. We propose that CMA activity increases in response to macroautophagic dysfunction in the early stages of HD, but that the efficiency of this compensatory mechanism may decrease with age and so contribute to cellular failure and the onset of pathological manifestations.

  7. Structure-function mapping of BbCRASP-1, the key complement factor H and FHL-1 binding protein of Borrelia burgdorferi.

    PubMed

    Cordes, Frank S; Kraiczy, Peter; Roversi, Pietro; Simon, Markus M; Brade, Volker; Jahraus, Oliver; Wallis, Russell; Goodstadt, Leo; Ponting, Chris P; Skerka, Christine; Zipfel, Peter F; Wallich, Reinhard; Lea, Susan M

    2006-05-01

    Borrelia burgdorferi, a spirochaete transmitted to human hosts during feeding of infected Ixodes ticks, is the causative agent of Lyme disease, the most frequent vector-borne disease in Eurasia and North America. Sporadically Lyme disease develops into a chronic, multisystemic disorder. Serum-resistant B. burgdorferi strains bind complement factor H (FH) and FH-like protein 1 (FHL-1) on the spirochaete surface. This binding is dependent on the expression of proteins termed complement-regulator acquiring surface proteins (CRASPs). The atomic structure of BbCRASP-1, the key FHL-1/FH-binding protein of B. burgdorferi, has recently been determined. Our analysis indicates that its protein topology apparently evolved to provide a high affinity interaction site for FH/FHL-1 and leads to an atomic-level hypothesis for the functioning of BbCRASP-1. This work demonstrates that pathogens interact with complement regulators in ways that are distinct from the mechanisms used by the host and are thus obvious targets for drug design.

  8. 17-DMAG induces heat shock protein 90 functional impairment in human bladder cancer cells: knocking down the hallmark traits of malignancy.

    PubMed

    Karkoulis, Panagiotis K; Stravopodis, Dimitrios J; Voutsinas, Gerassimos E

    2016-05-01

    Heat shock protein 90 (Hsp90) is a molecular chaperone that maintains the structural and functional integrity of various protein clients involved in multiple oncogenic signaling pathways. Hsp90 holds a prominent role in tumorigenesis, as numerous members of its broad clientele are involved in the generation of the hallmark traits of cancer. 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) specifically targets Hsp90 and interferes with its function as a molecular chaperone, impairing its intrinsic ATPase activity and undermining proper folding of multiple protein clients. In this study, we have examined the effects of 17-DMAG on the regulation of Hsp90-dependent tumorigenic signaling pathways directly implicated in cell cycle progression, survival, and motility of human urinary bladder cancer cell lines. We have used MTT-based assays, FACS analysis, Western blotting, semiquantitative PCR (sqPCR), immunofluorescence, and scratch-wound assays in RT4 (p53(wt)), RT112 (p53(wt)), T24 (p53(mt)), and TCCSUP (p53(mt)) human urinary bladder cancer cell lines. We have demonstrated that, upon exposure to 17-DMAG, bladder cancer cells display prominent cell cycle arrest and commitment to apoptotic and autophagic cell death, in a dose-dependent manner. Furthermore, 17-DMAG administration induced pronounced downregulation of multiple Hsp90 protein clients and other downstream oncogenic effectors, therefore causing inhibition of cell proliferation and decline of cell motility due to the molecular "freezing" of critical cytoskeletal components. In toto, we have clearly demonstrated the dose-dependent and cell type-specific effects of 17-DMAG on the hallmark traits of cancer, appointing Hsp90 as a key molecular component in bladder cancer targeted therapy.

  9. Emergence of Protein Kinase CK2 as a Key Target in Cancer Therapy

    PubMed Central

    Trembley, Janeen H.; Chen, Zhong; Unger, Gretchen; Slaton, Joel; Kren, Betsy T.; Van Waes, Carter; Ahmed, Khalil

    2010-01-01

    Protein kinase CK2, a protein serine/threonine kinase, plays a global role in activities related to cell growth, cell death and cell survival. CK2 has a large number of potential substrates localized in diverse locations in the cell including, e.g., NF-κB as an important downstream target of the kinase. In addition to its involvement in cell growth and proliferation it is also a potent suppressor of apoptosis, raising its key importance in cancer cell phenotype. CK2 interacts with diverse pathways which illustrates the breadth of its impact on the cellular machinery of both cell growth and cell death giving it the status of a “master regulator” in the cell. With respect to cancer, CK2 has been found to be dysregulated in all cancers examined demonstrating increased protein expression levels and nuclear localization in cancer cells compared with their normal counterparts. We originally proposed CK2 as a potentially important target for cancer therapy. Given the ubiquitous and essential for cell survival nature of the kinase, an important consideration would be to target it specifically in cancer cells while sparing normal cells. Towards that end, our design of a tenascin based sub-50 nm (i.e., less than 50 nm size) nanocapsule in which an anti-CK2 therapeutic agent can be packaged is highly promising because this formulation can specifically deliver the cargo intracellularly to the cancer cells in vivo. Thus, appropriate strategies to target CK2 especially by molecular approaches may lead to a highly feasible and effective approach to eradication of a given cancer. PMID:20533398

  10. Exposure to 835 MHz radiofrequency electromagnetic field induces autophagy in hippocampus but not in brain stem of mice.

    PubMed

    Kim, Ju Hwan; Yu, Da-Hyeon; Kim, Hyo-Jeong; Huh, Yang Hoon; Cho, Seong-Wan; Lee, Jin-Koo; Kim, Hyung-Gun; Kim, Hak Rim

    2018-01-01

    The exploding popularity of mobile phones and their close proximity to the brain when in use has raised public concern regarding possible adverse effects from exposure to radiofrequency electromagnetic fields (RF-EMF) on the central nervous system. Numerous studies have suggested that RF-EMF emitted by mobile phones can influence neuronal functions in the brain. Currently, there is still very limited information on what biological mechanisms influence neuronal cells of the brain. In the present study, we explored whether autophagy is triggered in the hippocampus or brain stem after RF-EMF exposure. C57BL/6 mice were exposed to 835 MHz RF-EMF with specific absorption rates (SAR) of 4.0 W/kg for 12 weeks; afterward, the hippocampus and brain stem of mice were dissected and analyzed. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that several autophagic genes, which play key roles in autophagy regulation, were significantly upregulated only in the hippocampus and not in the brain stem. Expression levels of LC3B-II protein and p62, crucial autophagic regulatory proteins, were significantly changed only in the hippocampus. In parallel, transmission electron microscopy (TEM) revealed an increase in the number of autophagosomes and autolysosomes in the hippocampal neurons of RF-EMF-exposed mice. The present study revealed that autophagy was induced in the hippocampus, not in the brain stem, in 835 MHz RF-EMF with an SAR of 4.0 W/kg for 12 weeks. These results could suggest that among the various adaptation processes to the RF-EMF exposure environment, autophagic degradation is one possible mechanism in specific brain regions.

  11. Delivery of Prolamins to the Protein Storage Vacuole in Maize Aleurone Cells[W

    PubMed Central

    Reyes, Francisca C.; Chung, Taijoon; Holding, David; Jung, Rudolf; Vierstra, Richard; Otegui, Marisa S.

    2011-01-01

    Zeins, the prolamin storage proteins found in maize (Zea mays), accumulate in accretions called protein bodies inside the endoplasmic reticulum (ER) of starchy endosperm cells. We found that genes encoding zeins, α-globulin, and legumin-1 are transcribed not only in the starchy endosperm but also in aleurone cells. Unlike the starchy endosperm, aleurone cells accumulate these storage proteins inside protein storage vacuoles (PSVs) instead of the ER. Aleurone PSVs contain zein-rich protein inclusions, a matrix, and a large system of intravacuolar membranes. After being assembled in the ER, zeins are delivered to the aleurone PSVs in atypical prevacuolar compartments that seem to arise at least partially by autophagy and consist of multilayered membranes and engulfed cytoplasmic material. The zein-containing prevacuolar compartments are neither surrounded by a double membrane nor decorated by AUTOPHAGY RELATED8 protein, suggesting that they are not typical autophagosomes. The PSV matrix contains glycoproteins that are trafficked through a Golgi-multivesicular body (MVB) pathway. MVBs likely fuse with the multilayered, autophagic compartments before merging with the PSV. The presence of similar PSVs also containing prolamins and large systems of intravacuolar membranes in wheat (Triticum aestivum) and barley (Hordeum vulgare) starchy endosperm suggests that this trafficking mechanism may be common among cereals. PMID:21343414

  12. Therapeutic effects of remediating autophagy failure in a mouse model of Alzheimer disease by enhancing lysosomal proteolysis.

    PubMed

    Yang, Dun-Sheng; Stavrides, Philip; Mohan, Panaiyur S; Kaushik, Susmita; Kumar, Asok; Ohno, Masuo; Schmidt, Stephen D; Wesson, Daniel W; Bandyopadhyay, Urmi; Jiang, Ying; Pawlik, Monika; Peterhoff, Corrinne M; Yang, Austin J; Wilson, Donald A; St George-Hyslop, Peter; Westaway, David; Mathews, Paul M; Levy, Efrat; Cuervo, Ana M; Nixon, Ralph A

    2011-07-01

    The extensive autophagic-lysosomal pathology in Alzheimer disease (AD) brain has revealed a major defect: in the proteolytic clearance of autophagy substrates. Autophagy failure contributes on several levels to AD pathogenesis and has become an important therapeutic target for AD and other neurodegenerative diseases. We recently observed broad therapeutic effects of stimulating autophagic-lysosomal proteolysis in the TgCRND8 mouse model of AD that exhibits defective proteolytic clearance of autophagic substrates, robust intralysosomal amyloid-β peptide (Aβ) accumulation, extracellular β-amyloid deposition and cognitive deficits. By genetically deleting the lysosomal cysteine protease inhibitor, cystatin B (CstB), to selectively restore depressed cathepsin activities, we substantially cleared Aβ, ubiquitinated proteins and other autophagic substrates from autolysosomes/lysosomes and rescued autophagic-lysosomal pathology, as well as reduced total Aβ40/42 levels and extracellular amyloid deposition, highlighting the underappreciated importance of the lysosomal system for Aβ clearance. Most importantly, lysosomal remediation prevented the marked learning and memory deficits in TgCRND8 mice. Our findings underscore the pathogenic significance of autophagic-lysosomal dysfunction in AD and demonstrate the value of reversing this dysfunction as an innovative therapeautic strategy for AD.

  13. TLR9-ERK-mTOR signaling is critical for autophagic cell death induced by CpG oligodeoxynucleotide 107 combined with irradiation in glioma cells

    PubMed Central

    Li, Xiaoli; Cen, Yanyan; Cai, Yongqing; Liu, Tao; Liu, Huan; Cao, Guanqun; Liu, Dan; Li, Bin; Peng, Wei; Zou, Jintao; Pang, Xueli; Zheng, Jiang; Zhou, Hong

    2016-01-01

    Synthetic oligodeoxynucleotides containing unmethylated CpG dinucleotides (CpG ODN) function as potential radiosensitizers for glioma treatment, although the underlying mechanism is unclear. It was observed that CpG ODN107, when combined with irradiation, did not induce apoptosis. Herein, the effect of CpG ODN107 + irradiation on autophagy and the related signaling pathways was investigated. In vitro, CpG ODN107 + irradiation induced autophagosome formation, increased the ratio of LC3 II/LC3 I, beclin 1 and decreased p62 expression in U87 cells. Meanwhile, CpG ODN107 also increased LC3 II/LC3 I expression in U251 and CHG-5 cells. In vivo, CpG ODN107 combined with local radiotherapy induced autophagosome formation in orthotopic transplantation tumor. Investigation of the molecular mechanisms demonstrated that CpG ODN107 + irradiation increased the levels of TLR9 and p-ERK, and decreased the level of p-mTOR in glioma cells. Further, TLR9-specific siRNA could affect the expressions of p-ERK and autophagy-related proteins in glioma cells. Taken together, CpG ODN107 combined with irradiation could induce autophagic cell death, and this effect was closely related to the TLR9-ERK-mTOR signaling pathway in glioma cells, providing new insights into the investigation mechanism of CpG ODN. PMID:27251306

  14. CIP2A oncoprotein controls cell growth and autophagy through mTORC1 activation

    PubMed Central

    Puustinen, Pietri; Rytter, Anna; Mortensen, Monika; Kohonen, Pekka; Moreira, José M.

    2014-01-01

    mTORC1 (mammalian target of rapamycin complex 1) integrates information regarding availability of nutrients and energy to coordinate protein synthesis and autophagy. Using ribonucleic acid interference screens for autophagy-regulating phosphatases in human breast cancer cells, we identify CIP2A (cancerous inhibitor of PP2A [protein phosphatase 2A]) as a key modulator of mTORC1 and autophagy. CIP2A associates with mTORC1 and acts as an allosteric inhibitor of mTORC1-associated PP2A, thereby enhancing mTORC1-dependent growth signaling and inhibiting autophagy. This regulatory circuit is reversed by ubiquitination and p62/SQSTM1-dependent autophagic degradation of CIP2A and subsequent inhibition of mTORC1 activity. Consistent with CIP2A’s reported ability to protect c-Myc against proteasome-mediated degradation, autophagic degradation of CIP2A upon mTORC1 inhibition leads to destabilization of c-Myc. These data characterize CIP2A as a distinct regulator of mTORC1 and reveals mTORC1-dependent control of CIP2A degradation as a mechanism that links mTORC1 activity with c-Myc stability to coordinate cellular metabolism, growth, and proliferation. PMID:24590173

  15. Structural characterization of POM6 Fab and mouse prion protein complex identifies key regions for prions conformational conversion.

    PubMed

    Baral, Pravas Kumar; Swayampakula, Mridula; Aguzzi, Adriano; James, Michael N G

    2018-05-01

    Conversion of the cellular prion protein PrP C into its pathogenic isoform PrP S c is the hallmark of prion diseases, fatal neurodegenerative diseases affecting many mammalian species including humans. Anti-prion monoclonal antibodies can arrest the progression of prion diseases by stabilizing the cellular form of the prion protein. Here, we present the crystal structure of the POM6 Fab fragment, in complex with the mouse prion protein (moPrP). The prion epitope of POM6 is in close proximity to the epitope recognized by the purportedly toxic antibody fragment, POM1 Fab also complexed with moPrP. The POM6 Fab recognizes a larger binding interface indicating a likely stronger binding compared to POM1. POM6 and POM1 exhibit distinct biological responses. Structural comparisons of the bound mouse prion proteins from the POM6 Fab:moPrP and POM1 Fab:moPrP complexes reveal several key regions of the prion protein that might be involved in initiating mis-folding events. The structural data of moPrP:POM6 Fab complex are available in the PDB under the accession number www.rcsb.org/pdb/search/structidSearch.do?structureId=6AQ7. © 2018 Federation of European Biochemical Societies.

  16. Effect of hydroxychloroquine and characterization of autophagy in a mouse model of endometriosis

    PubMed Central

    Ruiz, A; Rockfield, S; Taran, N; Haller, E; Engelman, R W; Flores, I; Panina-Bordignon, P; Nanjundan, M

    2016-01-01

    In endometriosis, the increased survival potential of shed endometrial cells (which normally undergo anoikis) is suggested to promote lesion development. One mechanism that may alter anoikis is autophagy. Using an autophagic flux inhibitor hydroxychloroquine (HCQ), we identified that it reduces the in vitro survival capacity of human endometriotic and endometrial T-HESC cells. We also identified that HCQ could decrease lesion numbers and disrupt lesion histopathology, as well as increase the levels of peritoneal macrophages and the IP-10 (10 kDa interferon-γ-induced protein) chemokine in a mouse model of endometriosis. We noted that RNA levels of a subset of autophagic markers were reduced in lesions relative to uterine horns from endometriosis-induced (untreated) mice. In addition, the RNA levels of autophagic markers were decreased in uterine horns of endometriosis-induced mice compared with those from controls. However, we noted that protein expression of LC3B (microtubule-associated protein 1 light-chain 3β; an autophagic marker) was increased in uterine horns of endometriosis-induced mice compared with uterine horns of controls. By immunohistochemical staining of a human endometriosis-focused tissue microarray, we observed LC3B expression predominantly in epithelial relative to stromal cells in both eutopic and ectopic endometria. Via transmission electron microscopy, cells from eutopic endometria of endometriosis-induced mice contained more lipid droplets (rather than autophagosomes) compared with uterine horns from controls. Collectively, our findings indicate that the autophagic pathway is dysregulated in both ectopic and eutopic endometrium in a murine model of endometriosis and that HCQ has potential as a therapeutic agent for women afflicted with endometriosis. PMID:26775710

  17. (+)-Grandifloracin, an antiausterity agent, induces autophagic PANC-1 pancreatic cancer cell death.

    PubMed

    Ueda, Jun-ya; Athikomkulchai, Sirivan; Miyatake, Ryuta; Saiki, Ikuo; Esumi, Hiroyasu; Awale, Suresh

    2014-01-01

    Human pancreatic tumors are known to be highly resistant to nutrient starvation, and this prolongs their survival in the hypovascular (austere) tumor microenvironment. Agents that retard this tolerance to nutrient starvation represent a novel antiausterity strategy in anticancer drug discovery. (+)-Grandifloracin (GF), isolated from Uvaria dac, has shown preferential toxicity to PANC-1 human pancreatic cancer cells under nutrient starvation, with a PC50 value of 14.5 μM. However, the underlying mechanism is not clear. In this study, GF was found to preferentially induce PANC-1 cell death in a nutrient-deprived medium via hyperactivation of autophagy, as evidenced by a dramatic upregulation of microtubule-associated protein 1 light chain 3. No change was observed in expression of the caspase-3 and Bcl-2 apoptosis marker proteins. GF was also found to strongly inhibit the activation of Akt, a key regulator of cancer cell survival and proliferation. Because pancreatic tumors are highly resistant to current therapies that induce apoptosis, the alternative cell death mechanism exhibited by GF provides a novel therapeutic insight into antiausterity drug candidates.

  18. With Protein Foods, Variety Is Key: 10 Tips for Choosing Protein

    MedlinePlus

    ... or seeds can be considered as 1 ounce-equivalent from the Protein Foods Group. Revised January 2016 ... Us Advanced Search Help Search Tips Privacy Policy Non-Discrimination Statement Information Quality USA.gov WhiteHouse.gov

  19. Proteotoxic Stress Induces Phosphorylation of p62/SQSTM1 by ULK1 to Regulate Selective Autophagic Clearance of Protein Aggregates

    PubMed Central

    Lim, Junghyun; Lachenmayer, M. Lenard; Wu, Shuai; Liu, Wenchao; Kundu, Mondira; Wang, Rong; Komatsu, Masaaki; Oh, Young J.; Zhao, Yanxiang; Yue, Zhenyu

    2015-01-01

    Disruption of proteostasis, or protein homeostasis, is often associated with aberrant accumulation of misfolded proteins or protein aggregates. Autophagy offers protection to cells by removing toxic protein aggregates and injured organelles in response to proteotoxic stress. However, the exact mechanism whereby autophagy recognizes and degrades misfolded or aggregated proteins has yet to be elucidated. Mounting evidence demonstrates the selectivity of autophagy, which is mediated through autophagy receptor proteins (e.g. p62/SQSTM1) linking autophagy cargos and autophagosomes. Here we report that proteotoxic stress imposed by the proteasome inhibition or expression of polyglutamine expanded huntingtin (polyQ-Htt) induces p62 phosphorylation at its ubiquitin-association (UBA) domain that regulates its binding to ubiquitinated proteins. We find that autophagy-related kinase ULK1 phosphorylates p62 at a novel phosphorylation site S409 in UBA domain. Interestingly, phosphorylation of p62 by ULK1 does not occur upon nutrient starvation, in spite of its role in canonical autophagy signaling. ULK1 also phosphorylates S405, while S409 phosphorylation critically regulates S405 phosphorylation. We find that S409 phosphorylation destabilizes the UBA dimer interface, and increases binding affinity of p62 to ubiquitin. Furthermore, lack of S409 phosphorylation causes accumulation of p62, aberrant localization of autophagy proteins and inhibition of the clearance of ubiquitinated proteins or polyQ-Htt. Therefore, our data provide mechanistic insights into the regulation of selective autophagy by ULK1 and p62 upon proteotoxic stress. Our study suggests a potential novel drug target in developing autophagy-based therapeutics for the treatment of proteinopathies including Huntington’s disease. PMID:25723488

  20. HAMLET (human alpha-lactalbumin made lethal to tumor cells) triggers autophagic tumor cell death.

    PubMed

    Aits, Sonja; Gustafsson, Lotta; Hallgren, Oskar; Brest, Patrick; Gustafsson, Mattias; Trulsson, Maria; Mossberg, Ann-Kristin; Simon, Hans-Uwe; Mograbi, Baharia; Svanborg, Catharina

    2009-03-01

    HAMLET, a complex of partially unfolded alpha-lactalbumin and oleic acid, kills a wide range of tumor cells. Here we propose that HAMLET causes macroautophagy in tumor cells and that this contributes to their death. Cell death was accompanied by mitochondrial damage and a reduction in the level of active mTOR and HAMLET triggered extensive cytoplasmic vacuolization and the formation of double-membrane-enclosed vesicles typical of macroautophagy. In addition, HAMLET caused a change from uniform (LC3-I) to granular (LC3-II) staining in LC3-GFP-transfected cells reflecting LC3 translocation during macroautophagy, and this was blocked by the macroautophagy inhibitor 3-methyladenine. HAMLET also caused accumulation of LC3-II detected by Western blot when lysosomal degradation was inhibited suggesting that HAMLET caused an increase in autophagic flux. To determine if macroautophagy contributed to cell death, we used RNA interference against Beclin-1 and Atg5. Suppression of Beclin-1 and Atg5 improved the survival of HAMLET-treated tumor cells and inhibited the increase in granular LC3-GFP staining. The results show that HAMLET triggers macroautophagy in tumor cells and suggest that macroautophagy contributes to HAMLET-induced tumor cell death.

  1. Structure of Yeast OSBP-Related Protein Osh1 Reveals Key Determinants for Lipid Transport and Protein Targeting at the Nucleus-Vacuole Junction.

    PubMed

    Manik, Mohammad Kawsar; Yang, Huiseon; Tong, Junsen; Im, Young Jun

    2017-04-04

    Yeast Osh1 belongs to the oxysterol-binding protein (OSBP) family of proteins and contains multiple targeting modules optimized for lipid transport at the nucleus-vacuole junction (NVJ). The key determinants for NVJ targeting and the role of Osh1 at NVJs have remained elusive because of unknown lipid specificities. In this study, we determined the structures of the ankyrin repeat domain (ANK), and OSBP-related domain (ORD) of Osh1, in complex with Nvj1 and ergosterol, respectively. The Osh1 ANK forms a unique bi-lobed structure that recognizes a cytosolic helical segment of Nvj1. We discovered that Osh1 ORD binds ergosterol and phosphatidylinositol 4-phosphate PI(4)P in a competitive manner, suggesting counter-transport function of the two lipids. Ergosterol is bound to the hydrophobic pocket in a head-down orientation, and the structure of the PI(4)P-binding site in Osh1 is well conserved. Our results suggest that Osh1 performs non-vesicular transport of ergosterol and PI(4)P at the NVJ. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. AMP-Dependent Kinase and Autophagic Flux are Involved in Aldehyde Dehydrogenase 2-Offered Protection against Cardiac Toxicity of Ethanol

    PubMed Central

    Ge, Wei; Guo, Rui; Ren, Jun

    2011-01-01

    Mitochondrial aldehyde dehydrogenase-2 (ALDH2) alleviates ethanol toxicity although the precise mechanism is unclear. This study was designed to evaluate the effect of ALDH2 on ethanol-induced myocardial damage with a focus on autophagy. Wild-type FVB and transgenic mice overexpressing ALDH2 were challenged with ethanol (3 g/kg/d, i.p.) for 3 days and cardiac mechanical function was assessed using the echocardiographic and IonOptix systems. Western blot analysis was used to evaluate essential autophagy markers, Akt and AMPK and their downstream signaling mTOR. Ethanol challenge altered cardiac geometry and function evidenced by enlarged ventricular end systolic and diastolic diameters, decreased cell shortening and intracellular Ca2+ rise, prolonged relengthening and intracellular Ca2+ decay, as well as reduced SERCA Ca2+ uptake, the effects of which were mitigated by ALDH2. Ethanol challenge facilitated myocardial autophagy as evidenced by enhanced expression of Beclin, ATG7 and LC3B II, as well as mTOR dephosphorylation, which was alleviated by ALDH2. Ethanol challenge-induced cardiac defect and apoptosis were reversed by the ALDH-2 agonist Alda-1, the autophagy inhibitor 3-MA, and the AMPK inhibitor compound C whereas the autophagy inducer rapamycin and the AMPK activator AICAR mimicked or exacerbated ethanol-induced cell injury. Ethanol promoted or suppressed phosphorylation of AMPK and Akt, respectively, in FVB but not ALDH2 murine hearts. Moreover, AICAR nullified Alda-1-induced protection against ethanol-triggered autophagic and functional changes. Ethanol increased GFP-LC3 puncta in H9c2 cells, the effect of which was ablated by Alda-1 and 3-MA. Lysosomal inhibition using bafilomycin A1, E64D and pepstatin A obliterated Alda-1- but not ethanol-induced responses in GFP-LC3 puncta. Our results suggested that ALDH2 protects against ethanol toxicity through altered Akt and AMPK signaling and regulation of autophagic flux. PMID:21871561

  3. SAFER, an Analysis Method of Quantitative Proteomic Data, Reveals New Interactors of the C. elegans Autophagic Protein LGG-1.

    PubMed

    Yi, Zhou; Manil-Ségalen, Marion; Sago, Laila; Glatigny, Annie; Redeker, Virginie; Legouis, Renaud; Mucchielli-Giorgi, Marie-Hélène

    2016-05-06

    Affinity purifications followed by mass spectrometric analysis are used to identify protein-protein interactions. Because quantitative proteomic data are noisy, it is necessary to develop statistical methods to eliminate false-positives and identify true partners. We present here a novel approach for filtering false interactors, named "SAFER" for mass Spectrometry data Analysis by Filtering of Experimental Replicates, which is based on the reproducibility of the replicates and the fold-change of the protein intensities between bait and control. To identify regulators or targets of autophagy, we characterized the interactors of LGG1, a ubiquitin-like protein involved in autophagosome formation in C. elegans. LGG-1 partners were purified by affinity, analyzed by nanoLC-MS/MS mass spectrometry, and quantified by a label-free proteomic approach based on the mass spectrometric signal intensity of peptide precursor ions. Because the selection of confident interactions depends on the method used for statistical analysis, we compared SAFER with several statistical tests and different scoring algorithms on this set of data. We show that SAFER recovers high-confidence interactors that have been ignored by the other methods and identified new candidates involved in the autophagy process. We further validated our method on a public data set and conclude that SAFER notably improves the identification of protein interactors.

  4. Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway

    PubMed Central

    Huang, Chunling; Zhang, Yuan; Kelly, Darren J.; Tan, Christina Y. R.; Gill, Anthony; Cheng, Delfine; Braet, Filip; Park, Jin-Sung; Sue, Carolyn M.; Pollock, Carol A.; Chen, Xin-Ming

    2016-01-01

    Hyperglycemia upregulates thioredoxin interacting protein (TXNIP) expression, which in turn induces ROS production, inflammatory and fibrotic responses in the diabetic kidney. Dysregulation of autophagy contributes to the development of diabetic nephropathy. However, the interaction of TXNIP with autophagy/mitophagy in diabetic nephropathy is unknown. In this study, streptozotocin-induced diabetic rats were given TXNIP DNAzyme or scrambled DNAzyme for 12 weeks respectively. Fibrotic markers, mitochondrial function and mitochondrial reactive oxygen species (mtROS) were assessed in kidneys. Tubular autophagy and mitophagy were determined in kidneys from both human and rats with diabetic nephropathy. TXNIP and autophagic signaling molecules were examined. TXNIP DNAzyme dramatically attenuated extracellular matrix deposition in the diabetic kidneys compared to the control DNAzyme. Accumulation of autophagosomes and reduced autophagic clearance were shown in tubular cells of human diabetic compared to non-diabetic kidneys, which was reversed by TXNIP DNAzyme. High glucose induced mitochondrial dysfunction and mtROS production, and inhibited mitophagy in proximal tubular cells, which was reversed by TXNIP siRNA. TXNIP inhibition suppressed diabetes-induced BNIP3 expression and activation of the mTOR signaling pathway. Collectively, hyperglycemia-induced TXNIP contributes to the dysregulation of tubular autophagy and mitophagy in diabetic nephropathy through activation of the mTOR signaling pathway. PMID:27381856

  5. Secretory carrier membrane protein 5 is an autophagy inhibitor that promotes the secretion of α-synuclein via exosome.

    PubMed

    Yang, Yi; Qin, Meiling; Bao, Puhua; Xu, Wangchao; Xu, Jin

    2017-01-01

    Autophagy-lysosomal pathway is a cellular protective system to remove aggregated proteins and damaged organelles. Meanwhile, exosome secretion has emerged as a mode to selectively clear the neurotoxic proteins, such as α-synuclein. Mounting evidence suggests that these two cellular processes are coordinated to facilitate the clearance of toxic cellular waste; however the regulators for the transition between these two processes are unclear. Here we show that SCAMP5, a secretory carrier membrane protein significantly induced in the brains of Huntington's disease patients, is quickly and transiently induced by protein stress and autophagic stimulation, and is regulated by the master autophagy transcriptional regulator TFEB. Ironically, SCAMP5 inhibits autophagy flux by blocking the fusion of autophagosomes and lysosomes. Although autophagy is blocked, SCAMP5 does not cause significant protein aggregation in cells. Instead, it promotes the Golgi fragmentation and stimulates the unconventional secretion of the co-localizing α-synuclein via exosome as an exosome component. Therefore, we have identified SCAMP5 as a novel coordinator of autophagy and exosome secretion, which is induced upon protein stress to channel the efficient clearance of toxic proteins via the exosomes rather than autophagy-lysosomal pathway.

  6. DAZ Family Proteins, Key Players for Germ Cell Development

    PubMed Central

    Fu, Xia-Fei; Cheng, Shun-Feng; Wang, Lin-Qing; Yin, Shen; De Felici, Massimo; Shen, Wei

    2015-01-01

    DAZ family proteins are found almost exclusively in germ cells in distant animal species. Deletion or mutations of their encoding genes usually severely impair either oogenesis or spermatogenesis or both. The family includes Boule (or Boll), Dazl (or Dazla) and DAZ genes. Boule and Dazl are situated on autosomes while DAZ, exclusive of higher primates, is located on the Y chromosome. Deletion of DAZ gene is the most common causes of infertility in humans. These genes, encoding for RNA binding proteins, contain a highly conserved RNA recognition motif and at least one DAZ repeat encoding for a 24 amino acids sequence able to bind other mRNA binding proteins. Basically, Daz family proteins function as adaptors for target mRNA transport and activators of their translation. In some invertebrate species, BOULE protein play a pivotal role in germline specification and a conserved regulatory role in meiosis. Depending on the species, DAZL is expressed in primordial germ cells (PGCs) and/or pre-meiotic and meiotic germ cells of both sexes. Daz is found in fetal gonocytes, spermatogonia and spermatocytes of adult testes. Here we discuss DAZ family genes in a phylogenic perspective, focusing on the common and distinct features of these genes, and their pivotal roles during gametogenesis evolved during evolution. PMID:26327816

  7. Proteomic Profiling of De Novo Protein Synthesis in Starvation-Induced Autophagy Using Bioorthogonal Noncanonical Amino Acid Tagging.

    PubMed

    Zhang, J; Wang, J; Lee, Y-M; Lim, T-K; Lin, Q; Shen, H-M

    2017-01-01

    Autophagy is an intracellular degradation process activated by stress factors such as nutrient starvation to maintain cellular homeostasis. There is emerging evidence demonstrating that de novo protein synthesis is involved in the autophagic process. However, up-to-date characterizing of these de novo proteins is technically difficult. In this chapter, we describe a novel method to identify newly synthesized proteins during starvation-mediated autophagy by bioorthogonal noncanonical amino acid tagging (BONCAT), in conjunction with isobaric tagging for relative and absolute quantification (iTRAQ)-based quantitative proteomics. l-azidohomoalanine (AHA) is an analog of methionine, and it can be readily incorporated into the newly synthesized proteins. The AHA-containing proteins can be enriched with avidin beads after a "click" reaction between alkyne-bearing biotin and the azide moiety of AHA. The enriched proteins are then subjected to iTRAQ™ labeling for protein identification and quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). By using this technique, we have successfully profiled more than 700 proteins that are synthesized during starvation-induced autophagy. We believe that this approach is effective in identification of newly synthesized proteins in the process of autophagy and provides useful insights to the molecular mechanisms and biological functions of autophagy. © 2017 Elsevier Inc. All rights reserved.

  8. A Human Proteome Array Approach to Identifying Key Host Proteins Targeted by Toxoplasma Kinase ROP18*

    PubMed Central

    Yang, Zhaoshou; Hou, Yongheng; Hao, Taofang; Rho, Hee-Sool; Wan, Jun; Luan, Yizhao; Gao, Xin; Yao, Jianping; Pan, Aihua; Xie, Zhi; Qian, Jiang; Liao, Wanqin; Zhu, Heng; Zhou, Xingwang

    2017-01-01

    Toxoplasma kinase ROP18 is a key molecule responsible for the virulence of Toxoplasma gondii; however, the mechanisms by which ROP18 exerts parasite virulence via interaction with host proteins remain limited to a small number of identified substrates. To identify a broader array of ROP18 substrates, we successfully purified bioactive mature ROP18 and used it to probe a human proteome array. Sixty eight new putative host targets were identified. Functional annotation analysis suggested that these proteins have a variety of functions, including metabolic process, kinase activity and phosphorylation, cell growth, apoptosis and cell death, and immunity, indicating a pleiotropic role of ROP18 kinase. Among these proteins, four candidates, p53, p38, UBE2N, and Smad1, were further validated. We demonstrated that ROP18 targets p53, p38, UBE2N, and Smad1 for degradation. Importantly, we demonstrated that ROP18 phosphorylates Smad1 Ser-187 to trigger its proteasome-dependent degradation. Further functional characterization of the substrates of ROP18 may enhance understanding of the pathogenesis of Toxoplasma infection and provide new therapeutic targets. Similar strategies could be used to identify novel host targets for other microbial kinases functioning at the pathogen-host interface. PMID:28087594

  9. The balance of protein expression and degradation: an ESCRTs point of view.

    PubMed

    Babst, Markus; Odorizzi, Greg

    2013-08-01

    Endosomal sorting complexes required for transport (ESCRTs) execute the biogenesis of late endosomal multivesicular bodies (MVBs). The ESCRT pathway has traditionally been viewed as a means by which transmembrane proteins are degraded in vacuoles/lysosomes. More recent studies aimed at understanding the broader functions of ESCRTs have uncovered unexpected links with pathways that control cellular metabolism. Central to this communication is TORC1, the kinase complex that controls many of the catabolic and anabolic systems. The connection between TORC1 activity and ESCRTs allows cells to quickly adapt to the stress of nutrient limitations until the longer-term autophagic pathway is activated. Increasing evidence also points to ESCRTs regulating RNA interference (RNAi) pathways that control translation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Collagen VI Null Mice as a Model for Early Onset Muscle Decline in Aging.

    PubMed

    Capitanio, Daniele; Moriggi, Manuela; De Palma, Sara; Bizzotto, Dario; Molon, Sibilla; Torretta, Enrica; Fania, Chiara; Bonaldo, Paolo; Gelfi, Cecilia; Braghetta, Paola

    2017-01-01

    Collagen VI is an extracellular matrix (ECM) protein playing a key role in skeletal muscles and whose deficiency leads to connective tissue diseases in humans and in animal models. However, most studies have been focused on skeletal muscle features. We performed an extensive proteomic profiling in two skeletal muscles (diaphragm and gastrocnemius) of wild-type and collagen VI null ( Col6a1 -/- ) mice at different ages, from 6- (adult) to 12- (aged) month-old to 24 (old) month-old. While in wild-type animals the number of proteins and the level of modification occurring during aging were comparable in the two analyzed muscles, Col6a1 -/- mice displayed a number of muscle-type specific variations. In particular, gastrocnemius displayed a limited number of dysregulated proteins in adult mice, while in aged muscles the modifications were more pronounced in terms of number and level. In diaphragm, the differences displayed by 6-month-old Col6a1 -/- mice were more pronounced compared to wild-type mice and persisted at 12 months of age. In adult Col6a1 -/- mice, the major variations were found in the enzymes belonging to the glycolytic pathway and the tricarboxylic acid (TCA) cycle, as well as in autophagy-related proteins. When compared to wild-type animals Col6a1 -/- mice displayed a general metabolic rewiring which was particularly prominent the diaphragm at 6 months of age. Comparison of the proteomic features and the molecular analysis of metabolic and autophagic pathways in adult and aged Col6a1 -/- diaphragm indicated that the effects of aging, culminating in lipotoxicity and autophagic impairment, were already present at 6 months of age. Conversely, the effects of aging in Col6a1 -/- gastrocnemius were similar but delayed becoming apparent at 12 months of age. A similar metabolic rewiring and autophagic impairment was found in the diaphragm of 24-month-old wild-type mice, confirming that fatty acid synthase (FASN) increment and decreased microtubule

  11. Proteomic analysis reveals heat shock protein 70 has a key role in polycythemia Vera.

    PubMed

    Gallardo, Miguel; Barrio, Santiago; Fernandez, Marisol; Paradela, Alberto; Arenas, Alicia; Toldos, Oscar; Ayala, Rosa; Albizua, Enriqueta; Jimenez, Ana; Redondo, Santiago; Garcia-Martin, Rosa Maria; Gilsanz, Florinda; Albar, Juan Pablo; Martinez-Lopez, Joaquin

    2013-11-19

    JAK-STAT signaling through the JAK2V617F mutation is central to the pathogenesis of myeloproliferative neoplasms (MPN). However, other events could precede the JAK2 mutation. The aim of this study is to analyze the phenotypic divergence between polycytemia vera (PV) and essential thrombocytemia (ET) to find novel therapeutics targets by a proteomic and functional approach to identify alternative routes to JAK2 activation. Through 2D-DIGE and mass spectrometry of granulocyte protein from 20 MPN samples, showed differential expression of HSP70 in PV and ET besides other 60 proteins. Immunohistochemistry of 46 MPN bone marrow samples confirmed HSP70 expression. The median of positive granulocytes was 80% in PV (SD 35%) vs. 23% in ET (SD 34.25%). In an ex vivo model KNK437 was used as an inhibition model assay of HSP70, showed dose-dependent inhibition of cell growth and burst formation unit erythroid (BFU-E) in PV and ET, increased apoptosis in the erythroid lineage, and decreased pJAK2 signaling, as well as a specific siRNA for HSP70. These data suggest a key role for HSP70 in proliferation and survival of the erythroid lineage in PV, and may represent a potential therapeutic target in MPN, especially in PV.

  12. Redox states of Desulfovibrio vulgaris DsrC, a key protein in dissimilatory sulfite reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venceslau, Sofia S.; Cort, John R.; Baker, Erin S.

    2013-11-29

    Highlights: •DsrC is known to interact with the dissimilatory sulfite reductase enzyme (DsrAB). •We show that, however, most cellular DsrC is not associated with DsrAB. •A gel-shift assay was developed that allows monitoring of the DsrC redox state. •The DsrC intramolecularly oxidized state could only be produced by arginine treatment. -- Abstract: Dissimilatory reduction of sulfite is carried out by the siroheme enzyme DsrAB, with the involvement of the protein DsrC, which has two conserved redox-active cysteines. DsrC was initially believed to be a third subunit of DsrAB. Here, we report a study of the distribution of DsrC in cellmore » extracts to show that, in the model sulfate reducer Desulfovibrio vulgaris, the majority of DsrC is not associated with DsrAB and is thus free to interact with other proteins. In addition, we developed a cysteine-labelling gel-shift assay to monitor the DsrC redox state and behaviour, and procedures to produce the different redox forms. The oxidized state of DsrC with an intramolecular disulfide bond, which is proposed to be a key metabolic intermediate, could be successfully produced for the first time by treatment with arginine.« less

  13. Rab proteins: The key regulators of intracellular vesicle transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuin, Tanmay; Roy, Jagat Kumar, E-mail: jkroy@bhu.ac.in

    2014-10-15

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied bymore » cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future.« less

  14. GABARAPL1 antibodies: target one protein, get one free!

    PubMed

    Le Grand, Jaclyn Nicole; Chakrama, Fatima Zahra; Seguin-Py, Stéphanie; Fraichard, Annick; Delage-Mourroux, Régis; Jouvenot, Michèle; Risold, Pierre-Yves; Boyer-Guittaut, Michaël

    2011-11-01

    Atg8 is a yeast protein involved in the autophagic process and in particular in the elongation of autophagosomes. In mammals, several orthologs have been identified and are classed into two subfamilies: the LC3 subfamily and the GABARAP subfamily, referred to simply as the LC3 or GABARAP families. GABARAPL1 (GABARAP-like protein 1), one of the proteins belonging to the GABARAP (GABA(A) receptor-associated protein) family, is highly expressed in the central nervous system and implicated in processes such as receptor and vesicle transport as well as autophagy. The proteins that make up the GABARAP family demonstrate conservation of their amino acid sequences and protein structures. In humans, GABARAPL1 shares 86% identity with GABARAP and 61% with GABARAPL2 (GATE-16). The identification of the individual proteins is thus very limited when working in vivo due to a lack of unique peptide sequences from which specific antibodies can be developed. Actually, and to our knowledge, there are no available antibodies on the market that are entirely specific to GABARAPL1 and the same may be true of the anti-GABARAP antibodies. In this study, we sought to examine the specificity of three antibodies targeted against different peptide sequences within GABARAPL1: CHEM-CENT (an antibody raised against a short peptide sequence within the center of the protein), PTG-NTER (an antibody raised against the N-terminus of the protein) and PTG-FL (an antibody raised against the full-length protein). The results described in this article demonstrate the importance of testing antibody specificity under the conditions for which it will be used experimentally, a caution that should be taken when studying the expression of the GABARAP family proteins.

  15. AMP-Activated Protein Kinase: An Ubiquitous Signaling Pathway With Key Roles in the Cardiovascular System.

    PubMed

    Salt, Ian P; Hardie, D Grahame

    2017-05-26

    The AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole-body energy homeostasis, which acts to restore energy homoeostasis whenever cellular energy charge is depleted. Over the last 2 decades, it has become apparent that AMPK regulates several other cellular functions and has specific roles in cardiovascular tissues, acting to regulate cardiac metabolism and contractile function, as well as promoting anticontractile, anti-inflammatory, and antiatherogenic actions in blood vessels. In this review, we discuss the role of AMPK in the cardiovascular system, including the molecular basis of mutations in AMPK that alter cardiac physiology and the proposed mechanisms by which AMPK regulates vascular function under physiological and pathophysiological conditions. © 2017 American Heart Association, Inc.

  16. Triage of oxidation-prone proteins by Sqstm1/p62 within the mitochondria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Minjung; Shin, Jaekyoon, E-mail: jkshin@med.skku.ac.kr

    2011-09-16

    Highlights: {yields} The mitochondrion contains its own protein quality control system. {yields} p62 localizes within the mitochondria and forms mega-dalton sized complexes. {yields} p62 interacts with oxidation-prone proteins and the proteins of quality control. {yields} In vitro delivery of p62 improves mitochondrial functions. {yields} p62 is implicated as a participant in mitochondrial protein quality control. -- Abstract: As the mitochondrion is vulnerable to oxidative stress, cells have evolved several strategies to maintain mitochondrial integrity, including mitochondrial protein quality control mechanisms and autophagic removal of damaged mitochondria. Involvement of an autophagy adaptor, Sqstm1/p62, in the latter process has been recently described.more » In the present study, we provide evidence that a portion of p62 directly localizes within the mitochondria and supports stable electron transport by forming heterogeneous protein complexes. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) of mitochondrial proteins co-purified with p62 revealed that p62 interacts with several oxidation-prone proteins, including a few components of the electron transport chain complexes, as well as multiple chaperone molecules and redox regulatory enzymes. Accordingly, p62-deficient mitochondria exhibited compromised electron transport, and the compromised function was partially restored by in vitro delivery of p62. These results suggest that p62 plays an additional role in maintaining mitochondrial integrity at the vicinity of target machineries through its function in relation to protein quality control.« less

  17. Untangling the mechanism of 3-methyladenine (3-MA) in enhancing the specific productivity: Transcriptome analysis of recombinant CHO cells treated with 3-MA.

    PubMed

    Baek, Eric; Lee, Jae Seong; Lee, Gyun Min

    2018-06-25

    3-Methyladenine (3-MA) is a chemical additive that enhances the specific productivity (q p ) in recombinant Chinese hamster ovary (rCHO) cell lines. Different from its widely known function of inhibiting autophagy, 3-MA has instead shown to increase autophagic flux in various rCHO cell lines. Thus, the mechanism by which 3-MA enhances the q p requires investigation. To evaluate the effect of 3-MA on transcriptome dynamics in rCHO cells, RNA-seq was performed with Fc-fusion protein-producing rCHO cells treated with 3-MA. By analyzing genes that were differentially expressed following the addition of 3-MA during culture, the role of 3-MA in the biological processes of rCHO cells was identified. One pathway markedly influenced by the addition of 3-MA was the unfolded protein response (UPR). Having a close relationship with autophagy, the UPR reestablishes protein folding homeostasis under endoplasmic reticulum (ER) stress. The addition of 3-MA increased the expression of key regulators of the UPR, such as Atf4, Ddit3, and Creb3l3, further supporting the idea that the enhancement of ER capacity acts as a key in increasing the q p . Consequently, the downstream effectors of UPR, which include autophagy-promoting genes, were upregulated as well. Hence, the role of 3-MA in increasing UPR pathway could have made a salient contribution to the increased autophagic flux in rCHO cells. Taken together, transcriptome analysis improved the understanding of the role of 3-MA in gene expression dynamics in rCHO cells and its mechanism in enhancing the q p . This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Comparative Study of Human and Mouse Postsynaptic Proteomes Finds High Compositional Conservation and Abundance Differences for Key Synaptic Proteins

    PubMed Central

    Bayés, Àlex; Collins, Mark O.; Croning, Mike D. R.; van de Lagemaat, Louie N.; Choudhary, Jyoti S.; Grant, Seth G. N.

    2012-01-01

    Direct comparison of protein components from human and mouse excitatory synapses is important for determining the suitability of mice as models of human brain disease and to understand the evolution of the mammalian brain. The postsynaptic density is a highly complex set of proteins organized into molecular networks that play a central role in behavior and disease. We report the first direct comparison of the proteome of triplicate isolates of mouse and human cortical postsynaptic densities. The mouse postsynaptic density comprised 1556 proteins and the human one 1461. A large compositional overlap was observed; more than 70% of human postsynaptic density proteins were also observed in the mouse postsynaptic density. Quantitative analysis of postsynaptic density components in both species indicates a broadly similar profile of abundance but also shows that there is higher abundance variation between species than within species. Well known components of this synaptic structure are generally more abundant in the mouse postsynaptic density. Significant inter-species abundance differences exist in some families of key postsynaptic density proteins including glutamatergic neurotransmitter receptors and adaptor proteins. Furthermore, we have identified a closely interacting set of molecules enriched in the human postsynaptic density that could be involved in dendrite and spine structural plasticity. Understanding synapse proteome diversity within and between species will be important to further our understanding of brain complexity and disease. PMID:23071613

  19. Effect of natural uranium on the UMR-106 osteoblastic cell line: impairment of the autophagic process as an underlying mechanism of uranium toxicity.

    PubMed

    Pierrefite-Carle, Valérie; Santucci-Darmanin, Sabine; Breuil, Véronique; Gritsaenko, Tatiana; Vidaud, Claude; Creff, Gaelle; Solari, Pier Lorenzo; Pagnotta, Sophie; Al-Sahlanee, Rasha; Auwer, Christophe Den; Carle, Georges F

    2017-04-01

    Natural uranium (U), which is present in our environment, exerts a chemical toxicity, particularly in bone where it accumulates. Generally, U is found at oxidation state +VI in its oxocationic form [Formula: see text] in aqueous media. Although U(VI) has been reported to induce cell death in osteoblasts, the cells in charge of bone formation, the molecular mechanism for U(VI) effects in these cells remains poorly understood. The objective of our study was to explore U(VI) effect at doses ranging from 5 to 600 µM, on mineralization and autophagy induction in the UMR-106 model osteoblastic cell line and to determine U(VI) speciation after cellular uptake. Our results indicate that U(VI) affects mineralization function, even at subtoxic concentrations (<100 µM). The combination of thermodynamic modeling of U with EXAFS data in the culture medium and in the cells clearly indicates the biotransformation of U(VI) carbonate species into a meta-autunite phase upon uptake by osteoblasts. We next assessed U(VI) effect at 100 and 300 µM on autophagy, a survival process triggered by various stresses such as metal exposure. We observed that U(VI) was able to rapidly activate autophagy but an inhibition of the autophagic flux was observed after 24 h. Thus, our results indicate that U(VI) perturbs osteoblastic functions by reducing mineralization capacity. Our study identifies for the first time U(VI) in the form of meta-autunite in mammalian cells. In addition, U(VI)-mediated inhibition of the autophagic flux may be one of the underlying mechanisms leading to the decreased mineralization and the toxicity observed in osteoblasts.

  20. Toxoplasma gondii induces FAK-Src-STAT3 signaling during infection of host cells that prevents parasite targeting by autophagy.

    PubMed

    Portillo, Jose-Andres C; Muniz-Feliciano, Luis; Lopez Corcino, Yalitza; Lee, So Jung; Van Grol, Jennifer; Parsons, Sarah J; Schiemman, William P; Subauste, Carlos S

    2017-10-01

    Targeting of Toxoplasma gondii by autophagy is an effective mechanism by which host cells kill the protozoan. Thus, the parasite must avoid autophagic targeting to survive. Here we show that the mammalian cytoplasmic molecule Focal Adhesion Kinase (FAK) becomes activated during invasion of host cells. Activated FAK appears to accompany the formation of the moving junction (as assessed by expression the parasite protein RON4). FAK activation was inhibited by approaches that impaired β1 and β3 integrin signaling. FAK caused activation of Src that in turn mediated Epidermal Growth Factor Receptor (EGFR) phosphorylation at the unique Y845 residue. Expression of Src-resistant Y845F EGFR mutant markedly inhibited ROP16-independent activation of STAT3 in host cells. Activation of FAK, Y845 EGFR or STAT3 prevented activation of PKR and eIF2α, key stimulators of autophagy. Genetic or pharmacologic inhibition of FAK, Src, EGFR phosphorylation at Y845, or STAT3 caused accumulation of the autophagy protein LC3 and LAMP-1 around the parasite and parasite killing dependent on autophagy proteins (ULK1 and Beclin 1) and lysosomal enzymes. Parasite killing was inhibited by expression of dominant negative PKR. Thus, T. gondii activates a FAK→Src→Y845-EGFR→STAT3 signaling axis within mammalian cells, thereby enabling the parasite to survive by avoiding autophagic targeting through a mechanism likely dependent on preventing activation of PKR and eIF2α.

  1. RIPK3 regulates p62-LC3 complex formation via the caspase-8-dependent cleavage of p62.

    PubMed

    Matsuzawa, Yu; Oshima, Shigeru; Nibe, Yoichi; Kobayashi, Masanori; Maeyashiki, Chiaki; Nemoto, Yasuhiro; Nagaishi, Takashi; Okamoto, Ryuichi; Tsuchiya, Kiichiro; Nakamura, Tetsuya; Watanabe, Mamoru

    2015-01-02

    RIPK3 is a key molecule for necroptosis, initially characterized by necrotic cell death morphology and the activation of autophagy. Cell death and autophagic signaling are believed to tightly regulate each other. However, the associated recruitment of signaling proteins remains poorly understood. p62/sequestosome-1 is a selective autophagy substrate and a selective receptor for ubiquitinated proteins. In this study, we illustrated that both mouse and human RIPK3 mediate p62 cleavage and that RIPK3 interacts with p62, resulting in complex formation. In addition, RIPK3-dependent p62 cleavage is restricted by the inhibition of caspases, especially caspase-8. Moreover, overexpression of A20, a ubiquitin-editing enzyme and an inhibitor of caspase-8 activity, inhibits RIPK3-dependent p62 cleavage. To further investigate the potential role of RIPK3 in selective autophagy, we analyzed p62-LC3 complex formation, revealing that RIPK3 prevents the localization of LC3 and ubiquitinated proteins to the p62 complex. In addition, RIPK3-dependent p62-LC3 complex disruption is regulated by caspase inhibition. Taken together, these results demonstrated that RIPK3 interacts with p62 and regulates p62-LC3 complex formation. These findings suggested that RIPK3 serves as a negative regulator of selective autophagy and provides new insights into the mechanism by which RIPK3 regulates autophagic signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. l-Cysteine suppresses hypoxia-ischemia injury in neonatal mice by reducing glial activation, promoting autophagic flux and mediating synaptic modification via H2S formation.

    PubMed

    Xin, Danqing; Chu, Xili; Bai, Xuemei; Ma, Weiwei; Yuan, Hongtao; Qiu, Jie; Liu, Changxing; Li, Tong; Zhou, Xin; Chen, Wenqiang; Liu, Dexiang; Wang, Zhen

    2018-05-08

    We previously reported that l-Cysteine, an H 2 S donor, significantly alleviated brain injury after hypoxia-ischemic (HI) injury in neonatal mice. However, the mechanisms underlying this neuroprotective effect of l-Cysteine against HI insult remain unknown. In the present study, we tested the hypothesis that the protective effects of l-Cysteine are associated with glial responses and autophagy, and l-Cysteine attenuates synaptic injury as well as behavioral deficits resulting from HI. Consistent with our previous findings, we found that treatment with l-Cysteine after HI reduced early brain injury, improved behavioral deficits and synaptic damage, effects which were associated with an up-regulation of synaptophysin and postsynaptic density protein 95 expression in the lesioned cortex. l-Cysteine attenuated the accumulation of CD11b + /CD45 high cells, activation of microglia and astrocytes and diminished HI-induced increases in reactive oxygen species and malondialdehyde within the lesioned cortex. In addition, l-Cysteine increased microtubule associated protein 1 light chain 3-II and Beclin1 expression, decreased p62 expression and phosphor-mammalian target of rapamycin and phosphor-signal transducer and activator of transcription 3. Further support for a critical role of l-Cysteine was revealed from results demonstrating that treatment with an inhibitor of the H 2 S-producing enzyme, amino-oxyacetic acid, reversed the beneficial effects of l-Cysteine described above. These results demonstrate that l-Cysteine effectively alleviates HI injury and improves behavioral outcomes by inhibiting reactive glial responses and synaptic damage and an accompanying triggering of autophagic flux. Accordingly, l-Cysteine may provide a new a therapeutic approach for the treatment of HI via the formation of H 2 S. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Structure of Rhodococcus equi virulence-associated protein B (VapB) reveals an eight-stranded antiparallel β-barrel consisting of two Greek-key motifs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geerds, Christina; Wohlmann, Jens; Haas, Albert

    The structure of VapB, a member of the Vap protein family that is involved in virulence of the bacterial pathogen R. equi, was determined by SAD phasing and reveals an eight-stranded antiparallel β-barrel similar to avidin, suggestive of a binding function. Made up of two Greek-key motifs, the topology of VapB is unusual or even unique. Members of the virulence-associated protein (Vap) family from the pathogen Rhodococcus equi regulate virulence in an unknown manner. They do not share recognizable sequence homology with any protein of known structure. VapB and VapA are normally associated with isolates from pigs and horses, respectively.more » To contribute to a molecular understanding of Vap function, the crystal structure of a protease-resistant VapB fragment was determined at 1.4 Å resolution. The structure was solved by SAD phasing employing the anomalous signal of one endogenous S atom and two bound Co ions with low occupancy. VapB is an eight-stranded antiparallel β-barrel with a single helix. Structural similarity to avidins suggests a potential binding function. Unlike other eight- or ten-stranded β-barrels found in avidins, bacterial outer membrane proteins, fatty-acid-binding proteins and lysozyme inhibitors, Vaps do not have a next-neighbour arrangement but consist of two Greek-key motifs with strand order 41238567, suggesting an unusual or even unique topology.« less

  4. TPT1 (tumor protein, translationally-controlled 1) negatively regulates autophagy through the BECN1 interactome and an MTORC1-mediated pathway.

    PubMed

    Bae, Seong-Yeon; Byun, Sanguine; Bae, Soo Han; Min, Do Sik; Woo, Hyun Ae; Lee, Kyunglim

    2017-05-04

    TPT1/TCTP (tumor protein, translationally-controlled 1) is highly expressed in tumor cells, known to participate in various cellular activities including protein synthesis, growth and cell survival. In addition, TPT1 was identified as a direct target of the tumor suppressor TP53/p53 although little is known about the mechanism underlying the anti-survival function of TPT1. Here, we describe a role of TPT1 in the regulation of the MTORC1 pathway through modulating the molecular machinery of macroautophagy/autophagy. TPT1 inhibition induced cellular autophagy via the MTORC1 and AMPK pathways, which are inhibited and activated, respectively, during treatment with the MTOR inhibitor rapamycin. We also found that the depletion of TPT1 potentiated rapamycin-induced autophagy by synergizing with MTORC1 inhibition. We further demonstrated that TPT1 knockdown altered the BECN1 interactome, a representative MTOR-independent pathway, to stimulate autophagosome formation, via downregulating BCL2 expression through activating MAPK8/JNK1, and thereby enhancing BECN1-phosphatidylinositol 3-kinase (PtdIns3K)-UVRAG complex formation. Furthermore, reduced TPT1 promoted autophagic flux by modulating not only early steps of autophagy but also autophagosome maturation. Consistent with in vitro findings, in vivo organ analysis using Tpt1 heterozygote knockout mice showed that autophagy is enhanced because of haploinsufficient TPT1 expression. Overall, our study demonstrated the novel role of TPT1 as a negative regulator of autophagy that may have potential use in manipulating various diseases associated with autophagic dysfunction.

  5. Autophagic Cell Death, Polyploidy and Senescence Induced in Breast Tumor Cells by the Substituted Pyrrole JG-03-14, a Novel Microtubule Poison

    PubMed Central

    Arthur, Christopher R.; Gupton, John T.; Kellogg, Glen E.; Yeudall, W. Andrew; Cabot, Myles C.; Newsham, Irene; Gewirtz, David A.

    2007-01-01

    JG-03-14, a substituted pyrrole that inhibits microtubule polymerization, was screened against MCF-7 (p53 wild type), MDA-MB 231 (p53 mutant), MCF-7/caspase 3 and MCF-7/ADR (multidrug resistant) breast tumor cell lines. Cell viability and growth inhibition were assessed by the crystal violet dye assay. Apoptosis was evaluated by the TUNEL assay, cell cycle distribution by flow cytometry, autophagy by acridine orange staining of vesicle formation, and senescence based on β-galactosidase staining and cell morphology. Our studies indicate that exposure to JG-03-14, at a concentration of 500 nM, induces time dependent cell death in the MCF-7 and MDA-MB 231 cell lines. In MCF-7 cells, a residual surviving cell population was found to be senescent; in contrast, there was no surviving senescent population in treated MDA-MB 231 cells. No proliferative recovery was detected over a period of 15 days post-treatment in either cell line. Both the TUNEL assay and FLOW cytometry indicated a relatively limited degree of apoptosis (< 10%) in response to drug treatment in MCF-7 cells with more extensive apoptosis (but < 20%) in MDA-MB231 cells; acidic vacuole formation indicative of autophagic cell death was relatively extensive in both MCF-7 and MDA-MB231 cells. In addition, JG-03-14 induced the formation of a large hyperdiploid cell population in MDA-MB231 cells. JG-03-14 also demonstrated pronounced anti-proliferative activity in MCF-7/caspase 3 cells and in the MCF-7/ADR cell line. The observation that JG-03-14 promotes autophagic cell death and also retains activity in tumor cells expressing the multidrug resistance pump indicates that novel microtubule poisons of the substituted pyrroles class may hold promise in the treatment of breast cancer. PMID:17692290

  6. Transcriptional induction of the heat shock protein B8 mediates the clearance of misfolded proteins responsible for motor neuron diseases.

    PubMed

    Crippa, Valeria; D'Agostino, Vito G; Cristofani, Riccardo; Rusmini, Paola; Cicardi, Maria E; Messi, Elio; Loffredo, Rosa; Pancher, Michael; Piccolella, Margherita; Galbiati, Mariarita; Meroni, Marco; Cereda, Cristina; Carra, Serena; Provenzani, Alessandro; Poletti, Angelo

    2016-03-10

    Neurodegenerative diseases (NDs) are often associated with the presence of misfolded protein inclusions. The chaperone HSPB8 is upregulated in mice, the human brain and muscle structures affected during NDs progression. HSPB8 exerts a potent pro-degradative activity on several misfolded proteins responsible for familial NDs forms. Here, we demonstrated that HSPB8 also counteracts accumulation of aberrantly localized misfolded forms of TDP-43 and its 25 KDa fragment involved in most sporadic cases of Amyotrophic Lateral Sclerosis (sALS) and of Fronto Lateral Temporal Dementia (FLTD). HSPB8 acts with BAG3 and the HSP70/HSC70-CHIP complex enhancing the autophagic removal of misfolded proteins. We performed a high-through put screening (HTS) to find small molecules capable of inducing HSPB8 in neurons for therapeutic purposes. We identified two compounds, colchicine and doxorubicin, that robustly up-regulated HSPB8 expression. Both colchicine and doxorubicin increased the expression of the master regulator of autophagy TFEB, the autophagy linker p62/SQSTM1 and the autophagosome component LC3. In line, both drugs counteracted the accumulation of TDP-43 and TDP-25 misfolded species responsible for motoneuronal death in sALS. Thus, analogs of colchicine and doxorubicin able to induce HSPB8 and with better safety and tolerability may result beneficial in NDs models.

  7. Effect of zinc intake on hepatic autophagy during acute alcohol intoxication.

    PubMed

    Liuzzi, Juan P; Narayanan, Vijaya; Doan, Huong; Yoo, Changwon

    2018-04-01

    Autophagy is a conserved mechanism that plays a housekeeping role by eliminating protein aggregates and damaged organelles. Recent studies have demonstrated that acute ethanol intoxication induces hepatic autophagy in mice. The effect of dietary zinc intake on hepatic autophagic flux during ethanol intoxication has not been evaluated using animal models. Herein, we investigated whether zinc deficiency and excess can affect autophagic flux in the liver in mice and in human hepatoma cells acutely exposed to ethanol. A mouse model of binge ethanol feeding was utilized to analyze the effect of low, adequate, and high zinc intake on hepatic autophagic flux during ethanol intoxication. Autophagic flux was inferred by analyzing LC3II/LC3I ratio, protein levels of p62/SQSTM1, Beclin1 and Atg7, and phosphorylation of 4EBP1. In addition, the degradation of the fusion protein LC3-GFP and the formation of autophagosomes and autolysosomes were evaluated in cells. Ethanol treatment stimulated autophagy in mice and cells. High zinc intake resulted in enhanced autophagy in mice exposed to ethanol. Conversely, zinc deficiency was consistently associated with impaired ethanol-induced autophagy in mice and cells. Zinc-deficient mice exhibited a high degree of ethanol-driven steatosis. Furthermore, zinc depletion increased apoptosis in cells exposed to ethanol. The results of this study suggest that adequate zinc intake is necessary for proper stimulation of autophagy by ethanol. Poor zinc status is commonly found among alcoholics and could likely contribute to faulty autophagy.

  8. The cell on the edge of life and death: Crosstalk between autophagy and apoptosis.

    PubMed

    Kasprowska-Liśkiewicz, Daniela

    2017-09-21

    Recently, the crosstalk between autophagy and apoptosis has attracted broader attention. Basal autophagy serves to maintain cell homeostasis, while the upregulation of this process is an element of stress response that enables the cell to survive under adverse conditions. Autophagy may also determine the fate of the cell through its interactions with cell death pathways. The protein networks that control the initiation and the execution phase of these two processes are highly interconnected. Several scenarios for the crosstalk between autophagy and apoptosis exist. In most cases, the activation of autophagy represents an attempt of the cell to cope with stress, and protects the cell from apoptosis or delays its initiation. Generally, the simultaneous activation of pro-survival and pro-death pathways is prevented by the mutual inhibitory crosstalk between autophagy and apoptosis. But in some circumstances, autophagy or the proteins of the core autophagic machinery may promote cellular demise through excessive self-digestion (so-called "autophagic cell death") or by stimulating the activation of other cell death pathways. It is controversial whether cells actually die via autophagy, which is why the term "autophagic cell death" has been under intense debate lately. This review summarizes the recent findings on the multilevel crosstalk between autophagy and apoptosis in aspects of common regulators, mutual inhibition of these processes, the stimulation of apoptosis by autophagy or autophagic proteins and finally the role of autophagy as a death-execution mechanism.

  9. The Ebola virus matrix protein penetrates into the plasma membrane: a key step in viral protein 40 (VP40) oligomerization and viral egress.

    PubMed

    Adu-Gyamfi, Emmanuel; Soni, Smita P; Xue, Yi; Digman, Michelle A; Gratton, Enrico; Stahelin, Robert V

    2013-02-22

    Ebola, a fatal virus in humans and non-human primates, has no Food and Drug Administration-approved vaccines or therapeutics. The virus from the Filoviridae family causes hemorrhagic fever, which rapidly progresses and in some cases has a fatality rate near 90%. The Ebola genome encodes seven genes, the most abundantly expressed of which is viral protein 40 (VP40), the major Ebola matrix protein that regulates assembly and egress of the virus. It is well established that VP40 assembles on the inner leaflet of the plasma membrane; however, the mechanistic details of plasma membrane association by VP40 are not well understood. In this study, we used an array of biophysical experiments and cellular assays along with mutagenesis of VP40 to investigate the role of membrane penetration in VP40 assembly and egress. Here we demonstrate that VP40 is able to penetrate specifically into the plasma membrane through an interface enriched in hydrophobic residues in its C-terminal domain. Mutagenesis of this hydrophobic region consisting of Leu(213), Ile(293), Leu(295), and Val(298) demonstrated that membrane penetration is critical to plasma membrane localization, VP40 oligomerization, and viral particle egress. Taken together, VP40 membrane penetration is an important step in the plasma membrane localization of the matrix protein where oligomerization and budding are defective in the absence of key hydrophobic interactions with the membrane.

  10. Identification and pharmacological induction of autophagy in the larval stages of Echinococcus granulosus: an active catabolic process in calcareous corpuscles.

    PubMed

    Loos, Julia A; Caparros, Pedro A; Nicolao, María Celeste; Denegri, Guillermo M; Cumino, Andrea C

    2014-06-01

    Autophagy is a fundamental catabolic pathway conserved from yeast to mammals, but which remains unknown in parasite cestodes. In this work, the pharmacological induction of autophagy was cellularly and molecularly analysed in the larval stages of Echinococcus granulosus. Metacestode sensitivity to rapamycin and TORC1 expression in protoscoleces and metacestodes were shown. Ultrastructural studies showed that treated parasites had an isolation membrane, autophagosomes and autolysosomes, all of which evidenced the autophagic flux. Genes coding for key autophagy-related proteins were also identified in the Echinococcus genome. These genes were involved in autophagosome formation and transcriptional over-expression of Eg-atg5, Eg-atg6, Eg-atg8, Eg-atg12, Eg-atg16 and Eg-atg18 was shown in presence of rapamycin or arsenic trioxide. Thus, Echinococcus autophagy could be regulated by non-transcriptional inhibition through TOR and by transcription-dependent up-regulation via FoxO-like transcription factors and/or TFEB proteins. An increase in the punctate pattern and Eg-Atg8 polypeptide level in the tegument, parenchyma cells and excretory system of protoscoleces and in vesicularised parasites was detected after rapamycin treatment. This suggests the occurrence of basal autophagy in the larval stages and during vesicular development. In arsenic-treated protoscoleces, high Eg-Atg8 polypeptide levels within the free cytoplasmic matrix of calcareous corpuscles were observed, thus verifying the occurrence of autophagic events. These experiments also confirmed that the calcareous corpuscles are sites of arsenic trioxide accumulation. The detection of the autophagic machinery in this parasite represents a basic starting point to unravel the role of autophagy under both physiological and stress conditions which will allow identification of new strategies for drug discovery against neglected parasitic diseases caused by cestodes. Copyright © 2014 Australian Society for

  11. Brief Report: Oxidative Stress Mediates Cardiomyocyte Apoptosis in a Human Model of Danon Disease and Heart Failure

    PubMed Central

    Hashem, Sherin I.; Perry, Cynthia N.; Bauer, Matthieu; Han, Sangyoon; Clegg, Stacey D.; Ouyang, Kunfu; Deacon, Dekker C.; Spinharney, Mary; Panopoulos, Athanasia D.; Belmonte, Juan Carlos Izpisua; Frazer, Kelly A.; Chen, Ju; Gong, Qiuming; Zhou, Zhengfeng; Chi, Neil C.; Adler, Eric D.

    2015-01-01

    Danon disease is a familial cardiomyopathy associated with impaired autophagy due to mutations in the gene encoding lysosomal-associated membrane protein type 2 (LAMP-2). Emerging evidence has highlighted the importance of autophagy in regulating cardiomyocyte bioenergetics, function, and survival. However, the mechanisms responsible for cellular dysfunction and death in cardiomyocytes with impaired autophagic flux remain unclear. To investigate the molecular mechanisms responsible for Danon disease, we created induced pluripotent stem cells (iPSCs) from two patients with different LAMP-2 mutations. Danon iPSC-derived cardiomyocytes (iPSC-CMs) exhibited impaired autophagic flux and key features of heart failure such as increased cell size, increased expression of natriuretic peptides, and abnormal calcium handling compared to control iPSC-CMs. Additionally, Danon iPSC-CMs demonstrated excessive amounts of mitochondrial oxidative stress and apoptosis. Using the sulfhydryl antioxidant N-acetylcysteine to scavenge free radicals resulted in a significant reduction in apoptotic cell death in Danon iPSC-CMs. In summary, we have modeled Danon disease using human iPSC-CMs from patients with mutations in LAMP-2, allowing us to gain mechanistic insight into the pathogenesis of this disease. We demonstrate that LAMP-2 deficiency leads to an impairment in autophagic flux, which results in excessive oxidative stress, and subsequent cardiomyocyte apoptosis. Scavenging excessive free radicals with antioxidants may be beneficial for patients with Danon disease. In vivo studies will be necessary to validate this new treatment strategy. PMID:25826782

  12. Anti-oxidative cellular protection effect of fasting-induced autophagy as a mechanism for hormesis.

    PubMed

    Moore, Michael N; Shaw, Jennifer P; Ferrar Adams, Dawn R; Viarengo, Aldo

    2015-06-01

    The aim of this investigation was to test the hypothesis that fasting-induced augmented lysosomal autophagic turnover of cellular proteins and organelles will reduce potentially harmful lipofuscin (age-pigment) formation in cells by more effectively removing oxidatively damaged proteins. An animal model (marine snail--common periwinkle, Littorina littorea) was used to experimentally test this hypothesis. Snails were deprived of algal food for 7 days to induce an augmented autophagic response in their hepatopancreatic digestive cells (hepatocyte analogues). This treatment resulted in a 25% reduction in the cellular content of lipofuscin in the digestive cells of the fasting animals in comparison with snails fed ad libitum on green alga (Ulva lactuca). Similar findings have previously been observed in the digestive cells of marine mussels subjected to copper-induced oxidative stress. Additional measurements showed that fasting significantly increased cellular health based on lysosomal membrane stability, and reduced lipid peroxidation and lysosomal/cellular triglyceride. These findings support the hypothesis that fasting-induced augmented autophagic turnover of cellular proteins has an anti-oxidative cytoprotective effect by more effectively removing damaged proteins, resulting in a reduction in the formation of potentially harmful proteinaceous aggregates such as lipofuscin. The inference from this study is that autophagy is important in mediating hormesis. An increase was demonstrated in physiological complexity with fasting, using graph theory in a directed cell physiology network (digraph) model to integrate the various biomarkers. This was commensurate with increased health status, and supportive of the hormesis hypothesis. The potential role of enhanced autophagic lysosomal removal of damaged proteins in the evolutionary acquisition of stress tolerance in intertidal molluscs is discussed and parallels are drawn with the growing evidence for the involvement of

  13. Triggering autophagic cell death with a di-manganese(II) developmental therapeutic.

    PubMed

    Slator, Creina; Molphy, Zara; McKee, Vickie; Kellett, Andrew

    2017-08-01

    There is an unmet need for novel metal-based chemotherapeutics with alternative modes of action compared to clinical agents such as cisplatin and metallo-bleomycin. Recent attention in this field has focused on designing intracellular ROS-mediators as powerful cytotoxins of human cancers and identifying potentially unique toxic mechanisms underpinning their utility. Herein, we report the developmental di-manganese(II) therapeutic [Mn 2 (μ-oda)(phen) 4 (H 2 O) 2 ][Mn 2 (μ-oda)(phen) 4 (oda) 2 ]·4H 2 O (Mn-Oda) induces autophagy-promoted apoptosis in human ovarian cancer cells (SKOV3). The complex was initially identified to intercalate DNA by topoisomerase I unwinding and circular dichroism spectroscopy. Intracellular DNA damage, detected by γH2AX and the COMET assay, however, is not linked to direct Mn-Oda free radical generation, but is instead mediated through the promotion of intracellular reactive oxygen species (ROS) leading to autophagic vacuole formation and downstream nuclear degradation. To elucidate the cytotoxic profile of Mn-Oda, a wide range of biomarkers specific to apoptosis and autophagy including caspase release, mitochondrial membrane integrity, fluorogenic probe localisation, and cell cycle analysis were employed. Through these techniques, the activity of Mn-Oda was compared directly to i.) the pro-apoptotic clinical anticancer drug doxorubicin, ii.) the multimodal histone deacetylase inhibitor suberoyanilide hydroxamic acid, and iii.) the autophagy inducer rapamycin. In conjunction with ROS-specific trapping agents and established inhibitors of autophagy, we have identified autophagy-induction linked to mitochondrial superoxide production, with confocal image analysis of SKOV3 cells further supporting autophagosome formation. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. The De Novo Design of Protein-Protein Interfaces

    DTIC Science & Technology

    it was our intention to add to this body by engineering de novo (from scratch) protein/protein complexes. Using this inverse approach we have furthered...key physical features needed to drive specific protein/protein interactions. It is considered inverse because, instead of studying natural complexes

  15. Developing Master Keys to Brain Pathology, Cancer and Aging from the Structural Biology of Proteins Controlling Reactive Oxygen Species and DNA Repair

    PubMed Central

    Perry, J. Jefferson P.; Fan, Li; Tainer, John A.

    2007-01-01

    This review is focused on proteins with key roles in pathways controlling either reactive oxygen species or DNA damage responses, both of which are essential for preserving the nervous system. An imbalance of reactive oxygen species or inappropriate DNA damage response likely causes mutational or cytotoxic outcomes, which may lead to cancer and/or aging phenotypes. Moreover, individuals with hereditary disorders in proteins of these cellular pathways have significant neurological abnormalities. Mutations in a superoxide dismutase, which removes oxygen free radicals, may cause the neurodegenerative disease amyotrophic lateral sclerosis. Additionally, DNA repair disorders that affect the brain to varying extents include ataxia-telangiectasia-like disorder, Cockayne syndrome or Werner syndrome. Here, we highlight recent advances gained through structural biochemistry studies on enzymes linked to these disorders and other related enzymes acting within the same cellular pathways. We describe the current understanding of how these vital proteins coordinate chemical steps and integrate cellular signaling and response events. Significantly, these structural studies may provide a set of master keys to developing a unified understanding of the survival mechanisms utilized after insults by reactive oxygen species and genotoxic agents, and also provide a basis for developing an informed intervention in brain tumor and neurodegenerative disease progression. PMID:17174478

  16. Free Energy Landscape - Settlements of Key Residues.

    NASA Astrophysics Data System (ADS)

    Aroutiounian, Svetlana

    2007-03-01

    FEL perspective in studies of protein folding transitions reflects notion that since there are ˜10^N conformations to scan in search of lowest free energy state, random search is beyond biological timescale. Protein folding must follow certain fel pathways and folding kinetics of evolutionary selected proteins dominates kinetic traps. Good model for functional robustness of natural proteins - coarse-grained model protein is not very accurate but affords bringing simulations closer to biological realm; Go-like potential secures the fel funnel shape; biochemical contacts signify the funnel bottleneck. Boltzmann-weighted ensemble of protein conformations and histogram method are used to obtain from MC sampling of protein conformational space the approximate probability distribution. The fel is F(rmsd) = -1/βLn[Hist(rmsd)], β=kBT and rmsd is root-mean-square-deviation from native conformation. The sperm whale myoglobin has rich dynamic behavior, is small and large - on computational scale, has a symmetry in architecture and unusual sextet of residue pairs. Main idea: there is a mathematical relation between protein fel and a key residues set providing stability to folding transition. Is the set evolutionary conserved also for functional reasons? Hypothesis: primary sequence determines the key residues positions conserved as stabilizers and the fel is the battlefield for the folding stability. Preliminary results: primary sequence - not the architecture, is the rule settler, indeed.

  17. Activation of JNK and IRE1 is critically involved in tanshinone I-induced p62 dependent autophagy in malignant pleural mesothelioma cells: implication of p62 UBA domain

    PubMed Central

    Yoon, Sangwook; Won, Gunho; Kim, Chang Geun; Jung, Ji Hoon; Kim, Sung-Hoon

    2017-01-01

    The aim of present study is to elucidate autophagic mechanism of tanshinone I (Tan I) in H28 and H2452 mesothelioma cells. Herein, Tan I exerted cytotoxicity with autophagic features of autophagy protein 5 (ATG5)/ microtubule-associated protein 1A/1B-light chain 3II (LC3 II) activation, p62/sequestosome 1 (SQSTM1) accumulation and increased number of LC3II punctae, acridine orange-stained cells and autophagic vacuoles. However, 3-methyladenine (3MA) and NH4Cl increased cytotoxicity in Tan I treated H28 cells. Furthermore, autophagy flux was enhanced in Tan I-treated H28 cells transfected by RFP-GFP-LC3 constructs, with colocalization of GFP-LC3 punctae with LAMP1 or Lysotracker. Interestingly, C-terminal UBA domain is required for Tan 1 induced aggregation of p62 in H28 cells. Notably, Tan I upregulated CCAAT-enhancer-binding protein homologous protein (CHOP), inositol-requiring protein-1 (IRE1) and p-c-Jun N-terminal kinase (p-JNK), but silencing of IRE1 or p62 and JNK inhibitor SP600125 blocked the LC3II accumulation in Tan I-treated H28 cells. Overall, these findings demonstrate that Tan I exerts antitumor activity through a compromise between apoptosis and p62/SQSTM1-dependent autophagy via activation of JNK and IRE 1 in malignant mesothelioma cells. PMID:28212571

  18. Activation of JNK and IRE1 is critically involved in tanshinone I-induced p62 dependent autophagy in malignant pleural mesothelioma cells: implication of p62 UBA domain.

    PubMed

    Lee, Jihyun; Sohn, Eun Jung; Yoon, Sangwook; Won, Gunho; Kim, Chang Geun; Jung, Ji Hoon; Kim, Sung-Hoon

    2017-04-11

    The aim of present study is to elucidate autophagic mechanism of tanshinone I (Tan I) in H28 and H2452 mesothelioma cells. Herein, Tan I exerted cytotoxicity with autophagic features of autophagy protein 5 (ATG5)/ microtubule-associated protein 1A/1B-light chain 3II (LC3 II) activation, p62/sequestosome 1 (SQSTM1) accumulation and increased number of LC3II punctae, acridine orange-stained cells and autophagic vacuoles. However, 3-methyladenine (3MA) and NH4Cl increased cytotoxicity in Tan I treated H28 cells. Furthermore, autophagy flux was enhanced in Tan I-treated H28 cells transfected by RFP-GFP-LC3 constructs, with colocalization of GFP-LC3 punctae with LAMP1 or Lysotracker. Interestingly, C-terminal UBA domain is required for Tan 1 induced aggregation of p62 in H28 cells. Notably, Tan I upregulated CCAAT-enhancer-binding protein homologous protein (CHOP), inositol-requiring protein-1 (IRE1) and p-c-Jun N-terminal kinase (p-JNK), but silencing of IRE1 or p62 and JNK inhibitor SP600125 blocked the LC3II accumulation in Tan I-treated H28 cells. Overall, these findings demonstrate that Tan I exerts antitumor activity through a compromise between apoptosis and p62/SQSTM1-dependent autophagy via activation of JNK and IRE 1 in malignant mesothelioma cells.

  19. Kibra and aPKC regulate starvation-induced autophagy in Drosophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Ahrum; Neufeld, Thomas P.; Choe, Joonho, E-mail: jchoe@kaist.ac.kr

    Autophagy is a bulk degradation system that functions in response to cellular stresses such as metabolic stress, endoplasmic reticulum stress, oxidative stress, and developmental processes. During autophagy, cytoplasmic components are captured in double-membrane vesicles called autophagosomes. The autophagosome fuses with the lysosome, producing a vacuole known as an autolysosome. The cellular components are degraded by lysosomal proteases and recycled. Autophagy is important for maintaining cellular homeostasis, and the process is evolutionarily conserved. Kibra is an upstream regulator of the hippo signaling pathway, which controls organ size by affecting cell growth, proliferation, and apoptosis. Kibra is mainly localized in the apicalmore » membrane domain of epithelial cells and acts as a scaffold protein. We found that Kibra is required for autophagy to function properly. The absence of Kibra caused defects in the formation of autophagic vesicles and autophagic degradation. We also found that the well-known cell polarity protein aPKC interacts with Kibra, and its activity affects autophagy upstream of Kibra. Constitutively active aPKC decreased autophagic vesicle formation and autophagic degradation. We confirmed the interaction between aPKC and Kibra in S2 cells and Drosophila larva. Taken together, our data suggest that Kibra and aPKC are essential for regulating starvation-induced autophagy. - Highlights: • Loss of Kibra causes defects in autophagosome formation and autophagic degradation. • Constitutively-active aPKCs negatively regulate autophagy. • Kibra interacts with aPKC in vitro and in vivo. • Kibra regulates autophagy downstream of aPKC.« less

  20. Activation of autophagy by unfolded proteins during endoplasmic reticulum stress.

    PubMed

    Yang, Xiaochen; Srivastava, Renu; Howell, Stephen H; Bassham, Diane C

    2016-01-01

    Endoplasmic reticulum stress is defined as the accumulation of unfolded proteins in the endoplasmic reticulum, and is caused by conditions such as heat or agents that cause endoplasmic reticulum stress, including tunicamycin and dithiothreitol. Autophagy, a major pathway for degradation of macromolecules in the vacuole, is activated by these stress agents in a manner dependent on inositol-requiring enzyme 1b (IRE1b), and delivers endoplasmic reticulum fragments to the vacuole for degradation. In this study, we examined the mechanism for activation of autophagy during endoplasmic reticulum stress in Arabidopsis thaliana. The chemical chaperones sodium 4-phenylbutyrate and tauroursodeoxycholic acid were found to reduce tunicamycin- or dithiothreitol-induced autophagy, but not autophagy caused by unrelated stresses. Similarly, over-expression of BINDING IMMUNOGLOBULIN PROTEIN (BIP), encoding a heat shock protein 70 (HSP70) molecular chaperone, reduced autophagy. Autophagy activated by heat stress was also found to be partially dependent on IRE1b and to be inhibited by sodium 4-phenylbutyrate, suggesting that heat-induced autophagy is due to accumulation of unfolded proteins in the endoplasmic reticulum. Expression in Arabidopsis of the misfolded protein mimics zeolin or a mutated form of carboxypeptidase Y (CPY*) also induced autophagy in an IRE1b-dependent manner. Moreover, zeolin and CPY* partially co-localized with the autophagic body marker GFP-ATG8e, indicating delivery to the vacuole by autophagy. We conclude that accumulation of unfolded proteins in the endoplasmic reticulum is a trigger for autophagy under conditions that cause endoplasmic reticulum stress. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  1. 6-Shogaol Inhibits Breast Cancer Cells and Stem Cell-Like Spheroids by Modulation of Notch Signaling Pathway and Induction of Autophagic Cell Death

    PubMed Central

    Ray, Anasuya; Vasudevan, Smreti; Sengupta, Suparna

    2015-01-01

    Cancer stem cells (CSCs) pose a serious obstacle to cancer therapy as they can be responsible for poor prognosis and tumour relapse. In this study, we have investigated inhibitory activity of the ginger-derived compound 6-shogaol against breast cancer cells both in monolayer and in cancer-stem cell-like spheroid culture. The spheroids were generated from adherent breast cancer cells. 6-shogaol was effective in killing both breast cancer monolayer cells and spheroids at doses that were not toxic to noncancerous cells. The percentages of CD44+CD24-/low cells and the secondary sphere content were reduced drastically upon treatment with 6-shogaol confirming its action on CSCs. Treatment with 6-shogaol caused cytoplasmic vacuole formation and cleavage of microtubule associated protein Light Chain3 (LC3) in both monolayer and spheroid culture indicating that it induced autophagy. Kinetic analysis of the LC3 expression and a combination treatment with chloroquine revealed that the autophagic flux instigated cell death in 6-shogaol treated breast cancer cells in contrast to the autophagy inhibitor chloroquine. Furthermore, 6-shogaol-induced cell death got suppressed in the presence of chloroquine and a very low level of apoptosis was exhibited even after prolonged treatment of the compound, suggesting that autophagy is the major mode of cell death induced by 6-shogaol in breast cancer cells. 6-shogaol reduced the expression levels of Cleaved Notch1 and its target proteins Hes1 and Cyclin D1 in spheroids, and the reduction was further pronounced in the presence of a γ-secretase inhibitor. Secondary sphere formation in the presence of the inhibitor was also further reduced by 6-shogaol. Together, these results indicate that the inhibitory action of 6-shogaol on spheroid growth and sustainability is conferred through γ-secretase mediated down-regulation of Notch signaling. The efficacy of 6-shogaol in monolayer and cancer stem cell-like spheroids raise hope for its

  2. 6-Shogaol Inhibits Breast Cancer Cells and Stem Cell-Like Spheroids by Modulation of Notch Signaling Pathway and Induction of Autophagic Cell Death.

    PubMed

    Ray, Anasuya; Vasudevan, Smreti; Sengupta, Suparna

    2015-01-01

    Cancer stem cells (CSCs) pose a serious obstacle to cancer therapy as they can be responsible for poor prognosis and tumour relapse. In this study, we have investigated inhibitory activity of the ginger-derived compound 6-shogaol against breast cancer cells both in monolayer and in cancer-stem cell-like spheroid culture. The spheroids were generated from adherent breast cancer cells. 6-shogaol was effective in killing both breast cancer monolayer cells and spheroids at doses that were not toxic to noncancerous cells. The percentages of CD44+CD24-/low cells and the secondary sphere content were reduced drastically upon treatment with 6-shogaol confirming its action on CSCs. Treatment with 6-shogaol caused cytoplasmic vacuole formation and cleavage of microtubule associated protein Light Chain3 (LC3) in both monolayer and spheroid culture indicating that it induced autophagy. Kinetic analysis of the LC3 expression and a combination treatment with chloroquine revealed that the autophagic flux instigated cell death in 6-shogaol treated breast cancer cells in contrast to the autophagy inhibitor chloroquine. Furthermore, 6-shogaol-induced cell death got suppressed in the presence of chloroquine and a very low level of apoptosis was exhibited even after prolonged treatment of the compound, suggesting that autophagy is the major mode of cell death induced by 6-shogaol in breast cancer cells. 6-shogaol reduced the expression levels of Cleaved Notch1 and its target proteins Hes1 and Cyclin D1 in spheroids, and the reduction was further pronounced in the presence of a γ-secretase inhibitor. Secondary sphere formation in the presence of the inhibitor was also further reduced by 6-shogaol. Together, these results indicate that the inhibitory action of 6-shogaol on spheroid growth and sustainability is conferred through γ-secretase mediated down-regulation of Notch signaling. The efficacy of 6-shogaol in monolayer and cancer stem cell-like spheroids raise hope for its

  3. Overexpression of Arabidopsis thaliana PTEN caused accumulation of autophagic bodies in pollen tubes by disrupting phosphatidylinositol 3-phosphate dynamics

    USDA-ARS?s Scientific Manuscript database

    Autophagy is a pathway in eukaryotes by which nutrient remobilization occurs through bulk protein and organelle turnover. Autophagy not only aides cells in coping with harsh environments but also plays a key role in many physiological processes that include pollen germination and tube growth. Most a...

  4. Beneficial Autophagic Activities, Mitochondrial Function, and Metabolic Phenotype Adaptations Promoted by High-Intensity Interval Training in a Rat Model

    PubMed Central

    Li, Fang-Hui; Li, Tao; Ai, Jing-Yi; Sun, Lei; Min, Zhu; Duan, Rui; Zhu, Ling; Liu, Yan-ying; Liu, Timon Cheng-Yi

    2018-01-01

    The effects of high-intensity interval (HIIT) and moderate-intensity continuous training (MICT) on basal autophagy and mitochondrial function in cardiac and skeletal muscle and plasma metabolic phenotypes have not been clearly characterized. Here, we investigated how 10-weeks HIIT and MICT differentially modify basal autophagy and mitochondrial markers in cardiac and skeletal muscle and conducted an untargeted metabolomics study with proton nuclear magnetic resonance (1H NMR) spectroscopy and multivariate statistical analysis of plasma metabolic phenotypes. Male Sprague–Dawley rats were separated into three groups: sedentary control (SED), MICT, and HIIT. Rats underwent evaluation of exercise performance, including exercise tolerance and grip strength, and blood lactate levels were measured immediately after an incremental exercise test. Plasma samples were analyzed by 1H NMR. The expression of autophagy and mitochondrial markers and autophagic flux (LC3II/LC3-I ratio) in cardiac, rectus femoris, and soleus muscle were analyzed by western blotting. Time to exhaustion and grip strength increased significantly following HIIT compared with that in both SED and MICT groups. Compared with those in the SED group, blood lactate level, and the expression of SDH, COX-IV, and SIRT3 significantly increased in rectus femoris and soleus muscle of both HIIT and MICT groups. Meanwhile, SDH and COX-IV content of cardiac muscle and COX-IV and SIRT3 content of rectus femoris and soleus muscle increased significantly following HIIT compared with that following MICT. The expression of LC3-II, ATG-3, and Beclin-1 and LC3II/LC3-I ratio were significantly increased only in soleus and cardiac muscle following HIIT. These data indicate that HIIT was more effective for improving physical performance and facilitating cardiac and skeletal muscle adaptations that increase mitochondrial function and basal autophagic activities. Moreover, 1H NMR spectroscopy and multivariate statistical

  5. Beneficial Autophagic Activities, Mitochondrial Function, and Metabolic Phenotype Adaptations Promoted by High-Intensity Interval Training in a Rat Model.

    PubMed

    Li, Fang-Hui; Li, Tao; Ai, Jing-Yi; Sun, Lei; Min, Zhu; Duan, Rui; Zhu, Ling; Liu, Yan-Ying; Liu, Timon Cheng-Yi

    2018-01-01

    The effects of high-intensity interval (HIIT) and moderate-intensity continuous training (MICT) on basal autophagy and mitochondrial function in cardiac and skeletal muscle and plasma metabolic phenotypes have not been clearly characterized. Here, we investigated how 10-weeks HIIT and MICT differentially modify basal autophagy and mitochondrial markers in cardiac and skeletal muscle and conducted an untargeted metabolomics study with proton nuclear magnetic resonance ( 1 H NMR) spectroscopy and multivariate statistical analysis of plasma metabolic phenotypes. Male Sprague-Dawley rats were separated into three groups: sedentary control (SED), MICT, and HIIT. Rats underwent evaluation of exercise performance, including exercise tolerance and grip strength, and blood lactate levels were measured immediately after an incremental exercise test. Plasma samples were analyzed by 1 H NMR. The expression of autophagy and mitochondrial markers and autophagic flux (LC3II/LC3-I ratio) in cardiac, rectus femoris, and soleus muscle were analyzed by western blotting. Time to exhaustion and grip strength increased significantly following HIIT compared with that in both SED and MICT groups. Compared with those in the SED group, blood lactate level, and the expression of SDH, COX-IV, and SIRT3 significantly increased in rectus femoris and soleus muscle of both HIIT and MICT groups. Meanwhile, SDH and COX-IV content of cardiac muscle and COX-IV and SIRT3 content of rectus femoris and soleus muscle increased significantly following HIIT compared with that following MICT. The expression of LC3-II, ATG-3, and Beclin-1 and LC3II/LC3-I ratio were significantly increased only in soleus and cardiac muscle following HIIT. These data indicate that HIIT was more effective for improving physical performance and facilitating cardiac and skeletal muscle adaptations that increase mitochondrial function and basal autophagic activities. Moreover, 1 H NMR spectroscopy and multivariate statistical

  6. [Expressions of the key proteins of the protein kinase B/mammalian target of rapamycin signaling pathway in skin tissue and wound tissue of diabetic rats].

    PubMed

    Huang, H; Qiu, W; Zhu, M; Zhang, Y; Cui, W H; Xing, W; Li, X Y; An, T C; Chen, M J; Guo, W; Xu, X

    2016-10-20

    Objective: To explore the changes in the expressions of key proteins of the protein kinase B/mammalian target of rapamycin (Akt/mTOR) signaling pathway in skin tissue and wound tissue of diabetic rats, and to elucidate the associated mechanisms. Methods: Seventy-eight SD rats aged from 7 to 8 weeks were divided into diabetes group and non-diabetes group according to the random number table, with 39 rats in each group. Rats in diabetes group were intraperitoneally injected with 20 mg/mL streptozotocin fluid in the dose of 65 mg/kg (dissolved in citrate buffer solution) for once to establish the model of diabetes mellitus. Rats in non-diabetes group were injected with the equivalent volume of citrate buffer solution in the same way. Three rats of each group were respectively selected in each week from post injection week (PIW) 1 to 8 for collection of full-thickness skin samples on the back with area approximately of 1.0 cm×1.0 cm to determine epidermal thickness with HE staining. Fifteen rats of each group were inflicted with full-thickness skin defect by resection of skin as above in PIW 1. Three rats of each group were respectively sacrificed immediately after injury and on post injury day (PID) 1, 3, 5 and 7. One piece of skin tissue around the wound edge in each rat was cut off immediately after injury, and wound tissue in each rat was cut off from PID 1 to 7. One part of the tissue was used for determination of protein expression levels of Akt, phosphorylated Akt, mTOR, and phosphorylated mTOR in skin tissue and wound tissue with Western blotting. Surplus tissue was used for observation of expressions of phosphorylated Akt and vimentin in skin tissue and wound tissue with immunofluorescent staining. Data were processed with analysis of variance of factorial design and multiple t test. Results: (1) The epidermal thicknesses in rats between the two groups were similar in PIW 1 and 2 (with t values respectively 0.25 and 1.33, P values above 0.05). From PIW 3 on

  7. Plasma Membrane-Located Purine Nucleotide Transport Proteins Are Key Components for Host Exploitation by Microsporidian Intracellular Parasites

    PubMed Central

    Heinz, Eva; Hacker, Christian; Dean, Paul; Mifsud, John; Goldberg, Alina V.; Williams, Tom A.; Nakjang, Sirintra; Gregory, Alison; Hirt, Robert P.; Lucocq, John M.; Kunji, Edmund R. S.; Embley, T. Martin

    2014-01-01

    Microsporidia are obligate intracellular parasites of most animal groups including humans, but despite their significant economic and medical importance there are major gaps in our understanding of how they exploit infected host cells. We have investigated the evolution, cellular locations and substrate specificities of a family of nucleotide transport (NTT) proteins from Trachipleistophora hominis, a microsporidian isolated from an HIV/AIDS patient. Transport proteins are critical to microsporidian success because they compensate for the dramatic loss of metabolic pathways that is a hallmark of the group. Our data demonstrate that the use of plasma membrane-located nucleotide transport proteins (NTT) is a key strategy adopted by microsporidians to exploit host cells. Acquisition of an ancestral transporter gene at the base of the microsporidian radiation was followed by lineage-specific events of gene duplication, which in the case of T. hominis has generated four paralogous NTT transporters. All four T. hominis NTT proteins are located predominantly to the plasma membrane of replicating intracellular cells where they can mediate transport at the host-parasite interface. In contrast to published data for Encephalitozoon cuniculi, we found no evidence for the location for any of the T. hominis NTT transporters to its minimal mitochondria (mitosomes), consistent with lineage-specific differences in transporter and mitosome evolution. All of the T. hominis NTTs transported radiolabelled purine nucleotides (ATP, ADP, GTP and GDP) when expressed in Escherichia coli, but did not transport radiolabelled pyrimidine nucleotides. Genome analysis suggests that imported purine nucleotides could be used by T. hominis to make all of the critical purine-based building-blocks for DNA and RNA biosynthesis during parasite intracellular replication, as well as providing essential energy for parasite cellular metabolism and protein synthesis. PMID:25474405

  8. Polyploid tumour cells elicit paradiploid progeny through depolyploidizing divisions and regulated autophagic degradation.

    PubMed

    Erenpreisa, Jekaterina; Salmina, Kristine; Huna, Anda; Kosmacek, Elizabeth A; Cragg, Mark S; Ianzini, Fiorenza; Anisimov, Alim P

    2011-07-01

    'Neosis' describes the process whereby p53 function-deficient tumour cells undergo self-renewal after genotoxic damage apparently via senescing ETCs (endopolyploid tumour cells). We previously reported that autophagic digestion and extrusion of DNA occurs in ETC and subsequently revealed that self-renewal transcription factors are also activated under these conditions. Here, we further studied this phenomenon in a range of cell lines after genotoxic damage induced by gamma irradiation, ETO (etoposide) or PXT (paclitaxel) treatment. These experiments revealed that chromatin degradation by autophagy was compatible with continuing mitotic activity in ETC. While the actively polyploidizing primary ETC produced early after genotoxic insult activated self-renewal factors throughout the polygenome, the secondary ETC restored after failed multipolar mitosis underwent subnuclei differentiation. As such, only a subset of subnuclei continued to express OCT4 and NANOG, while those lacking these factors stopped DNA replication and underwent degradation and elimination through autophagy. The surviving subnuclei sequestered nascent cytoplasm to form subcells, while being retained within the confines of the old ETC. Finally, the preformed paradiploid subcells became released from their linking chromosome bridges through autophagy and subsequently began cell divisions. These data show that 'neotic' ETC resulting from genotoxically damaged p53 function-deficient tumour cells develop through a heteronuclear system differentiating the polyploid genome into rejuvenated 'viable' subcells (which provide mitotically propagating paradiploid descendents) and subnuclei, which become degraded and eliminated by autophagy. The whole process reduces aneuploidy in descendants of ETC.

  9. The Ser/Thr Protein Kinase Protein-Protein Interaction Map of M. tuberculosis.

    PubMed

    Wu, Fan-Lin; Liu, Yin; Jiang, He-Wei; Luan, Yi-Zhao; Zhang, Hai-Nan; He, Xiang; Xu, Zhao-Wei; Hou, Jing-Li; Ji, Li-Yun; Xie, Zhi; Czajkowsky, Daniel M; Yan, Wei; Deng, Jiao-Yu; Bi, Li-Jun; Zhang, Xian-En; Tao, Sheng-Ce

    2017-08-01

    Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, the leading cause of death among all infectious diseases. There are 11 eukaryotic-like serine/threonine protein kinases (STPKs) in Mtb, which are thought to play pivotal roles in cell growth, signal transduction and pathogenesis. However, their underlying mechanisms of action remain largely uncharacterized. In this study, using a Mtb proteome microarray, we have globally identified the binding proteins in Mtb for all of the STPKs, and constructed the first STPK protein interaction (KPI) map that includes 492 binding proteins and 1,027 interactions. Bioinformatics analysis showed that the interacting proteins reflect diverse functions, including roles in two-component system, transcription, protein degradation, and cell wall integrity. Functional investigations confirmed that PknG regulates cell wall integrity through key components of peptidoglycan (PG) biosynthesis, e.g. MurC. The global STPK-KPIs network constructed here is expected to serve as a rich resource for understanding the key signaling pathways in Mtb, thus facilitating drug development and effective control of Mtb. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Hydrophobic environment is a key factor for the stability of thermophilic proteins.

    PubMed

    Gromiha, M Michael; Pathak, Manish C; Saraboji, Kadhirvel; Ortlund, Eric A; Gaucher, Eric A

    2013-04-01

    The stability of thermophilic proteins has been viewed from different perspectives and there is yet no unified principle to understand this stability. It would be valuable to reveal the most important interactions for designing thermostable proteins for such applications as industrial protein engineering. In this work, we have systematically analyzed the importance of various interactions by computing different parameters such as surrounding hydrophobicity, inter-residue interactions, ion-pairs and hydrogen bonds. The importance of each interaction has been determined by its predicted relative contribution in thermophiles versus the same contribution in mesophilic homologues based on a dataset of 373 protein families. We predict that hydrophobic environment is the major factor for the stability of thermophilic proteins and found that 80% of thermophilic proteins analyzed showed higher hydrophobicity than their mesophilic counterparts. Ion pairs, hydrogen bonds, and interaction energy are also important and favored in 68%, 50%, and 62% of thermophilic proteins, respectively. Interestingly, thermophilic proteins with decreased hydrophobic environments display a greater number of hydrogen bonds and/or ion pairs. The systematic elimination of mesophilic proteins based on surrounding hydrophobicity, interaction energy, and ion pairs/hydrogen bonds, led to correctly identifying 95% of the thermophilic proteins in our analyses. Our analysis was also applied to another, more refined set of 102 thermophilic-mesophilic pairs, which again identified hydrophobicity as a dominant property in 71% of the thermophilic proteins. Further, the notion of surrounding hydrophobicity, which characterizes the hydrophobic behavior of residues in a protein environment, has been applied to the three-dimensional structures of elongation factor-Tu proteins and we found that the thermophilic proteins are enriched with a hydrophobic environment. The results obtained in this work highlight the

  11. Human milk proteins: key components for the biological activity of human milk.

    PubMed

    Lönnerdal, Bo

    2004-01-01

    Human milk contains a wide array of proteins that provide biologic activities ranging from antimicrobial effects to immunostimulatory functions. Proteins like lactoferrin, secretory IgA, kappa-casein, lactoperoxidase, haptocorrin, lactadherin and peptides formed from human milk proteins during digestion can inhibit the growth of pathogenic bacteria and viruses and therefore protect against infection. At the same time, proteins like lactoferrin, bile-salt stimulated lipase, haptocorrin, kappa-casein, and folate-binding protein can facilitate the absorption of nutrients in the neonatal gut. However, the proteins in human milk themselves also provide adequate amounts of essential amino acids to the growing infant. This suggests a highly adapted digestive system, which allows the survival of some proteins and peptides in the upper gastrointestinal tract, while still allowing amino acid utilization from these proteins further down in the gut. It is now possible to produce recombinant human milk proteins in transgenic plants and animals, which makes it possible to further study the bioactivity of these proteins. Provided these proteins can be produced in large scale at low cost, that they show biologic activity and pose no safety concerns, it may be possible to add some human milk proteins to infant diets, such as formula and complementary foods. Human milk proteins produced in rice or potatoes, for example, could be added without much purification, because these staples commonly are used in weaning foods. Thus, some qualities provided by human milk may be included into other diets, although it is highly unlikely that all unique components of human milk can be copied this way.

  12. A conifer ABI3-interacting protein plays important roles during key transitions of the plant life cycle.

    PubMed

    Zeng, Ying; Zhao, Tiehan; Kermode, Allison R

    2013-01-01

    ABI3 (for ABSCISIC ACID INSENSITIVE3), a transcription factor of the abscisic acid signal transduction pathway, plays a major role during seed development, dormancy inception, and dormancy maintenance. This protein appears to also function in meristematic and vegetative plant tissues and under certain stress conditions. We have isolated the ABI3 gene ortholog (CnABI3) from yellow cedar (Callitropsis nootkatensis) and found that it was functionally similar to other ABI3 genes of angiosperms. Here, we report that using a yeast (Saccharomyces cerevisiae) two-hybrid approach, we have identified another protein of yellow cedar (CnAIP2; for CnABI3 INTERACTING PROTEIN2) that physically interacts with CnABI3. Functional analyses revealed that CnAIP2 plays important roles during key transitions in the plant life cycle: (1) CnAIP2 impaired seed development and reduced seed dormancy; (2) CnAIP2 promoted root development, particularly the initiation of lateral roots, and the CnAIP2 gene promoter was exquisitely auxin sensitive; and (3) CnAIP2 promoted the transition from vegetative growth to reproductive initiation (i.e. flowering). The nature of the effects of CnAIP2 on these processes and other evidence place CnAIP2 in the category of a "global" regulator, whose actions are antagonistic to those of ABI3.

  13. The Protective Effect of Gangliosides on Lead (Pb)-Induced Neurotoxicity Is Mediated by Autophagic Pathways.

    PubMed

    Meng, Hongtao; Wang, Lan; He, Junhong; Wang, Zhufeng

    2016-03-25

    Lead (Pb) is a ubiquitous environmental and industrial pollutant and can affect intelligence development and the learning ability and memory of children. Therefore, necessary measures should be taken to protect the central nervous system (CNS) from Pb toxicity. Gangliosides are sialic acid-containing glycosphingolipids that are constituents of mammalian cell membranes and are more abundantly expressed in the CNS. Studies have shown that gangliosides constitute a useful tool in the attempt to promote functional recovery of CNS and can reverse Pb-induced impairments of synaptic plasticity in rats. However, the detailed mechanisms have yet to be fully understood. In our present study, we tried to investigate the role of gangliosides in Pb-induced injury in hippocampus neurons and to further confirm the detailed mechanism. Our results show that Pb-induced injuries in the spatial reference memory were associated with a reduction of cell viability and cell apoptosis, and treatment with gangliosides markedly ameliorated the Pb-induced injury by inhibition of apoptosis action. Gangliosides further attenuated Pb-induced the abnormal autophagic process by regulation of mTOR pathways. In summary, our study establishes the efficacy of gangliosides as neuroprotective agents and provides a strong rationale for further studies on the underlying mechanisms of their neuroprotective functions.

  14. Physiological response of Pichia pastoris GS115 to methanol-induced high level production of the Hepatitis B surface antigen: catabolic adaptation, stress responses, and autophagic processes

    PubMed Central

    2012-01-01

    proceed via the ERAD pathway and through the proteasome. However, the amount of HBsAg did not show any significant decline during the cultivation revealing its general protection from proteolytic degradation. During the methanol fed-batch phase, induction of vacuolar proteases (e.g. strong increase of APR1) and constitutive autophagic processes were observed. Vacuolar enclosures were mainly found around peroxisomes and not close to HBsAg deposits and, thus, were most likely provoked by peroxisomal components damaged by reactive oxygen species generated by methanol oxidation. Conclusions In the methanol fed-batch phase P. pastoris is exposed to dual stress; stress resulting from methanol degradation and stress resulting from the production of the recombinant protein leading to the induction of oxidative stress and unfolded protein response pathways, respectively. Finally, the modest increase of methanol assimilatory enzymes compared to the strong increase of methanol dissimilatory enzymes suggests here a potential to increase methanol incorporation into biomass/product through metabolic enhancement of the methanol assimilatory pathway. PMID:22873405

  15. Intermittent fasting preserves beta-cell mass in obesity-induced diabetes via the autophagy-lysosome pathway.

    PubMed

    Liu, Haiyan; Javaheri, Ali; Godar, Rebecca J; Murphy, John; Ma, Xiucui; Rohatgi, Nidhi; Mahadevan, Jana; Hyrc, Krzysztof; Saftig, Paul; Marshall, Connie; McDaniel, Michael L; Remedi, Maria S; Razani, Babak; Urano, Fumihiko; Diwan, Abhinav

    2017-01-01

    Obesity-induced diabetes is characterized by hyperglycemia, insulin resistance, and progressive beta cell failure. In islets of mice with obesity-induced diabetes, we observe increased beta cell death and impaired autophagic flux. We hypothesized that intermittent fasting, a clinically sustainable therapeutic strategy, stimulates autophagic flux to ameliorate obesity-induced diabetes. Our data show that despite continued high-fat intake, intermittent fasting restores autophagic flux in islets and improves glucose tolerance by enhancing glucose-stimulated insulin secretion, beta cell survival, and nuclear expression of NEUROG3, a marker of pancreatic regeneration. In contrast, intermittent fasting does not rescue beta-cell death or induce NEUROG3 expression in obese mice with lysosomal dysfunction secondary to deficiency of the lysosomal membrane protein, LAMP2 or haplo-insufficiency of BECN1/Beclin 1, a protein critical for autophagosome formation. Moreover, intermittent fasting is sufficient to provoke beta cell death in nonobese lamp2 null mice, attesting to a critical role for lysosome function in beta cell homeostasis under fasting conditions. Beta cells in intermittently-fasted LAMP2- or BECN1-deficient mice exhibit markers of autophagic failure with accumulation of damaged mitochondria and upregulation of oxidative stress. Thus, intermittent fasting preserves organelle quality via the autophagy-lysosome pathway to enhance beta cell survival and stimulates markers of regeneration in obesity-induced diabetes.

  16. Kibra and aPKC regulate starvation-induced autophagy in Drosophila.

    PubMed

    Jin, Ahrum; Neufeld, Thomas P; Choe, Joonho

    Autophagy is a bulk degradation system that functions in response to cellular stresses such as metabolic stress, endoplasmic reticulum stress, oxidative stress, and developmental processes. During autophagy, cytoplasmic components are captured in double-membrane vesicles called autophagosomes. The autophagosome fuses with the lysosome, producing a vacuole known as an autolysosome. The cellular components are degraded by lysosomal proteases and recycled. Autophagy is important for maintaining cellular homeostasis, and the process is evolutionarily conserved. Kibra is an upstream regulator of the hippo signaling pathway, which controls organ size by affecting cell growth, proliferation, and apoptosis. Kibra is mainly localized in the apical membrane domain of epithelial cells and acts as a scaffold protein. We found that Kibra is required for autophagy to function properly. The absence of Kibra caused defects in the formation of autophagic vesicles and autophagic degradation. We also found that the well-known cell polarity protein aPKC interacts with Kibra, and its activity affects autophagy upstream of Kibra. Constitutively active aPKC decreased autophagic vesicle formation and autophagic degradation. We confirmed the interaction between aPKC and Kibra in S2 cells and Drosophila larva. Taken together, our data suggest that Kibra and aPKC are essential for regulating starvation-induced autophagy. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Inflammasome and Autophagy Regulation: A Two-way Street

    PubMed Central

    Qian, Sun; Fan, Jie; Billiar, Timothy R; Scott, Melanie J

    2017-01-01

    Inflammation plays a significant role in protecting hosts against pathogens. Inflammation induced by noninfectious endogenous agents can be detrimental and, if excessive, can result in organ and tissue damage. The inflammasome is a major innate immune pathway that can be activated via both exogenous pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs). Inflammasome activation involves formation and oligomerization of a protein complex including a nucleotide oligomerization domain (NOD)-like receptor (NLR), an adaptor protein and pro-caspase-1. This then allows cleavage and activation of caspase-1, followed by downstream cleavage and release of proinflammatory cytokines interleukin (IL)-1β and IL-18 from innate immune cells. Hyperinflammation caused by unrestrained inflammasome activation is linked with multiple inflammatory diseases, including inflammatory bowel disease, Alzheimer’s disease and multiple sclerosis. So there is an understandable rush to understand mechanisms that regulate such potent inflammatory pathways. Autophagy has now been identified as a main regulator of inflammasomes. Autophagy is a vital intracellular process involved in cellular homeostasis, recycling and removal of damaged organelles (eg, mitochondria) and intracellular pathogens. Autophagy is regulated by proteins that are important in endosomal/phagosomal pathways, as well as by specific autophagy proteins coded for by autophagy-related genes. Cytosolic components are surrounded and contained by a double-membraned vesicle, which then fuses with lysosomes to enable degradation of the contents. Autophagic removal of intracellular DAMPs, inflammasome components or cytokines can reduce inflammasome activation. Similarly, inflammasomes can regulate the autophagic process, allowing for a two-way mutual regulation of inflammation that may hold the key for treatment of multiple diseases. PMID:28741645

  18. Fasting Increases Human Skeletal Muscle Net Phenylalanine Release and This Is Associated with Decreased mTOR Signaling

    PubMed Central

    Vendelbo, Mikkel Holm; Møller, Andreas Buch; Christensen, Britt; Nellemann, Birgitte; Clasen, Berthil Frederik Forrest; Nair, K. Sreekumaran; Jørgensen, Jens Otto Lunde; Jessen, Niels; Møller, Niels

    2014-01-01

    Aim Fasting is characterised by profound changes in energy metabolism including progressive loss of body proteins. The underlying mechanisms are however unknown and we therefore determined the effects of a 72-hour-fast on human skeletal muscle protein metabolism and activation of mammalian target of rapamycin (mTOR), a key regulator of cell growth. Methods Eight healthy male volunteers were studied twice: in the postabsorptive state and following 72 hours of fasting. Regional muscle amino acid kinetics was measured in the forearm using amino acid tracers. Signaling to protein synthesis and breakdown were assessed in skeletal muscle biopsies obtained during non-insulin and insulin stimulated conditions on both examination days. Results Fasting significantly increased forearm net phenylalanine release and tended to decrease phenylalanine rate of disappearance. mTOR phosphorylation was decreased by ∼50% following fasting, together with reduced downstream phosphorylation of 4EBP1, ULK1 and rpS6. In addition, the insulin stimulated increase in mTOR and rpS6 phosphorylation was significantly reduced after fasting indicating insulin resistance in this part of the signaling pathway. Autophagy initiation is in part regulated by mTOR through ULK1 and fasting increased expression of the autophagic marker LC3B-II by ∼30%. p62 is degraded during autophagy but was increased by ∼10% during fasting making interpretation of autophagic flux problematic. MAFbx and MURF1 ubiquitin ligases remained unaltered after fasting indicating no change in protesomal protein degradation. Conclusions Our results show that during fasting increased net phenylalanine release in skeletal muscle is associated to reduced mTOR activation and concomitant decreased downstream signaling to cell growth. PMID:25020061

  19. Expression of Malus xiaojinensis IRT1 (MxIRT1) protein in transgenic yeast cells leads to degradation through autophagy in the presence of excessive iron.

    PubMed

    Li, Shuang; Zhang, Xi; Zhang, Xiu-Yue; Xiao, Wei; Berry, James O; Li, Peng; Jin, Si; Tan, Song; Zhang, Peng; Zhao, Wei-Zhong; Yin, Li-Ping

    2015-07-01

    Iron is essential for plants, but highly toxic when present in excess. Consequently, iron uptake by root transporters must be finely tuned to avoid excess uptake from soil under iron excess. The iron-regulated transporter of Malus xiaojinensis (MxIRT1), induced in roots under iron deficiency, is a highly effective iron(II) transporter. Here, we investigated how the presence of excessive iron leads to MxIRT1 degradation in yeast expressing this plant iron transporter protein. To determine the relationship between iron abundance and MxIRT1 degradation, relative levels of autophagy-related gene-8 (ATG8) mRNA and the active ATG8-phosphatidylethanolamine-conjugated (PE) protein were measured in wild-type yeast and the autophagic mutant strains atg1∆, atg5∆, atg7∆, ypt7∆ and tor1∆ under normal and excessive iron conditions. The data showed that the exposure of MxIRT1-eGFP-transformed wild-type and tor1∆ strains to excessive iron led to significantly increased levels of ATG8 transcript and ATG8-PE protein, which resulted in enhanced MxIRT1 degradation. Co-localization of mCherry-ATG8 and MxIRT1-eGFP provided evidence that these proteins interact during autophagy in yeast. While inhibition of autophagic initiation, autophagosome formation and vacuole fusion all decreased MxIRT1 degradation. PMSF inhibition of autophagy prevented degradation, leading to the accumulation of MxIRT1-containing vesicles in the vacuoles. MxIRT1-vesicles were sorted into autophagosomes for iron-induced degradation in yeast, whereas the endogenous iron(II) transporter Fet4 was degraded in an autophagy-independent manner. Moreover, immunoprecipitation showed that multimono-ubiquitins provided MxIRT1 with the ubiquitination signal. Together, three factors, iron excess, autophagy and mono-ubiquitination, affect the functional activity and stability of exogenous MxIRT1 in yeast, thereby preventing iron uptake via this root transporter. Copyright © 2015 John Wiley & Sons, Ltd.

  20. AMP-Activated Protein Kinase – A Ubiquitous Signalling Pathway with Key Roles in the Cardiovascular System

    PubMed Central

    Salt, Ian P.; Hardie, D. Grahame

    2017-01-01

    The AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole body energy homeostasis, which acts to restore energy homoeostasis whenever cellular energy charge is depleted. Over the last two decades, it has become apparent that AMPK regulates a number of other cellular functions and has specific roles in cardiovascular tissues, acting to regulate cardiac metabolism and contractile function as well as promoting anti-contractile, anti-inflammatory and anti-atherogenic actions in blood vessels. In this review, we will discuss the role of AMPK in the cardiovascular system, including the molecular basis of mutations in AMPK that alter cardiac physiology and the proposed mechanisms by which AMPK regulates vascular function under physiological and pathophysiological conditions. PMID:28546359

  1. Tetherin Suppresses Type I Interferon Signaling by Targeting MAVS for NDP52-Mediated Selective Autophagic Degradation in Human Cells.

    PubMed

    Jin, Shouheng; Tian, Shuo; Luo, Man; Xie, Weihong; Liu, Tao; Duan, Tianhao; Wu, Yaoxing; Cui, Jun

    2017-10-19

    Tetherin (BST2/CD317) is an interferon-inducible antiviral factor known for its ability to block the release of enveloped viruses from infected cells. Yet its role in type I interferon (IFN) signaling remains poorly defined. Here, we demonstrate that Tetherin is a negative regulator of RIG-I like receptor (RLR)-mediated type I IFN signaling by targeting MAVS. The induction of Tetherin by type I IFN accelerates MAVS degradation via ubiquitin-dependent selective autophagy in human cells. Moreover, Tetherin recruits E3 ubiquitin ligase MARCH8 to catalyze K27-linked ubiquitin chains on MAVS at lysine 7, which serves as a recognition signal for NDP52-dependent autophagic degradation. Taken together, our findings reveal a negative feedback loop of RLR signaling generated by Tetherin-MARCH8-MAVS-NDP52 axis and provide insights into a better understanding of the crosstalk between selective autophagy and optimal deactivation of type I IFN signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A combined proteomic and genetic analysis identifies a role for the lipid desaturase Desat1 in starvation-induced autophagy in Drosophila.

    PubMed

    Köhler, Katja; Brunner, Erich; Guan, Xue Li; Boucke, Karin; Greber, Urs F; Mohanty, Sonali; Barth, Julia M I; Wenk, Markus R; Hafen, Ernst

    2009-10-01

    Autophagy is a lysosomal-mediated degradation process that promotes cell survival during nutrient-limiting conditions. However, excessive autophagy results in cell death. In Drosophila, autophagy is regulated nutritionally, hormonally and developmentally in several tissues, including the fat body, a nutrient-storage organ. Here we use a proteomics approach to identify components of starvation-induced autophagic responses in the Drosophila fat body. Using cICAT labeling and mass spectrometry, differences in protein expression levels of normal compared to starved fat bodies were determined. Candidates were analyzed genetically for their involvement in autophagy in fat bodies deficient for the respective genes. One of these genes, Desat1, encodes a lipid desaturase. Desat1 mutant cells fail to induce autophagy upon starvation. The desat1 protein localizes to autophagic structures after nutrient depletion and is required for fly development. Lipid analyses revealed that Desat1 regulates the composition of lipids in Drosophila. We propose that Desat1 exerts its role in autophagy by controlling lipid biosynthesis and/or signaling necessary for autophagic responses.

  3. Autophagy requires poly(adp-ribosyl)ation-dependent AMPK nuclear export

    PubMed Central

    Rodríguez-Vargas, José M; Rodríguez, María I; Majuelos-Melguizo, Jara; García-Diaz, Ángel; González-Flores, Ariannys; López-Rivas, Abelardo; Virág, László; Illuzzi, Giuditta; Schreiber, Valerie; Dantzer, Françoise; Oliver, F Javier

    2016-01-01

    AMPK is a central energy sensor linking extracellular milieu fluctuations with the autophagic machinery. In the current study we uncover that Poly(ADP-ribosyl)ation (PARylation), a post-translational modification (PTM) of proteins, accounts for the spatial and temporal regulation of autophagy by modulating AMPK subcellular localisation and activation. More particularly, we show that the minority AMPK pool needs to be exported to the cytosol in a PARylation-dependent manner for optimal induction of autophagy, including ULK1 phosphorylation and mTORC1 inactivation. PARP-1 forms a molecular complex with AMPK in the nucleus in non-starved cells. In response to nutrient deprivation, PARP-1 catalysed PARylation, induced the dissociation of the PARP-1/AMPK complex and the export of free PARylated nuclear AMPK to the cytoplasm to activate autophagy. PARP inhibition, its silencing or the expression of PARylation-deficient AMPK mutants prevented not only the AMPK nuclear-cytosolic export but also affected the activation of the cytosolic AMPK pool and autophagosome formation. These results demonstrate that PARylation of AMPK is a key early signal to efficiently convey extracellular nutrient perturbations with downstream events needed for the cell to optimize autophagic commitment before autophagosome formation. PMID:27689873

  4. Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy.

    PubMed

    Altmann, Christine; Hardt, Stefanie; Fischer, Caroline; Heidler, Juliana; Lim, Hee-Young; Häussler, Annett; Albuquerque, Boris; Zimmer, Béla; Möser, Christine; Behrends, Christian; Koentgen, Frank; Wittig, Ilka; Schmidt, Mirko H H; Clement, Albrecht M; Deller, Thomas; Tegeder, Irmgard

    2016-12-01

    Peripheral or central nerve injury is a frequent cause of chronic pain and the mechanisms are not fully understood. Using newly generated transgenic mice we show that progranulin overexpression in sensory neurons attenuates neuropathic pain after sciatic nerve injury and accelerates nerve healing. A yeast-2-hybrid screen revealed putative interactions of progranulin with autophagy-related proteins, ATG12 and ATG4b. This was supported by colocalization and proteomic studies showing regulations of ATG13 and ATG4b and other members of the autophagy network, lysosomal proteins and proteins involved in endocytosis. The association of progranulin with the autophagic pathway was functionally confirmed in primary sensory neurons. Autophagy and survival were impaired in progranulin-deficient neurons and improved in progranulin overexpressing neurons. Nerve injury in vivo caused an accumulation of LC3b-EGFP positive bodies in neurons of the dorsal root ganglia and nerves suggesting an impairment of autophagic flux. Overexpression of progranulin in these neurons was associated with a reduction of the stress marker ATF3, fewer protein aggregates in the injured nerve and enhanced stump healing. At the behavioral level, further inhibition of the autophagic flux by hydroxychloroquine intensified cold and heat nociception after sciatic nerve injury and offset the pain protection provided by progranulin. We infer that progranulin may assist in removal of protein waste and thereby helps to resolve neuropathic pain after nerve injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease.

    PubMed

    Magalhaes, Joana; Gegg, Matthew E; Migdalska-Richards, Anna; Doherty, Mary K; Whitfield, Phillip D; Schapira, Anthony H V

    2016-08-15

    Glucocerebrosidase (GBA1) gene mutations increase the risk of Parkinson disease (PD). While the cellular mechanisms associating GBA1 mutations and PD are unknown, loss of the glucocerebrosidase enzyme (GCase) activity, inhibition of autophagy and increased α-synuclein levels have been implicated. Here we show that autophagy lysosomal reformation (ALR) is compromised in cells lacking functional GCase. ALR is a cellular process controlled by mTOR which regenerates functional lysosomes from autolysosomes formed during macroautophagy. A decrease in phopho-S6K levels, a marker of mTOR activity, was observed in models of GCase deficiency, including primary mouse neurons and the PD patient derived fibroblasts with GBA1 mutations, suggesting that ALR is compromised. Importantly Rab7, a GTPase crucial for endosome-lysosome trafficking and ALR, accumulated in GCase deficient cells, supporting the notion that lysosomal recycling is impaired. Recombinant GCase treatment reversed ALR inhibition and lysosomal dysfunction. Moreover, ALR dysfunction was accompanied by impairment of macroautophagy and chaperone-mediated autophagy, increased levels of total and phosphorylated (S129) monomeric α-synuclein, evidence of amyloid oligomers and increased α-synuclein release. Concurrently, we found increased cholesterol and altered glucosylceramide homeostasis which could compromise ALR. We propose that GCase deficiency in PD inhibits lysosomal recycling. Consequently neurons are unable to maintain the pool of mature and functional lysosomes required for the autophagic clearance of α-synuclein, leading to the accumulation and spread of pathogenic α-synuclein species in the brain. Since GCase deficiency and lysosomal dysfunction occur with ageing and sporadic PD pathology, the decrease in lysosomal reformation may be a common feature in PD. © The Author 2016. Published by Oxford University Press.

  6. Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease

    PubMed Central

    Magalhaes, Joana; Gegg, Matthew E.; Migdalska-Richards, Anna; Doherty, Mary K.; Whitfield, Phillip D.; Schapira, Anthony H.V.

    2016-01-01

    Glucocerebrosidase (GBA1) gene mutations increase the risk of Parkinson disease (PD). While the cellular mechanisms associating GBA1 mutations and PD are unknown, loss of the glucocerebrosidase enzyme (GCase) activity, inhibition of autophagy and increased α-synuclein levels have been implicated. Here we show that autophagy lysosomal reformation (ALR) is compromised in cells lacking functional GCase. ALR is a cellular process controlled by mTOR which regenerates functional lysosomes from autolysosomes formed during macroautophagy. A decrease in phopho-S6K levels, a marker of mTOR activity, was observed in models of GCase deficiency, including primary mouse neurons and the PD patient derived fibroblasts with GBA1 mutations, suggesting that ALR is compromised. Importantly Rab7, a GTPase crucial for endosome-lysosome trafficking and ALR, accumulated in GCase deficient cells, supporting the notion that lysosomal recycling is impaired. Recombinant GCase treatment reversed ALR inhibition and lysosomal dysfunction. Moreover, ALR dysfunction was accompanied by impairment of macroautophagy and chaperone-mediated autophagy, increased levels of total and phosphorylated (S129) monomeric α-synuclein, evidence of amyloid oligomers and increased α-synuclein release. Concurrently, we found increased cholesterol and altered glucosylceramide homeostasis which could compromise ALR. We propose that GCase deficiency in PD inhibits lysosomal recycling. Consequently neurons are unable to maintain the pool of mature and functional lysosomes required for the autophagic clearance of α-synuclein, leading to the accumulation and spread of pathogenic α-synuclein species in the brain. Since GCase deficiency and lysosomal dysfunction occur with ageing and sporadic PD pathology, the decrease in lysosomal reformation may be a common feature in PD. PMID:27378698

  7. BRAF associated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells.

    PubMed

    Goulielmaki, Maria; Koustas, Evangelos; Moysidou, Eirini; Vlassi, Margarita; Sasazuki, Takehiko; Shirasawa, Senji; Zografos, George; Oikonomou, Eftychia; Pintzas, Alexander

    2016-02-23

    Autophagy is the basic catabolic mechanism that involves cell degradation of unnecessary or dysfunctional cellular components. Autophagy has a controversial role in cancer--both in protecting against tumor progression by isolation of damaged organelles, or by potentially contributing to cancer growth. The impact of autophagy in RAS induced transformation still remains to be further analyzed based on the differential effect of RAS isoforms and tumor cell context. In the present study, the effect of KRAS/BRAF/PIK3CA oncogenic pathways on the autophagic cell properties and on main components of the autophagic machinery like p62 (SQSTM1), Beclin-1 (BECN1) and MAP1LC3 (LC3) in colon cancer cells was investigated. This study provides evidence that BRAF oncogene induces the expression of key autophagic markers, like LC3 and BECN1 in colorectal tumor cells. Herein, PI3K/AKT/MTOR inhibitors induce autophagic tumor properties, whereas RAF/MEK/ERK signalling inhibitors reduce expression of autophagic markers. Based on the ineffectiveness of BRAFV600E inhibitors in BRAFV600E bearing colorectal tumors, the BRAF related autophagic properties in colorectal cancer cells are further exploited, by novel combinatorial anti-cancer protocols. Strong evidence is provided here that pre-treatment of autophagy inhibitor 3-MA followed by its combination with BRAFV600E targeting drug PLX4720 can synergistically sensitize resistant colorectal tumors. Notably, colorectal cancer cells are very sensitive to mono-treatments of another autophagy inhibitor, Bafilomycin A1. The findings of this study are expected to provide novel efficient protocols for treatment of otherwise resistant colorectal tumors bearing BRAFV600E, by exploiting the autophagic properties induced by BRAF oncogene.

  8. Folding and stability of the isolated Greek key domains of the long-lived human lens proteins γD-crystallin and γS-crystallin

    PubMed Central

    Mills, Ishara A.; Flaugh, Shannon L.; Kosinski-Collins, Melissa S.; King, Jonathan A.

    2007-01-01

    The transparency of the eye lens depends on the high solubility and stability of the lens crystallin proteins. The monomeric γ-crystallins and oligomeric β-crystallins have paired homologous double Greek key domains, presumably evolved through gene duplication and fusion. Prior investigation of the refolding of human γD-crystallin revealed that the C-terminal domain folds first and nucleates the folding of the N-terminal domain. This result suggested that the human N-terminal domain might not be able to fold on its own. We constructed and expressed polypeptide chains corresponding to the isolated N- and C-terminal domains of human γD-crystallin, as well as the isolated domains of human γS-crystallin. Both circular dichroism and fluorescence spectroscopy indicated that the isolated domains purified from Escherichia coli were folded into native-like monomers. After denaturation, the isolated domains refolded efficiently at pH 7 and 37°C into native-like structures. The in vitro refolding of all four domains revealed two kinetic phases, identifying partially folded intermediates for the Greek key motifs. When subjected to thermal denaturation, the isolated N-terminal domains were less stable than the full-length proteins and less stable than the C-terminal domains, and this was confirmed in equilibrium unfolding/refolding experiments. The decrease in stability of the N-terminal domain of human γD-crystallin with respect to the complete protein indicated that the interdomain interface contributes of 4.2 kcal/mol to the overall stability of this very long-lived protein. PMID:17905830

  9. PCP-B class pollen coat proteins are key regulators of the hydration checkpoint in Arabidopsis thaliana pollen-stigma interactions.

    PubMed

    Wang, Ludi; Clarke, Lisa A; Eason, Russell J; Parker, Christopher C; Qi, Baoxiu; Scott, Rod J; Doughty, James

    2017-01-01

    The establishment of pollen-pistil compatibility is strictly regulated by factors derived from both male and female reproductive structures. Highly diverse small cysteine-rich proteins (CRPs) have been found to play multiple roles in plant reproduction, including the earliest stages of the pollen-stigma interaction. Secreted CRPs found in the pollen coat of members of the Brassicaceae, the pollen coat proteins (PCPs), are emerging as important signalling molecules that regulate the pollen-stigma interaction. Using a combination of protein characterization, expression and phylogenetic analyses we identified a novel class of Arabidopsis thaliana pollen-borne CRPs, the PCP-Bs (for pollen coat protein B-class) that are related to embryo surrounding factor (ESF1) developmental regulators. Single and multiple PCP-B mutant lines were utilized in bioassays to assess effects on pollen hydration, adhesion and pollen tube growth. Our results revealed that pollen hydration is severely impaired when multiple PCP-Bs are lost from the pollen coat. The hydration defect also resulted in reduced pollen adhesion and delayed pollen tube growth in all mutants studied. These results demonstrate that AtPCP-Bs are key regulators of the hydration 'checkpoint' in establishment of pollen-stigma compatibility. In addition, we propose that interspecies diversity of PCP-Bs may contribute to reproductive barriers in the Brassicaceae. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. Quantitative chemical proteomics profiling of de novo protein synthesis during starvation-mediated autophagy

    PubMed Central

    Wang, Jigang; Zhang, Jianbin; Lee, Yew-Mun; Koh, Pin-Lang; Ng, Shukie; Bao, Feichao; Lin, Qingsong; Shen, Han-Ming

    2016-01-01

    ABSTRACT Autophagy is an intracellular degradation mechanism in response to nutrient starvation. Via autophagy, some nonessential cellular constituents are degraded in a lysosome-dependent manner to generate biomolecules that can be utilized for maintaining the metabolic homeostasis. Although it is known that under starvation the global protein synthesis is significantly reduced mainly due to suppression of MTOR (mechanistic target of rapamycin serine/threonine kinase), emerging evidence demonstrates that de novo protein synthesis is involved in the autophagic process. However, characterizing these de novo proteins has been an issue with current techniques. Here, we developed a novel method to identify newly synthesized proteins during starvation-mediated autophagy by combining bio-orthogonal noncanonical amino acid tagging (BONCAT) and isobaric tags for relative and absolute quantitation (iTRAQTM). Using bio-orthogonal metabolic tagging, L-azidohomoalanine (AHA) was incorporated into newly synthesized proteins which were then enriched with avidin beads after a click reaction between alkyne-bearing biotin and AHA's bio-orthogonal azide moiety. The enriched proteins were subjected to iTRAQ labeling for protein identification and quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Via the above approach, we identified and quantified a total of 1176 proteins and among them 711 proteins were found to meet our defined criteria as de novo synthesized proteins during starvation-mediated autophagy. The characterized functional profiles of the 711 newly synthesized proteins by bioinformatics analysis suggest their roles in ensuring the prosurvival outcome of autophagy. Finally, we performed validation assays for some selected proteins and found that knockdown of some genes has a significant impact on starvation-induced autophagy. Thus, we think that the BONCAT-iTRAQ approach is effective in the identification of newly synthesized proteins and

  11. Quantitative chemical proteomics profiling of de novo protein synthesis during starvation-mediated autophagy.

    PubMed

    Wang, Jigang; Zhang, Jianbin; Lee, Yew-Mun; Koh, Pin-Lang; Ng, Shukie; Bao, Feichao; Lin, Qingsong; Shen, Han-Ming

    2016-10-02

    Autophagy is an intracellular degradation mechanism in response to nutrient starvation. Via autophagy, some nonessential cellular constituents are degraded in a lysosome-dependent manner to generate biomolecules that can be utilized for maintaining the metabolic homeostasis. Although it is known that under starvation the global protein synthesis is significantly reduced mainly due to suppression of MTOR (mechanistic target of rapamycin serine/threonine kinase), emerging evidence demonstrates that de novo protein synthesis is involved in the autophagic process. However, characterizing these de novo proteins has been an issue with current techniques. Here, we developed a novel method to identify newly synthesized proteins during starvation-mediated autophagy by combining bio-orthogonal noncanonical amino acid tagging (BONCAT) and isobaric tags for relative and absolute quantitation (iTRAQ TM ). Using bio-orthogonal metabolic tagging, L-azidohomoalanine (AHA) was incorporated into newly synthesized proteins which were then enriched with avidin beads after a click reaction between alkyne-bearing biotin and AHA's bio-orthogonal azide moiety. The enriched proteins were subjected to iTRAQ labeling for protein identification and quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Via the above approach, we identified and quantified a total of 1176 proteins and among them 711 proteins were found to meet our defined criteria as de novo synthesized proteins during starvation-mediated autophagy. The characterized functional profiles of the 711 newly synthesized proteins by bioinformatics analysis suggest their roles in ensuring the prosurvival outcome of autophagy. Finally, we performed validation assays for some selected proteins and found that knockdown of some genes has a significant impact on starvation-induced autophagy. Thus, we think that the BONCAT-iTRAQ approach is effective in the identification of newly synthesized proteins and provides

  12. Insulin- like Growth Factor-Binding Protein Action in Bone Tissue: A Key Role for Pregnancy- Associated Plasma Protein-A.

    PubMed

    Beattie, James; Al-Khafaji, Hasanain; Noer, Pernille R; Alkharobi, Hanaa Esa; Alhodhodi, Aishah; Meade, Josephine; El-Gendy, Reem; Oxvig, Claus

    2018-01-01

    The insulin-like growth factor (IGF) axis is required for the differentiation, development, and maintenance of bone tissue. Accordingly, dysregulation of this axis is associated with various skeletal pathologies including growth abnormalities and compromised bone structure. It is becoming increasingly apparent that the action of the IGF axis must be viewed holistically taking into account not just the actions of the growth factors and receptors, but also the influence of soluble high affinity IGF binding proteins (IGFBPs).There is a recognition that IGFBPs exert IGF-dependent and IGF-independent effects in bone and other tissues and that an understanding of the mechanisms of action of IGFBPs and their regulation in the pericellular environment impact critically on tissue physiology. In this respect, a group of IGFBP proteinases (which may be considered as ancillary members of the IGF axis) play a crucial role in regulating IGFBP function. In this model, cleavage of IGFBPs by specific proteinases into fragments with lower affinity for growth factor(s) regulates the partition of IGFs between IGFBPs and cell surface IGF receptors. In this review, we examine the importance of IGFBP function in bone tissue with special emphasis on the role of pregnancy associated plasma protein-A (PAPP-A). We examine the function of PAPP-A primarily as an IGFBP-4 proteinase and present evidence that PAPP-A induced cleavage of IGFBP-4 is potentially a key regulatory step in bone metabolism. We also highlight some recent findings with regard to IGFBP-2 and IGFBP-5 (also PAPP-A substrates) function in bone tissue and briefly discuss the actions of the other three IGFBPs (-1, -3, and -6) in this tissue. Although our main focus will be in bone we will allude to IGFBP activity in other cells and tissues where appropriate.

  13. The regulation of autophagy differentially affects Trypanosoma cruzi metacyclogenesis.

    PubMed

    Vanrell, María Cristina; Losinno, Antonella Denisse; Cueto, Juan Agustín; Balcazar, Darío; Fraccaroli, Laura Virginia; Carrillo, Carolina; Romano, Patricia Silvia

    2017-11-01

    Autophagy is a cellular process required for the removal of aged organelles and cytosolic components through lysosomal degradation. All types of eukaryotic cells from yeasts to mammalian cells have the machinery to activate autophagy as a result of many physiological and pathological situations. The most frequent stimulus of autophagy is starvation and the result, in this case, is the fast generation of utilizable food (e.g. amino acids and basic nutrients) to maintain the vital biological processes. In some organisms, starvation also triggers other associated processes such as differentiation. The protozoan parasite Trypanosoma cruzi undergoes a series of differentiation processes throughout its complex life cycle. Although not all autophagic genes have been identified in the T. cruzi genome, previous works have demonstrated the presence of essential autophagic-related proteins. Under starvation conditions, TcAtg8, which is the parasite homolog of Atg8/LC3 in other organisms, is located in autophagosome-like vesicles. In this work, we have characterized the autophagic pathway during T. cruzi differentiation from the epimastigote to metacyclic trypomastigote form, a process called metacyclogenesis. We demonstrated that autophagy is stimulated during metacyclogenesis and that the induction of autophagy promotes this process. Moreover, with exception of bafilomycin, other classical autophagy modulators have similar effects on T. cruzi autophagy. We also showed that spermidine and related polyamines can positively regulate parasite autophagy and differentiation. We concluded that both polyamine metabolism and autophagy are key processes during T. cruzi metacyclogenesis that could be exploited as drug targets to avoid the parasite cycle progression.

  14. Collagen VI Null Mice as a Model for Early Onset Muscle Decline in Aging

    PubMed Central

    Capitanio, Daniele; Moriggi, Manuela; De Palma, Sara; Bizzotto, Dario; Molon, Sibilla; Torretta, Enrica; Fania, Chiara; Bonaldo, Paolo; Gelfi, Cecilia; Braghetta, Paola

    2017-01-01

    Collagen VI is an extracellular matrix (ECM) protein playing a key role in skeletal muscles and whose deficiency leads to connective tissue diseases in humans and in animal models. However, most studies have been focused on skeletal muscle features. We performed an extensive proteomic profiling in two skeletal muscles (diaphragm and gastrocnemius) of wild-type and collagen VI null (Col6a1−/−) mice at different ages, from 6- (adult) to 12- (aged) month-old to 24 (old) month-old. While in wild-type animals the number of proteins and the level of modification occurring during aging were comparable in the two analyzed muscles, Col6a1−/− mice displayed a number of muscle-type specific variations. In particular, gastrocnemius displayed a limited number of dysregulated proteins in adult mice, while in aged muscles the modifications were more pronounced in terms of number and level. In diaphragm, the differences displayed by 6-month-old Col6a1−/− mice were more pronounced compared to wild-type mice and persisted at 12 months of age. In adult Col6a1−/− mice, the major variations were found in the enzymes belonging to the glycolytic pathway and the tricarboxylic acid (TCA) cycle, as well as in autophagy-related proteins. When compared to wild-type animals Col6a1−/− mice displayed a general metabolic rewiring which was particularly prominent the diaphragm at 6 months of age. Comparison of the proteomic features and the molecular analysis of metabolic and autophagic pathways in adult and aged Col6a1−/− diaphragm indicated that the effects of aging, culminating in lipotoxicity and autophagic impairment, were already present at 6 months of age. Conversely, the effects of aging in Col6a1−/− gastrocnemius were similar but delayed becoming apparent at 12 months of age. A similar metabolic rewiring and autophagic impairment was found in the diaphragm of 24-month-old wild-type mice, confirming that fatty acid synthase (FASN) increment and decreased

  15. Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma.

    PubMed

    Vogl, Dan T; Stadtmauer, Edward A; Tan, Kay-See; Heitjan, Daniel F; Davis, Lisa E; Pontiggia, Laura; Rangwala, Reshma; Piao, Shengfu; Chang, Yunyoung C; Scott, Emma C; Paul, Thomas M; Nichols, Charles W; Porter, David L; Kaplan, Janeen; Mallon, Gayle; Bradner, James E; Amaravadi, Ravi K

    2014-08-01

    The efficacy of proteasome inhibition for myeloma is limited by therapeutic resistance, which may be mediated by activation of the autophagy pathway as an alternative mechanism of protein degradation. Preclinical studies demonstrate that autophagy inhibition with hydroxychloroquine augments the antimyeloma efficacy of the proteasome inhibitor bortezomib. We conducted a phase I trial combining bortezomib and hydroxychloroquine for relapsed or refractory myeloma. We enrolled 25 patients, including 11 (44%) refractory to prior bortezomib. No protocol-defined dose-limiting toxicities occurred, and we identified a recommended phase 2 dose of hydroxychloroquine 600 mg twice daily with standard doses of bortezomib, at which we observed dose-related gastrointestinal toxicity and cytopenias. Of 22 patients evaluable for response, 3 (14%) had very good partial responses, 3 (14%) had minor responses, and 10 (45%) had a period of stable disease. Electron micrographs of bone marrow plasma cells collected at baseline, after a hydroxychloroquine run-in, and after combined therapy showed therapy-associated increases in autophagic vacuoles, consistent with the combined effects of increased trafficking of misfolded proteins to autophagic vacuoles and inhibition of their degradative capacity. Combined targeting of proteasomal and autophagic protein degradation using bortezomib and hydroxychloroquine is therefore feasible and a potentially useful strategy for improving outcomes in myeloma therapy.

  16. Combined autophagy and proteasome inhibition

    PubMed Central

    Vogl, Dan T; Stadtmauer, Edward A; Tan, Kay-See; Heitjan, Daniel F; Davis, Lisa E; Pontiggia, Laura; Rangwala, Reshma; Piao, Shengfu; Chang, Yunyoung C; Scott, Emma C; Paul, Thomas M; Nichols, Charles W; Porter, David L; Kaplan, Janeen; Mallon, Gayle; Bradner, James E; Amaravadi, Ravi K

    2014-01-01

    The efficacy of proteasome inhibition for myeloma is limited by therapeutic resistance, which may be mediated by activation of the autophagy pathway as an alternative mechanism of protein degradation. Preclinical studies demonstrate that autophagy inhibition with hydroxychloroquine augments the antimyeloma efficacy of the proteasome inhibitor bortezomib. We conducted a phase I trial combining bortezomib and hydroxychloroquine for relapsed or refractory myeloma. We enrolled 25 patients, including 11 (44%) refractory to prior bortezomib. No protocol-defined dose-limiting toxicities occurred, and we identified a recommended phase 2 dose of hydroxychloroquine 600 mg twice daily with standard doses of bortezomib, at which we observed dose-related gastrointestinal toxicity and cytopenias. Of 22 patients evaluable for response, 3 (14%) had very good partial responses, 3 (14%) had minor responses, and 10 (45%) had a period of stable disease. Electron micrographs of bone marrow plasma cells collected at baseline, after a hydroxychloroquine run-in, and after combined therapy showed therapy-associated increases in autophagic vacuoles, consistent with the combined effects of increased trafficking of misfolded proteins to autophagic vacuoles and inhibition of their degradative capacity. Combined targeting of proteasomal and autophagic protein degradation using bortezomib and hydroxychloroquine is therefore feasible and a potentially useful strategy for improving outcomes in myeloma therapy. PMID:24991834

  17. Inverse statistical physics of protein sequences: a key issues review.

    PubMed

    Cocco, Simona; Feinauer, Christoph; Figliuzzi, Matteo; Monasson, Rémi; Weigt, Martin

    2018-03-01

    In the course of evolution, proteins undergo important changes in their amino acid sequences, while their three-dimensional folded structure and their biological function remain remarkably conserved. Thanks to modern sequencing techniques, sequence data accumulate at unprecedented pace. This provides large sets of so-called homologous, i.e. evolutionarily related protein sequences, to which methods of inverse statistical physics can be applied. Using sequence data as the basis for the inference of Boltzmann distributions from samples of microscopic configurations or observables, it is possible to extract information about evolutionary constraints and thus protein function and structure. Here we give an overview over some biologically important questions, and how statistical-mechanics inspired modeling approaches can help to answer them. Finally, we discuss some open questions, which we expect to be addressed over the next years.

  18. Inverse statistical physics of protein sequences: a key issues review

    NASA Astrophysics Data System (ADS)

    Cocco, Simona; Feinauer, Christoph; Figliuzzi, Matteo; Monasson, Rémi; Weigt, Martin

    2018-03-01

    In the course of evolution, proteins undergo important changes in their amino acid sequences, while their three-dimensional folded structure and their biological function remain remarkably conserved. Thanks to modern sequencing techniques, sequence data accumulate at unprecedented pace. This provides large sets of so-called homologous, i.e. evolutionarily related protein sequences, to which methods of inverse statistical physics can be applied. Using sequence data as the basis for the inference of Boltzmann distributions from samples of microscopic configurations or observables, it is possible to extract information about evolutionary constraints and thus protein function and structure. Here we give an overview over some biologically important questions, and how statistical-mechanics inspired modeling approaches can help to answer them. Finally, we discuss some open questions, which we expect to be addressed over the next years.

  19. Classification of Complete Proteomes of Different Organisms and Protein Sets Based on Their Protein Distributions in Terms of Some Key Attributes of Proteins

    DOE PAGES

    Guo, Hao-Bo; Ma, Yue; Tuskan, Gerald A.; ...

    2018-01-01

    The existence of complete genome sequences makes it important to develop different approaches for classification of large-scale data sets and to make extraction of biological insights easier. Here, we propose an approach for classification of complete proteomes/protein sets based on protein distributions on some basic attributes. We demonstrate the usefulness of this approach by determining protein distributions in terms of two attributes: protein lengths and protein intrinsic disorder contents (ID). The protein distributions based on L and ID are surveyed for representative proteome organisms and protein sets from the three domains of life. The two-dimensional maps (designated as fingerprints here)more » from the protein distribution densities in the LD space defined by ln( L ) and ID are then constructed. The fingerprints for different organisms and protein sets are found to be distinct with each other, and they can therefore be used for comparative studies. As a test case, phylogenetic trees have been constructed based on the protein distribution densities in the fingerprints of proteomes of organisms without performing any protein sequence comparison and alignments. The phylogenetic trees generated are biologically meaningful, demonstrating that the protein distributions in the LD space may serve as unique phylogenetic signals of the organisms at the proteome level.« less

  20. Classification of Complete Proteomes of Different Organisms and Protein Sets Based on Their Protein Distributions in Terms of Some Key Attributes of Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Hao-Bo; Ma, Yue; Tuskan, Gerald A.

    The existence of complete genome sequences makes it important to develop different approaches for classification of large-scale data sets and to make extraction of biological insights easier. Here, we propose an approach for classification of complete proteomes/protein sets based on protein distributions on some basic attributes. We demonstrate the usefulness of this approach by determining protein distributions in terms of two attributes: protein lengths and protein intrinsic disorder contents (ID). The protein distributions based on L and ID are surveyed for representative proteome organisms and protein sets from the three domains of life. The two-dimensional maps (designated as fingerprints here)more » from the protein distribution densities in the LD space defined by ln( L ) and ID are then constructed. The fingerprints for different organisms and protein sets are found to be distinct with each other, and they can therefore be used for comparative studies. As a test case, phylogenetic trees have been constructed based on the protein distribution densities in the fingerprints of proteomes of organisms without performing any protein sequence comparison and alignments. The phylogenetic trees generated are biologically meaningful, demonstrating that the protein distributions in the LD space may serve as unique phylogenetic signals of the organisms at the proteome level.« less

  1. Classification of Complete Proteomes of Different Organisms and Protein Sets Based on Their Protein Distributions in Terms of Some Key Attributes of Proteins

    PubMed Central

    Ma, Yue; Tuskan, Gerald A.

    2018-01-01

    The existence of complete genome sequences makes it important to develop different approaches for classification of large-scale data sets and to make extraction of biological insights easier. Here, we propose an approach for classification of complete proteomes/protein sets based on protein distributions on some basic attributes. We demonstrate the usefulness of this approach by determining protein distributions in terms of two attributes: protein lengths and protein intrinsic disorder contents (ID). The protein distributions based on L and ID are surveyed for representative proteome organisms and protein sets from the three domains of life. The two-dimensional maps (designated as fingerprints here) from the protein distribution densities in the LD space defined by ln(L) and ID are then constructed. The fingerprints for different organisms and protein sets are found to be distinct with each other, and they can therefore be used for comparative studies. As a test case, phylogenetic trees have been constructed based on the protein distribution densities in the fingerprints of proteomes of organisms without performing any protein sequence comparison and alignments. The phylogenetic trees generated are biologically meaningful, demonstrating that the protein distributions in the LD space may serve as unique phylogenetic signals of the organisms at the proteome level. PMID:29686995

  2. Precision autophagy directed by receptor regulators - emerging examples within the TRIM family.

    PubMed

    Kimura, Tomonori; Mandell, Michael; Deretic, Vojo

    2016-03-01

    Selective autophagy entails cooperation between target recognition and assembly of the autophagic apparatus. Target recognition is conducted by receptors that often recognize tags, such as ubiquitin and galectins, although examples of selective autophagy independent of these tags are emerging. It is less known how receptors cooperate with the upstream autophagic regulators, beyond the well-characterized association of receptors with Atg8 or its homologs, such as LC3B (encoded by MAP1LC3B), on autophagic membranes. The molecular details of the emerging role in autophagy of the family of proteins called TRIMs shed light on the coordination between cargo recognition and the assembly and activation of the principal autophagy regulators. In their autophagy roles, TRIMs act both as receptors and as platforms ('receptor regulators') for the assembly of the core autophagy regulators, such as ULK1 and Beclin 1 in their activated state. As autophagic receptors, TRIMs can directly recognize endogenous or exogenous targets, obviating a need for intermediary autophagic tags, such as ubiquitin and galectins. The receptor and regulatory features embodied within the same entity allow TRIMs to govern cargo degradation in a highly exact process termed 'precision autophagy'. © 2016. Published by The Company of Biologists Ltd.

  3. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis: LAMP-2 deficient mice develop pancreatitis.

    PubMed

    Mareninova, Olga A; Sendler, Matthias; Malla, Sudarshan Ravi; Yakubov, Iskandar; French, Samuel W; Tokhtaeva, Elmira; Vagin, Olga; Oorschot, Viola; Lüllmann-Rauch, Renate; Blanz, Judith; Dawson, David; Klumperman, Judith; Lerch, Markus M; Mayerle, Julia; Gukovsky, Ilya; Gukovskaya, Anna S

    2015-11-01

    The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated membrane proteins (LAMPs) in pancreatitis. We analyzed changes in LAMPs in experimental models and human pancreatitis, and the underlying mechanisms: LAMP de-glycosylation and degradation. LAMP cleavage by cathepsin B (CatB) was analyzed by mass spectrometry. We used mice deficient in LAMP-2 to assess its role in pancreatitis. Pancreatic levels of LAMP-1 and LAMP-2 greatly decrease across various pancreatitis models and in human disease. Pancreatitis does not trigger LAMPs' bulk de-glycosylation, but induces their degradation via CatB-mediated cleavage of LAMP molecule close to the boundary between luminal and transmembrane domains. LAMP-2 null mice spontaneously develop pancreatitis that begins with acinar cell vacuolization due to impaired autophagic flux, and progresses to severe pancreas damage characterized by trypsinogen activation, macrophage-driven inflammation, and acinar cell death. LAMP-2 deficiency causes a decrease in pancreatic digestive enzymes content, stimulates the basal and inhibits CCK-induced amylase secretion by acinar cells. The effects of LAMP-2 knockout and acute cerulein pancreatitis overlap, which corroborates the pathogenic role of LAMP decrease in experimental pancreatitis models. The results indicate a critical role for LAMPs, particularly LAMP-2, in maintaining pancreatic acinar cell homeostasis, and provide evidence that defective lysosomal function, resulting in impaired autophagy, leads to pancreatitis. Mice with LAMP-2 deficiency present a novel genetic model of human pancreatitis caused by lysosomal/autophagic dysfunction.

  4. CD-loop Extension in Zika Virus Envelope Protein Key for Stability and Pathogenesis.

    PubMed

    Gallichotte, Emily N; Dinnon, Kenneth H; Lim, Xin-Ni; Ng, Thiam-Seng; Lim, Elisa X Y; Menachery, Vineet D; Lok, Shee-Mei; Baric, Ralph S

    2017-12-05

    With severe disease manifestations including microcephaly, congenital malformation, and Guillain-Barré syndrome, Zika virus (ZIKV) remains a persistent global public health threat. Despite antigenic similarities with dengue viruses, structural studies have suggested the extended CD-loop and hydrogen-bonding interaction network within the ZIKV envelope protein contribute to stability differences between the viral families. This enhanced stability may lead to the augmented infection, disease manifestation, and persistence in body fluids seen following ZIKV infection. To examine the role of these motifs in infection, we generated a series of ZIKV recombinant viruses that disrupted the hydrogen-bonding network (350A, 351A, and 350A/351A) or the CD-loop extension (Δ346). Our results demonstrate a key role for the ZIKV extended CD-loop in cell-type-dependent replication, virion stability, and in vivo pathogenesis. Importantly, the Δ346 mutant maintains similar antigenicity to wild-type virus, opening the possibility for its use as a live-attenuated vaccine platform for ZIKV and other clinically relevant flaviviruses. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  5. Protein Kinase A Regulates Molecular Chaperone Transcription and Protein Aggregation

    PubMed Central

    Prince, Thomas; Calderwood, Stuart K.

    2011-01-01

    Heat shock factor 1 (HSF1) regulates one of the major pathways of protein quality control and is essential for deterrence of protein-folding disorders, particularly in neuronal cells. However, HSF1 activity declines with age, a change that may open the door to progression of neurodegenerative disorders such as Huntington's disease. We have investigated mechanisms of HSF1 regulation that may become compromised with age. HSF1 binds stably to the catalytic domain of protein kinase A (PKAcα) and becomes phosphorylated on at least one regulatory serine residue (S320). We show here that PKA is essential for effective transcription of HSP genes by HSF1. PKA triggers a cascade involving HSF1 binding to the histone acetylase p300 and positive translation elongation factor 1 (p-TEFb) and phosphorylation of the c-terminal domain of RNA polymerase II, a key mechanism in the downstream steps of HSF1-mediated transcription. This cascade appears to play a key role in protein quality control in neuronal cells expressing aggregation-prone proteins with long poly-glutamine (poly-Q) tracts. Such proteins formed inclusion bodies that could be resolved by HSF1 activation during heat shock. Resolution of the inclusions was inhibited by knockdown of HSF1, PKAcα, or the pTEFb component CDK9, indicating a key role for the HSF1-PKA cascade in protein quality control. PMID:22216146

  6. Icariside II-induced mitochondrion and lysosome mediated apoptosis is counterbalanced by an autophagic salvage response in hepatoblastoma.

    PubMed

    Geng, Ya-di; Zhang, Chao; Shi, Ya-Min; Xia, Yuan-Zheng; Guo, Chao; Yang, Lei; Kong, Ling-Yi

    2015-09-28

    In this study, the anti-cancer effect of Icariside II (IS), a natural plant flavonoid, against hepatoblastoma cells and the underlying mechanisms were investigated. The in vitro and in vivo studies show that IS decreased the viability of human hepatoblastoma HepG2 cells in a concentration- and time-dependent manner and inhibited tumor growth in mice transplanted with H22 liver carcinomas. IS impaired mitochondria and lysosomes as evidenced by signs of induced mitochondrial and lysosomal membrane permeabilization, resulting in caspase activation and apoptosis. SQSTM1 up-regulation and autophagic flux measurements demonstrated that IS exposure also impaired autophagosome degradation which resulted in autophagosome accumulation, which plays a pro-survival role as the genetic knockdown of LC3B further sensitized the IS-treated cells. Electron microscopy images showed that autophagosome engulfs IS-impaired mitochondria and lysosomes, thus blocking cytotoxicity induced by further leakage of the hydrolases from lysosomes and pro-apoptosis members from mitochondria. In conclusion, these data suggest that IS plays multiple roles as a promising chemotherapeutic agent that induces cell apoptosis involving both mitochondrial and lysosomal damage. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Morin hydrate augments phagocytosis mechanism and inhibits LPS induced autophagic signaling in murine macrophage.

    PubMed

    Jakhar, Rekha; Paul, Souren; Chauhan, Anil Kumar; Kang, Sun Chul

    2014-10-01

    Morin, a natural flavonoid that is the primary bioactive constituent of the family Moraceae, has been found to be associated with many therapeutic properties. In this study, we evaluated the immunomodulatory activities of increasing concentration of morin hydrate in vitro. Three different concentrations of morin hydrate (5, 10, and 15μM) were used to evaluate their effect on splenocyte proliferation, phagocytic activity of macrophages, cytokine secretion and complement inhibition. We also evaluated the role of morin hydrate on lipopolysaccharide (LPS) induced autophagy. Our study demonstrated that morin hydrate elicited a significant increase in splenocyte proliferation, phagocytic capacity and suppressed the production of cytokines and nitric oxide in activated macrophages. Humoral immunity measured by anti-complement activity showed an increase in inhibition of the complement system after the addition of morin hydrate, where morin hydrate at 15μM concentration induced a significant inhibition. Depending on our results, we can also conclude that morin hydrate protects macrophages from LPS induced autophagic cell death. Our findings suggest that morin hydrate represents a structurally diverse class of flavonoid and this structural variability can profoundly affect its cell-type specificity and its biological activities. Supplementation of immune cells with morin hydrate has an upregulating and immunoprotective effect that shows potential as a countermeasure to the immune dysfunction and suggests an interesting use in inflammation related diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Duodenal-jejunal bypass surgery up-regulates the expression of the hepatic insulin signaling proteins and the key regulatory enzymes of intestinal gluconeogenesis in diabetic Goto-Kakizaki rats.

    PubMed

    Sun, Dong; Wang, Kexin; Yan, Zhibo; Zhang, Guangyong; Liu, Shaozhuang; Liu, Fengjun; Hu, Chunxiao; Hu, Sanyuan

    2013-11-01

    Duodenal-jejunal bypass (DJB), which is not routinely applied in metabolic surgery, is an effective surgical procedure in terms of type 2 diabetes mellitus resolution. However, the underlying mechanisms are still undefined. Our aim was to investigate the diabetic improvement by DJB and to explore the changes in hepatic insulin signaling proteins and regulatory enzymes of gluconeogenesis after DJB in a non-obese diabetic rat model. Sixteen adult male Goto-Kakizaki rats were randomly divided into DJB and sham-operated groups. The body weight, food intake, hormone levels, and glucose metabolism were measured. The levels of protein expression and phosphorylation of insulin receptor-beta (IR-β) and insulin receptor substrate 2 (IRS-2) were evaluated in the liver. We also detected the expression of key regulatory enzymes of gluconeogenesis [phosphoenoylpyruvate carboxykinase-1 (PCK1), glucose-6-phosphatase-alpha (G6Pase-α)] in small intestine and liver. DJB induced significant diabetic improvement with higher postprandial glucagons-like peptide 1, peptide YY, and insulin levels, but without weight loss. The DJB group exhibited increased expression and phosphorylation of IR-β and IRS-2 in liver, up-regulated the expression of PCK1 and G6Pase-α in small intestine, and down-regulated the expression of these enzymes in liver. DJB is effective in up-regulating the expression of the key proteins in the hepatic insulin signaling pathway and the key regulatory enzymes of intestinal gluconeogenesis and down-regulating the expression of the key regulatory enzymes of hepatic gluconeogenesis without weight loss. Our study helps to reveal the potential role of hepatic insulin signaling pathway and intestinal gluconeogenesis in ameliorating insulin resistance after metabolic surgery.

  9. Autophagy as a trigger for cell death: autophagic degradation of inhibitor of apoptosis dBruce controls DNA fragmentation during late oogenesis in Drosophila.

    PubMed

    Nezis, Ioannis P; Shravage, Bhupendra V; Sagona, Antonia P; Johansen, Terje; Baehrecke, Eric H; Stenmark, Harald

    2010-11-01

    Autophagy has been reported to contribute to cell death, but the underlying mechanisms remain largely unknown and controversial. We have: been studying oogenesis in Drosophila melanogaster as a model system to understand the interplay between autophagy and cell death. Using a novel autophagy reporter we found that autophagy occurs during developmental cell death of nurse cells in late oogenesis. Genetic inhibition: of autophagy-related genes atg1, atg13 and vps34 results in late-stage egg chambers containing persisting nurse cell nuclei without fragmented DNA and attenuation of caspase-3 cleavage. We found that Drosophila inhibitor of apoptosis dBruce is degraded by autophagy and this degradation promotes DNA fragmentation and subsequent nurse cell death. These studies demonstrate that autophagic degradation of an inhibitor: of apoptosis is a novel mechanism of triggering cell death.

  10. A Constitutively Activating Mutation Alters the Dynamics and Energetics of a Key Conformational Change in a Ligand-free G Protein-coupled Receptor*

    PubMed Central

    Tsukamoto, Hisao; Farrens, David L.

    2013-01-01

    G protein-coupled receptors (GPCRs) undergo dynamic transitions between active and inactive conformations. Usually, these conversions are triggered when the receptor detects an external signal, but some so-called constitutively activating mutations, or CAMs, induce a GPCR to bind and activate G proteins in the absence of external stimulation, in ways still not fully understood. Here, we investigated how a CAM alters the structure of a GPCR and the dynamics involved as the receptor transitions between different conformations. Our approach used site-directed fluorescence labeling (SDFL) spectroscopy to compare opsin, the ligand-free form of the GPCR rhodopsin, with opsin containing the CAM M257Y, focusing specifically on key movements that occur in the sixth transmembrane helix (TM6) during GPCR activation. The site-directed fluorescence labeling data indicate opsin is constrained to an inactive conformation both in detergent micelles and lipid membranes, but when it contains the M257Y CAM, opsin is more dynamic and can interact with a G protein mimetic. Further study of these receptors using tryptophan-induced quenching (TrIQ) methods indicates that in detergent, the CAM significantly increases the population of receptors in the active state, but not in lipids. Subsequent Arrhenius analysis of the TrIQ data suggests that, both in detergent and lipids, the CAM lowers the energy barrier for TM6 movement, a key transition required for conversion between the inactive and active conformations. Together, these data suggest that the lowered energy barrier is a primary effect of the CAM on the receptor dynamics and energetics. PMID:23940032

  11. A constitutively activating mutation alters the dynamics and energetics of a key conformational change in a ligand-free G protein-coupled receptor.

    PubMed

    Tsukamoto, Hisao; Farrens, David L

    2013-09-27

    G protein-coupled receptors (GPCRs) undergo dynamic transitions between active and inactive conformations. Usually, these conversions are triggered when the receptor detects an external signal, but some so-called constitutively activating mutations, or CAMs, induce a GPCR to bind and activate G proteins in the absence of external stimulation, in ways still not fully understood. Here, we investigated how a CAM alters the structure of a GPCR and the dynamics involved as the receptor transitions between different conformations. Our approach used site-directed fluorescence labeling (SDFL) spectroscopy to compare opsin, the ligand-free form of the GPCR rhodopsin, with opsin containing the CAM M257Y, focusing specifically on key movements that occur in the sixth transmembrane helix (TM6) during GPCR activation. The site-directed fluorescence labeling data indicate opsin is constrained to an inactive conformation both in detergent micelles and lipid membranes, but when it contains the M257Y CAM, opsin is more dynamic and can interact with a G protein mimetic. Further study of these receptors using tryptophan-induced quenching (TrIQ) methods indicates that in detergent, the CAM significantly increases the population of receptors in the active state, but not in lipids. Subsequent Arrhenius analysis of the TrIQ data suggests that, both in detergent and lipids, the CAM lowers the energy barrier for TM6 movement, a key transition required for conversion between the inactive and active conformations. Together, these data suggest that the lowered energy barrier is a primary effect of the CAM on the receptor dynamics and energetics.

  12. Autophagic degradation of the androgen receptor mediated by increased phosphorylation of p62 suppresses apoptosis in hypoxia.

    PubMed

    Mitani, Takakazu; Minami, Masato; Harada, Naoki; Ashida, Hitoshi; Yamaji, Ryoichi

    2015-10-01

    Prostate cancer grows under hypoxic conditions. Hypoxia decreases androgen receptor (AR) protein levels. However, the molecular mechanism remains unclear. Here, we report that p62-mediated autophagy degrades AR protein and suppresses apoptosis in prostate cancer LNCaP cells in hypoxia. In LNCaP cells, hypoxia decreased AR at the protein level, but not at the mRNA level. Hypoxia-induced AR degradation was inhibited not only by knockdown of LC3, a key component of the autophagy machinery, but also by knockdown of p62. Depletion of p62 enhanced hypoxia-induced poly(ADP-ribose) polymerase cleavage and caspase-3 cleavage, markers of apoptosis, whereas simultaneous knockdown of p62 and AR suppressed hypoxia-induced apoptosis. Hypoxia increased the formation of a cytosolic p62-AR complex and enhanced sequestration of AR from the nucleus. Formation of this complex was promoted by the increased phosphorylation of serine 403 in the ubiquitin-associated domain of p62 during hypoxia. An antioxidant and an AMP-activated protein kinase (AMPK) inhibitor reduced hypoxia-induced p62 phosphorylation at serine 403 and suppressed hypoxia-induced complex formation between AR and p62. These results demonstrate that hypoxia enhances the complex formation between p62 and AR by promoting phosphorylation of p62 at serine 403, probably through activating AMPK, and that p62-mediated autophagy degrades AR protein for cell survival in hypoxia. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Trans-Golgi protein p230/golgin-245 is involved in phagophore formation.

    PubMed

    Sohda, Miwa; Misumi, Yoshio; Ogata, Shigenori; Sakisaka, Shotaro; Hirose, Shinichi; Ikehara, Yukio; Oda, Kimimitsu

    2015-01-02

    p230/golgin-245 is a trans-Golgi coiled-coil protein that is known to participate in regulatory transport from the trans-Golgi network (TGN) to the cell surface. We investigated the role of p230 and its interacting protein, microtubule actin crosslinking protein 1 (MACF1), in amino acid starvation-induced membrane transport. p230 or MACF1 knock-down (KD) cells failed to increase the autophagic flow rate and the number of microtubule-associated protein 1 light chain 3 (LC3)-positive puncta under starvation conditions. Loss of p230 or MACF1 impaired mAtg9 recruitment to peripheral phagophores from the TGN, which was observed in the early step of autophagosome formation. Overexpression of the p230-binding domain of MACF1 resulted in the inhibition of mAtg9 trafficking in starvation conditions as in p230-KD or MACF1-KD cells. These results indicate that p230 and MACF1 cooperatively play an important role in the formation of phagophore through starvation-induced transport of mAtg9-containing membranes from the TGN. In addition, p230 itself was detected in autophagosomes/autolysosome with p62 or LC3 during autophagosome biogenesis. Thus, p230 is an important molecule in phagophore formation, although it remains unclear whether p230 has any role in late steps of autophagy. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. A novel role for the Drosophila epsin (lqf): involvement in autophagy.

    PubMed

    Csikós, György; Lippai, Mónika; Lukácsovich, Tamás; Juhász, Gábor; Henn, László; Erdélyi, Miklós; Maróy, Péter; Sass, Miklós

    2009-07-01

    Screening P-element-induced mutant collections, 52 lines were selected as potentially defected ones in endocytosis or autophagy. After excluding those which were rescued by 20-hydroxyecdysone treatment, the exact position of the inserted P-element was determined in the remaining lines. In the case of l(3)S011027 stock, the liquid facets (lqf) gene was affected which codes an epsin-homolog protein in Drosophila. We reveal that Lqf is essential to the receptor-mediated endocytosis of larval serum proteins (LSPs) in the larval fat body cells of Drosophila. In l(3)S011027 line, lack of Lqf fails the formation of autophagosomes thus leading to the arrest of destroying of trophocytes. Transgenic larvae carrying Lqf-RNAi construct were unable to generate endocytic and autophagic vacuoles and led to a prolonged larval stage. On the other hand, Lqf protein showed an exclusive colocalization with the LysoTracker Red- or GFP-Atg8a labeled autophagosomes. By using the antiserum generated against the fifth exon of lqf, we demonstrated that prior to the onset of developmental autophagy the Lqf protein was present in the nucleus of fat body cell, but thereafter the protein was localized in the territory of endocytic and autophagic vacuoles. The fact that the inhibition of the target of rapamycin (TOR) did not restore the autophagic process and the normal development in the case of lqf mutant larvae points to that the Lqf is downstream to the TOR, the central kinase of the autophagy pathway.

  15. Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.

    PubMed

    Di Domenico, Antonella; Hofer, Annette; Tundo, Federica; Wenz, Tina

    2014-11-01

    Changes in nutrient supply require global metabolic reprogramming to optimize the utilization of the nutrients. Mitochondria as a central component of the cellular metabolism play a key role in this adaptive process. Since mitochondria harbor their own genome, which encodes essential enzymes, mitochondrial protein synthesis is a determinant of metabolic adaptation. While regulation of cytoplasmic protein synthesis in response to metabolic challenges has been studied in great detail, mechanisms which adapt mitochondrial translation in response to metabolic challenges remain elusive. Our results suggest that the mitochondrial acetylation status controlled by Sirt3 and its proposed opponent GCN5L1 is an important regulator of the metabolic adaptation of mitochondrial translation. Moreover, both proteins modulate regulators of cytoplasmic protein synthesis as well as the mitonuclear protein balance making Sirt3 and GCN5L1 key players in synchronizing mitochondrial and cytoplasmic translation. Our results thereby highlight regulation of mitochondrial translation as a novel component in the cellular nutrient sensing scheme and identify mitochondrial acetylation as a new regulatory principle for the metabolic competence of mitochondrial protein synthesis. © 2014 International Union of Biochemistry and Molecular Biology.

  16. The unique fold and lability of the [2Fe-2S] clusters of NEET proteins mediate their key functions in health and disease.

    PubMed

    Karmi, Ola; Marjault, Henri-Baptiste; Pesce, Luca; Carloni, Paolo; Onuchic, Jose' N; Jennings, Patricia A; Mittler, Ron; Nechushtai, Rachel

    2018-02-12

    NEET proteins comprise a new class of [2Fe-2S] cluster proteins. In human, three genes encode for NEET proteins: cisd1 encodes mitoNEET (mNT), cisd2 encodes the Nutrient-deprivation autophagy factor-1 (NAF-1) and cisd3 encodes MiNT (Miner2). These recently discovered proteins play key roles in many processes related to normal metabolism and disease. Indeed, NEET proteins are involved in iron, Fe-S, and reactive oxygen homeostasis in cells and play an important role in regulating apoptosis and autophagy. mNT and NAF-1 are homodimeric and reside on the outer mitochondrial membrane. NAF-1 also resides in the membranes of the ER associated mitochondrial membranes (MAM) and the ER. MiNT is a monomer with distinct asymmetry in the molecular surfaces surrounding the clusters. Unlike its paralogs mNT and NAF-1, it resides within the mitochondria. NAF-1 and mNT share similar backbone folds to the plant homodimeric NEET protein (At-NEET), while MiNT's backbone fold resembles a bacterial MiNT protein. Despite the variation of amino acid composition among these proteins, all NEET proteins retained their unique CDGSH domain harboring their unique 3Cys:1His [2Fe-2S] cluster coordination through evolution. The coordinating exposed His was shown to convey the lability to the NEET proteins' [2Fe-2S] clusters. In this minireview, we discuss the NEET fold and its structural elements. Special attention is given to the unique lability of the NEETs' [2Fe-2S] cluster and the implication of the latter to the NEET proteins' cellular and systemic function in health and disease.

  17. Targeting neuronal MAPK14/p38α activity to modulate autophagy in the Alzheimer disease brain.

    PubMed

    Alam, John; Scheper, Wiep

    2016-12-01

    Dysregulated autophagic-lysosomal degradation of proteins has been linked to the most common genetic defect in familial Alzheimer disease, and has been correlated with disease progression in both human disease and in animal models. Recently, it was demonstrated that the expression of MAPK14/p38α protein is upregulated in the brain of APP-PS1 transgenic Alzheimer mouse and further that genetic deficiency of Mapk14 in the APP-PS1 mouse stimulates macroautophagy/autophagy, which then leads to reduced amyloid pathology via increasing autophagic-lysosomal degradation of BACE1. The findings resolve at least in the context of the APP-PS1 mouse, prior conflicting in vitro observations that have implicated MAPK14 in autophagic processes, and indicate that inhibition of MAPK14 enzyme activity has potential as a therapeutic approach to mitigate a critical physiological defect within neurons of the Alzheimer disease brain. Moreover, the findings suggest that biomarkers of BACE1 activity could be utilized to evaluate the effects of MAPK14 inhibition and other autophagy-inducing therapeutic approaches in human clinical studies, thereby potentially facilitating the clinical development of such agents.

  18. Targeting neuronal MAPK14/p38α activity to modulate autophagy in the Alzheimer disease brain

    PubMed Central

    Alam, John; Scheper, Wiep

    2016-01-01

    ABSTRACT Dysregulated autophagic-lysosomal degradation of proteins has been linked to the most common genetic defect in familial Alzheimer disease, and has been correlated with disease progression in both human disease and in animal models. Recently, it was demonstrated that the expression of MAPK14/p38α protein is upregulated in the brain of APP-PS1 transgenic Alzheimer mouse and further that genetic deficiency of Mapk14 in the APP-PS1 mouse stimulates macroautophagy/autophagy, which then leads to reduced amyloid pathology via increasing autophagic-lysosomal degradation of BACE1. The findings resolve at least in the context of the APP-PS1 mouse, prior conflicting in vitro observations that have implicated MAPK14 in autophagic processes, and indicate that inhibition of MAPK14 enzyme activity has potential as a therapeutic approach to mitigate a critical physiological defect within neurons of the Alzheimer disease brain. Moreover, the findings suggest that biomarkers of BACE1 activity could be utilized to evaluate the effects of MAPK14 inhibition and other autophagy-inducing therapeutic approaches in human clinical studies, thereby potentially facilitating the clinical development of such agents. PMID:27715387

  19. Actin-based motility allows Listeria monocytogenes to avoid autophagy in the macrophage cytosol.

    PubMed

    Cheng, Mandy I; Chen, Chen; Engström, Patrik; Portnoy, Daniel A; Mitchell, Gabriel

    2018-05-03

    Listeria monocytogenes grows in the host cytosol and uses the surface protein ActA to promote actin polymerisation and mediate actin-based motility. ActA, along with two secreted bacterial phospholipases C, also mediates avoidance from autophagy, a degradative process that targets intracellular microbes. Although it is known that ActA prevents autophagic recognition of L. monocytogenes in epithelial cells by masking the bacterial surface with host factors, the relative roles of actin polymerisation and actin-based motility in autophagy avoidance are unclear in macrophages. Using pharmacological inhibition of actin polymerisation and a collection of actA mutants, we found that actin polymerisation prevented the colocalisation of L. monocytogenes with polyubiquitin, the autophagy receptor p62, and the autophagy protein LC3 during macrophage infection. In addition, the ability of L. monocytogenes to stimulate actin polymerisation promoted autophagy avoidance and growth in macrophages in the absence of phospholipases C. Time-lapse microscopy using green fluorescent protein-LC3 macrophages and a probe for filamentous actin showed that bacteria undergoing actin-based motility moved away from LC3-positive membranes. Collectively, these results suggested that although actin polymerisation protects the bacterial surface from autophagic recognition, actin-based motility allows escape of L. monocytogenes from autophagic membranes in the macrophage cytosol. © 2018 John Wiley & Sons Ltd.

  20. Reversal of intramyocellular lipid accumulation by lipophagy and a p62-mediated pathway.

    PubMed

    Lam, T; Harmancey, R; Vasquez, H; Gilbert, B; Patel, N; Hariharan, V; Lee, A; Covey, M; Taegtmeyer, H

    2016-01-01

    We have previously observed the reversal of lipid droplet deposition in skeletal muscle of morbidly obese patients following bariatric surgery. We now investigated whether activation of autophagy is the mechanism underlying this observation. For this purpose, we incubated rat L6 myocytes over a period of 6 days with long-chain fatty acids (an equimolar, 1.0 mM, mixture of oleate and palmitate in the incubation medium). At day 6, the autophagic inhibitor (bafilomycin A1, 200 nM) and the autophagic activator (rapamycin, 1 μM) were added separately or in combination for 48 h. Intracellular triglyceride (TG) accumulation was visualized and quantified colorimetrically. Protein markers of autophagic flux (LC3 and p62) and cell death (caspase-3 cleavage) were measured by immunoblotting. Inhibition of autophagy by bafilomycin increased TG accumulation and also increased lipid-mediated cell death. Conversely, activation of autophagy by rapamycin reduced both intracellular lipid accumulation and cell death. Unexpectedly, treatment with both drugs added simultaneously resulted in decreased lipid accumulation. In this treatment group, immunoblotting revealed p62 degradation (autophagic flux), immunofluorescence revealed the colocalization of p62 with lipid droplets, and co-immunoprecipitation confirmed the interaction of p62 with ADRP (adipose differentiation-related protein), a lipid droplet membrane protein. Thus the association of p62 with lipid droplet turnover suggests a novel pathway for the breakdown of lipid droplets in muscle cells. In addition, treatment with rapamycin and bafilomycin together also suggested the export of TG into the extracellular space. We conclude that lipophagy promotes the clearance of lipids from myocytes and switches to an alternative, p62-mediated, lysosomal-independent pathway in the context of chronic lipid overload (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001).

  1. Suberoylanilide hydroxamic acid sensitizes neuroblastoma to paclitaxel by inhibiting thioredoxin-related protein 14-mediated autophagy.

    PubMed

    Zhen, Zijun; Yang, Kaibin; Ye, Litong; You, Zhiyao; Chen, Rirong; Liu, Ying; He, Youjian

    2017-07-01

    Paclitaxel is not as effective for neuroblastoma as most of the front-line chemotherapeutics due to drug resistance. This study explored the regulatory mechanism of paclitaxel-associated autophagy and potential solutions to paclitaxel resistance in neuroblastoma. The formation of autophagic vesicles was detected by scanning transmission electron microscopy and flow cytometry. The autophagy-associated proteins were assessed by western blot. Autophagy was induced and the autophagy-associated proteins LC3-I, LC3-II, Beclin 1, and thioredoxin-related protein 14 (TRP14), were found to be upregulated in neuroblastoma cells that were exposed to paclitaxel. The inhibition of Beclin 1 or TRP14 by siRNA increased the sensitivity of the tumor cells to paclitaxel. In addition, Beclin 1-mediated autophagy was regulated by TRP14. Furthermore, the TRP14 inhibitor suberoylanilide hydroxamic acid (SAHA) downregulated paclitaxel-induced autophagy and enhanced the anticancer effects of paclitaxel in normal control cancer cells but not in cells with upregulated Beclin 1 and TRP14 expression. Our findings showed that paclitaxel-induced autophagy in neuroblastoma cells was regulated by TRP14 and that SAHA could sensitize neuroblastoma cells to paclitaxel by specifically inhibiting TRP14. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  2. Serine/Threonine Kinase Unc-51-like Kinase-1 (Ulk1) Phosphorylates the Co-chaperone Cell Division Cycle Protein 37 (Cdc37) and Thereby Disrupts the Stability of Cdc37 Client Proteins.

    PubMed

    Li, Ran; Yuan, Fengjie; Fu, Wan; Zhang, Luyao; Zhang, Nan; Wang, Yanan; Ma, Ke; Li, Xue; Wang, Lina; Zhu, Wei-Guo; Zhao, Ying

    2017-02-17

    The serine/threonine kinase Unc-51-like kinase-1 (Ulk1) is thought to be essential for induction of autophagy, an intracellular bulk degradation process that is activated by various stresses. Although several proteins have been suggested as Ulk1 substrates during autophagic process, it still remains largely unknown about Ulk1's physiological substrates. Here, by performing in vitro and in vivo phosphorylation assay, we report that the co-chaperone cell division cycle protein 37 (Cdc37) is a Ulk1 substrate. Ulk1-mediated phosphorylation of Ser-339 in Cdc37 compromised the recruitment of client kinases to a complex comprising Cdc37 and heat shock protein 90 (Hsp90) but only modestly affected Cdc37 binding to Hsp90. Because the recruitment of protein kinase clients to the Hsp90 complex is essential for their stability and functions, Ser-339 phosphorylation of Cdc37 disrupts its ability as a co-chaperone to coordinate Hsp90. Hsp90 inhibitors are cancer chemotherapeutic agents by inducing depletion of clients, many of which are oncogenes. Upon treatment with an Hsp90 inhibitor in cancer cells, Ulk1 promoted the degradation of Hsp90-Cdc37 client kinases, resulting in increased cellular sensitivity to Hsp90 inhibitors. Thus, our study provides evidence for an anti-proliferative role of Ulk1 in response to Hsp90 inhibition in cancer cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. GIMAP6 is required for T cell maintenance and efficient autophagy in mice.

    PubMed

    Pascall, John C; Webb, Louise M C; Eskelinen, Eeva-Liisa; Innocentin, Silvia; Attaf-Bouabdallah, Noudjoud; Butcher, Geoffrey W

    2018-01-01

    The GTPases of the immunity-associated proteins (GIMAP) GTPases are a family of proteins expressed strongly in the adaptive immune system. We have previously reported that in human cells one member of this family, GIMAP6, interacts with the ATG8 family member GABARAPL2, and is recruited to autophagosomes upon starvation, suggesting a role for GIMAP6 in the autophagic process. To study this possibility and the function of GIMAP6 in the immune system, we have established a mouse line in which the Gimap6 gene can be inactivated by Cre-mediated recombination. In mice bred to carry the CD2Cre transgene such that the Gimap6 gene was deleted within the T and B cell lineages there was a 50-70% reduction in peripheral CD4+ and CD8+ T cells. Analysis of splenocyte-derived proteins from these mice indicated increased levels of MAP1LC3B, particularly the lipidated LC3-II form, and S405-phosphorylation of SQSTM1. Electron microscopic measurements of Gimap6-/- CD4+ T cells indicated an increased mitochondrial/cytoplasmic volume ratio and increased numbers of autophagosomes. These results are consistent with autophagic disruption in the cells. However, Gimap6-/- T cells were largely normal in character, could be effectively activated in vitro and supported T cell-dependent antibody production. Treatment in vitro of CD4+ splenocytes from GIMAP6fl/flERT2Cre mice with 4-hydroxytamoxifen resulted in the disappearance of GIMAP6 within five days. In parallel, increased phosphorylation of SQSTM1 and TBK1 was observed. These results indicate a requirement for GIMAP6 in the maintenance of a normal peripheral adaptive immune system and a significant role for the protein in normal autophagic processes. Moreover, as GIMAP6 is expressed in a cell-selective manner, this indicates the potential existence of a cell-restricted mode of autophagic regulation.

  4. ATG14 controls SNARE-mediated autophagosome fusion with a lysosome.

    PubMed

    Liu, Rong; Zhi, Xiaoyong; Zhong, Qing

    2015-01-01

    Autophagosome fusion with a lysosome constitutes the last barrier for autophagic degradation. It is speculated that this fusion process is precisely and tightly regulated. Recent genetic evidence suggests that a set of SNARE proteins, including STX17, SNAP29, and VAMP8, are essential for the fusion between autophagosomes and lysosomes. However, it remains unclear whether these SNAREs are fusion competent and how their fusogenic activity is specifically regulated during autophagy. Using a combination of biochemical, cell biology, and genetic approaches, we demonstrated that fusogenic activity of the autophagic SNARE complex is temporally and spatially controlled by ATG14/Barkor/Atg14L, an essential autophagy-specific regulator of the class III phosphatidylinositol 3-kinase complex (PtdIns3K). ATG14 directly binds to the STX17-SNAP29 binary complex on autophagosomes and promotes STX17-SNAP29-VAMP8-mediated autophagosome fusion with lysosomes. ATG14 homo-oligomerization is required for SNARE binding and fusion promotion, but is dispensable for PtdIns3K stimulation and autophagosome biogenesis. Consequently, ATG14 homo-oligomerization is required for autophagosome fusion with a lysosome, but is dispensable for autophagosome biogenesis. These data support a key role of ATG14 in controlling autophagosome fusion with a lysosome.

  5. Subcellular localization of acyl-CoA binding protein in Aspergillus oryzae is regulated by autophagy machinery.

    PubMed

    Kawaguchi, Kouhei; Kikuma, Takashi; Higuchi, Yujiro; Takegawa, Kaoru; Kitamoto, Katsuhiko

    2016-11-04

    In eukaryotic cells, acyl-CoA binding protein (ACBP) is important for cellular activities, such as in lipid metabolism. In the industrially important fungus Aspergillus oryzae, the ACBP, known as AoACBP, has been biochemically characterized, but its physiological function is not known. In the present study, although we could not find any phenotype of AoACBP disruptants in the normal growth conditions, we examined the subcellular localization of AoACBP to understand its physiological function. Using an enhanced green fluorescent protein (EGFP)-tagged AoACBP construct we showed that AoACBP localized to punctate structures in the cytoplasm, some of which moved inside the cells in a microtubule-dependent manner. Further microscopic analyses showed that AoACBP-EGFP co-localized with the autophagy marker protein AoAtg8 tagged with red fluorescent protein (mDsRed). Expression of AoACBP-EGFP in disruptants of autophagy-related genes revealed aggregation of AoACBP-EGFP fluorescence in the cytoplasm of Aoatg1, Aoatg4 and Aoatg8 disruptant cells. However, in cells harboring disruption of Aoatg15, which encodes a lipase for autophagic body, puncta of AoACBP-EGFP fluorescence accumulated in vacuoles, indicating that AoACBP is transported to vacuoles via the autophagy machinery. Collectively, these results suggest the existence of a regulatory mechanism between AoACBP localization and autophagy. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Autophagy in Natural History and After ERT in Glycogenosis Type II.

    PubMed

    Angelini, Corrado; Nascimbeni, Anna C; Fanin, Marina

    2015-01-01

    We studied the role of autophagy in a series of 10 infantile-, juvenile-, and adult-onset GSDII patients and investigated autophagy blockade in successive biopsies of adult cases during disease natural history. We also correlated the autophagosome accumulation and efficiency of enzyme replacement therapy (ERT) in four treated cases (two infantile and two juvenile-adult onsets).The autophagic flux was monitored by measuring the amount of p62-positive protein aggregates and compared, together with fibre vacuolisation, to fibre atrophy.A blocked autophagic flux resulted in p62 accumulation, increased vacuolisation, and progressive atrophy of muscle fibres in biopsies collected from patients during natural history. On the contrary, in the GSDII cases early treated with ERT, the autophagic flux improved and muscle fibre atrophy, fibre vacuolisation, and acid phosphatase activity decreased.The functionality of the autophagy-lysosome system is essential in GSDII muscle, which is characterised by the presence of swollen glycogen-filled lysosomes and autophagic build-up. Defining the role of autophagy and its relationship with muscle loss is critical for understanding the disease pathogenesis, for developing new therapies, and for improving ERT efficacy in GSDII.

  7. Inhibition of Protein Aggregation: Supramolecular Assemblies of Arginine Hold the Key

    PubMed Central

    Das, Utpal; Hariprasad, Gururao; Ethayathulla, Abdul S.; Manral, Pallavi; Das, Taposh K.; Pasha, Santosh; Mann, Anita; Ganguli, Munia; Verma, Amit K.; Bhat, Rajiv; Chandrayan, Sanjeev Kumar; Ahmed, Shubbir; Sharma, Sujata; Kaur, Punit; Singh, Tej P.; Srinivasan, Alagiri

    2007-01-01

    Background Aggregation of unfolded proteins occurs mainly through the exposed hydrophobic surfaces. Any mechanism of inhibition of this aggregation should explain the prevention of these hydrophobic interactions. Though arginine is prevalently used as an aggregation suppressor, its mechanism of action is not clearly understood. We propose a mechanism based on the hydrophobic interactions of arginine. Methodology We have analyzed arginine solution for its hydrotropic effect by pyrene solubility and the presence of hydrophobic environment by 1-anilino-8-naphthalene sulfonic acid fluorescence. Mass spectroscopic analyses show that arginine forms molecular clusters in the gas phase and the cluster composition is dependent on the solution conditions. Light scattering studies indicate that arginine exists as clusters in solution. In the presence of arginine, the reverse phase chromatographic elution profile of Alzheimer's amyloid beta 1-42 (Aβ1-42) peptide is modified. Changes in the hydrodynamic volume of Aβ1-42 in the presence of arginine measured by size exclusion chromatography show that arginine binds to Aβ1-42. Arginine increases the solubility of Aβ1-42 peptide in aqueous medium. It decreases the aggregation of Aβ1-42 as observed by atomic force microscopy. Conclusions Based on our experimental results we propose that molecular clusters of arginine in aqueous solutions display a hydrophobic surface by the alignment of its three methylene groups. The hydrophobic surfaces present on the proteins interact with the hydrophobic surface presented by the arginine clusters. The masking of hydrophobic surface inhibits protein-protein aggregation. This mechanism is also responsible for the hydrotropic effect of arginine on various compounds. It is also explained why other amino acids fail to inhibit the protein aggregation. PMID:18000547

  8. Intensified autophagy compromises the efficacy of radiotherapy against prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koukourakis, Michael I., E-mail: targ@her.forthnet.gr; Kalamida, Dimitra; Mitrakas, Achilleas

    2015-05-29

    Introduction: Radiotherapy is an equivalent alternative or complement to radical prostatectomy, with high therapeutic efficacy. High risk patients, however, experience high relapse rates, so that research on radio-sensitization is the most evident route to improve curability of this common disease. Materials and methods: In the current study we investigated the autophagic activity in a series of patients with localized prostate tumors treated with radical radiotherapy, using the LC3A and the LAMP2a proteins as markers of autophagosome and lysosome cellular content, respectively. The role of autophagy on prostate cancer cell line resistance to radiation was also examined. Results: Using confocal microscopymore » on tissue biopsies, we showed that prostate cancer cells have, overall, high levels of LC3A and low levels of LAMP2a compared to normal prostate glands. Tumors with a ‘highLC3A/lowLAMP2a’ phenotype, suggestive of intensified lysosomal consumption, had a significantly poorer biochemical relapse free survival. The PC3 radioresistant cell line sustained remarkably its autophagic flux ability after radiation, while the DU145 radiosensitive one experiences a prolonged blockage of the autophagic process. This was assessed with aggresome accumulation detection and LC3A/LAMP2a double immunofluorescence, as well as with sequestrosome/p62 protein detection. By silencing the LC3A or LAMP2a expression, both cell lines became more sensitive to escalated doses of radiation. Conclusions: High base line autophagy activity and cell ability to sustain functional autophagy define resistance of prostate cancer cells to radiotherapy. This can be reversed by blocking up-regulated components of the autophagy pathway, which may prove of importance in the field of clinical radiotherapy. - Highlights: • High LC3A and low LAMP2a levels is a frequent expression pattern of prostate carcinoma. • This pattern of intensified autophagic flux relates with high relapse rates after

  9. Induction of Autophagic Cell Death in Apoptosis-resistant Pancreatic Cancer Cells using Benzo[α]phenoxazines Derivatives, 10-methyl-benzo[α]phenoxazine-5-one and benzo[α]phenoxazine-5-one.

    PubMed

    Pal, Sanjima; Salunke-Gawalib, Sunita; Konkimallaa, V Badireenath

    2017-01-01

    Intrinsic resistance to apoptotic cell death due to co-occurrence of mutated KRAS and p53 is frequently reported in pancreatic cancer that renders them aggressive, highly proliferative and metastatic. In addition, these cancer types are less sensitive to apoptosis inducing drugs where promotion of autophagic cell death could be a viable option for treatment under such circumstances. In this study we examined the potential of three intrinsically fluorescent benzo[α]phenoxazines or BPZs (R=Cl, CH3, H) to induce cytotoxic autophagy in chemo and apoptosis-resistant, KRAS and p53 mutated pancreatic cancer model cell line, MIAPaCa-2. Cells were adapted at in vitro metabolically stressed condition (5% serum) to initiate intrinsic cell survival strategies within. Cell proliferation, colonogenicity, cellular uptake, retention, localization, cellular granularity and presence of both apoptosis and autophagy biomarkers were assessed in BPZ treated/untreated (solvent) cells to validate induction of concentration dependent cytotoxic autophagy and other consequences. For the first time, we report the ability of this class of compounds to accumulate within cells increasing its granularity, inducing death via autophagy. From different kinetics study, it was observed that the autophagic-cell death was dependent on the ligand type, duration of incubation or working concentrations. Among the three BPZ tested, both 3B (benzo[α]phenoxazine-5-one) and 2B (10-methyl-benzo[α] phenoxazine-5-one) induced pro-death autophagy in MIAPaCa-2 cells at an IC50 of 5 μM and 20 μM respectively. Such compounds would be of great interest to explore as novel cytotoxic autophagy inducing agents in apoptosisresistant cancer types.

  10. Key feature of the catalytic cycle of TNF-α converting enzyme involves communication between distal protein sites and the enzyme catalytic core

    PubMed Central

    Solomon, Ariel; Akabayov, Barak; Frenkel, Anatoly; Milla, Marcos E.; Sagi, Irit

    2007-01-01

    Despite their key roles in many normal and pathological processes, the molecular details by which zinc-dependent proteases hydrolyze their physiological substrates remain elusive. Advanced theoretical analyses have suggested reaction models for which there is limited and controversial experimental evidence. Here we report the structure, chemistry and lifetime of transient metal–protein reaction intermediates evolving during the substrate turnover reaction of a metalloproteinase, the tumor necrosis factor-α converting enzyme (TACE). TACE controls multiple signal transduction pathways through the proteolytic release of the extracellular domain of a host of membrane-bound factors and receptors. Using stopped-flow x-ray spectroscopy methods together with transient kinetic analyses, we demonstrate that TACE's catalytic zinc ion undergoes dynamic charge transitions before substrate binding to the metal ion. This indicates previously undescribed communication pathways taking place between distal protein sites and the enzyme catalytic core. The observed charge transitions are synchronized with distinct phases in the reaction kinetics and changes in metal coordination chemistry mediated by the binding of the peptide substrate to the catalytic metal ion and product release. Here we report key local charge transitions critical for proteolysis as well as long sought evidence for the proposed reaction model of peptide hydrolysis. This study provides a general approach for gaining critical insights into the molecular basis of substrate recognition and turnover by zinc metalloproteinases that may be used for drug design. PMID:17360351

  11. Cocaine-Mediated Autophagy in Astrocytes Involves Sigma 1 Receptor, PI3K, mTOR, Atg5/7, Beclin-1 and Induces Type II Programed Cell Death.

    PubMed

    Cao, Lu; Walker, Mary P; Vaidya, Naveen K; Fu, Mingui; Kumar, Santosh; Kumar, Anil

    2016-09-01

    Cocaine, a commonly used drug of abuse, has been shown to cause neuropathological dysfunction and damage in the human brain. However, the role of autophagy in this process is not defined. Autophagy, generally protective in nature, can also be destructive leading to autophagic cell death. This study was designed to investigate whether cocaine induces autophagy in the cells of CNS origin. We employed astrocyte, the most abundant cell in the CNS, to define the effects of cocaine on autophagy. We measured levels of the autophagic marker protein LC3II in SVGA astrocytes after exposure with cocaine. The results showed that cocaine caused an increase in LC3II level in a dose- and time-dependent manner, with the peak observed at 1 mM cocaine after 6-h exposure. This result was also confirmed by detecting LC3II in SVGA astrocytes using confocal microscopy and transmission electron microscopy. Next, we sought to explore the mechanism by which cocaine induces the autophagic response. We found that cocaine-induced autophagy was mediated by sigma 1 receptor, and autophagy signaling proteins p-mTOR, Atg5, Atg7, and p-Bcl-2/Beclin-1 were also involved, and this was confirmed by using selective inhibitors and small interfering RNAs (siRNAs). In addition, we found that chronic treatment with cocaine resulted in cell death, which is caspase-3 independent and can be ameliorated by autophagy inhibitor. Therefore, this study demonstrated that cocaine induces autophagy in astrocytes and is associated with autophagic cell death.

  12. Cocaine-mediated autophagy in astrocytes involves sigma 1 receptor, PI3K, m-TOR, Atg5/7, Beclin-1 and induces Type II programed cell death

    PubMed Central

    Cao, Lu; Walker, Mary P; Vaidya, Naveen K; Fu, Mingui; Kumar, Santosh; Kumar, Anil

    2015-01-01

    Cocaine, a commonly used drug of abuse, has been shown to cause neuropathological dysfunction and damage in the human brain. However, the role of autophagy in this process is not defined. Autophagy generally protective in nature, can also be destructive leading to autophagic cell death. This study was designed to investigate whether cocaine induces autophagy in the cells of CNS origin. We employed astrocyte, the most abundant cell in the CNS, to define the effects of cocaine on autophagy. We measured levels of the autophagic marker protein LC3II in SVGA astrocytes after exposure with cocaine. The results showed that cocaine caused an increase in LC3II level in a dose- and time-dependent manner, with the peak observed at 1 mM cocaine after 6 hours exposure. This result was also confirmed by detecting LC3II in SVGA astrocytes using confocal microscopy and transmission electron microscopy. Next, we sought to explore the mechanism by which cocaine induces the autophagic response. We found that cocaine-induced autophagy was mediated by sigma 1 receptor, and autophagy signaling proteins p-mTOR, Atg5, Atg7 and p-Bcl-2/Beclin-1 were also involved and this was confirmed by using selective inhibitors and siRNAs. In addition, we found that chronic treatment with cocaine resulted in cell death, which is caspase-3 independent, and can be ameliorated by autophagy inhibitor. Therefore, this study demonstrated that cocaine induces autophagy in astrocytes and is associated with autophagic cell death. PMID:26243186

  13. Paenibacillus larvae Chitin-Degrading Protein PlCBP49 Is a Key Virulence Factor in American Foulbrood of Honey Bees

    PubMed Central

    Garcia-Gonzalez, Eva; Poppinga, Lena; Fünfhaus, Anne; Hertlein, Gillian; Hedtke, Kati; Jakubowska, Agata; Genersch, Elke

    2014-01-01

    Paenibacillus larvae, the etiological agent of the globally occurring epizootic American Foulbrood (AFB) of honey bees, causes intestinal infections in honey bee larvae which develop into systemic infections inevitably leading to larval death. Massive brood mortality might eventually lead to collapse of the entire colony. Molecular mechanisms of host-microbe interactions in this system and of differences in virulence between P. larvae genotypes are poorly understood. Recently, it was demonstrated that the degradation of the peritrophic matrix lining the midgut epithelium is a key step in pathogenesis of P. larvae infections. Here, we present the isolation and identification of PlCBP49, a modular, chitin-degrading protein of P. larvae and demonstrate that this enzyme is crucial for the degradation of the larval peritrophic matrix during infection. PlCBP49 contains a module belonging to the auxiliary activity 10 (AA10, formerly CBM33) family of lytic polysaccharide monooxygenases (LPMOs) which are able to degrade recalcitrant polysaccharides. Using chitin-affinity purified PlCBP49, we provide evidence that PlCBP49 degrades chitin via a metal ion-dependent, oxidative mechanism, as already described for members of the AA10 family. Using P. larvae mutants lacking PlCBP49 expression, we analyzed in vivo biological functions of PlCBP49. In the absence of PlCBP49 expression, peritrophic matrix degradation was markedly reduced and P. larvae virulence was nearly abolished. This indicated that PlCBP49 is a key virulence factor for the species P. larvae. The identification of the functional role of PlCBP49 in AFB pathogenesis broadens our understanding of this important family of chitin-binding and -degrading proteins, especially in those bacteria that can also act as entomopathogens. PMID:25080221

  14. SNF4Agamma, the Drosophila AMPK gamma subunit is required for regulation of developmental and stress-induced autophagy.

    PubMed

    Lippai, Mónika; Csikós, György; Maróy, Péter; Lukácsovich, Tamás; Juhász, Gábor; Sass, Miklós

    2008-05-01

    In holometabolous insects including Drosophila melanogaster a wave of autophagy triggered by 20-hydroxyecdysone is observed in the larval tissues during the third larval stage of metamorphosis. We used this model system to study the genetic regulation of autophagy. We performed a genetic screen to select P-element insertions that affect autophagy in the larval fat body. Light and electron microscopy of one of the isolated mutants (l(3)S005042) revealed the absence of autophagic vesicles in their fat body cells during the third larval stage. We show that formation of autophagic vesicles cannot be induced by 20-hydroxyecdysone in the tissues of mutant flies and represent evidence demonstrating that the failure to form autophagic vesicles is due to the insertion of a P-element into the gene coding SNF4Agamma, the Drosophila homologue of the AMPK (AMP-activated protein kinase) gamma subunit. The ability to form autophagic vesicles (wild-type phenotype) can be restored by remobilization of the P-element in the mutant. Silencing of SNF4Agamma by RNAi suppresses autophagic vesicle formation in wild-type flies. We raised an antibody against SNF4Agamma and showed that this gene product is constitutively present in the wild-type larval tissues during postembryonal development. SNF4Agamma is nearly absent from the cells of homozygous mutants. SNF4Agamma translocates into the nuclei of fat body cells at the onset of the wandering stage concurrently with the beginning of the autophagic process. Our results demonstrate that SNF4Agamma has an essential role in the regulation of autophagy in Drosophila larval fat body cells.

  15. Protein degradation in a LAMP-2-deficient B-lymphoblastoid cell line from a patient with Danon disease.

    PubMed

    Sánchez-Lanzas, Raul; Alvarez-Castelao, Beatriz; Bermejo, Teresa; Ayuso, Teresa; Tuñón, Teresa; Castaño, José G

    2016-08-01

    Danon disease, a condition characterized by cardiomyopathy, myopathy, and intellectual disability, is caused by mutations in the LAMP-2 gene. Lamp-2A protein, generated by alternative splicing from the Lamp-2 pre-mRNA, is reported to be the lysosomal membrane receptor essential for the chaperone-mediated autophagic pathway (CMA) aimed to selective protein targeting and translocation into the lysosomal lumen for degradation. To study the relevance of Lamp-2 in protein degradation, a lymphoblastoid cell line was obtained by EBV transformation of B-cells from a Danon patient. The derived cell line showed no significant expression of Lamp-2 protein. The steady-state mRNA and protein levels of alpha-synuclein, IΚBα, Rcan1, and glyceraldehyde-3-phosphate dehydrogenase, four proteins reported to be selective substrates of the CMA pathway, were similar in control and Lamp-2-deficient cells. Inhibition of protein synthesis showed that the half-life of alpha-synuclein, IΚBα, and Rcan1 was similar in control and Lamp-2-deficient cells, and its degradation prevented by proteasome inhibitors. Both in control and Lamp-2-deficient cells, induction of CMA and macroautophagy by serum and aminoacid starvation of cells for 8h produced a similar decrease in IΚBα and Rcan1 protein levels and was prevented by the addition of lysosome and autophagy inhibitors. In conclusion, the results presented here showed that Lamp-2 deficiency in human lymphoblastoid cells did not modify the steady-state levels or the degradation of several protein substrates reported as selective substrates of the CMA pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Functional drug screening reveals anticonvulsants as enhancers of mTOR-independent autophagic killing of Mycobacterium tuberculosis through inositol depletion

    PubMed Central

    Schiebler, Mark; Brown, Karen; Hegyi, Krisztina; Newton, Sandra M; Renna, Maurizio; Hepburn, Lucy; Klapholz, Catherine; Coulter, Sarah; Obregón-Henao, Andres; Henao Tamayo, Marcela; Basaraba, Randall; Kampmann, Beate; Henry, Katherine M; Burgon, Joseph; Renshaw, Stephen A; Fleming, Angeleen; Kay, Robert R; Anderson, Karen E; Hawkins, Phillip T; Ordway, Diane J; Rubinsztein, David C; Floto, Rodrigo Andres

    2015-01-01

    Mycobacterium tuberculosis (MTB) remains a major challenge to global health made worse by the spread of multidrug resistance. We therefore examined whether stimulating intracellular killing of mycobacteria through pharmacological enhancement of macroautophagy might provide a novel therapeutic strategy. Despite the resistance of MTB to killing by basal autophagy, cell-based screening of FDA-approved drugs revealed two anticonvulsants, carbamazepine and valproic acid, that were able to stimulate autophagic killing of intracellular M. tuberculosis within primary human macrophages at concentrations achievable in humans. Using a zebrafish model, we show that carbamazepine can stimulate autophagy in vivo and enhance clearance of M. marinum, while in mice infected with a highly virulent multidrug-resistant MTB strain, carbamazepine treatment reduced bacterial burden, improved lung pathology and stimulated adaptive immunity. We show that carbamazepine induces antimicrobial autophagy through a novel, evolutionarily conserved, mTOR-independent pathway controlled by cellular depletion of myo-inositol. While strain-specific differences in susceptibility to in vivo carbamazepine treatment may exist, autophagy enhancement by repurposed drugs provides an easily implementable potential therapy for the treatment of multidrug-resistant mycobacterial infection. PMID:25535254

  17. Functional drug screening reveals anticonvulsants as enhancers of mTOR-independent autophagic killing of Mycobacterium tuberculosis through inositol depletion.

    PubMed

    Schiebler, Mark; Brown, Karen; Hegyi, Krisztina; Newton, Sandra M; Renna, Maurizio; Hepburn, Lucy; Klapholz, Catherine; Coulter, Sarah; Obregón-Henao, Andres; Henao Tamayo, Marcela; Basaraba, Randall; Kampmann, Beate; Henry, Katherine M; Burgon, Joseph; Renshaw, Stephen A; Fleming, Angeleen; Kay, Robert R; Anderson, Karen E; Hawkins, Phillip T; Ordway, Diane J; Rubinsztein, David C; Floto, Rodrigo Andres

    2015-02-01

    Mycobacterium tuberculosis (MTB) remains a major challenge to global health made worse by the spread of multidrug resistance. We therefore examined whether stimulating intracellular killing of mycobacteria through pharmacological enhancement of macroautophagy might provide a novel therapeutic strategy. Despite the resistance of MTB to killing by basal autophagy, cell-based screening of FDA-approved drugs revealed two anticonvulsants, carbamazepine and valproic acid, that were able to stimulate autophagic killing of intracellular M. tuberculosis within primary human macrophages at concentrations achievable in humans. Using a zebrafish model, we show that carbamazepine can stimulate autophagy in vivo and enhance clearance of M. marinum, while in mice infected with a highly virulent multidrug-resistant MTB strain, carbamazepine treatment reduced bacterial burden, improved lung pathology and stimulated adaptive immunity. We show that carbamazepine induces antimicrobial autophagy through a novel, evolutionarily conserved, mTOR-independent pathway controlled by cellular depletion of myo-inositol. While strain-specific differences in susceptibility to in vivo carbamazepine treatment may exist, autophagy enhancement by repurposed drugs provides an easily implementable potential therapy for the treatment of multidrug-resistant mycobacterial infection. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  18. Expression of Ambra1 in mouse brain during physiological and Alzheimer type aging.

    PubMed

    Sepe, Sara; Nardacci, Roberta; Fanelli, Francesca; Rosso, Pamela; Bernardi, Cinzia; Cecconi, Francesco; Mastroberardino, Pier G; Piacentini, Mauro; Moreno, Sandra

    2014-01-01

    Autophagy is a major protein degradation pathway, essential for stress-induced and constitutive protein turnover. In nervous tissue, autophagy is constitutively active and crucial to neuronal survival. The efficiency of the autophagic pathway reportedly undergoes age-related decline, and autophagy defects are observed in neurodegenerative diseases. Since Ambra1 plays a fundamental role in regulating the autophagic process in developing nervous tissue, we investigated the expression of this protein in mature mouse brain and during physiological and Alzheimer type aging. The present study accomplished the first complete map of Ambra1 protein distribution in the various brain areas, and highlights differential expression in neuronal/glial cell populations. Differences in Ambra1 content are possibly related to specific neuronal features and properties, particularly concerning susceptibility to neurodegeneration. Furthermore, the analysis of Ambra1 expression in physiological and pathological brain aging supports important, though conflicting, functions of autophagy in neurodegenerative processes. Thus, novel therapeutic approaches, based on autophagy modulation, should also take into account the age-dependent roles of this mechanism in establishing, promoting, or counteracting neurodegeneration. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Sequence/structural analysis of xylem proteome emphasizes pathogenesis-related proteins, chitinases and β-1, 3-glucanases as key players in grapevine defense against Xylella fastidiosa.

    PubMed

    Chakraborty, Sandeep; Nascimento, Rafael; Zaini, Paulo A; Gouran, Hossein; Rao, Basuthkar J; Goulart, Luiz R; Dandekar, Abhaya M

    2016-01-01

    Background. Xylella fastidiosa, the causative agent of various plant diseases including Pierce's disease in the US, and Citrus Variegated Chlorosis in Brazil, remains a continual source of concern and economic losses, especially since almost all commercial varieties are sensitive to this Gammaproteobacteria. Differential expression of proteins in infected tissue is an established methodology to identify key elements involved in plant defense pathways. Methods. In the current work, we developed a methodology named CHURNER that emphasizes relevant protein functions from proteomic data, based on identification of proteins with similar structures that do not necessarily have sequence homology. Such clustering emphasizes protein functions which have multiple copies that are up/down-regulated, and highlights similar proteins which are differentially regulated. As a working example we present proteomic data enumerating differentially expressed proteins in xylem sap from grapevines that were infected with X. fastidiosa. Results. Analysis of this data by CHURNER highlighted pathogenesis related PR-1 proteins, reinforcing this as the foremost protein function in xylem sap involved in the grapevine defense response to X. fastidiosa. β-1, 3-glucanase, which has both anti-microbial and anti-fungal activities, is also up-regulated. Simultaneously, chitinases are found to be both up and down-regulated by CHURNER, and thus the net gain of this protein function loses its significance in the defense response. Discussion. We demonstrate how structural data can be incorporated in the pipeline of proteomic data analysis prior to making inferences on the importance of individual proteins to plant defense mechanisms. We expect CHURNER to be applicable to any proteomic data set.

  20. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress

    PubMed Central

    Antonucci, Laura; Fagman, Johan B.; Kim, Ju Youn; Todoric, Jelena; Gukovsky, Ilya; Mackey, Mason; Ellisman, Mark H.; Karin, Michael

    2015-01-01

    Pancreatic acinar cells possess very high protein synthetic rates as they need to produce and secrete large amounts of digestive enzymes. Acinar cell damage and dysfunction cause malnutrition and pancreatitis, and inflammation of the exocrine pancreas that promotes development of pancreatic ductal adenocarcinoma (PDAC), a deadly pancreatic neoplasm. The cellular and molecular mechanisms that maintain acinar cell function and whose dysregulation can lead to tissue damage and chronic pancreatitis are poorly understood. It was suggested that autophagy, the principal cellular degradative pathway, is impaired in pancreatitis, but it is unknown whether impaired autophagy is a cause or a consequence of pancreatitis. To address this question, we generated Atg7Δpan mice that lack the essential autophagy-related protein 7 (ATG7) in pancreatic epithelial cells. Atg7Δpan mice exhibit severe acinar cell degeneration, leading to pancreatic inflammation and extensive fibrosis. Whereas ATG7 loss leads to the expected decrease in autophagic flux, it also results in endoplasmic reticulum (ER) stress, accumulation of dysfunctional mitochondria, oxidative stress, activation of AMPK, and a marked decrease in protein synthetic capacity that is accompanied by loss of rough ER. Atg7Δpan mice also exhibit spontaneous activation of regenerative mechanisms that initiate acinar-to-ductal metaplasia (ADM), a process that replaces damaged acinar cells with duct-like structures. PMID:26512112

  1. Dihydroartemisinin inhibits catabolism in rat chondrocytes by activating autophagy via inhibition of the NF-κB pathway

    PubMed Central

    Jiang, Li-Bo; Meng, De-Hua; Lee, Soo-Min; Liu, Shu-Hao; Xu, Qin-Tong; Wang, Yang; Zhang, Jian

    2016-01-01

    Osteoarthritis is a disease with inflammatory and catabolic imbalance in cartilage. Dihydroartemisinin (DHA), a natural and safe anti-malarial agent, has been reported to inhibit inflammation, but its effects on chondrocytes have yet to be elucidated. We investigated the effects of DHA on catabolism in chondrocytes. Viability of SD rats chondrocytes was analyzed. Autophagy levels were determined via expression of autophagic markers LC3 and ATG5, GFP-LC3 analysis, acridine orange staining, and electron microscopy. ATG5 siRNA induced autophagic inhibition. Catabolic gene and chemokine expression was evaluated using qPCR. The NF-κB inhibitor SM7368 and p65 over-expression were used to analyze the role of NF-κB pathway in autophagic activation. A concentration of 1 μM DHA without cytotoxicity increased LC3-II and ATG5 levels as well as autophagosomal numbers in chondrocytes. DHA inhibited TNF-α-induced expression of MMP-3 and -9, ADAMTS5, CCL-2 and -5, and CXCL1, which was reversed by autophagic inhibition. TNF-α-stimulated nuclear translocation and degradation of the p65 and IκBα proteins, respectively, were attenuated in DHA-treated chondrocytes. NF-κB inhibition activated autophagy in TNF-α-treated chondrocytes, but p65 over-expression reduced the autophagic response to DHA. These results indicate that DHA might suppress the levels of catabolic and inflammatory factors in chondrocytes by promoting autophagy via NF-κB pathway inhibition. PMID:27941926

  2. Rational assignment of key motifs for function guides in silico enzyme identification.

    PubMed

    Höhne, Matthias; Schätzle, Sebastian; Jochens, Helge; Robins, Karen; Bornscheuer, Uwe T

    2010-11-01

    Biocatalysis has emerged as a powerful alternative to traditional chemistry, especially for asymmetric synthesis. One key requirement during process development is the discovery of a biocatalyst with an appropriate enantiopreference and enantioselectivity, which can be achieved, for instance, by protein engineering or screening of metagenome libraries. We have developed an in silico strategy for a sequence-based prediction of substrate specificity and enantiopreference. First, we used rational protein design to predict key amino acid substitutions that indicate the desired activity. Then, we searched protein databases for proteins already carrying these mutations instead of constructing the corresponding mutants in the laboratory. This methodology exploits the fact that naturally evolved proteins have undergone selection over millions of years, which has resulted in highly optimized catalysts. Using this in silico approach, we have discovered 17 (R)-selective amine transaminases, which catalyzed the synthesis of several (R)-amines with excellent optical purity up to >99% enantiomeric excess.

  3. The evolutionarily conserved interaction between LC3 and p62 selectively mediates autophagy-dependent degradation of mutant huntingtin.

    PubMed

    Tung, Ying-Tsen; Hsu, Wen-Ming; Lee, Hsinyu; Huang, Wei-Pang; Liao, Yung-Feng

    2010-07-01

    Mammalian p62/sequestosome-1 protein binds to both LC3, the mammalian homologue of yeast Atg8, and polyubiquitinated cargo proteins destined to undergo autophagy-mediated degradation. We previously identified a cargo receptor-binding domain in Atg8 that is essential for its interaction with the cargo receptor Atg19 in selective autophagic processes in yeast. We, thus, sought to determine whether this interaction is evolutionally conserved from yeast to mammals. Using an amino acid replacement approach, we demonstrate that cells expressing mutant LC3 (LC3-K30D, LC3-K51A, or LC3-L53A) all exhibit defective lipidation of LC3, a disrupted LC3-p62 interaction, and impaired autophagic degradation of p62, suggesting that the p62-binding site of LC3 is localized within an evolutionarily conserved domain. Importantly, whereas cells expressing these LC3 mutants exhibited similar overall autophagic activity comparable to that of cells expressing wild-type LC3, autophagy-mediated clearance of the aggregation-prone mutant Huntingtin was defective in the mutant-expressing cells. Together, these results suggest that p62 directly binds to the evolutionarily conserved cargo receptor-binding domain of Atg8/LC3 and selectively mediates the clearance of mutant Huntingtin.

  4. BAC-mediated transgenic expression of fluorescent autophagic protein Beclin 1 reveals a role for Beclin 1 in lymphocyte development.

    PubMed

    Arsov, I; Li, X; Matthews, G; Coradin, J; Hartmann, B; Simon, A K; Sealfon, S C; Yue, Z

    2008-09-01

    Beclin 1/Atg6 is an essential component of the evolutionary conserved PtdIns(3)-kinase (Vps34) protein complex that regulates macroautophagy (autophagy) in eukaryotic cells and also interacts with antiapoptotic Bcl-2 family members, Bcl-2, and Bcl-x(L). To elucidate the physiological function of Beclin 1, we generated transgenic mice producing a green fluorescent Beclin 1 protein (Beclin 1-GFP) under Beclin 1 endogenous regulation. The beclin 1-GFP transgene is functional because it completely rescues early embryonic lethality in beclin 1-deficient mice. The transgenic mice appear normal, with undetected change in basal autophagy levels in different tissues, despite the additional expression of functional Beclin 1-GFP. Staining of Beclin 1-GFP shows mostly diffuse cytoplasmic distribution in various tissues. Detailed analysis of the transgene expression by flow cytometry reveals a Bcl-2-like biphasic expression pattern in developing T and B cells, as well as differential regulation of expression in mature versus immature thymocytes following in vitro stimulation. Moreover, thymocytes expressing high Beclin 1-GFP levels appear increasingly sensitive to glucocorticoid-induced apoptosis in vitro. Our results, therefore, support a role for Beclin 1 in lymphocyte development involving cross talk between autophagy and apoptosis.

  5. Development of Cell-Permeable, Non-Helical Constrained Peptides to Target a Key Protein-Protein Interaction in Ovarian Cancer.

    PubMed

    Wiedmann, Mareike M; Tan, Yaw Sing; Wu, Yuteng; Aibara, Shintaro; Xu, Wenshu; Sore, Hannah F; Verma, Chandra S; Itzhaki, Laura; Stewart, Murray; Brenton, James D; Spring, David R

    2017-01-09

    There is a lack of current treatment options for ovarian clear cell carcinoma (CCC) and the cancer is often resistant to platinum-based chemotherapy. Hence there is an urgent need for novel therapeutics. The transcription factor hepatocyte nuclear factor 1β (HNF1β) is ubiquitously overexpressed in CCC and is seen as an attractive therapeutic target. This was validated through shRNA-mediated knockdown of the target protein, HNF1β, in five high- and low-HNF1β-expressing CCC lines. To inhibit the protein function, cell-permeable, non-helical constrained proteomimetics to target the HNF1β-importin α protein-protein interaction were designed, guided by X-ray crystallographic data and molecular dynamics simulations. In this way, we developed the first reported series of constrained peptide nuclear import inhibitors. Importantly, this general approach may be extended to other transcription factors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Targeting SQSTM1/p62 Induces Cargo Loading Failure and Converts Autophagy to Apoptosis via NBK/Bik

    PubMed Central

    Chen, Shuang; Zhou, Liang; Zhang, Yu; Leng, Yun; Pei, Xin-Yan; Lin, Hui; Jones, Richard; Orlowski, Robert Z.

    2014-01-01

    In selective autophagy, the adaptor protein SQSTM1/p62 plays a critical role in recognizing/loading cargo (e.g., malfolded proteins) into autophagosomes for lysosomal degradation. Here we report that whereas SQSTM1/p62 levels fluctuated in a time-dependent manner during autophagy, inhibition or knockdown of Cdk9/cyclin T1 transcriptionally downregulated SQSTM1/p62 but did not affect autophagic flux. These interventions, or short hairpin RNA (shRNA) directly targeting SQSTM1/p62, resulted in cargo loading failure and inefficient autophagy, phenomena recently described for Huntington's disease neurons. These events led to the accumulation of the BH3-only protein NBK/Bik on endoplasmic reticulum (ER) membranes, most likely by blocking loading and autophagic degradation of NBK/Bik, culminating in apoptosis. Whereas NBK/Bik upregulation was further enhanced by disruption of distal autophagic events (e.g., autophagosome maturation) by chloroquine (CQ) or Lamp2 shRNA, it was substantially diminished by inhibition of autophagy initiation (e.g., genetically by shRNA targeting Ulk1, beclin-1, or Atg5 or pharmacologically by 3-methyladenine [3-MA] or spautin-1), arguing that NBK/Bik accumulation stems from inefficient autophagy. Finally, NBK/Bik knockdown markedly attenuated apoptosis in vitro and in vivo. Together, these findings identify novel cross talk between autophagy and apoptosis, wherein targeting SQSTM1/p62 converts cytoprotective autophagy to an inefficient form due to cargo loading failure, leading to NBK/Bik accumulation, which triggers apoptosis. PMID:25002530

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jeong Su; Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752; Kang, Dong Hoon

    p70 ribosomal S6 kinase 1 (S6K1) is an important serine/threonine kinase and downstream target of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway. PF-4708671 is a specific inhibitor of S6K1, and prevents S6K1-mediated phosphorylation of the S6 protein. PF-4708671 treatment often leads to apoptotic cell death. However, the protective mechanism against PF-4708671-induced cell death has not been elucidated. The nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway is essential for protecting cells against oxidative stress. p62, an adaptor protein in the autophagic process, enhances Nrf2 activation through the impairment of Keap1 activity. In thismore » study, we showed that PF-4708671 induces autophagic Keap1 degradation-mediated Nrf2 activation in p62-dependent manner. Furthermore, p62-dependent Nrf2 activation plays a crucial role in protecting cells from PF-4708671-mediated apoptosis. - Highlights: • PF-4708671, a S6K1-specific inhibitor, prevents S6K1-mediated S6 phosphorylation. • However, PF-4708671 treatment often leads to apoptotic cell death. • Protective mechanism against PF-4708671-induced cell death remains to be elucidated. • PF-4708671 induced p62-dependent, autophagic Keap1 degradation-mediated Nrf2 activation. • p62-dependent Nrf2 activation protects cells from PF-4708671-mediated apoptosis.« less

  8. Bioprospection of immature salivary glands of Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae).

    PubMed

    Caleffe, Ronaldo Roberto Tait; de Oliveira, Stefany Rodrigues; Gigliolli, Adriana Aparecida Sinópolis; Ruvolo-Takasusuki, Maria Claudia Colla; Conte, Helio

    2018-06-08

    Larval therapy (LT) comprises the application of sterile Calliphoridae larvae for wound debridement, disinfection, and healing in humans and animals. Larval digestion plays a key role in LT, where the salivary glands and gut produce and secrete proteolytic and antimicrobial substances. The objective of this work was to bioprospect the salivary glands of Chrysomya megacephala (Fabricius, 1794) larvae, using ultrastructural, morphological, and histological observations, and the total protein electrophoretic profile. The salivary glands present a deferent duct, originating from the buccal cavity, which bifurcates into efferent ducts that insert through a slight dilatation to a pair of tubular-shaped tissues, united in the region of fat cells. Histologically, the secretion had protein characteristics. Cell cytoplasm presented numerous free ribosomes, autophagic vacuoles, spherical and elongated mitochondria, atypical Golgi complexes, and dilated rough endoplasmic reticulum. In the apical cytoplasm, secretory granules and microvilli secretions demonstrated intense protein synthesis, basal cytoplasm with trachea insertions, and numerous mitochondria. The present work described the ultrastructure and morphology of C. megacephala third instar salivary glands, confirming intense protein synthesis and the molecular weight of soluble proteins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Efficient Anaerobic Digestion of Microalgae Biomass: Proteins as a Key Macromolecule.

    PubMed

    Magdalena, Jose Antonio; Ballesteros, Mercedes; González-Fernandez, Cristina

    2018-05-06

    Biogas generation is the least complex technology to transform microalgae biomass into bioenergy. Since hydrolysis has been pointed out as the rate limiting stage of anaerobic digestion, the main challenge for an efficient biogas production is the optimization of cell wall disruption/hydrolysis. Among all tested pretreatments, enzymatic treatments were demonstrated not only very effective in disruption/hydrolysis but they also revealed the impact of microalgae macromolecular composition in the anaerobic process. Although carbohydrates have been traditionally recognized as the polymers responsible for the low microalgae digestibility, protease addition resulted in the highest organic matter solubilization and the highest methane production. However, protein solubilization during the pretreatment can result in anaerobic digestion inhibition due to the release of large amounts of ammonium nitrogen. The possible solutions to overcome these negative effects include the reduction of protein biomass levels by culturing the microalgae in low nitrogen media and the use of ammonia tolerant anaerobic inocula. Overall, this review is intended to evidence the relevance of microalgae proteins in different stages of anaerobic digestion, namely hydrolysis and methanogenesis.

  10. HCV core protein represses the apoptosis and improves the autophagy of human hepatocytes

    PubMed Central

    Liu, Changhong; Qu, Aihua; Han, Xiaochun; Wang, Yiguo

    2015-01-01

    Objectives: This study aims to investigate the influence on human hepatocytes apoptosis and autophagy by the hepatitis C virus (HCV) core protein. Methods: QSG-7701, a human-derived non-neoplastic liver cell line, was transfected with PIRES-core vector that was a eukaryotic vector to express HCV core protein. Fluorescence microscope was used to observe the changes of nuclei in apoptosis cells by Annex in V-FITC/PI double staining. Flow cytometry was applied to detect the rate of cell apoptosis. Western blotting was used to detect the expression of HCV core protein, transcription factor nuclear factor-kappa B (NF-κB), autophagic biomarker microtubule associated protein 1 light chain 3 (LC3), and Beclin-1. Results: The apoptosis rate was significantly lower (P < 0.05) in QSG7701/core group (transfected with PIRES-core vector, (1.34±0.07)%) than in QSG7701 group (no transfection, (2.35±0.11)%) and in QSG7701 QSG7701/pcDNA3.1 group (transfected with pcDNA3.1 vector, (2.58±0.1)%). NF-κB expression was up-expressed in QSG7701/core group than in QSG7701/pcDNA3.1 group and QSG7701 group (P < 0.05). LC3-II expression and Beclin-1 expression was significant higher in QSG7701/core group than in the QSG7701/pcDNA3.1 group and QSG7701 group (P < 0.05). Conclusion: HCV core protein can repress the apoptosis and improve the autophagy of QSG7701 through up-regulating NF-κB and Beclin-1 expression. PMID:26629077

  11. GFP tagging sheds light on protein translocation: implications for key methods in cell biology.

    PubMed

    Deponte, Marcel

    2012-04-01

    Green fluorescent protein (GFP) is a powerful tool for studying gene expression, protein localization, protein-protein interactions, calcium concentrations, and redox potentials owing to its intrinsic fluorescence. However, GFP not only contains a chromophore but is also tightly folded in a temperature-dependent manner. The latter property of GFP has recently been exploited (1) to characterize the translocase of the outer mitochondrial membrane and (2) to discriminate between protein transport across and into biomembranes in vivo. I therefore suggest that GFP could be a valuable tool for the general analysis of protein transport machineries and pathways in a variety of organisms. Moreover, results from such studies could be important for the interpretation and optimization of classical experiments using GFP tagging.

  12. Single-Prolonged-Stress-Induced Changes in Autophagy-Related Proteins Beclin-1, LC3, and p62 in the Medial Prefrontal Cortex of Rats with Post-traumatic Stress Disorder.

    PubMed

    Zheng, Shilei; Han, Fang; Shi, Yuxiu; Wen, Lili; Han, Dan

    2017-05-01

    Autophagy, or type II programmed cell death, plays a crucial role in many nervous system diseases. However, few studies have examined the role of autophagy in post-traumatic stress disorder (PTSD), and the mechanisms underlying PTSD are poorly understood. The objective of this research was to explore the expression of three important autophagy-related proteins, Beclin-1, microtubule-associated protein 1 light chain 3 (LC3), and p62/SQSTM1 (p62), in the medial prefrontal cortex (mPFC) of an animal model of PTSD to identify changes in autophagic activity during PTSD pathogenesis. PTSD was induced in rats by exposure to a single-prolonged stress (SPS). The Morris water maze was used to assess cognitive changes in rats from the SPS and control groups. Transmission electron microscopy (TEM) was employed to observe mPFC morphological changes. Immunohistochemistry, immunofluorescence, and Western blotting techniques were used to detect expression of Beclin-1, LC3, and p62 in the mPFC. The Morris water maze test results showed that the escape latency time was increased and that the percent time in the target quadrant was decreased in the SPS group compared with that in the control group. Numerous visible autolysosomes in mPFC neurons were observed using TEM after SPS stimulation. Compared with that in the control group, the expression of Beclin-1 and the LC3-II/I ratio significantly decreased at 1 day, then increased and peaked at 7 days, and slightly decreased at 14 days after SPS stimulation, whereas the converse was found for p62 expression. In conclusion, dysregulation of autophagic activity in the mPFC may play a crucial role in PTSD pathogenesis.

  13. The role of autophagy in acute brain injury: A state of flux?

    PubMed

    Wolf, Michael S; Bayır, Hülya; Kochanek, Patrick M; Clark, Robert S B

    2018-04-26

    It is established that increased autophagy is readily detectable after various types of acute brain injury, including trauma, focal and global cerebral ischemia. What remains controversial, however, is whether this heightened detection of autophagy in brain represents a homeostatic or pathologic process, or an epiphenomenon. The ultimate role of autophagy after acute brain injury likely depends upon: 1) the degree of brain injury and the overall autophagic burden; 2) the capacity of individual cell types to ramp up autophagic flux; 3) the local redox state and signaling of parallel cell death pathways; 4) the capacity to eliminate damage associated molecular patterns and toxic proteins and metabolites both intra- and extracellularly; and 5) the timing of the pro- or anti-autophagic intervention. In this review, we attempt to reconcile conflicting studies that support both a beneficial and detrimental role for autophagy in models of acute brain injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. ACTP: A webserver for predicting potential targets and relevant pathways of autophagy-modulating compounds

    PubMed Central

    Ouyang, Liang; Cai, Haoyang; Liu, Bo

    2016-01-01

    Autophagy (macroautophagy) is well known as an evolutionarily conserved lysosomal degradation process for long-lived proteins and damaged organelles. Recently, accumulating evidence has revealed a series of small-molecule compounds that may activate or inhibit autophagy for therapeutic potential on human diseases. However, targeting autophagy for drug discovery still remains in its infancy. In this study, we developed a webserver called Autophagic Compound-Target Prediction (ACTP) (http://actp.liu-lab.com/) that could predict autophagic targets and relevant pathways for a given compound. The flexible docking of submitted small-molecule compound (s) to potential autophagic targets could be performed by backend reverse docking. The webpage would return structure-based scores and relevant pathways for each predicted target. Thus, these results provide a basis for the rapid prediction of potential targets/pathways of possible autophagy-activating or autophagy-inhibiting compounds without labor-intensive experiments. Moreover, ACTP will be helpful to shed light on identifying more novel autophagy-activating or autophagy-inhibiting compounds for future therapeutic implications. PMID:26824420

  15. Inhibition of autophagy exerts anti-colon cancer effects via apoptosis induced by p53 activation and ER stress.

    PubMed

    Sakitani, Kosuke; Hirata, Yoshihiro; Hikiba, Yohko; Hayakawa, Yoku; Ihara, Sozaburo; Suzuki, Hirobumi; Suzuki, Nobumi; Serizawa, Takako; Kinoshita, Hiroto; Sakamoto, Kei; Nakagawa, Hayato; Tateishi, Keisuke; Maeda, Shin; Ikenoue, Tsuneo; Kawazu, Shoji; Koike, Kazuhiko

    2015-10-24

    Although some molecularly targeted drugs for colorectal cancer are used clinically and contribute to a better prognosis, the current median survival of advanced colorectal cancer patients is not sufficient. Autophagy, a basic cell survival mechanism mediated by recycling of cellular amino acids, plays an important role in cancer. Recently, autophagy has been highlighted as a promising new molecular target. The unfolded protein response (UPR) reportedly act in complementary fashion with autophagy in intestinal homeostasis. However, the roles of UPR in colon cancer under autophagic inhibition remain to be elucidated. We aim to clarify the inhibitory effect of autophagy on colon cancer. We crossed K19 (CreERT) and Atg5 (flox/flox) mice to generate Atg5 (flox/flox)/K19 (CreERT) mice. Atg5 (flox/flox)/K19 (CreERT) mice were first treated with azoxymethane/dextran sodium sulfate and then injected with tamoxifen to inhibit autophagy in CK19-positive epithelial cells. To examine the anti-cancer mechanisms of autophagic inhibition, we used colon cancer cell lines harboring different p53 gene statuses, as well as small interfering RNAs (siRNAs) targeting Atg5 and immunoglobulin heavy-chain binding protein (BiP), a chaperone to aid folding of unfolded proteins. Colon tumors in Atg5 (flox/flox)/K19 (CreERT) mice showed loss of autophagic activity and decreased tumor size (the total tumor diameter was 28.1 mm in the control and 20.7 mm in Atg5 (flox/flox)/K19 (CreERT) mice, p = 0.036). We found that p53 and UPR/endoplasmic reticulum (ER) stress-related proteins, such as cleaved caspase 3, and CAAT/enhancer-binding protein homologous protein, are up-regulated in colon tumors of Atg5 (flox/flox)/K19 (CreERT) mice. Although Atg5 and BiP silencing, respectively, increased apoptosis in p53 wild type cells, Atg5 silencing alone did not show the same effect on apoptosis in p53 mutant cells. However, co-transfection of Atg5 and BiP siRNAs led to increased apoptosis in p53 mutant cells

  16. The intrinsic flexibility of the aptamer targeting the ribosomal protein S8 is a key factor for the molecular recognition.

    PubMed

    Autiero, Ida; Ruvo, Menotti; Improta, Roberto; Vitagliano, Luigi

    2018-04-01

    Aptamers are RNA/DNA biomolecules representing an emerging class of protein interactors and regulators. Despite the growing interest in these molecules, current understanding of chemical-physical basis of their target recognition is limited. Recently, the characterization of the aptamer targeting the protein-S8 has suggested that flexibility plays important functional roles. We investigated the structural versatility of the S8-aptamer by molecular dynamics simulations. Five different simulations have been conducted by varying starting structures and temperatures. The simulation of S8-aptamer complex provides a dynamic view of the contacts occurring at the complex interface. The simulation of the aptamer in ligand-free state indicates that its central region is intrinsically endowed with a remarkable flexibility. Nevertheless, none of the trajectory structures adopts the structure observed in the S8-aptamer complex. The aptamer ligand-bound is very rigid in the simulation carried out at 300 K. A structural transition of this state, providing insights into the aptamer-protein recognition process, is observed in a simulation carried out at 400 K. These data indicate that a key event in the binding is linked to the widening of the central region of the aptamer. Particularly relevant is switch of the A26 base from its ligand-free state to a location that allows the G13-C28 base-pairing. Intrinsic flexibility of the aptamer is essential for partner recognition. Present data indicate that S8 recognizes the aptamer through an induced-fit rather than a population-shift mechanism. The present study provides deeper understanding of the structural basis of the structural versatility of aptamers. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Effector caspase Dcp-1 and IAP protein Bruce regulate starvation-induced autophagy during Drosophila melanogaster oogenesis.

    PubMed

    Hou, Ying-Chen Claire; Chittaranjan, Suganthi; Barbosa, Sharon González; McCall, Kimberly; Gorski, Sharon M

    2008-09-22

    A complex relationship exists between autophagy and apoptosis, but the regulatory mechanisms underlying their interactions are largely unknown. We conducted a systematic study of Drosophila melanogaster cell death-related genes to determine their requirement in the regulation of starvation-induced autophagy. We discovered that six cell death genes--death caspase-1 (Dcp-1), hid, Bruce, Buffy, debcl, and p53-as well as Ras-Raf-mitogen activated protein kinase signaling pathway components had a role in autophagy regulation in D. melanogaster cultured cells. During D. melanogaster oogenesis, we found that autophagy is induced at two nutrient status checkpoints: germarium and mid-oogenesis. At these two stages, the effector caspase Dcp-1 and the inhibitor of apoptosis protein Bruce function to regulate both autophagy and starvation-induced cell death. Mutations in Atg1 and Atg7 resulted in reduced DNA fragmentation in degenerating midstage egg chambers but did not appear to affect nuclear condensation, which indicates that autophagy contributes in part to cell death in the ovary. Our study provides new insights into the molecular mechanisms that coordinately regulate autophagic and apoptotic events in vivo.

  18. Protein Structure Prediction by Protein Threading

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Liu, Zhijie; Cai, Liming; Xu, Dong

    The seminal work of Bowie, Lüthy, and Eisenberg (Bowie et al., 1991) on "the inverse protein folding problem" laid the foundation of protein structure prediction by protein threading. By using simple measures for fitness of different amino acid types to local structural environments defined in terms of solvent accessibility and protein secondary structure, the authors derived a simple and yet profoundly novel approach to assessing if a protein sequence fits well with a given protein structural fold. Their follow-up work (Elofsson et al., 1996; Fischer and Eisenberg, 1996; Fischer et al., 1996a,b) and the work by Jones, Taylor, and Thornton (Jones et al., 1992) on protein fold recognition led to the development of a new brand of powerful tools for protein structure prediction, which we now term "protein threading." These computational tools have played a key role in extending the utility of all the experimentally solved structures by X-ray crystallography and nuclear magnetic resonance (NMR), providing structural models and functional predictions for many of the proteins encoded in the hundreds of genomes that have been sequenced up to now.

  19. Myocardial Autophagy after Severe Burn in Rats

    PubMed Central

    Zhang, Qiong; Shi, Xiao-hua; Huang, Yue-sheng

    2012-01-01

    Background Autophagy plays a major role in myocardial ischemia and hypoxia injury. The present study investigated the effects of autophagy on cardiac dysfunction in rats after severe burn. Methods Protein expression of the autophagy markers LC3 and Beclin 1 were determined at 0, 1, 3, 6, and 12 h post-burn in Sprague Dawley rats subjected to 30% total body surface area 3rd degree burns. Autophagic, apoptotic, and oncotic cell death were evaluated in the myocardium at each time point by immunofluorescence. Changes of cardiac function were measured in a Langendorff model of isolated heart at 6 h post-burn, and the autophagic response was measured following activation by Rapamycin and inhibition by 3-methyladenine (3-MA). The angiotensin converting enzyme inhibitor enalaprilat, the angiotensin receptor I blocker losartan, and the reactive oxygen species inhibitor diphenylene iodonium (DPI) were also applied to the ex vivo heart model to examine the roles of these factors in post-burn cardiac function. Results Autophagic cell death was first observed in the myocardium at 3 h post-burn, occurring in 0.008 ± 0.001% of total cardiomyocytes, and continued to increase to a level of 0.022 ± 0.005% by 12 h post-burn. No autophagic cell death was observed in control hearts. Compared with apoptosis, autophagic cell death occurred earlier and in larger quantities. Rapamycin enhanced autophagy and decreased cardiac function in isolated hearts 6 h post-burn, while 3-MA exerted the opposite response. Enalaprilat, losartan, and DPI all inhibited autophagy and enhanced heart function. Conclusion Myocardial autophagy is enhanced in severe burns and autophagic cell death occurred early at 3 h post-burn, which may contribute to post-burn cardiac dysfunction. Angiotensin II and reactive oxygen species may play important roles in this process by regulating cell signaling transduction. PMID:22768082

  20. The Role of Shape Complementarity in the Protein-Protein Interactions

    NASA Astrophysics Data System (ADS)

    Li, Ye; Zhang, Xianren; Cao, Dapeng

    2013-11-01

    We use a dissipative particle dynamic simulation to investigate the effects of shape complementarity on the protein-protein interactions. By monitoring different kinds of protein shape-complementarity modes, we gave a clear mechanism to reveal the role of the shape complementarity in the protein-protein interactions, i.e., when the two proteins with shape complementarity approach each other, the conformation of lipid chains between two proteins would be restricted significantly. The lipid molecules tend to leave the gap formed by two proteins to maximize the configuration entropy, and therefore yield an effective entropy-induced protein-protein attraction, which enhances the protein aggregation. In short, this work provides an insight into understanding the importance of the shape complementarity in the protein-protein interactions especially for protein aggregation and antibody-antigen complexes. Definitely, the shape complementarity is the third key factor affecting protein aggregation and complex, besides the electrostatic-complementarity and hydrophobic complementarity.

  1. Redox Regulation in Amyotrophic Lateral Sclerosis

    PubMed Central

    Parakh, Sonam; Spencer, Damian M.; Halloran, Mark A.; Soo, Kai Y.; Atkin, Julie D.

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that results from the death of upper and lower motor neurons. Due to a lack of effective treatment, it is imperative to understand the underlying mechanisms and processes involved in disease progression. Regulations in cellular reduction/oxidation (redox) processes are being increasingly implicated in disease. Here we discuss the possible involvement of redox dysregulation in the pathophysiology of ALS, either as a cause of cellular abnormalities or a consequence. We focus on its possible role in oxidative stress, protein misfolding, glutamate excitotoxicity, lipid peroxidation and cholesterol esterification, mitochondrial dysfunction, impaired axonal transport and neurofilament aggregation, autophagic stress, and endoplasmic reticulum (ER) stress. We also speculate that an ER chaperone protein disulphide isomerase (PDI) could play a key role in this dysregulation. PDI is essential for normal protein folding by oxidation and reduction of disulphide bonds, and hence any disruption to this process may have consequences for motor neurons. Addressing the mechanism underlying redox regulation and dysregulation may therefore help to unravel the molecular mechanism involved in ALS. PMID:23533690

  2. Thioredoxin: a key regulator of cardiovascular homeostasis.

    PubMed

    Yamawaki, Hideyuki; Haendeler, Judith; Berk, Bradford C

    2003-11-28

    The thioredoxin (TRX) system (TRX, TRX reductase, and NADPH) is a ubiquitous thiol oxidoreductase system that regulates cellular reduction/oxidation (redox) status. The oxidation mechanism for disease pathogenesis states that an imbalance in cell redox state alters function of multiple cell pathways. In this study, we review the essential role for TRX to limit oxidative stress directly via antioxidant effects and indirectly by protein-protein interaction with key signaling molecules, such as apoptosis signal-regulating kinase 1. We propose that TRX and its endogenous regulators are important future targets to develop clinical therapies for cardiovascular disorders associated with oxidative stress.

  3. Induction of cytosine arabinoside-resistant human myeloid leukemia cell death through autophagy regulation by hydroxychloroquine.

    PubMed

    Kim, Yundeok; Eom, Ju-In; Jeung, Hoi-Kyung; Jang, Ji Eun; Kim, Jin Seok; Cheong, June-Won; Kim, Young Sam; Min, Yoo Hong

    2015-07-01

    We investigated the effects of the autophagy inhibitor hydroxychloroquine (HCQ) on cell death of cytosine arabinoside (Ara-C)-resistant human acute myeloid leukemia (AML) cells. Ara-C-sensitive (U937, AML-2) and Ara-C-resistant (U937/AR, AML-2/AR) human AML cell lines were used to evaluate HCQ-regulated cytotoxicity, autophagy, and apoptosis as well as effects on cell death-related signaling pathways. We found that HCQ-induced dose- and time-dependent cell death in Ara-C-resistant cells compared to Ara-C-sensitive cell lines. The extent of cell death and features of HCQ-induced autophagic markers including increase in microtubule-associated protein light chain 3 (LC3) I conversion to LC3-II, beclin-1, ATG5, as well as green fluorescent protein-LC3 positive puncta and autophagosome were remarkably greater in U937/AR cells. Also, p62/SQSTM1 was increased in response to HCQ. p62/SQSTM1 protein interacts with both LC3-II and ubiquitin protein and is degraded in autophagosomes. Therefore, a reduction of p62/SQSTM1 indicates increased autophagic degradation, whereas an increase of p62/SQSTM1 by HCQ indicates inhibited autophagic degradation. Knock down of p62/SQSTM1 using siRNA were prevented the HCQ-induced LC3-II protein level as well as significantly reduced the HCQ-induced cell death in U937/AR cells. Also, apoptotic cell death and caspase activation in U937/AR cells were increased by HCQ, provided evidence that HCQ-induced autophagy blockade. Taken together, our data show that HCQ-induced apoptotic cell death in Ara-C-resistant AML cells through autophagy regulation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Is autophagy the key mechanism by which the sphingolipid rheostat controls the cell fate decision?

    PubMed

    Lavieu, Gregory; Scarlatti, Francesca; Sala, Giusy; Levade, Thierry; Ghidoni, Riccardo; Botti, Joëlle; Codogno, Patrice

    2007-01-01

    Sphingolipids are major constituents of biological membrane and some of them behave as second messengers involved in the cell fate decision. Ceramide and sphingosine 1-phosphate (S1P) constitute a rheostat system in which ceramide promotes cell death and S1P increases cell survival. We have shown that both sphingolipids are able to trigger autophagy with opposing outcomes on cell survival. Here we discuss and speculate on the diverging functions of the autophagic pathways induced by ceramide and S1P, respectively.

  5. The constitutive lipid droplet protein PLIN2 regulates autophagy in liver.

    PubMed

    Tsai, Tsung-Huang; Chen, Elaine; Li, Lan; Saha, Pradip; Lee, Hsiao-Ju; Huang, Li-Shin; Shelness, Gregory S; Chan, Lawrence; Chang, Benny Hung-Junn

    2017-07-03

    Excess triglyceride (TG) accumulation in the liver underlies fatty liver disease, a highly prevalent ailment. TG occurs in the liver sequestered in lipid droplets, the major lipid storage organelle. Lipid droplets are home to the lipid droplet proteins, the most abundant of which are the perilipins (PLINs), encoded by 5 different genes, Plin1 to Plin5. Of the corresponding gene products, PLIN2 is the only constitutive and ubiquitously expressed lipid droplet protein that has been used as a protein marker for lipid droplets. We and others reported that plin2 -/- mice have an ∼60% reduction in TG content, and are protected against fatty liver disease. Here we show that PLIN2 overexpression protects lipid droplets against macroautophagy/autophagy, whereas PLIN2 deficiency enhances autophagy and depletes hepatic TG. The enhanced autophagy in plin2 -/- mice protects against severe ER stress-induced hepatosteatosis and hepatocyte apoptosis. In contrast, hepatic TG depletion resulting from other genetic and pharmacological manipulations has no effect on autophagy. Importantly, PLIN2 deficiency lowers cellular TG content in wild-type mouse embryonic fibroblasts (MEFs) via enhanced autophagy, but does not affect cellular TG content in atg7 -/- MEFs that are devoid of autophagic function. Conversely, adenovirus-shAtg7-mediated hepatic Atg7 knockdown per se does not alter the hepatic TG level, suggesting a more complex regulation in vivo. In sum, PLIN2 guards its own house, the lipid droplet. PLIN2 overexpression protects against autophagy, and its downregulation stimulates TG catabolism via autophagy.

  6. Autophagy activation in COL6 myopathic patients by a low-protein-diet pilot trial.

    PubMed

    Castagnaro, Silvia; Pellegrini, Camilla; Pellegrini, Massimo; Chrisam, Martina; Sabatelli, Patrizia; Toni, Silvia; Grumati, Paolo; Ripamonti, Claudio; Pratelli, Loredana; Maraldi, Nadir M; Cocchi, Daniela; Righi, Valeria; Faldini, Cesare; Sandri, Marco; Bonaldo, Paolo; Merlini, Luciano

    2016-12-01

    A pilot clinical trial based on nutritional modulation was designed to assess the efficacy of a one-year low-protein diet in activating autophagy in skeletal muscle of patients affected by COL6/collagen VI-related myopathies. Ullrich congenital muscular dystrophy and Bethlem myopathy are rare inherited muscle disorders caused by mutations of COL6 genes and for which no cure is yet available. Studies in col6 null mice revealed that myofiber degeneration involves autophagy defects and that forced activation of autophagy results in the amelioration of muscle pathology. Seven adult patients affected by COL6 myopathies underwent a controlled low-protein diet for 12 mo and we evaluated the presence of autophagosomes and the mRNA and protein levels for BECN1/Beclin 1 and MAP1LC3B/LC3B in muscle biopsies and blood leukocytes. Safety measures were assessed, including muscle strength, motor and respiratory function, and metabolic parameters. After one y of low-protein diet, autophagic markers were increased in skeletal muscle and blood leukocytes of patients. The treatment was safe as shown by preservation of lean:fat percentage of body composition, muscle strength and function. Moreover, the decreased incidence of myofiber apoptosis indicated benefits in muscle homeostasis, and the metabolic changes pointed at improved mitochondrial function. These data provide evidence that a low-protein diet is able to activate autophagy and is safe and tolerable in patients with COL6 myopathies, pointing at autophagy activation as a potential target for therapeutic applications. In addition, our findings indicate that blood leukocytes are a promising noninvasive tool for monitoring autophagy activation in patients.

  7. Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl-like molecules binding.

    PubMed

    Isvoran, Adriana; Craciun, Dana; Martiny, Virginie; Sperandio, Olivier; Miteva, Maria A

    2013-06-14

    Protein-Protein Interactions (PPIs) are key for many cellular processes. The characterization of PPI interfaces and the prediction of putative ligand binding sites and hot spot residues are essential to design efficient small-molecule modulators of PPI. Terphenyl and its derivatives are small organic molecules known to mimic one face of protein-binding alpha-helical peptides. In this work we focus on several PPIs mediated by alpha-helical peptides. We performed computational sequence- and structure-based analyses in order to evaluate several key physicochemical and surface properties of proteins known to interact with alpha-helical peptides and/or terphenyl and its derivatives. Sequence-based analysis revealed low sequence identity between some of the analyzed proteins binding alpha-helical peptides. Structure-based analysis was performed to calculate the volume, the fractal dimension roughness and the hydrophobicity of the binding regions. Besides the overall hydrophobic character of the binding pockets, some specificities were detected. We showed that the hydrophobicity is not uniformly distributed in different alpha-helix binding pockets that can help to identify key hydrophobic hot spots. The presence of hydrophobic cavities at the protein surface with a more complex shape than the entire protein surface seems to be an important property related to the ability of proteins to bind alpha-helical peptides and low molecular weight mimetics. Characterization of similarities and specificities of PPI binding sites can be helpful for further development of small molecules targeting alpha-helix binding proteins.

  8. Classical autophagy proteins LC3B and ATG4B facilitate melanosome movement on cytoskeletal tracks.

    PubMed

    Ramkumar, Amrita; Murthy, Divya; Raja, Desingu Ayyappa; Singh, Archana; Krishnan, Anusha; Khanna, Sangeeta; Vats, Archana; Thukral, Lipi; Sharma, Pushkar; Sivasubbu, Sridhar; Rani, Rajni; Natarajan, Vivek T; Gokhale, Rajesh S

    2017-08-03

    Macroautophagy/autophagy is a dynamic and inducible catabolic process that responds to a variety of hormonal and environmental cues. Recent studies highlight the interplay of this central pathway in a variety of pathophysiological diseases. Although defective autophagy is implicated in melanocyte proliferation and pigmentary disorders, the mechanistic relationship between the 2 pathways has not been elucidated. In this study, we show that autophagic proteins LC3B and ATG4B mediate melanosome trafficking on cytoskeletal tracks. While studying melanogenesis, we observed spatial segregation of LC3B-labeled melanosomes with preferential absence at the dendritic ends of melanocytes. This LC3B labeling of melanosomes did not impact the steady-state levels of these organelles but instead facilitated their intracellular positioning. Melanosomes primarily traverse on microtubule and actin cytoskeletal tracks and our studies reveal that LC3B enables the assembly of microtubule translocon complex. At the microtubule-actin crossover junction, ATG4B detaches LC3B from melanosomal membranes by enzymatic delipidation. Further, by live-imaging we show that melanosomes transferred to keratinocytes lack melanocyte-specific LC3B. Our study thus elucidates a new role for autophagy proteins in directing melanosome movement and reveal the unconventional use of these proteins in cellular trafficking pathways. Such crosstalk between the central cellular function and housekeeping pathway may be a crucial mechanism to balance melanocyte bioenergetics and homeostasis.

  9. The Role of Shape Complementarity in the Protein-Protein Interactions

    PubMed Central

    Li, Ye; Zhang, Xianren; Cao, Dapeng

    2013-01-01

    We use a dissipative particle dynamic simulation to investigate the effects of shape complementarity on the protein-protein interactions. By monitoring different kinds of protein shape-complementarity modes, we gave a clear mechanism to reveal the role of the shape complementarity in the protein-protein interactions, i.e., when the two proteins with shape complementarity approach each other, the conformation of lipid chains between two proteins would be restricted significantly. The lipid molecules tend to leave the gap formed by two proteins to maximize the configuration entropy, and therefore yield an effective entropy-induced protein-protein attraction, which enhances the protein aggregation. In short, this work provides an insight into understanding the importance of the shape complementarity in the protein-protein interactions especially for protein aggregation and antibody–antigen complexes. Definitely, the shape complementarity is the third key factor affecting protein aggregation and complex, besides the electrostatic-complementarity and hydrophobic complementarity. PMID:24253561

  10. Cutaneous exposure to lewisite causes acute kidney injury by invoking DNA damage and autophagic response.

    PubMed

    Srivastava, Ritesh K; Traylor, Amie M; Li, Changzhao; Feng, Wenguang; Guo, Lingling; Antony, Veena B; Schoeb, Trenton R; Agarwal, Anupam; Athar, Mohammad

    2018-06-01

    Lewisite (2-chlorovinyldichloroarsine) is an organic arsenical chemical warfare agent that was developed and weaponized during World Wars I/II. Stockpiles of lewisite still exist in many parts of the world and pose potential environmental and human health threat. Exposure to lewisite and similar chemicals causes intense cutaneous inflammatory response. However, morbidity and mortality in the exposed population is not only the result of cutaneous damage but is also a result of systemic injury. Here, we provide data delineating the pathogenesis of acute kidney injury (AKI) following cutaneous exposure to lewisite and its analog phenylarsine oxide (PAO) in a murine model. Both agents caused renal tubular injury, characterized by loss of brush border in proximal tubules and tubular cell apoptosis accompanied by increases in serum creatinine, neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1. Interestingly, lewisite exposure enhanced production of reactive oxygen species (ROS) in the kidney and resulted in the activation of autophagic and DNA damage response (DDR) signaling pathways with increased expression of beclin-1, autophagy-related gene 7, and LC-3A/B-II and increased phosphorylation of γ-H 2 A.X and checkpoint kinase 1/2, respectively. Terminal deoxyribonucleotide-transferase-mediated dUTP nick-end labeling-positive cells were detected in renal tubules along with enhanced proapoptotic BAX/cleaved caspase-3 and reduced antiapoptotic BCL 2 . Scavenging ROS by cutaneous postexposure application of the antioxidant N-acetyl-l-cysteine reduced lewisite-induced autophagy and DNA damage. In summary, we provide evidence that topical exposure to lewisite causes AKI. The molecular mechanism underlying these changes involves ROS-dependent activation of autophagy and DDR pathway associated with the induction of apoptosis.

  11. High Pressure ZZ-Exchange NMR Reveals Key Features of Protein Folding Transition States.

    PubMed

    Zhang, Yi; Kitazawa, Soichiro; Peran, Ivan; Stenzoski, Natalie; McCallum, Scott A; Raleigh, Daniel P; Royer, Catherine A

    2016-11-23

    Understanding protein folding mechanisms and their sequence dependence requires the determination of residue-specific apparent kinetic rate constants for the folding and unfolding reactions. Conventional two-dimensional NMR, such as HSQC experiments, can provide residue-specific information for proteins. However, folding is generally too fast for such experiments. ZZ-exchange NMR spectroscopy allows determination of folding and unfolding rates on much faster time scales, yet even this regime is not fast enough for many protein folding reactions. The application of high hydrostatic pressure slows folding by orders of magnitude due to positive activation volumes for the folding reaction. We combined high pressure perturbation with ZZ-exchange spectroscopy on two autonomously folding protein domains derived from the ribosomal protein, L9. We obtained residue-specific apparent rates at 2500 bar for the N-terminal domain of L9 (NTL9), and rates at atmospheric pressure for a mutant of the C-terminal domain (CTL9) from pressure dependent ZZ-exchange measurements. Our results revealed that NTL9 folding is almost perfectly two-state, while small deviations from two-state behavior were observed for CTL9. Both domains exhibited large positive activation volumes for folding. The volumetric properties of these domains reveal that their transition states contain most of the internal solvent excluded voids that are found in the hydrophobic cores of the respective native states. These results demonstrate that by coupling it with high pressure, ZZ-exchange can be extended to investigate a large number of protein conformational transitions.

  12. Efficient key pathway mining: combining networks and OMICS data.

    PubMed

    Alcaraz, Nicolas; Friedrich, Tobias; Kötzing, Timo; Krohmer, Anton; Müller, Joachim; Pauling, Josch; Baumbach, Jan

    2012-07-01

    Systems biology has emerged over the last decade. Driven by the advances in sophisticated measurement technology the research community generated huge molecular biology data sets. These comprise rather static data on the interplay of biological entities, for instance protein-protein interaction network data, as well as quite dynamic data collected for studying the behavior of individual cells or tissues in accordance with changing environmental conditions, such as DNA microarrays or RNA sequencing. Here we bring the two different data types together in order to gain higher level knowledge. We introduce a significantly improved version of the KeyPathwayMiner software framework. Given a biological network modelled as a graph and a set of expression studies, KeyPathwayMiner efficiently finds and visualizes connected sub-networks where most components are expressed in most cases. It finds all maximal connected sub-networks where all nodes but k exceptions are expressed in all experimental studies but at most l exceptions. We demonstrate the power of the new approach by comparing it to similar approaches with gene expression data previously used to study Huntington's disease. In addition, we demonstrate KeyPathwayMiner's flexibility and applicability to non-array data by analyzing genome-scale DNA methylation profiles from colorectal tumor cancer patients. KeyPathwayMiner release 2 is available as a Cytoscape plugin and online at http://keypathwayminer.mpi-inf.mpg.de.

  13. Rimmed vacuoles in Becker muscular dystrophy have similar features with inclusion myopathies.

    PubMed

    Momma, Kazunari; Noguchi, Satoru; Malicdan, May Christine V; Hayashi, Yukiko K; Minami, Narihiro; Kamakura, Keiko; Nonaka, Ikuya; Nishino, Ichizo

    2012-01-01

    Rimmed vacuoles in myofibers are thought to be due to the accumulation of autophagic vacuoles, and can be characteristic in certain myopathies with protein inclusions in myofibers. In this study, we performed a detailed clinical, molecular, and pathological characterization of Becker muscular dystrophy patients who have rimmed vacuoles in muscles. Among 65 Becker muscular dystrophy patients, we identified 12 patients who have rimmed vacuoles and 11 patients who have deletions in exons 45-48 in DMD gene. All patients having rimmed vacuoles showed milder clinical features compared to those without rimmed vacuoles. Interestingly, the rimmed vacuoles in Becker muscular dystrophy muscles seem to represent autophagic vacuoles and are also associated with polyubiquitinated protein aggregates. These findings support the notion that rimmed vacuoles can appear in Becker muscular dystrophy, and may be related to the chronic changes in muscle pathology induced by certain mutations in the DMD gene.

  14. Increased autophagic sequestration in adaptor protein-3 deficient dendritic cells limits inflammasome activity and impairs antibacterial immunity

    PubMed Central

    Casson, Cierra N.; Lefkovith, Ariel J.

    2017-01-01

    Bacterial pathogens that compromise phagosomal membranes stimulate inflammasome assembly in the cytosol, but the molecular mechanisms by which membrane dynamics regulate inflammasome activity are poorly characterized. We show that in murine dendritic cells (DCs), the endosomal adaptor protein AP-3 –which optimizes toll-like receptor signaling from phagosomes–sustains inflammasome activation by particulate stimuli. AP-3 independently regulates inflammasome positioning and autophagy induction, together resulting in delayed inflammasome inactivation by autophagy in response to Salmonella Typhimurium (STm) and other particulate stimuli specifically in DCs. AP-3-deficient DCs, but not macrophages, hyposecrete IL-1β and IL-18 in response to particulate stimuli in vitro, but caspase-1 and IL-1β levels are restored by silencing autophagy. Concomitantly, AP-3-deficient mice exhibit higher mortality and produce less IL-1β, IL-18, and IL-17 than controls upon oral STm infection. Our data identify a novel link between phagocytosis, inflammasome activity and autophagy in DCs, potentially explaining impaired antibacterial immunity in AP-3-deficient patients. PMID:29253868

  15. Spatiotemporal autophagic degradation of oxidatively damaged organelles after photodynamic stress is amplified by mitochondrial reactive oxygen species

    PubMed Central

    Rubio, Noemi; Coupienne, Isabelle; Di Valentin, Emmanuel; Heirman, Ingeborg; Grooten, Johan; Piette, Jacques; Agostinis, Patrizia

    2012-01-01

    Although reactive oxygen species (ROS) have been reported to evoke different autophagic pathways, how ROS or their secondary products modulate the selective clearance of oxidatively damaged organelles is less explored. To investigate the signaling role of ROS and the impact of their compartmentalization in autophagy pathways, we used murine fibrosarcoma L929 cells overexpressing different antioxidant enzymes targeted to the cytosol or mitochondria and subjected them to photodynamic (PD) stress with the endoplasmic reticulum (ER)-associated photosensitizer hypericin. We show that following apical ROS-mediated damage to the ER, predominantly cells overexpressing mitochondria-associated glutathione peroxidase 4 (GPX4) and manganese superoxide dismutase (SOD2) displayed attenuated kinetics of autophagosome formation and overall cell death, as detected by computerized time-lapse microscopy. Consistent with a primary ER photodamage, kinetics and colocalization studies revealed that photogenerated ROS induced an initial reticulophagy, followed by morphological changes in the mitochondrial network that preceded clearance of mitochondria by mitophagy. Overexpression of cytosolic and mitochondria-associated GPX4 retained the tubular mitochondrial network in response to PD stress and concomitantly blocked the progression toward mitophagy. Preventing the formation of phospholipid hydroperoxides and H2O2 in the cytosol as well as in the mitochondria significantly reduced cardiolipin peroxidation and apoptosis. All together, these results show that in response to apical ER photodamage ROS propagate to mitochondria, which in turn amplify ROS production, thereby contributing to two antagonizing processes, mitophagy and apoptosis. PMID:22889744

  16. Manipulating Protein-Protein Interactions in Nonribosomal Peptide Synthetase Type II Peptidyl Carrier Proteins.

    PubMed

    Jaremko, Matt J; Lee, D John; Patel, Ashay; Winslow, Victoria; Opella, Stanley J; McCammon, J Andrew; Burkart, Michael D

    2017-10-10

    In an effort to elucidate and engineer interactions in type II nonribosomal peptide synthetases, we analyzed biomolecular recognition between the essential peptidyl carrier proteins and adenylation domains using nuclear magnetic resonance (NMR) spectroscopy, molecular dynamics, and mutational studies. Three peptidyl carrier proteins, PigG, PltL, and RedO, in addition to their cognate adenylation domains, PigI, PltF, and RedM, were investigated for their cross-species activity. Of the three peptidyl carrier proteins, only PigG showed substantial cross-pathway activity. Characterization of the novel NMR solution structure of holo-PigG and molecular dynamics simulations of holo-PltL and holo-PigG revealed differences in structures and dynamics of these carrier proteins. NMR titration experiments revealed perturbations of the chemical shifts of the loop 1 residues of these peptidyl carrier proteins upon their interaction with the adenylation domain. These experiments revealed a key region for the protein-protein interaction. Mutational studies supported the role of loop 1 in molecular recognition, as mutations to this region of the peptidyl carrier proteins significantly modulated their activities.

  17. A-Kinase Anchoring Proteins: From protein complexes to physiology and disease

    PubMed Central

    Carnegie, Graeme K.; Means, Christopher K.; Scott, John D.

    2009-01-01

    Protein scaffold complexes are a key mechanism by which a common signaling pathway can serve many different functions. Sequestering a signaling enzyme to a specific subcellular environment not only ensures that the enzyme is near its relevant targets, but also segregates this activity to prevent indiscriminate phosphorylation of other substrates. One family of diverse, well-studied scaffolding proteins are the A-kinase anchoring proteins (AKAPs). These anchoring proteins form multi-protein complexes that integrate cAMP signaling with other pathways and signaling events. In this review we focus on recent advances in the elucidation of AKAP function. PMID:19319965

  18. A-kinase anchoring proteins: from protein complexes to physiology and disease.

    PubMed

    Carnegie, Graeme K; Means, Christopher K; Scott, John D

    2009-04-01

    Protein scaffold complexes are a key mechanism by which a common signaling pathway can serve many different functions. Sequestering a signaling enzyme to a specific subcellular environment not only ensures that the enzyme is near its relevant targets, but also segregates this activity to prevent indiscriminate phosphorylation of other substrates. One family of diverse, well-studied scaffolding proteins are the A-kinase anchoring proteins (AKAPs). These anchoring proteins form multi-protein complexes that integrate cAMP signaling with other pathways and signaling events. In this review, we focus on recent advances in the elucidation of AKAP function.

  19. Working your SOCS off: The role of ASB10 and protein degradation pathways in glaucoma.

    PubMed

    Keller, Kate E; Wirtz, Mary K

    2017-05-01

    Evidence is accumulating to suggest that mutations in the Ankyrin and SOCS Box-containing protein-10 (ASB10) gene are associated with glaucoma. Since its identification in a large Oregon family with primary open-angle glaucoma (POAG), ASB10 variants have been associated with disease in US, German and Pakistani cohorts. ASB10 is a member of the ASB family of proteins, which have a common structure including a unique N-terminus, a variable number of central ankyrin (ANK) repeat domains and a suppressor of cytokine signaling (SOCS) box at the C-terminus. Mutations in ASB10 are distributed throughout the entire length of the gene including the two alternatively spliced variants of exon 1. A homozygous mutation in a Pakistani individual with POAG, which lies in the center of the SOCS box, is associated with a particularly severe form of the disease. Like other SOCS box-containing proteins, ASB10 functions in ubiquitin-mediated degradation pathways. The ANK repeats bind to proteins destined for degradation. The SOCS box recruits ubiquitin ligase proteins to form a complex to transfer ubiquitin to a substrate bound to the ANK repeats. The ubiquitin-tagged protein then enters either the proteasomal degradation pathway or the autophagic-lysosomal pathway. The choice of pathway appears to be dependent on which lysine residues are used to build polyubiquitin chains. However, these reciprocal pathways work in tandem to degrade proteins because inhibition of one pathway increases degradation via the other pathway. In this publication, we will review the literature that supports identification of ASB10 as a glaucoma-associated gene and the current knowledge of the function of the ASB10 protein. In addition, we present new data that indicates ASB10 expression is up-regulated by the inflammatory cytokines tumor necrosis factor-α and interleukin-1α. Finally, we will describe the emerging role of other SOCS box-containing proteins in protein degradation pathways in ocular cells

  20. Withaferin A induced impaired autophagy and unfolded protein response in human breast cancer cell-lines MCF-7 and MDA-MB-231.

    PubMed

    Ghosh, Kamalini; De, Soumasree; Mukherjee, Srimoyee; Das, Sayantani; Ghosh, Amar Nath; Sengupta, Sumita Bandyopadhyay

    2017-10-01

    The autophagy-lysosome pathway and the ubiquitin-proteasome systems are the two major routes for eukaryotic intracellular protein clearance. Cancerous cells often display elevated protein synthesis and byproduct disposal, thus, inhibition of the protein degradation pathways became an emerging approach for cancer therapy. The present study revealed that withaferin-A (WA), the biologically active withanolide derived from Withania somnifera, initially induced formation of autophagosomes in human breast cancer cell-lines, MCF-7 and MDA-MB-231. WA treatment elevated the levels of autophagic substrate p62/SQSTM1 (p62) and both LC3-II and LC3-I (microtubule-associated protein 2 light chain 3) and simultaneously reduced the upstream autophagy markers like beclin-1 and ATG5-ATG12 complex, which indicate accumulation of autophagosomes in the cells. WA induced disruption of microtubular network through inhibition of tubulin polymerization and its hyper-acetylation, thus prevent the formation of autolysosome (by merging of autophagosomes with lysosomes) and its recycling process, leading to incomplete autophagy. Further, WA caused ER (Endoplasmic Reticulum) stress, which is evident from the activation of ER-related caspase-4 and increased levels of ER stress marker proteins. Thus, these findings altogether indicate that WA mediated inhibition of proteasomal degradation system and perturbation of autophagy, i.e. suppression of both the intracellular degradation systems caused accumulation of ubiquitinated proteins, which in turn led to unfolded protein response and ER stress mediated proteotoxicity in human breast cancer cell-lines, MCF-7 and MDA-MB-231. Copyright © 2017 Elsevier Ltd. All rights reserved.