Sample records for key biochemical pathways

  1. Characterizing autism spectrum disorders by key biochemical pathways.

    PubMed

    Subramanian, Megha; Timmerman, Christina K; Schwartz, Joshua L; Pham, Daniel L; Meffert, Mollie K

    2015-01-01

    The genetic and phenotypic heterogeneity of autism spectrum disorders (ASD) presents a substantial challenge for diagnosis, classification, research, and treatment. Investigations into the underlying molecular etiology of ASD have often yielded mixed and at times opposing findings. Defining the molecular and biochemical underpinnings of heterogeneity in ASD is crucial to our understanding of the pathophysiological development of the disorder, and has the potential to assist in diagnosis and the rational design of clinical trials. In this review, we propose that genetically diverse forms of ASD may be usefully parsed into entities resulting from converse patterns of growth regulation at the molecular level, which lead to the correlates of general synaptic and neural overgrowth or undergrowth. Abnormal brain growth during development is a characteristic feature that has been observed both in children with autism and in mouse models of autism. We review evidence from syndromic and non-syndromic ASD to suggest that entities currently classified as autism may fundamentally differ by underlying pro- or anti-growth abnormalities in key biochemical pathways, giving rise to either excessive or reduced synaptic connectivity in affected brain regions. We posit that this classification strategy has the potential not only to aid research efforts, but also to ultimately facilitate early diagnosis and direct appropriate therapeutic interventions.

  2. Characterizing autism spectrum disorders by key biochemical pathways

    PubMed Central

    Subramanian, Megha; Timmerman, Christina K.; Schwartz, Joshua L.; Pham, Daniel L.; Meffert, Mollie K.

    2015-01-01

    The genetic and phenotypic heterogeneity of autism spectrum disorders (ASD) presents a substantial challenge for diagnosis, classification, research, and treatment. Investigations into the underlying molecular etiology of ASD have often yielded mixed and at times opposing findings. Defining the molecular and biochemical underpinnings of heterogeneity in ASD is crucial to our understanding of the pathophysiological development of the disorder, and has the potential to assist in diagnosis and the rational design of clinical trials. In this review, we propose that genetically diverse forms of ASD may be usefully parsed into entities resulting from converse patterns of growth regulation at the molecular level, which lead to the correlates of general synaptic and neural overgrowth or undergrowth. Abnormal brain growth during development is a characteristic feature that has been observed both in children with autism and in mouse models of autism. We review evidence from syndromic and non-syndromic ASD to suggest that entities currently classified as autism may fundamentally differ by underlying pro- or anti-growth abnormalities in key biochemical pathways, giving rise to either excessive or reduced synaptic connectivity in affected brain regions. We posit that this classification strategy has the potential not only to aid research efforts, but also to ultimately facilitate early diagnosis and direct appropriate therapeutic interventions. PMID:26483618

  3. The underlying pathway structure of biochemical reaction networks

    PubMed Central

    Schilling, Christophe H.; Palsson, Bernhard O.

    1998-01-01

    Bioinformatics is yielding extensive, and in some cases complete, genetic and biochemical information about individual cell types and cellular processes, providing the composition of living cells and the molecular structure of its components. These components together perform integrated cellular functions that now need to be analyzed. In particular, the functional definition of biochemical pathways and their role in the context of the whole cell is lacking. In this study, we show how the mass balance constraints that govern the function of biochemical reaction networks lead to the translation of this problem into the realm of linear algebra. The functional capabilities of biochemical reaction networks, and thus the choices that cells can make, are reflected in the null space of their stoichiometric matrix. The null space is spanned by a finite number of basis vectors. We present an algorithm for the synthesis of a set of basis vectors for spanning the null space of the stoichiometric matrix, in which these basis vectors represent the underlying biochemical pathways that are fundamental to the corresponding biochemical reaction network. In other words, all possible flux distributions achievable by a defined set of biochemical reactions are represented by a linear combination of these basis pathways. These basis pathways thus represent the underlying pathway structure of the defined biochemical reaction network. This development is significant from a fundamental and conceptual standpoint because it yields a holistic definition of biochemical pathways in contrast to definitions that have arisen from the historical development of our knowledge about biochemical processes. Additionally, this new conceptual framework will be important in defining, characterizing, and studying biochemical pathways from the rapidly growing information on cellular function. PMID:9539712

  4. Construction and engineering of large biochemical pathways via DNA assembler

    PubMed Central

    Shao, Zengyi; Zhao, Huimin

    2015-01-01

    Summary DNA assembler enables rapid construction and engineering of biochemical pathways in a one-step fashion by exploitation of the in vivo homologous recombination mechanism in Saccharomyces cerevisiae. It has many applications in pathway engineering, metabolic engineering, combinatorial biology, and synthetic biology. Here we use two examples including the zeaxanthin biosynthetic pathway and the aureothin biosynthetic gene cluster to describe the key steps in the construction of pathways containing multiple genes using the DNA assembler approach. Methods for construct design, pathway assembly, pathway confirmation, and functional analysis are shown. The protocol for fine genetic modifications such as site-directed mutagenesis for engineering the aureothin gene cluster is also illustrated. PMID:23996442

  5. Biochemical-Pathway Diversity in Archaebacteria

    DTIC Science & Technology

    1990-08-30

    Classification) (U) Biochemical-pathway diversity in Archaebacteria 12 PERSONAL AUTHOR(S) I Jensen, Roy-A. i3o. TYPE OF REN" RT 12b. Tki~ 0’E D-30-9 4...by block numtb.sj FIEL I ROU I SIGRLJP Archaebacteria , biochemical diversity, prephenate 06 03. 1 dehydratase, aromatic amino acid biosynthesis t...1988 RE10SE: lo assess the extent to which the archaebacteria possess unique biochemical features of aromatic amino acid biosynthesis and regulation and

  6. Reconstructing biochemical pathways from time course data.

    PubMed

    Srividhya, Jeyaraman; Crampin, Edmund J; McSharry, Patrick E; Schnell, Santiago

    2007-03-01

    Time series data on biochemical reactions reveal transient behavior, away from chemical equilibrium, and contain information on the dynamic interactions among reacting components. However, this information can be difficult to extract using conventional analysis techniques. We present a new method to infer biochemical pathway mechanisms from time course data using a global nonlinear modeling technique to identify the elementary reaction steps which constitute the pathway. The method involves the generation of a complete dictionary of polynomial basis functions based on the law of mass action. Using these basis functions, there are two approaches to model construction, namely the general to specific and the specific to general approach. We demonstrate that our new methodology reconstructs the chemical reaction steps and connectivity of the glycolytic pathway of Lactococcus lactis from time course experimental data.

  7. "Which Pathway Am I?" Using a Game Approach to Teach Students about Biochemical Pathways

    ERIC Educational Resources Information Center

    Ooi, Beng Guat; Sanger, Michael J.

    2009-01-01

    This game was designed to provide students with an alternative way to learn biochemical pathways through an interactive approach. In this game, students worked in pairs to help each other identify pathways taped to each other's backs by asking simple "yes or no" questions related to these pathways. This exercise was conducted after the traditional…

  8. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways

    PubMed Central

    Shao, Zengyi; Zhao, Hua; Zhao, Huimin

    2009-01-01

    The assembly of large recombinant DNA encoding a whole biochemical pathway or genome represents a significant challenge. Here, we report a new method, DNA assembler, which allows the assembly of an entire biochemical pathway in a single step via in vivo homologous recombination in Saccharomyces cerevisiae. We show that DNA assembler can rapidly assemble a functional d-xylose utilization pathway (∼9 kb DNA consisting of three genes), a functional zeaxanthin biosynthesis pathway (∼11 kb DNA consisting of five genes) and a functional combined d-xylose utilization and zeaxanthin biosynthesis pathway (∼19 kb consisting of eight genes) with high efficiencies (70–100%) either on a plasmid or on a yeast chromosome. As this new method only requires simple DNA preparation and one-step yeast transformation, it represents a powerful tool in the construction of biochemical pathways for synthetic biology, metabolic engineering and functional genomics studies. PMID:19074487

  9. Explorations into Chemical Reactions and Biochemical Pathways.

    PubMed

    Gasteiger, Johann

    2016-12-01

    A brief overview of the work in the research group of the present author on extracting knowledge from chemical reaction data is presented. Methods have been developed to calculate physicochemical effects at the reaction site. It is shown that these physicochemical effects can quite favourably be used to derive equations for the calculation of data on gas phase reactions and on reactions in solution such as aqueous acidity of alcohols or carboxylic acids or the hydrolysis of amides. Furthermore, it is shown that these physicochemical effects are quite effective for assigning reactions into reaction classes that correspond to chemical knowledge. Biochemical reactions constitute a particularly interesting and challenging task for increasing our understanding of living species. The BioPath.Database is a rich source of information on biochemical reactions and has been used for a variety of applications of chemical, biological, or medicinal interests. Thus, it was shown that biochemical reactions can be assigned by the physicochemical effects into classes that correspond to the classification of enzymes by the EC numbers. Furthermore, 3D models of reaction intermediates can be used for searching for novel enzyme inhibitors. It was shown in a combined application of chemoinformatics and bioinformatics that essential pathways of diseases can be uncovered. Furthermore, a study showed that bacterial flavor-forming pathways can be discovered. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Calculation of biochemical net reactions and pathways by using matrix operations.

    PubMed Central

    Alberty, R A

    1996-01-01

    Pathways for net biochemical reactions can be calculated by using a computer program that solves systems of linear equations. The coefficients in the linear equations are the stoichiometric numbers in the biochemical equations for the system. The solution of the system of linear equations is a vector of the stoichiometric numbers of the reactions in the pathway for the net reaction; this is referred to as the pathway vector. The pathway vector gives the number of times the various reactions have to occur to produce the desired net reaction. Net reactions may involve unknown numbers of ATP, ADP, and Pi molecules. The numbers of ATP, ADP, and Pi in a desired net reaction can be calculated in a two-step process. In the first step, the pathway is calculated by solving the system of linear equations for an abbreviated stoichiometric number matrix without ATP, ADP, Pi, NADred, and NADox. In the second step, the stoichiometric numbers in the desired net reaction, which includes ATP, ADP, Pi, NADred, and NADox, are obtained by multiplying the full stoichiometric number matrix by the calculated pathway vector. PMID:8804633

  11. Why is intelligence correlated with semen quality?: Biochemical pathways common to sperm and neuron function and their vulnerability to pleiotropic mutations.

    PubMed

    Pierce, Arand; Miller, Geoffrey; Arden, Rosalind; Gottfredson, Linda S

    2009-09-01

    We recently found positive correlations between human general intelligence and three key indices of semen quality, and hypothesized that these correlations arise through a phenotype-wide 'general fitness factor' reflecting overall mutation load. In this addendum we consider some of the biochemical pathways that may act as targets for pleiotropic mutations that disrupt both neuron function and sperm function in parallel. We focus especially on the inter-related roles of polyunsaturated fatty acids, exocytosis and receptor signaling.

  12. Activity-based protein profiling for biochemical pathway discovery in cancer

    PubMed Central

    Nomura, Daniel K.; Dix, Melissa M.; Cravatt, Benjamin F.

    2011-01-01

    Large-scale profiling methods have uncovered numerous gene and protein expression changes that correlate with tumorigenesis. However, determining the relevance of these expression changes and which biochemical pathways they affect has been hindered by our incomplete understanding of the proteome and its myriad functions and modes of regulation. Activity-based profiling platforms enable both the discovery of cancer-relevant enzymes and selective pharmacological probes to perturb and characterize these proteins in tumour cells. When integrated with other large-scale profiling methods, activity-based proteomics can provide insight into the metabolic and signalling pathways that support cancer pathogenesis and illuminate new strategies for disease diagnosis and treatment. PMID:20703252

  13. Multiple Ion Binding Equilibria, Reaction Kinetics, and Thermodynamics in Dynamic Models of Biochemical Pathways

    PubMed Central

    Vinnakota, Kalyan C.; Wu, Fan; Kushmerick, Martin J.; Beard, Daniel A.

    2009-01-01

    The operation of biochemical systems in vivo and in vitro is strongly influenced by complex interactions between biochemical reactants and ions such as H+, Mg2+, K+, and Ca2+. These are important second messengers in metabolic and signaling pathways that directly influence the kinetics and thermodynamics of biochemical systems. Herein we describe the biophysical theory and computational methods to account for multiple ion binding to biochemical reactants and demonstrate the crucial effects of ion binding on biochemical reaction kinetics and thermodynamics. In simulations of realistic systems, the concentrations of these ions change with time due to dynamic buffering and competitive binding. In turn, the effective thermodynamic properties vary as functions of cation concentrations and important environmental variables such as temperature and overall ionic strength. Physically realistic simulations of biochemical systems require incorporating all of these phenomena into a coherent mathematical description. Several applications to physiological systems are demonstrated based on this coherent simulation framework. PMID:19216922

  14. Gluconeogenesis: An ancient biochemical pathway with a new twist.

    PubMed

    Miyamoto, Tetsuya; Amrein, Hubert

    2017-07-03

    Synthesis of sugars from simple carbon sources is critical for survival of animals under limited nutrient availability. Thus, sugar-synthesizing enzymes should be present across the entire metazoan spectrum. Here, we explore the evolution of glucose and trehalose synthesis using a phylogenetic analysis of enzymes specific for the two pathways. Our analysis reveals that the production of trehalose is the more ancestral biochemical process, found in single cell organisms and primitive metazoans, but also in insects. The gluconeogenic-specific enzyme glucose-6-phosphatase (G6Pase) first appears in Cnidaria, but is also present in Echinodermata, Mollusca and Vertebrata. Intriguingly, some species of nematodes and arthropods possess the genes for both pathways. Moreover, expression data from Drosophila suggests that G6Pase and, hence, gluconeogenesis, initially had a neuronal function. We speculate that in insects-and possibly in some vertebrates-gluconeogenesis may be used as a means of neuronal signaling.

  15. Efficient key pathway mining: combining networks and OMICS data.

    PubMed

    Alcaraz, Nicolas; Friedrich, Tobias; Kötzing, Timo; Krohmer, Anton; Müller, Joachim; Pauling, Josch; Baumbach, Jan

    2012-07-01

    Systems biology has emerged over the last decade. Driven by the advances in sophisticated measurement technology the research community generated huge molecular biology data sets. These comprise rather static data on the interplay of biological entities, for instance protein-protein interaction network data, as well as quite dynamic data collected for studying the behavior of individual cells or tissues in accordance with changing environmental conditions, such as DNA microarrays or RNA sequencing. Here we bring the two different data types together in order to gain higher level knowledge. We introduce a significantly improved version of the KeyPathwayMiner software framework. Given a biological network modelled as a graph and a set of expression studies, KeyPathwayMiner efficiently finds and visualizes connected sub-networks where most components are expressed in most cases. It finds all maximal connected sub-networks where all nodes but k exceptions are expressed in all experimental studies but at most l exceptions. We demonstrate the power of the new approach by comparing it to similar approaches with gene expression data previously used to study Huntington's disease. In addition, we demonstrate KeyPathwayMiner's flexibility and applicability to non-array data by analyzing genome-scale DNA methylation profiles from colorectal tumor cancer patients. KeyPathwayMiner release 2 is available as a Cytoscape plugin and online at http://keypathwayminer.mpi-inf.mpg.de.

  16. Gluconeogenesis: An ancient biochemical pathway with a new twist

    PubMed Central

    Miyamoto, Tetsuya; Amrein, Hubert

    2017-01-01

    ABSTRACT Synthesis of sugars from simple carbon sources is critical for survival of animals under limited nutrient availability. Thus, sugar-synthesizing enzymes should be present across the entire metazoan spectrum. Here, we explore the evolution of glucose and trehalose synthesis using a phylogenetic analysis of enzymes specific for the two pathways. Our analysis reveals that the production of trehalose is the more ancestral biochemical process, found in single cell organisms and primitive metazoans, but also in insects. The gluconeogenic-specific enzyme glucose-6-phosphatase (G6Pase) first appears in Cnidaria, but is also present in Echinodermata, Mollusca and Vertebrata. Intriguingly, some species of nematodes and arthropods possess the genes for both pathways. Moreover, expression data from Drosophila suggests that G6Pase and, hence, gluconeogenesis, initially had a neuronal function. We speculate that in insects—and possibly in some vertebrates—gluconeogenesis may be used as a means of neuronal signaling. PMID:28121487

  17. The fractional diffusion limit of a kinetic model with biochemical pathway

    NASA Astrophysics Data System (ADS)

    Perthame, Benoît; Sun, Weiran; Tang, Min

    2018-06-01

    Kinetic-transport equations that take into account the intracellular pathways are now considered as the correct description of bacterial chemotaxis by run and tumble. Recent mathematical studies have shown their interest and their relations to more standard models. Macroscopic equations of Keller-Segel type have been derived using parabolic scaling. Due to the randomness of receptor methylation or intracellular chemical reactions, noise occurs in the signaling pathways and affects the tumbling rate. Then comes the question to understand the role of an internal noise on the behavior of the full population. In this paper we consider a kinetic model for chemotaxis which includes biochemical pathway with noises. We show that under proper scaling and conditions on the tumbling frequency as well as the form of noise, fractional diffusion can arise in the macroscopic limits of the kinetic equation. This gives a new mathematical theory about how long jumps can be due to the internal noise of the bacteria.

  18. Hierarchical modularization of biochemical pathways using fuzzy-c means clustering.

    PubMed

    de Luis Balaguer, Maria A; Williams, Cranos M

    2014-08-01

    Biological systems that are representative of regulatory, metabolic, or signaling pathways can be highly complex. Mathematical models that describe such systems inherit this complexity. As a result, these models can often fail to provide a path toward the intuitive comprehension of these systems. More coarse information that allows a perceptive insight of the system is sometimes needed in combination with the model to understand control hierarchies or lower level functional relationships. In this paper, we present a method to identify relationships between components of dynamic models of biochemical pathways that reside in different functional groups. We find primary relationships and secondary relationships. The secondary relationships reveal connections that are present in the system, which current techniques that only identify primary relationships are unable to show. We also identify how relationships between components dynamically change over time. This results in a method that provides the hierarchy of the relationships among components, which can help us to understand the low level functional structure of the system and to elucidate potential hierarchical control. As a proof of concept, we apply the algorithm to the epidermal growth factor signal transduction pathway, and to the C3 photosynthesis pathway. We identify primary relationships among components that are in agreement with previous computational decomposition studies, and identify secondary relationships that uncover connections among components that current computational approaches were unable to reveal.

  19. Biochemical Modulation of Lipid Pathway in Microalgae Dunaliella sp. for Biodiesel Production

    PubMed Central

    Talebi, Ahmad Farhad; Tohidfar, Masoud; Mousavi Derazmahalleh, Seyedeh Mahsa; Sulaiman, Alawi; Baharuddin, Azhari Samsu; Tabatabaei, Meisam

    2015-01-01

    Exploitation of renewable sources of energy such as algal biodiesel could turn energy supplies problem around. Studies on a locally isolated strain of Dunaliella sp. showed that the mean lipid content in cultures enriched by 200 mg L−1 myoinositol was raised by around 33% (1.5 times higher than the control). Similarly, higher lipid productivity values were achieved in cultures treated by 100 and 200 mg L−1 myoinositol. Fluorometry analyses (microplate fluorescence and flow cytometry) revealed increased oil accumulation in the Nile red-stained algal samples. Moreover, it was predicted that biodiesel produced from myoinositol-treated cells possessed improved oxidative stability, cetane number, and cloud point values. From the genomic point of view, real-time analyses revealed that myoinositol negatively influenced transcript abundance of AccD gene (one of the key genes involved in lipid production pathway) due to feedback inhibition and that its positive effect must have been exerted through other genes. The findings of the current research are not to interprete that myoinositol supplementation could answer all the challenges faced in microalgal biodiesel production but instead to show that “there is a there there” for biochemical modulation strategies, which we achieved, increased algal oil quantity and enhanced resultant biodiesel quality. PMID:26146623

  20. Biochemical Modulation of Lipid Pathway in Microalgae Dunaliella sp. for Biodiesel Production.

    PubMed

    Talebi, Ahmad Farhad; Tohidfar, Masoud; Mousavi Derazmahalleh, Seyedeh Mahsa; Sulaiman, Alawi; Baharuddin, Azhari Samsu; Tabatabaei, Meisam

    2015-01-01

    Exploitation of renewable sources of energy such as algal biodiesel could turn energy supplies problem around. Studies on a locally isolated strain of Dunaliella sp. showed that the mean lipid content in cultures enriched by 200 mg L(-1) myoinositol was raised by around 33% (1.5 times higher than the control). Similarly, higher lipid productivity values were achieved in cultures treated by 100 and 200 mg L(-1) myoinositol. Fluorometry analyses (microplate fluorescence and flow cytometry) revealed increased oil accumulation in the Nile red-stained algal samples. Moreover, it was predicted that biodiesel produced from myoinositol-treated cells possessed improved oxidative stability, cetane number, and cloud point values. From the genomic point of view, real-time analyses revealed that myoinositol negatively influenced transcript abundance of AccD gene (one of the key genes involved in lipid production pathway) due to feedback inhibition and that its positive effect must have been exerted through other genes. The findings of the current research are not to interprete that myoinositol supplementation could answer all the challenges faced in microalgal biodiesel production but instead to show that "there is a there there" for biochemical modulation strategies, which we achieved, increased algal oil quantity and enhanced resultant biodiesel quality.

  1. Deterministic modelling and stochastic simulation of biochemical pathways using MATLAB.

    PubMed

    Ullah, M; Schmidt, H; Cho, K H; Wolkenhauer, O

    2006-03-01

    The analysis of complex biochemical networks is conducted in two popular conceptual frameworks for modelling. The deterministic approach requires the solution of ordinary differential equations (ODEs, reaction rate equations) with concentrations as continuous state variables. The stochastic approach involves the simulation of differential-difference equations (chemical master equations, CMEs) with probabilities as variables. This is to generate counts of molecules for chemical species as realisations of random variables drawn from the probability distribution described by the CMEs. Although there are numerous tools available, many of them free, the modelling and simulation environment MATLAB is widely used in the physical and engineering sciences. We describe a collection of MATLAB functions to construct and solve ODEs for deterministic simulation and to implement realisations of CMEs for stochastic simulation using advanced MATLAB coding (Release 14). The program was successfully applied to pathway models from the literature for both cases. The results were compared to implementations using alternative tools for dynamic modelling and simulation of biochemical networks. The aim is to provide a concise set of MATLAB functions that encourage the experimentation with systems biology models. All the script files are available from www.sbi.uni-rostock.de/ publications_matlab-paper.html.

  2. Hippo Signaling: Key Emerging Pathway in Cellular and Whole-Body Metabolism.

    PubMed

    Ardestani, Amin; Lupse, Blaz; Maedler, Kathrin

    2018-05-05

    The evolutionarily conserved Hippo pathway is a key regulator of organ size and tissue homeostasis. Its dysregulation is linked to multiple pathological disorders. In addition to regulating development and growth, recent studies show that Hippo pathway components such as MST1/2 and LATS1/2 kinases, as well as YAP/TAZ transcriptional coactivators, are regulated by metabolic pathways and that the Hippo pathway controls metabolic processes at the cellular and organismal levels in physiological and metabolic disease states such as obesity, type 2 diabetes (T2D), nonalcoholic fatty liver disease (NAFLD), cardiovascular disorders, and cancer. In this review we summarize the connection between key Hippo components and metabolism, and how this interplay regulates cellular metabolism and metabolic pathways. The emerging function of Hippo in the regulation of metabolic homeostasis under physiological and pathological conditions is highlighted. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Diversity of bile salts in fish and amphibians: evolution of a complex biochemical pathway.

    PubMed

    Hagey, Lee R; Møller, Peter R; Hofmann, Alan F; Krasowski, Matthew D

    2010-01-01

    Bile salts are the major end metabolites of cholesterol and are also important in lipid and protein digestion, as well as shaping of the gut microflora. Previous studies had demonstrated variation of bile salt structures across vertebrate species. We greatly extend prior surveys of bile salt variation in fish and amphibians, particularly in analysis of the biliary bile salts of Agnatha and Chondrichthyes. While there is significant structural variation of bile salts across all fish orders, bile salt profiles are generally stable within orders of fish and do not correlate with differences in diet. This large data set allowed us to infer evolutionary changes in the bile salt synthetic pathway. The hypothesized ancestral bile salt synthetic pathway, likely exemplified in extant hagfish, is simpler and much shorter than the pathway of most teleost fish and terrestrial vertebrates. Thus, the bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution. Analysis of the evolution of bile salt synthetic pathways provides a rich model system for the molecular evolution of a complex biochemical pathway in vertebrates.

  4. Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology (edited by Gerhard Michal)

    NASA Astrophysics Data System (ADS)

    Voige, Reviewed By William H.

    2000-02-01

    For decades, a wall chart detailing living organisms' metabolic pathways has been a fixture in many classrooms and laboratories where biochemistry is taught. One of the most popular of those charts first appeared 30 years ago. Now its editor, Gerhard Michal, has produced a book that summarizes metabolism (broadly defined) in graphical and textual formats. The book retains the elegance of the chart. Names of molecules are printed in a crisp, easy-to-read font, and structural formulas are shown with exemplary clarity. Color coding serves multiple purposes: to differentiate enzymes, substrates, cofactors, and effector molecules; to indicate in which group or groups of organisms a reaction has been observed; and to distinguish enzymatic reactions from regulatory effects. The primary advantage of presenting this information in book format is immediately apparent. A typical metabolic chart covers about 2 m2; the book has a total surface area nearly 10 times greater. The extra space is used to add explanatory text to the figures and to include many topics not covered by the traditional definition of metabolism. Examples include replication, transcription, translation, reaction mechanisms for proteolytic enzymes, and the role of chaperones in protein folding. Illustrating these topics is not as straightforward as delineating a metabolic pathway, but the author has done an admirable job of designing figures that clarify these and other aspects of biochemistry and complement the accompanying text. A potential deficiency of book format is the inability to clearly show links between different realms of metabolism: carbohydrate and amino acid pathways, for example. The book overcomes this problem in two ways. A diagrammatic overview of metabolism (with references to applicable sections of the book) is printed inside its front cover, and key compounds (pyruvate, for example) have a distinctive green background to provide a visual link between pathways. (The author compares this

  5. Host Glycan Sugar-Specific Pathways in Streptococcus pneumonia: Galactose as a Key Sugar in Colonisation and Infection

    PubMed Central

    Paixão, Laura; Oliveira, Joana; Veríssimo, André; Vinga, Susana; Lourenço, Eva C.; Ventura, M. Rita; Kjos, Morten; Veening, Jan-Willem; Fernandes, Vitor E.; Andrew, Peter W.; Yesilkaya, Hasan; Neves, Ana Rute

    2015-01-01

    The human pathogen Streptococcus pneumoniae is a strictly fermentative organism that relies on glycolytic metabolism to obtain energy. In the human nasopharynx S. pneumoniae encounters glycoconjugates composed of a variety of monosaccharides, which can potentially be used as nutrients once depolymerized by glycosidases. Therefore, it is reasonable to hypothesise that the pneumococcus would rely on these glycan-derived sugars to grow. Here, we identified the sugar-specific catabolic pathways used by S. pneumoniae during growth on mucin. Transcriptome analysis of cells grown on mucin showed specific upregulation of genes likely to be involved in deglycosylation, transport and catabolism of galactose, mannose and N acetylglucosamine. In contrast to growth on mannose and N-acetylglucosamine, S. pneumoniae grown on galactose re-route their metabolic pathway from homolactic fermentation to a truly mixed acid fermentation regime. By measuring intracellular metabolites, enzymatic activities and mutant analysis, we provide an accurate map of the biochemical pathways for galactose, mannose and N-acetylglucosamine catabolism in S. pneumoniae. Intranasal mouse infection models of pneumococcal colonisation and disease showed that only mutants in galactose catabolic genes were attenuated. Our data pinpoint galactose as a key nutrient for growth in the respiratory tract and highlights the importance of central carbon metabolism for pneumococcal pathogenesis. PMID:25826206

  6. Molecular Pathways

    PubMed Central

    Lok, Benjamin H.; Powell, Simon N.

    2012-01-01

    The Rad52 protein was largely ignored in humans and other mammals when the mouse knockout revealed a largely “no-effect” phenotype. However, using synthetic lethal approaches to investigate context dependent function, new studies have shown that Rad52 plays a key survival role in cells lacking the function of the BRCA1-BRCA2 pathway of homologous recombination. Biochemical studies also showed significant differences between yeast and human Rad52, in which yeast Rad52 can promote strand invasion of RPA-coated single-stranded DNA in the presence of Rad51, but human Rad52 cannot. This results in the paradox of how is human Rad52 providing Rad51 function: presumably there is something missing in the biochemical assays that exists in-vivo, but the nature of this missing factor is currently unknown. Recent studies have suggested that Rad52 provides back-up Rad51 function for all members of the BRCA1-BRCA2 pathway, suggesting that Rad52 may be a target for therapy in BRCA pathway deficient cancers. Screening for ways to inhibit Rad52 would potentially provide a complementary strategy for targeting BRCA-deficient cancers in addition to PARP inhibitors. PMID:23071261

  7. Metabolomic profiling and genomic analysis of wheat aneuploid lines to identify genes controlling biochemical pathways in mature grain.

    PubMed

    Francki, Michael G; Hayton, Sarah; Gummer, Joel P A; Rawlinson, Catherine; Trengove, Robert D

    2016-02-01

    Metabolomics is becoming an increasingly important tool in plant genomics to decipher the function of genes controlling biochemical pathways responsible for trait variation. Although theoretical models can integrate genes and metabolites for trait variation, biological networks require validation using appropriate experimental genetic systems. In this study, we applied an untargeted metabolite analysis to mature grain of wheat homoeologous group 3 ditelosomic lines, selected compounds that showed significant variation between wheat lines Chinese Spring and at least one ditelosomic line, tracked the genes encoding enzymes of their biochemical pathway using the wheat genome survey sequence and determined the genetic components underlying metabolite variation. A total of 412 analytes were resolved in the wheat grain metabolome, and principal component analysis indicated significant differences in metabolite profiles between Chinese Spring and each ditelosomic lines. The grain metabolome identified 55 compounds positively matched against a mass spectral library where the majority showed significant differences between Chinese Spring and at least one ditelosomic line. Trehalose and branched-chain amino acids were selected for detailed investigation, and it was expected that if genes encoding enzymes directly related to their biochemical pathways were located on homoeologous group 3 chromosomes, then corresponding ditelosomic lines would have a significant reduction in metabolites compared with Chinese Spring. Although a proportion showed a reduction, some lines showed significant increases in metabolites, indicating that genes directly and indirectly involved in biosynthetic pathways likely regulate the metabolome. Therefore, this study demonstrated that wheat aneuploid lines are suitable experimental genetic system to validate metabolomics-genomics networks. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Biochemical evidence for Ku-independent backup pathways of NHEJ.

    PubMed

    Wang, Huichen; Perrault, Ange Ronel; Takeda, Yoshihiko; Qin, Wei; Wang, Hongyan; Iliakis, George

    2003-09-15

    Cells of higher eukaryotes process within minutes double strand breaks (DSBs) in their genome using a non-homologous end joining (NHEJ) apparatus that engages DNA-PKcs, Ku, DNA ligase IV, XRCC4 and other as of yet unidentified factors. Although chemical inhibition, or mutation, in any of these factors delays processing, cells ultimately remove the majority of DNA DSBs using an alternative pathway operating with an order of magnitude slower kinetics. This alternative pathway is active in mutants deficient in genes of the RAD52 epistasis group and frequently joins incorrect ends. We proposed, therefore, that it reflects an alternative form of NHEJ that operates as a backup (B-NHEJ) to the DNA-PK-dependent (D-NHEJ) pathway, rather than homology directed repair of DSBs. The present study investigates the role of Ku in the coordination of these pathways using as a model end joining of restriction endonuclease linearized plasmid DNA in whole cell extracts. Efficient, error-free, end joining observed in such in vitro reactions is strongly inhibited by anti-Ku antibodies. The inhibition requires DNA-PKcs, despite the fact that Ku efficiently binds DNA ends in the presence of antibodies, or in the absence of DNA-PKcs. Strong inhibition of DNA end joining is also mediated by wortmannin, an inhibitor of DNA-PKcs, in the presence but not in the absence of Ku, and this inhibition can be rescued by pre-incubating the reaction with double stranded oligonucleotides. The results are compatible with a role of Ku in directing end joining to a DNA-PK dependent pathway, mediated by efficient end binding and productive interactions with DNA-PKcs. On the other hand, efficient end joining is observed in extracts of cells lacking DNA-PKcs, as well as in Ku-depleted extracts in line with the operation of alternative pathways. Extracts depleted of Ku and DNA-PKcs rejoin blunt ends, as well as homologous ends with 3' or 5' protruding single strands with similar efficiency, but addition of Ku

  9. Biochemical evidence for Ku-independent backup pathways of NHEJ

    PubMed Central

    Wang, Huichen; Perrault, Ange Ronel; Takeda, Yoshihiko; Qin, Wei; Wang, Hongyan; Iliakis, George

    2003-01-01

    Cells of higher eukaryotes process within minutes double strand breaks (DSBs) in their genome using a non-homologous end joining (NHEJ) apparatus that engages DNA-PKcs, Ku, DNA ligase IV, XRCC4 and other as of yet unidentified factors. Although chemical inhibition, or mutation, in any of these factors delays processing, cells ultimately remove the majority of DNA DSBs using an alternative pathway operating with an order of magnitude slower kinetics. This alternative pathway is active in mutants deficient in genes of the RAD52 epistasis group and frequently joins incorrect ends. We proposed, therefore, that it reflects an alternative form of NHEJ that operates as a backup (B-NHEJ) to the DNA-PK-dependent (D-NHEJ) pathway, rather than homology directed repair of DSBs. The present study investigates the role of Ku in the coordination of these pathways using as a model end joining of restriction endonuclease linearized plasmid DNA in whole cell extracts. Efficient, error-free, end joining observed in such in vitro reactions is strongly inhibited by anti-Ku antibodies. The inhibition requires DNA-PKcs, despite the fact that Ku efficiently binds DNA ends in the presence of antibodies, or in the absence of DNA-PKcs. Strong inhibition of DNA end joining is also mediated by wortmannin, an inhibitor of DNA-PKcs, in the presence but not in the absence of Ku, and this inhibition can be rescued by pre-incubating the reaction with double stranded oligonucleotides. The results are compatible with a role of Ku in directing end joining to a DNA-PK dependent pathway, mediated by efficient end binding and productive interactions with DNA-PKcs. On the other hand, efficient end joining is observed in extracts of cells lacking DNA-PKcs, as well as in Ku-depleted extracts in line with the operation of alternative pathways. Extracts depleted of Ku and DNA-PKcs rejoin blunt ends, as well as homologous ends with 3′ or 5′ protruding single strands with similar efficiency, but addition of

  10. Harnessing Intracellular Biochemical Pathways for In Vitro Synthesis of Designer Tellurium Nanorods.

    PubMed

    Xiong, Ling-Hong; Cui, Ran; Zhang, Zhi-Ling; Tu, Jia-Wei; Shi, Yun-Bo; Pang, Dai-Wen

    2015-10-28

    Synthesizing nanomaterials of desired properties is a big challenge, which requires extremely harsh conditions and/or use of toxic materials. More recently developed in vivo methods have brought a different set of problems such as separation and purification of nanomaterials made in vivo. Here, a novel approach that harnesses cellular pathways for in vitro synthesis of high-quality tellurium nanorods with tunable lengths and optical properties is reported. It is first demonstrated that in vivo biochemical pathways could be used to synthesize Te nanorods via the intracellular reduction of TeO3(2-) in living Staphylococcus aureus cells. The pathways to set up a quasi-biological system for Te precursor formation are then utilized, which could further synthesize Te nanorods in vitro. This allows to successfully synthesize in vitro, under routine laboratory conditions, Te nanorods with uniform and tunable lengths, ranging from about 10 to 200 nm, and controllable optical properties with high molar extinction coefficients. The approach here should open new avenues for controllable, facile, and efficient synthesis of designer nanomaterials for diverse industrial and biomedical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Simulation studies in biochemical signaling and enzyme reactions

    NASA Astrophysics Data System (ADS)

    Nelatury, Sudarshan R.; Vagula, Mary C.

    2014-06-01

    Biochemical pathways characterize various biochemical reaction schemes that involve a set of species and the manner in which they are connected. Determination of schematics that represent these pathways is an important task in understanding metabolism and signal transduction. Examples of these Pathways are: DNA and protein synthesis, and production of several macro-molecules essential for cell survival. A sustained feedback mechanism arises in gene expression and production of mRNA that lead to protein synthesis if the protein so synthesized serves as a transcription factor and becomes a repressor of the gene expression. The cellular regulations are carried out through biochemical networks consisting of reactions and regulatory proteins. Systems biology is a relatively new area that attempts to describe the biochemical pathways analytically and develop reliable mathematical models for the pathways. A complete understanding of chemical reaction kinetics is prohibitively hard thanks to the nonlinear and highly complex mechanisms that regulate protein formation, but attempting to numerically solve some of the governing differential equations seems to offer significant insight about their biochemical picture. To validate these models, one can perform simple experiments in the lab. This paper introduces fundamental ideas in biochemical signaling and attempts to take first steps into the understanding of biochemical oscillations. Initially, the two-pool model of calcium is used to describe the dynamics behind the oscillations. Later we present some elementary results showing biochemical oscillations arising from solving differential equations of Elowitz and Leibler using MATLAB software.

  12. A Biochemical Approach to Understanding the Fanconi Anemia Pathway-Regulated Nucleases in Genome Maintenance for Preventing Bone Marrow Failure and Cancer

    DTIC Science & Technology

    2014-04-01

    the Fanconi Anemia Pathway- Regulated Nucleases in Genome Maintenance for Preventing Bone Marrow Failure and Cancer PRINCIPAL INVESTIGATOR...GRANT NUMBER 4. TITLE AND SUBTITLE A Biochemical Approach to Understanding the Fanconi Anemia Pathway-Regulated Nucleases in Genome Maintenance for...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Fanconi anemia is the most prevalent inherited BMF syndromes, caused by mutations in

  13. Prediction and Biochemical Demonstration of a Catabolic Pathway for the Osmoprotectant Proline Betaine

    PubMed Central

    Kumar, Ritesh; Zhao, Suwen; Vetting, Matthew W.; Wood, B. McKay; Sakai, Ayano; Cho, Kyuil; Solbiati, José; Almo, Steven C.; Sweedler, Jonathan V.; Jacobson, Matthew P.; Gerlt, John A.; Cronan, John E.

    2014-01-01

    ABSTRACT Through the use of genetic, enzymatic, metabolomic, and structural analyses, we have discovered the catabolic pathway for proline betaine, an osmoprotectant, in Paracoccus denitrificans and Rhodobacter sphaeroides. Genetic and enzymatic analyses showed that several of the key enzymes of the hydroxyproline betaine degradation pathway also function in proline betaine degradation. Metabolomic analyses detected each of the metabolic intermediates of the pathway. The proline betaine catabolic pathway was repressed by osmotic stress and cold stress, and a regulatory transcription factor was identified. We also report crystal structure complexes of the P. denitrificans HpbD hydroxyproline betaine epimerase/proline betaine racemase with l-proline betaine and cis-hydroxyproline betaine. PMID:24520058

  14. Pathway collages: personalized multi-pathway diagrams.

    PubMed

    Paley, Suzanne; O'Maille, Paul E; Weaver, Daniel; Karp, Peter D

    2016-12-13

    Metabolic pathway diagrams are a classical way of visualizing a linked cascade of biochemical reactions. However, to understand some biochemical situations, viewing a single pathway is insufficient, whereas viewing the entire metabolic network results in information overload. How do we enable scientists to rapidly construct personalized multi-pathway diagrams that depict a desired collection of interacting pathways that emphasize particular pathway interactions? We define software for constructing personalized multi-pathway diagrams called pathway-collages using a combination of manual and automatic layouts. The user specifies a set of pathways of interest for the collage from a Pathway/Genome Database. Layouts for the individual pathways are generated by the Pathway Tools software, and are sent to a Javascript Pathway Collage application implemented using Cytoscape.js. That application allows the user to re-position pathways; define connections between pathways; change visual style parameters; and paint metabolomics, gene expression, and reaction flux data onto the collage to obtain a desired multi-pathway diagram. We demonstrate the use of pathway collages in two application areas: a metabolomics study of pathogen drug response, and an Escherichia coli metabolic model. Pathway collages enable facile construction of personalized multi-pathway diagrams.

  15. Peroxisomal biogenesis is genetically and biochemically linked to carbohydrate metabolism in Drosophila and mouse

    PubMed Central

    Chao, Yu-Hsin; Giagtzoglou, Nikolaos; Putluri, Nagireddy; Coarfa, Cristian; Donti, Taraka; Faust, Joseph E.; McNew, James A.; Sardiello, Marco; Baes, Myriam; Bellen, Hugo J.

    2017-01-01

    Peroxisome biogenesis disorders (PBD) are a group of multi-system human diseases due to mutations in the PEX genes that are responsible for peroxisome assembly and function. These disorders lead to global defects in peroxisomal function and result in severe brain, liver, bone and kidney disease. In order to study their pathogenesis we undertook a systematic genetic and biochemical study of Drosophila pex16 and pex2 mutants. These mutants are short-lived with defects in locomotion and activity. Moreover these mutants exhibit severe morphologic and functional peroxisomal defects. Using metabolomics we uncovered defects in multiple biochemical pathways including defects outside the canonical specialized lipid pathways performed by peroxisomal enzymes. These included unanticipated changes in metabolites in glycolysis, glycogen metabolism, and the pentose phosphate pathway, carbohydrate metabolic pathways that do not utilize known peroxisomal enzymes. In addition, mutant flies are starvation sensitive and are very sensitive to glucose deprivation exhibiting dramatic shortening of lifespan and hyperactivity on low-sugar food. We use bioinformatic transcriptional profiling to examine gene co-regulation between peroxisomal genes and other metabolic pathways and we observe that the expression of peroxisomal and carbohydrate pathway genes in flies and mouse are tightly correlated. Indeed key steps in carbohydrate metabolism were found to be strongly co-regulated with peroxisomal genes in flies and mice. Moreover mice lacking peroxisomes exhibit defective carbohydrate metabolism at the same key steps in carbohydrate breakdown. Our data indicate an unexpected link between these two metabolic processes and suggest metabolism of carbohydrates could be a new therapeutic target for patients with PBD. PMID:28640802

  16. Microfluidics meets metabolomics to reveal the impact of Campylobacter jejuni infection on biochemical pathways.

    PubMed

    Mortensen, Ninell P; Mercier, Kelly A; McRitchie, Susan; Cavallo, Tammy B; Pathmasiri, Wimal; Stewart, Delisha; Sumner, Susan J

    2016-06-01

    Microfluidic devices that are currently being used in pharmaceutical research also have a significant potential for utilization in investigating exposure to infectious agents. We have established a microfluidic device cultured with Caco-2 cells, and utilized metabolomics to investigate the biochemical responses to the bacterial pathogen Campylobacter jejuni. In the microfluidic devices, Caco-2 cells polarize at day 5, are uniform, have defined brush borders and tight junctions, and form a mucus layer. Metabolomics analysis of cell culture media collected from both Caco-2 cell culture systems demonstrated a more metabolic homogenous biochemical profile in the media collected from microfluidic devices, compared with media collected from transwells. GeneGo pathway mapping indicated that aminoacyl-tRNA biosynthesis was perturbed by fluid flow, suggesting that fluid dynamics and shear stress impacts the cells translational quality control. Both microfluidic device and transwell culturing systems were used to investigate the impact of Campylobacter jejuni infection on biochemical processes. Caco-2 cells cultured in either system were infected at day 5 with C. jejuni 81-176 for 48 h. Metabolomics analysis clearly differentiated C. jejuni 81-176 infected and non-infected medias collected from the microfluidic devices, and demonstrated that C. jejuni 81-176 infection in microfluidic devices impacts branched-chain amino acid metabolism, glycolysis, and gluconeogenesis. In contrast, no distinction was seen in the biochemical profiles of infected versus non-infected media collected from cells cultured in transwells. Microfluidic culturing conditions demonstrated a more metabolically homogenous cell population, and present the opportunity for studying host-pathogen interactions for extended periods of time.

  17. Microfluidics Meets Metabolomics to Reveal the Impact of Campylobacter jejuni Infection on Biochemical Pathways

    PubMed Central

    Mortensen, Ninell P.; Mercier, Kelly A.; McRitchie, Susan; Cavallo, Tammy B.; Pathmasiri, Wimal; Stewart, Delisha; Sumner, Susan J.

    2016-01-01

    Microfluidic devices that are currently being used in pharmaceutical research also have a significant potential for utilization in investigating exposure to infectious agents. We have established a microfluidic device cultured with Caco-2 cells, and utilized metabolomics to investigate the biochemical responses to the bacterial pathogen Campylobacter jejuni. In the microfluidic devices, Caco-2 cells polarize at day 5, are uniform, have defined brush borders and tight junctions, and form a mucus layer. Metabolomics analysis of cell culture media collected from both Caco-2 cell culture systems demonstrated a more metabolic homogenous biochemical profile in the media collected from microfluidic devices, compared with media collected from transwells. GeneGo pathway mapping indicated that aminoacyl-tRNA biosynthesis was perturbed by fluid flow, suggesting that fluid dynamics and shear stress impacts the cells translational quality control. Both microfluidic device and transwell culturing systems were used to investigate the impact of Campylobacter jejuni infection on biochemical processes. Caco-2 cells cultured in either system were infected at day 5 with C. jejuni 81-176 for 48 hours. Metabolomics analysis clearly differentiated C. jejuni 81-176 infected and non-infected medias collected from the microfluidic devices, and demonstrated that C. jejuni 81-176 infection in microfluidic devices impacts branched-chain amino acid metabolism, glycolysis, and gluconeogenesis. In contrast, no distinction was seen in the biochemical profiles of infected versus non-infected media collected from cells cultured in transwells. Microfluidic culturing conditions demonstrated a more metabolically homogenous cell population, and present the opportunity for studying host-pathogen interactions for extended periods of time. PMID:27231016

  18. Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli

    PubMed Central

    Morris, Melody K.; Saez-Rodriguez, Julio; Clarke, David C.; Sorger, Peter K.; Lauffenburger, Douglas A.

    2011-01-01

    Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL), converts a prior knowledge network (obtained from literature or interactome databases) into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a) generating experimentally testable biological hypotheses concerning pathway crosstalk, (b) establishing capability for quantitative prediction of protein activity, and (c) prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone. PMID:21408212

  19. Bi-directional gene set enrichment and canonical correlation analysis identify key diet-sensitive pathways and biomarkers of metabolic syndrome.

    PubMed

    Morine, Melissa J; McMonagle, Jolene; Toomey, Sinead; Reynolds, Clare M; Moloney, Aidan P; Gormley, Isobel C; Gaora, Peadar O; Roche, Helen M

    2010-10-07

    constituent genes, as well as strong correlations between gene expression and plasma markers of metabolic syndrome independent of the dietary effect. Bi-directional gene set enrichment analysis more accurately reflects dynamic regulatory behaviour in biochemical pathways, and as such highlighted biologically relevant changes that were not detected using a traditional approach. In such cases where transcriptomic response to treatment is exceptionally large, canonical correlation analysis in conjunction with Fisher's exact test highlights the subset of pathways showing strongest correlation with the clinical markers of interest. In this case, we have identified selenoamino acid metabolism and steroid biosynthesis as key pathways mediating the observed relationship between metabolic health and high-CLA beef. These results indicate that this type of analysis has the potential to generate novel transcriptome-based biomarkers of disease.

  20. Bi-directional gene set enrichment and canonical correlation analysis identify key diet-sensitive pathways and biomarkers of metabolic syndrome

    PubMed Central

    2010-01-01

    -sensitive changes in constituent genes, as well as strong correlations between gene expression and plasma markers of metabolic syndrome independent of the dietary effect. Conclusion Bi-directional gene set enrichment analysis more accurately reflects dynamic regulatory behaviour in biochemical pathways, and as such highlighted biologically relevant changes that were not detected using a traditional approach. In such cases where transcriptomic response to treatment is exceptionally large, canonical correlation analysis in conjunction with Fisher's exact test highlights the subset of pathways showing strongest correlation with the clinical markers of interest. In this case, we have identified selenoamino acid metabolism and steroid biosynthesis as key pathways mediating the observed relationship between metabolic health and high-CLA beef. These results indicate that this type of analysis has the potential to generate novel transcriptome-based biomarkers of disease. PMID:20929581

  1. An Inductive Logic Programming Approach to Validate Hexose Binding Biochemical Knowledge.

    PubMed

    Nassif, Houssam; Al-Ali, Hassan; Khuri, Sawsan; Keirouz, Walid; Page, David

    2010-01-01

    Hexoses are simple sugars that play a key role in many cellular pathways, and in the regulation of development and disease mechanisms. Current protein-sugar computational models are based, at least partially, on prior biochemical findings and knowledge. They incorporate different parts of these findings in predictive black-box models. We investigate the empirical support for biochemical findings by comparing Inductive Logic Programming (ILP) induced rules to actual biochemical results. We mine the Protein Data Bank for a representative data set of hexose binding sites, non-hexose binding sites and surface grooves. We build an ILP model of hexose-binding sites and evaluate our results against several baseline machine learning classifiers. Our method achieves an accuracy similar to that of other black-box classifiers while providing insight into the discriminating process. In addition, it confirms wet-lab findings and reveals a previously unreported Trp-Glu amino acids dependency.

  2. Characterization of Changes in Gene Expression and Biochemical Pathways at Low Levels of Benzene Exposure

    PubMed Central

    Thomas, Reuben; Hubbard, Alan E.; McHale, Cliona M.; Zhang, Luoping; Rappaport, Stephen M.; Lan, Qing; Rothman, Nathaniel; Vermeulen, Roel; Guyton, Kathryn Z.; Jinot, Jennifer; Sonawane, Babasaheb R.; Smith, Martyn T.

    2014-01-01

    Benzene, a ubiquitous environmental pollutant, causes acute myeloid leukemia (AML). Recently, through transcriptome profiling of peripheral blood mononuclear cells (PBMC), we reported dose-dependent effects of benzene exposure on gene expression and biochemical pathways in 83 workers exposed across four airborne concentration ranges (from <1 ppm to >10 ppm) compared with 42 subjects with non-workplace ambient exposure levels. Here, we further characterize these dose-dependent effects with continuous benzene exposure in all 125 study subjects. We estimated air benzene exposure levels in the 42 environmentally-exposed subjects from their unmetabolized urinary benzene levels. We used a novel non-parametric, data-adaptive model selection method to estimate the change with dose in the expression of each gene. We describe non-parametric approaches to model pathway responses and used these to estimate the dose responses of the AML pathway and 4 other pathways of interest. The response patterns of majority of genes as captured by mean estimates of the first and second principal components of the dose-response for the five pathways and the profiles of 6 AML pathway response-representative genes (identified by clustering) exhibited similar apparent supra-linear responses. Responses at or below 0.1 ppm benzene were observed for altered expression of AML pathway genes and CYP2E1. Together, these data show that benzene alters disease-relevant pathways and genes in a dose-dependent manner, with effects apparent at doses as low as 100 ppb in air. Studies with extensive exposure assessment of subjects exposed in the low-dose range between 10 ppb and 1 ppm are needed to confirm these findings. PMID:24786086

  3. Identification of key target genes and pathways in laryngeal carcinoma

    PubMed Central

    Liu, Feng; Du, Jintao; Liu, Jun; Wen, Bei

    2016-01-01

    The purpose of the present study was to screen the key genes associated with laryngeal carcinoma and to investigate the molecular mechanism of laryngeal carcinoma progression. The gene expression profile of GSE10935 [Gene Expression Omnibus (GEO) accession number], including 12 specimens from laryngeal papillomas and 12 specimens from normal laryngeal epithelia controls, was downloaded from the GEO database. Differentially expressed genes (DEGs) were screened in laryngeal papillomas compared with normal controls using Limma package in R language, followed by Gene Ontology (GO) enrichment analysis and pathway enrichment analysis. Furthermore, the protein-protein interaction (PPI) network of DEGs was constructed using Cytoscape software and modules were analyzed using MCODE plugin from the PPI network. Furthermore, significant biological pathway regions (sub-pathway) were identified by using iSubpathwayMiner analysis. A total of 67 DEGs were identified, including 27 up-regulated genes and 40 down-regulated genes and they were involved in different GO terms and pathways. PPI network analysis revealed that Ras association (RalGDS/AF-6) domain family member 1 (RASSF1) was a hub protein. The sub-pathway analysis identified 9 significantly enriched sub-pathways, including glycolysis/gluconeogenesis and nitrogen metabolism. Genes such as phosphoglycerate kinase 1 (PGK1), carbonic anhydrase II (CA2), and carbonic anhydrase XII (CA12) whose node degrees were >10 were identified in the disease risk sub-pathway. Genes in the sub-pathway, such as RASSF1, PGK1, CA2 and CA12 were presumed to serve critical roles in laryngeal carcinoma. The present study identified DEGs and their sub-pathways in the disease, which may serve as potential targets for treatment of laryngeal carcinoma. PMID:27446427

  4. Screening key candidate genes and pathways involved in insulinoma by microarray analysis.

    PubMed

    Zhou, Wuhua; Gong, Li; Li, Xuefeng; Wan, Yunyan; Wang, Xiangfei; Li, Huili; Jiang, Bin

    2018-06-01

    Insulinoma is a rare type tumor and its genetic features remain largely unknown. This study aimed to search for potential key genes and relevant enriched pathways of insulinoma.The gene expression data from GSE73338 were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified between insulinoma tissues and normal pancreas tissues, followed by pathway enrichment analysis, protein-protein interaction (PPI) network construction, and module analysis. The expressions of candidate key genes were validated by quantitative real-time polymerase chain reaction (RT-PCR) in insulinoma tissues.A total of 1632 DEGs were obtained, including 1117 upregulated genes and 514 downregulated genes. Pathway enrichment results showed that upregulated DEGs were significantly implicated in insulin secretion, and downregulated DEGs were mainly enriched in pancreatic secretion. PPI network analysis revealed 7 hub genes with degrees more than 10, including GCG (glucagon), GCGR (glucagon receptor), PLCB1 (phospholipase C, beta 1), CASR (calcium sensing receptor), F2R (coagulation factor II thrombin receptor), GRM1 (glutamate metabotropic receptor 1), and GRM5 (glutamate metabotropic receptor 5). DEGs involved in the significant modules were enriched in calcium signaling pathway, protein ubiquitination, and platelet degranulation. Quantitative RT-PCR data confirmed that the expression trends of these hub genes were similar to the results of bioinformatic analysis.The present study demonstrated that candidate DEGs and enriched pathways were the potential critical molecule events involved in the development of insulinoma, and these findings were useful for better understanding of insulinoma genesis.

  5. Oxidative Stress, Amyloid-β Peptide, and Altered Key Molecular Pathways in the Pathogenesis and Progression of Alzheimer’s Disease

    PubMed Central

    Butterfield, D. Allan; Boyd-Kimball, Debra

    2018-01-01

    Oxidative stress is implicated in the pathogenesis and progression of Alzheimer’s disease (AD) and its earlier stage, amnestic mild cognitive impairment (aMCI). One source of oxidative stress in AD and aMCI brains is that associated with amyloid-β peptide, Aβ1-42 oligomers. Our laboratory first showed in AD elevated oxidative stress occurred in brain regions rich in Aβ1-42, but not in Aβ1-42-poor regions, and was among the first to demonstrate Aβ peptides led to lipid peroxidation (indexed by HNE) in AD and aMCI brains. Oxidatively modified proteins have decreased function and contribute to damaged key biochemical and metabolic pathways in which these proteins normally play a role. Identification of oxidatively modified brain proteins by the methods of redox proteomics was pioneered in the Butterfield laboratory. Four recurring altered pathways secondary to oxidative damage in brain from persons with AD, aMCI, or Down syndrome with AD are interrelated and contribute to neuronal death. This “Quadrilateral of Neuronal Death” includes altered: glucose metabolism, mTOR activation, proteostasis network, and protein phosphorylation. Some of these pathways are altered even in brains of persons with preclinical AD. We opine that targeting these pathways pharmacologically and with lifestyle changes potentially may provide strategies to slow or perhaps one day, prevent, progression or development of this devastating dementing disorder. This invited review outlines both in vitro and in vivo studies from the Butterfield laboratory related to Aβ1-42 and AD and discusses the importance and implications of some of the major achievements of the Butterfield laboratory in AD research. PMID:29562527

  6. Modeling biochemical pathways in the gene ontology

    DOE PAGES

    Hill, David P.; D’Eustachio, Peter; Berardini, Tanya Z.; ...

    2016-09-01

    The concept of a biological pathway, an ordered sequence of molecular transformations, is used to collect and represent molecular knowledge for a broad span of organismal biology. Representations of biomedical pathways typically are rich but idiosyncratic presentations of organized knowledge about individual pathways. Meanwhile, biomedical ontologies and associated annotation files are powerful tools that organize molecular information in a logically rigorous form to support computational analysis. The Gene Ontology (GO), representing Molecular Functions, Biological Processes and Cellular Components, incorporates many aspects of biological pathways within its ontological representations. Here we present a methodology for extending and refining the classes inmore » the GO for more comprehensive, consistent and integrated representation of pathways, leveraging knowledge embedded in current pathway representations such as those in the Reactome Knowledgebase and MetaCyc. With carbohydrate metabolic pathways as a use case, we discuss how our representation supports the integration of variant pathway classes into a unified ontological structure that can be used for data comparison and analysis.« less

  7. Organization of biogeochemical nitrogen pathways with switch-like adjustment in fluctuating soil redox conditions

    PubMed Central

    Lamba, Sanjay; Bera, Soumen; Rashid, Mubasher; Medvinsky, Alexander B.; Acquisti, Claudia; Li, Bai-Lian

    2017-01-01

    Nitrogen is cycled throughout ecosystems by a suite of biogeochemical processes. The high complexity of the nitrogen cycle resides in an intricate interplay between reversible biochemical pathways alternatively and specifically activated in response to diverse environmental cues. Despite aggressive research, how the fundamental nitrogen biochemical processes are assembled and maintained in fluctuating soil redox conditions remains elusive. Here, we address this question using a kinetic modelling approach coupled with dynamical systems theory and microbial genomics. We show that alternative biochemical pathways play a key role in keeping nitrogen conversion and conservation properties invariant in fluctuating environments. Our results indicate that the biochemical network holds inherent adaptive capacity to stabilize ammonium and nitrate availability, and that the bistability in the formation of ammonium is linked to the transient upregulation of the amo-hao mediated nitrification pathway. The bistability is maintained by a pair of complementary subsystems acting as either source or sink type systems in response to soil redox fluctuations. It is further shown how elevated anthropogenic pressure has the potential to break down the stability of the system, altering substantially ammonium and nitrate availability in the soil, with dramatic effects on biodiversity. PMID:28280580

  8. Linear analysis near a steady-state of biochemical networks: control analysis, correlation metrics and circuit theory.

    PubMed

    Heuett, William J; Beard, Daniel A; Qian, Hong

    2008-05-15

    Several approaches, including metabolic control analysis (MCA), flux balance analysis (FBA), correlation metric construction (CMC), and biochemical circuit theory (BCT), have been developed for the quantitative analysis of complex biochemical networks. Here, we present a comprehensive theory of linear analysis for nonequilibrium steady-state (NESS) biochemical reaction networks that unites these disparate approaches in a common mathematical framework and thermodynamic basis. In this theory a number of relationships between key matrices are introduced: the matrix A obtained in the standard, linear-dynamic-stability analysis of the steady-state can be decomposed as A = SRT where R and S are directly related to the elasticity-coefficient matrix for the fluxes and chemical potentials in MCA, respectively; the control-coefficients for the fluxes and chemical potentials can be written in terms of RTBS and STBS respectively where matrix B is the inverse of A; the matrix S is precisely the stoichiometric matrix in FBA; and the matrix eAt plays a central role in CMC. One key finding that emerges from this analysis is that the well-known summation theorems in MCA take different forms depending on whether metabolic steady-state is maintained by flux injection or concentration clamping. We demonstrate that if rate-limiting steps exist in a biochemical pathway, they are the steps with smallest biochemical conductances and largest flux control-coefficients. We hypothesize that biochemical networks for cellular signaling have a different strategy for minimizing energy waste and being efficient than do biochemical networks for biosynthesis. We also discuss the intimate relationship between MCA and biochemical systems analysis (BSA).

  9. Classification and Analysis of Regulatory Pathways Using Graph Property, Biochemical and Physicochemical Property, and Functional Property

    PubMed Central

    Cai, Yu-Dong; Chou, Kuo-Chen

    2011-01-01

    Given a regulatory pathway system consisting of a set of proteins, can we predict which pathway class it belongs to? Such a problem is closely related to the biological function of the pathway in cells and hence is quite fundamental and essential in systems biology and proteomics. This is also an extremely difficult and challenging problem due to its complexity. To address this problem, a novel approach was developed that can be used to predict query pathways among the following six functional categories: (i) “Metabolism”, (ii) “Genetic Information Processing”, (iii) “Environmental Information Processing”, (iv) “Cellular Processes”, (v) “Organismal Systems”, and (vi) “Human Diseases”. The prediction method was established trough the following procedures: (i) according to the general form of pseudo amino acid composition (PseAAC), each of the pathways concerned is formulated as a 5570-D (dimensional) vector; (ii) each of components in the 5570-D vector was derived by a series of feature extractions from the pathway system according to its graphic property, biochemical and physicochemical property, as well as functional property; (iii) the minimum redundancy maximum relevance (mRMR) method was adopted to operate the prediction. A cross-validation by the jackknife test on a benchmark dataset consisting of 146 regulatory pathways indicated that an overall success rate of 78.8% was achieved by our method in identifying query pathways among the above six classes, indicating the outcome is quite promising and encouraging. To the best of our knowledge, the current study represents the first effort in attempting to identity the type of a pathway system or its biological function. It is anticipated that our report may stimulate a series of follow-up investigations in this new and challenging area. PMID:21980418

  10. Multiplatform serum metabolic phenotyping combined with pathway mapping to identify biochemical differences in smokers.

    PubMed

    Kaluarachchi, Manuja R; Boulangé, Claire L; Garcia-Perez, Isabel; Lindon, John C; Minet, Emmanuel F

    2016-10-01

    Determining perturbed biochemical functions associated with tobacco smoking should be helpful for establishing causal relationships between exposure and adverse events. A multiplatform comparison of serum of smokers (n = 55) and never-smokers (n = 57) using nuclear magnetic resonance spectroscopy, UPLC-MS and statistical modeling revealed clustering of the classes, distinguished by metabolic biomarkers. The identified metabolites were subjected to metabolic pathway enrichment, modeling adverse biological events using available databases. Perturbation of metabolites involved in chronic obstructive pulmonary disease, cardiovascular diseases and cancer were identified and discussed. Combining multiplatform metabolic phenotyping with knowledge-based mapping gives mechanistic insights into disease development, which can be applied to next-generation tobacco and nicotine products for comparative risk assessment.

  11. MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity

    PubMed Central

    2012-01-01

    Background Exposure to environmental tobacco smoke (ETS) leads to higher rates of pulmonary diseases and infections in children. To study the biochemical changes that may precede lung diseases, metabolomic effects on fetal and maternal lungs and plasma from rats exposed to ETS were compared to filtered air control animals. Genome- reconstructed metabolic pathways may be used to map and interpret dysregulation in metabolic networks. However, mass spectrometry-based non-targeted metabolomics datasets often comprise many metabolites for which links to enzymatic reactions have not yet been reported. Hence, network visualizations that rely on current biochemical databases are incomplete and also fail to visualize novel, structurally unidentified metabolites. Results We present a novel approach to integrate biochemical pathway and chemical relationships to map all detected metabolites in network graphs (MetaMapp) using KEGG reactant pair database, Tanimoto chemical and NIST mass spectral similarity scores. In fetal and maternal lungs, and in maternal blood plasma from pregnant rats exposed to environmental tobacco smoke (ETS), 459 unique metabolites comprising 179 structurally identified compounds were detected by gas chromatography time of flight mass spectrometry (GC-TOF MS) and BinBase data processing. MetaMapp graphs in Cytoscape showed much clearer metabolic modularity and complete content visualization compared to conventional biochemical mapping approaches. Cytoscape visualization of differential statistics results using these graphs showed that overall, fetal lung metabolism was more impaired than lungs and blood metabolism in dams. Fetuses from ETS-exposed dams expressed lower lipid and nucleotide levels and higher amounts of energy metabolism intermediates than control animals, indicating lower biosynthetic rates of metabolites for cell division, structural proteins and lipids that are critical for in lung development. Conclusions MetaMapp graphs efficiently

  12. Linear analysis near a steady-state of biochemical networks: Control analysis, correlation metrics and circuit theory

    PubMed Central

    Heuett, William J; Beard, Daniel A; Qian, Hong

    2008-01-01

    Background Several approaches, including metabolic control analysis (MCA), flux balance analysis (FBA), correlation metric construction (CMC), and biochemical circuit theory (BCT), have been developed for the quantitative analysis of complex biochemical networks. Here, we present a comprehensive theory of linear analysis for nonequilibrium steady-state (NESS) biochemical reaction networks that unites these disparate approaches in a common mathematical framework and thermodynamic basis. Results In this theory a number of relationships between key matrices are introduced: the matrix A obtained in the standard, linear-dynamic-stability analysis of the steady-state can be decomposed as A = SRT where R and S are directly related to the elasticity-coefficient matrix for the fluxes and chemical potentials in MCA, respectively; the control-coefficients for the fluxes and chemical potentials can be written in terms of RTBS and STBS respectively where matrix B is the inverse of A; the matrix S is precisely the stoichiometric matrix in FBA; and the matrix eAt plays a central role in CMC. Conclusion One key finding that emerges from this analysis is that the well-known summation theorems in MCA take different forms depending on whether metabolic steady-state is maintained by flux injection or concentration clamping. We demonstrate that if rate-limiting steps exist in a biochemical pathway, they are the steps with smallest biochemical conductances and largest flux control-coefficients. We hypothesize that biochemical networks for cellular signaling have a different strategy for minimizing energy waste and being efficient than do biochemical networks for biosynthesis. We also discuss the intimate relationship between MCA and biochemical systems analysis (BSA). PMID:18482450

  13. Screening for Key Pathways Associated with the Development of Osteoporosis by Bioinformatics Analysis

    PubMed Central

    Liu, Yanqing; Wang, Yueqiu; Zhang, Yanxia; Liu, Zhiyong; Xiang, Hongfei; Peng, Xianbo

    2017-01-01

    Objectives. We aimed to find the key pathways associated with the development of osteoporosis. Methods. We downloaded expression profile data of GSE35959 and analyzed the differentially expressed genes (DEGs) in 3 comparison groups (old_op versus middle, old_op versus old, and old_op versus senescent). KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analyses were carried out. Besides, Venn diagram analysis and gene functional interaction (FI) network analysis were performed. Results. Totally 520 DEGs, 966 DEGs, and 709 DEGs were obtained in old_op versus middle, old_op versus old, and old_op versus senescent groups, respectively. Lysosome pathway was the significantly enriched pathways enriched by intersection genes. The pathways enriched by subnetwork modules suggested that mitotic metaphase and anaphase and signaling by Rho GTPases in module 1 had more proteins from module. Conclusions. Lysosome pathway, mitotic metaphase and anaphase, and signaling by Rho GTPases may be involved in the development of osteoporosis. Furthermore, Rho GTPases may regulate the balance of bone resorption and bone formation via controlling osteoclast and osteoblast. These 3 pathways may be regarded as the treatment targets for osteoporosis. PMID:28466021

  14. Physiological, biochemical, and proteome profiling reveals key pathways underlying the drought stress responses of Hippophae rhamnoides.

    PubMed

    He, Cai Y; Zhang, Guo Y; Zhang, Jian G; Duan, Ai G; Luo, Hong M

    2016-10-01

    The effects of drought on plant growth and development are occurring as a result of climate change and the growing scarcity of water resources. Hippophae rhamnoides has been exploited for soil and water conservation for many years. However, the outstanding drought-resistance mechanisms possessed by this species remain unclear. The protein, physiological, and biochemical responses to medium and severe drought stresses in H. rhamnoides seedlings are analyzed. Linear decreases in photosynthesis rate, transpiration rate, and the content of indole acetic acid in roots, as well as a linear increase in the contents of abscisic acid, superoxide dismutase, glutathione reductase, and zeatin riboside in leaves are observed as water potential decreased. At the same time, cell membrane permeability, malondialdehyde, stomatal conductance, water use efficiency, and contents of zeatin riboside in roots and indole acetic acid in leaves showed nonconsistent changes. DIGE and MS/MS analysis identified 51 differently expressed protein spots in leaves with functions related to epigenetic modification and PTM in addition to normal metabolism, photosynthesis, signal transduction, antioxidative systems, and responses to stimuli. This study provides new insights into the responses and adaptations in this drought-resistant species and may benefit future agricultural production. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Biochemical analysis of force-sensitive responses using a large-scale cell stretch device.

    PubMed

    Renner, Derrick J; Ewald, Makena L; Kim, Timothy; Yamada, Soichiro

    2017-09-03

    Physical force has emerged as a key regulator of tissue homeostasis, and plays an important role in embryogenesis, tissue regeneration, and disease progression. Currently, the details of protein interactions under elevated physical stress are largely missing, therefore, preventing the fundamental, molecular understanding of mechano-transduction. This is in part due to the difficulty isolating large quantities of cell lysates exposed to force-bearing conditions for biochemical analysis. We designed a simple, easy-to-fabricate, large-scale cell stretch device for the analysis of force-sensitive cell responses. Using proximal biotinylation (BioID) analysis or phospho-specific antibodies, we detected force-sensitive biochemical changes in cells exposed to prolonged cyclic substrate stretch. For example, using promiscuous biotin ligase BirA* tagged α-catenin, the biotinylation of myosin IIA increased with stretch, suggesting the close proximity of myosin IIA to α-catenin under a force bearing condition. Furthermore, using phospho-specific antibodies, Akt phosphorylation was reduced upon stretch while Src phosphorylation was unchanged. Interestingly, phosphorylation of GSK3β, a downstream effector of Akt pathway, was also reduced with stretch, while the phosphorylation of other Akt effectors was unchanged. These data suggest that the Akt-GSK3β pathway is force-sensitive. This simple cell stretch device enables biochemical analysis of force-sensitive responses and has potential to uncover molecules underlying mechano-transduction.

  16. Biochemical-Pathway Diversity in Archabacteria

    DTIC Science & Technology

    1988-06-28

    8a NAME OF_ FUNDINGISFF0N Gr ... FFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicable) Office of Naval Researh ONR... BIOLOGY AND EVOLUTION OF MICROORGANISMS (July 24-28. 1989) in a talk entitled "Evolution of Metabolic Pathways". TRAINING ACTIVITIES: Dr. Raj Bhatnagar, a

  17. Lego bricks and the octet rule: Molecular models for biochemical pathways with plastic, interlocking toy bricks.

    PubMed

    Lin, Henry J; Lehoang, Jennifer; Kwan, Isabel; Baghaee, Anita; Prasad, Priya; Ha-Chen, Stephanie J; Moss, Tanesha; Woods, Jeremy D

    2018-01-01

    The 8 studs on a 2 × 4 Lego brick conveniently represent the outer shell of electrons for carbon, nitrogen, and oxygen atoms. We used Lego bricks to model these atoms, which are then joined together to form molecules by following the Lewis octet rule. A variety of small biological molecules can be modeled in this way, such as most amino acids, fatty acids, glucose, and various intermediate metabolites. Model building with these familiar toys can be a helpful, hands-on exercise for learning-or re-learning-biochemical pathways. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):54-57, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  18. Bioinformatic and Biochemical Characterizations of C–S Bond Formation and Cleavage Enzymes in the Fungus Neurospora crassa Ergothioneine Biosynthetic Pathway

    PubMed Central

    2015-01-01

    Ergothioneine is a histidine thiol derivative. Its mycobacterial biosynthetic pathway has five steps (EgtA-E catalysis) with two novel reactions: a mononuclear nonheme iron enzyme (EgtB) catalyzed oxidative C–S bond formation and a PLP-mediated C–S lyase (EgtE) reaction. Our bioinformatic and biochemical analyses indicate that the fungus Neurospora crassa has a more concise ergothioneine biosynthetic pathway because its nonheme iron enzyme, Egt1, makes use of cysteine instead of γ-Glu-Cys as the substrate. Such a change of substrate preference eliminates the competition between ergothioneine and glutathione biosyntheses. In addition, we have identified the N. crassa C–S lyase (NCU11365) and reconstituted its activity in vitro, which makes the future ergothioneine production through metabolic engineering feasible. PMID:25275953

  19. ReactPRED: a tool to predict and analyze biochemical reactions.

    PubMed

    Sivakumar, Tadi Venkata; Giri, Varun; Park, Jin Hwan; Kim, Tae Yong; Bhaduri, Anirban

    2016-11-15

    Biochemical pathways engineering is often used to synthesize or degrade target chemicals. In silico screening of the biochemical transformation space allows predicting feasible reactions, constituting these pathways. Current enabling tools are customized to predict reactions based on pre-defined biochemical transformations or reaction rule sets. Reaction rule sets are usually curated manually and tailored to specific applications. They are not exhaustive. In addition, current systems are incapable of regulating and refining data with an aim to tune specificity and sensitivity. A robust and flexible tool that allows automated reaction rule set creation along with regulated pathway prediction and analyses is a need. ReactPRED aims to address the same. ReactPRED is an open source flexible and customizable tool enabling users to predict biochemical reactions and pathways. The tool allows automated reaction rule creation from a user defined reaction set. Additionally, reaction rule degree and rule tolerance features allow refinement of predicted data. It is available as a flexible graphical user interface and a console application. ReactPRED is available at: https://sourceforge.net/projects/reactpred/ CONTACT: anirban.b@samsung.com or ty76.kim@samsung.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Design principles for enhancing phase sensitivity and suppressing phase fluctuations simultaneously in biochemical oscillatory systems.

    PubMed

    Fei, Chenyi; Cao, Yuansheng; Ouyang, Qi; Tu, Yuhai

    2018-04-12

    Biological systems need to function accurately in the presence of strong noise and at the same time respond sensitively to subtle external cues. Here we study design principles in biochemical oscillatory circuits to achieve these two seemingly incompatible goals. We show that energy dissipation can enhance phase sensitivity linearly by driving the phase-amplitude coupling and increase timing accuracy by suppressing phase diffusion. Two general design principles in the key underlying reaction loop formed by two antiparallel pathways are found to optimize oscillation performance with a given energy budget: balancing the forward-to-backward flux ratio between the two pathways to reduce phase diffusion and maximizing the net flux of the phase-advancing pathway relative to that of the phase-retreating pathway to enhance phase sensitivity. Experimental evidences consistent with these design principles are found in the circadian clock of cyanobacteria. Future experiments to test the predicted dependence of phase sensitivity on energy dissipation are proposed.

  1. Investigation on biochemical compositional changes during the microbial fermentation process of Fu brick tea by LC-MS based metabolomics.

    PubMed

    Xu, Jie; Hu, Feng-Lin; Wang, Wei; Wan, Xiao-Chun; Bao, Guan-Hu

    2015-11-01

    Fu brick tea (FBT) is a unique post-fermented tea product which is fermented with fungi during the manufacturing process. In this study, we investigated the biochemical compositional changes occurring during the microbial fermentation process (MFP) of FBT based on non-targeted LC-MS, which was a comprehensive and unbiased methodology. Our data analysis took a two-phase approach: (1) comparison of FBT with other tea products using PCA analysis to exhibit the characteristic effect of MFP on the formation of Fu brick tea and (2) comparison of tea samples throughout the MFP of FBT to elucidate the possible key metabolic pathways produced by the fungi. Non-targeted LC-MS analysis clearly distinguished FBT with other tea samples and highlighted some interesting metabolic pathways during the MFP including B ring fission catechin. Our study demonstrated that those fungi had a significant influence on the biochemical profiles in the FBT and consequently contributed to its unique quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Integrated Analysis of Mutation Data from Various Sources Identifies Key Genes and Signaling Pathways in Hepatocellular Carcinoma

    PubMed Central

    Wei, Lin; Tang, Ruqi; Lian, Baofeng; Zhao, Yingjun; He, Xianghuo; Xie, Lu

    2014-01-01

    Background Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma (HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only focused on a limited number of candidate genes, and many important mutation resources remain to be explored. Principal Findings In this study, we integrated mutation data obtained from various sources and performed pathway and network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways. Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and pathways (e.g., axon guidance) in which the mutations were associated with clinical features. Conclusions Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject, which can provide biological insights that would otherwise be masked under individual sample sets. This type of bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in valuable databases, such as TCGA, to enhance the speed of deciphering human cancers. PMID:24988079

  3. Integrated analysis of mutation data from various sources identifies key genes and signaling pathways in hepatocellular carcinoma.

    PubMed

    Zhang, Yuannv; Qiu, Zhaoping; Wei, Lin; Tang, Ruqi; Lian, Baofeng; Zhao, Yingjun; He, Xianghuo; Xie, Lu

    2014-01-01

    Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma (HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only focused on a limited number of candidate genes, and many important mutation resources remain to be explored. In this study, we integrated mutation data obtained from various sources and performed pathway and network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways. Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and pathways (e.g., axon guidance) in which the mutations were associated with clinical features. Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject, which can provide biological insights that would otherwise be masked under individual sample sets. This type of bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in valuable databases, such as TCGA, to enhance the speed of deciphering human cancers.

  4. The ORCA2 transcription factor plays a key role in regulation of the terpenoid indole alkaloid pathway

    PubMed Central

    2013-01-01

    Background The terpenoid indole alkaloid (TIA) pathway leads to the production of pharmaceutically important drugs, such as the anticancer compounds vinblastine and vincristine. Unfortunately, these drugs are produced in trace amounts, causing them to be very costly. To increase production of these drugs, an improved understanding of the TIA regulatory pathway is needed. Towards this end, transgenic Catharanthus roseus hairy roots that overexpress the ORCA2 TIA transcriptional activator were generated and characterized. Results Transcriptional profiling experiments revealed that overexpression of ORCA2 results in altered expression of key genes from the indole and terpenoid pathways, which produce precursors for the TIA pathway, and from the TIA pathway itself. In addition, metabolite-profiling experiments revealed that overexpression of ORCA2 significantly affects the levels of several TIA metabolites. ORCA2 overexpression also causes significant increases in transcript levels of several TIA regulators, including TIA transcriptional repressors. Conclusions Results presented here indicate that ORCA2 plays a critical role in regulation of TIA metabolism. ORCA2 regulates expression of key genes from both feeder pathways, as well as the genes (STR and SGD) encoding the enzymes that catalyze the first two steps in TIA biosynthesis. ORCA2 may play an especially important role in regulation of the downstream branches of the TIA pathway, as it regulates four out of five genes characterized from this part of the pathway. Regulation of TIA transcriptional repressors by ORCA2 may provide a mechanism whereby increases in TIA metabolite levels in response to external stimuli are transient and limited in magnitude. PMID:24099172

  5. A limit cycle oscillator model for cycling mood variations of bipolar disorder patients derived from cellular biochemical reaction equations

    NASA Astrophysics Data System (ADS)

    Frank, T. D.

    2013-08-01

    We derive a nonlinear limit cycle model for oscillatory mood variations as observed in patients with cycling bipolar disorder. To this end, we consider two signaling pathways leading to the activation of two enzymes that play a key role for cellular and neural processes. We model pathway cross-talk in terms of an inhibitory impact of the first pathway on the second and an excitatory impact of the second on the first. The model also involves a negative feedback loop (inhibitory self-regulation) for the first pathway and a positive feedback loop (excitatory self-regulation) for the second pathway. We demonstrate that due to the cross-talk the biochemical dynamics is described by an oscillator equation. Under disease-free conditions the oscillatory system exhibits a stable fixed point. The breakdown of the self-inhibition of the first pathway at higher concentration levels is studied by means of a scalar control parameter ξ, where ξ equal to zero refers to intact self-inhibition at all concentration levels. Under certain conditions, stable limit cycle solutions emerge at critical parameter values of ξ larger than zero. These oscillations mimic pathological cycling mood variations that emerge due to a disease-induced bifurcation. Consequently, our modeling analysis supports the notion of bipolar disorder as a dynamical disease. In addition, our study establishes a connection between mechanistic biochemical modeling of bipolar disorder and phenomenological nonlinear oscillator approaches to bipolar disorder suggested in the literature.

  6. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data.

    PubMed

    Zhang, Chaoyang; Peng, Li; Zhang, Yaqin; Liu, Zhaoyang; Li, Wenling; Chen, Shilian; Li, Guancheng

    2017-06-01

    Liver cancer is a serious threat to public health and has fairly complicated pathogenesis. Therefore, the identification of key genes and pathways is of much importance for clarifying molecular mechanism of hepatocellular carcinoma (HCC) initiation and progression. HCC-associated gene expression dataset was downloaded from Gene Expression Omnibus database. Statistical software R was used for significance analysis of differentially expressed genes (DEGs) between liver cancer samples and normal samples. Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, based on R software, were applied for the identification of pathways in which DEGs significantly enriched. Cytoscape software was for the construction of protein-protein interaction (PPI) network and module analysis to find the hub genes and key pathways. Finally, weighted correlation network analysis (WGCNA) was conducted to further screen critical gene modules with similar expression pattern and explore their biological significance. Significance analysis identified 1230 DEGs with fold change >2, including 632 significantly down-regulated DEGs and 598 significantly up-regulated DEGs. GO term enrichment analysis suggested that up-regulated DEG significantly enriched in immune response, cell adhesion, cell migration, type I interferon signaling pathway, and cell proliferation, and the down-regulated DEG mainly enriched in response to endoplasmic reticulum stress and endoplasmic reticulum unfolded protein response. KEGG pathway analysis found DEGs significantly enriched in five pathways including complement and coagulation cascades, focal adhesion, ECM-receptor interaction, antigen processing and presentation, and protein processing in endoplasmic reticulum. The top 10 hub genes in HCC were separately GMPS, ACACA, ALB, TGFB1, KRAS, ERBB2, BCL2, EGFR, STAT3, and CD8A, which resulted from PPI network. The top 3 gene interaction modules in PPI network enriched

  7. Biochemical and structural characterization of Klebsiella pneumoniae oxamate amidohydrolase in the uric acid degradation pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, Katherine A.; Ealick, Steven E.

    HpxW from the ubiquitous pathogenKlebsiella pneumoniaeis involved in a novel uric acid degradation pathway downstream from the formation of oxalurate. Specifically, HpxW is an oxamate amidohydrolase which catalyzes the conversion of oxamate to oxalate and is a member of the Ntn-hydrolase superfamily. HpxW is autoprocessed from an inactive precursor to form a heterodimer, resulting in a 35.5 kDa α subunit and a 20 kDa β subunit. Here, the structure of HpxW is presented and the substrate complex is modeled. In addition, the steady-state kinetics of this enzyme and two active-site variants were characterized. These structural and biochemical studies provide furthermore » insight into this class of enzymes and allow a mechanism for catalysis consistent with other members of the Ntn-hydrolase superfamily to be proposed.« less

  8. Quantitative trait loci and metabolic pathways

    PubMed Central

    McMullen, M. D.; Byrne, P. F.; Snook, M. E.; Wiseman, B. R.; Lee, E. A.; Widstrom, N. W.; Coe, E. H.

    1998-01-01

    The interpretation of quantitative trait locus (QTL) studies is limited by the lack of information on metabolic pathways leading to most economic traits. Inferences about the roles of the underlying genes with a pathway or the nature of their interaction with other loci are generally not possible. An exception is resistance to the corn earworm Helicoverpa zea (Boddie) in maize (Zea mays L.) because of maysin, a C-glycosyl flavone synthesized in silks via a branch of the well characterized flavonoid pathway. Our results using flavone synthesis as a model QTL system indicate: (i) the importance of regulatory loci as QTLs, (ii) the importance of interconnecting biochemical pathways on product levels, (iii) evidence for “channeling” of intermediates, allowing independent synthesis of related compounds, (iv) the utility of QTL analysis in clarifying the role of specific genes in a biochemical pathway, and (v) identification of a previously unknown locus on chromosome 9S affecting flavone level. A greater understanding of the genetic basis of maysin synthesis and associated corn earworm resistance should lead to improved breeding strategies. More broadly, the insights gained in relating a defined genetic and biochemical pathway affecting a quantitative trait should enhance interpretation of the biological basis of variation for other quantitative traits. PMID:9482823

  9. Acetogenesis and the Wood-Ljungdahl Pathway of CO2 Fixation

    PubMed Central

    Ragsdale, Stephen W.; Pierce, Elizabeth

    2008-01-01

    I. Summary Conceptually, the simplest way to synthesize an organic molecule is to construct it one carbon at a time. The Wood-Ljungdahl pathway of CO2 fixation involves this type of stepwise process. The biochemical events that underlie the condensation of two one-carbon units to form the two-carbon compound, acetate, have intrigued chemists, biochemists, and microbiologists for many decades. We begin this review with a description of the biology of acetogenesis. Then, we provide a short history of the important discoveries that have led to the identification of the key components and steps of this usual mechanism of CO and CO2 fixation. In this historical perspective, we have included reflections that hopefully will sketch the landscape of the controversies, hypotheses, and opinions that led to the key experiments and discoveries. We then describe the properties of the genes and enzymes involved in the pathway and conclude with a section describing some major questions that remain unanswered. PMID:18801467

  10. Dopamine is a key regulator in the signalling pathway underlying predator-induced defences in Daphnia

    PubMed Central

    Weiss, Linda C.; Leese, Florian; Laforsch, Christian; Tollrian, Ralph

    2015-01-01

    The waterflea Daphnia is a model to investigate the genetic basis of phenotypic plasticity resulting from one differentially expressed genome. Daphnia develops adaptive phenotypes (e.g. morphological defences) thwarting predators, based on chemical predator cue perception. To understand the genomic basis of phenotypic plasticity, the description of the precedent cellular and neuronal mechanisms is fundamental. However, key regulators remain unknown. All neuronal and endocrine stimulants were able to modulate but not induce defences, indicating a pathway of interlinked steps. A candidate able to link neuronal with endocrine responses is the multi-functional amine dopamine. We here tested its involvement in trait formation in Daphnia pulex and Daphnia longicephala using an induction assay composed of predator cues combined with dopaminergic and cholinergic stimulants. The mere application of both stimulants was sufficient to induce morphological defences. We determined dopamine localization in cells found in close association with the defensive trait. These cells serve as centres controlling divergent morphologies. As a mitogen and sclerotization agent, we anticipate that dopamine is involved in proliferation and structural formation of morphological defences. Furthermore, dopamine pathways appear to be interconnected with endocrine pathways, and control juvenile hormone and ecdysone levels. In conclusion, dopamine is suggested as a key regulator of phenotypic plasticity. PMID:26423840

  11. Exercise-induced biochemical changes and their potential influence on cancer: a scientific review

    PubMed Central

    Thomas, Robert James; Kenfield, Stacey A; Jimenez, Alfonso

    2017-01-01

    Aim To review and discuss the available international literature regarding the indirect and direct biochemical mechanisms that occur after exercise, which could positively, or negatively, influence oncogenic pathways. Methods The PubMed, MEDLINE, Embase and Cochrane libraries were searched for papers up to July 2016 addressing biochemical changes after exercise with a particular reference to cancer. The three authors independently assessed their appropriateness for inclusion in this review based on their scientific quality and relevance. Results 168 papers were selected and categorised into indirect and direct biochemical pathways. The indirect effects included changes in vitamin D, weight reduction, sunlight exposure and improved mood. The direct effects included insulin-like growth factor, epigenetic effects on gene expression and DNA repair, vasoactive intestinal peptide, oxidative stress and antioxidant pathways, heat shock proteins, testosterone, irisin, immunity, chronic inflammation and prostaglandins, energy metabolism and insulin resistance. Summary Exercise is one of several lifestyle factors known to lower the risk of developing cancer and is associated with lower relapse rates and better survival. This review highlights the numerous biochemical processes, which explain these potential anticancer benefits. PMID:27993842

  12. Hepatic Inflammation and Fibrosis: Functional Links and Key Pathways

    PubMed Central

    Seki, Ekihiro; Schwabe, Robert F.

    2014-01-01

    Inflammation is one of the most characteristic features of chronic liver disease of viral, alcoholic, fatty and autoimmune origin. Inflammation is typically present in all disease stages, and associated with the development of fibrosis, cirrhosis and hepatocellular carcinoma. In the past decade, numerous studies have contributed to improved understanding of the links between hepatic inflammation and fibrosis. Here, we review mechanisms that link inflammation with the development of liver fibrosis, focusing on the role of inflammatory mediators in hepatic stellate cell (HSC) activation and HSC survival during fibrogenesis and fibrosis regression. We will summarize the contributions of different inflammatory cells, including hepatic macrophages, T- and B-lymphocytes, NK cells and platelets, as well as key effectors such as cytokines, chemokines, and damage-associated molecular patterns. Furthermore, we will discuss the relevance of inflammatory signaling pathways for clinical liver disease and for the development of anti-fibrogenic strategies. PMID:25066777

  13. Adaptive Control Model Reveals Systematic Feedback and Key Molecules in Metabolic Pathway Regulation

    PubMed Central

    Moffitt, Richard A.; Merrill, Alfred H.; Wang, May D.

    2011-01-01

    Abstract Robust behavior in metabolic pathways resembles stabilized performance in systems under autonomous control. This suggests we can apply control theory to study existing regulation in these cellular networks. Here, we use model-reference adaptive control (MRAC) to investigate the dynamics of de novo sphingolipid synthesis regulation in a combined theoretical and experimental case study. The effects of serine palmitoyltransferase over-expression on this pathway are studied in vitro using human embryonic kidney cells. We report two key results from comparing numerical simulations with observed data. First, MRAC simulations of pathway dynamics are comparable to simulations from a standard model using mass action kinetics. The root-sum-square (RSS) between data and simulations in both cases differ by less than 5%. Second, MRAC simulations suggest systematic pathway regulation in terms of adaptive feedback from individual molecules. In response to increased metabolite levels available for de novo sphingolipid synthesis, feedback from molecules along the main artery of the pathway is regulated more frequently and with greater amplitude than from other molecules along the branches. These biological insights are consistent with current knowledge while being new that they may guide future research in sphingolipid biology. In summary, we report a novel approach to study regulation in cellular networks by applying control theory in the context of robust metabolic pathways. We do this to uncover potential insight into the dynamics of regulation and the reverse engineering of cellular networks for systems biology. This new modeling approach and the implementation routines designed for this case study may be extended to other systems. Supplementary Material is available at www.liebertonline.com/cmb. PMID:21314456

  14. Microarray analysis reveals key genes and pathways in Tetralogy of Fallot

    PubMed Central

    He, Yue-E; Qiu, Hui-Xian; Jiang, Jian-Bing; Wu, Rong-Zhou; Xiang, Ru-Lian; Zhang, Yuan-Hai

    2017-01-01

    The aim of the present study was to identify key genes that may be involved in the pathogenesis of Tetralogy of Fallot (TOF) using bioinformatics methods. The GSE26125 microarray dataset, which includes cardiovascular tissue samples derived from 16 children with TOF and five healthy age-matched control infants, was downloaded from the Gene Expression Omnibus database. Differential expression analysis was performed between TOF and control samples to identify differentially expressed genes (DEGs) using Student's t-test, and the R/limma package, with a log2 fold-change of >2 and a false discovery rate of <0.01 set as thresholds. The biological functions of DEGs were analyzed using the ToppGene database. The ReactomeFIViz application was used to construct functional interaction (FI) networks, and the genes in each module were subjected to pathway enrichment analysis. The iRegulon plugin was used to identify transcription factors predicted to regulate the DEGs in the FI network, and the gene-transcription factor pairs were then visualized using Cytoscape software. A total of 878 DEGs were identified, including 848 upregulated genes and 30 downregulated genes. The gene FI network contained seven function modules, which were all comprised of upregulated genes. Genes enriched in Module 1 were enriched in the following three neurological disorder-associated signaling pathways: Parkinson's disease, Alzheimer's disease and Huntington's disease. Genes in Modules 0, 3 and 5 were dominantly enriched in pathways associated with ribosomes and protein translation. The Xbox binding protein 1 transcription factor was demonstrated to be involved in the regulation of genes encoding the subunits of cytoplasmic and mitochondrial ribosomes, as well as genes involved in neurodegenerative disorders. Therefore, dysfunction of genes involved in signaling pathways associated with neurodegenerative disorders, ribosome function and protein translation may contribute to the pathogenesis of TOF

  15. PathwayAccess: CellDesigner plugins for pathway databases.

    PubMed

    Van Hemert, John L; Dickerson, Julie A

    2010-09-15

    CellDesigner provides a user-friendly interface for graphical biochemical pathway description. Many pathway databases are not directly exportable to CellDesigner models. PathwayAccess is an extensible suite of CellDesigner plugins, which connect CellDesigner directly to pathway databases using respective Java application programming interfaces. The process is streamlined for creating new PathwayAccess plugins for specific pathway databases. Three PathwayAccess plugins, MetNetAccess, BioCycAccess and ReactomeAccess, directly connect CellDesigner to the pathway databases MetNetDB, BioCyc and Reactome. PathwayAccess plugins enable CellDesigner users to expose pathway data to analytical CellDesigner functions, curate their pathway databases and visually integrate pathway data from different databases using standard Systems Biology Markup Language and Systems Biology Graphical Notation. Implemented in Java, PathwayAccess plugins run with CellDesigner version 4.0.1 and were tested on Ubuntu Linux, Windows XP and 7, and MacOSX. Source code, binaries, documentation and video walkthroughs are freely available at http://vrac.iastate.edu/~jlv.

  16. Accurate atom-mapping computation for biochemical reactions.

    PubMed

    Latendresse, Mario; Malerich, Jeremiah P; Travers, Mike; Karp, Peter D

    2012-11-26

    The complete atom mapping of a chemical reaction is a bijection of the reactant atoms to the product atoms that specifies the terminus of each reactant atom. Atom mapping of biochemical reactions is useful for many applications of systems biology, in particular for metabolic engineering where synthesizing new biochemical pathways has to take into account for the number of carbon atoms from a source compound that are conserved in the synthesis of a target compound. Rapid, accurate computation of the atom mapping(s) of a biochemical reaction remains elusive despite significant work on this topic. In particular, past researchers did not validate the accuracy of mapping algorithms. We introduce a new method for computing atom mappings called the minimum weighted edit-distance (MWED) metric. The metric is based on bond propensity to react and computes biochemically valid atom mappings for a large percentage of biochemical reactions. MWED models can be formulated efficiently as Mixed-Integer Linear Programs (MILPs). We have demonstrated this approach on 7501 reactions of the MetaCyc database for which 87% of the models could be solved in less than 10 s. For 2.1% of the reactions, we found multiple optimal atom mappings. We show that the error rate is 0.9% (22 reactions) by comparing these atom mappings to 2446 atom mappings of the manually curated Kyoto Encyclopedia of Genes and Genomes (KEGG) RPAIR database. To our knowledge, our computational atom-mapping approach is the most accurate and among the fastest published to date. The atom-mapping data will be available in the MetaCyc database later in 2012; the atom-mapping software will be available within the Pathway Tools software later in 2012.

  17. Synergizing 13C Metabolic Flux Analysis and Metabolic Engineering for Biochemical Production.

    PubMed

    Guo, Weihua; Sheng, Jiayuan; Feng, Xueyang

    Metabolic engineering of industrial microorganisms to produce chemicals, fuels, and drugs has attracted increasing interest as it provides an environment-friendly and renewable route that does not depend on depleting petroleum sources. However, the microbial metabolism is so complex that metabolic engineering efforts often have difficulty in achieving a satisfactory yield, titer, or productivity of the target chemical. To overcome this challenge, 13 C Metabolic Flux Analysis ( 13 C-MFA) has been developed to investigate rigorously the cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, 13 C-MFA has been widely used in academic labs and the biotechnology industry to pinpoint the key issues related to microbial-based chemical production and to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this chapter we introduce the basics of 13 C-MFA and illustrate how 13 C-MFA has been applied to synergize with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production.

  18. Recovering metabolic pathways via optimization.

    PubMed

    Beasley, John E; Planes, Francisco J

    2007-01-01

    A metabolic pathway is a coherent set of enzyme catalysed biochemical reactions by which a living organism transforms an initial (source) compound into a final (target) compound. Some of the different metabolic pathways adopted within organisms have been experimentally determined. In this paper, we show that a number of experimentally determined metabolic pathways can be recovered by a mathematical optimization model.

  19. A Method for Finding Metabolic Pathways Using Atomic Group Tracking.

    PubMed

    Huang, Yiran; Zhong, Cheng; Lin, Hai Xiang; Wang, Jianyi

    2017-01-01

    A fundamental computational problem in metabolic engineering is to find pathways between compounds. Pathfinding methods using atom tracking have been widely used to find biochemically relevant pathways. However, these methods require the user to define the atoms to be tracked. This may lead to failing to predict the pathways that do not conserve the user-defined atoms. In this work, we propose a pathfinding method called AGPathFinder to find biochemically relevant metabolic pathways between two given compounds. In AGPathFinder, we find alternative pathways by tracking the movement of atomic groups through metabolic networks and use combined information of reaction thermodynamics and compound similarity to guide the search towards more feasible pathways and better performance. The experimental results show that atomic group tracking enables our method to find pathways without the need of defining the atoms to be tracked, avoid hub metabolites, and obtain biochemically meaningful pathways. Our results also demonstrate that atomic group tracking, when incorporated with combined information of reaction thermodynamics and compound similarity, improves the quality of the found pathways. In most cases, the average compound inclusion accuracy and reaction inclusion accuracy for the top resulting pathways of our method are around 0.90 and 0.70, respectively, which are better than those of the existing methods. Additionally, AGPathFinder provides the information of thermodynamic feasibility and compound similarity for the resulting pathways.

  20. A Method for Finding Metabolic Pathways Using Atomic Group Tracking

    PubMed Central

    Zhong, Cheng; Lin, Hai Xiang; Wang, Jianyi

    2017-01-01

    A fundamental computational problem in metabolic engineering is to find pathways between compounds. Pathfinding methods using atom tracking have been widely used to find biochemically relevant pathways. However, these methods require the user to define the atoms to be tracked. This may lead to failing to predict the pathways that do not conserve the user-defined atoms. In this work, we propose a pathfinding method called AGPathFinder to find biochemically relevant metabolic pathways between two given compounds. In AGPathFinder, we find alternative pathways by tracking the movement of atomic groups through metabolic networks and use combined information of reaction thermodynamics and compound similarity to guide the search towards more feasible pathways and better performance. The experimental results show that atomic group tracking enables our method to find pathways without the need of defining the atoms to be tracked, avoid hub metabolites, and obtain biochemically meaningful pathways. Our results also demonstrate that atomic group tracking, when incorporated with combined information of reaction thermodynamics and compound similarity, improves the quality of the found pathways. In most cases, the average compound inclusion accuracy and reaction inclusion accuracy for the top resulting pathways of our method are around 0.90 and 0.70, respectively, which are better than those of the existing methods. Additionally, AGPathFinder provides the information of thermodynamic feasibility and compound similarity for the resulting pathways. PMID:28068354

  1. Mammalian O-Mannosylation Pathway: Glycan Structures, Enzymes, and Protein Substrates

    PubMed Central

    2015-01-01

    The mammalian O-mannosylation pathway for protein post-translational modification is intricately involved in modulating cell–matrix interactions in the musculature and nervous system. Defects in enzymes of this biosynthetic pathway are causative for multiple forms of congenital muscular dystophy. The application of advanced genetic and biochemical technologies has resulted in remarkable progress in this field over the past few years, culminating with the publication of three landmark papers in 2013 alone. In this review, we will highlight recent progress focusing on the dramatic expansion of the set of genes known to be involved in O-mannosylation and disease processes, the concurrent acceleration of the rate of O-mannosylation pathway protein functional assignments, the tremendous increase in the number of proteins now known to be modified by O-mannosylation, and the recent progress in protein O-mannose glycan quantification and site assignment. Also, we attempt to highlight key outstanding questions raised by this abundance of new information. PMID:24786756

  2. Phosphate homeostasis in the yeast Saccharomyces cerevisiae, the key role of the SPX domain-containing proteins.

    PubMed

    Secco, David; Wang, Chuang; Shou, Huixia; Whelan, James

    2012-02-17

    In the yeast Saccharomyces cerevisiae, a working model for nutrient homeostasis in eukaryotes, inorganic phosphate (Pi) homeostasis is regulated by the PHO pathway, a set of phosphate starvation induced genes, acting to optimize Pi uptake and utilization. Among these, a subset of proteins containing the SPX domain has been shown to be key regulators of Pi homeostasis. In this review, we summarize the recent progresses in elucidating the mechanisms controlling Pi homeostasis in yeast, focusing on the key roles of the SPX domain-containing proteins in these processes, as well as describing the future challenges and opportunities in this fast-moving field. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Biochemical Characterization of β-Amino Acid Incorporation in Fluvirucin B 2 Biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barajas, Jesus F.; Zargar, Amin; Pang, Bo

    Naturally occurring lactams, such as the polyketide-derived macrolactams, provide a diverse class of natural products that could enhance existing chemically produced lactams. While β-amino acid loading in the fluvirucin B 2 polyketide pathway has been proposed by a previously identified putative biosynthetic gene cluster, biochemical characterization of the complete loading enzymes has not been described. In this paper, we elucidate the complete biosynthetic pathway of the β-amino acid loading pathway in fluvirucin B 2 biosynthesis. We demonstrate the promiscuity of the loading pathway to utilize a range of amino acids and further illustrate the ability to introduce non-native acyl transferasesmore » to selectively transfer β-amino acids onto a PKS loading platform. The results presented here provide a detailed biochemical description of β-amino acid selection and will further aid in future efforts to develop engineered lactam-producing PKS platforms.« less

  4. Biochemical Characterization of β-Amino Acid Incorporation in Fluvirucin B 2 Biosynthesis

    DOE PAGES

    Barajas, Jesus F.; Zargar, Amin; Pang, Bo; ...

    2018-03-30

    Naturally occurring lactams, such as the polyketide-derived macrolactams, provide a diverse class of natural products that could enhance existing chemically produced lactams. While β-amino acid loading in the fluvirucin B 2 polyketide pathway has been proposed by a previously identified putative biosynthetic gene cluster, biochemical characterization of the complete loading enzymes has not been described. In this paper, we elucidate the complete biosynthetic pathway of the β-amino acid loading pathway in fluvirucin B 2 biosynthesis. We demonstrate the promiscuity of the loading pathway to utilize a range of amino acids and further illustrate the ability to introduce non-native acyl transferasesmore » to selectively transfer β-amino acids onto a PKS loading platform. The results presented here provide a detailed biochemical description of β-amino acid selection and will further aid in future efforts to develop engineered lactam-producing PKS platforms.« less

  5. Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium.

    PubMed

    Qian, Hong; Beard, Daniel A

    2005-04-22

    The principles of thermodynamics apply to both equilibrium and nonequilibrium biochemical systems. The mathematical machinery of the classic thermodynamics, however, mainly applies to systems in equilibrium. We introduce a thermodynamic formalism for the study of metabolic biochemical reaction (open, nonlinear) networks in both time-dependent and time-independent nonequilibrium states. Classical concepts in equilibrium thermodynamics-enthalpy, entropy, and Gibbs free energy of biochemical reaction systems-are generalized to nonequilibrium settings. Chemical motive force, heat dissipation rate, and entropy production (creation) rate, key concepts in nonequilibrium systems, are introduced. Dynamic equations for the thermodynamic quantities are presented in terms of the key observables of a biochemical network: stoichiometric matrix Q, reaction fluxes J, and chemical potentials of species mu without evoking empirical rate laws. Energy conservation and the Second Law are established for steady-state and dynamic biochemical networks. The theory provides the physiochemical basis for analyzing large-scale metabolic networks in living organisms.

  6. Identification of the Key Genes and Pathways in Esophageal Carcinoma.

    PubMed

    Su, Peng; Wen, Shiwang; Zhang, Yuefeng; Li, Yong; Xu, Yanzhao; Zhu, Yonggang; Lv, Huilai; Zhang, Fan; Wang, Mingbo; Tian, Ziqiang

    2016-01-01

    Objective . Esophageal carcinoma (EC) is a frequently common malignancy of gastrointestinal cancer in the world. This study aims to screen key genes and pathways in EC and elucidate the mechanism of it. Methods . 5 microarray datasets of EC were downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) were screened by bioinformatics analysis. Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction (PPI) network construction were performed to obtain the biological roles of DEGs in EC. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression level of DEGs in EC. Results . A total of 1955 genes were filtered as DEGs in EC. The upregulated genes were significantly enriched in cell cycle and the downregulated genes significantly enriched in Endocytosis. PPI network displayed CDK4 and CCT3 were hub proteins in the network. The expression level of 8 dysregulated DEGs including CDK4, CCT3, THSD4, SIM2, MYBL2, CENPF, CDCA3, and CDKN3 was validated in EC compared to adjacent nontumor tissues and the results were matched with the microarray analysis. Conclusion . The significantly DEGs including CDK4, CCT3, THSD4, and SIM2 may play key roles in tumorigenesis and development of EC involved in cell cycle and Endocytosis.

  7. Metabolomics for undergraduates: Identification and pathway assignment of mitochondrial metabolites.

    PubMed

    Marques, Ana Patrícia; Serralheiro, Maria Luisa; Ferreira, António E N; Freire, Ana Ponces; Cordeiro, Carlos; Silva, Marta Sousa

    2016-01-01

    Metabolomics is a key discipline in systems biology, together with genomics, transcriptomics, and proteomics. In this omics cascade, the metabolome represents the biochemical products that arise from cellular processes and is often regarded as the final response of a biological system to environmental or genetic changes. The overall screening approach to identify all the metabolites in a given biological system is called metabolic fingerprinting. Using high-resolution and high-mass accuracy mass spectrometry, large metabolome coverage, sensitivity, and specificity can be attained. Although the theoretical concepts of this methodology are usually provided in life-science programs, hands-on laboratory experiments are not usually accessible to undergraduate students. Even if the instruments are available, there are not simple laboratory protocols created specifically for teaching metabolomics. We designed a straightforward hands-on laboratory experiment to introduce students to this methodology, relating it to biochemical knowledge through metabolic pathway mapping of the identified metabolites. This study focuses on mitochondrial metabolomics since mitochondria have a well-known, medium-sized cellular sub-metabolome. These features facilitate both data processing and pathway mapping. In this experiment, students isolate mitochondria from potatoes, extract the metabolites, and analyze them by high-resolution mass spectrometry (using an FT-ICR mass spectrometer). The resulting mass list is submitted to an online program for metabolite identification, and compounds associated with mitochondrial pathways can be highlighted in a metabolic network map. © 2015 The International Union of Biochemistry and Molecular Biology.

  8. Pericytes of the neurovascular unit: Key functions and signaling pathways

    PubMed Central

    Sweeney, Melanie D.; Ayyadurai, Shiva; Zlokovic, Berislav V.

    2017-01-01

    Pericytes are vascular mural cells embedded in the basement membrane of blood microvessels. They extend their processes along capillaries, pre-capillary arterioles, and post-capillary venules. The central nervous system (CNS) pericytes are uniquely positioned within the neurovascular unit between endothelial cells, astrocytes, and neurons. They integrate, coordinate, and process signals from their neighboring cells to generate diverse functional responses that are critical for CNS functions in health and disease including regulation of the blood-brain barrier permeability, angiogenesis, clearance of toxic metabolites, capillary hemodynamic responses, neuroinflammation, and stem cell activity. Here, we examine the key signaling pathways between pericytes and their neighboring endothelial cells, astrocytes, and neurons that control neurovascular functions. We also review the role of pericytes in different CNS disorders including rare monogenic diseases and complex neurological disorders such as Alzheimer's disease and brain tumors. Finally, we discuss directions for future studies. PMID:27227366

  9. A zebrafish model of PINK1 deficiency reveals key pathway dysfunction including HIF signaling.

    PubMed

    Priyadarshini, M; Tuimala, J; Chen, Y C; Panula, P

    2013-06-01

    The PTEN induced putative kinase 1 (PINK1) gene is mutated in patients with hereditary early onset Parkinson's disease (PD). The targets of PINK1 and the mechanisms in PD are still not fully understood. Here, we carried out a high-throughput and unbiased microarray study to identify novel functions and pathways for PINK1. In larval zebrafish, the function of pink1 was inhibited using splice-site morpholino oligonucleotides and the samples were hybridized on a two-color gene expression array. We found 177 significantly altered genes in pink1 morphants compared with the uninjected wildtype controls (log fold change values from -1.6 to +0.9). The five most prominent pathways based on critical biological processes and key toxicological responses were hypoxia-inducible factor (HIF) signaling, TGF-β signaling, mitochondrial dysfunction, RAR activation, and biogenesis of mitochondria. Furthermore, we verified that potentially important genes such as hif1α, catalase, SOD3, and atp1a2a were downregulated in pink1 morphants, whereas genes such as fech, pax2a, and notch1a were upregulated. Some of these genes have been found to play important roles in HIF signaling pathways. The pink1 morphants were found to have heart dysfunction, increased erythropoiesis, increased expression of vascular endothelial growth factors, and increased ROS. Our findings suggest that a lack of pink1 in zebrafish alters many vital and critical pathways in addition to the HIF signaling pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Multi-membership gene regulation in pathway based microarray analysis

    PubMed Central

    2011-01-01

    Background Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. Results We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. Conclusions We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes. PMID:21939531

  11. Multi-membership gene regulation in pathway based microarray analysis.

    PubMed

    Pavlidis, Stelios P; Payne, Annette M; Swift, Stephen M

    2011-09-22

    Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes.

  12. Biochemical Network Stochastic Simulator (BioNetS): software for stochastic modeling of biochemical networks.

    PubMed

    Adalsteinsson, David; McMillen, David; Elston, Timothy C

    2004-03-08

    Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA) molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. We have developed the software package Biochemical Network Stochastic Simulator (BioNetS) for efficiently and accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous) for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solves the appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  13. Identification of key nitrous oxide production pathways in aerobic partial nitrifying granules.

    PubMed

    Ishii, Satoshi; Song, Yanjun; Rathnayake, Lashitha; Tumendelger, Azzaya; Satoh, Hisashi; Toyoda, Sakae; Yoshida, Naohiro; Okabe, Satoshi

    2014-10-01

    The identification of the key nitrous oxide (N2O) production pathways is important to establish a strategy to mitigate N2O emission. In this study, we combined real-time gas-monitoring analysis, (15)N stable isotope analysis, denitrification functional gene transcriptome analysis and microscale N2O concentration measurements to identify the main N2O producers in a partial nitrification (PN) aerobic granule reactor, which was fed with ammonium and acetate. Our results suggest that heterotrophic denitrification was the main contributor to N2O production in our PN aerobic granule reactor. The heterotrophic denitrifiers were probably related to Rhodocyclales bacteria, although different types of bacteria were active in the initial and latter stages of the PN reaction cycles, most likely in response to the presence of acetate. Hydroxylamine oxidation and nitrifier denitrification occurred, but their contribution to N2O emission was relatively small (20-30%) compared with heterotrophic denitrification. Our approach can be useful to quantitatively examine the relative contributions of the three pathways (hydroxylamine oxidation, nitrifier denitrification and heterotrophic denitrification) to N2O emission in mixed microbial populations. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. A systems biology approach to detect key pathways and interaction networks in gastric cancer on the basis of microarray analysis.

    PubMed

    Guo, Leilei; Song, Chunhua; Wang, Peng; Dai, Liping; Zhang, Jianying; Wang, Kaijuan

    2015-11-01

    The aim of the present study was to explore key molecular pathways contributing to gastric cancer (GC) and to construct an interaction network between significant pathways and potential biomarkers. Publicly available gene expression profiles of GSE29272 for GC, and data for the corresponding normal tissue, were downloaded from Gene Expression Omnibus. Pre‑processing and differential analysis were performed with R statistical software packages, and a number of differentially expressed genes (DEGs) were obtained. A functional enrichment analysis was performed for all the DEGs with a BiNGO plug‑in in Cytoscape. Their correlation was analyzed in order to construct a network. The modularity analysis and pathway identification operations were used to identify graph clusters and associated pathways. The underlying molecular mechanisms involving these DEGs were also assessed by data mining. A total of 249 DEGs, which were markedly upregulated and downregulated, were identified. The extracellular region contained the most significantly over‑represented functional terms, with respect to upregulated and downregulated genes, and the closest topological matches were identified for taste transduction and regulation of autophagy. In addition, extracellular matrix‑receptor interactions were identified as the most relevant pathway associated with the progression of GC. The genes for fibronectin 1, secreted phosphoprotein 1, collagen type 4 variant α‑1/2 and thrombospondin 1, which are involved in the pathways, may be considered as potential therapeutic targets for GC. A series of associations between candidate genes and key pathways were also identified for GC, and their correlation may provide novel insights into the pathogenesis of GC.

  15. Exploring the key genes and pathways in enchondromas using a gene expression microarray.

    PubMed

    Shi, Zhongju; Zhou, Hengxing; Pan, Bin; Lu, Lu; Kang, Yi; Liu, Lu; Wei, Zhijian; Feng, Shiqing

    2017-07-04

    Enchondromas are the most common primary benign osseous neoplasms that occur in the medullary bone; they can undergo malignant transformation into chondrosarcoma. However, enchondromas are always undetected in patients, and the molecular mechanism is unclear. To identify key genes and pathways associated with the occurrence and development of enchondromas, we downloaded the gene expression dataset GSE22855 and obtained the differentially expressed genes (DEGs) by analyzing high-throughput gene expression in enchondromas. In total, 635 genes were identified as DEGs. Of these, 225 genes (35.43%) were up-regulated, and the remaining 410 genes (64.57%) were down-regulated. We identified the predominant gene ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were significantly over-represented in the enchondromas samples compared with the control samples. Subsequently the top 10 core genes were identified from the protein-protein interaction (PPI) network. The enrichment analyses of the genes mainly involved in two significant modules showed that the DEGs were principally related to ribosomes, protein digestion and absorption, ECM-receptor interaction, focal adhesion, amoebiasis and the PI3K-Akt signaling pathway.Together, these data elucidate the molecular mechanisms underlying the occurrence and development of enchondromas and provide promising candidates for therapeutic intervention and prognostic evaluation. However, further experimental studies are needed to confirm these results.

  16. Pheochromocytoma-paraganglioma: Biochemical and genetic diagnosis.

    PubMed

    Cano Megías, Marta; Rodriguez Puyol, Diego; Fernández Rodríguez, Loreto; Sención Martinez, Gloria Lisette; Martínez Miguel, Patricia

    Pheochromocytomas and paragangliomas are tumours derived from neural crest cells, which can be diagnosed by biochemical measurement of metanephrine and methoxytyramine. Advances in genetic research have identified many genes involved in the pathogenesis of these tumours, suggesting that up to 35-45% may have an underlying germline mutation. These genes have a singular transcriptional signature and can be grouped into 2 clusters (or groups): cluster 1 (VHL and SHDx), involved in angiogenesis and hypoxia pathways; and cluster 2 (MEN2 and NF1), linked to the kinase signalling pathway. In turn, these genes are associated with a characteristic biochemical phenotype (noradrenergic and adrenergic), and clinical features (location, biological behaviour, age of presentation, etc.) in a large number of cases. Early diagnosis of these tumours, accompanied by a correct genetic diagnosis, should eventually become a priority to enable better treatment, early detection of complications, proper screening of family members and related tumours, as well as an improvement in the overall prognosis of these patients. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  17. PathFinder: reconstruction and dynamic visualization of metabolic pathways.

    PubMed

    Goesmann, Alexander; Haubrock, Martin; Meyer, Folker; Kalinowski, Jörn; Giegerich, Robert

    2002-01-01

    Beyond methods for a gene-wise annotation and analysis of sequenced genomes new automated methods for functional analysis on a higher level are needed. The identification of realized metabolic pathways provides valuable information on gene expression and regulation. Detection of incomplete pathways helps to improve a constantly evolving genome annotation or discover alternative biochemical pathways. To utilize automated genome analysis on the level of metabolic pathways new methods for the dynamic representation and visualization of pathways are needed. PathFinder is a tool for the dynamic visualization of metabolic pathways based on annotation data. Pathways are represented as directed acyclic graphs, graph layout algorithms accomplish the dynamic drawing and visualization of the metabolic maps. A more detailed analysis of the input data on the level of biochemical pathways helps to identify genes and detect improper parts of annotations. As an Relational Database Management System (RDBMS) based internet application PathFinder reads a list of EC-numbers or a given annotation in EMBL- or Genbank-format and dynamically generates pathway graphs.

  18. Metabolic PathFinding: inferring relevant pathways in biochemical networks.

    PubMed

    Croes, Didier; Couche, Fabian; Wodak, Shoshana J; van Helden, Jacques

    2005-07-01

    Our knowledge of metabolism can be represented as a network comprising several thousands of nodes (compounds and reactions). Several groups applied graph theory to analyse the topological properties of this network and to infer metabolic pathways by path finding. This is, however, not straightforward, with a major problem caused by traversing irrelevant shortcuts through highly connected nodes, which correspond to pool metabolites and co-factors (e.g. H2O, NADP and H+). In this study, we present a web server implementing two simple approaches, which circumvent this problem, thereby improving the relevance of the inferred pathways. In the simplest approach, the shortest path is computed, while filtering out the selection of highly connected compounds. In the second approach, the shortest path is computed on the weighted metabolic graph where each compound is assigned a weight equal to its connectivity in the network. This approach significantly increases the accuracy of the inferred pathways, enabling the correct inference of relatively long pathways (e.g. with as many as eight intermediate reactions). Available options include the calculation of the k-shortest paths between two specified seed nodes (either compounds or reactions). Multiple requests can be submitted in a queue. Results are returned by email, in textual as well as graphical formats (available in http://www.scmbb.ulb.ac.be/pathfinding/).

  19. Biochemical and structural investigations on phosphoribosylpyrophosphate synthetase from Mycobacterium smegmatis.

    PubMed

    Donini, Stefano; Garavaglia, Silvia; Ferraris, Davide M; Miggiano, Riccardo; Mori, Shigetarou; Shibayama, Keigo; Rizzi, Menico

    2017-01-01

    Mycobacterium smegmatis represents one model for studying the biology of its pathogenic relative Mycobacterium tuberculosis. The structural characterization of a M. tuberculosis ortholog protein can serve as a valid tool for the development of molecules active against the M. tuberculosis target. In this context, we report the biochemical and structural characterization of M. smegmatis phosphoribosylpyrophosphate synthetase (PrsA), the ortholog of M. tuberculosis PrsA, the unique enzyme responsible for the synthesis of phosphoribosylpyrophosphate (PRPP). PRPP is a key metabolite involved in several biosynthetic pathways including those for histidine, tryptophan, nucleotides and decaprenylphosphoryl-arabinose, an essential precursor for the mycobacterial cell wall biosynthesis. Since M. tuberculosis PrsA has been validated as a drug target for the development of antitubercular agents, the data presented here will add to the knowledge of the mycobacterial enzyme and could contribute to the development of M. tuberculosis PrsA inhibitors of potential pharmacological interest.

  20. Modulation of the Isoprenoid/Cholesterol Biosynthetic Pathway During Neuronal Differentiation In Vitro.

    PubMed

    Cartocci, Veronica; Segatto, Marco; Di Tunno, Ilenia; Leone, Stefano; Pfrieger, Frank W; Pallottini, Valentina

    2016-09-01

    During differentiation, neurons acquire their typical shape and functional properties. At present, it is unclear, whether this important developmental step involves metabolic changes. Here, we studied the contribution of the mevalonate (MVA) pathway to neuronal differentiation using the mouse neuroblastoma cell line N1E-115 as experimental model. Our results show that during differentiation, the activity of 3-hydroxy 3-methylglutaryl Coenzyme A reductase (HMGR), a key enzyme of MVA pathway, and the level of Low Density Lipoprotein receptor (LDLr) decrease, whereas the level of LDLr-related protein-1 (LRP1) and the dimerization of Scavanger Receptor B1 (SRB-1) rise. Pharmacologic inhibition of HMGR by simvastatin accelerated neuronal differentiation by modulating geranylated proteins. Collectively, our data suggest that during neuronal differentiation, the activity of the MVA pathway decreases and we postulate that any interference with this process impacts neuronal morphology and function. Therefore, the MVA pathway appears as an attractive pharmacological target to modulate neurological and metabolic symptoms of developmental neuropathologies. J. Cell. Biochem. 117: 2036-2044, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Characterization of the biochemical-pathway of uranium (VI) reduction in facultative anaerobic bacteria.

    PubMed

    Mtimunye, Phalazane J; Chirwa, Evans M N

    2014-10-01

    Cultures of U(VI) reducing bacteria sourced from abandoned uranium mine tailing dam were evaluated for their ability to reduce U(VI) to U(IV). The species in the cultures reduced U(VI) in solutions with initial U(VI) concentration up to 400mgL(-)(1) under a near neutral pH of 6.5. The electron flow pathway and fate of reduced species was also analysed in the individual species in order to evaluate the potential for control and optimisation of the reduction potential at the biochemical level. The results showed that U(VI) reduction in live cells was completely blocked by the NADH-dehydrogenase inhibitor, rotenone (C23H22O6), and thioredoxin inhibitor, cadmium chloride (CdCl2), showing that U(VI) reduction involves the electron flow through NADH-dehydrogenase, a primary electron donor to the electron transport respiratory (ETR) system. Mass balance analysis of uranium species aided by visual and electron microscopy suggest that most U(VI) reduction occurred on the cell surface of the isolated species. This finding indicates the possibility of easy uranium recovery for beneficial use through biological remediation. Should the U(VI) be reduced inside the cell, recovery would require complete disruption of the cells and therefore would be difficult. The study contributes new knowledge on the underlying mechanisms in the U(VI) reduction in facultative anaerobes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Biochemical Basis of Sestrin Physiological Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Allison; Cho, Chun-Seok; Namkoong, Sim

    Excessive accumulation of reactive oxygen species (ROS) and chronic activation of mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) are well-characterized promoters of aging and age-associated degenerative pathologies. Sestrins, a family of highly conserved stress-inducible proteins, are important negative regulators of both ROS and mTORC1 signaling pathways; however, the mechanistic basis of how Sestrins suppress these pathways remains elusive. In the past couple of years, breakthrough discoveries about Sestrin signaling and its molecular nature have markedly increased our biochemical understanding of Sestrin function. These discoveries have also uncovered new potential therapeutic strategies that may eventually enable us to attenuate agingmore » and age-associated diseases.« less

  3. Improving Marine Ecosystem Models with Biochemical Tracers

    NASA Astrophysics Data System (ADS)

    Pethybridge, Heidi R.; Choy, C. Anela; Polovina, Jeffrey J.; Fulton, Elizabeth A.

    2018-01-01

    Empirical data on food web dynamics and predator-prey interactions underpin ecosystem models, which are increasingly used to support strategic management of marine resources. These data have traditionally derived from stomach content analysis, but new and complementary forms of ecological data are increasingly available from biochemical tracer techniques. Extensive opportunities exist to improve the empirical robustness of ecosystem models through the incorporation of biochemical tracer data and derived indices, an area that is rapidly expanding because of advances in analytical developments and sophisticated statistical techniques. Here, we explore the trophic information required by ecosystem model frameworks (species, individual, and size based) and match them to the most commonly used biochemical tracers (bulk tissue and compound-specific stable isotopes, fatty acids, and trace elements). Key quantitative parameters derived from biochemical tracers include estimates of diet composition, niche width, and trophic position. Biochemical tracers also provide powerful insight into the spatial and temporal variability of food web structure and the characterization of dominant basal and microbial food web groups. A major challenge in incorporating biochemical tracer data into ecosystem models is scale and data type mismatches, which can be overcome with greater knowledge exchange and numerical approaches that transform, integrate, and visualize data.

  4. Key apoptotic pathways for heat-induced programmed germ cell death in the testis.

    PubMed

    Hikim, Amiya P Sinha; Lue, Yanhe; Yamamoto, Cindy M; Vera, Yanira; Rodriguez, Susana; Yen, Pauline H; Soeng, Kevin; Wang, Christina; Swerdloff, Ronald S

    2003-07-01

    Short-term exposure (43 C for 15 min) of the rat testis to mild heat results within 6 h in stage- and cell-specific activation of germ cell apoptosis. Initiation of apoptosis was preceded by a redistribution of Bax from a cytoplasmic to paranuclear localization in heat-susceptible germ cells. Here we show that the relocation of Bax is accompanied by cytosolic translocation of cytochrome c and is associated with activation of the initiator caspase 9 and the executioner caspases 3, 6, and 7 and cleavage of poly(ADP) ribose polymerase. Furthermore, early in apoptosis, a significant amount of Bax also accumulates in endoplasmic reticulum, as assessed by Western blot analyses of fractionated testicular lysates. In additional studies using the FasL-defective gld mice, we have shown that heat-induced germ cell apoptosis is not blocked, thus providing evidence that the Fas signaling system may be dispensable for heat-induced germ cell apoptosis in the testis. Taken together, these results demonstrate that the mitochondria- and possibly also endoplasmic reticulum-dependent pathways are the key apoptotic pathways for heat-induced germ cell death in the testis.

  5. Alterations in metabolic pathways and networks in Alzheimer's disease

    PubMed Central

    Kaddurah-Daouk, R; Zhu, H; Sharma, S; Bogdanov, M; Rozen, S G; Matson, W; Oki, N O; Motsinger-Reif, A A; Churchill, E; Lei, Z; Appleby, D; Kling, M A; Trojanowski, J Q; Doraiswamy, P M; Arnold, S E

    2013-01-01

    The pathogenic mechanisms of Alzheimer's disease (AD) remain largely unknown and clinical trials have not demonstrated significant benefit. Biochemical characterization of AD and its prodromal phase may provide new diagnostic and therapeutic insights. We used targeted metabolomics platform to profile cerebrospinal fluid (CSF) from AD (n=40), mild cognitive impairment (MCI, n=36) and control (n=38) subjects; univariate and multivariate analyses to define between-group differences; and partial least square-discriminant analysis models to classify diagnostic groups using CSF metabolomic profiles. A partial correlation network was built to link metabolic markers, protein markers and disease severity. AD subjects had elevated methionine (MET), 5-hydroxyindoleacetic acid (5-HIAA), vanillylmandelic acid, xanthosine and glutathione versus controls. MCI subjects had elevated 5-HIAA, MET, hypoxanthine and other metabolites versus controls. Metabolite ratios revealed changes within tryptophan, MET and purine pathways. Initial pathway analyses identified steps in several pathways that appear altered in AD and MCI. A partial correlation network showed total tau most directly related to norepinephrine and purine pathways; amyloid-β (Ab42) was related directly to an unidentified metabolite and indirectly to 5-HIAA and MET. These findings indicate that MCI and AD are associated with an overlapping pattern of perturbations in tryptophan, tyrosine, MET and purine pathways, and suggest that profound biochemical alterations are linked to abnormal Ab42 and tau metabolism. Metabolomics provides powerful tools to map interlinked biochemical pathway perturbations and study AD as a disease of network failure. PMID:23571809

  6. Alterations in metabolic pathways and networks in Alzheimer's disease.

    PubMed

    Kaddurah-Daouk, R; Zhu, H; Sharma, S; Bogdanov, M; Rozen, S G; Matson, W; Oki, N O; Motsinger-Reif, A A; Churchill, E; Lei, Z; Appleby, D; Kling, M A; Trojanowski, J Q; Doraiswamy, P M; Arnold, S E

    2013-04-09

    The pathogenic mechanisms of Alzheimer's disease (AD) remain largely unknown and clinical trials have not demonstrated significant benefit. Biochemical characterization of AD and its prodromal phase may provide new diagnostic and therapeutic insights. We used targeted metabolomics platform to profile cerebrospinal fluid (CSF) from AD (n=40), mild cognitive impairment (MCI, n=36) and control (n=38) subjects; univariate and multivariate analyses to define between-group differences; and partial least square-discriminant analysis models to classify diagnostic groups using CSF metabolomic profiles. A partial correlation network was built to link metabolic markers, protein markers and disease severity. AD subjects had elevated methionine (MET), 5-hydroxyindoleacetic acid (5-HIAA), vanillylmandelic acid, xanthosine and glutathione versus controls. MCI subjects had elevated 5-HIAA, MET, hypoxanthine and other metabolites versus controls. Metabolite ratios revealed changes within tryptophan, MET and purine pathways. Initial pathway analyses identified steps in several pathways that appear altered in AD and MCI. A partial correlation network showed total tau most directly related to norepinephrine and purine pathways; amyloid-β (Ab42) was related directly to an unidentified metabolite and indirectly to 5-HIAA and MET. These findings indicate that MCI and AD are associated with an overlapping pattern of perturbations in tryptophan, tyrosine, MET and purine pathways, and suggest that profound biochemical alterations are linked to abnormal Ab42 and tau metabolism. Metabolomics provides powerful tools to map interlinked biochemical pathway perturbations and study AD as a disease of network failure.

  7. Mergeomics: a web server for identifying pathological pathways, networks, and key regulators via multidimensional data integration.

    PubMed

    Arneson, Douglas; Bhattacharya, Anindya; Shu, Le; Mäkinen, Ville-Petteri; Yang, Xia

    2016-09-09

    Human diseases are commonly the result of multidimensional changes at molecular, cellular, and systemic levels. Recent advances in genomic technologies have enabled an outpour of omics datasets that capture these changes. However, separate analyses of these various data only provide fragmented understanding and do not capture the holistic view of disease mechanisms. To meet the urgent needs for tools that effectively integrate multiple types of omics data to derive biological insights, we have developed Mergeomics, a computational pipeline that integrates multidimensional disease association data with functional genomics and molecular networks to retrieve biological pathways, gene networks, and central regulators critical for disease development. To make the Mergeomics pipeline available to a wider research community, we have implemented an online, user-friendly web server ( http://mergeomics. idre.ucla.edu/ ). The web server features a modular implementation of the Mergeomics pipeline with detailed tutorials. Additionally, it provides curated genomic resources including tissue-specific expression quantitative trait loci, ENCODE functional annotations, biological pathways, and molecular networks, and offers interactive visualization of analytical results. Multiple computational tools including Marker Dependency Filtering (MDF), Marker Set Enrichment Analysis (MSEA), Meta-MSEA, and Weighted Key Driver Analysis (wKDA) can be used separately or in flexible combinations. User-defined summary-level genomic association datasets (e.g., genetic, transcriptomic, epigenomic) related to a particular disease or phenotype can be uploaded and computed real-time to yield biologically interpretable results, which can be viewed online and downloaded for later use. Our Mergeomics web server offers researchers flexible and user-friendly tools to facilitate integration of multidimensional data into holistic views of disease mechanisms in the form of tissue-specific key regulators

  8. Biochemical and structural investigations on phosphoribosylpyrophosphate synthetase from Mycobacterium smegmatis

    PubMed Central

    Donini, Stefano; Garavaglia, Silvia; Ferraris, Davide M.; Miggiano, Riccardo; Mori, Shigetarou; Shibayama, Keigo

    2017-01-01

    Mycobacterium smegmatis represents one model for studying the biology of its pathogenic relative Mycobacterium tuberculosis. The structural characterization of a M. tuberculosis ortholog protein can serve as a valid tool for the development of molecules active against the M. tuberculosis target. In this context, we report the biochemical and structural characterization of M. smegmatis phosphoribosylpyrophosphate synthetase (PrsA), the ortholog of M. tuberculosis PrsA, the unique enzyme responsible for the synthesis of phosphoribosylpyrophosphate (PRPP). PRPP is a key metabolite involved in several biosynthetic pathways including those for histidine, tryptophan, nucleotides and decaprenylphosphoryl-arabinose, an essential precursor for the mycobacterial cell wall biosynthesis. Since M. tuberculosis PrsA has been validated as a drug target for the development of antitubercular agents, the data presented here will add to the knowledge of the mycobacterial enzyme and could contribute to the development of M. tuberculosis PrsA inhibitors of potential pharmacological interest. PMID:28419153

  9. Seasonal induction of alternative principal pathway for rose flower scent

    PubMed Central

    Hirata, Hiroshi; Ohnishi, Toshiyuki; Tomida, Kensuke; Ishida, Haruka; Kanda, Momoyo; Sakai, Miwa; Yoshimura, Jin; Suzuki, Hideyuki; Ishikawa, Takamasa; Dohra, Hideo; Watanabe, Naoharu

    2016-01-01

    Ecological adaptations to seasonal changes are often observed in the phenotypic traits of plants and animals, and these adaptations are usually expressed through the production of different biochemical end products. In this study, ecological adaptations are observed in a biochemical pathway without alteration of the end products. We present an alternative principal pathway to the characteristic floral scent compound 2-phenylethanol (2PE) in roses. The new pathway is seasonally induced in summer as a heat adaptation that uses rose phenylpyruvate decarboxylase (RyPPDC) as a novel enzyme. RyPPDC transcript levels and the resulting production of 2PE are increased time-dependently under high temperatures. The novel summer pathway produces levels of 2PE that are several orders of magnitude higher than those produced by the previously known pathway. Our results indicate that the alternative principal pathway identified here is a seasonal adaptation for managing the weakened volatility of summer roses. PMID:26831950

  10. Metabolomic strategies to map functions of metabolic pathways

    PubMed Central

    Mulvihill, Melinda M.

    2014-01-01

    Genome sequencing efforts have revealed a strikingly large number of unannotated and uncharacterized genes that fall into metabolic enzymes classes, likely indicating that our current knowledge of biochemical pathways in normal physiology, let alone in disease states, remains largely incomplete. This realization presents a daunting challenge for post-genomic-era scientists in deciphering the biochemical and (patho)physiological roles of these enzymes and their metabolites and metabolic networks. This is further complicated by many recent studies showing a rewiring of normal metabolic networks in disease states to give rise to unique pathophysiological functions of enzymes, metabolites, and metabolic pathways. This review focuses on recent discoveries made using metabolic mapping technologies to uncover novel pathways and metabolite-mediated posttranslational modifications and epigenetic alterations and their impact on physiology and disease. PMID:24918200

  11. Walking the C4 pathway: past, present, and future.

    PubMed

    Furbank, Robert T

    2017-01-01

    The year 2016 marks 50 years since the publication of the seminal paper by Hatch and Slack describing the biochemical pathway we now know as C 4 photosynthesis. This review provides insight into the initial discovery of this pathway, the clues which led Hatch and Slack and others to these definitive experiments, some of the intrigue which surrounds the international activities which led up to the discovery, and personal insights into the future of this research field. While the biochemical understanding of the basic pathways came quickly, the role of the bundle sheath intermediate CO 2 pool was not understood for a number of years, and the nature of C 4 as a biochemical CO 2 pump then linked the unique Kranz anatomy of C 4 plants to their biochemical specialization. Decades of "grind and find biochemistry" and leaf physiology fleshed out the regulation of the pathway and the differences in physiological response to the environment between C 3 and C 4 plants. The more recent advent of plant transformation then high-throughput RNA and DNA sequencing and synthetic biology has allowed us both to carry out biochemical experiments and test hypotheses in planta and to better understand the evolution-driven molecular and genetic changes which occurred in the genomes of plants in the transition from C 3 to C 4 Now we are using this knowledge in attempts to engineer C 4 rice and improve the C 4 engine itself for enhanced food security and to provide novel biofuel feedstocks. The next 50 years of photosynthesis will no doubt be challenging, stimulating, and a drawcard for the best young minds in plant biology. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Walking the C4 pathway: past, present, and future.

    PubMed

    Furbank, Robert T

    2016-07-01

    The year 2016 marks 50 years since the publication of the seminal paper by Hatch and Slack describing the biochemical pathway we now know as C4 photosynthesis. This review provides insight into the initial discovery of this pathway, the clues which led Hatch and Slack and others to these definitive experiments, some of the intrigue which surrounds the international activities which led up to the discovery, and personal insights into the future of this research field. While the biochemical understanding of the basic pathways came quickly, the role of the bundle sheath intermediate CO2 pool was not understood for a number of years, and the nature of C4 as a biochemical CO2 pump then linked the unique Kranz anatomy of C4 plants to their biochemical specialization. Decades of "grind and find biochemistry" and leaf physiology fleshed out the regulation of the pathway and the differences in physiological response to the environment between C3 and C4 plants. The more recent advent of plant transformation then high-throughput RNA and DNA sequencing and synthetic biology has allowed us both to carry out biochemical experiments and test hypotheses in planta and to better understand the evolution-driven molecular and genetic changes which occurred in the genomes of plants in the transition from C3 to C4 Now we are using this knowledge in attempts to engineer C4 rice and improve the C4 engine itself for enhanced food security and to provide novel biofuel feedstocks. The next 50 years of photosynthesis will no doubt be challenging, stimulating, and a drawcard for the best young minds in plant biology. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Molecular cloning and biochemical characterization of a recombinant sterol 3-O-glucosyltransferase from Gymnema sylvestre R.Br. catalyzing biosynthesis of steryl glucosides.

    PubMed

    Tiwari, Pragya; Sangwan, Rajender Singh; Asha; Mishra, B N; Sabir, Farzana; Sangwan, Neelam S

    2014-01-01

    Gymnema sylvestre R.Br., a pharmacologically important herb vernacularly called Gur-Mar (sugar eliminator), is widely known for its antidiabetic action. This property of the herb has been attributed to the presence of bioactive triterpene glycosides. Although some information regarding pharmacology and phytochemical profiles of the plant are available, no attempts have been made so far to decipher the biosynthetic pathway and key enzymes involved in biosynthesis of steryl glucosides. The present report deals with the identification and catalytic characterization of a glucosyltransferase, catalyzing biosynthesis of steryl glycosides. The full length cDNA (2572 bp) contained an open reading frame of 2106 nucleotides that encoded a 701 amino acid protein, falling into GT-B subfamily of glycosyltransferases. The GsSGT was expressed in Escherichia coli and biochemical characterization of the recombinant enzyme suggested its key role in the biosynthesis of steryl glucosides with catalytic preference for C-3 hydroxyl group of sterols. To our knowledge, this pertains to be the first report on cloning and biochemical characterization of a sterol metabolism gene from G. sylvestre R.Br. catalyzing glucosylation of a variety of sterols of biological origin from diverse organisms such as bacteria, fungi, and plants.

  14. Molecular Cloning and Biochemical Characterization of a Recombinant Sterol 3-O-Glucosyltransferase from Gymnema sylvestre R.Br. Catalyzing Biosynthesis of Steryl Glucosides

    PubMed Central

    Sangwan, Rajender Singh; Asha; Mishra, B. N.; Sangwan, Neelam S.

    2014-01-01

    Gymnema sylvestre R.Br., a pharmacologically important herb vernacularly called Gur-Mar (sugar eliminator), is widely known for its antidiabetic action. This property of the herb has been attributed to the presence of bioactive triterpene glycosides. Although some information regarding pharmacology and phytochemical profiles of the plant are available, no attempts have been made so far to decipher the biosynthetic pathway and key enzymes involved in biosynthesis of steryl glucosides. The present report deals with the identification and catalytic characterization of a glucosyltransferase, catalyzing biosynthesis of steryl glycosides. The full length cDNA (2572 bp) contained an open reading frame of 2106 nucleotides that encoded a 701 amino acid protein, falling into GT-B subfamily of glycosyltransferases. The GsSGT was expressed in Escherichia coli and biochemical characterization of the recombinant enzyme suggested its key role in the biosynthesis of steryl glucosides with catalytic preference for C-3 hydroxyl group of sterols. To our knowledge, this pertains to be the first report on cloning and biochemical characterization of a sterol metabolism gene from G. sylvestre R.Br. catalyzing glucosylation of a variety of sterols of biological origin from diverse organisms such as bacteria, fungi, and plants. PMID:25250339

  15. Multidimensional biochemical information processing of dynamical patterns

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  16. Multidimensional biochemical information processing of dynamical patterns.

    PubMed

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  17. Genomes of rumen bacteria encode atypical pathways for fermenting hexoses to short-chain fatty acids.

    PubMed

    Hackmann, Timothy J; Ngugi, David Kamanda; Firkins, Jeffrey L; Tao, Junyi

    2017-11-01

    Bacteria have been thought to follow only a few well-recognized biochemical pathways when fermenting glucose or other hexoses. These pathways have been chiseled in the stone of textbooks for decades, with most sources rendering them as they appear in the classic 1986 text by Gottschalk. Still, it is unclear how broadly these pathways apply, given that they were established and delineated biochemically with only a few model organisms. Here, we show that well-recognized pathways often cannot explain fermentation products formed by bacteria. In the most extensive analysis of its kind, we reconstructed pathways for glucose fermentation from genomes of 48 species and subspecies of bacteria from one environment (the rumen). In total, 44% of these bacteria had atypical pathways, including several that are completely unprecedented for bacteria or any organism. In detail, 8% of bacteria had an atypical pathway for acetate formation; 21% of bacteria had an atypical pathway for propionate or succinate formation; 6% of bacteria had an atypical pathway for butyrate formation and 33% of bacteria had an atypical or incomplete Embden-Meyerhof-Parnas pathway. This study shows that reconstruction of metabolic pathways - a common goal of omics studies - could be incorrect if well-recognized pathways are used for reference. Furthermore, it calls for renewed efforts to delineate fermentation pathways biochemically. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Identification of Genetic Bases of Vibrio fluvialis Species-Specific Biochemical Pathways and Potential Virulence Factors by Comparative Genomic Analysis

    PubMed Central

    Lu, Xin; Liang, Weili; Wang, Yunduan; Xu, Jialiang

    2014-01-01

    Vibrio fluvialis is an important food-borne pathogen that causes diarrheal illness and sometimes extraintestinal infections in humans. In this study, we sequenced the genome of a clinical V. fluvialis strain and determined its phylogenetic relationships with other Vibrio species by comparative genomic analysis. We found that the closest relationship was between V. fluvialis and V. furnissii, followed by those with V. cholerae and V. mimicus. Moreover, based on genome comparisons and gene complementation experiments, we revealed genetic mechanisms of the biochemical tests that differentiate V. fluvialis from closely related species. Importantly, we identified a variety of genes encoding potential virulence factors, including multiple hemolysins, transcriptional regulators, and environmental survival and adaptation apparatuses, and the type VI secretion system, which is indicative of complex regulatory pathways modulating pathogenesis in this organism. The availability of V. fluvialis genome sequences may promote our understanding of pathogenic mechanisms for this emerging pathogen. PMID:24441165

  19. Soya bean Gα proteins with distinct biochemical properties exhibit differential ability to complement Saccharomyces cerevisiae gpa1 mutant.

    PubMed

    Roy Choudhury, Swarup; Wang, Yuqi; Pandey, Sona

    2014-07-01

    Signalling pathways mediated by heterotrimeric G-proteins are common to all eukaryotes. Plants have a limited number of each of the G-protein subunits, with the most elaborate G-protein network discovered so far in soya bean (Glycine max, also known as soybean) which has four Gα, four Gβ and ten Gγ proteins. Biochemical characterization of Gα proteins from plants suggests significant variation in their properties compared with the well-characterized non-plant proteins. Furthermore, the four soya bean Gα (GmGα) proteins exhibit distinct biochemical activities among themselves, but the extent to which such biochemical differences contribute to their in vivo function is also not known. We used the yeast gpa1 mutant which displays constitutive signalling and growth arrest in the pheromone-response pathway as an in vivo model to evaluate the effect of distinct biochemical activities of GmGα proteins. We showed that specific GmGα proteins can be activated during pheromone-dependent receptor-mediated signalling in yeast and they display different strengths towards complementation of yeast gpa1 phenotypes. We also identified amino acids that are responsible for differential complementation abilities of specific Gα proteins. These data establish that specific plant Gα proteins are functional in the receptor-mediated pheromone-response pathway in yeast and that the subtle biochemical differences in their activity are physiologically relevant.

  20. Drosophila insulin and target of rapamycin (TOR) pathways regulate GSK3 beta activity to control Myc stability and determine Myc expression in vivo.

    PubMed

    Parisi, Federica; Riccardo, Sara; Daniel, Margaret; Saqcena, Mahesh; Kundu, Nandini; Pession, Annalisa; Grifoni, Daniela; Stocker, Hugo; Tabak, Esteban; Bellosta, Paola

    2011-09-27

    Genetic studies in Drosophila melanogaster reveal an important role for Myc in controlling growth. Similar studies have also shown how components of the insulin and target of rapamycin (TOR) pathways are key regulators of growth. Despite a few suggestions that Myc transcriptional activity lies downstream of these pathways, a molecular mechanism linking these signaling pathways to Myc has not been clearly described. Using biochemical and genetic approaches we tried to identify novel mechanisms that control Myc activity upon activation of insulin and TOR signaling pathways. Our biochemical studies show that insulin induces Myc protein accumulation in Drosophila S2 cells, which correlates with a decrease in the activity of glycogen synthase kinase 3-beta (GSK3β ) a kinase that is responsible for Myc protein degradation. Induction of Myc by insulin is inhibited by the presence of the TOR inhibitor rapamycin, suggesting that insulin-induced Myc protein accumulation depends on the activation of TOR complex 1. Treatment with amino acids that directly activate the TOR pathway results in Myc protein accumulation, which also depends on the ability of S6K kinase to inhibit GSK3β activity. Myc upregulation by insulin and TOR pathways is a mechanism conserved in cells from the wing imaginal disc, where expression of Dp110 and Rheb also induces Myc protein accumulation, while inhibition of insulin and TOR pathways result in the opposite effect. Our functional analysis, aimed at quantifying the relative contribution of Myc to ommatidial growth downstream of insulin and TOR pathways, revealed that Myc activity is necessary to sustain the proliferation of cells from the ommatidia upon Dp110 expression, while its contribution downstream of TOR is significant to control the size of the ommatidia. Our study presents novel evidence that Myc activity acts downstream of insulin and TOR pathways to control growth in Drosophila. At the biochemical level we found that both these pathways

  1. 13C-Metabolic Flux Analysis: An Accurate Approach to Demystify Microbial Metabolism for Biochemical Production

    PubMed Central

    Guo, Weihua; Sheng, Jiayuan; Feng, Xueyang

    2015-01-01

    Metabolic engineering of various industrial microorganisms to produce chemicals, fuels, and drugs has raised interest since it is environmentally friendly, sustainable, and independent of nonrenewable resources. However, microbial metabolism is so complex that only a few metabolic engineering efforts have been able to achieve a satisfactory yield, titer or productivity of the target chemicals for industrial commercialization. In order to overcome this challenge, 13C Metabolic Flux Analysis (13C-MFA) has been continuously developed and widely applied to rigorously investigate cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, many 13C-MFA studies have been performed in academic labs and biotechnology industries to pinpoint key issues related to microbe-based chemical production. Insightful information about the metabolic rewiring has been provided to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this review, we will introduce the basics of 13C-MFA and illustrate how 13C-MFA has been applied via integration with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production for various host microorganisms PMID:28952565

  2. Metabolomic strategies to map functions of metabolic pathways.

    PubMed

    Mulvihill, Melinda M; Nomura, Daniel K

    2014-08-01

    Genome sequencing efforts have revealed a strikingly large number of unannotated and uncharacterized genes that fall into metabolic enzymes classes, likely indicating that our current knowledge of biochemical pathways in normal physiology, let alone in disease states, remains largely incomplete. This realization presents a daunting challenge for post-genomic-era scientists in deciphering the biochemical and (patho)physiological roles of these enzymes and their metabolites and metabolic networks. This is further complicated by many recent studies showing a rewiring of normal metabolic networks in disease states to give rise to unique pathophysiological functions of enzymes, metabolites, and metabolic pathways. This review focuses on recent discoveries made using metabolic mapping technologies to uncover novel pathways and metabolite-mediated posttranslational modifications and epigenetic alterations and their impact on physiology and disease. Copyright © 2014 the American Physiological Society.

  3. Molecular and Biochemical Analysis of Chalcone Synthase from Freesia hybrid in Flavonoid Biosynthetic Pathway

    PubMed Central

    Sun, Wei; Meng, Xiangyu; Liang, Lingjie; Jiang, Wangshu; Huang, Yafei; He, Jing; Hu, Haiyan; Almqvist, Jonas; Gao, Xiang; Wang, Li

    2015-01-01

    Chalcone synthase (CHS) catalyzes the first committed step in the flavonoid biosynthetic pathway. In this study, the cDNA (FhCHS1) encoding CHS from Freesia hybrida was successfully isolated and analyzed. Multiple sequence alignments showed that both the conserved CHS active site residues and CHS signature sequence were found in the deduced amino acid sequence of FhCHS1. Meanwhile, crystallographic analysis revealed that protein structure of FhCHS1 is highly similar to that of alfalfa CHS2, and the biochemical analysis results indicated that it has an enzymatic role in naringenin biosynthesis. Moreover, quantitative real-time PCR was performed to detect the transcript levels of FhCHS1 in flowers and different tissues, and patterns of FhCHS1 expression in flowers showed significant correlation to the accumulation patterns of anthocyanin during flower development. To further characterize the functionality of FhCHS1, its ectopic expression in Arabidopsis thaliana tt4 mutants and Petunia hybrida was performed. The results showed that overexpression of FhCHS1 in tt4 mutants fully restored the pigmentation phenotype of the seed coats, cotyledons and hypocotyls, while transgenic petunia expressing FhCHS1 showed flower color alteration from white to pink. In summary, these results suggest that FhCHS1 plays an essential role in the biosynthesis of flavonoid in Freesia hybrida and may be used to modify the components of flavonoids in other plants. PMID:25742495

  4. Molecular and Biochemical Analysis of Chalcone Synthase from Freesia hybrid in flavonoid biosynthetic pathway.

    PubMed

    Sun, Wei; Meng, Xiangyu; Liang, Lingjie; Jiang, Wangshu; Huang, Yafei; He, Jing; Hu, Haiyan; Almqvist, Jonas; Gao, Xiang; Wang, Li

    2015-01-01

    Chalcone synthase (CHS) catalyzes the first committed step in the flavonoid biosynthetic pathway. In this study, the cDNA (FhCHS1) encoding CHS from Freesia hybrida was successfully isolated and analyzed. Multiple sequence alignments showed that both the conserved CHS active site residues and CHS signature sequence were found in the deduced amino acid sequence of FhCHS1. Meanwhile, crystallographic analysis revealed that protein structure of FhCHS1 is highly similar to that of alfalfa CHS2, and the biochemical analysis results indicated that it has an enzymatic role in naringenin biosynthesis. Moreover, quantitative real-time PCR was performed to detect the transcript levels of FhCHS1 in flowers and different tissues, and patterns of FhCHS1 expression in flowers showed significant correlation to the accumulation patterns of anthocyanin during flower development. To further characterize the functionality of FhCHS1, its ectopic expression in Arabidopsis thaliana tt4 mutants and Petunia hybrida was performed. The results showed that overexpression of FhCHS1 in tt4 mutants fully restored the pigmentation phenotype of the seed coats, cotyledons and hypocotyls, while transgenic petunia expressing FhCHS1 showed flower color alteration from white to pink. In summary, these results suggest that FhCHS1 plays an essential role in the biosynthesis of flavonoid in Freesia hybrida and may be used to modify the components of flavonoids in other plants.

  5. Pathway Design, Engineering, and Optimization.

    PubMed

    Garcia-Ruiz, Eva; HamediRad, Mohammad; Zhao, Huimin

    The microbial metabolic versatility found in nature has inspired scientists to create microorganisms capable of producing value-added compounds. Many endeavors have been made to transfer and/or combine pathways, existing or even engineered enzymes with new function to tractable microorganisms to generate new metabolic routes for drug, biofuel, and specialty chemical production. However, the success of these pathways can be impeded by different complications from an inherent failure of the pathway to cell perturbations. Pursuing ways to overcome these shortcomings, a wide variety of strategies have been developed. This chapter will review the computational algorithms and experimental tools used to design efficient metabolic routes, and construct and optimize biochemical pathways to produce chemicals of high interest.

  6. Uncovering a key to the process of metastasis in human cancers: a review of critical regulators of anoikis.

    PubMed

    Tan, Kevin; Goldstein, David; Crowe, Philip; Yang, Jia-Lin

    2013-11-01

    Anoikis ('homelessness' in Greek) is a form of apoptosis following the detachment of cells from the appropriate extracellular matrix (Chiarugi and Giannoni in Biochem Pharmacol 76:1352-1364, 2008). Resistance to anoikis is a critical mediator of metastasis in cancer by enabling cancer cells to survive during invasion and transport in the blood and lymph. Numerous regulators and mechanisms of anoikis in human cancer have been proposed to date. Consequently, the identification of key regulators of anoikis that can be targeted to at least partially restore anoikis sensitivity in cancer cells is important in the development of therapies to treat metastatic cancer. A literature search focusing on the regulators of anoikis in human cancer was performed on the Medline, Embase and Scopus databases. Mcl-1, Cav-1, Bcl-(xL), cFLIP, 14-3-3ζ and Bit1 appear to regulate anoikis in human cancer by participating in the intrinsic apoptotic pathway, extrinsic apoptotic pathway or caspase-independent pathways. Mcl-1, Cav-1, Bcl-(xL), cFLIP and 14-3-3ζ are suppressors of anoikis, and their upregulation confers anoikis resistance to cancer cells. Bit1 is a promoter of anoikis and is downregulated to confer anoikis resistance in metastatic cancer. Anoikis is a complex process involving the crosstalk between different signalling pathways. The dysregulated expression of key regulators of anoikis that participate in these signalling pathways promotes anoikis resistance in human cancer. These regulators of anoikis might therefore be the targets for developing therapies to overcome anoikis resistance in metastatic cancer.

  7. Autonomic dysfunction in patients with Brugada syndrome: further biochemical evidence of altered signaling pathways.

    PubMed

    Paul, Matthias; Meyborg, Matthias; Boknik, Peter; Gergs, Ulrich; Schmitz, Wilhelm; Breithardt, Günter; Wichter, Thomas; Neumann, Joachim

    2011-09-01

    In patients with Brugada syndrome (BrS), life-threatening ventricular tachyarrhythmias predominantly occur during vagal stimulation at rest or during sleep. Previous imaging studies displayed an impaired autonomic function in BrS patients. However, it remains unclear whether these alterations primarily stem from a reduction of synaptic release of norepinephrine (NE) or an enhanced presynaptic reuptake. Both conditions could lead to reduced NE concentrations in the synaptic cleft. Therefore, we analyzed key components of the sympathoadrenergic signaling pathways in patients with BrS. Endomyocardial biopsies were obtained from eight BrS patients (seven male; age 49 ± 15 years) and five controls (three male; age 43 ± 13 years; P = ns). The concentrations of NE, epinephrine (Epi), NE transport (NET) carrier protein, cyclic adenosine 5'monophosphate (cyclic adenosine monophosphate [cAMP]), inhibitory G-proteins (G(i1,2) α), troponin-I (TNI), and phosphorylated TNI were analyzed. Levels of NET, G(i1,2) α, TNI, Epi, and phosphorylated TNI were comparable between the groups. Compared to controls, patients with BrS showed reduced cAMP and NE concentrations. The current findings expand the concept of adrenergic dysfunction in BrS: the reduction of NE in BrS could lead to an impaired stimulation of β-adrenoceptors resulting in a reduction of cAMP and alterations of the subsequent signaling pathway with potential implication for arrhythmogenesis. ©2011, The Authors. Journal compilation ©2011 Wiley Periodicals, Inc.

  8. An “ADME Module” in the Adverse Outcome Pathway ...

    EPA Pesticide Factsheets

    The Adverse Outcome Pathway (AOP) framework has generated intense interest for its utility to organize knowledge on the toxicity mechanisms, starting from a molecular initiating event (MIE) to an adverse outcome across various levels of biological organization. While the AOP framework is designed to be chemical agnostic, it is widely recognized that considering chemicals’ absorption, distribution, metabolism, and excretion (ADME) behaviors is critical in applying the AOP framework in chemical-specific risk assessment. Currently, information being generated as part of the Organisation for Economic Co-operation and Development (OECD) AOP Development Programme is being consolidated into an AOP Knowledgebase (http://aopwiki.org). To enhance the use of this Knowledgebase in risk assessment, an ADME Module has been developed to contain the ADME information needed to connect MIEs and other key events in an AOP for specific chemicals. The conceptual structure of this module characterizes the potential of a chemical to reach the target MIE based on either its structure-based features or relative rates of ADME. The key features of this module include (1) a framework for connecting biology-based AOP to biochemical-based ADME and chemical/human activity-based exposure pathways; (2) links to qualitative tools (e.g., structure-based cheminformatic model) that screen for chemicals that could potentially reach the target MIE; (3) links to quantitative tools (e.g., dose-r

  9. Aldehyde Dehydrogenases in Arabidopsis thaliana: Biochemical Requirements, Metabolic Pathways, and Functional Analysis.

    PubMed

    Stiti, Naim; Missihoun, Tagnon D; Kotchoni, Simeon O; Kirch, Hans-Hubert; Bartels, Dorothea

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected ArabidopsisALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities.

  10. Aldehyde Dehydrogenases in Arabidopsis thaliana: Biochemical Requirements, Metabolic Pathways, and Functional Analysis

    PubMed Central

    Stiti, Naim; Missihoun, Tagnon D.; Kotchoni, Simeon O.; Kirch, Hans-Hubert; Bartels, Dorothea

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected Arabidopsis ALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities. PMID:22639603

  11. Dynamic Glycosylation Governs the Vertebrate COPII Protein Trafficking Pathway.

    PubMed

    Cox, Nathan J; Unlu, Gokhan; Bisnett, Brittany J; Meister, Thomas R; Condon, Brett M; Luo, Peter M; Smith, Timothy J; Hanna, Michael; Chhetri, Abhishek; Soderblom, Erik J; Audhya, Anjon; Knapik, Ela W; Boyce, Michael

    2018-01-09

    The COPII coat complex, which mediates secretory cargo trafficking from the endoplasmic reticulum, is a key control point for subcellular protein targeting. Because misdirected proteins cannot function, protein sorting by COPII is critical for establishing and maintaining normal cell and tissue homeostasis. Indeed, mutations in COPII genes cause a range of human pathologies, including cranio-lenticulo-sutural dysplasia (CLSD), which is characterized by collagen trafficking defects, craniofacial abnormalities, and skeletal dysmorphology. Detailed knowledge of the COPII pathway is required to understand its role in normal cell physiology and to devise new treatments for disorders in which it is disrupted. However, little is known about how vertebrates dynamically regulate COPII activity in response to developmental, metabolic, or pathological cues. Several COPII proteins are modified by O-linked β-N-acetylglucosamine (O-GlcNAc), a dynamic form of intracellular protein glycosylation, but the biochemical and functional effects of these modifications remain unclear. Here, we use a combination of chemical, biochemical, cellular, and genetic approaches to demonstrate that site-specific O-GlcNAcylation of COPII proteins mediates their protein-protein interactions and modulates cargo secretion. In particular, we show that individual O-GlcNAcylation sites of SEC23A, an essential COPII component, are required for its function in human cells and vertebrate development, because mutation of these sites impairs SEC23A-dependent in vivo collagen trafficking and skeletogenesis in a zebrafish model of CLSD. Our results indicate that O-GlcNAc is a conserved and critical regulatory modification in the vertebrate COPII-dependent trafficking pathway.

  12. Functional group diversity is key to Southern Ocean benthic carbon pathways

    PubMed Central

    Sands, Chester J.

    2017-01-01

    High latitude benthos are globally important in terms of accumulation and storage of ocean carbon, and the feedback this is likely to have on regional warming. Understanding this ecosystem service is important but difficult because of complex taxonomic diversity, history and geography of benthic biomass. Using South Georgia as a model location (where the history and geography of benthic biology is relatively well studied) we investigated whether the composition of functional groups were critical to benthic accumulation, immobilization and burial pathway to sequestration–and also aid their study through simplification of identification. We reclassified [1], [2]) morphotype and carbon mass data to 13 functional groups, for each sample of 32 sites around the South Georgia continental shelf. We investigated the influence on carbon accumulation, immobilization and sequestration estimate by multiple factors including the compositions of functional groups. Functional groups showed high diversity within and between sites, and within and between habitat types. Carbon storage was not linked to a functional group in particular but accumulation and immobilization increased with the number of functional groups present and the presence of hard substrata. Functional groups were also important to carbon burial rate, which increased with the presence of mixed (hard and soft substrata). Functional groups showed high surrogacy for taxonomic composition and were useful for examining contrasting habitat categorization. Functional groups not only aid marine carbon storage investigation by reducing time and the need for team size and speciality, but also important to benthic carbon pathways per se. There is a distinct geography to seabed carbon storage; seabed boulder-fields are hotspots of carbon accumulation and immobilization, whilst the interface between such boulder-fields and sediments are key places for burial and sequestration. PMID:28654664

  13. Key genes and pathways in measles and their interaction with environmental chemicals

    PubMed Central

    Zhang, Rongqiang; Jiang, Hualin; Li, Fengying; Su, Ning; Ding, Yi; Mao, Xiang; Ren, Dan; Wang, Jing

    2018-01-01

    The aim of the present study was to explore key genes that may have a role in the pathology of measles virus infection and to clarify the interaction networks between environmental factors and differentially expressed genes (DEGs). After screening the database of the Gene Expression Omnibus of the National Center for Biotechnology Information, the dataset GSE5808 was downloaded and analyzed. A global normalization method was performed to minimize data inconsistencies and heterogeneity. DEGs during different stages of measles virus infection were explored using R software (v3.4.0). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the DEGs were performed using Cytoscape 3.4.0 software. A protein-protein interaction (PPI) network of the DEGs was obtained from the STRING database v9.05. A total of 43 DEGs were obtained from four analyzed sample groups, including 10 highly expressed genes and 33 genes with decreased expression. The most enriched pathways based on KEGG analysis were fatty acid elongation, cytokine-cytokine receptor interaction and RNA degradation. The genes mentioned in the PPI network were mainly associated with protein binding and chemokine activity. A total of 219 chemicals were identified that may, jointly or on their own, interact with the 6 DEGs between the control group and patients with measles (at hospital entry), including benzo(a)pyrene (BaP) and tetrachlorodibenzodioxin (TCDD). In conclusion, the present study revealed that chemokines and environmental chemicals, e.g. BaP and TCDD, may affect the development of measles. PMID:29805511

  14. Key genes and pathways in measles and their interaction with environmental chemicals.

    PubMed

    Zhang, Rongqiang; Jiang, Hualin; Li, Fengying; Su, Ning; Ding, Yi; Mao, Xiang; Ren, Dan; Wang, Jing

    2018-06-01

    The aim of the present study was to explore key genes that may have a role in the pathology of measles virus infection and to clarify the interaction networks between environmental factors and differentially expressed genes (DEGs). After screening the database of the Gene Expression Omnibus of the National Center for Biotechnology Information, the dataset GSE5808 was downloaded and analyzed. A global normalization method was performed to minimize data inconsistencies and heterogeneity. DEGs during different stages of measles virus infection were explored using R software (v3.4.0). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the DEGs were performed using Cytoscape 3.4.0 software. A protein-protein interaction (PPI) network of the DEGs was obtained from the STRING database v9.05. A total of 43 DEGs were obtained from four analyzed sample groups, including 10 highly expressed genes and 33 genes with decreased expression. The most enriched pathways based on KEGG analysis were fatty acid elongation, cytokine-cytokine receptor interaction and RNA degradation. The genes mentioned in the PPI network were mainly associated with protein binding and chemokine activity. A total of 219 chemicals were identified that may, jointly or on their own, interact with the 6 DEGs between the control group and patients with measles (at hospital entry), including benzo(a)pyrene (BaP) and tetrachlorodibenzodioxin (TCDD). In conclusion, the present study revealed that chemokines and environmental chemicals, e.g. BaP and TCDD, may affect the development of measles.

  15. Free Energy Landscape - Settlements of Key Residues.

    NASA Astrophysics Data System (ADS)

    Aroutiounian, Svetlana

    2007-03-01

    FEL perspective in studies of protein folding transitions reflects notion that since there are ˜10^N conformations to scan in search of lowest free energy state, random search is beyond biological timescale. Protein folding must follow certain fel pathways and folding kinetics of evolutionary selected proteins dominates kinetic traps. Good model for functional robustness of natural proteins - coarse-grained model protein is not very accurate but affords bringing simulations closer to biological realm; Go-like potential secures the fel funnel shape; biochemical contacts signify the funnel bottleneck. Boltzmann-weighted ensemble of protein conformations and histogram method are used to obtain from MC sampling of protein conformational space the approximate probability distribution. The fel is F(rmsd) = -1/βLn[Hist(rmsd)], β=kBT and rmsd is root-mean-square-deviation from native conformation. The sperm whale myoglobin has rich dynamic behavior, is small and large - on computational scale, has a symmetry in architecture and unusual sextet of residue pairs. Main idea: there is a mathematical relation between protein fel and a key residues set providing stability to folding transition. Is the set evolutionary conserved also for functional reasons? Hypothesis: primary sequence determines the key residues positions conserved as stabilizers and the fel is the battlefield for the folding stability. Preliminary results: primary sequence - not the architecture, is the rule settler, indeed.

  16. Probabilistic pathway construction.

    PubMed

    Yousofshahi, Mona; Lee, Kyongbum; Hassoun, Soha

    2011-07-01

    Expression of novel synthesis pathways in host organisms amenable to genetic manipulations has emerged as an attractive metabolic engineering strategy to overproduce natural products, biofuels, biopolymers and other commercially useful metabolites. We present a pathway construction algorithm for identifying viable synthesis pathways compatible with balanced cell growth. Rather than exhaustive exploration, we investigate probabilistic selection of reactions to construct the pathways. Three different selection schemes are investigated for the selection of reactions: high metabolite connectivity, low connectivity and uniformly random. For all case studies, which involved a diverse set of target metabolites, the uniformly random selection scheme resulted in the highest average maximum yield. When compared to an exhaustive search enumerating all possible reaction routes, our probabilistic algorithm returned nearly identical distributions of yields, while requiring far less computing time (minutes vs. years). The pathways identified by our algorithm have previously been confirmed in the literature as viable, high-yield synthesis routes. Prospectively, our algorithm could facilitate the design of novel, non-native synthesis routes by efficiently exploring the diversity of biochemical transformations in nature. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli.

    PubMed

    Yishai, Oren; Bouzon, Madeleine; Döring, Volker; Bar-Even, Arren

    2018-05-15

    Assimilation of one-carbon compounds presents a key biochemical challenge, which limits their use as sustainable feedstocks for microbial growth and production. The reductive glycine pathway is a synthetic metabolic route that could provide an optimal way for the aerobic assimilation of reduced C1 compounds. Here, we show that a rational integration of native and foreign enzymes enables the tetrahydrofolate and glycine cleavage/synthase systems to operate in the reductive direction, such that Escherichia coli satisfies all of its glycine and serine requirements from the assimilation of formate and CO2. Importantly, the biosynthesis of serine from formate and CO2 does not lower the growth rate, indicating high flux that is able to provide 10% of cellular carbon. Our findings assert that the reductive glycine pathway could support highly efficient aerobic assimilation of C1-feedstocks.

  18. Identifying key genes, pathways and screening therapeutic agents for manganese-induced Alzheimer disease using bioinformatics analysis.

    PubMed

    Ling, JunJun; Yang, Shengyou; Huang, Yi; Wei, Dongfeng; Cheng, Weidong

    2018-06-01

    Alzheimer disease (AD) is a progressive neurodegenerative disease, the etiology of which remains largely unknown. Accumulating evidence indicates that elevated manganese (Mn) in brain exerts toxic effects on neurons and contributes to AD development. Thus, we aimed to explore the gene and pathway variations through analysis of high through-put data in this process.To screen the differentially expressed genes (DEGs) that may play critical roles in Mn-induced AD, public microarray data regarding Mn-treated neurocytes versus controls (GSE70845), and AD versus controls (GSE48350), were downloaded and the DEGs were screened out, respectively. The intersection of the DEGs of each datasets was obtained by using Venn analysis. Then, gene ontology (GO) function analysis and KEGG pathway analysis were carried out. For screening hub genes, protein-protein interaction network was constructed. At last, DEGs were analyzed in Connectivity Map (CMAP) for identification of small molecules that overcome Mn-induced neurotoxicity or AD development.The intersection of the DEGs obtained 140 upregulated and 267 downregulated genes. The top 5 items of biological processes of GO analysis were taxis, chemotaxis, cell-cell signaling, regulation of cellular physiological process, and response to wounding. The top 5 items of KEGG pathway analysis were cytokine-cytokine receptor interaction, apoptosis, oxidative phosphorylation, Toll-like receptor signaling pathway, and insulin signaling pathway. Afterwards, several hub genes such as INSR, VEGFA, PRKACB, DLG4, and BCL2 that might play key roles in Mn-induced AD were further screened out. Interestingly, tyrphostin AG-825, an inhibitor of tyrosine phosphorylation, was predicted to be a potential agent for overcoming Mn-induced neurotoxicity or AD development.The present study provided a novel insight into the molecular mechanisms of Mn-induced neurotoxicity or AD development and screened out several small molecular candidates that might be

  19. Profiling conserved biological pathways in Autosomal Dominant Polycystic Kidney Disorder (ADPKD) to elucidate key transcriptomic alterations regulating cystogenesis: A cross-species meta-analysis approach.

    PubMed

    Chatterjee, Shatakshee; Verma, Srikant Prasad; Pandey, Priyanka

    2017-09-05

    Initiation and progression of fluid filled cysts mark Autosomal Dominant Polycystic Kidney Disease (ADPKD). Thus, improved therapeutics targeting cystogenesis remains a constant challenge. Microarray studies in single ADPKD animal models species with limited sample sizes tend to provide scattered views on underlying ADPKD pathogenesis. Thus we aim to perform a cross species meta-analysis to profile conserved biological pathways that might be key targets for therapy. Nine ADPKD microarray datasets on rat, mice and human fulfilled our study criteria and were chosen. Intra-species combined analysis was performed after considering removal of batch effect. Significantly enriched GO biological processes and KEGG pathways were computed and their overlap was observed. For the conserved pathways, biological modules and gene regulatory networks were observed. Additionally, Gene Set Enrichment Analysis (GSEA) using Molecular Signature Database (MSigDB) was performed for genes found in conserved pathways. We obtained 28 modules of significantly enriched GO processes and 5 major functional categories from significantly enriched KEGG pathways conserved in human, mice and rats that in turn suggest a global transcriptomic perturbation affecting cyst - formation, growth and progression. Significantly enriched pathways obtained from up-regulated genes such as Genomic instability, Protein localization in ER and Insulin Resistance were found to regulate cyst formation and growth whereas cyst progression due to increased cell adhesion and inflammation was suggested by perturbations in Angiogenesis, TGF-beta, CAMs, and Infection related pathways. Additionally, networks revealed shared genes among pathways e.g. SMAD2 and SMAD7 in Endocytosis and TGF-beta. Our study suggests cyst formation and progression to be an outcome of interplay between a set of several key deregulated pathways. Thus, further translational research is warranted focusing on developing a combinatorial therapeutic

  20. Identification of Key Pathways and Genes in the Dynamic Progression of HCC Based on WGCNA.

    PubMed

    Yin, Li; Cai, Zhihui; Zhu, Baoan; Xu, Cunshuan

    2018-02-14

    Hepatocellular carcinoma (HCC) is a devastating disease worldwide. Though many efforts have been made to elucidate the process of HCC, its molecular mechanisms of development remain elusive due to its complexity. To explore the stepwise carcinogenic process from pre-neoplastic lesions to the end stage of HCC, we employed weighted gene co-expression network analysis (WGCNA) which has been proved to be an effective method in many diseases to detect co-expressed modules and hub genes using eight pathological stages including normal, cirrhosis without HCC, cirrhosis, low-grade dysplastic, high-grade dysplastic, very early and early, advanced HCC and very advanced HCC. Among the eight consecutive pathological stages, five representative modules are selected to perform canonical pathway enrichment and upstream regulator analysis by using ingenuity pathway analysis (IPA) software. We found that cell cycle related biological processes were activated at four neoplastic stages, and the degree of activation of the cell cycle corresponded to the deterioration degree of HCC. The orange and yellow modules enriched in energy metabolism, especially oxidative metabolism, and the expression value of the genes decreased only at four neoplastic stages. The brown module, enriched in protein ubiquitination and ephrin receptor signaling pathways, correlated mainly with the very early stage of HCC. The darkred module, enriched in hepatic fibrosis/hepatic stellate cell activation, correlated with the cirrhotic stage only. The high degree hub genes were identified based on the protein-protein interaction (PPI) network and were verified by Kaplan-Meier survival analysis. The novel five high degree hub genes signature that was identified in our study may shed light on future prognostic and therapeutic approaches. Our study brings a new perspective to the understanding of the key pathways and genes in the dynamic changes of HCC progression. These findings shed light on further investigations.

  1. Computational biophysical, biochemical, and evolutionary signature of human R-spondin family proteins, the member of canonical Wnt/β-catenin signaling pathway.

    PubMed

    Sharma, Ashish Ranjan; Chakraborty, Chiranjib; Lee, Sang-Soo; Sharma, Garima; Yoon, Jeong Kyo; George Priya Doss, C; Song, Dong-Keun; Nam, Ju-Suk

    2014-01-01

    In human, Wnt/β-catenin signaling pathway plays a significant role in cell growth, cell development, and disease pathogenesis. Four human (Rspo)s are known to activate canonical Wnt/β-catenin signaling pathway. Presently, (Rspo)s serve as therapeutic target for several human diseases. Henceforth, basic understanding about the molecular properties of (Rspo)s is essential. We approached this issue by interpreting the biochemical and biophysical properties along with molecular evolution of (Rspo)s thorough computational algorithm methods. Our analysis shows that signal peptide length is roughly similar in (Rspo)s family along with similarity in aa distribution pattern. In Rspo3, four N-glycosylation sites were noted. All members are hydrophilic in nature and showed alike GRAVY values, approximately. Conversely, Rspo3 contains the maximum positively charged residues while Rspo4 includes the lowest. Four highly aligned blocks were recorded through Gblocks. Phylogenetic analysis shows Rspo4 is being rooted with Rspo2 and similarly Rspo3 and Rspo1 have the common point of origin. Through phylogenomics study, we developed a phylogenetic tree of sixty proteins (n = 60) with the orthologs and paralogs seed sequences. Protein-protein network was also illustrated. Results demonstrated in our study may help the future researchers to unfold significant physiological and therapeutic properties of (Rspo)s in various disease models.

  2. Computational Biophysical, Biochemical, and Evolutionary Signature of Human R-Spondin Family Proteins, the Member of Canonical Wnt/β-Catenin Signaling Pathway

    PubMed Central

    Sharma, Ashish Ranjan; Lee, Sang-Soo; Yoon, Jeong Kyo; George Priya Doss, C.; Song, Dong-Keun

    2014-01-01

    In human, Wnt/β-catenin signaling pathway plays a significant role in cell growth, cell development, and disease pathogenesis. Four human (Rspo)s are known to activate canonical Wnt/β-catenin signaling pathway. Presently, (Rspo)s serve as therapeutic target for several human diseases. Henceforth, basic understanding about the molecular properties of (Rspo)s is essential. We approached this issue by interpreting the biochemical and biophysical properties along with molecular evolution of (Rspo)s thorough computational algorithm methods. Our analysis shows that signal peptide length is roughly similar in (Rspo)s family along with similarity in aa distribution pattern. In Rspo3, four N-glycosylation sites were noted. All members are hydrophilic in nature and showed alike GRAVY values, approximately. Conversely, Rspo3 contains the maximum positively charged residues while Rspo4 includes the lowest. Four highly aligned blocks were recorded through Gblocks. Phylogenetic analysis shows Rspo4 is being rooted with Rspo2 and similarly Rspo3 and Rspo1 have the common point of origin. Through phylogenomics study, we developed a phylogenetic tree of sixty proteins (n = 60) with the orthologs and paralogs seed sequences. Protein-protein network was also illustrated. Results demonstrated in our study may help the future researchers to unfold significant physiological and therapeutic properties of (Rspo)s in various disease models. PMID:25276837

  3. Metabolic profiling reveals reprogramming of lipid metabolic pathways in treatment of polycystic ovary syndrome with 3-iodothyronamine.

    PubMed

    Selen Alpergin, Ebru S; Bolandnazar, Zeinab; Sabatini, Martina; Rogowski, Michael; Chiellini, Grazia; Zucchi, Riccardo; Assadi-Porter, Fariba M

    2017-01-01

    Complex diseases such as polycystic ovary syndrome (PCOS) are associated with intricate pathophysiological, hormonal, and metabolic feedbacks that make their early diagnosis challenging, thus increasing the prevalence risks for obesity, cardiovascular, and fatty liver diseases. To explore the crosstalk between endocrine and lipid metabolic pathways, we administered 3-iodothyronamine (T1AM), a natural analog of thyroid hormone, in a mouse model of PCOS and analyzed plasma and tissue extracts using multidisciplinary omics and biochemical approaches. T1AM administration induces a profound tissue-specific antilipogenic effect in liver and muscle by lowering gene expression of key regulators of lipid metabolism, PTP1B and PLIN2, significantly increasing metabolites (glucogenic, amino acids, carnitine, and citrate) levels, while enhancing protection against oxidative stress. In contrast, T1AM has an opposing effect on the regulation of estrogenic pathways in the ovary by upregulating STAR, CYP11A1, and CYP17A1. Biochemical measurements provide further evidence of significant reduction in liver cholesterol and triglycerides in post-T1AM treatment. Our results shed light onto tissue-specific metabolic vs. hormonal pathway interactions, thus illuminating the intricacies within the pathophysiology of PCOS This study opens up new avenues to design drugs for targeted therapeutics to improve quality of life in complex metabolic diseases. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  4. Adverse Outcome Pathways: From Definition to Application

    EPA Science Inventory

    A challenge for both human health and ecological toxicologists is the transparent application of mechanistic (e.g., molecular, biochemical, histological) data to risk assessments. The adverse outcome pathway (AOP) is a conceptual framework designed to meet this need. Specifical...

  5. A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furuya, Shinji; Chappell, Grace A.; Iwata, Yasuhir

    Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies for AKI in this setting is hampered by the lack of an animal model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-associated AKI, we aimed to combine carbon tetrachloride (CCl{sub 4})-induced fibrosis with chronic intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl{sub 4} (0.2 ml/kg 2 × week/6 weeks) followed by alcohol intragastrically (up to 25 g/kg/day formore » 3 weeks) and with continued CCl{sub 4}. We observed that combined treatment with CCl{sub 4} and alcohol resulted in severe liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury was evident only in the combined treatment group. This mouse model reproduced distinct pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of kidneys revealed profound effects in the combined treatment group, with enrichment for damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. Interestingly, Havcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways. - Highlights: • Acute kidney injury (AKI) is a critical complication in alcoholic hepatitis • We developed a novel mouse model of fibrosis- and alcohol-associated AKI • This model reproduces key molecular and pathological features of human AKI • This animal model can help identify new targeted therapies for alcoholic hepatitis.« less

  6. The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes

    PubMed Central

    Schneider, Lizette M; Adamski, Nikolai M; Christensen, Caspar Elo; Stuart, David B; Vautrin, Sonia; Hansson, Mats; Uauy, Cristobal; von Wettstein-Knowles, Penny

    2016-01-01

    Aliphatic compounds on plant surfaces, called epicuticular waxes, are the first line of defense against pathogens and pests, contribute to reducing water loss and determine other important phenotypes. Aliphatics can form crystals affecting light refraction, resulting in a color change and allowing identification of mutants in their synthesis or transport. The present study discloses three such Eceriferum (cer) genes in barley – Cer-c, Cer-q and Cer-u – known to be tightly linked and functioning in a biochemical pathway forming dominating amounts of β-diketone and hydroxy-β-diketones plus some esterified alkan-2-ols. These aliphatics are present in many Triticeae as well as dicotyledons such as Eucalyptus and Dianthus. Recently developed genomic resources and mapping populations in barley defined these genes to a small region on chromosome arm 2HS. Exploiting Cer-c and -u potential functions pinpointed five candidates, of which three were missing in apparent cer-cqu triple mutants. Sequencing more than 50 independent mutants for each gene confirmed their identification. Cer-c is a chalcone synthase-like polyketide synthase, designated diketone synthase (DKS), Cer-q is a lipase/carboxyl transferase and Cer-u is a P450 enzyme. All were highly expressed in pertinent leaf sheath tissue of wild type. A physical map revealed the order Cer-c, Cer-u, Cer-q with the flanking genes 101kb apart, confirming they are a gene cluster, Cer-cqu. Homology-based modeling suggests that many of the mutant alleles affect overall protein structure or specific active site residues. The rich diversity of identified mutations will facilitate future studies of three key enzymes involved in synthesis of plant apoplast waxes. PMID:26962211

  7. Proteomics approach combined with biochemical attributes to elucidate compatible and incompatible plant-virus interactions between Vigna mungo and Mungbean Yellow Mosaic India Virus.

    PubMed

    Kundu, Subrata; Chakraborty, Dipjyoti; Kundu, Anirban; Pal, Amita

    2013-01-01

    transferase are the three major hubs with high connectivity. These nodal proteins play the crucial role of key regulators in bringing about a coordinated defense response in highly orchestrated manner. Biochemical and proteomic analyses revealed early accumulation of the defense/stress related proteins involved in ROS metabolism during incompatible interaction. The robustness in induction of defense/stress and signal transduction related proteins is the key factor in inducing resistance. The mechanism of MYMIV-resistance in V. mungo involves redirection of carbohydrate flux towards pentose phosphate pathway. Some of these identified, differentially regulated proteins are also conferring abiotic stress responses illustrating harmony amongst different stress responses. To the best of our knowledge, this is the lone study deciphering differential regulations of V. mungo leaf proteome upon MYMIV infection elucidating the mode of resistance response at the biochemical level.

  8. Convergent evolution at the pathway level: predictable regulatory changes during flower color transitions.

    PubMed

    Larter, Maximilian; Dunbar-Wallis, Amy; Berardi, Andrea E; Smith, Stacey D

    2018-06-07

    The predictability of evolution, or whether lineages repeatedly follow the same evolutionary trajectories during phenotypic convergence remains an open question of evolutionary biology. In this study, we investigate evolutionary convergence at the biochemical pathway level and test the predictability of evolution using floral anthocyanin pigmentation, a trait with a well-understood genetic and regulatory basis. We reconstructed the evolution of floral anthocyanin content across 28 species of the Andean clade Iochrominae (Solanaceae) and investigated how shifts in pigmentation are related to changes in expression of 7 key anthocyanin pathway genes. We used phylogenetic multivariate analysis of gene expression to test for phenotypic and developmental convergence at a macroevolutionary scale. Our results show that the four independent losses of the ancestral pigment delphinidin involved convergent losses of expression of the three late pathway genes (F3'5'h, Dfr and Ans). Transitions between pigment types affecting floral hue (e.g. blue to red) involve changes to the expression of branching genes F3'h and F3'5'h, while the expression levels of early steps of the pathway are strongly conserved in all species. These patterns support the idea that the macroevolution of floral pigmentation follows predictable evolutionary trajectories to reach convergent phenotype space, repeatedly involving regulatory changes. This is likely driven by constraints at the pathway level, such as pleiotropy and regulatory structure.

  9. How reliable are thermodynamic feasibility statements of biochemical pathways?

    PubMed

    Maskow, Thomas; von Stockar, Urs

    2005-10-20

    The driving force for organo- or lithotrophic growth as well as for each step in the metabolic network is the Gibbs reaction energy. For each enzymatic step it must be negative. Thermodynamics contributes therefore to the in-silico description of living systems. It may be used for assessing the feasibility of a given pathway because it provides a further constraint for those pathways which are feasible from the point of view of mass balance calculations (metabolic flux analysis) and the genetic potential of an organism. However, when this constraint was applied to lactic acid fermentation according to a method proposed by Mavrovouniotis (1993a, ISMB 93:273-283) it turned out that an unrealistically wide metabolite concentration range had to be assumed to make this well-known glycolytic pathway thermodynamically feasible. During a search for the reasons of this surprising result the insufficient consideration of the activity coefficients was identified as main cause. However, it is shown in the present contribution that the influence of the activity coefficients on Gibbs reaction energy can be easily taken into account based on the intracellular ionic strength. The uncertainty of the tabulated equilibrium constants and of the apparent standard Gibbs energies derived from them was found to be the second most important reason for the erroneous result of the feasibility analysis. Deviations of intracellular pH from the standard value and bad estimations of currency metabolites, e.g., NAD(+) and NADH, were found to be of lesser importance but not negligible. The pH dependency of Gibbs reaction enthalpy was proved to be easily taken into account. Therefore, the application of thermodynamics for a better in-silico prediction of the behavior of living cell factories calls predominantly for better equilibrium data determined under well defined conditions and also for a more detailed knowledge about the intracellular ionic strength and pH value. Copyright 2005 Wiley

  10. Model-Based Design of Biochemical Microreactors

    PubMed Central

    Elbinger, Tobias; Gahn, Markus; Neuss-Radu, Maria; Hante, Falk M.; Voll, Lars M.; Leugering, Günter; Knabner, Peter

    2016-01-01

    Mathematical modeling of biochemical pathways is an important resource in Synthetic Biology, as the predictive power of simulating synthetic pathways represents an important step in the design of synthetic metabolons. In this paper, we are concerned with the mathematical modeling, simulation, and optimization of metabolic processes in biochemical microreactors able to carry out enzymatic reactions and to exchange metabolites with their surrounding medium. The results of the reported modeling approach are incorporated in the design of the first microreactor prototypes that are under construction. These microreactors consist of compartments separated by membranes carrying specific transporters for the input of substrates and export of products. Inside the compartments of the reactor multienzyme complexes assembled on nano-beads by peptide adapters are used to carry out metabolic reactions. The spatially resolved mathematical model describing the ongoing processes consists of a system of diffusion equations together with boundary and initial conditions. The boundary conditions model the exchange of metabolites with the neighboring compartments and the reactions at the surface of the nano-beads carrying the multienzyme complexes. Efficient and accurate approaches for numerical simulation of the mathematical model and for optimal design of the microreactor are developed. As a proof-of-concept scenario, a synthetic pathway for the conversion of sucrose to glucose-6-phosphate (G6P) was chosen. In this context, the mathematical model is employed to compute the spatio-temporal distributions of the metabolite concentrations, as well as application relevant quantities like the outflow rate of G6P. These computations are performed for different scenarios, where the number of beads as well as their loading capacity are varied. The computed metabolite distributions show spatial patterns, which differ for different experimental arrangements. Furthermore, the total output of G6P

  11. Neurophysiology and itch pathways.

    PubMed

    Schmelz, Martin

    2015-01-01

    As we all can easily differentiate the sensations of itch and pain, the most straightforward neurophysiologic concept would consist of two specific pathways that independently encode itch and pain. Indeed, a neuronal pathway for histamine-induced itch in the peripheral and central nervous system has been described in animals and humans, and recently several non-histaminergic pathways for itch have been discovered in rodents that support a dichotomous concept differentiated into a pain and an itch pathway, with both pathways being composed of different "flavors." Numerous markers and mediators have been found that are linked to itch processing pathways. Thus, the delineation of neuronal pathways for itch from pain pathways seemingly proves that all sensory aspects of itch are based on an itch-specific neuronal pathway. However, such a concept is incomplete as itch can also be induced by the activation of the pain pathway in particular when the stimulus is applied in a highly localized spatial pattern. These opposite views reflect the old dispute between specificity and pattern theories of itch. Rather than only being of theoretic interest, this conceptual problem has key implication for the strategy to treat chronic itch as key therapeutic targets would be either itch-specific pathways or unspecific nociceptive pathways.

  12. Searching whole genome sequences for biochemical identification features of emerging and reemerging pathogenic Corynebacterium species.

    PubMed

    Santos, André S; Ramos, Rommel T; Silva, Artur; Hirata, Raphael; Mattos-Guaraldi, Ana L; Meyer, Roberto; Azevedo, Vasco; Felicori, Liza; Pacheco, Luis G C

    2018-05-11

    Biochemical tests are traditionally used for bacterial identification at the species level in clinical microbiology laboratories. While biochemical profiles are generally efficient for the identification of the most important corynebacterial pathogen Corynebacterium diphtheriae, their ability to differentiate between biovars of this bacterium is still controversial. Besides, the unambiguous identification of emerging human pathogenic species of the genus Corynebacterium may be hampered by highly variable biochemical profiles commonly reported for these species, including Corynebacterium striatum, Corynebacterium amycolatum, Corynebacterium minutissimum, and Corynebacterium xerosis. In order to identify the genomic basis contributing for the biochemical variabilities observed in phenotypic identification methods of these bacteria, we combined a comprehensive literature review with a bioinformatics approach based on reconstruction of six specific biochemical reactions/pathways in 33 recently released whole genome sequences. We used data retrieved from curated databases (MetaCyc, PathoSystems Resource Integration Center (PATRIC), The SEED, TransportDB, UniProtKB) associated with homology searches by BLAST and profile Hidden Markov Models (HMMs) to detect enzymes participating in the various pathways and performed ab initio protein structure modeling and molecular docking to confirm specific results. We found a differential distribution among the various strains of genes that code for some important enzymes, such as beta-phosphoglucomutase and fructokinase, and also for individual components of carbohydrate transport systems, including the fructose-specific phosphoenolpyruvate-dependent sugar phosphotransferase (PTS) and the ribose-specific ATP-binging cassette (ABC) transporter. Horizontal gene transfer plays a role in the biochemical variability of the isolates, as some genes needed for sucrose fermentation were seen to be present in genomic islands. Noteworthy

  13. Brain banks as key part of biochemical and molecular studies on cerebral cortex involvement in Parkinson's disease.

    PubMed

    Ravid, Rivka; Ferrer, Isidro

    2012-04-01

    Exciting developments in basic and clinical neuroscience and recent progress in the field of Parkinson's disease (PD) are partly a result of the availability of human specimens obtained through brain banks. These banks have optimized the methodological, managerial and organizational procedures; standard operating procedures; and ethical, legal and social issues, including the code of conduct for 21st Century brain banking and novel protocols. The present minireview focuses on current brain banking organization and management, as well as the likely future direction of the brain banking field. We emphasize the potentials and pitfalls when using high-quality specimens of the human central nervous system for advancing PD research. PD is a generalized disease in which α-synuclein is not a unique component but, instead, is only one of the players accounting for the complex impairment of biochemical/molecular processes involved in metabolic pathways. This is particularly important in the cerebral cortex, where altered cognition has a complex neurochemical substrate. Mitochondria and energy metabolism impairment, abnormal RNA, microRNA, protein synthesis, post-translational protein modifications and alterations in the lipid composition of membranes and lipid rafts are part of these complementary factors. We have to be alert to the possible pitfalls of each specimen and its suitability for a particular study. Not all samples qualify for the study of DNA, RNA, proteins, post-translational modifications, lipids and metabolomes, although the use of carefully selected samples and appropriate methods minimizes pitfalls and errors and guarantees high-quality reserach. © 2012 The Authors Journal compilation © 2012 FEBS.

  14. Transcriptional and Biochemical Analysis of Starch Metabolism in the Hyperthermophilic Archaeon Pyrococcus furiosus

    PubMed Central

    Lee, Han-Seung; Shockley, Keith R.; Schut, Gerrit J.; Conners, Shannon B.; Montero, Clemente I.; Johnson, Matthew R.; Chou, Chung-Jung; Bridger, Stephanie L.; Wigner, Nathan; Brehm, Scott D.; Jenney, Francis E.; Comfort, Donald A.; Kelly, Robert M.; Adams, Michael W. W.

    2006-01-01

    Pyrococcus furiosus utilizes starch and its degradation products, such as maltose, as primary carbon sources, but the pathways by which these α-glucans are processed have yet to be defined. For example, its genome contains genes proposed to encode five amylolytic enzymes (including a cyclodextrin glucanotransferase [CGTase] and amylopullulanase), as well as two transporters for maltose and maltodextrins (Mal-I and Mal-II), and a range of intracellular enzymes have been purified that reportedly metabolize maltodextrins and maltose. However, precisely which of these enzymes are involved in starch processing is not clear. In this study, starch metabolism in P. furiosus was examined by biochemical analyses in conjunction with global transcriptional response data for cells grown on a variety of glucans. In addition, DNA sequencing led to the correction of two key errors in the genome sequence, and these change the predicted properties of amylopullulanase (now designated PF1935*) and CGTase (PF0478*). Based on all of these data, a pathway is proposed that is specific for starch utilization that involves one transporter (Mal-II [PF1933 to PF1939]) and only three enzymes, amylopullulanase (PF1935*), 4-α-glucanotransferase (PF0272), and maltodextrin phosphorylase (PF1535). Their expression is upregulated on starch, and together they generate glucose and glucose-1-phosphate, which then feed into the novel glycolytic pathway of this organism. In addition, the results indicate that several hypothetical proteins encoded by three gene clusters are also involved in the transport and processing of α-glucan substrates by P. furiosus. PMID:16513741

  15. Implementing Guided Pathways: Early Insights from the AACC Pathways Colleges. Executive Summary

    ERIC Educational Resources Information Center

    Jenkins, Davis; Lahr, Hana; Fink, John

    2017-01-01

    This summary is a digest of key findings from "Implementing Guided Pathways: Early Insights From the AACC Pathways Colleges," a report based on Community College Research Center's (CCRC's) research on the 30 colleges involved in the American Association of Community Colleges' (AACC) Pathways Project. The research presented in this report…

  16. S100A13-C2A binary complex structure-a key component in the acidic fibroblast growth factor for the non-classical pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, Sepuru K.; Rani, Sandhya G.; Kumar, Sriramoju M.

    2009-03-13

    Fibroblast growth factors (FGFs) are key regulators of cell proliferation, differentiation, tumor-induced angiogenesis and migration. FGFs are essential for early embryonic development, organ formation and angiogenesis. They play important roles in tumor formation, inflammation, wound healing and restenosis. The biological effects of FGFs are mediated through the activation of the four transmembrane phosphotyrosine kinase receptors (FGFRs) in the presence of heparin sulfate proteoglycans (HSPGs) and therefore require the release of FGFs into the extracellular space. However, FGF-1 lacks the signal peptide required for the releasing of these proteins through the classical endoplasmic reticulum (ER)-Golgi secretary pathway. Maciag et al. demonstratedmore » that FGF-1 is exported through a non-classical release pathway involving the formation of a specific multiprotein complex [M. Landriscina, R. Soldi, C. Bagala, I. Micucci, S. Bellum, F. Tarantini, I. Prudovsky, T. Maciag, S100A13 participates in the release of fibroblast growth factor 1 in response to heat shock in vitro, J. Biol. Chem. 276 (2001) 22544-22552; C.M. Carreira, T.M. LaVallee, F. Tarantini, A. Jackson, J.T. Lathrop, B. Hampton, W.H. Burgess, T. Maciag, S100A13 is involved in the regulation of fibroblast growth factor-1 and p40 synaptotagmin-1 release in vitro, J. Biol. Chem. 273 (1998) 22224-22231; T.M. LaValle, F. Tarantini, S. Gamble, C.M. Carreira, A. Jackson, T. Maciag, Synaptotagmin-1 is required for fibroblast growth factor-1 release, J. Biol. Chem. 273 (1998) 22217-22223; C. Bagala, V. Kolev, A. Mandinova, R. Soldi, C. Mouta, I. Graziani, I, Prudovsky, T. Maciag, The alternative translation of synaptotagmin 1 mediates the non-classical release of FGF1, Biochem. Biophys. Res. Commun. 310 (2003) 1041-1047]. The protein constituents of this complex include FGF-1, S100A13 (a Ca{sup 2+}-binding protein), and the p40 form of synaptotagmin 1 (Syt1). To understand the molecular events in the FGF-1

  17. Insights into the TOR-S6K signaling pathway in maize (Zea mays L.). pathway activation by effector-receptor interaction.

    PubMed

    Garrocho-Villegas, Verónica; Aguilar C, Raúl; Sánchez de Jiménez, Estela

    2013-12-23

    The primordial TOR pathway, known to control growth and cell proliferation, has still not been fully described for plants. Nevertheless, in maize, an insulin-like growth factor (ZmIGF) peptide has been reported to stimulate this pathway. This research provides further insight into the TOR pathway in maize, using a biochemical approach in cultures of fast-growing (FG) and slow-growing (SG) calli, as a model system. Our results revealed that addition of either ZmIGF or insulin to SG calli stimulated DNA synthesis and increased the growth rate through cell proliferation and increased the rate of ribosomal protein (RP) synthesis by the selective mobilization of RP mRNAs into polysomes. Furthermore, analysis of the phosphorylation status of the main TOR and S6K kinases from the TOR pathway revealed stimulation by ZmIGF or insulin, whereas rapamycin inhibited its activation. Remarkably, a putative maize insulin-like receptor was recognized by a human insulin receptor antibody, as demonstrated by immunoprecipitation from membrane protein extracts of maize callus. Furthermore, competition experiments between ZmIGF and insulin for the receptor site on maize protoplasts suggested structural recognition of the putative receptor by either effector. These data were confirmed by confocal immunolocalization within the cell membrane of callus cells. Taken together, these data indicate that cell growth and cell proliferation in maize depend on the activation of the TOR-S6K pathway through the interaction of an insulin-like growth factor and its receptor. This evidence suggests that higher plants as well as metazoans have conserved this biochemical pathway to regulate their growth, supporting the conclusion that it is a highly evolved conserved pathway.

  18. Enhancing a Pathway-Genome Database (PGDB) to capture subcellular localization of metabolites and enzymes: the nucleotide-sugar biosynthetic pathways of Populus trichocarpa.

    PubMed

    Nag, Ambarish; Karpinets, Tatiana V; Chang, Christopher H; Bar-Peled, Maor

    2012-01-01

    Understanding how cellular metabolism works and is regulated requires that the underlying biochemical pathways be adequately represented and integrated with large metabolomic data sets to establish a robust network model. Genetically engineering energy crops to be less recalcitrant to saccharification requires detailed knowledge of plant polysaccharide structures and a thorough understanding of the metabolic pathways involved in forming and regulating cell-wall synthesis. Nucleotide-sugars are building blocks for synthesis of cell wall polysaccharides. The biosynthesis of nucleotide-sugars is catalyzed by a multitude of enzymes that reside in different subcellular organelles, and precise representation of these pathways requires accurate capture of this biological compartmentalization. The lack of simple localization cues in genomic sequence data and annotations however leads to missing compartmentalization information for eukaryotes in automatically generated databases, such as the Pathway-Genome Databases (PGDBs) of the SRI Pathway Tools software that drives much biochemical knowledge representation on the internet. In this report, we provide an informal mechanism using the existing Pathway Tools framework to integrate protein and metabolite sub-cellular localization data with the existing representation of the nucleotide-sugar metabolic pathways in a prototype PGDB for Populus trichocarpa. The enhanced pathway representations have been successfully used to map SNP abundance data to individual nucleotide-sugar biosynthetic genes in the PGDB. The manually curated pathway representations are more conducive to the construction of a computational platform that will allow the simulation of natural and engineered nucleotide-sugar precursor fluxes into specific recalcitrant polysaccharide(s). Database URL: The curated Populus PGDB is available in the BESC public portal at http://cricket.ornl.gov/cgi-bin/beocyc_home.cgi and the nucleotide-sugar biosynthetic pathways can

  19. Enhancing a Pathway-Genome Database (PGDB) to capture subcellular localization of metabolites and enzymes: the nucleotide-sugar biosynthetic pathways of Populus trichocarpa

    PubMed Central

    Nag, Ambarish; Karpinets, Tatiana V.; Chang, Christopher H.; Bar-Peled, Maor

    2012-01-01

    Understanding how cellular metabolism works and is regulated requires that the underlying biochemical pathways be adequately represented and integrated with large metabolomic data sets to establish a robust network model. Genetically engineering energy crops to be less recalcitrant to saccharification requires detailed knowledge of plant polysaccharide structures and a thorough understanding of the metabolic pathways involved in forming and regulating cell-wall synthesis. Nucleotide-sugars are building blocks for synthesis of cell wall polysaccharides. The biosynthesis of nucleotide-sugars is catalyzed by a multitude of enzymes that reside in different subcellular organelles, and precise representation of these pathways requires accurate capture of this biological compartmentalization. The lack of simple localization cues in genomic sequence data and annotations however leads to missing compartmentalization information for eukaryotes in automatically generated databases, such as the Pathway-Genome Databases (PGDBs) of the SRI Pathway Tools software that drives much biochemical knowledge representation on the internet. In this report, we provide an informal mechanism using the existing Pathway Tools framework to integrate protein and metabolite sub-cellular localization data with the existing representation of the nucleotide-sugar metabolic pathways in a prototype PGDB for Populus trichocarpa. The enhanced pathway representations have been successfully used to map SNP abundance data to individual nucleotide-sugar biosynthetic genes in the PGDB. The manually curated pathway representations are more conducive to the construction of a computational platform that will allow the simulation of natural and engineered nucleotide-sugar precursor fluxes into specific recalcitrant polysaccharide(s). Database URL: The curated Populus PGDB is available in the BESC public portal at http://cricket.ornl.gov/cgi-bin/beocyc_home.cgi and the nucleotide-sugar biosynthetic pathways can

  20. Boosting the pentose phosphate pathway restores cardiac progenitor cell availability in diabetes.

    PubMed

    Katare, Rajesh; Oikawa, Atsuhiko; Cesselli, Daniela; Beltrami, Antonio P; Avolio, Elisa; Muthukrishnan, Deepti; Munasinghe, Pujika Emani; Angelini, Gianni; Emanueli, Costanza; Madeddu, Paolo

    2013-01-01

    Diabetes impinges upon mechanisms of cardiovascular repair. However, the biochemical adaptation of cardiac stem cells to sustained hyperglycaemia remains largely unknown. Here, we investigate the molecular targets of high glucose-induced damage in cardiac progenitor cells (CPCs) from murine and human hearts and attempt safeguarding CPC viability and function through reactivation of the pentose phosphate pathway. Type-1 diabetes was induced by streptozotocin. CPC abundance was determined by flow cytometry. Proliferating CPCs were identified in situ by immunostaining for the proliferation marker Ki67. Diabetic hearts showed marked reduction in CPC abundance and proliferation when compared with controls. Moreover, Sca-1(pos) CPCs isolated from hearts of diabetic mice displayed reduced activity of key enzymes of the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD), and transketolase, increased levels of superoxide and advanced glucose end-products (AGE), and inhibition of the Akt/Pim-1/Bcl-2 signalling pathway. Similarly, culture of murine CPCs or human CD105(pos) progenitor cells in high glucose inhibits the pentose phosphate and pro-survival signalling pathways, leading to the activation of apoptosis. In vivo and in vitro supplementation with benfotiamine reactivates the pentose phosphate pathway and rescues CPC availability and function. This benefit is abrogated by either G6PD silencing by small interfering RNA (siRNA) or Akt inhibition by dominant-negative Akt. We provide new evidence of the negative impact of diabetes and high glucose on mechanisms controlling CPC redox state and survival. Boosting the pentose phosphate pathway might represent a novel mechanistic target for protection of CPC integrity.

  1. RxnFinder: biochemical reaction search engines using molecular structures, molecular fragments and reaction similarity.

    PubMed

    Hu, Qian-Nan; Deng, Zhe; Hu, Huanan; Cao, Dong-Sheng; Liang, Yi-Zeng

    2011-09-01

    Biochemical reactions play a key role to help sustain life and allow cells to grow. RxnFinder was developed to search biochemical reactions from KEGG reaction database using three search criteria: molecular structures, molecular fragments and reaction similarity. RxnFinder is helpful to get reference reactions for biosynthesis and xenobiotics metabolism. RxnFinder is freely available via: http://sdd.whu.edu.cn/rxnfinder. qnhu@whu.edu.cn.

  2. The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes.

    PubMed

    Schneider, Lizette M; Adamski, Nikolai M; Christensen, Caspar Elo; Stuart, David B; Vautrin, Sonia; Hansson, Mats; Uauy, Cristobal; von Wettstein-Knowles, Penny

    2016-03-09

    Aliphatic compounds on plant surfaces, called epicuticular waxes, are the first line of defense against pathogens and pests, contribute to reducing water loss and determine other important phenotypes. Aliphatics can form crystals affecting light refraction, resulting in a color change and allowing identification of mutants in their synthesis or transport. The present study discloses three such Eceriferum (cer) genes in barley - Cer-c, Cer-q and Cer-u - known to be tightly linked and functioning in a biochemical pathway forming dominating amounts of β-diketone and hydroxy-β-diketones plus some esterified alkan-2-ols. These aliphatics are present in many Triticeae as well as dicotyledons such as Eucalyptus and Dianthus. Recently developed genomic resources and mapping populations in barley defined these genes to a small region on chromosome arm 2HS. Exploiting Cer-c and -u potential functions pinpointed five candidates, of which three were missing in apparent cer-cqu triple mutants. Sequencing more than 50 independent mutants for each gene confirmed their identification. Cer-c is a chalcone synthase-like polyketide synthase, designated diketone synthase (DKS), Cer-q is a lipase/carboxyl transferase and Cer-u is a P450 enzyme. All were highly expressed in pertinent leaf sheath tissue of wild type. A physical map revealed the order Cer-c, Cer-u, Cer-q with the flanking genes 101kb apart, confirming they are a gene cluster, Cer-cqu. Homology-based modeling suggests that many of the mutant alleles affect overall protein structure or specific active site residues. The rich diversity of identified mutations will facilitate future studies of three key enzymes involved in synthesis of plant apoplast waxes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Protein Design for Pathway Engineering

    PubMed Central

    Eriksen, Dawn T.; Lian, Jiazhang; Zhao, Huimin

    2013-01-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. PMID:23558037

  4. Protein design for pathway engineering.

    PubMed

    Eriksen, Dawn T; Lian, Jiazhang; Zhao, Huimin

    2014-02-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. B-cell Ligand Processing Pathways Detected by Large-scale Comparative Analysis

    PubMed Central

    Towfic, Fadi; Gupta, Shakti; Honavar, Vasant; Subramaniam, Shankar

    2012-01-01

    The initiation of B-cell ligand recognition is a critical step for the generation of an immune response against foreign bodies. We sought to identify the biochemical pathways involved in the B-cell ligand recognition cascade and sets of ligands that trigger similar immunological responses. We utilized several comparative approaches to analyze the gene coexpression networks generated from a set of microarray experiments spanning 33 different ligands. First, we compared the degree distributions of the generated networks. Second, we utilized a pairwise network alignment algorithm, BiNA, to align the networks based on the hubs in the networks. Third, we aligned the networks based on a set of KEGG pathways. We summarized our results by constructing a consensus hierarchy of pathways that are involved in B cell ligand recognition. The resulting pathways were further validated through literature for their common physiological responses. Collectively, the results based on our comparative analyses of degree distributions, alignment of hubs, and alignment based on KEGG pathways provide a basis for molecular characterization of the immune response states of B-cells and demonstrate the power of comparative approaches (e.g., gene coexpression network alignment algorithms) in elucidating biochemical pathways involved in complex signaling events in cells. PMID:22917187

  6. Transcriptome Analysis of Three Sheep Intestinal Regions reveals Key Pathways and Hub Regulatory Genes of Large Intestinal Lipid Metabolism.

    PubMed

    Chao, Tianle; Wang, Guizhi; Ji, Zhibin; Liu, Zhaohua; Hou, Lei; Wang, Jin; Wang, Jianmin

    2017-07-13

    The large intestine, also known as the hindgut, is an important part of the animal digestive system. Recent studies on digestive system development in ruminants have focused on the rumen and the small intestine, but the molecular mechanisms underlying sheep large intestine metabolism remain poorly understood. To identify genes related to intestinal metabolism and to reveal molecular regulation mechanisms, we sequenced and compared the transcriptomes of mucosal epithelial tissues among the cecum, proximal colon and duodenum. A total of 4,221 transcripts from 3,254 genes were identified as differentially expressed transcripts. Between the large intestine and duodenum, differentially expressed transcripts were found to be significantly enriched in 6 metabolism-related pathways, among which PPAR signaling was identified as a key pathway. Three genes, CPT1A, LPL and PCK1, were identified as higher expression hub genes in the large intestine. Between the cecum and colon, differentially expressed transcripts were significantly enriched in 5 lipid metabolism related pathways, and CEPT1 and MBOAT1 were identified as hub genes. This study provides important information regarding the molecular mechanisms of intestinal metabolism in sheep and may provide a basis for further study.

  7. Unraveling Biochemical Pathways Affected by Mitochondrial Dysfunctions Using Metabolomic Approaches

    PubMed Central

    Demine, Stéphane; Reddy, Nagabushana; Renard, Patricia; Raes, Martine; Arnould, Thierry

    2014-01-01

    Mitochondrial dysfunction(s) (MDs) can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy) in the obesity and insulin resistance thematic. PMID:25257998

  8. A novel biochemical platform for fuels and chemicals production from cellulosic biomass

    USDA-ARS?s Scientific Manuscript database

    The conventional biochemical platform for biofuels production featuring enzymatic hydrolysis involves five key steps: pretreatment, cellulase production, enzymatic hydrolysis, fermentation, and product recovery. Sugars are produced as reactive intermediates for subsequent fermentation to fuels and c...

  9. Metabologenomics of Phaeochromocytoma and Paraganglioma: An Integrated Approach for Personalised Biochemical and Genetic Testing

    PubMed Central

    Eisenhofer, Graeme; Klink, Barbara; Richter, Susan; Lenders, Jacques WM; Robledo, Mercedes

    2017-01-01

    The tremendous advances over the past two decades in both clinical genetics and biochemical testing of chromaffin cell tumours have led to new considerations about how these aspects of laboratory medicine can be integrated to improve diagnosis and management of affected patients. With germline mutations in 15 genes now identified to be responsible for over a third of all cases of phaeochromocytomas and paragangliomas, these tumours are recognised to have one of the richest hereditary backgrounds among all neoplasms. Depending on the mutation, tumours show distinct differences in metabolic pathways that relate to or even directly impact clinical presentation. At the same time, there has been improved understanding about how catecholamines are synthesised, stored, secreted and metabolised by chromaffin cell tumours. Although the tumours may not always secrete catecholamines it has become clear that almost all continuously produce and metabolise catecholamines. This has not only fuelled changes in laboratory medicine, but has also assisted in recognition of genotype-biochemical phenotype relationships important for diagnostics and clinical care. In particular, differences in catecholamine and energy pathway metabolomes can guide genetic testing, assist with test interpretation and provide predictions about the nature, behaviour and imaging characteristics of the tumours. Conversely, results of genetic testing are important for guiding how routine biochemical testing should be employed and interpreted in surveillance programmes for at-risk patients. In these ways there are emerging needs for modern laboratory medicine to seamlessly integrate biochemical and genetic testing into the diagnosis and management of patients with chromaffin cell tumours. PMID:29332973

  10. Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion.

    PubMed

    Mu, Dongyan; Seager, Thomas; Rao, P Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle

  11. Comparative Life Cycle Assessment of Lignocellulosic Ethanol Production: Biochemical Versus Thermochemical Conversion

    NASA Astrophysics Data System (ADS)

    Mu, Dongyan; Seager, Thomas; Rao, P. Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle

  12. Multi-Omics Reveals that Lead Exposure Disturbs Gut Microbiome Development, Key Metabolites, and Metabolic Pathways.

    PubMed

    Gao, Bei; Chi, Liang; Mahbub, Ridwan; Bian, Xiaoming; Tu, Pengcheng; Ru, Hongyu; Lu, Kun

    2017-04-17

    Lead exposure remains a global public health issue, and the recent Flint water crisis has renewed public concern about lead toxicity. The toxicity of lead has been well established in a variety of systems and organs. The gut microbiome has been shown to be highly involved in many critical physiological processes, including food digestion, immune system development, and metabolic homeostasis. However, despite the key role of the gut microbiome in human health, the functional impact of lead exposure on the gut microbiome has not been studied. The aim of this study is to define gut microbiome toxicity induced by lead exposure in C57BL/6 mice using multiomics approaches, including 16S rRNA sequencing, whole genome metagenomics sequencing, and gas chromatography-mass spectrometry (GC-MS) metabolomics. 16S rRNA sequencing revealed that lead exposure altered the gut microbiome trajectory and phylogenetic diversity. Metagenomics sequencing and metabolomics profiling showed that numerous metabolic pathways, including vitamin E, bile acids, nitrogen metabolism, energy metabolism, oxidative stress, and the defense/detoxification mechanism, were significantly disturbed by lead exposure. These perturbed molecules and pathways may have important implications for lead toxicity in the host. Taken together, these results demonstrated that lead exposure not only altered the gut microbiome community structures/diversity but also greatly affected metabolic functions, leading to gut microbiome toxicity.

  13. Cellular Assays for Ferredoxins: A Strategy for Understanding Electron Flow through Protein Carriers That Link Metabolic Pathways.

    PubMed

    Atkinson, Joshua T; Campbell, Ian; Bennett, George N; Silberg, Jonathan J

    2016-12-27

    The ferredoxin (Fd) protein family is a structurally diverse group of iron-sulfur proteins that function as electron carriers, linking biochemical pathways important for energy transduction, nutrient assimilation, and primary metabolism. While considerable biochemical information about individual Fd protein electron carriers and their reactions has been acquired, we cannot yet anticipate the proportion of electrons shuttled between different Fd-partner proteins within cells using biochemical parameters that govern electron flow, such as holo-Fd concentration, midpoint potential (driving force), molecular interactions (affinity and kinetics), conformational changes (allostery), and off-pathway electron leakage (chemical oxidation). Herein, we describe functional and structural gaps in our Fd knowledge within the context of a sequence similarity network and phylogenetic tree, and we propose a strategy for improving our understanding of Fd sequence-function relationships. We suggest comparing the functions of divergent Fds within cells whose growth, or other measurable output, requires electron transfer between defined electron donor and acceptor proteins. By comparing Fd-mediated electron transfer with biochemical parameters that govern electron flow, we posit that models that anticipate energy flow across Fd interactomes can be built. This approach is expected to transform our ability to anticipate Fd control over electron flow in cellular settings, an obstacle to the construction of synthetic electron transfer pathways and rational optimization of existing energy-conserving pathways.

  14. The Akt signaling pathway

    PubMed Central

    Madhunapantula, SubbaRao V; Mosca, Paul J

    2011-01-01

    Studies using cultured melanoma cells and patient tumor biopsies have demonstrated deregulated PI3 kinase-Akt3 pathway activity in ∼70% of melanomas. Furthermore, targeting Akt3 and downstream PRAS40 has been shown to inhibit melanoma tumor development in mice. Although these preclinical studies and several other reports using small interfering RNAs and pharmacological agents targeting key members of this pathway have been shown to retard melanoma development, analysis of early Phase I and Phase II clinical trials using pharmacological agents to target this pathway demonstrate the need for (1) selection of patients whose tumors have PI3 kinase-Akt pathway deregulation, (2) further optimization of therapeutic agents for increased potency and reduced toxicity, (3) the identification of additional targets in the same pathway or in other signaling cascades that synergistically inhibit the growth and progression of melanoma, and (4) better methods for targeted delivery of pharmaceutical agents inhibiting this pathway. In this review we discuss key potential targets in PI3K-Akt3 signaling, the status of pharmacological agents targeting these proteins, drugs under clinical development, and strategies to improve the efficacy of therapeutic agents targeting this pathway. PMID:22157148

  15. Physiological, biochemical and transcriptional analysis of onion bulbs during storage

    PubMed Central

    Chope, Gemma A.; Cools, Katherine; Hammond, John P.; Thompson, Andrew J.; Terry, Leon A.

    2012-01-01

    Background and Aims During the transition from endo-dormancy to eco-dormancy and subsequent growth, the onion bulb undergoes the transition from sink organ to source, to sustain cell division in the meristematic tissue. The mechanisms controlling these processes are not fully understood. Here, a detailed analysis of whole onion bulb physiological, biochemical and transcriptional changes in response to sprouting is reported, enabling a better knowledge of the mechanisms regulating post-harvest onion sprout development. Methods Biochemical and physiological analyses were conducted on different cultivars (‘Wellington’, ‘Sherpa’ and ‘Red Baron’) grown at different sites over 3 years, cured at different temperatures (20, 24 and 28 °C) and stored under different regimes (1, 3, 6 and 6 → 1 °C). In addition, the first onion oligonucleotide microarray was developed to determine differential gene expression in onion during curing and storage, so that transcriptional changes could support biochemical and physiological analyses. Key Results There were greater transcriptional differences between samples at harvest and before sprouting than between the samples taken before and after sprouting, with some significant changes occurring during the relatively short curing period. These changes are likely to represent the transition from endo-dormancy to sprout suppression, and suggest that endo-dormancy is a relatively short period ending just after curing. Principal component analysis of biochemical and physiological data identified the ratio of monosaccharides (fructose and glucose) to disaccharide (sucrose), along with the concentration of zeatin riboside, as important factors in discriminating between sprouting and pre-sprouting bulbs. Conclusions These detailed analyses provide novel insights into key regulatory triggers for sprout dormancy release in onion bulbs and provide the potential for the development of biochemical or transcriptional markers for sprout

  16. Key Enzymes of the Semiphosphorylative Entner-Doudoroff Pathway in the Haloarchaeon Haloferax volcanii: Characterization of Glucose Dehydrogenase, Gluconate Dehydratase, and 2-Keto-3-Deoxy-6-Phosphogluconate Aldolase.

    PubMed

    Sutter, Jan-Moritz; Tästensen, Julia-Beate; Johnsen, Ulrike; Soppa, Jörg; Schönheit, Peter

    2016-08-15

    The halophilic archaeon Haloferax volcanii has been proposed to degrade glucose via the semiphosphorylative Entner-Doudoroff (spED) pathway. So far, the key enzymes of this pathway, glucose dehydrogenase (GDH), gluconate dehydratase (GAD), and 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase (KDPGA), have not been characterized, and their functional involvement in glucose degradation has not been demonstrated. Here we report that the genes HVO_1083 and HVO_0950 encode GDH and KDPGA, respectively. The recombinant enzymes show high specificity for glucose and KDPG and did not convert the corresponding C4 epimers galactose and 2-keto-3-deoxy-6-phosphogalactonate at significant rates. Growth studies of knockout mutants indicate the functional involvement of both GDH and KDPGA in glucose degradation. GAD was purified from H. volcanii, and the encoding gene, gad, was identified as HVO_1488. GAD catalyzed the specific dehydration of gluconate and did not utilize galactonate at significant rates. A knockout mutant of GAD lost the ability to grow on glucose, indicating the essential involvement of GAD in glucose degradation. However, following a prolonged incubation period, growth of the Δgad mutant on glucose was recovered. Evidence is presented that under these conditions, GAD was functionally replaced by xylonate dehydratase (XAD), which uses both xylonate and gluconate as substrates. Together, the characterization of key enzymes and analyses of the respective knockout mutants present conclusive evidence for the in vivo operation of the spED pathway for glucose degradation in H. volcanii The work presented here describes the identification and characterization of the key enzymes glucose dehydrogenase, gluconate dehydratase, and 2-keto-3-deoxy-6-phosphogluconate aldolase and their encoding genes of the proposed semiphosphorylative Entner-Doudoroff pathway in the haloarchaeon Haloferax volcanii The functional involvement of the three enzymes was proven by analyses of the

  17. Depletion of key protein components of the RISC pathway impairs pre-ribosomal RNA processing.

    PubMed

    Liang, Xue-Hai; Crooke, Stanley T

    2011-06-01

    Little is known about whether components of the RNA-induced silencing complex (RISC) mediate the biogenesis of RNAs other than miRNA. Here, we show that depletion of key proteins of the RISC pathway by antisense oligonucleotides significantly impairs pre-rRNA processing in human cells. In cells depleted of Drosha or Dicer, different precursors to 5.8S rRNA strongly accumulated, without affecting normal endonucleolytic cleavages. Moderate yet distinct processing defects were also observed in Ago2-depleted cells. Physical links between pre-rRNA and these proteins were identified by co-immunoprecipitation analyses. Interestingly, simultaneous depletion of Dicer and Drosha led to a different processing defect, causing slower production of 28S rRNA and its precursor. Both Dicer and Ago2 were detected in the nuclear fraction, and reduction of Dicer altered the structure of the nucleolus, where pre-rRNA processing occurs. Together, these results suggest that Drosha and Dicer are implicated in rRNA biogenesis.

  18. The stat3/socs3a pathway is a key regulator of hair cell regeneration in zebrafish. [corrected].

    PubMed

    Liang, Jin; Wang, Dongmei; Renaud, Gabriel; Wolfsberg, Tyra G; Wilson, Alexander F; Burgess, Shawn M

    2012-08-01

    All nonmammalian vertebrates studied can regenerate inner ear mechanosensory receptors (i.e., hair cells) (Corwin and Cotanche, 1988; Lombarte et al., 1993; Baird et al., 1996), but mammals possess only a very limited capacity for regeneration after birth (Roberson and Rubel, 1994). As a result, mammals experience permanent deficiencies in hearing and balance once their inner ear hair cells are lost. The mechanisms of hair cell regeneration are poorly understood. Because the inner ear sensory epithelium is highly conserved in all vertebrates (Fritzsch et al., 2007), we chose to study hair cell regeneration mechanism in adult zebrafish, hoping the results would be transferrable to inducing hair cell regeneration in mammals. We defined the comprehensive network of genes involved in hair cell regeneration in the inner ear of adult zebrafish with the powerful transcriptional profiling technique digital gene expression, which leverages the power of next-generation sequencing ('t Hoen et al., 2008). We also identified a key pathway, stat3/socs3, and demonstrated its role in promoting hair cell regeneration through stem cell activation, cell division, and differentiation. In addition, transient pharmacological inhibition of stat3 signaling accelerated hair cell regeneration without overproducing cells. Taking other published datasets into account (Sano et al., 1999; Schebesta et al., 2006; Dierssen et al., 2008; Riehle et al., 2008; Zhu et al., 2008; Qin et al., 2009), we propose that the stat3/socs3 pathway is a key response in all tissue regeneration and thus an important therapeutic target for a broad application in tissue repair and injury healing.

  19. Boosting the pentose phosphate pathway restores cardiac progenitor cell availability in diabetes

    PubMed Central

    Katare, Rajesh; Oikawa, Atsuhiko; Cesselli, Daniela; Beltrami, Antonio P.; Avolio, Elisa; Muthukrishnan, Deepti; Munasinghe, Pujika Emani; Angelini, Gianni; Emanueli, Costanza; Madeddu, Paolo

    2013-01-01

    Aims Diabetes impinges upon mechanisms of cardiovascular repair. However, the biochemical adaptation of cardiac stem cells to sustained hyperglycaemia remains largely unknown. Here, we investigate the molecular targets of high glucose-induced damage in cardiac progenitor cells (CPCs) from murine and human hearts and attempt safeguarding CPC viability and function through reactivation of the pentose phosphate pathway. Methods and results Type-1 diabetes was induced by streptozotocin. CPC abundance was determined by flow cytometry. Proliferating CPCs were identified in situ by immunostaining for the proliferation marker Ki67. Diabetic hearts showed marked reduction in CPC abundance and proliferation when compared with controls. Moreover, Sca-1pos CPCs isolated from hearts of diabetic mice displayed reduced activity of key enzymes of the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD), and transketolase, increased levels of superoxide and advanced glucose end-products (AGE), and inhibition of the Akt/Pim-1/Bcl-2 signalling pathway. Similarly, culture of murine CPCs or human CD105pos progenitor cells in high glucose inhibits the pentose phosphate and pro-survival signalling pathways, leading to the activation of apoptosis. In vivo and in vitro supplementation with benfotiamine reactivates the pentose phosphate pathway and rescues CPC availability and function. This benefit is abrogated by either G6PD silencing by small interfering RNA (siRNA) or Akt inhibition by dominant-negative Akt. Conclusion We provide new evidence of the negative impact of diabetes and high glucose on mechanisms controlling CPC redox state and survival. Boosting the pentose phosphate pathway might represent a novel mechanistic target for protection of CPC integrity. PMID:22997160

  20. Targeting the Hippo signalling pathway for cancer treatment.

    PubMed

    Nakatani, Keisuke; Maehama, Tomohiko; Nishio, Miki; Goto, Hiroki; Kato, Wakako; Omori, Hirofumi; Miyachi, Yosuke; Togashi, Hideru; Shimono, Yohei; Suzuki, Akira

    2017-03-01

    The Hippo signalling pathway monitors cell-cell contact and external factors that shape tissue structure. In mice, tumourigenesis and developmental abnormalities are common consequences of dysregulated Hippo signalling. Expression of Hippo pathway components is also frequently altered in human tumours and correlates with poor prognosis and reduced patient survival. Thus, the Hippo pathway is an attractive anti-cancer target. Here, we provide an overview of the function and regulation of Hippo signalling components and summarize progress to date on the development of agents able to regulate Hippo signalling for cancer therapy. © The Authors 2016. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  1. Emerging evidence on the role of the Hippo/YAP pathway in liver physiology and cancer.

    PubMed

    Yimlamai, Dean; Fowl, Brendan H; Camargo, Fernando D

    2015-12-01

    The Hippo pathway and its regulatory target, YAP, has recently emerged as an important biochemical signaling pathway that tightly governs epithelial tissue growth. Initially defined in Drosophilia, this pathway has shown remarkable conservation in vertebrate systems with many components of the Hippo/YAP pathway showing biochemical and functional conservation. The liver is particularly sensitive to changes in Hippo/YAP signaling with rapid increases in liver size becoming manifest on the order of days to weeks after perturbation. The first identified direct targets of Hippo/YAP signaling were pro-proliferative and anti-apoptotic gene programs, but recent work has now implicated this pathway in cell fate choice, stem cell maintenance/renewal, epithelial to mesenchymal transition, and oncogenesis. The mechanisms by which Hippo/YAP signaling is changed endogenously are beginning to come to light as well as how this pathway interacts with other signaling pathways, and important details for designing new therapeutic interventions. This review focuses on the known roles for Hippo/YAP signaling in the liver and promising avenues for future study. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  2. Main regulatory pathways, key genes and microRNAs involved in flower formation and development of moso bamboo (Phyllostachys edulis).

    PubMed

    Ge, Wei; Zhang, Ying; Cheng, Zhanchao; Hou, Dan; Li, Xueping; Gao, Jian

    2017-01-01

    Moso bamboo is characterized by infrequent sexual reproduction and erratic flowering habit; however, the molecular biology of flower formation and development is not well studied in this species. We studied the molecular regulation mechanisms of moso bamboo development and flowering by selecting three key regulatory pathways: plant-pathogen interaction, plant hormone signal transduction and protein processing in endoplasmic reticulum at different stages of flowering in moso bamboo. We selected PheDof1, PheMADS14 and six microRNAs involved in the three pathways through KEGG pathway and cluster analysis. Subcellular localization, transcriptional activation, Western blotting, in situ hybridization and qRT-PCR were used to further investigate the expression patterns and regulatory roles of pivotal genes at different flower development stages. Differential expression patterns showed that PheDof1, PheMADS14 and six miRNAs may play vital regulatory roles in flower development and floral transition in moso bamboo. Our research paves way for further studies on metabolic regulatory networks and provides insight into the molecular regulation mechanisms of moso bamboo flowering and senescence. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Fenofibrate inhibits atrial metabolic remodelling in atrial fibrillation through PPAR-α/sirtuin 1/PGC-1α pathway.

    PubMed

    Liu, Guang-Zhong; Hou, Ting-Ting; Yuan, Yue; Hang, Peng-Zhou; Zhao, Jing-Jing; Sun, Li; Zhao, Guan-Qi; Zhao, Jing; Dong, Jing-Mei; Wang, Xiao-Bing; Shi, Hang; Liu, Yong-Wu; Zhou, Jing-Hua; Dong, Zeng-Xiang; Liu, Yang; Zhan, Cheng-Chuang; Li, Yue; Li, Wei-Min

    2016-03-01

    Atrial metabolic remodelling is critical for the process of atrial fibrillation (AF). The PPAR-α/sirtuin 1 /PPAR co-activator α (PGC-1α) pathway plays an important role in maintaining energy metabolism. However, the effect of the PPAR-α agonist fenofibrate on AF is unclear. Therefore, the aim of this study was to determine the effect of fenofibrate on atrial metabolic remodelling in AF and explore its possible mechanisms of action. The expression of metabolic proteins was examined in the left atria of AF patients. Thirty-two rabbits were divided into sham, AF (pacing with 600 beats·min(-1) for 1 week), fenofibrate treated (pretreated with fenofibrate before pacing) and fenofibrate alone treated (for 2 weeks) groups. HL-1 cells were subjected to rapid pacing in the presence or absence of fenofibrate, the PPAR-α antagonist GW6471 or sirtuin 1-specific inhibitor EX527. Metabolic factors, circulating biochemical metabolites, atrial electrophysiology, adenine nucleotide levels and accumulation of glycogen and lipid droplets were assessed. The PPAR-α/sirtuin 1/PGC-1α pathway was significantly inhibited in AF patients and in the rabbit/HL-1 cell models, resulting in a reduction of key downstream metabolic factors; this effect was significantly restored by fenofibrate. Fenofibrate prevented the alterations in circulating biochemical metabolites, reduced the level of adenine nucleotides and accumulation of glycogen and lipid droplets, reversed the shortened atrial effective refractory period and increased risk of AF. Fenofibrate inhibited atrial metabolic remodelling in AF by regulating the PPAR-α/sirtuin 1/PGC-1α pathway. The present study may provide a novel therapeutic strategy for AF. © 2016 The British Pharmacological Society.

  4. Skeletal muscle expresses the extracellular cyclic AMP–adenosine pathway

    PubMed Central

    Chiavegatti, T; Costa, V L; Araújo, M S; Godinho, R O

    2007-01-01

    Background and purpose: cAMP is a key intracellular signalling molecule that regulates multiple processes of the vertebrate skeletal muscle. We have shown that cAMP can be actively pumped out from the skeletal muscle cell. Since in other tissues, cAMP efflux had been associated with extracellular generation of adenosine, in the present study we have assessed the fate of interstitial cAMP and the existence of an extracellular cAMP-adenosine signalling pathway in skeletal muscle. Experimental approach: cAMP efflux and/or its extracellular degradation were analysed by incubating rat cultured skeletal muscle with exogenous cAMP, forskolin or isoprenaline. cAMP and its metabolites were quantified by radioassay or HPLC, respectively. Key results: Incubation of cells with exogenous cAMP was followed by interstitial accumulation of 5′-AMP and adenosine, a phenomenon inhibited by selective inhibitors of ecto-phosphodiesterase (DPSPX) and ecto-nucleotidase (AMPCP). Activation of adenylyl cyclase (AC) in cultured cells with forskolin or isoprenaline increased cAMP efflux and extracellular generation of 5′-AMP and adenosine. Extracellular cAMP-adenosine pathway was also observed after direct and receptor-dependent stimulation of AC in rat extensor muscle ex vivo. These events were attenuated by probenecid, an inhibitor of ATP binding cassette family transporters. Conclusions and implications: Our results show the existence of an extracellular biochemical cascade that converts cAMP into adenosine. The functional relevance of this extracellular signalling system may involve a feedback modulation of cellular response initiated by several G protein-coupled receptor ligands, amplifying cAMP influence to a paracrine mode, through its metabolite, adenosine. PMID:18157164

  5. Organization and integration of biomedical knowledge with concept maps for key peroxisomal pathways.

    PubMed

    Willemsen, A M; Jansen, G A; Komen, J C; van Hooff, S; Waterham, H R; Brites, P M T; Wanders, R J A; van Kampen, A H C

    2008-08-15

    One important area of clinical genomics research involves the elucidation of molecular mechanisms underlying (complex) disorders which eventually may lead to new diagnostic or drug targets. To further advance this area of clinical genomics one of the main challenges is the acquisition and integration of data, information and expert knowledge for specific biomedical domains and diseases. Currently the required information is not very well organized but scattered over biological and biomedical databases, basic text books, scientific literature and experts' minds and may be highly specific, heterogeneous, complex and voluminous. We present a new framework to construct knowledge bases with concept maps for presentation of information and the web ontology language OWL for the representation of information. We demonstrate this framework through the construction of a peroxisomal knowledge base, which focuses on four key peroxisomal pathways and several related genetic disorders. All 155 concept maps in our knowledge base are linked to at least one other concept map, which allows the visualization of one big network of related pieces of information. The peroxisome knowledge base is available from www.bioinformaticslaboratory.nl (Support-->Web applications). Supplementary data is available from www.bioinformaticslaboratory.nl (Research-->Output--> Publications--> KB_SuppInfo)

  6. Fundamental Escherichia coli biochemical pathways for biomass and energy production: creation of overall flux states.

    PubMed

    Carlson, Ross; Srienc, Friedrich

    2004-04-20

    We have previously shown that the metabolism for most efficient cell growth can be realized by a combination of two types of elementary modes. One mode produces biomass while the second mode generates only energy. The identity of the four most efficient biomass and energy pathway pairs changes, depending on the degree of oxygen limitation. The identification of such pathway pairs for different growth conditions offers a pathway-based explanation of maintenance energy generation. For a given growth rate, experimental aerobic glucose consumption rates can be used to estimate the contribution of each pathway type to the overall metabolic flux pattern. All metabolic fluxes are then completely determined by the stoichiometries of involved pathways defining all nutrient consumption and metabolite secretion rates. We present here equations that permit computation of network fluxes on the basis of unique pathways for the case of optimal, glucose-limited Escherichia coli growth under varying levels of oxygen stress. Predicted glucose and oxygen uptake rates and some metabolite secretion rates are in remarkable agreement with experimental observations supporting the validity of the presented approach. The entire most efficient, steady-state, metabolic rate structure is explicitly defined by the developed equations without need for additional computer simulations. The approach should be generally useful for analyzing and interpreting genomic data by predicting concise, pathway-based metabolic rate structures. Copyright 2004 Wiley Periodicals, Inc.

  7. Discovery and Biochemical Characterization of the UDP-Xylose Biosynthesis Pathway in Sphaerobacter thermophilus.

    PubMed

    Gu, Bin; Laborda, Pedro; Wei, Shuang; Duan, Xu-Chu; Song, Hui-Bo; Liu, Li; Voglmeir, Josef

    2016-01-01

    The biosynthesis of UDP-xylose requires the stepwise oxidation/ decarboxylation of UDP-glucose, which is catalyzed by the enzymes UDPglucuronic acid dehydrogenase (UGD) and UDP-xylose synthase (UXS). UDPxylose biosynthesis is ubiquitous in animals and plants. However, only a few UGD and UXS isoforms of bacterial origin have thus far been biochemically characterized. Sphaerobacter thermophilus DSM 20745 is a bacterium isolated from heated sewage sludge, and therefore can be a valuable source of thermostable enzymes of biotechnological interest. However, no biochemical characterizations of any S. thermophilus enzymes have yet been reported. Herein, we describe the cloning and characterization of putative UGD (StUGD) and UXS (StUXS) isoforms from this organism. HPLC- and plate reader-based activity tests of the recombinantly expressed StUGD and StUXS showed that they are indeed active enzymes. Both StUGD and StUXS showed a temperature optimum of 70°C, and a reasonable thermal stability up to 60°C. No metal ions were required for enzymatic activities. StUGD had a higher pH optimum than StUXS. The simple purification procedures and the thermotolerance of StUGD and StUXS make them valuable biocatalysts for the synthesis of UDP-glucuronic acid and UDP-xylose at elevated temperatures. The biosynthetic potential of StUGD was further exemplified in a coupled enzymatic reaction with an UDP-glucuronosyltransferase, allowing the glucuronylation of the natural model substrate bilirubin.

  8. Metabolic pathways as possible therapeutic targets for progressive multiple sclerosis.

    PubMed

    Heidker, Rebecca M; Emerson, Mitchell R; LeVine, Steven M

    2017-08-01

    Unlike relapsing remitting multiple sclerosis, there are very few therapeutic options for patients with progressive forms of multiple sclerosis. While immune mechanisms are key participants in the pathogenesis of relapsing remitting multiple sclerosis, the mechanisms underlying the development of progressive multiple sclerosis are less well understood. Putative mechanisms behind progressive multiple sclerosis have been put forth: insufficient energy production via mitochondrial dysfunction, activated microglia, iron accumulation, oxidative stress, activated astrocytes, Wallerian degeneration, apoptosis, etc . Furthermore, repair processes such as remyelination are incomplete. Experimental therapies that strive to improve metabolism within neurons and glia, e.g. , oligodendrocytes, could act to counter inadequate energy supplies and/or support remyelination. Most experimental approaches have been examined as standalone interventions; however, it is apparent that the biochemical steps being targeted are part of larger pathways, which are further intertwined with other metabolic pathways. Thus, the potential benefits of a tested intervention, or of an established therapy, e.g. , ocrelizumab, could be undermined by constraints on upstream and/or downstream steps. If correct, then this argues for a more comprehensive, multifaceted approach to therapy. Here we review experimental approaches to support neuronal and glial metabolism, and/or promote remyelination, which may have potential to lessen or delay progressive multiple sclerosis.

  9. Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6*

    PubMed Central

    Pereira, Jose Henrique; Heins, Richard A.; Gall, Daniel L.; McAndrew, Ryan P.; Deng, Kai; Holland, Keefe C.; Donohue, Timothy J.; Noguera, Daniel R.; Simmons, Blake A.; Sale, Kenneth L.; Ralph, John; Adams, Paul D.

    2016-01-01

    There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding to 50–70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts. PMID:26940872

  10. Investigating Biochemical and Developmental Dependencies of Lignification with a Click-Compatible Monolignol Analog in Arabidopsis thaliana Stems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Jyotsna L.; Kiemle, Sarah N.; Richard, Tom L.

    Lignin is a key structural component of plant cell walls that provides rigidity, strength, and resistance against microbial attacks. This hydrophobic polymer also serves a crucial role in water transport. Despite its abundance and essential functions, several aspects of lignin biosynthesis and deposition remain cryptic. Lignin precursors are known to be synthesized in the cytoplasm by complex biosynthetic pathways, after which they are transported to the apoplastic space, where they are polymerized via free radical coupling reactions into polymeric lignin. However, the lignin deposition process and the factors controlling it are unclear. In this study, the biochemical and developmental dependenciesmore » of lignification were investigated using a click-compatible monolignol analog, 3-O-propargylcaffeyl alcohol (3-OPC), which can incorporate into both in vitro polymerized lignin and Arabidopsis thaliana tissues. Fluorescence labeling of 3-OPC using click chemistry followed by confocal fluorescence microscopy enabled the detection and imaging of 3-OPC incorporation patterns. These patterns were consistent with endogenous lignification observed in different developmental stages of Arabidopsis stems. However, the concentration of supplied monolignols influenced where lignification occurred at the subcellular level, with low concentrations being deposited in cell corners and middle lamellae and high concentrations also being deposited in secondary walls. Experimental inhibition of multiple lignification factors confirmed that 3-OPC incorporation proceeds via a free radical coupling mechanism involving peroxidases/laccases and reactive oxygen species (ROS). Finally, the presence of peroxide-producing enzymes determined which cell walls lignified: adding exogenous peroxide and peroxidase caused cells that do not naturally lignify in Arabidopsis stems to lignify. In conclusion, 3-OPC accurately mimics natural lignification patterns in different developmental stages of

  11. Investigating Biochemical and Developmental Dependencies of Lignification with a Click-Compatible Monolignol Analog in Arabidopsis thaliana Stems

    PubMed Central

    Pandey, Jyotsna L.; Kiemle, Sarah N.; Richard, Tom L.; Zhu, Yimin; Cosgrove, Daniel J.; Anderson, Charles T.

    2016-01-01

    Lignin is a key structural component of plant cell walls that provides rigidity, strength, and resistance against microbial attacks. This hydrophobic polymer also serves a crucial role in water transport. Despite its abundance and essential functions, several aspects of lignin biosynthesis and deposition remain cryptic. Lignin precursors are known to be synthesized in the cytoplasm by complex biosynthetic pathways, after which they are transported to the apoplastic space, where they are polymerized via free radical coupling reactions into polymeric lignin. However, the lignin deposition process and the factors controlling it are unclear. In this study, the biochemical and developmental dependencies of lignification were investigated using a click-compatible monolignol analog, 3-O-propargylcaffeyl alcohol (3-OPC), which can incorporate into both in vitro polymerized lignin and Arabidopsis thaliana tissues. Fluorescence labeling of 3-OPC using click chemistry followed by confocal fluorescence microscopy enabled the detection and imaging of 3-OPC incorporation patterns. These patterns were consistent with endogenous lignification observed in different developmental stages of Arabidopsis stems. However, the concentration of supplied monolignols influenced where lignification occurred at the subcellular level, with low concentrations being deposited in cell corners and middle lamellae and high concentrations also being deposited in secondary walls. Experimental inhibition of multiple lignification factors confirmed that 3-OPC incorporation proceeds via a free radical coupling mechanism involving peroxidases/laccases and reactive oxygen species (ROS). Finally, the presence of peroxide-producing enzymes determined which cell walls lignified: adding exogenous peroxide and peroxidase caused cells that do not naturally lignify in Arabidopsis stems to lignify. In summary, 3-OPC accurately mimics natural lignification patterns in different developmental stages of Arabidopsis

  12. Investigating Biochemical and Developmental Dependencies of Lignification with a Click-Compatible Monolignol Analog in Arabidopsis thaliana Stems

    DOE PAGES

    Pandey, Jyotsna L.; Kiemle, Sarah N.; Richard, Tom L.; ...

    2016-08-31

    Lignin is a key structural component of plant cell walls that provides rigidity, strength, and resistance against microbial attacks. This hydrophobic polymer also serves a crucial role in water transport. Despite its abundance and essential functions, several aspects of lignin biosynthesis and deposition remain cryptic. Lignin precursors are known to be synthesized in the cytoplasm by complex biosynthetic pathways, after which they are transported to the apoplastic space, where they are polymerized via free radical coupling reactions into polymeric lignin. However, the lignin deposition process and the factors controlling it are unclear. In this study, the biochemical and developmental dependenciesmore » of lignification were investigated using a click-compatible monolignol analog, 3-O-propargylcaffeyl alcohol (3-OPC), which can incorporate into both in vitro polymerized lignin and Arabidopsis thaliana tissues. Fluorescence labeling of 3-OPC using click chemistry followed by confocal fluorescence microscopy enabled the detection and imaging of 3-OPC incorporation patterns. These patterns were consistent with endogenous lignification observed in different developmental stages of Arabidopsis stems. However, the concentration of supplied monolignols influenced where lignification occurred at the subcellular level, with low concentrations being deposited in cell corners and middle lamellae and high concentrations also being deposited in secondary walls. Experimental inhibition of multiple lignification factors confirmed that 3-OPC incorporation proceeds via a free radical coupling mechanism involving peroxidases/laccases and reactive oxygen species (ROS). Finally, the presence of peroxide-producing enzymes determined which cell walls lignified: adding exogenous peroxide and peroxidase caused cells that do not naturally lignify in Arabidopsis stems to lignify. In conclusion, 3-OPC accurately mimics natural lignification patterns in different developmental stages of

  13. The JAK/STAT pathway in obesity and diabetes.

    PubMed

    Gurzov, Esteban N; Stanley, William J; Pappas, Evan G; Thomas, Helen E; Gough, Daniel J

    2016-08-01

    Diabetes mellitus are complex, multi-organ metabolic pathologies characterized by hyperglycemia. Emerging evidence shows that the highly conserved and potent JAK/STAT signaling pathway is required for normal homeostasis, and, when dysregulated, contributes to the development of obesity and diabetes. In this review, we analyze the role of JAK/STAT activation in the brain, liver, muscle, fat and pancreas, and how this affects the course of the disease. We also consider the therapeutic implications of targeting the JAK/STAT pathway in treatment of obesity and diabetes. © 2016 Federation of European Biochemical Societies.

  14. An improved hybrid of particle swarm optimization and the gravitational search algorithm to produce a kinetic parameter estimation of aspartate biochemical pathways.

    PubMed

    Ismail, Ahmad Muhaimin; Mohamad, Mohd Saberi; Abdul Majid, Hairudin; Abas, Khairul Hamimah; Deris, Safaai; Zaki, Nazar; Mohd Hashim, Siti Zaiton; Ibrahim, Zuwairie; Remli, Muhammad Akmal

    2017-12-01

    Mathematical modelling is fundamental to understand the dynamic behavior and regulation of the biochemical metabolisms and pathways that are found in biological systems. Pathways are used to describe complex processes that involve many parameters. It is important to have an accurate and complete set of parameters that describe the characteristics of a given model. However, measuring these parameters is typically difficult and even impossible in some cases. Furthermore, the experimental data are often incomplete and also suffer from experimental noise. These shortcomings make it challenging to identify the best-fit parameters that can represent the actual biological processes involved in biological systems. Computational approaches are required to estimate these parameters. The estimation is converted into multimodal optimization problems that require a global optimization algorithm that can avoid local solutions. These local solutions can lead to a bad fit when calibrating with a model. Although the model itself can potentially match a set of experimental data, a high-performance estimation algorithm is required to improve the quality of the solutions. This paper describes an improved hybrid of particle swarm optimization and the gravitational search algorithm (IPSOGSA) to improve the efficiency of a global optimum (the best set of kinetic parameter values) search. The findings suggest that the proposed algorithm is capable of narrowing down the search space by exploiting the feasible solution areas. Hence, the proposed algorithm is able to achieve a near-optimal set of parameters at a fast convergence speed. The proposed algorithm was tested and evaluated based on two aspartate pathways that were obtained from the BioModels Database. The results show that the proposed algorithm outperformed other standard optimization algorithms in terms of accuracy and near-optimal kinetic parameter estimation. Nevertheless, the proposed algorithm is only expected to work well in

  15. Sialoglycoproteins prepared from the eggs of Carassius auratus prevent bone loss by inhibiting the NF-κB pathway in ovariectomized rats.

    PubMed

    Xia, Guanghua; Wang, Jingfeng; Sun, Shuhong; Zhao, Yanlei; Wang, Yiming; Yu, Zhe; Wang, Shanshan; Xue, Changhu

    2016-02-01

    In this study, we investigated the improvement of osteoporosis by sialoglycoproteins isolated from the eggs of Carassius auratus (Ca-SGP) in ovariectomized rats. Ca-SGP was supplemented to ovariectomized Sprague-Dawley rats for 90 days. The results showed that Ca-SGP treatment remarkably prevented the reduction of bone mass, improved cancellous bone structure and biochemical properties. Ca-SGP also significantly decreased the serum contents of TRAP, Cath-K, MMP-9, DPD, CTX-1, Ca, and P. Mechanism investigation revealed that Ca-SGP significantly increased the OPG/RANKL ratio in mRNA expression, protein expression and serum content. Further research suggested that NF-κB signaling pathways were inhibited by suppressing the mRNA and protein expressions of NFATc1 and TRAF6, diminishing the mRNA expression and phosphorylation of NF-κB p65, three key transcription factors in NF-κB pathways. These results suggest that Ca-SGP can improve osteoporosis by inhibiting bone resorption via suppressing the activation of osteoclastogenesis related NF-κB pathways.

  16. Cellular compartmentalization of secondary metabolism

    USDA-ARS?s Scientific Manuscript database

    Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors sh...

  17. The Fanconi anaemia pathway: new players and new functions.

    PubMed

    Ceccaldi, Raphael; Sarangi, Prabha; D'Andrea, Alan D

    2016-06-01

    The Fanconi anaemia pathway repairs DNA interstrand crosslinks (ICLs) in the genome. Our understanding of this complex pathway is still evolving, as new components continue to be identified and new biochemical systems are used to elucidate the molecular steps of repair. The Fanconi anaemia pathway uses components of other known DNA repair processes to achieve proper repair of ICLs. Moreover, Fanconi anaemia proteins have functions in genome maintenance beyond their canonical roles of repairing ICLs. Such functions include the stabilization of replication forks and the regulation of cytokinesis. Thus, Fanconi anaemia proteins are emerging as master regulators of genomic integrity that coordinate several repair processes. Here, we summarize our current understanding of the functions of the Fanconi anaemia pathway in ICL repair, together with an overview of its connections with other repair pathways and its emerging roles in genome maintenance.

  18. The Genetic Link between Parkinson's Disease and the Kynurenine Pathway Is Still Missing

    PubMed Central

    Török, Nóra; Török, Rita; Szolnoki, Zoltán; Somogyvári, Ferenc; Klivényi, Péter; Vécsei, László

    2015-01-01

    Background. There is substantial evidence that the kynurenine pathway (KP) plays a role in the normal physiology of the brain and is involved in the pathology of neurodegenerative disorders such as Huntington's disease and Parkinson's disease (PD). Objective. We set out to investigate the potential roles in PD of single nucleotide polymorphisms (SNPs) from one of the key enzymes of the KP, kynurenine 3-monooxygenase (KMO). Methods. 105 unrelated, clinically definitive PD patients and 131 healthy controls were enrolled to investigate the possible effects of the different alleles of KMO. Fluorescently labeled TaqMan probes were used for allele discrimination. Results. None of the four investigated SNPs proved to be associated with PD or influenced the age at onset of the disease. Conclusions. The genetic link between the KP and PD is still missing. The investigated SNPs presumably do not appear to influence the function of KMO and probably do not contain binding sites for regulatory proteins of relevance in PD. This is the first study to assess the genetic background behind the biochemical alterations of the kynurenine pathway in PD, directing the attention to this previously unexamined field. PMID:25785227

  19. The Genetic Link between Parkinson's Disease and the Kynurenine Pathway Is Still Missing.

    PubMed

    Török, Nóra; Török, Rita; Szolnoki, Zoltán; Somogyvári, Ferenc; Klivényi, Péter; Vécsei, László

    2015-01-01

    Background. There is substantial evidence that the kynurenine pathway (KP) plays a role in the normal physiology of the brain and is involved in the pathology of neurodegenerative disorders such as Huntington's disease and Parkinson's disease (PD). Objective. We set out to investigate the potential roles in PD of single nucleotide polymorphisms (SNPs) from one of the key enzymes of the KP, kynurenine 3-monooxygenase (KMO). Methods. 105 unrelated, clinically definitive PD patients and 131 healthy controls were enrolled to investigate the possible effects of the different alleles of KMO. Fluorescently labeled TaqMan probes were used for allele discrimination. Results. None of the four investigated SNPs proved to be associated with PD or influenced the age at onset of the disease. Conclusions. The genetic link between the KP and PD is still missing. The investigated SNPs presumably do not appear to influence the function of KMO and probably do not contain binding sites for regulatory proteins of relevance in PD. This is the first study to assess the genetic background behind the biochemical alterations of the kynurenine pathway in PD, directing the attention to this previously unexamined field.

  20. [Biochemical changes in apoptosis and methods for their determination (review)].

    PubMed

    Sedláková, A; Kohút, A; Kalina, I

    1999-08-01

    Apoptosis or programmed cell death is a physiological process which occurs at different biological states as well as at disease process. Morphologically it is characterized by the chromatine condensation and other changes with preserved integrity of plasmatic membrane. The major and most frequently studied biochemical characteristic of apoptosis is a DNA fragmentation. In our paper attention is directed to the early biochemical changes in cell membranes, i.g., the externalization of phosphatidylserine, hydrolysis of sphingomyeline on the ceramide and activation of phospholipases especially phospholipase A2. In one part we described the changes of cysteine proteases (caspases), which play a key role in the execution of apoptosis. These biochemical changes are associated with ceramide signalization of apoptosis. Briefly are presented also some dates about apoptosis induction with reactive oxygen radicals and the role of the arachidonic acid metabolites in this process. We consider the investigation and determination of these changes as important parameters of apoptosis at some diseases, e.g., cancer or degenerative diseases, and of their treatment.

  1. Design of a biochemical circuit motif for learning linear functions

    PubMed Central

    Lakin, Matthew R.; Minnich, Amanda; Lane, Terran; Stefanovic, Darko

    2014-01-01

    Learning and adaptive behaviour are fundamental biological processes. A key goal in the field of bioengineering is to develop biochemical circuit architectures with the ability to adapt to dynamic chemical environments. Here, we present a novel design for a biomolecular circuit capable of supervised learning of linear functions, using a model based on chemical reactions catalysed by DNAzymes. To achieve this, we propose a novel mechanism of maintaining and modifying internal state in biochemical systems, thereby advancing the state of the art in biomolecular circuit architecture. We use simulations to demonstrate that the circuit is capable of learning behaviour and assess its asymptotic learning performance, scalability and robustness to noise. Such circuits show great potential for building autonomous in vivo nanomedical devices. While such a biochemical system can tell us a great deal about the fundamentals of learning in living systems and may have broad applications in biomedicine (e.g. autonomous and adaptive drugs), it also offers some intriguing challenges and surprising behaviours from a machine learning perspective. PMID:25401175

  2. Design of a biochemical circuit motif for learning linear functions.

    PubMed

    Lakin, Matthew R; Minnich, Amanda; Lane, Terran; Stefanovic, Darko

    2014-12-06

    Learning and adaptive behaviour are fundamental biological processes. A key goal in the field of bioengineering is to develop biochemical circuit architectures with the ability to adapt to dynamic chemical environments. Here, we present a novel design for a biomolecular circuit capable of supervised learning of linear functions, using a model based on chemical reactions catalysed by DNAzymes. To achieve this, we propose a novel mechanism of maintaining and modifying internal state in biochemical systems, thereby advancing the state of the art in biomolecular circuit architecture. We use simulations to demonstrate that the circuit is capable of learning behaviour and assess its asymptotic learning performance, scalability and robustness to noise. Such circuits show great potential for building autonomous in vivo nanomedical devices. While such a biochemical system can tell us a great deal about the fundamentals of learning in living systems and may have broad applications in biomedicine (e.g. autonomous and adaptive drugs), it also offers some intriguing challenges and surprising behaviours from a machine learning perspective.

  3. Transcriptome profiling and pathway analysis of hepatotoxicity induced by tris (2-ethylhexyl) trimellitate (TOTM) in mice.

    PubMed

    Chen, Xian-Hua; Ma, Li; Hu, Yi-Xiang; Wang, Dan-Xian; Fang, Li; Li, Xue-Lai; Zhao, Jin-Chuan; Yu, Hai-Rong; Ying, Hua-Zhong; Yu, Chen-Huan

    2016-01-01

    Tris (2-ethylhexyl) trimellitate (TOTM) is commonly used as an alternative plasticizer for medical devices. But very little information was available on its biological effects. In this study, we investigated toxicity effects of TOTM on hepatic differential gene expression analyzed by using high-throughput sequencing analysis for over-represented functions and phenotypically anchored to complementary histopathologic, and biochemical data in the liver of mice. Among 1668 candidate genes, 694 genes were up-regulated and 974 genes were down-regulated after TOTM exposure. Using Gene Ontology analysis, TOTM affected three processes: the cell cycle, metabolic process and oxidative activity. Furthermore, 11 key genes involved in the above processes were validated by real time PCR. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that these genes were involved in the cell cycle pathway, lipid metabolism and oxidative process. It revealed the transcriptome gene expression response to TOTM exposure in mouse, and these data could contribute to provide a clearer understanding of the molecular mechanisms of TOTM-induced hepatotoxicity in human. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Exploring the combinatorial space of complete pathways to chemicals.

    PubMed

    Wang, Lin; Ng, Chiam Yu; Dash, Satyakam; Maranas, Costas D

    2018-04-06

    Computational pathway design tools often face the challenges of balancing the stoichiometry of co-metabolites and cofactors, and dealing with reaction rule utilization in a single workflow. To this end, we provide an overview of two complementary stoichiometry-based pathway design tools optStoic and novoStoic developed in our group to tackle these challenges. optStoic is designed to determine the stoichiometry of overall conversion first which optimizes a performance criterion (e.g. high carbon/energy efficiency) and ensures a comprehensive search of co-metabolites and cofactors. The procedure then identifies the minimum number of intervening reactions to connect the source and sink metabolites. We also further the pathway design procedure by expanding the search space to include both known and hypothetical reactions, represented by reaction rules, in a new tool termed novoStoic. Reaction rules are derived based on a mixed-integer linear programming (MILP) compatible reaction operator, which allow us to explore natural promiscuous enzymes, engineer candidate enzymes that are not already promiscuous as well as design de novo enzymes. The identified biochemical reaction rules then guide novoStoic to design routes that expand the currently known biotransformation space using a single MILP modeling procedure. We demonstrate the use of the two computational tools in pathway elucidation by designing novel synthetic routes for isobutanol. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  5. Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6.

    PubMed

    Pereira, Jose Henrique; Heins, Richard A; Gall, Daniel L; McAndrew, Ryan P; Deng, Kai; Holland, Keefe C; Donohue, Timothy J; Noguera, Daniel R; Simmons, Blake A; Sale, Kenneth L; Ralph, John; Adams, Paul D

    2016-05-06

    There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding to 50-70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Jose Henrique; Heins, Richard A.; Gall, Daniel L.

    There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding tomore » 50–70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts.« less

  7. Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6

    DOE PAGES

    Pereira, Jose Henrique; Heins, Richard A.; Gall, Daniel L.; ...

    2016-03-03

    There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding tomore » 50–70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts.« less

  8. A Biochemical Oscillator Using Excitatory Molecules for Nanonetworks.

    PubMed

    Shitiri, Ethungshan; Cho, Ho-Shin

    2016-10-01

    For nanonetworks to be able to achieve large-scale functionality, such as to respond collectively to a trigger, synchrony between nanomachines is essential. However, to facilitate synchronization, some sort of physical clocking mechanism is required, such as the oscillators driven by auto-inhibitory molecules or by auto-inducing molecules. In this study, taking inspiration from the widely studied biological oscillatory phenomena called Calcium (Ca 2+ ) oscillations, we undertake a different approach to design an oscillator. Our model employs three different types of excitatory molecules that work in tandem to generate oscillatory phenomenon in the concentration levels of the molecule of interest. The main objective of the study is to model a high frequency biochemical oscillator, along with the investigations to identify and determine the parameters that affect the period of the oscillations. The investigations entail and highlight the design of the reserve unit, a reservoir of the molecule of interest, as a key factor in realizing a high frequency stable biochemical oscillator.

  9. Possible Roles of Fluoride and Carbonate in Biochemical Carbonated Apatite Formation

    NASA Astrophysics Data System (ADS)

    Meouch, Orysia; Omelon, Sidney

    2016-04-01

    Marine phosphorites are predominantly composed of carbonated fluorapatite (CFA = Ca10-a-b-cNaaMgb(PO4)6-x(CO3)x-y-z(CO3.F)y(SO4)zF2, where x=y+a+2c, and c represents the number of Ca vacancies, with a P2O5 content that ranges from 18-40 %. Sulphur-oxidizing bacteria of the Beggiatoa genus concentration phosphorous as intracellular polyphosphate ((PO3-)n) which is depolymerized into inorganic orthophosphate (Pi). Consequently, an increase in pore water Pi concentration favours carbonated apatite precipitation. The carbonate and fluoride that is characteristic of phosphorite CFA is also located in the vertebrate skeleton. This similarity suggests a biochemical pathway for CFA precipitation. Preliminary Raman spectroscopy and powder x-ray diffraction results that suggest a role for fluoride, and possibly carbonate, in the biochemical depolymerisation of polyphosphates with alkaline phosphatase will be presented.

  10. Integrating 'omic' data and biogeochemical modeling: the key to understanding the microbial regulation of matter cycling in soil

    NASA Astrophysics Data System (ADS)

    Pagel, Holger; Kandeler, Ellen; Seifert, Jana; Camarinha-Silva, Amélia; Kügler, Philipp; Rennert, Thilo; Poll, Christian; Streck, Thilo

    2016-04-01

    Matter cycling in soils and associated soil functions are intrinsically controlled by microbial dynamics. It is therefore crucial to consider functional traits of microorganisms in biogeochemical models. Tremendous advances in 'omic' methods provide a plethora of data on physiology, metabolic capabilities and ecological life strategies of microorganisms in soil. Combined with isotopic techniques, biochemical pathways and transformations can be identified and quantified. Such data have been, however, rarely used to improve the mechanistic representation of microbial dynamics in soil organic matter models. It is the goal of the Young Investigator Group SoilReg to address this challenge. Our general approach is to tightly integrate experiments and biochemical modeling. NextGen sequencing will be applied to identify key functional groups. Active microbial groups will be quantified by measurements of functional genes and by stable isotope probing methods of DNA and proteins. Based on this information a biogeochemical model that couples a mechanistic representation of microbial dynamics with physicochemical processes will be set up and calibrated. Sensitivity and stability analyses of the model as well as scenario simulations will reveal the importance of intrinsic and extrinsic controls of organic matter turnover. We will demonstrate our concept and present first results of two case studies on pesticide degradation and methane oxidation.

  11. Development of a one-pot assay for screening and identification of Mur pathway inhibitors in Mycobacterium tuberculosis

    PubMed Central

    Eniyan, Kandasamy; Kumar, Anuradha; Rayasam, Geetha Vani; Perdih, Andrej; Bajpai, Urmi

    2016-01-01

    The cell wall of Mycobacterium tuberculosis (Mtb) consists of peptidoglycan, arabinogalactan and mycolic acids. The cytoplasmic steps in the peptidoglycan biosynthetic pathway, catalyzed by the Mur (A-F) enzymes, involve the synthesis of UDP-n-acetylmuramyl pentapeptide, a key precursor molecule required for the formation of the peptidoglycan monomeric building blocks. Mur enzymes are indispensable for cell integrity and their lack of counterparts in eukaryotes suggests them to be promising Mtb drug targets. However, the caveat is that most of the current assays utilize a single Mur enzyme, thereby identifying inhibitors against only one of the enzymes. Here, we report development of a one-pot assay that reconstructs the entire Mtb Mur pathway in vitro and has the advantage of eliminating the requirement for nucleotide intermediates in the pathway as substrates. The MurA-MurF enzymes were purified and a one-pot assay was developed through optimization of successive coupled enzyme assays using UDP-n-acetylglucosamine as the initial sugar substrate. The assay is biochemically characterized and optimized for high-throughput screening of molecules that could disrupt multiple targets within the pathway. Furthermore, we have validated the assay by performing it to identify D-Cycloserine and furan-based benzene-derived compounds with known Mur ligase inhibition as inhibitors of Mtb MurE and MurF. PMID:27734910

  12. Increase in furfural tolerance by combinatorial overexpression of NAD salvage pathway enzymes in engineered isobutanol-producing E. coli.

    PubMed

    Song, Hun-Suk; Jeon, Jong-Min; Kim, Hyun-Joong; Bhatia, Shashi Kant; Sathiyanarayanan, Ganesan; Kim, Junyoung; Won Hong, Ju; Gi Hong, Yoon; Young Choi, Kwon; Kim, Yun-Gon; Kim, Wooseong; Yang, Yung-Hun

    2017-12-01

    To reduce the furfural toxicity for biochemical production in E. coli, a new strategy was successfully applied by supplying NAD(P)H through the nicotine amide salvage pathway. To alleviate the toxicity, nicotinamide salvage pathway genes were overexpressed in recombinant, isobutanol-producing E. coli. Gene expression of pncB and nadE respectively showed increased tolerance to furfural among these pathways. The combined expression of pncB and nadE was the most effective in increasing the tolerance of the cells to toxic aldehydes. By comparing noxE- and fdh-harbouring strains, the form of NADH, rather than NAD + , was the major effector of furfural tolerance. Overall, this study is the application of the salvage pathway to isobutanol production in the presence of furfural, and this system seems to be applicable to alleviate furfural toxicity in the production of other biochemical. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Disruption of a Novel Krüppel-like Transcription Factor p300-regulated Pathway for Insulin Biosynthesis Revealed by Studies of the c.-331 INS Mutation Found in Neonatal Diabetes Mellitus*

    PubMed Central

    Bonnefond, Amélie; Lomberk, Gwen; Buttar, Navtej; Busiah, Kanetee; Vaillant, Emmanuel; Lobbens, Stéphane; Yengo, Loïc; Dechaume, Aurélie; Mignot, Brigitte; Simon, Albane; Scharfmann, Raphaël; Neve, Bernadette; Tanyolaç, Sinan; Hodoglugil, Ugur; Pattou, François; Cavé, Hélène; Iovanna, Juan; Stein, Roland; Polak, Michel; Vaxillaire, Martine; Froguel, Philippe; Urrutia, Raul

    2011-01-01

    Krüppel-like transcription factors (KLFs) have elicited significant attention because of their regulation of essential biochemical pathways and, more recently, because of their fundamental role in the mechanisms of human diseases. Neonatal diabetes mellitus is a monogenic disorder with primary alterations in insulin secretion. We here describe a key biochemical mechanism that underlies neonatal diabetes mellitus insulin biosynthesis impairment, namely a homozygous mutation within the insulin gene (INS) promoter, c.-331C>G, which affects a novel KLF-binding site. The combination of careful expression profiling, electromobility shift assays, reporter experiments, and chromatin immunoprecipitation demonstrates that, among 16 different KLF proteins tested, KLF11 is the most reliable activator of this site. Congruently, the c.-331C>G INS mutation fails to bind KLF11, thus inhibiting activation by this transcription factor. Klf11−/− mice recapitulate the disruption in insulin production and blood levels observed in patients. Thus, these data demonstrate an important role for KLF11 in the regulation of INS transcription via the novel c.-331 KLF site. Lastly, our screening data raised the possibility that other members of the KLF family may also regulate this promoter under distinct, yet unidentified, cellular contexts. Collectively, this study underscores a key role for KLF proteins in biochemical mechanisms of human diseases, in particular, early infancy onset diabetes mellitus. PMID:21592955

  14. Classification of Chemical Compounds to Support Complex Queries in a Pathway Database

    PubMed Central

    Weidemann, Andreas; Kania, Renate; Peiss, Christian; Rojas, Isabel

    2004-01-01

    Data quality in biological databases has become a topic of great discussion. To provide high quality data and to deal with the vast amount of biochemical data, annotators and curators need to be supported by software that carries out part of their work in an (semi-) automatic manner. The detection of errors and inconsistencies is a part that requires the knowledge of domain experts, thus in most cases it is done manually, making it very expensive and time-consuming. This paper presents two tools to partially support the curation of data on biochemical pathways. The tool enables the automatic classification of chemical compounds based on their respective SMILES strings. Such classification allows the querying and visualization of biochemical reactions at different levels of abstraction, according to the level of detail at which the reaction participants are described. Chemical compounds can be classified in a flexible manner based on different criteria. The support of the process of data curation is provided by facilitating the detection of compounds that are identified as different but that are actually the same. This is also used to identify similar reactions and, in turn, pathways. PMID:18629066

  15. Berberine exerts renoprotective effects by regulating the AGEs-RAGE signaling pathway in mesangial cells during diabetic nephropathy.

    PubMed

    Qiu, Yuan-Ye; Tang, Li-Qin; Wei, Wei

    2017-03-05

    In this study, we explored the effect of berberine treatment on the AGEs-RAGE pathway in a rat model of diabetic nephropathy, and we investigated the mechanism by which key factors caused kidney injury and the effects of berberine. In vivo, berberine improved fasting blood glucose, body weight, the majority of biochemical and renal function parameters and histopathological changes in the diabetic kidney. Western blotting and immunohistochemistry revealed significant increases in the levels of AGEs, RAGE, P-PKC-β and TGF-β1 in injured kidneys, and these levels were markedly decreased by treatment with berberine. In vitro, berberine inhibited mesangial cell proliferation. Cells treated with berberine showed reduced levels of AGEs, accompanied by decreased RAGE, p-PKC and TGF-β1 levels soon afterwards. Berberine exhibited renoprotective effects in diabetic nephropathy rats, and the molecular mechanism was associated with changes in the levels and regulation of the AGEs-RAGE-PKC-β-TGF-β1 signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Evidence for the Induction of Key Components of the NOTCH Signaling Pathway via Deltamethrin and Azamethiphos Treatment in the Sea Louse Caligus rogercresseyi

    PubMed Central

    Boltaña, Sebastian; Chávez-Mardones, Jaqueline; Valenzuela-Muñoz, Valentina; Gallardo-Escárate, Cristian

    2016-01-01

    The extensive use of organophosphates and pyrethroids in the aquaculture industry has negatively impacted parasite sensitivity to the delousing effects of these antiparasitics, especially among sea lice species. The NOTCH signaling pathway is a positive regulator of ABC transporter subfamily C expression and plays a key role in the generation and modulation of pesticide resistance. However, little is known about the molecular mechanisms behind pesticide resistance, partly due to the lack of genomic and molecular information on the processes involved in the resistance mechanism of sea lice. Next-generation sequencing technologies provide an opportunity for rapid and cost-effective generation of genome-scale data. The present study, through RNA-seq analysis, determined that the sea louse Caligus rogercresseyi (C. rogercresseyi) specifically responds to the delousing drugs azamethiphos and deltamethrin at the transcriptomic level by differentially activating mRNA of the NOTCH signaling pathway and of ABC genes. These results suggest that frequent antiparasitic application may increase the activity of inhibitory mRNA components, thereby promoting inhibitory NOTCH output and conditions for increased resistance to delousing drugs. Moreover, data analysis underscored that key functions of NOTCH/ABC components were regulated during distinct phases of the drug response, thus indicating resistance modifications in C. rogercresseyi resulting from the frequent use of organophosphates and pyrethroids. PMID:27187362

  17. Evidence for the Induction of Key Components of the NOTCH Signaling Pathway via Deltamethrin and Azamethiphos Treatment in the Sea Louse Caligus rogercresseyi.

    PubMed

    Boltaña, Sebastian; Chávez-Mardones, Jaqueline; Valenzuela-Muñoz, Valentina; Gallardo-Escárate, Cristian

    2016-05-12

    The extensive use of organophosphates and pyrethroids in the aquaculture industry has negatively impacted parasite sensitivity to the delousing effects of these antiparasitics, especially among sea lice species. The NOTCH signaling pathway is a positive regulator of ABC transporter subfamily C expression and plays a key role in the generation and modulation of pesticide resistance. However, little is known about the molecular mechanisms behind pesticide resistance, partly due to the lack of genomic and molecular information on the processes involved in the resistance mechanism of sea lice. Next-generation sequencing technologies provide an opportunity for rapid and cost-effective generation of genome-scale data. The present study, through RNA-seq analysis, determined that the sea louse Caligus rogercresseyi (C. rogercresseyi) specifically responds to the delousing drugs azamethiphos and deltamethrin at the transcriptomic level by differentially activating mRNA of the NOTCH signaling pathway and of ABC genes. These results suggest that frequent antiparasitic application may increase the activity of inhibitory mRNA components, thereby promoting inhibitory NOTCH output and conditions for increased resistance to delousing drugs. Moreover, data analysis underscored that key functions of NOTCH/ABC components were regulated during distinct phases of the drug response, thus indicating resistance modifications in C. rogercresseyi resulting from the frequent use of organophosphates and pyrethroids.

  18. Premetazoan origin of the Hippo signaling pathway

    PubMed Central

    Sebé-Pedrós, Arnau; Zheng, Yonggang; Ruiz-Trillo, Iñaki; Pan, Duojia

    2012-01-01

    Summary Non-aggregative multicellularity requires strict control of cell number. The Hippo signaling pathway coordinates cell proliferation and apoptosis and is a central regulator of organ size in animals. Recent studies have shown the presence of key members of the Hippo pathway in non-bilaterian animals, but failed to identify this pathway outside Metazoa. Through comparative analyses of recently sequenced holozoan genomes, we show that Hippo pathway components, such as the kinases Hippo and Warts, the co-activator Yorkie and the transcription factor Scalloped, were already present in the unicellular ancestors of animals. Remarkably, functional analysis of Hippo components of the amoeboid holozoan Capsaspora owczarzaki, performed in Drosophila, demonstrate that the growth-regulatory activity of the Hippo pathway is conserved in this unicellular lineage. Our findings show that the Hippo pathway evolved well before the origin of Metazoa and highlight the importance of Hippo signaling as a key developmental mechanism pre-dating the origin of Metazoa. PMID:22832104

  19. Identification of biochemical adaptations in hyper- or hypocontractile hearts from phospholamban mutant mice by expression proteomics.

    PubMed

    Pan, Yan; Kislinger, Thomas; Gramolini, Anthony O; Zvaritch, Elena; Kranias, Evangelia G; MacLennan, David H; Emili, Andrew

    2004-02-24

    Phospholamban (PLN) is a critical regulator of cardiac contractility through its binding to and regulation of the activity of the sarco(endo)plasmic reticulum Ca2+ ATPase. To uncover biochemical adaptations associated with extremes of cardiac muscle contractility, we used high-throughput gel-free tandem MS to monitor differences in the relative abundance of membrane proteins in standard microsomal fractions isolated from the hearts of PLN-null mice (PLN-KO) with high contractility and from transgenic mice overexpressing a superinhibitory PLN mutant in a PLN-null background (I40A-KO) with diminished contractility. Significant differential expression was detected for a subset of the 782 proteins identified, including known membrane-associated biomarkers, components of signaling pathways, and previously uninvestigated proteins. Proteins involved in fat and carbohydrate metabolism and proteins linked to G protein-signaling pathways activating protein kinase C were enriched in I40A-KO cardiac muscle, whereas proteins linked to enhanced contractile function were enriched in PLN-KO mutant hearts. These data demonstrate that Ca2+ dysregulation, leading to elevated or depressed cardiac contractility, induces compensatory biochemical responses.

  20. Behavioural and biochemical responses following activation of midbrain dopamine pathways by receptor selective neurokinin agonists.

    PubMed

    Elliott, P J; Mason, G S; Stephens-Smith, M; Hagan, R M

    1991-06-01

    Preferential activation of mesolimbic and nigro-striatal dopamine (DA) pathways by receptor-selective and peptidase-resistant neurokinin (NK) agonists is reported. The DA cell body region of the mesolimbic pathway appears to be activated by NK agonists selective for NK-1 and NK-3 receptors whereas the DA cell bodies in the substantia nigra are under an excitatory NK-2 receptor-mediated influence. Stimulation of the mesolimbic DA pathway by NK-1 (Ava[L-Pro9,N-Me-Leu10]SP (7-11) [GR73632]) or NK-3 (Senktide) agonists increase locomotor activity. Additional studies showed that this elevated motor response observed after intra-VTA infusion of GR73632 was accompanied by a corresponding increase in DA turnover in the terminal fields of this pathway. Similarly, unilateral activation of the nigro-striatal DA pathway by NK-2 selective agonists (Ava (D-Pro9) SP (7-11) [GR51667] or [Lys3,Gly8,R-Lac-Leu9]NKA (3-10) [GR64349]) elicit contralateral rotational activity and an increase in DA turnover in the ipsilateral striatum. The rotational response was attenuated by prior administration of an NK-2 antagonist (cyclo (Gln, Trp, Phe, Gly, Leu, Met)] L-659877]) into the nigra. Peripheral injection of haloperidol, a DA antagonist, also blocked the NK-2 agonist induced rotations.

  1. Combining Flux Balance and Energy Balance Analysis for Large-Scale Metabolic Network: Biochemical Circuit Theory for Analysis of Large-Scale Metabolic Networks

    NASA Technical Reports Server (NTRS)

    Beard, Daniel A.; Liang, Shou-Dan; Qian, Hong; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Predicting behavior of large-scale biochemical metabolic networks represents one of the greatest challenges of bioinformatics and computational biology. Approaches, such as flux balance analysis (FBA), that account for the known stoichiometry of the reaction network while avoiding implementation of detailed reaction kinetics are perhaps the most promising tools for the analysis of large complex networks. As a step towards building a complete theory of biochemical circuit analysis, we introduce energy balance analysis (EBA), which compliments the FBA approach by introducing fundamental constraints based on the first and second laws of thermodynamics. Fluxes obtained with EBA are thermodynamically feasible and provide valuable insight into the activation and suppression of biochemical pathways.

  2. Pathway modulations and epigenetic alterations in ovarian tumorbiogenesis

    PubMed Central

    Saldanha, Sabita N.; Tollefsbol, Trygve O.

    2013-01-01

    Cellular pathways are numerous and are highly integrated in function in the control of cellular systems. They collectively regulate cell division, proliferation, survival and apoptosis of cells and mutagenesis of key genes that control these pathways can initiate neoplastic transformations. Understanding these pathways is crucial to future therapeutic and preventive strategies of the disease. Ovarian cancers are of three major types; epithelial, germ-cell and stromal. However, ovarian cancers of epithelial origin, arising from the mesothelium, are the predominant form. Of the subtypes of ovarian cancer, the high-grade serous tumors are fatal, with low survival rate due to late detection and poor response to treatments. Close examination of preserved ovarian tissues and in vitro studies have provided insights into the mechanistic changes occurring in cells mediated by a few key genes. This review will focus on pathways and key genes of the pathways that are mutated or have aberrant functions in the pathology of ovarian cancer. Non-genetic mechanisms that are gaining prominence in the pathology of ovarian cancer, miRNAs and epigenetics, will also be discussed in the review. PMID:24105793

  3. New function for Escherichia coli xanthosine phophorylase (xapA): genetic and biochemical evidences on its participation in NAD+ salvage from nicotinamide

    PubMed Central

    2014-01-01

    Background In an effort to reconstitute the NAD+ synthetic pathway in Escherichia coli (E. coli), we produced a set of gene knockout mutants with deficiencies in previously well-defined NAD+de novo and salvage pathways. Unexpectedly, the mutant deficient in NAD+de novo and salvage pathway I could grow in M9/nicotinamide medium, which was contradictory to the proposed classic NAD+ metabolism of E. coli. Such E. coli mutagenesis assay suggested the presence of an undefined machinery to feed nicotinamide into the NAD+ biosynthesis. We wanted to verify whether xanthosine phophorylase (xapA) contributed to a new NAD+ salvage pathway from nicotinamide. Results Additional knockout of xapA further slowed down the bacterial growth in M9/nicotinamide medium, whereas the complementation of xapA restored the growth phenotype. To further validate the new function of xapA, we cloned and expressed E. coli xapA as a recombinant soluble protein. Biochemical assay confirmed that xapA was capable of using nicotinamide as a substrate for nicotinamide riboside formation. Conclusions Both the genetic and biochemical evidences indicated that xapA could convert nicotinamide to nicotinamide riboside in E. coli, albeit with relatively weak activity, indicating that xapA may contribute to a second NAD+ salvage pathway from nicotinamide. We speculate that this xapA-mediated NAD+ salvage pathway might be significant in some bacteria lacking NAD+de novo and NAD+ salvage pathway I or II, to not only use nicotinamide riboside, but also nicotinamide as precursors to synthesize NAD+. However, this speculation needs to be experimentally tested. PMID:24506841

  4. New function for Escherichia coli xanthosine phophorylase (xapA): genetic and biochemical evidences on its participation in NAD(+) salvage from nicotinamide.

    PubMed

    Dong, Wei-Ren; Sun, Cen-Cen; Zhu, Guan; Hu, Shi-Hua; Xiang, Li-Xin; Shao, Jian-Zhong

    2014-02-08

    In an effort to reconstitute the NAD(+) synthetic pathway in Escherichia coli (E. coli), we produced a set of gene knockout mutants with deficiencies in previously well-defined NAD(+)de novo and salvage pathways. Unexpectedly, the mutant deficient in NAD(+) de novo and salvage pathway I could grow in M9/nicotinamide medium, which was contradictory to the proposed classic NAD(+) metabolism of E. coli. Such E. coli mutagenesis assay suggested the presence of an undefined machinery to feed nicotinamide into the NAD(+) biosynthesis. We wanted to verify whether xanthosine phophorylase (xapA) contributed to a new NAD(+) salvage pathway from nicotinamide. Additional knockout of xapA further slowed down the bacterial growth in M9/nicotinamide medium, whereas the complementation of xapA restored the growth phenotype. To further validate the new function of xapA, we cloned and expressed E. coli xapA as a recombinant soluble protein. Biochemical assay confirmed that xapA was capable of using nicotinamide as a substrate for nicotinamide riboside formation. Both the genetic and biochemical evidences indicated that xapA could convert nicotinamide to nicotinamide riboside in E. coli, albeit with relatively weak activity, indicating that xapA may contribute to a second NAD(+) salvage pathway from nicotinamide. We speculate that this xapA-mediated NAD(+) salvage pathway might be significant in some bacteria lacking NAD(+) de novo and NAD(+) salvage pathway I or II, to not only use nicotinamide riboside, but also nicotinamide as precursors to synthesize NAD(+). However, this speculation needs to be experimentally tested.

  5. Activation of sorbitol pathway in metabolic syndrome and increased susceptibility to cataract in Wistar-Obese rats.

    PubMed

    Reddy, Paduru Yadagiri; Giridharan, Nappan Veettil; Reddy, Geereddy Bhanuprakash

    2012-01-01

    Obesity is a major public health problem worldwide, and of late, epidemiological studies indicate a preponderance of cataracts under obesity conditions. Although cataract is a multifactorial disorder and various biochemical mechanisms have been proposed, the influence of obesity on cataractogenesis has yet to be investigated. In such a scenario, a suitable animal model that develops cataract following the onset of obesity will be a welcome tool for biomedical research. Therefore, we investigated the molecular and biochemical basis for predisposition to cataract in the obese mutant rat models established in our institute because 15%-20% of these rats develop cataracts spontaneously as they reach 12-15 months of age. We analyzed the major biochemical pathways in the normal lenses of different age groups of our obese mutant rat strains, Wistar/Obese (WNIN/Ob) and WNIN/GR-Ob, the former with euglycemia and the latter with an additional impaired glucose tolerance trait. In addition, sorbitol levels were estimated in the cataractous lenses of the obese rats. Except for the polyol pathway, all the principal pathways of the lens remained unaltered. Therefore, sorbitol levels were found to be high in the normal eye lenses of obese rats (WNIN/Ob and WNIN/GR-Ob) compared to their lean controls from three months of age onwards. Between WNIN/Ob and WNIN/GR-Ob, the levels of sorbitol were higher in the latter, suggesting a synergistic effect of impaired glucose tolerance along with obesity in the activation of the sorbitol pathway. Either way, an elevated sorbitol pathway seemed to be the predisposing factor responsible for cataract formation in these mutant rats. Activation of the sorbitol pathway indeed enhances the risk of cataract development in conditions such as metabolic syndrome. These rat models thus may be valuable tools for investigating obesity-associated cataract and for developing intervention strategies, based on these findings.

  6. Epoxide pathways improve model predictions of isoprene markers and reveal key role of acidity in aerosol formation.

    PubMed

    Pye, Havala O T; Pinder, Robert W; Piletic, Ivan R; Xie, Ying; Capps, Shannon L; Lin, Ying-Hsuan; Surratt, Jason D; Zhang, Zhenfa; Gold, Avram; Luecken, Deborah J; Hutzell, William T; Jaoui, Mohammed; Offenberg, John H; Kleindienst, Tadeusz E; Lewandowski, Michael; Edney, Edward O

    2013-10-01

    Isoprene significantly contributes to organic aerosol in the southeastern United States where biogenic hydrocarbons mix with anthropogenic emissions. In this work, the Community Multiscale Air Quality model is updated to predict isoprene aerosol from epoxides produced under both high- and low-NOx conditions. The new aqueous aerosol pathways allow for explicit predictions of two key isoprene-derived species, 2-methyltetrols and 2-methylglyceric acid, that are more consistent with observations than estimates based on semivolatile partitioning. The new mechanism represents a significant source of organic carbon in the lower 2 km of the atmosphere and captures the abundance of 2-methyltetrols relative to organosulfates during the simulation period. For the parametrization considered here, a 25% reduction in SOx emissions effectively reduces isoprene aerosol, while a similar reduction in NOx leads to small increases in isoprene aerosol.

  7. MARCKS promotes invasion and is associated with biochemical recurrence in prostate cancer

    PubMed Central

    Dorris, Emma; O'Neill, Amanda; Hanrahan, Karen; Treacy, Ann; Watson, R. William

    2017-01-01

    Background Overtreatment of low-grade prostate cancer is a recognised problem for clinicians and patients. However, under-treatment runs the risk of missing the opportunity for cure in those who could benefit. Identification of new biomarkers of disease progression, including metastases, is required to better stratify and appropriately treat these patients. The ability to predict if prostate cancer will recur is an important clinical question that would impact treatment options for patients. Studies in other cancers have associated MARCKS with metastasis. Methods Tissue microarrays of local prostatectomy samples from a cohort of biochemical recurrent and non-biochemical recurrent tumours were assayed for MARCKS protein expression. Prostate cancer cell lines were transfected with siRNA targeting MARCKS or a control and functional endpoints of migration, invasion, proliferation, viability and apoptosis were measured. Actin was visualised by fluorescent microscopy and evidence of a cadherin switch and activation of the AKT pathway were assayed. Results MARCKS was upregulated in biochemical recurrent patients compared to non-biochemical recurrent. Knockdown of MARCKS reduced migration and invasion of prostate cancer cells, reduced MMP9 mRNA expression, as well as decreasing cell spreading and increased cell:cell adhesion in prostate cancer cell colonies. Knockdown of MARCKS had no effect on proliferation, viability or apoptosis of the prostate cancer cells. Conclusions In conclusion, MARCKS promotes migration and invasion and is associated with biochemical recurrence in localised prostate cancer tumours. The mechanisms by which this occurs have yet to be fully elucidated but lack of a cadherin switch indicates it is not via epithelial-to-mesenchymal transition. Actin rearrangement indicates that MARCKS promotes invasion through regulating the architecture of the cell. PMID:29069765

  8. Improving pathways to primary health care among LGBTQ populations and health care providers: key findings from Nova Scotia, Canada.

    PubMed

    Gahagan, Jacqueline; Subirana-Malaret, Montse

    2018-06-13

    This study explores the perceived barriers to primary health care as identified among a sample of Lesbian, Gay, Bisexual, Transgender, and Queer (LGBTQ) identified individuals and health care providers in Nova Scotia, Canada. These findings, based on a province-wide anonymous online survey, suggest that additional efforts are needed to improve pathways to primary health among LGBTQ populations and in deepening our understanding of how to advance the unique primary health needs of these populations. Data were collected from the LGBTQ community through an online, closed-ended anonymous survey. Inclusion criteria for participation were self-identifying as LGBTQ, offering primary health care to LGBTQ patients, being able to understand English, being 16 years of age or older, and having lived in Nova Scotia for at least one year. A total of 283 LGBTQ respondents completed the online survey which included sociodemographic questions, perceptions of respondents' health status, and their primary health care experiences. In addition, a total of 109 health care providers completed the survey based on their experiences providing care in Nova Scotia, and in particular, their experiences and perceptions regarding LGBTQ access to primary health care and physician-patient interactions. Our results indicate that, in several key areas, the primary health care needs of LGBTQ populations in Nova Scotia are not being met and this may in turn contribute to their poor health outcomes across the life course. A framework of intersectionality and health equity was used to interpret and analyze the survey data. The key findings indicate the need to continue improving pathways to primary health care among LGBTQ populations, specifically in relation to additional training and related supports for health care providers who work with these populations.

  9. AOP: An R Package For Sufficient Causal Analysis in Pathway ...

    EPA Pesticide Factsheets

    Summary: How can I quickly find the key events in a pathway that I need to monitor to predict that a/an beneficial/adverse event/outcome will occur? This is a key question when using signaling pathways for drug/chemical screening in pharma-cology, toxicology and risk assessment. By identifying these sufficient causal key events, we have fewer events to monitor for a pathway, thereby decreasing assay costs and time, while maximizing the value of the information. I have developed the “aop” package which uses backdoor analysis of causal net-works to identify these minimal sets of key events that are suf-ficient for making causal predictions. Availability and Implementation: The source and binary are available online through the Bioconductor project (http://www.bioconductor.org/) as an R package titled “aop”. The R/Bioconductor package runs within the R statistical envi-ronment. The package has functions that can take pathways (as directed graphs) formatted as a Cytoscape JSON file as input, or pathways can be represented as directed graphs us-ing the R/Bioconductor “graph” package. The “aop” package has functions that can perform backdoor analysis to identify the minimal set of key events for making causal predictions.Contact: burgoon.lyle@epa.gov This paper describes an R/Bioconductor package that was developed to facilitate the identification of key events within an AOP that are the minimal set of sufficient key events that need to be tested/monit

  10. Angiosperms Are Unique among Land Plant Lineages in the Occurrence of Key Genes in the RNA-Directed DNA Methylation (RdDM) Pathway

    PubMed Central

    Ma, Lu; Hatlen, Andrea; Kelly, Laura J.; Becher, Hannes; Wang, Wencai; Kovarik, Ales; Leitch, Ilia J.; Leitch, Andrew R.

    2015-01-01

    The RNA-directed DNA methylation (RdDM) pathway can be divided into three phases: 1) small interfering RNA biogenesis, 2) de novo methylation, and 3) chromatin modification. To determine the degree of conservation of this pathway we searched for key genes among land plants. We used OrthoMCL and the OrthoMCL Viridiplantae database to analyze proteomes of species in bryophytes, lycophytes, monilophytes, gymnosperms, and angiosperms. We also analyzed small RNA size categories and, in two gymnosperms, cytosine methylation in ribosomal DNA. Six proteins were restricted to angiosperms, these being NRPD4/NRPE4, RDM1, DMS3 (defective in meristem silencing 3), SHH1 (SAWADEE homeodomain homolog 1), KTF1, and SUVR2, although we failed to find the latter three proteins in Fritillaria persica, a species with a giant genome. Small RNAs of 24 nt in length were abundant only in angiosperms. Phylogenetic analyses of Dicer-like (DCL) proteins showed that DCL2 was restricted to seed plants, although it was absent in Gnetum gnemon and Welwitschia mirabilis. The data suggest that phases (1) and (2) of the RdDM pathway, described for model angiosperms, evolved with angiosperms. The absence of some features of RdDM in F. persica may be associated with its large genome. Phase (3) is probably the most conserved part of the pathway across land plants. DCL2, involved in virus defense and interaction with the canonical RdDM pathway to facilitate methylation of CHH, is absent outside seed plants. Its absence in G. gnemon, and W. mirabilis coupled with distinctive patterns of CHH methylation, suggest a secondary loss of DCL2 following the divergence of Gnetales. PMID:26338185

  11. Oxygen and hydrogen peroxide in the early evolution of life on earth: in silico comparative analysis of biochemical pathways.

    PubMed

    Slesak, Ireneusz; Slesak, Halina; Kruk, Jerzy

    2012-08-01

    In the Universe, oxygen is the third most widespread element, while on Earth it is the most abundant one. Moreover, oxygen is a major constituent of all biopolymers fundamental to living organisms. Besides O(2), reactive oxygen species (ROS), among them hydrogen peroxide (H(2)O(2)), are also important reactants in the present aerobic metabolism. According to a widely accepted hypothesis, aerobic metabolism and many other reactions/pathways involving O(2) appeared after the evolution of oxygenic photosynthesis. In this study, the hypothesis was formulated that the Last Universal Common Ancestor (LUCA) was at least able to tolerate O(2) and detoxify ROS in a primordial environment. A comparative analysis was carried out of a number of the O(2)-and H(2)O(2)-involving metabolic reactions that occur in strict anaerobes, facultative anaerobes, and aerobes. The results indicate that the most likely LUCA possessed O(2)-and H(2)O(2)-involving pathways, mainly reactions to remove ROS, and had, at least in part, the components of aerobic respiration. Based on this, the presence of a low, but significant, quantity of H(2)O(2) and O(2) should be taken into account in theoretical models of the early Archean atmosphere and oceans and the evolution of life. It is suggested that the early metabolism involving O(2)/H(2)O(2) was a key adaptation of LUCA to already existing weakly oxic zones in Earth's primordial environment.

  12. Analysis of the hypoxia-sensing pathway in Drosophila melanogaster

    PubMed Central

    Arquier, Nathalie; Vigne, Paul; Duplan, Eric; Hsu, Tien; Therond, Pascal P.; Frelin, Christian; D'Angelo, Gisela

    2005-01-01

    The mechanism by which hypoxia induces gene transcription involves the inhibition of HIF-1α (hypoxia-inducible factor-1 α subunit) PHD (prolyl hydroxylase) activity, which prevents the VHL (von Hippel-Lindau)-dependent targeting of HIF-1α to the ubiquitin/proteasome pathway. HIF-1α thus accumulates and promotes gene transcription. In the present study, first we provide direct biochemical evidence for the presence of a conserved hypoxic signalling pathway in Drosophila melanogaster. An assay for 2-oxoglutarate-dependent dioxygenases was developed using Drosophila embryonic and larval homogenates as a source of enzyme. Drosophila PHD has a low substrate specificity and hydroxylates key proline residues in the ODD (oxygen-dependent degradation) domains of human HIF-1α and Similar, the Drosophila homologue of HIF-1α. The enzyme promotes human and Drosophila [35S]VHL binding to GST (glutathione S-transferase)–ODD-domain fusion protein. Hydroxylation is enhanced by proteasomal inhibitors and was ascertained using an anti-hydroxyproline antibody. Secondly, by using transgenic flies expressing a fusion protein that combined an ODD domain and the green fluorescent protein (ODD–GFP), we analysed the hypoxic cascade in different embryonic and larval tissues. Hypoxic accumulation of the reporter protein was observed in the whole tracheal tree, but not in the ectoderm. Hypoxic stabilization of ODD–GFP in the ectoderm was restored by inducing VHL expression in these cells. These results show that Drosophila tissues exhibit different sensitivities to hypoxia. PMID:16176182

  13. Influence of Biochemical Features of Burkholderia pseudomallei Strains on Identification Reliability by Vitek 2 System.

    PubMed

    Zakharova, Irina B; Lopasteyskaya, Yana A; Toporkov, Andrey V; Viktorov, Dmitry V

    2018-01-01

    Burkholderia pseudomallei is a Gram-negative saprophytic soil bacterium that causes melioidosis, a potentially fatal disease endemic in wet tropical areas. The currently available biochemical identification systems can misidentify some strains of B. pseudomallei . The aim of the present study was to identify the biochemical features of B. pseudomallei , which can affect its correct identification by Vitek 2 system. The biochemical patterns of 40 B. pseudomallei strains were obtained using Vitek 2 GN cards. The average contribution of biochemical tests in overall dissimilarities between correctly and incorrectly identified strains was assessed using nonmetric multidimensional scaling. It was found ( R statistic of 0.836, P = 0.001) that a combination of negative N-acetyl galactosaminidase, β-N-acetyl glucosaminidase, phosphatase, and positive D-cellobiase (dCEL), tyrosine arylamidase (TyrA), and L-proline arylamidase (ProA) tests leads to low discrimination of B. pseudomallei , whereas a set of positive dCEL and negative N-acetyl galactosaminidase, TyrA, and ProA determines the wrong identification of B. pseudomallei as Burkholderia cepacia complex. The further expansion of the Vitek 2 identification keys is needed for correct identification of atypical or regionally distributed biochemical profiles of B. pseudomallei .

  14. EphA2 is a key effector of the MEK/ERK/RSK pathway regulating glioblastoma cell proliferation.

    PubMed

    Hamaoka, Yuho; Negishi, Manabu; Katoh, Hironori

    2016-08-01

    EphA2, a member of the Eph receptor tyrosine kinases, is frequently overexpressed in a variety of malignancies, including glioblastoma, and its expression is correlated with poor prognosis. EphA2 acts as a tumor promoter through a ligand ephrin-independent mechanism, which requires phosphorylation of EphA2 on serine 897 (S897), leading to increased cell migration and invasion. In this study, we show that ligand-independent EphA2 signaling occurs downstream of the MEK/ERK/RSK pathway and mediates epidermal growth factor (EGF)-induced cell proliferation in glioblastoma cells. Suppression of EphA2 expression by long-term exposure to ligand ephrinA1 or EphA2-targeted shRNA inhibited EGF-induced cell proliferation. Stimulation of the cells with EGF induced EphA2 S897 phosphorylation, which was suppressed by MEK and RSK inhibitors, but not by phosphatidylinositol 3-kinase (PI3K) and Akt inhibitors. The RSK inhibitor or RSK2-targeted shRNA also suppressed EGF-induced cell proliferation. Furthermore, overexpression of wild-type EphA2 promoted cell proliferation without EGF stimulation, whereas overexpression of EphA2-S897A mutant suppressed EGF- or RSK2-induced proliferation. Taken together, these results suggest that EphA2 is a key downstream target of the MEK/ERK/RSK signaling pathway in the regulation of glioblastoma cell proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Balanced Biochemical Reactions: A New Approach to Unify Chemical and Biochemical Thermodynamics

    PubMed Central

    Sabatini, Antonio; Vacca, Alberto; Iotti, Stefano

    2012-01-01

    A novel procedure is presented which, by balancing elements and electric charge of biochemical reactions which occur at constant pH and pMg, allows assessing the thermodynamics properties of reaction ΔrG ′0, ΔrH ′0, ΔrS ′0 and the change in binding of hydrogen and magnesium ions of these reactions. This procedure of general applicability avoids the complex calculations required by the use of the Legendre transformed thermodynamic properties of formation ΔfG ′0, ΔfH ′0 and ΔfS ′0 hitherto considered an obligatory prerequisite to deal with the thermodynamics of biochemical reactions. As a consequence, the term “conditional” is proposed in substitution of “Legendre transformed” to indicate these thermodynamics properties. It is also shown that the thermodynamic potential G is fully adequate to give a criterion of spontaneous chemical change for all biochemical reactions and then that the use of the Legendre transformed G′ is unnecessary. The procedure proposed can be applied to any biochemical reaction, making possible to re-unify the two worlds of chemical and biochemical thermodynamics, which so far have been treated separately. PMID:22247780

  16. Recursively constructing analytic expressions for equilibrium distributions of stochastic biochemical reaction networks

    PubMed Central

    Baetica, Ania-Ariadna; Singhal, Vipul; Murray, Richard M.

    2017-01-01

    Noise is often indispensable to key cellular activities, such as gene expression, necessitating the use of stochastic models to capture its dynamics. The chemical master equation (CME) is a commonly used stochastic model of Kolmogorov forward equations that describe how the probability distribution of a chemically reacting system varies with time. Finding analytic solutions to the CME can have benefits, such as expediting simulations of multiscale biochemical reaction networks and aiding the design of distributional responses. However, analytic solutions are rarely known. A recent method of computing analytic stationary solutions relies on gluing simple state spaces together recursively at one or two states. We explore the capabilities of this method and introduce algorithms to derive analytic stationary solutions to the CME. We first formally characterize state spaces that can be constructed by performing single-state gluing of paths, cycles or both sequentially. We then study stochastic biochemical reaction networks that consist of reversible, elementary reactions with two-dimensional state spaces. We also discuss extending the method to infinite state spaces and designing the stationary behaviour of stochastic biochemical reaction networks. Finally, we illustrate the aforementioned ideas using examples that include two interconnected transcriptional components and biochemical reactions with two-dimensional state spaces. PMID:28566513

  17. Recursively constructing analytic expressions for equilibrium distributions of stochastic biochemical reaction networks.

    PubMed

    Meng, X Flora; Baetica, Ania-Ariadna; Singhal, Vipul; Murray, Richard M

    2017-05-01

    Noise is often indispensable to key cellular activities, such as gene expression, necessitating the use of stochastic models to capture its dynamics. The chemical master equation (CME) is a commonly used stochastic model of Kolmogorov forward equations that describe how the probability distribution of a chemically reacting system varies with time. Finding analytic solutions to the CME can have benefits, such as expediting simulations of multiscale biochemical reaction networks and aiding the design of distributional responses. However, analytic solutions are rarely known. A recent method of computing analytic stationary solutions relies on gluing simple state spaces together recursively at one or two states. We explore the capabilities of this method and introduce algorithms to derive analytic stationary solutions to the CME. We first formally characterize state spaces that can be constructed by performing single-state gluing of paths, cycles or both sequentially. We then study stochastic biochemical reaction networks that consist of reversible, elementary reactions with two-dimensional state spaces. We also discuss extending the method to infinite state spaces and designing the stationary behaviour of stochastic biochemical reaction networks. Finally, we illustrate the aforementioned ideas using examples that include two interconnected transcriptional components and biochemical reactions with two-dimensional state spaces. © 2017 The Author(s).

  18. Pederin-type pathways of uncultivated bacterial symbionts: analysis of o-methyltransferases and generation of a biosynthetic hybrid.

    PubMed

    Zimmermann, Katrin; Engeser, Marianne; Blunt, John W; Munro, Murray H G; Piel, Jörn

    2009-03-04

    The complex polyketide pederin is a potent antitumor agent isolated from Paederus spp. rove beetles. We have previously isolated a set of genes from a bacterial endosymbiont that are good candidates for pederin biosynthesis. To biochemically study this pathway, we expressed three methyltransferases from the putative pederin pathway and used the partially unmethylated analogue mycalamide A from the marine sponge Mycale hentscheli as test substrate. Analysis by high-resolution MS/MS and NMR revealed that PedO regiospecifically methylates the marine compound to generate the nonnatural hybrid compound 18-O-methylmycalamide A with increased cytotoxicity. To our knowledge, this is the first biochemical evidence that invertebrates can obtain defensive complex polyketides from bacterial symbionts.

  19. A thermochemical-biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals.

    PubMed

    Shen, Yanwen; Jarboe, Laura; Brown, Robert; Wen, Zhiyou

    2015-12-01

    Thermochemical-biological hybrid processing uses thermochemical decomposition of lignocellulosic biomass to produce a variety of intermediate compounds that can be converted into fuels and chemicals through microbial fermentation. It represents a unique opportunity for biomass conversion as it mitigates some of the deficiencies of conventional biochemical (pretreatment-hydrolysis-fermentation) and thermochemical (pyrolysis or gasification) processing. Thermochemical-biological hybrid processing includes two pathways: (i) pyrolysis/pyrolytic substrate fermentation, and (ii) gasification/syngas fermentation. This paper provides a comprehensive review of these two hybrid processing pathways, including the characteristics of fermentative substrates produced in the thermochemical stage and microbial utilization of these compounds in the fermentation stage. The current challenges of these two biomass conversion pathways include toxicity of the crude pyrolytic substrates, the inhibition of raw syngas contaminants, and the mass-transfer limitations in syngas fermentation. Possible approaches for mitigating substrate toxicities are discussed. The review also provides a summary of the current efforts to commercialize hybrid processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. FNV: light-weight flash-based network and pathway viewer.

    PubMed

    Dannenfelser, Ruth; Lachmann, Alexander; Szenk, Mariola; Ma'ayan, Avi

    2011-04-15

    Network diagrams are commonly used to visualize biochemical pathways by displaying the relationships between genes, proteins, mRNAs, microRNAs, metabolites, regulatory DNA elements, diseases, viruses and drugs. While there are several currently available web-based pathway viewers, there is still room for improvement. To this end, we have developed a flash-based network viewer (FNV) for the visualization of small to moderately sized biological networks and pathways. Written in Adobe ActionScript 3.0, the viewer accepts simple Extensible Markup Language (XML) formatted input files to display pathways in vector graphics on any web-page providing flexible layout options, interactivity with the user through tool tips, hyperlinks and the ability to rearrange nodes on the screen. FNV was utilized as a component in several web-based systems, namely Genes2Networks, Lists2Networks, KEA, ChEA and PathwayGenerator. In addition, FVN can be used to embed pathways inside pdf files for the communication of pathways in soft publication materials. FNV is available for use and download along with the supporting documentation and sample networks at http://www.maayanlab.net/FNV. avi.maayan@mssm.edu.

  1. Cellular compartmentalization of secondary metabolism

    PubMed Central

    Kistler, H. Corby; Broz, Karen

    2015-01-01

    Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors shared with the most essential processes of the cell (e.g., amino acids, acetyl CoA, NADPH), enzymes for secondary metabolite synthesis are compartmentalized at conserved subcellular sites that position pathway enzymes to use these common biochemical precursors. Co-compartmentalization of secondary metabolism pathway enzymes also may function to channel precursors, promote pathway efficiency and sequester pathway intermediates and products from the rest of the cell. In this review we discuss the compartmentalization of three well-studied fungal secondary metabolite biosynthetic pathways for penicillin G, aflatoxin and deoxynivalenol, and summarize evidence used to infer subcellular localization. We also discuss how these metabolites potentially are trafficked within the cell and may be exported. PMID:25709603

  2. Angiosperms Are Unique among Land Plant Lineages in the Occurrence of Key Genes in the RNA-Directed DNA Methylation (RdDM) Pathway.

    PubMed

    Ma, Lu; Hatlen, Andrea; Kelly, Laura J; Becher, Hannes; Wang, Wencai; Kovarik, Ales; Leitch, Ilia J; Leitch, Andrew R

    2015-09-02

    The RNA-directed DNA methylation (RdDM) pathway can be divided into three phases: 1) small interfering RNA biogenesis, 2) de novo methylation, and 3) chromatin modification. To determine the degree of conservation of this pathway we searched for key genes among land plants. We used OrthoMCL and the OrthoMCL Viridiplantae database to analyze proteomes of species in bryophytes, lycophytes, monilophytes, gymnosperms, and angiosperms. We also analyzed small RNA size categories and, in two gymnosperms, cytosine methylation in ribosomal DNA. Six proteins were restricted to angiosperms, these being NRPD4/NRPE4, RDM1, DMS3 (defective in meristem silencing 3), SHH1 (SAWADEE homeodomain homolog 1), KTF1, and SUVR2, although we failed to find the latter three proteins in Fritillaria persica, a species with a giant genome. Small RNAs of 24 nt in length were abundant only in angiosperms. Phylogenetic analyses of Dicer-like (DCL) proteins showed that DCL2 was restricted to seed plants, although it was absent in Gnetum gnemon and Welwitschia mirabilis. The data suggest that phases (1) and (2) of the RdDM pathway, described for model angiosperms, evolved with angiosperms. The absence of some features of RdDM in F. persica may be associated with its large genome. Phase (3) is probably the most conserved part of the pathway across land plants. DCL2, involved in virus defense and interaction with the canonical RdDM pathway to facilitate methylation of CHH, is absent outside seed plants. Its absence in G. gnemon, and W. mirabilis coupled with distinctive patterns of CHH methylation, suggest a secondary loss of DCL2 following the divergence of Gnetales. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Comparative Analysis of Argonaute-dependent Small RNA Pathways in Drosophila

    PubMed Central

    Zhou, Rui; Hotta, Ikuko; Denli, Ahmet M.; Hong, Pengyu; Perrimon, Norbert; Hannon, Gregory J.

    2008-01-01

    Summary The specificity of RNAi pathways is determined by several classes of small RNAs, which include siRNAs, piRNAs, endo-siRNAs, and microRNAs (miRNAs). These small RNAs are invariably incorporated into large Argonaute (Ago)-containing effector complexes known as RNA-induced silencing complexes (RISCs), which they guide to silencing targets. Both genetic and biochemical strategies have yielded conserved molecular components of small RNA biogenesis and effector machineries. However, given the complexity of these pathways, there are likely to be additional components and regulators that remain to be uncovered. We have undertaken a comparative and comprehensive RNAi screen to identify genes that impact three major Ago-dependent small RNA pathways that operate in Drosophila S2 cells. We identify subsets of candidates that act positively or negatively in siRNA, endo-siRNA and miRNA pathways. Our studies indicate that many components are shared among all three Argonaute-dependent silencing pathways, though each is also impacted by discrete sets of genes. PMID:19026789

  4. In Vitro Reconstitution of Metabolic Pathways: Insights into Nature’s Chemical Logic

    PubMed Central

    Lowry, Brian; Walsh, Christopher T.

    2015-01-01

    In vitro analysis of metabolic pathways is becoming a powerful method to gain a deeper understanding of Nature’s core biochemical transformations. With astounding advancements in biotechnology, purification of a metabolic pathway’s constitutive enzymatic components is becoming a tractable problem, and such in vitro studies allow scientists to capture the finer details of enzymatic reaction mechanisms, kinetics, and the identity of organic product molecules. In this review, we present eleven metabolic pathways that have been the subject of in vitro reconstitution studies in the literature in recent years. In addition, we have selected and analyzed subset of four case studies within these eleven examples that exemplify remarkable organic chemistry occurring within biology. These examples serves as tangible reminders that Nature’s biochemical routes obey the fundamental principles of organic chemistry, and the chemical mechanisms are reminiscent of those featured in traditional synthetic organic routes. The illustrations of biosynthetic chemistry depicted in this review may inspire the development of biomimetic chemistries via abiotic chemical techniques. PMID:26207083

  5. Chemical modulation of glycerolipid signaling and metabolic pathways

    PubMed Central

    Scott, Sarah A.; Mathews, Thomas P.; Ivanova, Pavlina T.; Lindsley, Craig W.; Brown, H. Alex

    2014-01-01

    Thirty years ago, glycerolipids captured the attention of biochemical researchers as novel cellular signaling entities. We now recognize that these biomolecules occupy signaling nodes critical to a number of physiological and pathological processes. Thus, glycerolipid-metabolizing enzymes present attractive targets for new therapies. A number of fields—ranging from neuroscience and cancer to diabetes and obesity—have elucidated the signaling properties of glycerolipids. The biochemical literature teems with newly emerging small molecule inhibitors capable of manipulating glycerolipid metabolism and signaling. This ever-expanding pool of chemical modulators appears daunting to those interested in exploiting glycerolipid-signaling pathways in their model system of choice. This review distills the current body of literature surrounding glycerolipid metabolism into a more approachable format, facilitating the application of small molecule inhibitors to novel systems. PMID:24440821

  6. A method for integrating and ranking the evidence for biochemical pathways by mining reactions from text

    PubMed Central

    Miwa, Makoto; Ohta, Tomoko; Rak, Rafal; Rowley, Andrew; Kell, Douglas B.; Pyysalo, Sampo; Ananiadou, Sophia

    2013-01-01

    Motivation: To create, verify and maintain pathway models, curators must discover and assess knowledge distributed over the vast body of biological literature. Methods supporting these tasks must understand both the pathway model representations and the natural language in the literature. These methods should identify and order documents by relevance to any given pathway reaction. No existing system has addressed all aspects of this challenge. Method: We present novel methods for associating pathway model reactions with relevant publications. Our approach extracts the reactions directly from the models and then turns them into queries for three text mining-based MEDLINE literature search systems. These queries are executed, and the resulting documents are combined and ranked according to their relevance to the reactions of interest. We manually annotate document-reaction pairs with the relevance of the document to the reaction and use this annotation to study several ranking methods, using various heuristic and machine-learning approaches. Results: Our evaluation shows that the annotated document-reaction pairs can be used to create a rule-based document ranking system, and that machine learning can be used to rank documents by their relevance to pathway reactions. We find that a Support Vector Machine-based system outperforms several baselines and matches the performance of the rule-based system. The success of the query extraction and ranking methods are used to update our existing pathway search system, PathText. Availability: An online demonstration of PathText 2 and the annotated corpus are available for research purposes at http://www.nactem.ac.uk/pathtext2/. Contact: makoto.miwa@manchester.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23813008

  7. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: gene duplications and origin of the Bx cluster

    PubMed Central

    2012-01-01

    Background The benzoxazinoids 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and 2,4-dihydroxy-7- methoxy-1,4-benzoxazin-3-one (DIMBOA), are key defense compounds present in major agricultural crops such as maize and wheat. Their biosynthesis involves nine enzymes thought to form a linear pathway leading to the storage of DI(M)BOA as glucoside conjugates. Seven of the genes (Bx1-Bx6 and Bx8) form a cluster at the tip of the short arm of maize chromosome 4 that includes four P450 genes (Bx2-5) belonging to the same CYP71C subfamily. The origin of this cluster is unknown. Results We show that the pathway appeared following several duplications of the TSA gene (α-subunit of tryptophan synthase) and of a Bx2-like ancestral CYP71C gene and the recruitment of Bx8 before the radiation of Poaceae. The origins of Bx6 and Bx7 remain unclear. We demonstrate that the Bx2-like CYP71C ancestor was not committed to the benzoxazinoid pathway and that after duplications the Bx2-Bx5 genes were under positive selection on a few sites and underwent functional divergence, leading to the current specific biochemical properties of the enzymes. The absence of synteny between available Poaceae genomes involving the Bx gene regions is in contrast with the conserved synteny in the TSA gene region. Conclusions These results demonstrate that rearrangements following duplications of an IGL/TSA gene and of a CYP71C gene probably resulted in the clustering of the new copies (Bx1 and Bx2) at the tip of a chromosome in an ancestor of grasses. Clustering favored cosegregation and tip chromosomal location favored gene rearrangements that allowed the further recruitment of genes to the pathway. These events, a founding event and elongation events, may have been the key to the subsequent evolution of the benzoxazinoid biosynthetic cluster. PMID:22577841

  8. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: gene duplications and origin of the Bx cluster.

    PubMed

    Dutartre, Leslie; Hilliou, Frédérique; Feyereisen, René

    2012-05-11

    The benzoxazinoids 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and 2,4-dihydroxy-7- methoxy-1,4-benzoxazin-3-one (DIMBOA), are key defense compounds present in major agricultural crops such as maize and wheat. Their biosynthesis involves nine enzymes thought to form a linear pathway leading to the storage of DI(M)BOA as glucoside conjugates. Seven of the genes (Bx1-Bx6 and Bx8) form a cluster at the tip of the short arm of maize chromosome 4 that includes four P450 genes (Bx2-5) belonging to the same CYP71C subfamily. The origin of this cluster is unknown. We show that the pathway appeared following several duplications of the TSA gene (α-subunit of tryptophan synthase) and of a Bx2-like ancestral CYP71C gene and the recruitment of Bx8 before the radiation of Poaceae. The origins of Bx6 and Bx7 remain unclear. We demonstrate that the Bx2-like CYP71C ancestor was not committed to the benzoxazinoid pathway and that after duplications the Bx2-Bx5 genes were under positive selection on a few sites and underwent functional divergence, leading to the current specific biochemical properties of the enzymes. The absence of synteny between available Poaceae genomes involving the Bx gene regions is in contrast with the conserved synteny in the TSA gene region. These results demonstrate that rearrangements following duplications of an IGL/TSA gene and of a CYP71C gene probably resulted in the clustering of the new copies (Bx1 and Bx2) at the tip of a chromosome in an ancestor of grasses. Clustering favored cosegregation and tip chromosomal location favored gene rearrangements that allowed the further recruitment of genes to the pathway. These events, a founding event and elongation events, may have been the key to the subsequent evolution of the benzoxazinoid biosynthetic cluster.

  9. Reciprocal regulation of YAP/TAZ by the Hippo pathway and the Small GTPase pathway.

    PubMed

    Jang, Ju-Won; Kim, Min-Kyu; Bae, Suk-Chul

    2018-04-20

    Yes-associated protein 1 (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) (YAP/TAZ) are transcriptional coactivators that regulate genes involved in proliferation and transformation by interacting with DNA-binding transcription factors. Remarkably, YAP/TAZ are essential for cancer initiation or growth of most solid tumors. Their activation induces cancer stem cell attributes, proliferation, and metastasis. The oncogenic activity of YAP/TAZ is inhibited by the Hippo cascade, an evolutionarily conserved pathway that is governed by two kinases, mammalian Ste20-like kinases 1/2 (MST1/2) and Large tumor suppressor kinase 1/2 (LATS1/2), corresponding to Drosophila's Hippo (Hpo) and Warts (Wts), respectively. One of the most influential aspects of YAP/TAZ biology is that these factors are transducers of cell structural features, including polarity, shape, and cytoskeletal organization. In turn, these features are intimately related to the cell's ability to attach to other cells and to the surrounding extracellular matrix (ECM), and are also influenced by the cell's microenvironment. Thus, YAP/TAZ respond to changes that occur at the level of whole tissues. Notably, small GTPases act as master organizers of the actin cytoskeleton. Recent studies provided convincing genetic evidence that small GTPase signaling pathways activate YAP/TAZ, while the Hippo pathway inhibits them. Biochemical studies showed that small GTPases facilitate the YAP-Tea domain transcription factor (TEAD) interaction by inhibiting YAP phosphorylation in response to serum stimulation, while the Hippo pathway facilitates the YAP-RUNX3 interaction by increasing YAP phosphorylation. Therefore, small GTPase pathways activate YAP/TAZ by switching its DNA-binding transcription factors. In this review, we summarize the relationship between the Hippo pathway and small GTPase pathways in the regulation of YAP/TAZ.

  10. Influence of Biochemical Features of Burkholderia pseudomallei Strains on Identification Reliability by Vitek 2 System

    PubMed Central

    Zakharova, Irina B; Lopasteyskaya, Yana A; Toporkov, Andrey V; Viktorov, Dmitry V

    2018-01-01

    Background: Burkholderia pseudomallei is a Gram-negative saprophytic soil bacterium that causes melioidosis, a potentially fatal disease endemic in wet tropical areas. The currently available biochemical identification systems can misidentify some strains of B. pseudomallei. The aim of the present study was to identify the biochemical features of B. pseudomallei, which can affect its correct identification by Vitek 2 system. Materials and Methods: The biochemical patterns of 40 B. pseudomallei strains were obtained using Vitek 2 GN cards. The average contribution of biochemical tests in overall dissimilarities between correctly and incorrectly identified strains was assessed using nonmetric multidimensional scaling. Results: It was found (R statistic of 0.836, P = 0.001) that a combination of negative N-acetyl galactosaminidase, β-N-acetyl glucosaminidase, phosphatase, and positive D-cellobiase (dCEL), tyrosine arylamidase (TyrA), and L-proline arylamidase (ProA) tests leads to low discrimination of B. pseudomallei, whereas a set of positive dCEL and negative N-acetyl galactosaminidase, TyrA, and ProA determines the wrong identification of B. pseudomallei as Burkholderia cepacia complex. Conclusion: The further expansion of the Vitek 2 identification keys is needed for correct identification of atypical or regionally distributed biochemical profiles of B. pseudomallei. PMID:29563716

  11. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement

    PubMed Central

    Wu, Alex; Song, Youhong; van Oosterom, Erik J.; Hammer, Graeme L.

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation. PMID:27790232

  12. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement.

    PubMed

    Wu, Alex; Song, Youhong; van Oosterom, Erik J; Hammer, Graeme L

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation.

  13. Identifying metabolic pathways for production of extracellular polymeric substances by the diatom Fragilariopsis cylindrus inhabiting sea ice.

    PubMed

    Aslam, Shazia N; Strauss, Jan; Thomas, David N; Mock, Thomas; Underwood, Graham J C

    2018-05-01

    Diatoms are significant primary producers in sea ice, an ephemeral habitat with steep vertical gradients of temperature and salinity characterizing the ice matrix environment. To cope with the variable and challenging conditions, sea ice diatoms produce polysaccharide-rich extracellular polymeric substances (EPS) that play important roles in adhesion, cell protection, ligand binding and as organic carbon sources. Significant differences in EPS concentrations and chemical composition corresponding to temperature and salinity gradients were present in sea ice from the Weddell Sea and Eastern Antarctic regions of the Southern Ocean. To reconstruct the first metabolic pathway for EPS production in diatoms, we exposed Fragilariopsis cylindrus, a key bi-polar diatom species, to simulated sea ice formation. Transcriptome profiling under varying conditions of EPS production identified a significant number of genes and divergent alleles. Their complex differential expression patterns under simulated sea ice formation was aligned with physiological and biochemical properties of the cells, and with field measurements of sea ice EPS characteristics. Thus, the molecular complexity of the EPS pathway suggests metabolic plasticity in F. cylindrus is required to cope with the challenging conditions of the highly variable and extreme sea ice habitat.

  14. Feeding and Fasting Signals Converge on the LKB1-SIK3 Pathway to Regulate Lipid Metabolism in Drosophila

    PubMed Central

    Choi, Sekyu; Lim, Dae-Sik; Chung, Jongkyeong

    2015-01-01

    LKB1 plays important roles in governing energy homeostasis by regulating AMP-activated protein kinase (AMPK) and other AMPK-related kinases, including the salt-inducible kinases (SIKs). However, the roles and regulation of LKB1 in lipid metabolism are poorly understood. Here we show that Drosophila LKB1 mutants display decreased lipid storage and increased gene expression of brummer, the Drosophila homolog of adipose triglyceride lipase (ATGL). These phenotypes are consistent with those of SIK3 mutants and are rescued by expression of constitutively active SIK3 in the fat body, suggesting that SIK3 is a key downstream kinase of LKB1. Using genetic and biochemical analyses, we identify HDAC4, a class IIa histone deacetylase, as a lipolytic target of the LKB1-SIK3 pathway. Interestingly, we found that the LKB1-SIK3-HDAC4 signaling axis is modulated by dietary conditions. In short-term fasting, the adipokinetic hormone (AKH) pathway, related to the mammalian glucagon pathway, inhibits the kinase activity of LKB1 as shown by decreased SIK3 Thr196 phosphorylation, and consequently induces HDAC4 nuclear localization and brummer gene expression. However, under prolonged fasting conditions, AKH-independent signaling decreases the activity of the LKB1-SIK3 pathway to induce lipolytic responses. We also identify that the Drosophila insulin-like peptides (DILPs) pathway, related to mammalian insulin pathway, regulates SIK3 activity in feeding conditions independently of increasing LKB1 kinase activity. Overall, these data suggest that fasting stimuli specifically control the kinase activity of LKB1 and establish the LKB1-SIK3 pathway as a converging point between feeding and fasting signals to control lipid homeostasis in Drosophila. PMID:25996931

  15. Activation of sorbitol pathway in metabolic syndrome and increased susceptibility to cataract in Wistar-Obese rats

    PubMed Central

    Giridharan, Nappan Veettil

    2012-01-01

    Purpose Obesity is a major public health problem worldwide, and of late, epidemiological studies indicate a preponderance of cataracts under obesity conditions. Although cataract is a multifactorial disorder and various biochemical mechanisms have been proposed, the influence of obesity on cataractogenesis has yet to be investigated. In such a scenario, a suitable animal model that develops cataract following the onset of obesity will be a welcome tool for biomedical research. Therefore, we investigated the molecular and biochemical basis for predisposition to cataract in the obese mutant rat models established in our institute because 15%–20% of these rats develop cataracts spontaneously as they reach 12–15 months of age. Methods We analyzed the major biochemical pathways in the normal lenses of different age groups of our obese mutant rat strains, Wistar/Obese (WNIN/Ob) and WNIN/GR-Ob, the former with euglycemia and the latter with an additional impaired glucose tolerance trait. In addition, sorbitol levels were estimated in the cataractous lenses of the obese rats. Results Except for the polyol pathway, all the principal pathways of the lens remained unaltered. Therefore, sorbitol levels were found to be high in the normal eye lenses of obese rats (WNIN/Ob and WNIN/GR-Ob) compared to their lean controls from three months of age onwards. Between WNIN/Ob and WNIN/GR-Ob, the levels of sorbitol were higher in the latter, suggesting a synergistic effect of impaired glucose tolerance along with obesity in the activation of the sorbitol pathway. Either way, an elevated sorbitol pathway seemed to be the predisposing factor responsible for cataract formation in these mutant rats. Conclusions Activation of the sorbitol pathway indeed enhances the risk of cataract development in conditions such as metabolic syndrome. These rat models thus may be valuable tools for investigating obesity-associated cataract and for developing intervention strategies, based on these

  16. Biochemical establishment and characterization of EncM's flavin-N5-oxide cofactor

    PubMed Central

    Teufel, Robin; Stull, Frederick; Meehan, Michael J.; Michaudel, Quentin; Dorrestein, Pieter C.; Palfey, Bruce; Moore, Bradley S.

    2016-01-01

    The ubiquitous flavin-dependent monooxygenases commonly catalyze oxygenation reactions by means of a transient C4a-peroxyflavin. A recent study, however, suggested an unprecedented flavin-oxygenating species - proposed as the flavin-N5-oxide (FlN5[O]) - as key to an oxidative Favorskii-type rearrangement in the biosynthesis of the bacterial polyketide antibiotic enterocin. This stable superoxidized flavin is covalently tethered to the enzyme EncM and converted into FADH2 (Flred) during substrate turnover. Subsequent reaction of Flred with molecular oxygen restores the postulated FlN5[O] via an unknown pathway. Here we provide direct evidence for the FlN5[O] species via isotope labeling, proteolytic digestion, and high-resolution tandem mass spectrometry of EncM. We propose that formation of this species occurs by hydrogen-transfer from Flred to molecular oxygen, allowing radical coupling of the formed protonated superoxide and anionic flavin semiquinone at N5, before elimination of water affords the FlN5[O] cofactor. Further biochemical and spectroscopic investigations reveal important features of the FlN5[O] species and the EncM catalytic mechanism. We speculate that flavin-N5-oxides may be intermediates or catalytically active species in other flavoproteins that form the anionic semiquinone and promote access of oxygen to N5. PMID:26067765

  17. Remote sensing of key grassland nutrients using hyperspectral techniques in KwaZulu-Natal, South Africa

    NASA Astrophysics Data System (ADS)

    Singh, Leeth; Mutanga, Onisimo; Mafongoya, Paramu; Peerbhay, Kabir

    2017-07-01

    The concentration of forage fiber content is critical in explaining the palatability of forage quality for livestock grazers in tropical grasslands. Traditional methods of determining forage fiber content are usually time consuming, costly, and require specialized laboratory analysis. With the potential of remote sensing technologies, determination of key fiber attributes can be made more accurately. This study aims to determine the effectiveness of known absorption wavelengths for detecting forage fiber biochemicals, neutral detergent fiber, acid detergent fiber, and lignin using hyperspectral data. Hyperspectral reflectance spectral measurements (350 to 2500 nm) of grass were collected and implemented within the random forest (RF) ensemble. Results show successful correlations between the known absorption features and the biochemicals with coefficients of determination (R2) ranging from 0.57 to 0.81 and root mean square errors ranging from 6.97 to 3.03 g/kg. In comparison, using the entire dataset, the study identified additional wavelengths for detecting fiber biochemicals, which contributes to the accurate determination of forage quality in a grassland environment. Overall, the results showed that hyperspectral remote sensing in conjunction with the competent RF ensemble could discriminate each key biochemical evaluated. This study shows the potential to upscale the methodology to a space-borne multispectral platform with similar spectral configurations for an accurate and cost effective mapping analysis of forage quality.

  18. Key Pathways and Regulators of Vitamin K Function and Intermediary Metabolism.

    PubMed

    Shearer, Martin J; Okano, Toshio

    2018-06-01

    Vitamin K (VK) is an essential cofactor for the post-translational conversion of peptide-bound glutamate to γ-carboxyglutamate. The resultant vitamin K-dependent proteins are known or postulated to possess a variety of biological functions, chiefly in the maintenance of hemostasis. The vitamin K cycle is a cellular pathway that drives γ-carboxylation and recycling of VK via γ-carboxyglutamyl carboxylase (GGCX) and vitamin K epoxide reductase (VKOR), respectively. In this review, we show how novel molecular biological approaches are providing new insights into the pathophysiological mechanisms caused by rare mutations of both GGCX and VKOR. We also discuss how other protein regulators influence the intermediary metabolism of VK, first through intestinal absorption and second through a pathway that converts some dietary phylloquinone to menadione, which is prenylated to menaquinone-4 (MK-4) in target tissues by UBIAD1. The contribution of MK-4 synthesis to VK functions is yet to be revealed. Expected final online publication date for the Annual Review of Nutrition Volume 38 is August 21, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  19. Phosphorylation and ubiquitination of the IkappaB kinase complex by two distinct signaling pathways.

    PubMed

    Shambharkar, Prashant B; Blonska, Marzenna; Pappu, Bhanu P; Li, Hongxiu; You, Yun; Sakurai, Hiroaki; Darnay, Bryant G; Hara, Hiromitsu; Penninger, Josef; Lin, Xin

    2007-04-04

    The IkappaB kinase (IKK) complex serves as the master regulator for the activation of NF-kappaB by various stimuli. It contains two catalytic subunits, IKKalpha and IKKbeta, and a regulatory subunit, IKKgamma/NEMO. The activation of IKK complex is dependent on the phosphorylation of IKKalpha/beta at its activation loop and the K63-linked ubiquitination of NEMO. However, the molecular mechanism by which these inducible modifications occur remains undefined. Here, we demonstrate that CARMA1, a key scaffold molecule, is essential to regulate NEMO ubiquitination upon T-cell receptor (TCR) stimulation. However, the phosphorylation of IKKalpha/beta activation loop is independent of CARMA1 or NEMO ubiquitination. Further, we provide evidence that TAK1 is activated and recruited to the synapses in a CARMA1-independent manner and mediate IKKalpha/beta phosphorylation. Thus, our study provides the biochemical and genetic evidence that phosphorylation of IKKalpha/beta and ubiquitination of NEMO are regulated by two distinct pathways upon TCR stimulation.

  20. Nanoparticles as biochemical sensors

    PubMed Central

    El-Ansary, Afaf; Faddah, Layla M

    2010-01-01

    There is little doubt that nanoparticles offer real and new opportunities in many fields, such as biomedicine and materials science. Such particles are small enough to enter almost all areas of the body, including cells and organelles, potentially leading to new approaches in nanomedicine. Sensors for small molecules of biochemical interest are of critical importance. This review is an attempt to trace the use of nanomaterials in biochemical sensor design. The possibility of using nanoparticles functionalized with antibodies as markers for proteins will be elucidated. Moreover, capabilities and applications for nanoparticles based on gold, silver, magnetic, and semiconductor materials (quantum dots), used in optical (absorbance, luminescence, surface enhanced Raman spectroscopy, surface plasmon resonance), electrochemical, and mass-sensitive sensors will be highlighted. The unique ability of nanosensors to improve the analysis of biochemical fluids is discussed either through considering the use of nanoparticles for in vitro molecular diagnosis, or in the biological/biochemical analysis for in vivo interaction with the human body. PMID:24198472

  1. Fast and Precise Emulation of Stochastic Biochemical Reaction Networks With Amplified Thermal Noise in Silicon Chips.

    PubMed

    Kim, Jaewook; Woo, Sung Sik; Sarpeshkar, Rahul

    2018-04-01

    The analysis and simulation of complex interacting biochemical reaction pathways in cells is important in all of systems biology and medicine. Yet, the dynamics of even a modest number of noisy or stochastic coupled biochemical reactions is extremely time consuming to simulate. In large part, this is because of the expensive cost of random number and Poisson process generation and the presence of stiff, coupled, nonlinear differential equations. Here, we demonstrate that we can amplify inherent thermal noise in chips to emulate randomness physically, thus alleviating these costs significantly. Concurrently, molecular flux in thermodynamic biochemical reactions maps to thermodynamic electronic current in a transistor such that stiff nonlinear biochemical differential equations are emulated exactly in compact, digitally programmable, highly parallel analog "cytomorphic" transistor circuits. For even small-scale systems involving just 80 stochastic reactions, our 0.35-μm BiCMOS chips yield a 311× speedup in the simulation time of Gillespie's stochastic algorithm over COPASI, a fast biochemical-reaction software simulator that is widely used in computational biology; they yield a 15 500× speedup over equivalent MATLAB stochastic simulations. The chip emulation results are consistent with these software simulations over a large range of signal-to-noise ratios. Most importantly, our physical emulation of Poisson chemical dynamics does not involve any inherently sequential processes and updates such that, unlike prior exact simulation approaches, they are parallelizable, asynchronous, and enable even more speedup for larger-size networks.

  2. Misleading biochemical laboratory test results

    PubMed Central

    Nanji, Amin A.

    1984-01-01

    This article reviews the general and specific factors that interfere with the performance of common biochemical laboratory tests and the interpretation of their results. The clinical status of the patient, drug interactions, and in-vivo and in-vitro biochemical interactions and changes may alter the results obtained from biochemical analysis of blood constituents. Failure to recognize invalid laboratory test results may lead to injudicious and dangerous management of patients. PMID:6375845

  3. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway

    PubMed Central

    Stincone, Anna; Prigione, Alessandro; Cramer, Thorsten; Wamelink, Mirjam M. C.; Campbell, Kate; Cheung, Eric; Olin-Sandoval, Viridiana; Grüning, Nana-Maria; Krüger, Antje; Alam, Mohammad Tauqeer; Keller, Markus A.; Breitenbach, Michael; Brindle, Kevin M.; Rabinowitz, Joshua D.; Ralser, Markus

    2015-01-01

    The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. The PPP is important to maintain carbon homoeostasis, to provide precursors for nucleotide and amino acid biosynthesis, to provide reducing molecules for anabolism, and to defeat oxidative stress. The PPP shares reactions with the Entner–Doudoroff pathway and Calvin cycle and divides into an oxidative and non-oxidative branch. The oxidative branch is highly active in most eukaryotes and converts glucose 6-phosphate into carbon dioxide, ribulose 5-phosphate and NADPH. The latter function is critical to maintain redox balance under stress situations, when cells proliferate rapidly, in ageing, and for the ‘Warburg effect’ of cancer cells. The non-oxidative branch instead is virtually ubiquitous, and metabolizes the glycolytic intermediates fructose 6-phosphate and glyceraldehyde 3-phosphate as well as sedoheptulose sugars, yielding ribose 5-phosphate for the synthesis of nucleic acids and sugar phosphate precursors for the synthesis of amino acids. Whereas the oxidative PPP is considered unidirectional, the non-oxidative branch can supply glycolysis with intermediates derived from ribose 5-phosphate and vice versa, depending on the biochemical demand. These functions require dynamic regulation of the PPP pathway that is achieved through hierarchical interactions between transcriptome, proteome and metabolome. Consequently, the biochemistry and regulation of this pathway, while still unresolved in many cases, are archetypal for the dynamics of the metabolic network of the cell. In this comprehensive article we review seminal work that led to the discovery and description of the pathway that date back now for 80 years, and address recent results about genetic and metabolic mechanisms that regulate its activity. These biochemical principles are discussed in the context of PPP deficiencies causing metabolic disease and the role of this pathway in biotechnology, bacterial and

  4. Biochemical transformation of coals

    DOEpatents

    Lin, Mow S.; Premuzic, Eugene T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  5. Distinguishing between biochemical and cellular function: Are there peptide signatures for cellular function of proteins?

    PubMed

    Jain, Shruti; Bhattacharyya, Kausik; Bakshi, Rachit; Narang, Ankita; Brahmachari, Vani

    2017-04-01

    The genome annotation and identification of gene function depends on conserved biochemical activity. However, in the cell, proteins with the same biochemical function can participate in different cellular pathways and cannot complement one another. Similarly, two proteins of very different biochemical functions are put in the same class of cellular function; for example, the classification of a gene as an oncogene or a tumour suppressor gene is not related to its biochemical function, but is related to its cellular function. We have taken an approach to identify peptide signatures for cellular function in proteins with known biochemical function. ATPases as a test case, we classified ATPases (2360 proteins) and kinases (517 proteins) from the human genome into different cellular function categories such as transcriptional, replicative, and chromatin remodelling proteins. Using publicly available tool, MEME, we identify peptide signatures shared among the members of a given category but not between cellular functional categories; for example, no motif sharing is seen between chromatin remodelling and transporter ATPases, similarly between receptor Serine/Threonine Kinase and Receptor Tyrosine Kinase. There are motifs shared within each category with significant E value and high occurrence. This concept of signature for cellular function was applied to developmental regulators, the polycomb and trithorax proteins which led to the prediction of the role of INO80, a chromatin remodelling protein, in development. This has been experimentally validated earlier for its role in homeotic gene regulation and its interaction with regulatory complexes like the Polycomb and Trithorax complex. Proteins 2017; 85:682-693. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Interactions between Casein Kinase Iε (CKIε) and Two Substrates from Disparate Signaling Pathways Reveal Mechanisms for Substrate-Kinase Specificity

    PubMed Central

    Dahlberg, Caroline Lund; Nguyen, Elizabeth Z.; Goodlett, David; Kimelman, David

    2009-01-01

    Background Members of the Casein Kinase I (CKI) family of serine/threonine kinases regulate diverse biological pathways. The seven mammalian CKI isoforms contain a highly conserved kinase domain and divergent amino- and carboxy-termini. Although they share a preferred target recognition sequence and have overlapping expression patterns, individual isoforms often have specific substrates. In an effort to determine how substrates recognize differences between CKI isoforms, we have examined the interaction between CKIε and two substrates from different signaling pathways. Methodology/Principal Findings CKIε, but not CKIα, binds to and phosphorylates two proteins: Period, a transcriptional regulator of the circadian rhythms pathway, and Disheveled, an activator of the planar cell polarity pathway. We use GST-pull-down assays data to show that two key residues in CKIα's kinase domain prevent Disheveled and Period from binding. We also show that the unique C-terminus of CKIε does not determine Dishevelled's and Period's preference for CKIε nor is it essential for binding, but instead plays an auxillary role in stabilizing the interactions of CKIε with its substrates. We demonstrate that autophosphorylation of CKIε's C-terminal tail prevents substrate binding, and use mass spectrometry and chemical crosslinking to reveal how a phosphorylation-dependent interaction between the C-terminal tail and the kinase domain prevents substrate phosphorylation and binding. Conclusions/Significance The biochemical interactions between CKIε and Disheveled, Period, and its own C-terminus lead to models that explain CKIε's specificity and regulation. PMID:19274088

  7. Biochemical transformation of coals

    DOEpatents

    Lin, M.S.; Premuzic, E.T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

  8. Co-production of hydrogen and ethanol from glucose by modification of glycolytic pathways in Escherichia coli - from Embden-Meyerhof-Parnas pathway to pentose phosphate pathway.

    PubMed

    Seol, Eunhee; Sekar, Balaji Sundara; Raj, Subramanian Mohan; Park, Sunghoon

    2016-02-01

    Hydrogen (H2) production from glucose by dark fermentation suffers from the low yield. As a solution to this problem, co-production of H2 and ethanol, both of which are good biofuels, has been suggested. To this end, using Escherichia coli, activation of pentose phosphate (PP) pathway, which can generate more NADPH than the Embden-Meyhof-Parnas (EMP) pathway, was attempted. Overexpression of two key enzymes in the branch nodes of the glycolytic pathway, Zwf and Gnd, significantly improved the co-production of H2 and ethanol with concomitant reduction of pyruvate secretion. Gene expression analysis and metabolic flux analysis (MFA) showed that, upon overexpression of Zwf and Gnd, glucose assimilation through the PP pathway, compared with that of the EMP or Entner-Doudoroff (ED) pathway, was greatly enhanced. The maximum co-production yields were 1.32 mol H2 mol(-1) glucose and 1.38 mol ethanol mol(-1) glucose, respectively. It is noteworthy that the glycolysis and the amount of NAD(P)H formed under anaerobic conditions could be altered by modifying (the activity of) several key enzymes. Our strategy could be applied for the development of industrial strains for biological production of reduced chemicals and biofuels which suffers from lack of reduced co-factors. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Target Deconvolution Efforts on Wnt Pathway Screen Reveal Dual Modulation of Oxidative Phosphorylation and SERCA2.

    PubMed

    Casás-Selves, Matias; Zhang, Andrew X; Dowling, James E; Hallén, Stefan; Kawatkar, Aarti; Pace, Nicholas J; Denz, Christopher R; Pontz, Timothy; Garahdaghi, Farzin; Cao, Qing; Sabirsh, Alan; Thakur, Kumar; O'Connell, Nichole; Hu, Jun; Cornella-Taracido, Iván; Weerapana, Eranthie; Zinda, Michael; Goodnow, Robert A; Castaldi, M Paola

    2017-06-21

    Wnt signaling is critical for development, cell proliferation and differentiation, and mutations in this pathway resulting in constitutive signaling have been implicated in various cancers. A pathway screen using a Wnt-dependent reporter identified a chemical series based on a 1,2,3-thiadiazole-5-carboxamide (TDZ) core with sub-micromolar potency. Herein we report a comprehensive mechanism-of-action deconvolution study toward identifying the efficacy target(s) and biological implication of this chemical series involving bottom-up quantitative chemoproteomics, cell biology, and biochemical methods. Through observing the effects of our probes on metabolism and performing confirmatory cellular and biochemical assays, we found that this chemical series inhibits ATP synthesis by uncoupling the mitochondrial potential. Affinity chemoproteomics experiments identified sarco(endo)plasmic reticulum Ca 2+ -dependent ATPase (SERCA2) as a binding partner of the TDZ series, and subsequent validation studies suggest that the TDZ series can act as ionophores through SERCA2 toward Wnt pathway inhibition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Selective neural pathway targeting reveals key roles of thalamostriatal projection in the control of visual discrimination.

    PubMed

    Kato, Shigeki; Kuramochi, Masahito; Kobayashi, Kenta; Fukabori, Ryoji; Okada, Kana; Uchigashima, Motokazu; Watanabe, Masahiko; Tsutsui, Yuji; Kobayashi, Kazuto

    2011-11-23

    The dorsal striatum receives converging excitatory inputs from diverse brain regions, including the cerebral cortex and the intralaminar/midline thalamic nuclei, and mediates learning processes contributing to instrumental motor actions. However, the roles of each striatal input pathway in these learning processes remain uncertain. We developed a novel strategy to target specific neural pathways and applied this strategy for studying behavioral roles of the pathway originating from the parafascicular nucleus (PF) and projecting to the dorsolateral striatum. A highly efficient retrograde gene transfer vector encoding the recombinant immunotoxin (IT) receptor was injected into the dorsolateral striatum in mice to express the receptor in neurons innervating the striatum. IT treatment into the PF of the vector-injected animals caused a selective elimination of neurons of the PF-derived thalamostriatal pathway. The elimination of this pathway impaired the response selection accuracy and delayed the motor response in the acquisition of a visual cue-dependent discrimination task. When the pathway elimination was induced after learning acquisition, it disturbed the response accuracy in the task performance with no apparent change in the response time. The elimination did not influence spontaneous locomotion, methamphetamine-induced hyperactivity, and motor skill learning that demand the function of the dorsal striatum. These results demonstrate that thalamostriatal projection derived from the PF plays essential roles in the acquisition and execution of discrimination learning in response to sensory stimulus. The temporal difference in the pathway requirement for visual discrimination suggests a stage-specific role of thalamostriatal pathway in the modulation of response time of learned motor actions.

  11. Modulation of nitrergic signalling pathway by American ginseng attenuates chronic unpredictable stress-induced cognitive impairment, neuroinflammation, and biochemical alterations.

    PubMed

    Rinwa, Puneet; Kumar, Anil

    2014-02-01

    Prolonged stress causes extensive loss of neurons leading to deficits in cognitive performance. Increasing evidence indicates that accumulation of intercellular messenger, nitric oxide (NO), plays a crucial role in the pathogenesis of memory disorders. American ginseng (AG) is known to show protection in different animal models of neurological diseases; however, its exact mechanism of action is not clearly understood. Therefore, the current study was designed to investigate the interaction of AG against chronic unpredictable stress (CUS)-associated behavioral and biochemical alterations and the probable role of nitrergic pathway in this effect. Male Laca mice were exposed to a series of stressors along with drug/vehicle treatment daily for 28 days. CUS paradigm caused significant impairment in both acquisition and retention memory as measured in Morris water maze and elevated plus maze task. This was coupled with alterations in oxidative stress markers, mitochondrial enzyme complex activities, pro-inflammatory cytokine (TNF-α), and acetylcholinesterase levels in the hippocampus as compared with naïve group. Besides, there was a marked increase in serum corticosterone levels. AG (100, 200 mg/kg; p.o.) treatment significantly improved cognitive impairment; reduced TNF-α, acetylcholinesterase, and corticosterone levels; and attenuated oxidative-nitrergic stress. Furthermore, pre-treatment of L-arginine (100 mg/kg; i.p.), a nitric oxide donor, with subeffective dose of AG (100 mg/kg; p.o.) reversed its protective effects. However, L-NAME (10 mg/kg, i.p.), a non-specific NO synthase inhibitor, potentiated the effects of AG. Our findings suggest that modulation of nitrergic signalling cascade is involved in the protective effects of AG against CUS-induced cognitive dysfunction, oxidative stress, and neuroinflammation.

  12. [Key pathway of methane production and characteristics of stable carbon isotope of the Tuojia River waterbody.

    PubMed

    Zhao, Qiang; Lyu, Cheng Wen; Qin, Xiao Bo; Wu, Hong Bao; Wan, Yun Fan; Liao, Yu Lin; Lu, Yan Hong; Wang, Bin; Li, Yong

    2018-05-01

    This study aimed at exploring the key pathway of methane production and clarifying the composition and distribution of carbon (C) isotopes in the Tuojia River waterbody in Hunan Pro-vince. We estimated CH 4 concentrations and fluxes of four reaches (S 1 , S 2 , S 3 and S 4 ) by a two-layer diffusion model and gas chromatography. The spatial and temporal distribution of CH 4 flux and its relationship with environmental factors were examined. The key pathway of CH 4 production was investigated by stable C isotope method to analyze the distribution characteristics of 13 C isotope (δ 13 C) of water dissolved CH 4 and seston/benthic organic matter. There was significant seasonal variability in water pH, with mean value of (7.27±0.03). The concentration of dissolved oxygen (DO) showed strong seasonal and spatial variations, with the range of 0.43-13.99 mg·L -1 . The maximum value of DO occurred in S 1 and differed significantly in summer and autumin. In addition, DO differed significantly in winter and other seasons in S 2 , S 3 and S 4 . The concentration of dissolved organic carbon (DOC) showed a gradual increasing trend from source to estuary. The highest concentration of DOC (8.32 mg·L -1 ) was found in S 2 , while the lowest was observed in S 1 (0.34 mg·L -1 ). The electrical conductivity (EC) and oxidation-reduction potential (ORP) of water ranged from 17 to 436 μS·cm -1 and from -52.30 to 674.10 mV, respectively, which were significantly different among the four reaches (P<0.05). Water ammonium nitrogen (NH 4 + -N) and nitrate nitrogen (NO 3 - -N) concentrations were in the ranges of 0.30-1.35 (averaged 0.90±0.10) mg·L -1 and 0.82-2.45 (averaged 1.62±0.16) mg·L -1 , respectively. The dissolved concentration and diffusion flux of CH 4 ranged from 0 to 5.28 μmol·L -1 and from -0.34 to 619.72 μg C·m -2 ·h -1 , respectively, with significant temporal and spatial variations. They showed a similar trend among reaches. Their values were highest in

  13. Evidence from Biochemical Pathways in Favor of Unfinished Evolution Rather than Intelligent Design

    ERIC Educational Resources Information Center

    Behrman, Edward J.; Marzluf, George A.

    2004-01-01

    An argument is made in favor of imperfect or unfinished evolution based on some metabolic pathways in which it seems that intelligent design would have done better. The case studies noted indicate the absence of highly intelligent design and are not intended as comprehensive collection but as a limited sample of inefficient situations in…

  14. Proteomic and Biochemical Changes during Senescence of Phalaenopsis 'Red Dragon' Petals.

    PubMed

    Chen, Cong; Zeng, Lanting; Ye, Qingsheng

    2018-04-28

    Phalaenopsis flowers are some of the most popular ornamental flowers in the world. For most ornamental plants, petal longevity determines postharvest quality and garden performance. Therefore, it is important to have insight into the senescence mechanism of Phalaenopsis . In the present study, a proteomic approach combined with ultrastructural observation and activity analysis of antioxidant enzymes was used to profile the molecular and biochemical changes during pollination-induced petal senescence in Phalaenopsis “Red Dragon”. Petals appeared to be visibly wilting at 24 h after pollination, accompanied by the mass degradation of macromolecules and organelles during senescence. In addition, 48 protein spots with significant differences in abundance were found by two-dimensional electrophoresis (2-DE) and subjected to matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS). There were 42 protein spots successfully identified and homologous to known functional protein species involved in key biological processes, including antioxidant pathways, stress response, protein metabolism, cell wall component metabolism, energy metabolism, cell structure, and signal transduction. The activity of all reactive oxygen species (ROS)-scavenging enzymes was increased, keeping the content of ROS at a low level at the early stage of senescence. These results suggest that two processes, a counteraction against increased levels of ROS and the degradation of cellular constituents for maintaining nutrient recycling, are activated during pollination-induced petal senescence in Phalaenopsis . The information provides a basis for understanding the mechanism regulating petal senescence and prolonging the florescence of Phalaenopsis .

  15. Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in 'Anji Baicha' (Camellia sinensis).

    PubMed

    Li, Chun-Fang; Xu, Yan-Xia; Ma, Jian-Qiang; Jin, Ji-Qiang; Huang, Dan-Juan; Yao, Ming-Zhe; Ma, Chun-Lei; Chen, Liang

    2016-09-08

    The new shoots of the albino tea cultivar 'Anji Baicha' are yellow or white at low temperatures and turn green as the environmental temperatures increase during the early spring. 'Anji Baicha' metabolite profiles exhibit considerable variability over three color and developmental stages, especially regarding the carotenoid, chlorophyll, and theanine concentrations. Previous studies focused on physiological characteristics, gene expression differences, and variations in metabolite abundances in albino tea plant leaves at specific growth stages. However, the molecular mechanisms regulating metabolite biosynthesis in various color and developmental stages in albino tea leaves have not been fully characterized. We used RNA-sequencing to analyze 'Anji Baicha' leaves at the yellow-green, albescent, and re-greening stages. The leaf transcriptomes differed considerably among the three stages. Functional classifications based on Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that differentially expressed unigenes were mainly related to metabolic pathways, biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, and carbon fixation in photosynthetic organisms. Chemical analyses revealed higher β-carotene and theanine levels, but lower chlorophyll a levels, in the albescent stage than in the green stage. Furthermore, unigenes involved in carotenoid, chlorophyll, and theanine biosyntheses were identified, and the expression patterns of the differentially expressed unigenes in these biosynthesis pathways were characterized. Through co-expression analyses, we identified the key genes in these pathways. These genes may be responsible for the metabolite biosynthesis differences among the different leaf color and developmental stages of 'Anji Baicha' tea plants. Our study presents the results of transcriptomic and biochemical analyses of 'Anji Baicha' tea plants at various stages. The distinct transcriptome profiles

  16. Biochemical abnormalities in neonatal seizures.

    PubMed

    Sood, Arvind; Grover, Neelam; Sharma, Roshan

    2003-03-01

    The presence of seizure does not constitute a diagnoses but it is a symptom of an underlying central nervous system disorder due to systemic or biochemical disturbances. Biochemical disturbances occur frequently in the neonatal seizures either as an underlying cause or as an associated abnormality. In their presence, it is difficult to control seizure and there is a risk of further brain damage. Early recognition and treatment of biochemical disturbances is essential for optimal management and satisfactory long term outcome. The present study was conducted in the department of pediatrics in IGMC Shimla on 59 neonates. Biochemical abnormalities were detected in 29 (49.15%) of cases. Primary metabolic abnormalities occurred in 10(16.94%) cases of neonatal seizures, most common being hypocalcaemia followed by hypoglycemia, other metabolic abnormalities include hypomagnesaemia and hyponateremia. Biochemical abnormalities were seen in 19(38.77%) cases of non metabolic seizure in neonates. Associated metabolic abnormalities were observed more often with Hypoxic-ischemic-encephalopathy (11 out of 19) cases and hypoglycemia was most common in this group. No infant had hyponateremia, hyperkelemia or low zinc level.

  17. Polymorphisms in key pulmonary inflammatory pathways and the development of acute respiratory distress syndrome

    PubMed Central

    Brown, Samuel M.; Grissom, Colin K.; Rondina, Matthew T.; Hoidal, John R.; Scholand, Mary Beth; Wolff, Roger K.; Morris, Alan H.; Paine, Robert

    2015-01-01

    Purpose/Aim Acute Respiratory Distress Syndrome (ARDS) is an important clinical and public health problem. Why some at-risk individuals develop ARDS and others do not is unclear but may be related to differences in inflammatory and cell signaling systems. The Receptor for Advanced Glycation Endproducts (RAGE) and Granulocyte-Monocyte Stimulating Factor (GM-CSF) pathways have recently been implicated in pulmonary pathophysiology; whether genetic variation within these pathways contributes to ARDS risk or outcome is unknown. Materials and Methods We studied 842 patients from three centers in Utah and 14 non-Utah ARDS Network centers. We studied patients at risk for ARDS and patients with ARDS to determine whether Single Nucleotide Polymorphisms (SNPs) in the RAGE and GM-CSF pathways were associated with development of ARDS. We studied 29 SNPs in 5 genes within the two pathways and controlled for age, sepsis as ARDS risk factor, and severity of illness, while targeting a false discovery rate of ≤5%. In a secondary analysis we evaluated associations with mortality. Results Of 842 patients, 690 had ARDS, and 152 were at-risk. Sepsis was the risk factor for ARDS in 250 (30%) patients. When controlling for age, APACHE III score, sepsis as risk factor, and multiple comparisons, no SNPs were significantly associated with ARDS. In a secondary analysis, only rs743564 in CSF2 approached significance with regard to mortality (OR 2.17, unadjusted p = 0.005, adjusted p = 0.15). Conclusions Candidate SNPs within 5 genes in the RAGE and GM-CSF pathways were not significantly associated with development of ARDS in this multi-centric cohort. PMID:25513711

  18. Binding Mode Analysis of Zerumbone to Key Signal Proteins in the Tumor Necrosis Factor Pathway

    PubMed Central

    Fatima, Ayesha; Abdul, Ahmad Bustamam Hj.; Abdullah, Rasedee; Karjiban, Roghayeh Abedi; Lee, Vannajan Sanghiran

    2015-01-01

    Breast cancer is the second most common cancer among women worldwide. Several signaling pathways have been implicated as causative and progression agents. The tumor necrosis factor (TNF) α protein plays a dual role in promoting and inhibiting cancer depending largely on the pathway initiated by the binding of the protein to its receptor. Zerumbone, an active constituent of Zingiber zerumbet, Smith, is known to act on the tumor necrosis factor pathway upregulating tumour necrosis factor related apoptosis inducing ligand (TRAIL) death receptors and inducing apoptosis in cancer cells. Zerumbone is a sesquiterpene that is able to penetrate into the hydrophobic pockets of proteins to exert its inhibiting activity with several proteins. We found a good binding with the tumor necrosis factor, kinase κB (IKKβ) and the Nuclear factor κB (NF-κB) component proteins along the TNF pathway. Our results suggest that zerumbone can exert its apoptotic activities by inhibiting the cytoplasmic proteins. It inhibits the IKKβ kinase that activates the NF-κB and also binds to the NF-κB complex in the TNF pathway. Blocking both proteins can lead to inhibition of cell proliferating proteins to be downregulated and possibly ultimate induction of apoptosis. PMID:25629232

  19. Complementary Proteome and Transcriptome Profiling in Developing Grains of a Notched-Belly Rice Mutant Reveals Key Pathways Involved in Chalkiness Formation

    PubMed Central

    Lin, Zhaomiao; Wang, Zunxin; Zhang, Xincheng; Li, Ganghua; Wang, Shaohua; Ding, Yanfeng

    2017-01-01

    Rice grain chalkiness is a highly complex trait involved in multiple metabolic pathways and controlled by polygenes and growth conditions. To uncover novel aspects of chalkiness formation, we performed an integrated profiling of gene activity in the developing grains of a notched-belly rice mutant. Using exhaustive tandem mass spectrometry-based shotgun proteomics and whole-genome RNA sequencing to generate a nearly complete catalog of expressed mRNAs and proteins, we reliably identified 38,476 transcripts and 3,840 proteins. Comparison between the translucent part and chalky part of the notched-belly grains resulted in only a few differently express genes (240) and differently express proteins (363), thus making it possible to focus on ‘core’ genes or common pathways. Several novel key pathways were identified as of relevance to chalkiness formation, in particular the shift of C and N metabolism, the down-regulation of ribosomal proteins and the resulting low abundance of storage proteins especially the 13 kDa prolamin subunit, and the suppressed photosynthetic capacity in the pericarp of the chalky part. Further, genes and proteins as transporters for carbohydrates, amino acid/peptides, proteins, lipids and inorganic ions showed an increasing expression pattern in the chalky part of the notched-belly grains. Similarly, transcripts and proteins of receptors for auxin, ABA, ethylene and brassinosteroid were also up-regulated. In summary, this joint analysis of transcript and protein profiles provides a comprehensive reference map of gene activity regarding the physiological state in the chalky endosperm. PMID:28158863

  20. Biochemical process of ureolysis-based microbial CaCO3 precipitation and its application in self-healing concrete.

    PubMed

    Xu, Jing; Wang, Xianzhi; Wang, Binbin

    2018-04-01

    Urea hydrolysis has already been considered as the most effective pathway for microbially induced CaCO 3 precipitation (MICP). The present work first studied the combination of several key factors including initial pH, temperature, and dosage of urea, which contribute to the biochemical process of MICP. Under an amiable condition of pH and temperature, the dosage of urea has a significant impact on the rate of urea degradation and CaCO 3 precipitation. A bacteria-based self-healing system was developed by loading healing agents on ceramsite carriers. The self-healing efficiency was evaluated by visual inspection on crack closure, compressive strength regain, and capillary water absorption. A preferable healing effectiveness was obtained when the bacteria and organic nutrients were co-immobilized in carriers. Image analysis showed that cracks up to 273 μm could be healed with a crack closure ratio of 86% in 28 days. The compressive strength regain increased 24% and the water absorption coefficient decreased 27% compared to the reference. The findings indicated a promising application of ureolysis-based MICP in restoring the mechanical properties and enhancing the durability of concrete.

  1. Methods of mesophyll conductance estimation: its impact on key biochemical parameters and photosynthetic limitations in phosphorus-stressed soybean across CO2

    USDA-ARS?s Scientific Manuscript database

    Photosynthetic potential in C3 plants is largely limited by CO2 diffusion through stomata (Ls) and mesophyll (Lm) and photo-biochemical (Lb) processes. Accurate estimation of mesophyll conductance (gm) using gas exchange (GE) and chlorophyll fluorescence (CF) parameters of the photosynthetic proces...

  2. Defining the Protein–Protein Interaction Network of the Human Hippo Pathway*

    PubMed Central

    Wang, Wenqi; Li, Xu; Huang, Jun; Feng, Lin; Dolinta, Keithlee G.; Chen, Junjie

    2014-01-01

    The Hippo pathway, which is conserved from Drosophila to mammals, has been recognized as a tumor suppressor signaling pathway governing cell proliferation and apoptosis, two key events involved in organ size control and tumorigenesis. Although several upstream regulators, the conserved kinase cascade and key downstream effectors including nuclear transcriptional factors have been defined, the global organization of this signaling pathway is not been fully understood. Thus, we conducted a proteomic analysis of human Hippo pathway, which revealed the involvement of an extensive protein–protein interaction network in this pathway. The mass spectrometry data were deposited to ProteomeXchange with identifier PXD000415. Our data suggest that 550 interactions within 343 unique protein components constitute the central protein–protein interaction landscape of human Hippo pathway. Our study provides a glimpse into the global organization of Hippo pathway, reveals previously unknown interactions within this pathway, and uncovers new potential components involved in the regulation of this pathway. Understanding these interactions will help us further dissect the Hippo signaling-pathway and extend our knowledge of organ size control. PMID:24126142

  3. Litchi chinensis as a Functional Food and a Source of Antitumor Compounds: An Overview and a Description of Biochemical Pathways.

    PubMed

    Emanuele, Sonia; Lauricella, Marianna; Calvaruso, Giuseppe; D'Anneo, Antonella; Giuliano, Michela

    2017-09-08

    Litchi is a tasty fruit that is commercially grown for food consumption and nutritional benefits in various parts of the world. Due to its biological activities, the fruit is becoming increasingly known and deserves attention not only for its edible part, the pulp, but also for its peel and seed that contain beneficial substances with antioxidant, cancer preventive, antimicrobial, and anti-inflammatory functions. Although literature demonstrates the biological activity of Litchi components in reducing tumor cell viability in in vitro or in vivo models, data about the biochemical mechanisms responsible for these effects are quite fragmentary. This review specifically describes, in a comprehensive analysis, the antitumor properties of the different parts of Litchi and highlights the main biochemical mechanisms involved.

  4. RaMP: A Comprehensive Relational Database of Metabolomics Pathways for Pathway Enrichment Analysis of Genes and Metabolites

    PubMed Central

    Zhang, Bofei; Hu, Senyang; Baskin, Elizabeth; Patt, Andrew; Siddiqui, Jalal K.

    2018-01-01

    The value of metabolomics in translational research is undeniable, and metabolomics data are increasingly generated in large cohorts. The functional interpretation of disease-associated metabolites though is difficult, and the biological mechanisms that underlie cell type or disease-specific metabolomics profiles are oftentimes unknown. To help fully exploit metabolomics data and to aid in its interpretation, analysis of metabolomics data with other complementary omics data, including transcriptomics, is helpful. To facilitate such analyses at a pathway level, we have developed RaMP (Relational database of Metabolomics Pathways), which combines biological pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, WikiPathways, and the Human Metabolome DataBase (HMDB). To the best of our knowledge, an off-the-shelf, public database that maps genes and metabolites to biochemical/disease pathways and can readily be integrated into other existing software is currently lacking. For consistent and comprehensive analysis, RaMP enables batch and complex queries (e.g., list all metabolites involved in glycolysis and lung cancer), can readily be integrated into pathway analysis tools, and supports pathway overrepresentation analysis given a list of genes and/or metabolites of interest. For usability, we have developed a RaMP R package (https://github.com/Mathelab/RaMP-DB), including a user-friendly RShiny web application, that supports basic simple and batch queries, pathway overrepresentation analysis given a list of genes or metabolites of interest, and network visualization of gene-metabolite relationships. The package also includes the raw database file (mysql dump), thereby providing a stand-alone downloadable framework for public use and integration with other tools. In addition, the Python code needed to recreate the database on another system is also publicly available (https://github.com/Mathelab/RaMP-BackEnd). Updates for databases in RaMP will be

  5. RaMP: A Comprehensive Relational Database of Metabolomics Pathways for Pathway Enrichment Analysis of Genes and Metabolites.

    PubMed

    Zhang, Bofei; Hu, Senyang; Baskin, Elizabeth; Patt, Andrew; Siddiqui, Jalal K; Mathé, Ewy A

    2018-02-22

    The value of metabolomics in translational research is undeniable, and metabolomics data are increasingly generated in large cohorts. The functional interpretation of disease-associated metabolites though is difficult, and the biological mechanisms that underlie cell type or disease-specific metabolomics profiles are oftentimes unknown. To help fully exploit metabolomics data and to aid in its interpretation, analysis of metabolomics data with other complementary omics data, including transcriptomics, is helpful. To facilitate such analyses at a pathway level, we have developed RaMP (Relational database of Metabolomics Pathways), which combines biological pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, WikiPathways, and the Human Metabolome DataBase (HMDB). To the best of our knowledge, an off-the-shelf, public database that maps genes and metabolites to biochemical/disease pathways and can readily be integrated into other existing software is currently lacking. For consistent and comprehensive analysis, RaMP enables batch and complex queries (e.g., list all metabolites involved in glycolysis and lung cancer), can readily be integrated into pathway analysis tools, and supports pathway overrepresentation analysis given a list of genes and/or metabolites of interest. For usability, we have developed a RaMP R package (https://github.com/Mathelab/RaMP-DB), including a user-friendly RShiny web application, that supports basic simple and batch queries, pathway overrepresentation analysis given a list of genes or metabolites of interest, and network visualization of gene-metabolite relationships. The package also includes the raw database file (mysql dump), thereby providing a stand-alone downloadable framework for public use and integration with other tools. In addition, the Python code needed to recreate the database on another system is also publicly available (https://github.com/Mathelab/RaMP-BackEnd). Updates for databases in RaMP will be

  6. Quantitative Assays for RAS Pathway Proteins and Phosphorylation States

    Cancer.gov

    The NCI CPTAC program is applying its expertise in quantitative proteomics to develop assays for RAS pathway proteins. Targets include key phosphopeptides that should increase our understanding of how the RAS pathway is regulated.

  7. Aged keratinocyte phenotyping: morphology, biochemical markers and effects of Dead Sea minerals.

    PubMed

    Soroka, Yoram; Ma'or, Zeev; Leshem, Yael; Verochovsky, Lilian; Neuman, Rami; Brégégère, François Menahem; Milner, Yoram

    2008-10-01

    The aging process and its characterization in keratinocytes have not been studied in depth until now. We have assessed the cellular and molecular characteristics of aged epidermal keratinocytes in monolayer cultures and in skin by measuring their morphological, fluorometric and biochemical properties. Light and electron microscopy, as well as flow cytometry, revealed increase in cell size, changes in cell shape, alterations in mitochondrial structure and cytoplasmic content with aging. We showed that the expression of 16 biochemical markers was altered in aged cultured cells and in tissues, including caspases 1 and 3 and beta-galactosidase activities, immunoreactivities of p16, Ki67, 20S proteasome and effectors of the Fas-dependent apoptotic pathway. Aged cells diversity, and individual variability of aging markers, call for a multifunctional assessment of the aging phenomenon, and of its modulation by drugs. As a test case, we have measured the effects of Dead Sea minerals on keratinocyte cultures and human skin, and found that they stimulate proliferation and mitochondrial activity, decrease the expression of some aging markers, and limit apoptotic damage after UVB irradiation.

  8. Discovery of biochemical biomarkers for aggression: A role for metabolomics in psychiatry.

    PubMed

    Hagenbeek, Fiona A; Kluft, Cornelis; Hankemeier, Thomas; Bartels, Meike; Draisma, Harmen H M; Middeldorp, Christel M; Berger, Ruud; Noto, Antonio; Lussu, Milena; Pool, René; Fanos, Vassilios; Boomsma, Dorret I

    2016-07-01

    Human aggression encompasses a wide range of behaviors and is related to many psychiatric disorders. We introduce the different classification systems of aggression and related disorders as a basis for discussing biochemical biomarkers and then present an overview of studies in humans (published between 1990 and 2015) that reported statistically significant associations of biochemical biomarkers with aggression, DSM-IV disorders involving aggression, and their subtypes. The markers are of different types, including inflammation markers, neurotransmitters, lipoproteins, and hormones from various classes. Most studies focused on only a limited portfolio of biomarkers, frequently a specific class only. When integrating the data, it is clear that compounds from several biological pathways have been found to be associated with aggressive behavior, indicating complexity and the need for a broad approach. In the second part of the paper, using examples from the aggression literature and psychiatric metabolomics studies, we argue that a better understanding of aggression would benefit from a more holistic approach such as provided by metabolomics. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. The Fanconi anemia DNA repair pathway: structural and functional insights into a complex disorder.

    PubMed

    Walden, Helen; Deans, Andrew J

    2014-01-01

    Mutations in any of at least sixteen FANC genes (FANCA-Q) cause Fanconi anemia, a disorder characterized by sensitivity to DNA interstrand crosslinking agents. The clinical features of cytopenia, developmental defects, and tumor predisposition are similar in each group, suggesting that the gene products participate in a common pathway. The Fanconi anemia DNA repair pathway consists of an anchor complex that recognizes damage caused by interstrand crosslinks, a multisubunit ubiquitin ligase that monoubiquitinates two substrates, and several downstream repair proteins including nucleases and homologous recombination enzymes. We review progress in the use of structural and biochemical approaches to understanding how each FANC protein functions in this pathway.

  10. PATHWAYS - ELECTRON TUNNELING PATHWAYS IN PROTEINS

    NASA Technical Reports Server (NTRS)

    Beratan, D. N.

    1994-01-01

    The key to understanding the mechanisms of many important biological processes such as photosynthesis and respiration is a better understanding of the electron transfer processes which take place between metal atoms (and other groups) fixed within large protein molecules. Research is currently focused on the rate of electron transfer and the factors that influence it, such as protein composition and the distance between metal atoms. Current models explain the swift transfer of electrons over considerable distances by postulating bridge-mediated tunneling, or physical tunneling pathways, made up of interacting bonds in the medium around and between donor and acceptor sites. The program PATHWAYS is designed to predict the route along which electrons travel in the transfer processes. The basic strategy of PATHWAYS is to begin by recording each possible path element on a connectivity list, including in each entry which two atoms are connected and what contribution the connection would make to the overall rate if it were included in a pathway. The list begins with the bonded molecular structure (including the backbone sequence and side chain connectivity), and then adds probable hydrogen bond links and through-space contacts. Once this list is completed, the program runs a tree search from the donor to the acceptor site to find the dominant pathways. The speed and efficiency of the computer search offers an improvement over manual techniques. PATHWAYS is written in FORTRAN 77 for execution on DEC VAX series computers running VMS. The program inputs data from four data sets and one structure file. The software was written to input BIOGRAF (old format) structure files based on x-ray crystal structures and outputs ASCII files listing the best pathways and BIOGRAF vector files containing the paths. Relatively minor changes could be made in the input format statements for compatibility with other graphics software. The executable and source code are included with the

  11. Adverse Outcome Pathway (AOP) Network Development for ...

    EPA Pesticide Factsheets

    Adverse outcome pathways (AOPs) are descriptive biological sequences that start from a molecular initiating event (MIE) and end with an adverse health outcome. AOPs provide biological context for high throughput chemical testing and further prioritize environmental health risk research. According to the Organization for Economic Co-operation and Development guidelines, AOPs are pathways with one MIE anchored to an adverse outcome (AO) by key events (KEs) and key event relationships (KERs). However, this approach does not always capture the cumulative impacts of multiple MIEs on the AO. For example, hepatic lipid flux due to chemical-induced toxicity initiates from multiple ligand-activated receptors and signaling pathways that cascade across biology to converge upon a common fatty liver (FL, also known as steatosis) outcome. To capture this complexity, a top-down strategy was used to develop a FL AOP network (AOPnet). Literature was queried based on the terms steatosis, fatty liver, cirrhosis, and hepatocellular carcinoma. Search results were analyzed for physiological and pathophysiological organ level, cellular and molecular processes, as well as pathway intermediates, to identify potential KEs and MIEs that are key for hepatic lipid metabolism, maintenance, and dysregulation. The analysis identified four apical KE nodes (hepatic fatty acid uptake, de novo fatty acid and lipid synthesis, fatty acid oxidation, and lipid efflux) juxtaposed to the FL AO. The apic

  12. An algorithm for modularization of MAPK and calcium signaling pathways: comparative analysis among different species.

    PubMed

    Nayak, Losiana; De, Rajat K

    2007-12-01

    Signaling pathways are large complex biochemical networks. It is difficult to analyze the underlying mechanism of such networks as a whole. In the present article, we have proposed an algorithm for modularization of signal transduction pathways. Unlike studying a signaling pathway as a whole, this enables one to study the individual modules (less complex smaller units) easily and hence to study the entire pathway better. A comparative study of modules belonging to different species (for the same signaling pathway) has been made, which gives an overall idea about development of the signaling pathways over the taken set of species of calcium and MAPK signaling pathways. The superior performance, in terms of biological significance, of the proposed algorithm over an existing community finding algorithm of Newman [Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci USA 2006;103(23):8577-82] has been demonstrated using the aforesaid pathways of H. sapiens.

  13. genome-wide association and metabolic pathway analysis of corn earworm resistance in maize

    Treesearch

    Marilyn L. Warburton; Erika D. Womack; Juliet D. Tang; Adam Thrash; J. Spencer Smith; Wenwei Xu; Seth C. Murray; W. Paul Williams

    2018-01-01

    Maize (Zea mays mays L.) is a staple crop of economic, industrial, and food security importance. Damage to the growing ears by corn earworm [Helicoverpa zea (Boddie)] is a major economic burden and increases secondary fungal infections and mycotoxin levels. To identify biochemical pathways associated with native resistance mechanisms, a genome-wide...

  14. Mechanisms of Hippo pathway regulation

    PubMed Central

    Meng, Zhipeng; Moroishi, Toshiro; Guan, Kun-Liang

    2016-01-01

    The Hippo pathway was initially identified in Drosophila melanogaster screens for tissue growth two decades ago and has been a subject extensively studied in both Drosophila and mammals in the last several years. The core of the Hippo pathway consists of a kinase cascade, transcription coactivators, and DNA-binding partners. Recent studies have expanded the Hippo pathway as a complex signaling network with >30 components. This pathway is regulated by intrinsic cell machineries, such as cell–cell contact, cell polarity, and actin cytoskeleton, as well as a wide range of signals, including cellular energy status, mechanical cues, and hormonal signals that act through G-protein-coupled receptors. The major functions of the Hippo pathway have been defined to restrict tissue growth in adults and modulate cell proliferation, differentiation, and migration in developing organs. Furthermore, dysregulation of the Hippo pathway leads to aberrant cell growth and neoplasia. In this review, we focus on recent developments in our understanding of the molecular actions of the core Hippo kinase cascade and discuss key open questions in the regulation and function of the Hippo pathway. PMID:26728553

  15. Gel-free/label-free proteomic, photosynthetic, and biochemical analysis of cowpea (Vigna unguiculata [L.] Walp.) resistance against Cowpea severe mosaic virus (CPSMV).

    PubMed

    Varela, Anna Lidia N; Komatsu, Setsuko; Wang, Xin; Silva, Rodolpho G G; Souza, Pedro Filho N; Lobo, Ana Karla M; Vasconcelos, Ilka M; Silveira, Joaquim A G; Oliveira, Jose T A

    2017-06-23

    Cowpea severe mosaic virus (CPSMV) causes significant losses in cowpea (Vigna unguiculata) production. In this present study biochemical, physiological, and proteomic analysis were done to identify pathways and defense proteins that are altered during the incompatible interaction between the cowpea genotype BRS-Marataoã and CPSMV. The leaf protein extracts from mock- (MI) and CPSMV-inoculated plantlets (V) were evaluated at 2 and 6days post-inoculation (DPI). Data support the assumptions that increases in biochemical (high hydrogen peroxide, antioxidant enzymes, and secondary compounds) and physiological responses (high photosynthesis index and chlorophyll content), confirmed by label-free comparative proteomic approach, in which quantitative changes in proteasome proteins, proteins related to photosynthesis, redox homeostasis, regulation factors/RNA processing proteins were observed may be implicated in the resistance of BRS-Marataoã to CPSMV. This pioneering study provides information for the selection of specific pathways and proteins, altered in this incompatible relationship, which could be chosen as targets for detailed studies to advance our understanding of the molecular, physiological, and biochemistry basis of the resistance mechanism of cowpea and design approachs to engineer plants that are more productive. This is a pioneering study in which an incompatible relationship between a resistant cowpea and Cowpea severe mosaic virus (CPSMV) was conducted to comparatively evaluate proteomic profiles by Gel-free/label-free methodology and some physiological and biochemical parameters to shed light on how a resistant cowpea cultivar deals with the virus attack. Specific proteins and associated pathways were altered in the cowpea plants challenged with CPSMV and will contribute to our knowledge on the biological process tailored by cowpea in response to CPSMV. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Biophysical and biochemical constraints imposed by salt stress: learning from halophytes

    PubMed Central

    Duarte, Bernardo; Sleimi, Noomene; Caçador, Isabel

    2014-01-01

    Soil salinization is one of the most important factors impacting plant productivity. About 3.6 billion of the world’s 5.2 billion ha of agricultural dry land, have already suffered erosion, degradation, and salinization. Halophytes are typically considered as plants able to complete their life cycle in environments where the salt concentration is above 200 mM NaCl. Salinity adjustment is a complex phenomenon but essential mechanism to overcome salt stress, with both biophysical and biochemical implications. At this level, halophytes evolved in several directions, adopting different strategies. Otherwise, the lack of adaptation to a salt environment would negatively affect their electron transduction pathways and the entire energetic metabolism, the foundation of every plant photosynthesis and biomass production. The maintenance of ionic homeostasis is in the basis of all cellular counteractive measures, in particular in terms of redox potential and energy transduction. In the present work the biophysical mechanisms underlying energy capture and transduction in halophytes are discussed alongside with their relation with biochemical counteractive mechanisms, integrating data from photosynthetic light harvesting complexes, electron transport chains to the quinone pools, carbon fixation, and energy dissipation metabolism. PMID:25566311

  17. An evolving paradigm for the secretory pathway?

    PubMed Central

    Lippincott-Schwartz, Jennifer

    2011-01-01

    The paradigm that the secretory pathway consists of a stable endoplasmic reticulum and Golgi apparatus, using discrete transport vesicles to exchange their contents, gained important support from groundbreaking biochemical and genetic studies during the 1980s. However, the subsequent development of new imaging technologies with green fluorescent protein introduced data on dynamic processes not fully accounted for by the paradigm. As a result, we may be seeing an example of how a paradigm is evolving to account for the results of new technologies and their new ways of describing cellular processes. PMID:22039065

  18. An integrated pathway system modeling of Saccharomyces cerevisiae HOG pathway: a Petri net based approach.

    PubMed

    Tomar, Namrata; Choudhury, Olivia; Chakrabarty, Ankush; De, Rajat K

    2013-02-01

    Biochemical networks comprise many diverse components and interactions between them. It has intracellular signaling, metabolic and gene regulatory pathways which are highly integrated and whose responses are elicited by extracellular actions. Previous modeling techniques mostly consider each pathway independently without focusing on the interrelation of these which actually functions as a single system. In this paper, we propose an approach of modeling an integrated pathway using an event-driven modeling tool, i.e., Petri nets (PNs). PNs have the ability to simulate the dynamics of the system with high levels of accuracy. The integrated set of signaling, regulatory and metabolic reactions involved in Saccharomyces cerevisiae's HOG pathway has been collected from the literature. The kinetic parameter values have been used for transition firings. The dynamics of the system has been simulated and the concentrations of major biological species over time have been observed. The phenotypic characteristics of the integrated system have been investigated under two conditions, viz., under the absence and presence of osmotic pressure. The results have been validated favorably with the existing experimental results. We have also compared our study with the study of idFBA (Lee et al., PLoS Comput Biol 4:e1000-e1086, 2008) and pointed out the differences between both studies. We have simulated and monitored concentrations of multiple biological entities over time and also incorporated feedback inhibition by Ptp2 which has not been included in the idFBA study. We have concluded that our study is the first to the best of our knowledge to model signaling, metabolic and regulatory events in an integrated form through PN model framework. This study is useful in computational simulation of system dynamics for integrated pathways as there are growing evidences that the malfunctioning of the interplay among these pathways is associated with disease.

  19. A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery.

    PubMed

    Karim, Ashty S; Jewett, Michael C

    2016-07-01

    Speeding up design-build-test (DBT) cycles is a fundamental challenge facing biochemical engineering. To address this challenge, we report a new cell-free protein synthesis driven metabolic engineering (CFPS-ME) framework for rapid biosynthetic pathway prototyping. In our framework, cell-free cocktails for synthesizing target small molecules are assembled in a mix-and-match fashion from crude cell lysates either containing selectively enriched pathway enzymes from heterologous overexpression or directly producing pathway enzymes in lysates by CFPS. As a model, we apply our approach to n-butanol biosynthesis showing that Escherichia coli lysates support a highly active 17-step CoA-dependent n-butanol pathway in vitro. The elevated degree of flexibility in the cell-free environment allows us to manipulate physiochemical conditions, access enzymatic nodes, discover new enzymes, and prototype enzyme sets with linear DNA templates to study pathway performance. We anticipate that CFPS-ME will facilitate efforts to define, manipulate, and understand metabolic pathways for accelerated DBT cycles without the need to reengineer organisms. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... conditions are identified within the test notes. Definitions that apply to all biochemical data requirements... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides...

  1. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... conditions are identified within the test notes. Definitions that apply to all biochemical data requirements... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides...

  2. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... conditions are identified within the test notes. Definitions that apply to all biochemical data requirements... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides...

  3. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conditions are identified within the test notes. Definitions that apply to all biochemical data requirements... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides...

  4. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conditions are identified within the test notes. Definitions that apply to all biochemical data requirements... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides...

  5. Non-Smad signaling pathways.

    PubMed

    Mu, Yabing; Gudey, Shyam Kumar; Landström, Maréne

    2012-01-01

    Transforming growth factor-beta (TGFβ) is a key regulator of cell fate during embryogenesis and has also emerged as a potent driver of the epithelial-mesenchymal transition during tumor progression. TGFβ signals are transduced by transmembrane type I and type II serine/threonine kinase receptors (TβRI and TβRII, respectively). The activated TβR complex phosphorylates Smad2 and Smad3, converting them into transcriptional regulators that complex with Smad4. TGFβ also uses non-Smad signaling pathways such as the p38 and Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways to convey its signals. Ubiquitin ligase tumor necrosis factor (TNF)-receptor-associated factor 6 (TRAF6) and TGFβ-associated kinase 1 (TAK1) have recently been shown to be crucial for the activation of the p38 and JNK MAPK pathways. Other TGFβ-induced non-Smad signaling pathways include the phosphoinositide 3-kinase-Akt-mTOR pathway, the small GTPases Rho, Rac, and Cdc42, and the Ras-Erk-MAPK pathway. Signals induced by TGFβ are tightly regulated and specified by post-translational modifications of the signaling components, since they dictate the subcellular localization, activity, and duration of the signal. In this review, we discuss recent findings in the field of TGFβ-induced responses by non-Smad signaling pathways.

  6. Somatic mutations affect key pathways in lung adenocarcinoma

    PubMed Central

    Ding, Li; Getz, Gad; Wheeler, David A.; Mardis, Elaine R.; McLellan, Michael D.; Cibulskis, Kristian; Sougnez, Carrie; Greulich, Heidi; Muzny, Donna M.; Morgan, Margaret B.; Fulton, Lucinda; Fulton, Robert S.; Zhang, Qunyuan; Wendl, Michael C.; Lawrence, Michael S.; Larson, David E.; Chen, Ken; Dooling, David J.; Sabo, Aniko; Hawes, Alicia C.; Shen, Hua; Jhangiani, Shalini N.; Lewis, Lora R.; Hall, Otis; Zhu, Yiming; Mathew, Tittu; Ren, Yanru; Yao, Jiqiang; Scherer, Steven E.; Clerc, Kerstin; Metcalf, Ginger A.; Ng, Brian; Milosavljevic, Aleksandar; Gonzalez-Garay, Manuel L.; Osborne, John R.; Meyer, Rick; Shi, Xiaoqi; Tang, Yuzhu; Koboldt, Daniel C.; Lin, Ling; Abbott, Rachel; Miner, Tracie L.; Pohl, Craig; Fewell, Ginger; Haipek, Carrie; Schmidt, Heather; Dunford-Shore, Brian H.; Kraja, Aldi; Crosby, Seth D.; Sawyer, Christopher S.; Vickery, Tammi; Sander, Sacha; Robinson, Jody; Winckler, Wendy; Baldwin, Jennifer; Chirieac, Lucian R.; Dutt, Amit; Fennell, Tim; Hanna, Megan; Johnson, Bruce E.; Onofrio, Robert C.; Thomas, Roman K.; Tonon, Giovanni; Weir, Barbara A.; Zhao, Xiaojun; Ziaugra, Liuda; Zody, Michael C.; Giordano, Thomas; Orringer, Mark B.; Roth, Jack A.; Spitz, Margaret R.; Wistuba, Ignacio I.; Ozenberger, Bradley; Good, Peter J.; Chang, Andrew C.; Beer, David G.; Watson, Mark A.; Ladanyi, Marc; Broderick, Stephen; Yoshizawa, Akihiko; Travis, William D.; Pao, William; Province, Michael A.; Weinstock, George M.; Varmus, Harold E.; Gabriel, Stacey B.; Lander, Eric S.; Gibbs, Richard A.; Meyerson, Matthew; Wilson, Richard K.

    2009-01-01

    Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers—including NF1, APC, RB1 and ATM—and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment. PMID:18948947

  7. Post-translational modifications are key players of the Legionella pneumophila infection strategy

    PubMed Central

    Michard, Céline; Doublet, Patricia

    2015-01-01

    Post-translational modifications (PTMs) are widely used by eukaryotes to control the enzymatic activity, localization or stability of their proteins. Traditionally, it was believed that the broad biochemical diversity of the PTMs is restricted to eukaryotic cells, which exploit it in extensive networks to fine-tune various and complex cellular functions. During the last decade, the advanced detection methods of PTMs and functional studies of the host–pathogen relationships highlight that bacteria have also developed a large arsenal of PTMs, particularly to subvert host cell pathways to their benefit. Legionella pneumophila, the etiological agent of the severe pneumonia legionellosis, is the paradigm of highly adapted intravacuolar pathogens that have set up sophisticated biochemical strategies. Among them, L. pneumophila has evolved eukaryotic-like and rare/novel PTMs to hijack host cell processes. Here, we review recent progress about the diversity of PTMs catalyzed by Legionella: ubiquitination, prenylation, phosphorylation, glycosylation, methylation, AMPylation, and de-AMPylation, phosphocholination, and de-phosphocholination. We focus on the host cell pathways targeted by the bacteria catalyzed PTMs and we stress the importance of the PTMs in the Legionella infection strategy. Finally, we highlight that the discovery of these PTMs undoubtedly made significant breakthroughs on the molecular basis of Legionella pathogenesis but also lead the way in improving our knowledge of the eukaryotic PTMs and complex cellular processes that are associated to. PMID:25713573

  8. Bone Morphogenetic Proteins and myostatin pathways: key mediator of human sarcopenia.

    PubMed

    Scimeca, Manuel; Piccirilli, Eleonora; Mastrangeli, Francesca; Rao, Cecilia; Feola, Maurizio; Orlandi, Augusto; Gasbarra, Elena; Bonanno, Elena; Tarantino, Umberto

    2017-02-15

    Sarcopenia, osteoporosis and osteoarthritis are the most frequent musculoskeletal disorders affecting older people. The main aim of this study was to test the hypothesis that the balance between BMPs and myostatin pathways regulates the age-related muscle degeneration in OP and OA patients. To this end, we investigated the relationship among the expression of BMP-2/4-7, myostatin and phosphorylated Smads1-5-8 and the muscle quality, evaluated in term of fibers atrophy and satellite cells activity. In this retrospective study, we collected 123 biopsies of vastus lateralis: 48 biopsies from patients who underwent hip arthroplasty for subcapital fractures of the femur (OP), 55 biopsies from patients who underwent hip arthroplasty for osteoarthritis (OA) and 20 biopsies from patients who underwent hip arthroplasty for high-energy hip fractures (CTRL). Muscle biopsies were fixed in 4% paraformaldehyde and paraffin embedded. Serial sections were used for morphometrical and immunohistochemical analysis (BMP/2/4-7, myostatin, Smads1-5-8, Pax7 and myogenin). In addition, 1 mm 3 of muscle tissue of each patient was embedded in epon for ultrastructural study. Morphometric data indicated an increase of the number of atrophic fibers in OP patients compare to OA. In line with these data, we found an high regenerative potential in muscle tissues of OA patients due to the significant amount of both Pax7 and myogenin positive satellite cells detected in OA group. In addition, our data showed the decrease of BMP2/4 and -7 expression in OP patients compared to both OA group and CTRL. Conversely, OP patients were characterized by high levels of myostatin expression. A different expression profile was also found for phosphorylated Smad1-5-8 between OP and OA patients. In particular, OP patients showed a low number of positive phosphorylated Smad1-5-8 nuclei. The identification of molecular pathways involved in the pathogenesis of sarcopenia open new prospective for the development of

  9. Molecular and biochemical characterization of tomato farnesyl-protein transferase.

    PubMed

    Schmitt, D; Callan, K; Gruissem, W

    1996-10-01

    The prenylation of membrane-associated proteins involved in the regulation of eukaryotic cell growth and signal transduction is critically important for their subcellular localization and biological activity. In contrast to mammalian cells and yeast, however, the function of protein prenylation in plants is not well understood and only a few prenylated proteins have been identified. We partially purified and characterized farnesyl-protein transferase from tomato (Lycopersicon esculentum, LeFTase) to analyze its biochemical and molecular properties. Using Ras- and G gamma-specific peptide substrates and competition assays we showed that tomato protein extracts have both farnesyl-protein transferase and geranylgeranyl-protein transferase 1 activities. Compared with the heterologous synthetic peptide substrates, the plant-specific CaaX sequence of the ANJ1 protein is a less efficient substrate for LeFTase in vitro. LeFTase activity profiles and LeFTase beta-subunit protein (LeFTB) levels differ significantly in various tissues and are regulated during fruit development. Partially purified LeFTase requires Zn2+ and Mg2+ for enzymatic activity and has an apparent molecular mass of 100 kD Immunoprecipitation experiments using anti-alpha LeFTB antibodies confirmed that LeFTB is a component of LeFTase but not of tomato geranylgeranyl-protein transferase 1. Based on their conserved bio-chemical activities, we expect that prenyltransferases are likely integrated with the sterol biosynthesis pathway in the control of plant cell growth.

  10. Pathway-based approaches for assessment of real-time exposure to an estrogenic wastewater treatment plant effluent on fathead minnow reproduction

    USGS Publications Warehouse

    Cavallin, Jenna E.; Jensen, Kathleen M.; Kahl, Michael D.; Villeneuve, Daniel L.; Lee, Kathy E.; Schroeder, Anthony L.; Mayasich, Joe; Eid, Evan P.; Nelson, Krysta R.; Milsk, Rebecca Y.; Blackwell, Brett R.; Berninger, Jason P.; LaLone, Carlie A.; Blanskma, Chad; Jicha, Terri M.; Elonen, Colleen M.; Johnson, Rodney C.; Ankley, Gerald T.

    2016-01-01

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds, such as estrogens, which can affect the hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined reproductive effects in fathead minnows exposed for 21 d to a historically estrogenic WWTP effluent. Fathead minnow breeding pairs were held in control water or 1 of 3 effluent concentrations (5%, 20%, and 100%) in a novel onsite, flow-through system providing real-time exposure. The authors examined molecular and biochemical endpoints representing key events along adverse outcome pathways linking estrogen receptor activation and other molecular initiating events to reproductive impairment. In addition, the authors used chemical analysis of the effluent to construct a chemical-gene interaction network to aid in targeted gene expression analyses and identifying potentially impacted biological pathways. Cumulative fecundity was significantly reduced in fish exposed to 100% effluent but increased in those exposed to 20% effluent, the approximate dilution factor in the receiving waters. Plasma vitellogenin concentrations in males increased in a dose-dependent manner with effluent concentration; however, male fertility was not impacted. Although in vitro analyses, analytical chemistry, and biomarker responses confirmed the effluent was estrogenic, estrogen receptor agonists were unlikely the primary driver of impaired reproduction. The results provide insights into the significance of pathway-based effects with regard to predicting adverse reproductive outcomes.

  11. Proteomic and Biochemical Changes during Senescence of Phalaenopsis ‘Red Dragon’ Petals

    PubMed Central

    Chen, Cong; Zeng, Lanting; Ye, Qingsheng

    2018-01-01

    Phalaenopsis flowers are some of the most popular ornamental flowers in the world. For most ornamental plants, petal longevity determines postharvest quality and garden performance. Therefore, it is important to have insight into the senescence mechanism of Phalaenopsis. In the present study, a proteomic approach combined with ultrastructural observation and activity analysis of antioxidant enzymes was used to profile the molecular and biochemical changes during pollination-induced petal senescence in Phalaenopsis “Red Dragon”. Petals appeared to be visibly wilting at 24 h after pollination, accompanied by the mass degradation of macromolecules and organelles during senescence. In addition, 48 protein spots with significant differences in abundance were found by two-dimensional electrophoresis (2-DE) and subjected to matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS). There were 42 protein spots successfully identified and homologous to known functional protein species involved in key biological processes, including antioxidant pathways, stress response, protein metabolism, cell wall component metabolism, energy metabolism, cell structure, and signal transduction. The activity of all reactive oxygen species (ROS)-scavenging enzymes was increased, keeping the content of ROS at a low level at the early stage of senescence. These results suggest that two processes, a counteraction against increased levels of ROS and the degradation of cellular constituents for maintaining nutrient recycling, are activated during pollination-induced petal senescence in Phalaenopsis. The information provides a basis for understanding the mechanism regulating petal senescence and prolonging the florescence of Phalaenopsis. PMID:29710804

  12. Integrated metabolomics and proteomics highlight altered nicotinamide and polyamine pathways in lung adenocarcinoma

    PubMed Central

    Fahrmann, Johannes F.; Grapov, Dmitry; Wanichthanarak, Kwanjeera; DeFelice, Brian C.; Salemi, Michelle R.; Rom, William N.; Gandara, David R.; Phinney, Brett S.; Fiehn, Oliver; Pass, Harvey

    2017-01-01

    Abstract Lung cancer is the leading cause of cancer mortality in the United States with non-small cell lung cancer adenocarcinoma being the most common histological type. Early perturbations in cellular metabolism are a hallmark of cancer, but the extent of these changes in early stage lung adenocarcinoma remains largely unknown. In the current study, an integrated metabolomics and proteomics approach was utilized to characterize the biochemical and molecular alterations between malignant and matched control tissue from 27 subjects diagnosed with early stage lung adenocarcinoma. Differential analysis identified 71 metabolites and 1102 proteins that delineated tumor from control tissue. Integrated results indicated four major metabolic changes in early stage adenocarcinoma (1): increased glycosylation and glutaminolysis (2); elevated Nrf2 activation (3); increase in nicotinic and nicotinamide salvaging pathways and (4) elevated polyamine biosynthesis linked to differential regulation of the s-adenosylmethionine/nicotinamide methyl-donor pathway. Genomic data from publicly available databases were included to strengthen proteomic findings. Our findings provide insight into the biochemical and molecular biological reprogramming that may accompany early stage lung tumorigenesis and highlight potential therapeutic targets. PMID:28049629

  13. Metabolomics for Undergraduates: Identification and Pathway Assignment of Mitochondrial Metabolites

    ERIC Educational Resources Information Center

    Marques, Ana Patrícia; Serralheiro, Maria Luisa; Ferreira, António E. N.; Freire, Ana Ponces; Cordeiro, Carlos; Silva, Marta Sousa

    2016-01-01

    Metabolomics is a key discipline in systems biology, together with genomics, transcriptomics, and proteomics. In this omics cascade, the metabolome represents the biochemical products that arise from cellular processes and is often regarded as the final response of a biological system to environmental or genetic changes. The overall screening…

  14. Clinical pathway for video-assisted thoracic surgery: the Hong Kong story.

    PubMed

    Sihoe, Alan D L

    2016-02-01

    A clinical pathway provides a scheduled, objective protocol for the multi-disciplinary, evidence-based management of patients with a specific condition or undergoing a specific procedure. In implementing a clinical pathway for the care of patients receiving video-assisted thoracic surgery (VATS) in Hong Kong, many insights were gained into what makes a clinical pathway work: meticulous preparation and team-building are keys to success; the pathway must be constantly reviewed and revisions made in response to evolving clinical need; and data collection is a key element to allow auditing and clinical research. If these can be achieved, a clinical pathway delivers not only measurable improvements in patient outcomes, but also fundamentally complements clinical advances such as VATS. This article narrates the story of how the clinical pathway for VATS in Hong Kong was created and evolved, highlighting how the above lessons were learned.

  15. Additional targets of the Arabidopsis autonomous pathway members, FCA and FY.

    PubMed

    Marquardt, S; Boss, P K; Hadfield, J; Dean, C

    2006-01-01

    A central player in the Arabidopsis floral transition is the floral repressor FLC, the MADS-box transcriptional regulator that inhibits the activity of genes required to switch the meristem from vegetative to floral development. One of the many pathways that regulate FLC expression is the autonomous promotion pathway composed of FCA, FY, FLD, FPA, FVE, LD, and FLK. Rather than a hierarchical set of activities the autonomous promotion pathway comprises sub-pathways of genes with different biochemical functions that all share FLC as a target. One sub-pathway involves FCA and FY, which interact to regulate RNA processing of FLC. Several of the identified components (FY, FVE, and FLD) are homologous to yeast and mammalian proteins with rather generic roles in gene regulation. So why do mutations in these genes specifically show a late-flowering phenotype in Arabidopsis? One reason, found during the analysis of fy alleles, is that the mutant alleles identified in flowering screens can be hypomorphic, they still have partial function. A broader role for the autonomous promotion pathway is supported by a microarray analysis which has identified genes mis-regulated in fca mutants, and whose expression is also altered in fy mutants.

  16. miR-133 is a key negative regulator of CDC42-PAK pathway in gastric cancer.

    PubMed

    Cheng, Zhenguo; Liu, Funan; Wang, Guanqiao; Li, Yanshu; Zhang, Hongyan; Li, Feng

    2014-12-01

    Cell division cycle 42 (CDC42), an important member of the Ras homolog (Rho) family, plays a key role in regulating multiple cellular processes such as cell cycle progression, migration, cell cytoskeleton organization, cell fate determination and differentiation. Among the downstream effectors of CDC42, P21-activated kinases (PAKs) obtain the most attention. Although a large body of evidence indicates that CDC42/PAKs pathway plays important role in tumor growth, invasion and metastasis, the mechanism of their negative regulation remains unclear. Here, we identified CDC42, a PAKs activating factor, was a target of miR-133. Ectopic overexpression of miRNAs not only downregulated CDC42 expression and PAKs activation, but also inhibited cancer cell proliferation and migration. We also found that miR-133 was down-regulated in 180 pairs gastric cancer tissues. miR-133 expression was negatively associated with tumor size, invasion depth and peripheral organ metastasis. Besides, dysfunction of miR-133 was an independent prognosis factor for overall survival. Our findings could provide new insights into the molecular mechanisms of gastric carcinogenesis, and may help facilitating development of CDC42/PAK-based therapies for human cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Systems biology by the rules: hybrid intelligent systems for pathway modeling and discovery.

    PubMed

    Bosl, William J

    2007-02-15

    Expert knowledge in journal articles is an important source of data for reconstructing biological pathways and creating new hypotheses. An important need for medical research is to integrate this data with high throughput sources to build useful models that span several scales. Researchers traditionally use mental models of pathways to integrate information and development new hypotheses. Unfortunately, the amount of information is often overwhelming and these are inadequate for predicting the dynamic response of complex pathways. Hierarchical computational models that allow exploration of semi-quantitative dynamics are useful systems biology tools for theoreticians, experimentalists and clinicians and may provide a means for cross-communication. A novel approach for biological pathway modeling based on hybrid intelligent systems or soft computing technologies is presented here. Intelligent hybrid systems, which refers to several related computing methods such as fuzzy logic, neural nets, genetic algorithms, and statistical analysis, has become ubiquitous in engineering applications for complex control system modeling and design. Biological pathways may be considered to be complex control systems, which medicine tries to manipulate to achieve desired results. Thus, hybrid intelligent systems may provide a useful tool for modeling biological system dynamics and computational exploration of new drug targets. A new modeling approach based on these methods is presented in the context of hedgehog regulation of the cell cycle in granule cells. Code and input files can be found at the Bionet website: www.chip.ord/~wbosl/Software/Bionet. This paper presents the algorithmic methods needed for modeling complicated biochemical dynamics using rule-based models to represent expert knowledge in the context of cell cycle regulation and tumor growth. A notable feature of this modeling approach is that it allows biologists to build complex models from their knowledge base without

  18. Proline Precursors and Collagen Synthesis: Biochemical Challenges of Nutrient Supplementation and Wound Healing.

    PubMed

    Albaugh, Vance L; Mukherjee, Kaushik; Barbul, Adrian

    2017-11-01

    Wound healing is a complex process marked by highly coordinated immune fluxes into an area of tissue injury; these are required for re-establishment of normal tissue integrity. Along with this cascade of cellular players, wound healing also requires coordinated flux through a number of biochemical pathways, leading to synthesis of collagen and recycling or removal of damaged tissues. The availability of nutrients, especially amino acids, is critical for wound healing, and enteral supplementation has been intensely studied as a potential mechanism to augment wound healing-either by increasing tensile strength, decreasing healing time, or both. From a practical standpoint, although enteral nutrient supplementation may seem like a reasonable strategy to augment healing, a number of biochemical and physiologic barriers exist that limit this strategy. In this critical review, the physiology of enteral amino acid metabolism and supplementation and challenges therein are discussed in the context of splanchnic physiology and biochemistry. Additionally, a review of studies examining various methods of amino acid supplementation and the associated effects on wound outcomes are discussed. © 2017 American Society for Nutrition.

  19. A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, J.; Xu, C.; Andre, C.

    2011-06-23

    Neutral lipid metabolism has been extensively studied in yeast, plants and mammals. In contrast, little information is available regarding the biochemical pathway, enzymes and regulatory factors involved in the biosynthesis of triacylglycerol (TAG) in microalgae. In the conventional TAG biosynthetic pathway widely accepted for yeast, plants and mammals, TAG is assembled in the endoplasmic reticulum (ER) from its immediate precursor diacylglycerol (DAG) made by ER-specific acyltransferases, and is deposited exclusively in lipid droplets in the cytosol. Here, we demonstrated that the unicellular microalga Chlamydomonas reinhardtii employs a distinct pathway that uses DAG derived almost exclusively from the chloroplast to producemore » TAG. This unique TAG biosynthesis pathway is largely dependent on de novo fatty acid synthesis, and the TAG formed in this pathway is stored in lipid droplets in both the chloroplast and the cytosol. These findings have wide implications for understanding TAG biosynthesis and storage and other areas of lipid metabolism in microalgae and other organisms.« less

  20. Present status of biochemical research on the insecticide resistance problem*

    PubMed Central

    Agosin, Moises

    1963-01-01

    In order to provide a rational basis for the development of new insecticides, a thorough understanding of resistance mechanisms is necessary and this presupposes a detailed knowledge of the normal biochemical pathways in insects. The author reviews recent progress in this field, particularly the work on enzymatic detoxication of insecticides which appears to be the most important single factor in the production of resistance. The mechanisms include dehydrochlorination and α-methylenic oxidation (DDT), hydrolysis by phosphatases or carboxyesterases (organophosphorus compounds), and oxidation by microsomal enzyme systems (various classes of insecticides). Much work still needs to be done on the enzyme systems involved, especially in relation to substrate specificity and the effect of enzyme inhibitors that might act as synergists of insecticides. PMID:20604178

  1. Immortalization of cat iris sphincter smooth muscle cells by SV40 virus: growth, morphological, biochemical and pharmacological characteristics.

    PubMed

    Ocklind, A; Yousufzai, S Y; Ghosh, S; Coca-Prados, M; St Jernschantz, J; Abdel-Latif, A A

    1995-11-01

    The purpose of this study was to establish immortalized cell cultures of cat iris sphincter smooth muscle cells for a model investigating ocular receptors and their signal transduction pathways. Cultured cat iris sphincter muscle cells were immortalized by viral transformation with SV40 virus and the morphological and immunocytochemical properties of the normal and immortalized cells were investigated. The transformed cell clone, SV-CISM-2, was further characterized biochemically and pharmacologically. The normal muscle cells showed characteristics of smooth muscle cells, as judged by their growth and the presence of smooth muscle alpha-actin and desmin. After seven passages the normal cells ceased to proliferate. In contrast, the immortalized cells retained their proliferative ability for more than 220 population doublings over 55 passages. The transformation phenotype in these cells was confirmed by their expression of the large T-antigen, the incorporation of viral DNA into cellular DNA, growth in agarose and in low-serum medium, and complete loss of contact inhibition. The immortalized cells expressed smooth muscle alpha-actin, desmin and MLC protein. Biochemical and pharmacological studies on the SV-CISM cells revealed the presence of several functional receptors including muscarinic cholinergic, beta-adrenergic, peptidergic (substance P and endothelin). Platelet-activating factor, and prostaglandin (PG). Muscarinic stimulation of these cells resulted in: (a) a dose-dependent increase in the release of arachidonic acid (AA) and (PGs) and enhancement in the production of inositol trisphosphate (IP3); and (b) a substantial increase in MLC phosphorylation (118%), an indicator of smooth muscle contractility. The stimulatory effects of carbachol on these responses were completely blocked by atropine, a muscarinic receptor antagonist. This study constitutes the first successful immortalization of iris sphincter smooth muscle cells. The SV-CISM-2 cells can serve as

  2. Metabolic Pathways Visualization Skills Development by Undergraduate Students

    ERIC Educational Resources Information Center

    dos Santos, Vanessa J. S. V.; Galembeck, Eduardo

    2015-01-01

    We have developed a metabolic pathways visualization skill test (MPVST) to gain greater insight into our students' abilities to comprehend the visual information presented in metabolic pathways diagrams. The test is able to discriminate students' visualization ability with respect to six specific visualization skills that we identified as key to…

  3. Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways

    NASA Technical Reports Server (NTRS)

    McAllister, T. N.; Frangos, J. A.

    1999-01-01

    Fluid flow has been shown to be a potent stimulus in osteoblasts and osteocytes and may therefore play an important role in load-induced bone remodeling. The objective of this study was to investigate the characteristics of flow-activated pathways. Previously we reported that fluid flow stimulates rapid and continuous release of nitric oxide (NO) in primary rat calvarial osteoblasts. Here we demonstrate that flow-induced NO release is mediated by shear stress and that this response is distinctly biphasic. Transients in shear stress associated with the onset of flow stimulated a burst in NO production (8.2 nmol/mg of protein/h), while steady flow stimulated sustained NO production (2.2 nmol/mg of protein/h). Both G-protein inhibition and calcium chelation abolished the burst phase but had no effect on sustained production. Activation of G-proteins stimulated dose-dependent NO release in static cultures of both calvarial osteoblasts and UMR-106 osteoblast-like cells. Pertussis toxin had no effect on NO release. Calcium ionophore stimulated low levels of NO production within 15 minutes but had no effect on sustained production. Taken together, these data suggest that fluid shear stress stimulates NO release by two distinct pathways: a G-protein and calcium-dependent phase sensitive to flow transients, and a G-protein and calcium-independent pathway stimulated by sustained flow.

  4. Similarities and differences between the Wnt and reelin pathways in the forming brain.

    PubMed

    Reiner, Orly; Sapir, Tamar

    2005-01-01

    One of the key features in development is the reutilization of successful signaling pathways. Here, we emphasize the involvement of the Wnt pathway, one of the five kinds of signal transduction pathway predominating early embryonic development of all animals, in regulating the formation of brain structure. We discuss the interrelationships between the Wnt and reelin pathways in the regulation of cortical layering. We summarize data emphasizing key molecules, which, when mutated, result in abnormal brain development. This integrated view, which is based on conservation of pathways, reveals the relative position of participants in the pathway, points to control mechanisms, and allows raising testable working hypotheses. Nevertheless, although signaling pathways are highly conserved from flies to humans, the overall morphology is not. We propose that future studies directed at understanding of diversification will provide fruitful insights on mammalian brain formation.

  5. Structuring evolution: biochemical networks and metabolic diversification in birds.

    PubMed

    Morrison, Erin S; Badyaev, Alexander V

    2016-08-25

    Recurrence and predictability of evolution are thought to reflect the correspondence between genomic and phenotypic dimensions of organisms, and the connectivity in deterministic networks within these dimensions. Direct examination of the correspondence between opportunities for diversification imbedded in such networks and realized diversity is illuminating, but is empirically challenging because both the deterministic networks and phenotypic diversity are modified in the course of evolution. Here we overcome this problem by directly comparing the structure of a "global" carotenoid network - comprising of all known enzymatic reactions among naturally occurring carotenoids - with the patterns of evolutionary diversification in carotenoid-producing metabolic networks utilized by birds. We found that phenotypic diversification in carotenoid networks across 250 species was closely associated with enzymatic connectivity of the underlying biochemical network - compounds with greater connectivity occurred the most frequently across species and were the hotspots of metabolic pathway diversification. In contrast, we found no evidence for diversification along the metabolic pathways, corroborating findings that the utilization of the global carotenoid network was not strongly influenced by history in avian evolution. The finding that the diversification in species-specific carotenoid networks is qualitatively predictable from the connectivity of the underlying enzymatic network points to significant structural determinism in phenotypic evolution.

  6. MATI, a Novel Protein Involved in the Regulation of Herbivore-Associated Signaling Pathways

    PubMed Central

    Santamaría, M. Estrella; Martinez, Manuel; Arnaiz, Ana; Ortego, Félix; Grbic, Vojislava; Diaz, Isabel

    2017-01-01

    The defense response of the plants against herbivores relies on a complex network of interconnected signaling pathways. In this work, we characterized a new key player in the response of Arabidopsis against the two-spotted spider mite Tetranychus urticae, the MATI (Mite Attack Triggered Immunity) gene. This gene was differentially induced in resistant Bla-2 strain relative to susceptible Kon Arabidopsis accessions after mite attack, suggesting a potential role in the control of spider mites. To study the MATI gene function, it has been performed a deep molecular characterization of the gene combined with feeding bioassays using modified Arabidopsis lines and phytophagous arthropods. The MATI gene belongs to a new gene family that had not been previously characterized. Biotic assays showed that it confers a high tolerance not only to T. urticae, but also to the chewing lepidopteran Spodoptera exigua. Biochemical analyses suggest that MATI encodes a protein involved in the accumulation of reducing agents upon herbivore attack to control plant redox homeostasis avoiding oxidative damage and cell death. Besides, molecular analyses demonstrated that MATI is involved in the modulation of different hormonal signaling pathways, affecting the expression of genes involved in biosynthesis and signaling of the jasmonic acid and salicylic acid hormones. The fact that MATI is also involved in defense through the modulation of the levels of photosynthetic pigments highlights the potential of MATI proteins to be exploited as biotechnological tools for pest control. PMID:28649257

  7. Parallel comparative proteomics and phosphoproteomics reveal that cattle myostatin regulates phosphorylation of key enzymes in glycogen metabolism and glycolysis pathway

    PubMed Central

    Yang, Shuping; Li, Xin; Liu, Xinfeng; Ding, Xiangbin; Xin, Xiangbo; Jin, Congfei; Zhang, Sheng; Li, Guangpeng; Guo, Hong

    2018-01-01

    MSTN-encoded myostatin is a negative regulator of skeletal muscle development. Here, we utilized the gluteus tissues from MSTN gene editing and wild type Luxi beef cattle which are native breed of cattle in China, performed tandem mass tag (TMT) -based comparative proteomics and phosphoproteomics analyses to investigate the regulatory mechanism of MSTN related to cellular metabolism and signaling pathway in muscle development. Out of 1,315 proteins, 69 differentially expressed proteins (DEPs) were found in global proteomics analysis. Meanwhile, 149 differentially changed phosphopeptides corresponding to 76 unique phosphorylated proteins (DEPPs) were detected from 2,600 identified phosphopeptides in 702 phosphorylated proteins. Bioinformatics analyses suggested that majority of DEPs and DEPPs were closely related to glycolysis, glycogenolysis, and muscle contractile fibre processes. The global discovery results were validated by Multiple Reaction Monitoring (MRM)-based targeted peptide quantitation analysis, western blotting, and muscle glycogen content measurement. Our data revealed that increase in abundance of key enzymes and phosphorylation on their regulatory sites appears responsible for the enhanced glycogenolysis and glycolysis in MSTN−/−. The elevated glycogenolysis was assocaited with an enhanced phosphorylation of Ser1018 in PHKA1, and Ser641/Ser645 in GYS1, which were regulated by upstream phosphorylated AKT-GSK3β pathway and highly consistent with the lower glycogen content in gluteus of MSTN−/−. Collectively, this study provides new insights into the regulatory mechanisms of MSTN involved in energy metabolism and muscle growth. PMID:29541418

  8. Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects

    PubMed Central

    Abbas, Ghulam; Murtaza, Behzad; Bibi, Irshad; Shahid, Muhammad; Khan, Muhammad Imran; Amjad, Muhammad; Hussain, Munawar; Natasha

    2018-01-01

    Environmental contamination with arsenic (As) is a global environmental, agricultural and health issue due to the highly toxic and carcinogenic nature of As. Exposure of plants to As, even at very low concentration, can cause many morphological, physiological, and biochemical changes. The recent research on As in the soil-plant system indicates that As toxicity to plants varies with its speciation in plants (e.g., arsenite, As(III); arsenate, As(V)), with the type of plant species, and with other soil factors controlling As accumulation in plants. Various plant species have different mechanisms of As(III) or As(V) uptake, toxicity, and detoxification. This review briefly describes the sources and global extent of As contamination and As speciation in soil. We discuss different mechanisms responsible for As(III) and As(V) uptake, toxicity, and detoxification in plants, at physiological, biochemical, and molecular levels. This review highlights the importance of the As-induced generation of reactive oxygen species (ROS), as well as their damaging impacts on plants at biochemical, genetic, and molecular levels. The role of different enzymatic (superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase) and non-enzymatic (salicylic acid, proline, phytochelatins, glutathione, nitric oxide, and phosphorous) substances under As(III/V) stress have been delineated via conceptual models showing As translocation and toxicity pathways in plant species. Significantly, this review addresses the current, albeit partially understood, emerging aspects on (i) As-induced physiological, biochemical, and genotoxic mechanisms and responses in plants and (ii) the roles of different molecules in modulation of As-induced toxicities in plants. We also provide insight on some important research gaps that need to be filled to advance our scientific understanding in this area of research on As in soil-plant systems. PMID:29301332

  9. Modular and Stochastic Approaches to Molecular Pathway Models of ATM, TGF beta, and WNT Signaling

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; O'Neill, Peter; Ponomarev, Artem; Carra, Claudio; Whalen, Mary; Pluth, Janice M.

    2009-01-01

    Deterministic pathway models that describe the biochemical interactions of a group of related proteins, their complexes, activation through kinase, etc. are often the basis for many systems biology models. Low dose radiation effects present a unique set of challenges to these models including the importance of stochastic effects due to the nature of radiation tracks and small number of molecules activated, and the search for infrequent events that contribute to cancer risks. We have been studying models of the ATM, TGF -Smad and WNT signaling pathways with the goal of applying pathway models to the investigation of low dose radiation cancer risks. Modeling challenges include introduction of stochastic models of radiation tracks, their relationships to more than one substrate species that perturb pathways, and the identification of a representative set of enzymes that act on the dominant substrates. Because several pathways are activated concurrently by radiation the development of modular pathway approach is of interest.

  10. Metabolic, Genomic, and Biochemical Analyses of Glandular Trichomes from the Wild Tomato Species Lycopersicon hirsutum Identify a Key Enzyme in the Biosynthesis of MethylketonesW⃞

    PubMed Central

    Fridman, Eyal; Wang, Jihong; Iijima, Yoko; Froehlich, John E.; Gang, David R.; Ohlrogge, John; Pichersky, Eran

    2005-01-01

    Medium-length methylketones (C7-C15) are highly effective in protecting plants from numerous pests. We used a biochemical genomics approach to elucidate the pathway leading to synthesis of methylketones in the glandular trichomes of the wild tomato Lycopersicon hirsutum f glabratum (accession PI126449). A comparison of gland EST databases from accession PI126449 and a second L. hirsutum accession, LA1777, whose glands do not contain methylketones, showed that the expression of genes for fatty acid biosynthesis is elevated in PI126449 glands, suggesting de novo biosynthesis of methylketones. A cDNA abundant in the PI126449 gland EST database but rare in the LA1777 database was similar in sequence to plant esterases. This cDNA, designated Methylketone Synthase 1 (MKS1), was expressed in Escherichia coli and the purified protein used to catalyze in vitro reactions in which C12, C14, and C16 β-ketoacyl–acyl-carrier-proteins (intermediates in fatty acid biosynthesis) were hydrolyzed and decarboxylated to give C11, C13, and C15 methylketones, respectively. Although MKS1 does not contain a classical transit peptide, in vitro import assays showed that it was targeted to the stroma of plastids, where fatty acid biosynthesis occurs. Levels of MKS1 transcript, protein, and enzymatic activity were correlated with levels of methylketones and gland density in a variety of tomato accessions and in different plant organs. PMID:15772286

  11. Physiological and biochemical characteristics of adrenergic receptors and pathways in brown adipocytes

    NASA Technical Reports Server (NTRS)

    Horwitz, B. A.

    1975-01-01

    Mechanisms involved in the thermogenic response of brown adipose tissue (BAT) to sympathetic nervous stimulation (e.g., by cold exposure) and to norepinephrine (NE) release are investigated. Three effects appear to play a role in the increased oxygen consumption (and heat production) of the adipocytes: increased membrane permeability, activation of the beta-adrenergic pathway, and enhancement of Na(+)/K(+) membrane pump activity. Increased passive influx of Na(+) and efflux of K(+) due to greater permeability raise the energy demands of the Na/K pump; the pump is also stimulated by increased cyclic AMP synthesis resulting from activation by NE of membrane-bound adenyl cyclase. Studies with inhibitors such as propanolol, phentolamine, and ouabain support this hypothesis.

  12. Pathways to School Success

    ERIC Educational Resources Information Center

    University of Pittsburgh Office of Child Development, 2012

    2012-01-01

    In 2006, the University of Pittsburgh Office of Child Development began implementing a multi-year school readiness project in several area schools. Evidence from both research and the field point to several key elements that foster school readiness and create pathways to school success for all children. This paper presents components of a…

  13. Serum Biochemical Phenotypes in the Domestic Dog

    PubMed Central

    Chang, Yu-Mei; Hadox, Erin; Szladovits, Balazs; Garden, Oliver A.

    2016-01-01

    The serum or plasma biochemical profile is essential in the diagnosis and monitoring of systemic disease in veterinary medicine, but current reference intervals typically take no account of breed-specific differences. Breed-specific hematological phenotypes have been documented in the domestic dog, but little has been published on serum biochemical phenotypes in this species. Serum biochemical profiles of dogs in which all measurements fell within the existing reference intervals were retrieved from a large veterinary database. Serum biochemical profiles from 3045 dogs were retrieved, of which 1495 had an accompanying normal glucose concentration. Sixty pure breeds plus a mixed breed control group were represented by at least 10 individuals. All analytes, except for sodium, chloride and glucose, showed variation with age. Total protein, globulin, potassium, chloride, creatinine, cholesterol, total bilirubin, ALT, CK, amylase, and lipase varied between sexes. Neutering status significantly impacted all analytes except albumin, sodium, calcium, urea, and glucose. Principal component analysis of serum biochemical data revealed 36 pure breeds with distinctive phenotypes. Furthermore, comparative analysis identified 23 breeds with significant differences from the mixed breed group in all biochemical analytes except urea and glucose. Eighteen breeds were identified by both principal component and comparative analysis. Tentative reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis and represented by at least 120 individuals. This is the first large-scale analysis of breed-specific serum biochemical phenotypes in the domestic dog and highlights potential genetic components of biochemical traits in this species. PMID:26919479

  14. Key Markers of mTORC1-Dependent and mTORC1-Independent Signaling Pathways Regulating Protein Synthesis in Rat Soleus Muscle During Early Stages of Hindlimb Unloading.

    PubMed

    Mirzoev, Timur; Tyganov, Sergey; Vilchinskaya, Natalia; Lomonosova, Yulia; Shenkman, Boris

    2016-01-01

    The purpose of the study was to assess the amount of rRNA and phosphorylation status of the key markers of mTORC1-dependent (70s6k, 4E-BP1) and mTORC1-independent (GSK-3β, AMPK) signaling pathways controlling protein synthesis in rat soleus during early stages of mechanical unloading (hindlimb suspension (HS) for 1-, 3- and 7 days). The content of the key signaling molecules of various anabolic signaling pathways was determined by Western-blotting. The amount of 28S rRNA was evaluated by RT-PCR. The rate of protein synthesis was assessed using in-vivo SUnSET technique. HS for 3 and 7 days induced a significant (p<0.05) decrease in the rate of global protein synthesis in soleus muscle in comparison with control. HS within 24 hours resulted in a significant (p<0.05) decrease in p-4E-BP1 content, p-AMPK content and increase in p-p70s6k content in rat soleus muscle. Following three days of HS the content of p-AKT was decreased (p<0.05). After 7 days of HS the phosphorylation level of AKT and GSK-3beta was significantly reduced (p<0.05) compared to control. We also observed a significant decrease in the amount of 28S rRNA in rat soleus following 1, 3 and 7 days of HS. Taken together, the results of our study suggest that a decline in the global rate of protein synthesis in rat soleus during early stages of simulated microgravity is associated with impaired ribosome biogenesis as well as reduced activity of mTORC1-independent signaling pathways. © 2016 The Author(s) Published by S. Karger AG, Basel.

  15. Timescale analysis of rule-based biochemical reaction networks

    PubMed Central

    Klinke, David J.; Finley, Stacey D.

    2012-01-01

    The flow of information within a cell is governed by a series of protein-protein interactions that can be described as a reaction network. Mathematical models of biochemical reaction networks can be constructed by repetitively applying specific rules that define how reactants interact and what new species are formed upon reaction. To aid in understanding the underlying biochemistry, timescale analysis is one method developed to prune the size of the reaction network. In this work, we extend the methods associated with timescale analysis to reaction rules instead of the species contained within the network. To illustrate this approach, we applied timescale analysis to a simple receptor-ligand binding model and a rule-based model of Interleukin-12 (IL-12) signaling in näive CD4+ T cells. The IL-12 signaling pathway includes multiple protein-protein interactions that collectively transmit information; however, the level of mechanistic detail sufficient to capture the observed dynamics has not been justified based upon the available data. The analysis correctly predicted that reactions associated with JAK2 and TYK2 binding to their corresponding receptor exist at a pseudo-equilibrium. In contrast, reactions associated with ligand binding and receptor turnover regulate cellular response to IL-12. An empirical Bayesian approach was used to estimate the uncertainty in the timescales. This approach complements existing rank- and flux-based methods that can be used to interrogate complex reaction networks. Ultimately, timescale analysis of rule-based models is a computational tool that can be used to reveal the biochemical steps that regulate signaling dynamics. PMID:21954150

  16. Calcium plays a key role in paraoxon-induced apoptosis in EL4 cells by regulating both endoplasmic reticulum- and mitochondria-associated pathways.

    PubMed

    Li, Lan; Du, Yi; Ju, Furong; Ma, Shunxiang; Zhang, Shengxiang

    2016-01-01

    Paraoxon (POX) is one of the most toxic organophosphorus pesticides, but its toxic mechanisms associated with apoptosis remain unclear. The aim of this study was to investigate calcium-associated mechanisms in POX-induced apoptosis in EL4 cells. EL4 cells were exposed to POX for 0-16 h. EGTA was used to chelate Ca(2+ ) in extracellular medium, and heparin and procaine were used to inhibit Ca(2+ )efflux from the endoplasmic reticulum (ER). Z-ATAD-FMK was used to inhibit caspase-12 activity. The apoptotic rate assay, western blotting and immunocytochemistry (ICC) were used to reveal the mechanisms of POX-induced apoptosis. POX significantly increased the expression and activation of caspase-12 and caspase-3, enhanced expression of calpain 1 and calpain 2, and induced the release of cyt c, but did not change the expression of Grp 78. Inhibiting caspase-12 activity alleviated POX-induced upregulation of calpain 1 and caspase-3, promoted POX-induced upregulation of calpain 2, and reduced POX-induced cyt c release, suggesting that there was a cross-talk between the ER-associated pathway and mitochondria-associated apoptotic signals. Attenuating intracellular calcium concentration with EGTA, heparin or procaine decreased POX-induced upregulation of calpain 1, calpain 2, caspase-12 and caspase-3, and reduced POX-induced cyt c release. After pretreatment with EGTA or procaine, POX significantly promoted expression of Grp 78. Calcium played a key role in POX-induced apoptosis in EL4 cells by regulating both ER- and mitochondria-associated pathways. The cross-talk of ER- and mitochondria-associated pathways was accomplished through calcium signal.

  17. Kinetic insulation as an effective mechanism for achieving pathway specificity in intracellular signaling networks

    PubMed Central

    Behar, Marcelo; Dohlman, Henrik G.; Elston, Timothy C.

    2007-01-01

    Intracellular signaling pathways that share common components often elicit distinct physiological responses. In most cases, the biochemical mechanisms responsible for this signal specificity remain poorly understood. Protein scaffolds and cross-inhibition have been proposed as strategies to prevent unwanted cross-talk. Here, we report a mechanism for signal specificity termed “kinetic insulation.” In this approach signals are selectively transmitted through the appropriate pathway based on their temporal profile. In particular, we demonstrate how pathway architectures downstream of a common component can be designed to efficiently separate transient signals from signals that increase slowly over time. Furthermore, we demonstrate that upstream signaling proteins can generate the appropriate input to the common pathway component regardless of the temporal profile of the external stimulus. Our results suggest that multilevel signaling cascades may have evolved to modulate the temporal profile of pathway activity so that stimulus information can be efficiently encoded and transmitted while ensuring signal specificity. PMID:17913886

  18. Integrated RNA-Seq and sRNA-Seq Analysis Identifies Chilling and Freezing Responsive Key Molecular Players and Pathways in Tea Plant (Camellia sinensis).

    PubMed

    Zheng, Chao; Zhao, Lei; Wang, Yu; Shen, Jiazhi; Zhang, Yinfei; Jia, Sisi; Li, Yusheng; Ding, Zhaotang

    2015-01-01

    Tea [Camellia sinensis (L) O. Kuntze, Theaceae] is one of the most popular non-alcoholic beverages worldwide. Cold stress is one of the most severe abiotic stresses that limit tea plants' growth, survival and geographical distribution. However, the genetic regulatory network and signaling pathways involved in cold stress responses in tea plants remain unearthed. Using RNA-Seq, DGE and sRNA-Seq technologies, we performed an integrative analysis of miRNA and mRNA expression profiling and their regulatory network of tea plants under chilling (4℃) and freezing (-5℃) stress. Differentially expressed (DE) miRNA and mRNA profiles were obtained based on fold change analysis, miRNAs and target mRNAs were found to show both coherent and incoherent relationships in the regulatory network. Furthermore, we compared several key pathways (e.g., 'Photosynthesis'), GO terms (e.g., 'response to karrikin') and transcriptional factors (TFs, e.g., DREB1b/CBF1) which were identified as involved in the early chilling and/or freezing response of tea plants. Intriguingly, we found that karrikins, a new group of plant growth regulators, and β-primeverosidase (BPR), a key enzyme functionally relevant with the formation of tea aroma might play an important role in both early chilling and freezing response of tea plants. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-Seq and sRNA-Seq analysis. This is the first study to simultaneously profile the expression patterns of both miRNAs and mRNAs on a genome-wide scale to elucidate the molecular mechanisms of early responses of tea plants to cold stress. In addition to gaining a deeper insight into the cold resistant characteristics of tea plants, we provide a good case study to analyse mRNA/miRNA expression and profiling of non-model plant species using next-generation sequencing technology.

  19. Structural and Biochemical Characterization of a Bifunctional Ketoisomerase/N-acetyltransferase from Shewanella denitrificans¶

    PubMed Central

    Chantigian, Daniel P.; Thoden, James B.; Holden, Hazel M.

    2014-01-01

    Unusual N-acetylated sugars have been observed on the O-antigens of some Gram-negative bacteria and on the S-layers of both Gram-positive and Gram-negative bacteria. One such sugar is 3-acetamido-3,6-dideoxy-α-d-galactose or Fuc3NAc. The pathway for its production requires five enzymes with the first step involving the attachment of dTMP to glucose-1-phosphate. Here we report a structural and biochemical characterization of a bifunctional enzyme from Shewanella denitificans thought to be involved in the biosynthesis of dTDP-Fuc3NAc. On the basis of a bioinformatics analysis, the enzyme, hereafter referred to as FdtD, has been postulated to catalyze the third and fifth steps in the pathway, namely a 3,4-keto isomerization and an N-acetyltransferase reaction. For the X-ray analysis reported here, the enzyme was crystallized in the presence of dTDP and CoA. The crystal structure shows that FdtD adopts a hexameric quaternary structure with 322 symmetry. Each subunit of the hexamer folds into two distinct domains connected by a flexible loop. The N-terminal domain adopts a left-handed β-helix motif and is responsible for the N-acetylation reaction. The C-terminal domain folds into an antiparallel flattened β-barrel that harbors the active site responsible for the isomerization reaction. Biochemical assays verify the two proposed catalytic activities of the enzyme and reveal that the 3,4-keto isomerization event leads to inversion of configuration about the hexose C-4' carbon. PMID:24128043

  20. Living in a coastal lagoon environment: photosynthetic and biochemical mechanisms of key marine macroalgae.

    PubMed

    García-Sánchez, Marta; Korbee, Nathalie; Pérez-Ruzafa, Isabel María; Marcos, Concepción; Figueroa, Félix L; Pérez-Ruzafa, Ángel

    2014-10-01

    The physiological status of Cystoseira compressa, Padina pavonica and Palisada tenerrima was studied by in vivo chlorophyll fluorescence, pigment content, stoichiometry (C:N), accumulation of UV photoprotectors and antioxidant activity; comparing their photosynthetic response in a coastal lagoon (Mar Menor) and in Mediterranean coastal waters. In general, the specimens reached their highest ETRmax in spring in the Lagoon, but in summer in the Mediterranean, coinciding with their maximum biomass peak. The species exhibited a dynamic photoinhibition. Except C. compressa, they showed a lower decrease in Fv/Fm and higher recovery rates in the Mediterranean populations when exposed to high irradiance. The higher salinity and temperature of the lagoon could impair the photoprotection mechanisms. The acclimation to lagoon environments is species-specific and involves complex regulatory mechanisms. The results underline the importance of N in repair, avoidance, quenching and scavenging mechanisms. In general, Lagoon specimens showed higher pigment concentration. Although xanthophylls play important photo-protective and antioxidant roles, the observed trend is more likely to be explained by the higher temperatures reached in the lagoon compared to Mediterranean. Therefore the studied photosynthetic and biochemical mechanisms can be effective not only for high irradiance, but also for higher temperatures in a climate change scenario, but are highly dependent on nutrient availability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Lack of evidence and standardization in care pathway documents for patients with ST-elevated myocardial infarction.

    PubMed

    Aeyels, Daan; Van Vugt, Stijn; Sinnaeve, Peter R; Panella, Massimiliano; Van Zelm, Ruben; Sermeus, Walter; Vanhaecht, Kris

    2016-04-01

    Clinical practice variation and the subsequent burden on health care quality has been documented for patients with ST-elevated myocardial infarction (STEMI). Reduction of clinical practice variation is possible by increasing guideline adherence. Care pathway documents can increase guideline adherence by implementing evidence-based key interventions and quality indicators in daily practice. This study aims to examine guideline adherence of care pathway documents for patients with STEMI. Lay-out, size and timeframe of submitted care pathways documents were analysed. Two independent reviewers used a checklist to systematically assess the guideline adherence of care pathway documents. The checklist comprised a set of key interventions and quality indicators extracted from evidence and international guidelines. The checklist distinguished the evidence level for each item and was validated by expert consensus. Results were verified by inviting participating hospitals to provide feedback. Fifteen out of 25 invited hospitals submitted care pathway documents for STEMI. The care pathway documents differed in timeframe, lay-out and size. Analysis of the care pathway documents showed important variation in formalizing adherence to evidence: between hospitals, inclusion of 24 key interventions in care pathway documents varied from 13 to 97%. Inclusion of 11 essential quality indicators varied from 0 to 40%. Care pathway documents for patients with STEMI differ considerably in lay-out, timeframe and size. This study showed variation in, and suboptimal inclusion of, evidence-based key interventions and quality indicators in care pathway documents. The use of these care pathway documents might result in suboptimal quality of care for STEMI patients. © The European Society of Cardiology 2015.

  2. A biochemical basis for induction of retina regeneration by antioxidants.

    PubMed

    Echeverri-Ruiz, Nancy; Haynes, Tracy; Landers, Joseph; Woods, Justin; Gemma, Michael J; Hughes, Michael; Del Rio-Tsonis, Katia

    2018-01-15

    The use of antioxidants in tissue regeneration has been studied, but their mechanism of action is not well understood. Here, we analyze the role of the antioxidant N-acetylcysteine (NAC) in retina regeneration. Embryonic chicks are able to regenerate their retina after its complete removal from retinal stem/progenitor cells present in the ciliary margin (CM) of the eye only if a source of exogenous factors, such as FGF2, is present. This study shows that NAC modifies the redox status of the CM, initiates self-renewal of the stem/progenitor cells, and induces regeneration in the absence of FGF2. NAC works as an antioxidant by scavenging free radicals either independently or through the synthesis of glutathione (GSH), and/or by reducing oxidized proteins through a thiol disulfide exchange activity. We dissected the mechanism used by NAC to induce regeneration through the use of inhibitors of GSH synthesis and the use of other antioxidants with different biochemical structures and modes of action, and found that NAC induces regeneration through its thiol disulfide exchange activity. Thus, our results provide, for the first time, a biochemical basis for induction of retina regeneration. Furthermore, NAC induction was independent of FGF receptor signaling, but dependent on the MAPK (pErk1/2) pathway. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Macranthoidin B Modulates Key Metabolic Pathways to Enhance ROS Generation and Induce Cytotoxicity and Apoptosis in Colorectal Cancer.

    PubMed

    Fan, Xing; Rao, Jun; Zhang, Ziwei; Li, Dengfeng; Cui, Wenhao; Zhang, Jun; Wang, Hua; Tou, Fangfang; Zheng, Zhi; Shen, Qiang

    2018-01-01

    Induction of oxidative stress and reactive oxygen species (ROS) mediated-apoptosis have been utilized as effective strategies in anticancer therapy. Macranthoidin B (MB) is a potent inducer of ROS-mediated apoptosis in cancer, but its mechanism of action is poorly understood. Superoxide production with MB exposure in colorectal cancer (CRC) cells was measured using lucigenin chemiluminescence and real-time PCR. MB's inhibitory effect on proliferation and viability of CRC cells was determined by proliferation assays. MB's effect on apoptosis of CRC cells was determined by Western blotting and annexin V-FITC/PI staining. MB's effect on the growth of CRC xenografts in mice was assessed. An established metabolomics profiling platform combining ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS) with gas chromatography-mass spectrometry (GC-MS) was performed to determine MB's effect on total metabolite variation in CRC cells. We found that MB increases ROS generation via modulating key metabolic pathways. Using metabolomics profiling platform combining LC-MS with GC-MS, a total of 236 metabolites were identified in HCT-116 cells in which 31 metabolites were determined to be significantly regulated (p ≤ 0.05) after MB exposure. A number of key metabolites revealed by metabolomics analysis include glucose, fructose, citrate, arginine, phenylalanine, and S-adenosylhomocysteine (SAH), suggesting specific modulation of metabolism on carbohydrates, amino acids and peptides, lipids, nucleotide, cofactors and vitamins in HCT-116 CRC cells with MB treatment highly associated with apoptosis triggered by enhanced ROS and activated caspase-3. Our results demonstrate that MB represses CRC cell proliferation by inducing ROS-mediated apoptosis. © 2018 The Author(s). Published by S. Karger AG, Basel.

  4. Pathway-Specific Striatal Substrates for Habitual Behavior.

    PubMed

    O'Hare, Justin K; Ade, Kristen K; Sukharnikova, Tatyana; Van Hooser, Stephen D; Palmeri, Mark L; Yin, Henry H; Calakos, Nicole

    2016-02-03

    The dorsolateral striatum (DLS) is implicated in habit formation. However, the DLS circuit mechanisms underlying habit remain unclear. A key role for DLS is to transform sensorimotor cortical input into firing of output neurons that project to the mutually antagonistic direct and indirect basal ganglia pathways. Here we examine whether habit alters this input-output function. By imaging cortically evoked firing in large populations of pathway-defined striatal projection neurons (SPNs), we identify features that strongly correlate with habitual behavior on a subject-by-subject basis. Habitual behavior correlated with strengthened DLS output to both pathways as well as a tendency for action-promoting direct pathway SPNs to fire before indirect pathway SPNs. In contrast, habit suppression correlated solely with a weakened direct pathway output. Surprisingly, all effects were broadly distributed in space. Together, these findings indicate that the striatum imposes broad, pathway-specific modulations of incoming activity to render learned motor behaviors habitual. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Large-Scale Evolutionary Analysis of Genes and Supergene Clusters from Terpenoid Modular Pathways Provides Insights into Metabolic Diversification in Flowering Plants

    PubMed Central

    Hofberger, Johannes A.; Ramirez, Aldana M.; van den Bergh, Erik; Zhu, Xinguang; Bouwmeester, Harro J.; Schuurink, Robert C.; Schranz, M. Eric

    2015-01-01

    An important component of plant evolution is the plethora of pathways producing more than 200,000 biochemically diverse specialized metabolites with pharmacological, nutritional and ecological significance. To unravel dynamics underlying metabolic diversification, it is critical to determine lineage-specific gene family expansion in a phylogenomics framework. However, robust functional annotation is often only available for core enzymes catalyzing committed reaction steps within few model systems. In a genome informatics approach, we extracted information from early-draft gene-space assemblies and non-redundant transcriptomes to identify protein families involved in isoprenoid biosynthesis. Isoprenoids comprise terpenoids with various roles in plant-environment interaction, such as pollinator attraction or pathogen defense. Combining lines of evidence provided by synteny, sequence homology and Hidden-Markov-Modelling, we screened 17 genomes including 12 major crops and found evidence for 1,904 proteins associated with terpenoid biosynthesis. Our terpenoid genes set contains evidence for 840 core terpene-synthases and 338 triterpene-specific synthases. We further identified 190 prenyltransferases, 39 isopentenyl-diphosphate isomerases as well as 278 and 219 proteins involved in mevalonate and methylerithrol pathways, respectively. Assessing the impact of gene and genome duplication to lineage-specific terpenoid pathway expansion, we illustrated key events underlying terpenoid metabolic diversification within 250 million years of flowering plant radiation. By quantifying Angiosperm-wide versatility and phylogenetic relationships of pleiotropic gene families in terpenoid modular pathways, our analysis offers significant insight into evolutionary dynamics underlying diversification of plant secondary metabolism. Furthermore, our data provide a blueprint for future efforts to identify and more rapidly clone terpenoid biosynthetic genes from any plant species. PMID

  6. Biochemical quantitation of the eIF5A hypusination in Arabidopsis thaliana uncovers ABA-dependent regulation

    PubMed Central

    Belda-Palazón, Borja; Nohales, María A.; Rambla, José L.; Aceña, José L.; Delgado, Oscar; Fustero, Santos; Martínez, M. Carmen; Granell, Antonio; Carbonell, Juan; Ferrando, Alejandro

    2014-01-01

    The eukaryotic translation elongation factor eIF5A is the only protein known to contain the unusual amino acid hypusine which is essential for its biological activity. This post-translational modification is achieved by the sequential action of the enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). The crucial molecular function of eIF5A during translation has been recently elucidated in yeast and it is expected to be fully conserved in every eukaryotic cell, however the functional description of this pathway in plants is still sparse. The genetic approaches with transgenic plants for either eIF5A overexpression or antisense have revealed some activities related to the control of cell death processes but the molecular details remain to be characterized. One important aspect of fully understanding this pathway is the biochemical description of the hypusine modification system. Here we have used recombinant eIF5A proteins either modified by hypusination or non-modified to establish a bi-dimensional electrophoresis (2D-E) profile for the three eIF5A protein isoforms and their hypusinated or unmodified proteoforms present in Arabidopsis thaliana. The combined use of the recombinant 2D-E profile together with 2D-E/western blot analysis from whole plant extracts has provided a quantitative approach to measure the hypusination status of eIF5A. We have used this information to demonstrate that treatment with the hormone abscisic acid produces an alteration of the hypusine modification system in Arabidopsis thaliana. Overall this study presents the first biochemical description of the post-translational modification of eIF5A by hypusination which will be functionally relevant for future studies related to the characterization of this pathway in Arabidopsis thaliana. PMID:24904603

  7. ATLAS of Biochemistry: A Repository of All Possible Biochemical Reactions for Synthetic Biology and Metabolic Engineering Studies.

    PubMed

    Hadadi, Noushin; Hafner, Jasmin; Shajkofci, Adrian; Zisaki, Aikaterini; Hatzimanikatis, Vassily

    2016-10-21

    Because the complexity of metabolism cannot be intuitively understood or analyzed, computational methods are indispensable for studying biochemistry and deepening our understanding of cellular metabolism to promote new discoveries. We used the computational framework BNICE.ch along with cheminformatic tools to assemble the whole theoretical reactome from the known metabolome through expansion of the known biochemistry presented in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We constructed the ATLAS of Biochemistry, a database of all theoretical biochemical reactions based on known biochemical principles and compounds. ATLAS includes more than 130 000 hypothetical enzymatic reactions that connect two or more KEGG metabolites through novel enzymatic reactions that have never been reported to occur in living organisms. Moreover, ATLAS reactions integrate 42% of KEGG metabolites that are not currently present in any KEGG reaction into one or more novel enzymatic reactions. The generated repository of information is organized in a Web-based database ( http://lcsb-databases.epfl.ch/atlas/ ) that allows the user to search for all possible routes from any substrate compound to any product. The resulting pathways involve known and novel enzymatic steps that may indicate unidentified enzymatic activities and provide potential targets for protein engineering. Our approach of introducing novel biochemistry into pathway design and associated databases will be important for synthetic biology and metabolic engineering.

  8. Pathway of Glycine Betaine Biosynthesis in Aspergillus fumigatus

    PubMed Central

    Lambou, Karine; Pennati, Andrea; Valsecchi, Isabel; Tada, Rui; Sherman, Stephen; Sato, Hajime; Beau, Remi

    2013-01-01

    The choline oxidase (CHOA) and betaine aldehyde dehydrogenase (BADH) genes identified in Aspergillus fumigatus are present as a cluster specific for fungal genomes. Biochemical and molecular analyses of this cluster showed that it has very specific biochemical and functional features that make it unique and different from its plant and bacterial homologs. A. fumigatus ChoAp catalyzed the oxidation of choline to glycine betaine with betaine aldehyde as an intermediate and reduced molecular oxygen to hydrogen peroxide using FAD as a cofactor. A. fumigatus Badhp oxidized betaine aldehyde to glycine betaine with reduction of NAD+ to NADH. Analysis of the AfchoAΔ::HPH and AfbadAΔ::HPH single mutants and the AfchoAΔAfbadAΔ::HPH double mutant showed that AfChoAp is essential for the use of choline as the sole nitrogen, carbon, or carbon and nitrogen source during the germination process. AfChoAp and AfBadAp were localized in the cytosol of germinating conidia and mycelia but were absent from resting conidia. Characterization of the mutant phenotypes showed that glycine betaine in A. fumigatus functions exclusively as a metabolic intermediate in the catabolism of choline and not as a stress protectant. This study in A. fumigatus is the first molecular, cellular, and biochemical characterization of the glycine betaine biosynthetic pathway in the fungal kingdom. PMID:23563483

  9. Pathway of glycine betaine biosynthesis in Aspergillus fumigatus.

    PubMed

    Lambou, Karine; Pennati, Andrea; Valsecchi, Isabel; Tada, Rui; Sherman, Stephen; Sato, Hajime; Beau, Remi; Gadda, Giovanni; Latgé, Jean-Paul

    2013-06-01

    The choline oxidase (CHOA) and betaine aldehyde dehydrogenase (BADH) genes identified in Aspergillus fumigatus are present as a cluster specific for fungal genomes. Biochemical and molecular analyses of this cluster showed that it has very specific biochemical and functional features that make it unique and different from its plant and bacterial homologs. A. fumigatus ChoAp catalyzed the oxidation of choline to glycine betaine with betaine aldehyde as an intermediate and reduced molecular oxygen to hydrogen peroxide using FAD as a cofactor. A. fumigatus Badhp oxidized betaine aldehyde to glycine betaine with reduction of NAD(+) to NADH. Analysis of the AfchoAΔ::HPH and AfbadAΔ::HPH single mutants and the AfchoAΔAfbadAΔ::HPH double mutant showed that AfChoAp is essential for the use of choline as the sole nitrogen, carbon, or carbon and nitrogen source during the germination process. AfChoAp and AfBadAp were localized in the cytosol of germinating conidia and mycelia but were absent from resting conidia. Characterization of the mutant phenotypes showed that glycine betaine in A. fumigatus functions exclusively as a metabolic intermediate in the catabolism of choline and not as a stress protectant. This study in A. fumigatus is the first molecular, cellular, and biochemical characterization of the glycine betaine biosynthetic pathway in the fungal kingdom.

  10. R2R3 MYB transcription factors: key regulators of the flavonoid biosynthetic pathway in grapevine.

    PubMed

    Czemmel, Stefan; Heppel, Simon C; Bogs, Jochen

    2012-06-01

    Flavonoids compose one of the most abundant and important subgroups of secondary metabolites with more than 6,000 compounds detected so far in higher plants. They are found in various compositions and concentrations in nearly all plant tissues. Besides the attraction of pollinators and dispersers to fruits and flowers, flavonoids also protect against a plethora of stresses including pathogen attack, wounding and UV irradiation. Flavonoid content and composition of fruits such as grapes, bilberries, strawberries and apples as well as food extracts such as green tea, wine and chocolate have been associated with fruit quality including taste, colour and health-promoting effects. To unravel the beneficial potentials of flavonoids on fruit quality, research has been focused recently on the molecular basis of flavonoid biosynthesis and regulation in economically important fruit-producing plants such as grapevine (Vitis vinifera L.). Transcription factors and genes encoding biosynthetic enzymes have been characterized, studies that set a benchmark for future research on the regulatory networks controlling flavonoid biosynthesis and diversity. This review summarizes recent advances in the knowledge of regulatory cascades involved in flavonoid biosynthesis in grapevine. Transcriptional regulation of flavonoid biosynthesis during berry development is highlighted, with a particular focus on MYB transcription factors as molecular clocks, key regulators and powerful biotechnological tools to identify novel pathway enzymes to optimize flavonoid content and composition in grapes.

  11. Metabolic network failures in Alzheimer’s disease: A biochemical road map

    PubMed Central

    Toledo, Jon B.; Arnold, Matthias; Kastenmüuller, Gabi; Chang, Rui; Baillie, Rebecca A.; Han, Xianlin; Thambisetty, Madhav; Tenenbaum, Jessica D.; Suhre, Karsten; Thompson, J. Will; St. John-Williams, Lisa; MahmoudianDehkordi, Siamak; Rotroff, Daniel M.; Jack, John R.; Motsinger-Reif, Alison; Risacher, Shannon L.; Blach, Colette; Lucas, Joseph E.; Massaro, Tyler; Louie, Gregory; Zhu, Hongjie; Dallmann, Guido; Klavins, Kristaps; Koal, Therese; Kim, Sungeun; Nho, Kwangsik; Shen, Li; Casanova, Ramon; Varma, Sudhir; Legido-Quigley, Cristina; Moseley, M. Arthur; Zhu, Kuixi; Henrion, Marc Y. R.; van der Lee, Sven J.; Harms, Amy C.; Demirkan, Ayse; Hankemeier, Thomas; van Duijn, Cornelia M.; Trojanowski, John Q.; Shaw, Leslie M.; Saykin, Andrew J.; Weiner, Michael W.; Doraiswamy, P. Murali; Kaddurah-Daouk, Rima

    2018-01-01

    Introduction The Alzheimer’s Disease Research Summits of 2012 and 2015 incorporated experts from academia, industry, and nonprofit organizations to develop new research directions to transform our understanding of Alzheimer’s disease (AD) and propel the development of critically needed therapies. In response to their recommendations, big data at multiple levels are being generated and integrated to study network failures in disease. We used metabolomics as a global biochemical approach to identify peripheral metabolic changes in AD patients and correlate them to cerebrospinal fluid pathology markers, imaging features, and cognitive performance. Methods Fasting serum samples from the Alzheimer’s Disease Neuroimaging Initiative (199 control, 356 mild cognitive impairment, and 175 AD participants) were analyzed using the AbsoluteIDQ-p180 kit. Performance was validated in blinded replicates, and values were medication adjusted. Results Multivariable-adjusted analyses showed that sphingomyelins and ether-containing phosphatidylcholines were altered in preclinical biomarker-defined AD stages, whereas acylcarnitines and several amines, including the branched-chain amino acid valine and α-aminoadipic acid, changed in symptomatic stages. Several of the analytes showed consistent associations in the Rotterdam, Erasmus Rucphen Family, and Indiana Memory and Aging Studies. Partial correlation networks constructed for Aβ1–42, tau, imaging, and cognitive changes provided initial biochemical insights for disease-related processes. Coexpression networks interconnected key metabolic effectors of disease. Discussion Metabolomics identified key disease-related metabolic changes and disease-progression-related changes. Defining metabolic changes during AD disease trajectory and its relationship to clinical phenotypes provides a powerful roadmap for drug and biomarker discovery. PMID:28341160

  12. MAP kinase pathways in the yeast Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Gustin, M. C.; Albertyn, J.; Alexander, M.; Davenport, K.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.

  13. Using Bioinformatic Approaches to Identify Pathways Targeted by Human Leukemogens

    PubMed Central

    Thomas, Reuben; Phuong, Jimmy; McHale, Cliona M.; Zhang, Luoping

    2012-01-01

    We have applied bioinformatic approaches to identify pathways common to chemical leukemogens and to determine whether leukemogens could be distinguished from non-leukemogenic carcinogens. From all known and probable carcinogens classified by IARC and NTP, we identified 35 carcinogens that were associated with leukemia risk in human studies and 16 non-leukemogenic carcinogens. Using data on gene/protein targets available in the Comparative Toxicogenomics Database (CTD) for 29 of the leukemogens and 11 of the non-leukemogenic carcinogens, we analyzed for enrichment of all 250 human biochemical pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The top pathways targeted by the leukemogens included metabolism of xenobiotics by cytochrome P450, glutathione metabolism, neurotrophin signaling pathway, apoptosis, MAPK signaling, Toll-like receptor signaling and various cancer pathways. The 29 leukemogens formed 18 distinct clusters comprising 1 to 3 chemicals that did not correlate with known mechanism of action or with structural similarity as determined by 2D Tanimoto coefficients in the PubChem database. Unsupervised clustering and one-class support vector machines, based on the pathway data, were unable to distinguish the 29 leukemogens from 11 non-leukemogenic known and probable IARC carcinogens. However, using two-class random forests to estimate leukemogen and non-leukemogen patterns, we estimated a 76% chance of distinguishing a random leukemogen/non-leukemogen pair from each other. PMID:22851955

  14. Molecular Pathways: Extracting Medical Knowledge from High Throughput Genomic Data

    PubMed Central

    Goldstein, Theodore; Paull, Evan O.; Ellis, Matthew J.; Stuart, Joshua M.

    2013-01-01

    High-throughput genomic data that measures RNA expression, DNA copy number, mutation status and protein levels provide us with insights into the molecular pathway structure of cancer. Genomic lesions (amplifications, deletions, mutations) and epigenetic modifications disrupt biochemical cellular pathways. While the number of possible lesions is vast, different genomic alterations may result in concordant expression and pathway activities, producing common tumor subtypes that share similar phenotypic outcomes. How can these data be translated into medical knowledge that provides prognostic and predictive information? First generation mRNA expression signatures such as Genomic Health's Oncotype DX already provide prognostic information, but do not provide therapeutic guidance beyond the current standard of care – which is often inadequate in high-risk patients. Rather than building molecular signatures based on gene expression levels, evidence is growing that signatures based on higher-level quantities such as from genetic pathways may provide important prognostic and diagnostic cues. We provide examples of how activities for molecular entities can be predicted from pathway analysis and how the composite of all such activities, referred to here as the “activitome,” help connect genomic events to clinical factors in order to predict the drivers of poor outcome. PMID:23430023

  15. Elucidation of an Alternate Isoleucine Biosynthesis Pathway in Geobacter sulfurreducens▿

    PubMed Central

    Risso, Carla; Van Dien, Stephen J.; Orloff, Amber; Lovley, Derek R.; Coppi, Maddalena V.

    2008-01-01

    The central metabolic model for Geobacter sulfurreducens included a single pathway for the biosynthesis of isoleucine that was analogous to that of Escherichia coli, in which the isoleucine precursor 2-oxobutanoate is generated from threonine. 13C labeling studies performed in G. sulfurreducens indicated that this pathway accounted for a minor fraction of isoleucine biosynthesis and that the majority of isoleucine was instead derived from acetyl-coenzyme A and pyruvate, possibly via the citramalate pathway. Genes encoding citramalate synthase (GSU1798), which catalyzes the first dedicated step in the citramalate pathway, and threonine ammonia-lyase (GSU0486), which catalyzes the conversion of threonine to 2-oxobutanoate, were identified and knocked out. Mutants lacking both of these enzymes were auxotrophs for isoleucine, whereas single mutants were capable of growth in the absence of isoleucine. Biochemical characterization of the single mutants revealed deficiencies in citramalate synthase and threonine ammonia-lyase activity. Thus, in G. sulfurreducens, 2-oxobutanoate can be synthesized either from citramalate or threonine, with the former being the main pathway for isoleucine biosynthesis. The citramalate synthase of G. sulfurreducens constitutes the first characterized member of a phylogenetically distinct clade of citramalate synthases, which contains representatives from a wide variety of microorganisms. PMID:18245290

  16. Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach.

    PubMed

    Hu, Yan-Shi; Xin, Juncai; Hu, Ying; Zhang, Lei; Wang, Ju

    2017-04-27

    Our understanding of the molecular mechanisms underlying Alzheimer's disease (AD) remains incomplete. Previous studies have revealed that genetic factors provide a significant contribution to the pathogenesis and development of AD. In the past years, numerous genes implicated in this disease have been identified via genetic association studies on candidate genes or at the genome-wide level. However, in many cases, the roles of these genes and their interactions in AD are still unclear. A comprehensive and systematic analysis focusing on the biological function and interactions of these genes in the context of AD will therefore provide valuable insights to understand the molecular features of the disease. In this study, we collected genes potentially associated with AD by screening publications on genetic association studies deposited in PubMed. The major biological themes linked with these genes were then revealed by function and biochemical pathway enrichment analysis, and the relation between the pathways was explored by pathway crosstalk analysis. Furthermore, the network features of these AD-related genes were analyzed in the context of human interactome and an AD-specific network was inferred using the Steiner minimal tree algorithm. We compiled 430 human genes reported to be associated with AD from 823 publications. Biological theme analysis indicated that the biological processes and biochemical pathways related to neurodevelopment, metabolism, cell growth and/or survival, and immunology were enriched in these genes. Pathway crosstalk analysis then revealed that the significantly enriched pathways could be grouped into three interlinked modules-neuronal and metabolic module, cell growth/survival and neuroendocrine pathway module, and immune response-related module-indicating an AD-specific immune-endocrine-neuronal regulatory network. Furthermore, an AD-specific protein network was inferred and novel genes potentially associated with AD were identified. By

  17. Ocean acidification induces biochemical and morphological changes in the calcification process of large benthic foraminifera.

    PubMed

    Prazeres, Martina; Uthicke, Sven; Pandolfi, John M

    2015-03-22

    Large benthic foraminifera are significant contributors to sediment formation on coral reefs, yet they are vulnerable to ocean acidification. Here, we assessed the biochemical and morphological impacts of acidification on the calcification of Amphistegina lessonii and Marginopora vertebralis exposed to different pH conditions. We measured growth rates (surface area and buoyant weight) and Ca-ATPase and Mg-ATPase activities and calculated shell density using micro-computer tomography images. In A. lessonii, we detected a significant decrease in buoyant weight, a reduction in the density of inner skeletal chambers, and an increase of Ca-ATPase and Mg-ATPase activities at pH 7.6 when compared with ambient conditions of pH 8.1. By contrast, M. vertebralis showed an inhibition in Mg-ATPase activity under lowered pH, with growth rate and skeletal density remaining constant. While M. vertebralis is considered to be more sensitive than A. lessonii owing to its high-Mg-calcite skeleton, it appears to be less affected by changes in pH, based on the parameters assessed in this study. We suggest difference in biochemical pathways of calcification as the main factor influencing response to changes in pH levels, and that A. lessonii and M. vertebralis have the ability to regulate biochemical functions to cope with short-term increases in acidity. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, R.; Biddy, M.; Tan, E.

    2013-03-01

    This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot-scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  19. RGS10 exerts a neuroprotective role through the PKA/c-AMP response-element (CREB) pathway in dopaminergic neuron-like cells

    PubMed Central

    Lee, Jae-Kyung; Chung, Jaegwon; Druey, Kirk M.; Tansey, Malú G.

    2012-01-01

    Regulator of G-protein signaling-10 (RGS10) is a GTPase activating protein (GAP) for Gαi/q/z subunits that is highly expressed in the immune system and in a broad range of brain regions including the hippocampus, striatum, dorsal raphe, and ventral midbrain. Previously, we reported that RGS10-null mice display increased vulnerability to chronic systemic inflammation-induced degeneration of nigral dopaminergic (DA) neurons. Given that RGS10 is expressed in DA neurons, we investigated the extent to which RGS10 regulates cell survival under conditions of inflammatory stress. Because of the inherent limitations associated with use of primary DA neurons for biochemical analyses, we employed a well-characterized ventral mesencephalon DA neuroblastoma cell line (MN9D) for our studies. We found that stable over-expression of RGS10 rendered them resistant to TNF-induced cytotoxicity; whereas MN9D cells expressing mutant RGS10-S168A (which is resistant to phosphorylation by protein kinase A (PKA) at a serine residue that promotes its nuclear translocation) showed similar sensitivity to TNF as the parental MN9D cells. Using biochemical and pharmacological approaches, we identified protein kinase A (PKA) and the downstream phospho-cAMP response element-binding (CREB) signaling pathway (and ruled out ERK 1/2, JNK, and NFkB) as key mediators of the neuroprotective effect of RGS10 against inflammatory stress. PMID:22564151

  20. Modular decomposition of metabolic reaction networks based on flux analysis and pathway projection.

    PubMed

    Yoon, Jeongah; Si, Yaguang; Nolan, Ryan; Lee, Kyongbum

    2007-09-15

    The rational decomposition of biochemical networks into sub-structures has emerged as a useful approach to study the design of these complex systems. A biochemical network is characterized by an inhomogeneous connectivity distribution, which gives rise to several organizational features, including modularity. To what extent the connectivity-based modules reflect the functional organization of the network remains to be further explored. In this work, we examine the influence of physiological perturbations on the modular organization of cellular metabolism. Modules were characterized for two model systems, liver and adipocyte primary metabolism, by applying an algorithm for top-down partition of directed graphs with non-uniform edge weights. The weights were set by the engagement of the corresponding reactions as expressed by the flux distribution. For the base case of the fasted rat liver, three modules were found, carrying out the following biochemical transformations: ketone body production, glucose synthesis and transamination. This basic organization was further modified when different flux distributions were applied that describe the liver's metabolic response to whole body inflammation. For the fully mature adipocyte, only a single module was observed, integrating all of the major pathways needed for lipid storage. Weaker levels of integration between the pathways were found for the early stages of adipocyte differentiation. Our results underscore the inhomogeneous distribution of both connectivity and connection strengths, and suggest that global activity data such as the flux distribution can be used to study the organizational flexibility of cellular metabolism. Supplementary data are available at Bioinformatics online.

  1. Substrate biochemistry control on the pathways for the formation of soil organic matter

    NASA Astrophysics Data System (ADS)

    Almeida, L. F.; Hurtarte, L. C.; Souza, I. F.; Barros, E. M.; Vergutz, L.; Silva, I. R.

    2017-12-01

    Linking plant litter biochemistry, its decomposition and soil organic matter (SOM) formation is not straightforward. To address this issue, we evaluated the decomposition of four biochemical fractions operationally defined as i) hot-water extractable (HWE), ii) total solvent (acetone) extractable (TSE), iii) acid-base (HNO3-KOH) unhydrolyzable cellulosic fraction (CF), and iv) acid(H2SO4) unhydrolyzable (AUR) and the transfer of C from these fractions to SOM. Each biochemical fraction was Soxhlet-extracted from isotopically labeled (13C) leaves, twigs, bark and roots of eucalypt plants (120 days old). The molecular composition of each fraction was inferred from thermochemolysis with tertamethylammonium (TMAH), followed by gas chromatography coupled o mass spectrometry (GC-MS). For the incubation, we collected soil samples from the topsoil (0-20 cm) of a sandy-clay loam, kaolinitic Typic Hapludox (Haplic Ferralsol). Four plant organs and four biochemical fractions were arranged into a (4 4) + 1 factorial scheme, including one control treatment (soil only). The samples were incubated at 80% of their water-holding capacity and kept under controlled temperature (25 ºC). The decomposition of the biochemical fractions was monitored by determining the CO2 concentration into the headspace of the vials. Finished the incubation, soil samples were submitted to density followed by particle-size fractionation. HWE and CF was decomposed at faster rates than TSE and AUR throughout the incubation. The soil fraction <53 µm retained a significantly higher proportion of the initial input of HWE (32%) and AUR (31%) than TSE (19%) or CF (15%). Light fraction organic matter (LFOM) with density <1.8 g cm-3, retained a significant proportion of AUR (37%) and TSE (32%) while CF was mostly lost as CO2 (79%). Selective preservation of organic materials (e.g., long-chain lipids) within AUR and TSE fractions appears to be a significant pathway for SOM formation. A microbial-driven pathway

  2. Modeling heterogeneous responsiveness of intrinsic apoptosis pathway

    PubMed Central

    2013-01-01

    Background Apoptosis is a cell suicide mechanism that enables multicellular organisms to maintain homeostasis and to eliminate individual cells that threaten the organism’s survival. Dependent on the type of stimulus, apoptosis can be propagated by extrinsic pathway or intrinsic pathway. The comprehensive understanding of the molecular mechanism of apoptotic signaling allows for development of mathematical models, aiming to elucidate dynamical and systems properties of apoptotic signaling networks. There have been extensive efforts in modeling deterministic apoptosis network accounting for average behavior of a population of cells. Cellular networks, however, are inherently stochastic and significant cell-to-cell variability in apoptosis response has been observed at single cell level. Results To address the inevitable randomness in the intrinsic apoptosis mechanism, we develop a theoretical and computational modeling framework of intrinsic apoptosis pathway at single-cell level, accounting for both deterministic and stochastic behavior. Our deterministic model, adapted from the well-accepted Fussenegger model, shows that an additional positive feedback between the executioner caspase and the initiator caspase plays a fundamental role in yielding the desired property of bistability. We then examine the impact of intrinsic fluctuations of biochemical reactions, viewed as intrinsic noise, and natural variation of protein concentrations, viewed as extrinsic noise, on behavior of the intrinsic apoptosis network. Histograms of the steady-state output at varying input levels show that the intrinsic noise could elicit a wider region of bistability over that of the deterministic model. However, the system stochasticity due to intrinsic fluctuations, such as the noise of steady-state response and the randomness of response delay, shows that the intrinsic noise in general is insufficient to produce significant cell-to-cell variations at physiologically relevant level of

  3. Rewriting the Metabolic Blueprint: Advances in Pathway Diversification in Microorganisms

    PubMed Central

    Hossain, Gazi Sakir; Nadarajan, Saravanan Prabhu; Zhang, Lei; Ng, Tee-Kheang; Foo, Jee Loon; Ling, Hua; Choi, Won Jae; Chang, Matthew Wook

    2018-01-01

    Living organisms have evolved over millions of years to fine tune their metabolism to create efficient pathways for producing metabolites necessary for their survival. Advancement in the field of synthetic biology has enabled the exploitation of these metabolic pathways for the production of desired compounds by creating microbial cell factories through metabolic engineering, thus providing sustainable routes to obtain value-added chemicals. Following the past success in metabolic engineering, there is increasing interest in diversifying natural metabolic pathways to construct non-natural biosynthesis routes, thereby creating possibilities for producing novel valuable compounds that are non-natural or without elucidated biosynthesis pathways. Thus, the range of chemicals that can be produced by biological systems can be expanded to meet the demands of industries for compounds such as plastic precursors and new antibiotics, most of which can only be obtained through chemical synthesis currently. Herein, we review and discuss novel strategies that have been developed to rewrite natural metabolic blueprints in a bid to broaden the chemical repertoire achievable in microorganisms. This review aims to provide insights on recent approaches taken to open new avenues for achieving biochemical production that are beyond currently available inventions. PMID:29483901

  4. Rewriting the Metabolic Blueprint: Advances in Pathway Diversification in Microorganisms.

    PubMed

    Hossain, Gazi Sakir; Nadarajan, Saravanan Prabhu; Zhang, Lei; Ng, Tee-Kheang; Foo, Jee Loon; Ling, Hua; Choi, Won Jae; Chang, Matthew Wook

    2018-01-01

    Living organisms have evolved over millions of years to fine tune their metabolism to create efficient pathways for producing metabolites necessary for their survival. Advancement in the field of synthetic biology has enabled the exploitation of these metabolic pathways for the production of desired compounds by creating microbial cell factories through metabolic engineering, thus providing sustainable routes to obtain value-added chemicals. Following the past success in metabolic engineering, there is increasing interest in diversifying natural metabolic pathways to construct non-natural biosynthesis routes, thereby creating possibilities for producing novel valuable compounds that are non-natural or without elucidated biosynthesis pathways. Thus, the range of chemicals that can be produced by biological systems can be expanded to meet the demands of industries for compounds such as plastic precursors and new antibiotics, most of which can only be obtained through chemical synthesis currently. Herein, we review and discuss novel strategies that have been developed to rewrite natural metabolic blueprints in a bid to broaden the chemical repertoire achievable in microorganisms. This review aims to provide insights on recent approaches taken to open new avenues for achieving biochemical production that are beyond currently available inventions.

  5. Biochemical Engineering Fundamentals

    ERIC Educational Resources Information Center

    Bailey, J. E.; Ollis, D. F.

    1976-01-01

    Discusses a biochemical engineering course that is offered as part of a chemical engineering curriculum and includes topics that influence the behavior of man-made or natural microbial or enzyme reactors. (MLH)

  6. The Hippo pathway: key interaction and catalytic domains in organ growth control, stem cell self-renewal and tissue regeneration.

    PubMed

    Cherrett, Claire; Furutani-Seiki, Makoto; Bagby, Stefan

    2012-01-01

    The Hippo pathway is a conserved pathway that interconnects with several other pathways to regulate organ growth, tissue homoeostasis and regeneration, and stem cell self-renewal. This pathway is unique in its capacity to orchestrate multiple processes, from sensing to execution, necessary for organ expansion. Activation of the Hippo pathway core kinase cassette leads to cytoplasmic sequestration of the nuclear effectors YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif), consequently disabling their transcriptional co-activation function. Components upstream of the core kinase cassette have not been well understood, especially in vertebrates, but are gradually being elucidated and include cell polarity and cell adhesion proteins.

  7. Biochemical transformation of solid carbonaceous material

    DOEpatents

    Lin, Mow S.; Premuzic, Eugene T.

    2001-09-25

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  8. Computational multiscale modeling in protein--ligand docking.

    PubMed

    Taufer, Michela; Armen, Roger; Chen, Jianhan; Teller, Patricia; Brooks, Charles

    2009-01-01

    In biological systems, the binding of small molecule ligands to proteins is a crucial process for almost every aspect of biochemistry and molecular biology. Enzymes are proteins that function by catalyzing specific biochemical reactions that convert reactants into products. Complex organisms are typically composed of cells in which thousands of enzymes participate in complex and interconnected biochemical pathways. Some enzymes serve as sequential steps in specific pathways (such as energy metabolism), while others function to regulate entire pathways and cellular functions [1]. Small molecule ligands can be designed to bind to a specific enzyme and inhibit the biochemical reaction. Inhibiting the activity of key enzymes may result in the entire biochemical pathways being turned on or off [2], [3]. Many small molecule drugs marketed today function in this generic way as enzyme inhibitors. If research identifies a specific enzyme as being crucial to the progress of disease, then this enzyme may be targeted with an inhibitor, which may slow down or reverse the progress of disease. In this way, enzymes are targeted from specific pathogens (e.g., virus, bacteria, fungi) for infectious diseases [4], [5], and human enzymes are targeted for noninfectious diseases such as cardiovascular disease, cancer, diabetes, and neurodegenerative diseases [6].

  9. Dose and Effect Thresholds for Early Key Events in a Mode of PPARa-Mediated Action

    EPA Science Inventory

    ABSTRACT Strategies for predicting adverse health outcomes of environmental chemicals are centered on early key events in toxicity pathways. However, quantitative relationships between early molecular changes in a given pathway and later health effects are often poorly defined. T...

  10. Sonic hedgehog pathway activation increases mitochondrial abundance and activity in hippocampal neurons

    PubMed Central

    Yao, Pamela J.; Manor, Uri; Petralia, Ronald S.; Brose, Rebecca D.; Wu, Ryan T. Y.; Ott, Carolyn; Wang, Ya-Xian; Charnoff, Ari; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2017-01-01

    Mitochondria are essential organelles whose biogenesis, structure, and function are regulated by many signaling pathways. We present evidence that, in hippocampal neurons, activation of the Sonic hedgehog (Shh) signaling pathway affects multiple aspects of mitochondria. Mitochondrial mass was increased significantly in neurons treated with Shh. Using biochemical and fluorescence imaging analyses, we show that Shh signaling activity reduces mitochondrial fission and promotes mitochondrial elongation, at least in part, via suppression of the mitochondrial fission protein dynamin-like GTPase Drp1. Mitochondria from Shh-treated neurons were more electron-dense, as revealed by electron microscopy, and had higher membrane potential and respiratory activity. We further show that Shh protects neurons against a variety of stresses, including the mitochondrial poison rotenone, amyloid β-peptide, hydrogen peroxide, and high levels of glutamate. Collectively our data suggest a link between Shh pathway activity and the physiological properties of mitochondria in hippocampal neurons. PMID:27932496

  11. Extended Kalman Filter for Estimation of Parameters in Nonlinear State-Space Models of Biochemical Networks

    PubMed Central

    Sun, Xiaodian; Jin, Li; Xiong, Momiao

    2008-01-01

    It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks. PMID:19018286

  12. Keys and the crisis in taxonomy: extinction or reinvention?

    PubMed

    Walter, David Evans; Winterton, Shaun

    2007-01-01

    Dichotomous keys that follow a single pathway of character state choices to an end point have been the primary tools for the identification of unknown organisms for more than two centuries. However, a revolution in computer diagnostics is now under way that may result in the replacement of traditional keys by matrix-based computer interactive keys that have many paths to a correct identification and make extensive use of hypertext to link to images, glossaries, and other support material. Progress is also being made on replacing keys entirely by optical matching of specimens to digital databases and DNA sequences. These new tools may go some way toward alleviating the taxonomic impediment to biodiversity studies and other ecological and evolutionary research, especially with better coordination between those who produce keys and those who use them and by integrating interactive keys into larger biological Web sites.

  13. MetaMapR: pathway independent metabolomic network analysis incorporating unknowns.

    PubMed

    Grapov, Dmitry; Wanichthanarak, Kwanjeera; Fiehn, Oliver

    2015-08-15

    Metabolic network mapping is a widely used approach for integration of metabolomic experimental results with biological domain knowledge. However, current approaches can be limited by biochemical domain or pathway knowledge which results in sparse disconnected graphs for real world metabolomic experiments. MetaMapR integrates enzymatic transformations with metabolite structural similarity, mass spectral similarity and empirical associations to generate richly connected metabolic networks. This open source, web-based or desktop software, written in the R programming language, leverages KEGG and PubChem databases to derive associations between metabolites even in cases where biochemical domain or molecular annotations are unknown. Network calculation is enhanced through an interface to the Chemical Translation System, which allows metabolite identifier translation between >200 common biochemical databases. Analysis results are presented as interactive visualizations or can be exported as high-quality graphics and numerical tables which can be imported into common network analysis and visualization tools. Freely available at http://dgrapov.github.io/MetaMapR/. Requires R and a modern web browser. Installation instructions, tutorials and application examples are available at http://dgrapov.github.io/MetaMapR/. ofiehn@ucdavis.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Identification of Key Transcription Factors Associated with Lung Squamous Cell Carcinoma

    PubMed Central

    Zhang, Feng; Chen, Xia; Wei, Ke; Liu, Daoming; Xu, Xiaodong; Zhang, Xing; Shi, Hong

    2017-01-01

    Background Lung squamous cell carcinoma (lung SCC) is a common type of lung cancer, but its mechanism of pathogenesis is unclear. The aim of this study was to identify key transcription factors in lung SCC and elucidate its mechanism. Material/Methods Six published microarray datasets of lung SCC were downloaded from Gene Expression Omnibus (GEO) for integrated bioinformatics analysis. Significance analysis of microarrays was used to identify differentially expressed genes (DEGs) between lung SCC and normal controls. The biological functions and signaling pathways of DEGs were mapped in the Gene Otology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, respectively. A transcription factor gene regulatory network was used to obtain insights into the functions of DEGs. Results A total of 1,011 genes, including 539 upregulated genes and 462 downregulated genes, were filtered as DEGs between lung SCC and normal controls. DEGs were significantly enriched in cell cycle, DNA replication, p53 signaling pathway, pathways in cancer, adherens junction, and cell adhesion molecules signaling pathways. There were 57 transcription factors identified, which were used to construct a regulatory network. The network consisted of 736 interactions between 49 transcription factors and 486 DEGs. NFIC, BRCA1, and NFATC2 were the top 3 transcription factors that had the highest connectivity with DEGs and that regulated 83, 82, and 75 DEGs in the network, respectively. Conclusions NFIC, BRCA1, and NFATC2 might be the key transcription factors in the development of lung SCC by regulating the genes involved in cell cycle and DNA replication pathways. PMID:28081052

  15. Combination of degradation pathways for naphthalene utilization in Rhodococcus sp. strain TFB

    PubMed Central

    Tomás-Gallardo, Laura; Gómez-Álvarez, Helena; Santero, Eduardo; Floriano, Belén

    2014-01-01

    Rhodococcus sp. strain TFB is a metabolic versatile bacterium able to grow on naphthalene as the only carbon and energy source. Applying proteomic, genetic and biochemical approaches, we propose in this paper that, at least, three coordinated but independently regulated set of genes are combined to degrade naphthalene in TFB. First, proteins involved in tetralin degradation are also induced by naphthalene and may carry out its conversion to salicylaldehyde. This is the only part of the naphthalene degradation pathway showing glucose catabolite repression. Second, a salicylaldehyde dehydrogenase activity that converts salicylaldehyde to salicylate is detected in naphthalene-grown cells but not in tetralin-or salicylate-grown cells. Finally, we describe the chromosomally located nag genes, encoding the gentisate pathway for salicylate conversion into fumarate and pyruvate, which are only induced by salicylate and not by naphthalene. This work shows how biodegradation pathways in Rhodococcus sp. strain TFB could be assembled using elements from different pathways mainly because of the laxity of the regulatory systems and the broad specificity of the catabolic enzymes. PMID:24325207

  16. THE ADVERSE OUTCOME PATHWAY (AOP) FRAMEWORK ...

    EPA Pesticide Factsheets

    An Adverse Outcome Pathway (AOP) represents the organization of current and newly acquired knowledge of biological pathways. These pathways contain a series of nodes (Key Events, KEs) that when sufficiently altered influence the next node on the pathway, beginning from an Molecular Initiating Event (MIE), through intermediate KEs, ending in an Adverse Outcome (AO) which may be used as a basis for decision making. A KE is a measurable biological change, and is linked with other KEs via Key Event Relationships (KERs). A given KE may be involved in several AOPs, leading to a plausible network of biological changes that are involved in an organism’s response to an external stressor. When describing an AOP, five guiding principles have been proposed [1]: 1) an AOP is not specific to a single external stressor, 2) AOPs are modular, with KEs and KERs that can be used in several AOPs, 3) a single AOP is the unit of development, 4) most biological responses will be the result of networks of AOPs, and 5) AOPs will be modified as more biological knowledge becomes available. The collaborative development of AOPs is recommended to be performed using the AOP-Wiki (https://aopwiki.org), which is an effort between the European Commission – DG Joint Research Centre (JRC) and U.S. Environmental Protection Agency (EPA). The Wiki is one part of a larger OECD-sponsored AOP Knowledgebase effort, which is a repository for all AOPs developed as part of the Organization for Economic

  17. Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis to optimize photosynthesis during restriction of the cytochrome oxidase pathway in Arabidopsis thaliana

    PubMed Central

    Vishwakarma, Abhaypratap; Tetali, Sarada Devi; Selinski, Jennifer; Scheibe, Renate; Padmasree, Kollipara

    2015-01-01

    Background and Aims The importance of the alternative oxidase (AOX) pathway, particularly AOX1A, in optimizing photosynthesis during de-etiolation, under elevated CO2, low temperature, high light or combined light and drought stress is well documented. In the present study, the role of AOX1A in optimizing photosynthesis was investigated when electron transport through the cytochrome c oxidase (COX) pathway was restricted at complex III. Methods Leaf discs of wild-type (WT) and aox1a knock-out mutants of Arabidopsis thaliana were treated with antimycin A (AA) under growth-light conditions. To identify the impact of AOX1A deficiency in optimizing photosynthesis, respiratory O2 uptake and photosynthesis-related parameters were measured along with changes in redox couples, reactive oxygen species (ROS), lipid peroxidation and expression levels of genes related to respiration, the malate valve and the antioxidative system. Key Results In the absence of AA, aox1a knock-out mutants did not show any difference in physiological, biochemical or molecular parameters compared with WT. However, after AA treatment, aox1a plants showed a significant reduction in both respiratory O2 uptake and NaHCO3-dependent O2 evolution. Chlorophyll fluorescence and P700 studies revealed that in contrast to WT, aox1a knock-out plants were incapable of maintaining electron flow in the chloroplastic electron transport chain, and thereby inefficient heat dissipation (low non-photochemical quenching) was observed. Furthermore, aox1a mutants exhibited significant disturbances in cellular redox couples of NAD(P)H and ascorbate (Asc) and consequently accumulation of ROS and malondialdehyde (MDA) content. By contrast, WT plants showed a significant increase in transcript levels of CSD1, CAT1, sAPX, COX15 and AOX1A in contrast to aox1a mutants. Conclusions These results suggest that AOX1A plays a significant role in sustaining the chloroplastic redox state and energization to optimize photosynthesis by

  18. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota

    PubMed Central

    Kozlowski, Jessica A; Stieglmeier, Michaela; Schleper, Christa; Klotz, Martin G; Stein, Lisa Y

    2016-01-01

    Chemolithotrophic ammonia-oxidizing bacteria and Thaumarchaeota are central players in the global nitrogen cycle. Obligate ammonia chemolithotrophy has been characterized for bacteria; however, large gaps remain in the Thaumarchaeotal pathway. Using batch growth experiments and instantaneous microrespirometry measurements of resting biomass, we show that the terrestrial Thaumarchaeon Nitrososphaera viennensis EN76T exhibits tight control over production and consumption of nitric oxide (NO) during ammonia catabolism, unlike the ammonia-oxidizing bacterium Nitrosospira multiformis ATCC 25196T. In particular, pulses of hydroxylamine into a microelectrode chamber as the sole substrate for N. viennensis resulted in iterative production and consumption of NO followed by conversion of hydroxylamine to nitrite. In support of these observations, oxidation of ammonia in growing cultures of N. viennensis, but not of N. multiformis, was inhibited by the NO-scavenger PTIO. When based on the marginal nitrous oxide (N2O) levels detected in cell-free media controls, the higher levels produced by N. multiformis were explained by enzyme activity, whereas N2O in N. viennensis cultures was attributed to abiotic reactions of released N-oxide intermediates with media components. Our results are conceptualized in a pathway for ammonia-dependent chemolithotrophy in Thaumarchaea, which identifies NO as an essential intermediate in the pathway and implements known biochemistry to be executed by a proposed but still elusive copper enzyme. Taken together, this work identifies differences in ammonia-dependent chemolithotrophy between bacteria and the Thaumarchaeota, advances a central catabolic role of NO only in the Thaumarchaeotal pathway and reveals stark differences in how the two microbial cohorts contribute to N2O emissions. PMID:26882267

  19. Prefrontal-Hippocampal Pathways Underlying Inhibitory Control Over Memory

    PubMed Central

    Anderson, Michael C.; Bunce, Jamie G.; Barbas, Helen

    2016-01-01

    A key function of the prefrontal cortex is to support inhibitory control over behavior. It is widely believed that this function extends to stopping cognitive processes as well. Consistent with this, mounting evidence establishes the role of the right lateral prefrontal cortex in a clear case of cognitive control: retrieval suppression. Retrieval suppression refers to the ability to intentionally stop the retrieval process that arises when a reminder to a memory appears. Functional imaging data indicates that retrieval suppression involves top-down modulation of hippocampal activity by the dorsolateral prefrontal cortex, but the anatomical pathways supporting this inhibitory modulation remain unclear. Here we bridge this gap by integrating key findings about retrieval suppression observed through functional imaging with a detailed consideration of relevant anatomical pathways observed in non-human primates. Focusing selectively on the potential role of the anterior cingulate cortex, we develop two hypotheses about the pathways mediating interactions between lateral prefrontal cortex and the medial temporal lobes during suppression, and their cellular targets: the entorhinal gating hypothesis, and thalamo-hippocampal modulation via the nucleus reuniens. We hypothesize that whereas entorhinal gating is well situated to stop retrieval proactively, thalamo-hippocampal modulation may interrupt an ongoing act of retrieval reactively. Isolating the pathways that underlie retrieval suppression holds the potential to advance our understanding of a range of psychiatric disorders characterized by persistent intrusive thoughts. More broadly, an anatomical account of retrieval suppression would provide a key model system for understanding inhibitory control over cognition. PMID:26642918

  20. Molecular characterization and mRNA expression of two key enzymes of hypoxia-sensing pathways in eastern oysters Crassostrea virginica (Gmelin): Hypoxia-inducible factor α (HIF-α) and HIF-prolyl hydroxylase (PHD)

    PubMed Central

    Piontkivska, Helen; Chung, J. Sook; Ivanina, Anna V.; Sokolov, Eugene P.; Techa, Sirinart; Sokolova, Inna M.

    2010-01-01

    Oxygen homeostasis is crucial for development, survival and normal function of all metazoans. A family of transcription factors called hypoxia-inducible factors (HIF) is critical in mediating the adaptive responses to reduced oxygen availability. The HIF transcription factor consists of a constitutively expressed β subunit and an oxygen-dependent α subunit; the abundance of the latter determines the activity of HIF and is regulated by a family of O2- and Fe2+-dependent enzymes prolyl hydroxylases (PHDs). Currently very little is known about the function of this important pathway and the molecular structure of its key players in hypoxia-tolerant intertidal mollusks including oysters, which are among the animal champions of anoxic and hypoxic tolerance and thus can serve as excellent models to study the role of HIF cascade in adaptations to oxygen deficiency. We have isolated transcripts of two key components of the oxygen sensing pathway - the oxygen-regulated HIF-α subunit and PHD - from an intertidal mollusk, the eastern oyster Crassostrea virginica, and determined the transcriptional responses of these two genes to anoxia, hypoxia and cadmium (Cd) stress. HIF-α and PHD homologs from eastern oysters C. virginica show significant sequence similarity and share key functional domains with the earlier described isoforms from vertebrates and invertebrates. Phylogenetic analysis shows that genetic diversification of HIF and PHD isoforms occurred within the vertebrate lineage indicating functional diversification and specialization of the oxygen-sensing pathways in this group, which parallels situation observed for many other important genes. HIF-α and PHD homologs are broadly expressed at the mRNA level in different oyster tissues and show transcriptional responses to prolonged hypoxia in the gills consistent with their putative role in oxygen sensing and the adaptive response to hypoxia. Similarity in amino acid sequence, domain structure and transcriptional

  1. Pathways for virus assembly around nucleic acids

    PubMed Central

    Perlmutter, Jason D; Perkett, Matthew R

    2014-01-01

    Understanding the pathways by which viral capsid proteins assemble around their genomes could identify key intermediates as potential drug targets. In this work we use computer simulations to characterize assembly over a wide range of capsid protein-protein interaction strengths and solution ionic strengths. We find that assembly pathways can be categorized into two classes, in which intermediates are either predominantly ordered or disordered. Our results suggest that estimating the protein-protein and the protein-genome binding affinities may be sufficient to predict which pathway occurs. Furthermore, the calculated phase diagrams suggest that knowledge of the dominant assembly pathway and its relationship to control parameters could identify optimal strategies to thwart or redirect assembly to block infection. Finally, analysis of simulation trajectories suggests that the two classes of assembly pathways can be distinguished in single molecule fluorescence correlation spectroscopy or bulk time resolved small angle x-ray scattering experiments. PMID:25036288

  2. Molecular and enzymatic characterization of two enzymes BmPCD and BmDHPR involving in the regeneration pathway of tetrahydrobiopterin from the silkworm Bombyx mori.

    PubMed

    Li, Wentian; Gong, Meixia; Shu, Rui; Li, Xin; Gao, Junshan; Meng, Yan

    2015-08-01

    Tetrahydrobiopterin (BH4) is an essential cofactor of aromatic amino acid hydroxylases and nitric oxide synthase so that BH4 plays a key role in many biological processes. BH4 deficiency is associated with numerous metabolic syndromes and neuropsychological disorders. BH4 concentration in mammals is maintained through a de novo synthesis pathway and a regeneration pathway. Previous studies showed that the de novo pathway of BH4 is similar between insects and mammals. However, knowledge about the regeneration pathway of BH4 (RPB) is very limited in insects. Several mutants in the silkworm Bombyx mori have been approved to be associated with BH4 deficiency, which are good models to research on the RPB in insects. In this study, homologous genes encoding two enzymes, pterin-4a-carbinolamine dehydratase (PCD) and dihydropteridine reductase (DHPR) involving in RPB have been cloned and identified from B. mori. Enzymatic activity of DHPR was found in the fat body of wild type silkworm larvae. Together with the transcription profiles, it was indicated that BmPcd and BmDhpr might normally act in the RPB of B. mori and the expression of BmDhpr was activated in the brain and sexual glands while BmPcd was expressed in a wider special pattern when the de novo pathway of BH4 was lacked in lemon. Biochemical analyses showed that the recombinant BmDHPR exhibited high enzymatic activity and more suitable parameters to the coenzyme of NADH in vitro. The results in this report give new information about the RPB in B. mori and help in better understanding insect BH4 biosynthetic networks. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. A Web Tool for Generating High Quality Machine-readable Biological Pathways.

    PubMed

    Ramirez-Gaona, Miguel; Marcu, Ana; Pon, Allison; Grant, Jason; Wu, Anthony; Wishart, David S

    2017-02-08

    PathWhiz is a web server built to facilitate the creation of colorful, interactive, visually pleasing pathway diagrams that are rich in biological information. The pathways generated by this online application are machine-readable and fully compatible with essentially all web-browsers and computer operating systems. It uses a specially developed, web-enabled pathway drawing interface that permits the selection and placement of different combinations of pre-drawn biological or biochemical entities to depict reactions, interactions, transport processes and binding events. This palette of entities consists of chemical compounds, proteins, nucleic acids, cellular membranes, subcellular structures, tissues, and organs. All of the visual elements in it can be interactively adjusted and customized. Furthermore, because this tool is a web server, all pathways and pathway elements are publicly accessible. This kind of pathway "crowd sourcing" means that PathWhiz already contains a large and rapidly growing collection of previously drawn pathways and pathway elements. Here we describe a protocol for the quick and easy creation of new pathways and the alteration of existing pathways. To further facilitate pathway editing and creation, the tool contains replication and propagation functions. The replication function allows existing pathways to be used as templates to create or edit new pathways. The propagation function allows one to take an existing pathway and automatically propagate it across different species. Pathways created with this tool can be "re-styled" into different formats (KEGG-like or text-book like), colored with different backgrounds, exported to BioPAX, SBGN-ML, SBML, or PWML data exchange formats, and downloaded as PNG or SVG images. The pathways can easily be incorporated into online databases, integrated into presentations, posters or publications, or used exclusively for online visualization and exploration. This protocol has been successfully applied to

  4. miRPathDB: a new dictionary on microRNAs and target pathways.

    PubMed

    Backes, Christina; Kehl, Tim; Stöckel, Daniel; Fehlmann, Tobias; Schneider, Lara; Meese, Eckart; Lenhof, Hans-Peter; Keller, Andreas

    2017-01-04

    In the last decade, miRNAs and their regulatory mechanisms have been intensively studied and many tools for the analysis of miRNAs and their targets have been developed. We previously presented a dictionary on single miRNAs and their putative target pathways. Since then, the number of miRNAs has tripled and the knowledge on miRNAs and targets has grown substantially. This, along with changes in pathway resources such as KEGG, leads to an improved understanding of miRNAs, their target genes and related pathways. Here, we introduce the miRNA Pathway Dictionary Database (miRPathDB), freely accessible at https://mpd.bioinf.uni-sb.de/ With the database we aim to complement available target pathway web-servers by providing researchers easy access to the information which pathways are regulated by a miRNA, which miRNAs target a pathway and how specific these regulations are. The database contains a large number of miRNAs (2595 human miRNAs), different miRNA target sets (14 773 experimentally validated target genes as well as 19 281 predicted targets genes) and a broad selection of functional biochemical categories (KEGG-, WikiPathways-, BioCarta-, SMPDB-, PID-, Reactome pathways, functional categories from gene ontology (GO), protein families from Pfam and chromosomal locations totaling 12 875 categories). In addition to Homo sapiens, also Mus musculus data are stored and can be compared to human target pathways. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Xeroderma pigmentosum: biochemical and genetic characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, J.E.; Bootsma, D.

    1975-01-01

    Biochemical and genetic studies on xeroderma pigmentosum are reviewed under the following headings: clinical features of xeroderma pigmentosum; karyotype; cell killing and host cell reactivation after irradiation or exposure to chemical carcinogens; SV40 transformation of xeroderma pigmentosum cells; biochemical defects in the common and de Sanctis-Cacchione forms of xeroderma pigmentosum; cell hybridization and complementation groups; biochemical defects in the xeroderma pigmentosum variant and the role of caffeine in DNA repair; DNA repair in xeroderma pigmentosum heterozygotes; response of xeroderma pigmentosum cells to various mutagens and chemical carcinogens; other high and low repair diseases; and possible significance of DNA repair inmore » theories of aging and carcinogenesis. (HLW)« less

  6. Comparative TEA for Indirect Liquefaction Pathways to Distillate-Range Fuels via Oxygenated Intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Eric; Snowden-Swan, Lesley J.; Talmadge, Michael

    This paper presents a comparative techno-economic analysis of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates (derived either via thermochemical or biochemical conversion steps). The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include: biomass-to-syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates, followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. We show that the emerging pathways via oxygenated intermediatesmore » have the potential to be cost competitive with the conventional Fischer-Tropsch process. The evaluated pathways and the benchmark process generally exhibit similar fuel yields and carbon conversion efficiencies. The resulting minimum fuel selling prices are comparable to the benchmark at approximately $3.60 per gallon-gasoline equivalent, with potential for two new pathways to be more economically competitive. Additionally, the coproduct values can play an important role in the economics of the processes with oxygenated intermediates derived via syngas fermentation. Major cost drivers for the integrated processes are tied to achievable fuel yields and conversion efficiency of the intermediate steps, i.e., the production of oxygenates/alcohols from syngas and the conversion of oxygenates/alcohols to hydrocarbon fuels.« less

  7. Production of bulk chemicals via novel metabolic pathways in microorganisms.

    PubMed

    Shin, Jae Ho; Kim, Hyun Uk; Kim, Dong In; Lee, Sang Yup

    2013-11-01

    Metabolic engineering has been playing important roles in developing high performance microorganisms capable of producing various chemicals and materials from renewable biomass in a sustainable manner. Synthetic and systems biology are also contributing significantly to the creation of novel pathways and the whole cell-wide optimization of metabolic performance, respectively. In order to expand the spectrum of chemicals that can be produced biotechnologically, it is necessary to broaden the metabolic capacities of microorganisms. Expanding the metabolic pathways for biosynthesizing the target chemicals requires not only the enumeration of a series of known enzymes, but also the identification of biochemical gaps whose corresponding enzymes might not actually exist in nature; this issue is the focus of this paper. First, pathway prediction tools, effectively combining reactions that lead to the production of a target chemical, are analyzed in terms of logics representing chemical information, and designing and ranking the proposed metabolic pathways. Then, several approaches for potentially filling in the gaps of the novel metabolic pathway are suggested along with relevant examples, including the use of promiscuous enzymes that flexibly utilize different substrates, design of novel enzymes for non-natural reactions, and exploration of hypothetical proteins. Finally, strain optimization by systems metabolic engineering in the context of novel metabolic pathways constructed is briefly described. It is hoped that this review paper will provide logical ways of efficiently utilizing 'big' biological data to design and develop novel metabolic pathways for the production of various bulk chemicals that are currently produced from fossil resources. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Tetrahydrobiopterin recycling, a key determinant of endothelial nitric-oxide synthase-dependent signaling pathways in cultured vascular endothelial cells.

    PubMed

    Sugiyama, Toru; Levy, Bruce D; Michel, Thomas

    2009-05-08

    Tetrahydrobiopterin (BH4) is a key redox-active cofactor in endothelial isoform of NO synthase (eNOS) catalysis and is an important determinant of NO-dependent signaling pathways. BH4 oxidation is observed in vascular cells in the setting of the oxidative stress associated with diabetes. However, the relative roles of de novo BH4 synthesis and BH4 redox recycling in the regulation of eNOS bioactivity remain incompletely defined. We used small interference RNA (siRNA)-mediated "knockdown" GTP cyclohydrolase-1 (GTPCH1), the rate-limiting enzyme in BH4 biosynthesis, and dihydrofolate reductase (DHFR), an enzyme-recycling oxidized BH4 (7,8-dihydrobiopterin (BH2)), and studied the effects on eNOS regulation and biopterin metabolism in cultured aortic endothelial cells. Knockdown of either DHFR or GTPCH1 attenuated vascular endothelial growth factor (VEGF)-induced eNOS activity and NO production; these effects were recovered by supplementation with BH4. In contrast, supplementation with BH2 abolished VEGF-induced NO production. DHFR but not GTPCH1 knockdown increased reactive oxygen species (ROS) production. The increase in ROS production seen with siRNA-mediated DHFR knockdown was abolished either by simultaneous siRNA-mediated knockdown of eNOS or by supplementing with BH4. In contrast, addition of BH2 increased ROS production; this effect of BH2 was blocked by BH4 supplementation. DHFR but not GTPCH1 knockdown inhibited VEGF-induced dephosphorylation of eNOS at the inhibitory site serine 116; these effects were recovered by supplementation with BH4. These studies demonstrate a striking contrast in the pattern of eNOS regulation seen by the selective modulation of BH4 salvage/reduction versus de novo BH4 synthetic pathways. Our findings suggest that the depletion of BH4 is not sufficient to perturb NO signaling, but rather that concentration of intracellular BH2, as well as the relative concentrations of BH4 and BH2, together play a determining role in the redox

  9. The Role of Structural, Biochemical and Ecophysiological Plant Acclimation in the Eco-Hydrologic Response of Agro-Ecosystems to Global Change in the Central US

    NASA Astrophysics Data System (ADS)

    Drewry, D.; Kumar, P.; Long, S.; Sivapalan, M.; Bernacchi, C.; Liang, X.

    2009-12-01

    The acclimation of terrestrial vegetation to changes in ambient growth environment has significant implications for land-atmosphere exchange of carbon dioxide (CO2) and energy, as well as critical ecosystem services such as food production. Recent field campaigns at the SoyFACE Free Air Carbon Enrichment (FACE) facility in central Illinois have provided clear evidence of the modification of structural, biochemical and ecophysiological properties of key agricultural species at CO2 concentrations projected for the middle of this century. While these acclamatory responses have been linked to changes in leaf-level gas exchange and leaf states (ie. leaf temperature and stomatal conductance), determining the implications for these changes at the canopy-scale has remained a challenge. Here we present a simulation analysis that examines the role of observed plant acclimation in two key mid-west agricultural species, soy (C3 photosynthetic pathway) and corn (C4 photosynthetic pathway), in modifying future carbon uptake and surface energy partitioning, crop water use and resilience to water stress. The model canopies are divided into multiple layers, allowing for resolution of the shortwave and longwave radiation regimes that drive photosynthesis, stomatal conductance and leaf energy balance in each layer, along with the canopy microclimate. The canopy component of the model is coupled to a multi-layer soil-root model that computes soil moisture and root water uptake at each time period, accounting for the effects of moisture stress on canopy functioning. Model skill in capturing the sub-diurnal variability in canopy-atmosphere fluxes is demonstrated using multi-year records of eddy covariance CO2, water vapor and heat fluxes collected at the Bondville (Illinois) AmeriFlux site. An evaluation of the ability of the model to simulate observed changes in energy balance components, leaf-level photosynthetic assimilation, leaf temperature and stomatal conductance under elevated

  10. Regulatory mechanism of protein metabolic pathway during the differentiation process of chicken male germ cell.

    PubMed

    Li, Dong; Zuo, Qisheng; Lian, Chao; Zhang, Lei; Shi, Qingqing; Zhang, Zhentao; Wang, Yingjie; Ahmed, Mahmoud F; Tang, Beibei; Xiao, Tianrong; Zhang, Yani; Li, Bichun

    2015-08-01

    We explored the regulatory mechanism of protein metabolism during the differentiation process of chicken male germ cells and provide a basis for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro. We sequenced the transcriptome of embryonic stem cells, primordial germ cells, and spermatogonial stem cells with RNA sequencing (RNA-Seq), bioinformatics analysis methods, and detection of the key genes by quantitative reverse transcription PCR (qRT-PCR). Finally, we found 16 amino acid metabolic pathways enriched in the biological metabolism during the differentiation process of embryonic stem cells to primordial germ cells and 15 amino acid metabolic pathways enriched in the differentiation stage of primordial germ cells to spermatogonial stem cells. We found three pathways, arginine-proline metabolic pathway, tyrosine metabolic pathway, and tryptophan metabolic pathway, significantly enriched in the whole differentiation process of embryonic stem cells to spermatogonial stem cells. Moreover, for these three pathways, we screened key genes such as NOS2, ADC, FAH, and IDO. qRT-PCR results showed that the expression trend of these genes were the same to RNA-Seq. Our findings showed that the three pathways and these key genes play an important role in the differentiation process of embryonic stem cells to male germ cells. These results provide basic information for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro.

  11. Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion

    PubMed Central

    2013-01-01

    Background In solid-state anaerobic digestion (AD) bioprocesses, hydrolytic and acidogenic microbial metabolisms have not yet been clarified. Since these stages are particularly important for the establishment of the biological reaction, better knowledge could optimize the process performances by process parameters adjustment. Results This study demonstrated the effect of total solids (TS) content on microbial fermentation of wheat straw with six different TS contents ranging from wet to dry conditions (10 to 33% TS). Three groups of metabolic behaviors were distinguished based on wheat straw conversion rates with 2,200, 1,600, and 1,400 mmol.kgVS-1 of fermentative products under wet (10 and 14% TS), dry (19 to 28% TS), and highly dry (28 to 33% TS) conditions, respectively. Furthermore, both wet and dry fermentations showed acetic and butyric acid metabolisms, whereas a mainly butyric acid metabolism occurred in highly dry fermentation. Conclusion Substrate conversion was reduced with no changes of the metabolic pathways until a clear limit at 28% TS content, which corresponded to the threshold value of free water content of wheat straw. This study suggested that metabolic pathways present a limit of TS content for high-solid AD. PMID:24261971

  12. Extending double modulation: combinatorial rules for identifying the modulations necessary for determining elasticities in metabolic pathways.

    PubMed

    Giersch, C; Cornish-Bowden, A

    1996-10-07

    The double modulation method for determining the elasticities of pathway enzymes, originally devised by Kacser & Burns (Biochem. Soc. Trans. 7, 1149-1160, 1979), is extended to pathways of complex topological structure, including branching and feedback loops. An explicit system of linear equations for the unknown elasticities is derived. The constraints imposed on this linear system imply that modulations of more than one enzyme are not necessarily independent. Simple combinatorial rules are described for identifying without using any algebra the set of independent modulations that allow the determination of the elasticities of any enzyme. By repeated application, the minimum numbers of modulations required to determine the elasticities of all enzymes of a given pathway can be determined. The procedure is illustrated with numerous examples.

  13. Characterization and expression patterns of key C4 photosynthetic pathway genes in bread wheat (Triticum aestivum L.) under field conditions.

    PubMed

    Bachir, Daoura Goudia; Saeed, Iqbal; Song, Quanhao; Linn, Tay Zar; Chen, Liang; Hu, Yin-Gang

    2017-06-01

    Wheat is a C 3 plant with relatively low photosynthetic efficiency and is a potential target for C 4 photosynthetic pathway engineering. Here we reported the characterization of four key C 4 pathway genes and assessed their expression patterns and enzymatic activities at three growth stages in flag leaves of 59 bread wheat genotypes. The C 4 -like genes homologous to PEPC, NADP-ME, MDH, and PPDK in maize were identified in the A, B, and D sub-genomes of bread wheat, located on the long arms of chromosomes 3 and 5 (TaPEPC), short arms of chromosomes 1 and 3 (TaNADP-ME), long arms of chromosomes 1 and 7 (TaMDH), and long arms of chromosome 1 (TaPPDK), respectively. All the four C 4 -like genes were expressed in the flag leaves at the three growth stages with considerable variations among the 59 bread wheat genotypes. Significant differences were observed between the photosynthesis rates (A) of wheat genotypes with higher expressions of TaPEPC_5, TaNADP-ME_1, and TaMDH_7 at heading and middle grain-filling stages and those with intermediate and low expressions. Our results also indicated that the four C 4 enzymes showed activity in the flag leaves and were obviously different among the 59 wheat genotypes. The activities of PEPcase and PPDK decreased at anthesis and slightly increased at grain-filling stage, while NADP-ME and MDH exhibited a decreasing trend at the three stages. The results of the current study could be very valuable and useful for wheat researchers in improving photosynthetic capacity of wheat. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Modularization of biochemical networks based on classification of Petri net t-invariants.

    PubMed

    Grafahrend-Belau, Eva; Schreiber, Falk; Heiner, Monika; Sackmann, Andrea; Junker, Björn H; Grunwald, Stefanie; Speer, Astrid; Winder, Katja; Koch, Ina

    2008-02-08

    the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied. We considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability. We propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis.

  15. Modularization of biochemical networks based on classification of Petri net t-invariants

    PubMed Central

    Grafahrend-Belau, Eva; Schreiber, Falk; Heiner, Monika; Sackmann, Andrea; Junker, Björn H; Grunwald, Stefanie; Speer, Astrid; Winder, Katja; Koch, Ina

    2008-01-01

    as modules. To find the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied. Results We considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability. Conclusion We propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis. PMID:18257938

  16. THE ADVERSE OUTCOME PATHWAY (AOP) FRAMEWORK: A FRAMEWORK FOR ORGANIZING BIOLOGICAL KNOWLEDGE LEADING TO HEALTH RISKS.

    EPA Science Inventory

    An Adverse Outcome Pathway (AOP) represents the organization of current and newly acquired knowledge of biological pathways. These pathways contain a series of nodes (Key Events, KEs) that when sufficiently altered influence the next node on the pathway, beginning from an Molecul...

  17. Genetic and biochemical analysis of protozoal polyamine transporters.

    PubMed

    Hasne, Marie-Pierre; Ullman, Buddy

    2011-01-01

    Polyamines are aliphatic polycations that function in key cellular processes such as growth, differentiation, and macromolecular biosynthesis. Intracellular polyamines pools are maintained from de novo synthesis and from transport of polyamines from the extracellular milieu. This acquisition of exogenous polyamines is mediated by cell surface transporter proteins. Protozoan parasites are the etiologic agents of a plethora of devastating and often fatal diseases in humans and their domestic animals. These pathogens accommodate de novo and/or salvage mechanisms for polyamine acquisition. Because of its therapeutic relevance, the polyamine biosynthetic pathway has been thoroughly investigated in many genera of protozoan parasites, but the polyamine permeation pathways have generally been ignored. Our group has now identified at the molecular level polyamine transporters from two species of protozoan parasites, Leishmania major and Trypanosoma cruzi, characterized these polytopic proteins with respect to ligand specificities and affinities, and determined the subcellular environments in which these transporters reside.

  18. Integrated RNA-Seq and sRNA-Seq Analysis Identifies Chilling and Freezing Responsive Key Molecular Players and Pathways in Tea Plant (Camellia sinensis)

    PubMed Central

    Zheng, Chao; Zhao, Lei; Wang, Yu; Shen, Jiazhi; Zhang, Yinfei; Jia, Sisi; Li, Yusheng; Ding, Zhaotang

    2015-01-01

    Tea [Camellia sinensis (L) O. Kuntze, Theaceae] is one of the most popular non-alcoholic beverages worldwide. Cold stress is one of the most severe abiotic stresses that limit tea plants’ growth, survival and geographical distribution. However, the genetic regulatory network and signaling pathways involved in cold stress responses in tea plants remain unearthed. Using RNA-Seq, DGE and sRNA-Seq technologies, we performed an integrative analysis of miRNA and mRNA expression profiling and their regulatory network of tea plants under chilling (4℃) and freezing (-5℃) stress. Differentially expressed (DE) miRNA and mRNA profiles were obtained based on fold change analysis, miRNAs and target mRNAs were found to show both coherent and incoherent relationships in the regulatory network. Furthermore, we compared several key pathways (e.g., ‘Photosynthesis’), GO terms (e.g., ‘response to karrikin’) and transcriptional factors (TFs, e.g., DREB1b/CBF1) which were identified as involved in the early chilling and/or freezing response of tea plants. Intriguingly, we found that karrikins, a new group of plant growth regulators, and β-primeverosidase (BPR), a key enzyme functionally relevant with the formation of tea aroma might play an important role in both early chilling and freezing response of tea plants. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-Seq and sRNA-Seq analysis. This is the first study to simultaneously profile the expression patterns of both miRNAs and mRNAs on a genome-wide scale to elucidate the molecular mechanisms of early responses of tea plants to cold stress. In addition to gaining a deeper insight into the cold resistant characteristics of tea plants, we provide a good case study to analyse mRNA/miRNA expression and profiling of non-model plant species using next-generation sequencing technology. PMID:25901577

  19. Diverse exocytic pathways for mast cell mediators.

    PubMed

    Xu, Hao; Bin, Na-Ryum; Sugita, Shuzo

    2018-04-17

    Mast cells play pivotal roles in innate and adaptive immunities but are also culprits in allergy, autoimmunity, and cardiovascular diseases. Mast cells respond to environmental changes by initiating regulated exocytosis/secretion of various biologically active compounds called mediators (e.g. proteases, amines, and cytokines). Many of these mediators are stored in granules/lysosomes and rely on intricate degranulation processes for release. Mast cell stabilizers (e.g. sodium cromoglicate), which prevent such degranulation processes, have therefore been clinically employed to treat asthma and allergic rhinitis. However, it has become increasingly clear that different mast cell diseases often involve multiple mediators that rely on overlapping but distinct mechanisms for release. This review illustrates existing evidence that highlights the diverse exocytic pathways in mast cells. We also discuss strategies to delineate these pathways so as to identify unique molecular components which could serve as new drug targets for more effective and specific treatments against mast cell-related diseases. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  20. Computational Modeling of Fluctuations in Energy and Metabolic Pathways of Methanogenic Archaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luthey-Schulten, Zaida

    The methanogenic archaea, anaerobic microbes that convert CO2 and H2 and/or other small organic fermentation products into methane, play an unusually large role in the global carbon cycle. As they perform the final step in the anaerobic breakdown of biomass, methanogens are a biogenic source of an estimated one billion tons methane each year. Depending on the location, produced methane can be considered as either a greenhouse gas (agricultural byproduct), sequestered carbon storage (methane hydrate deposits), or a potential energy source (organic wastewater treatment). These microbes therefore represent an important target for biotechnology applications. Computational models of methanogens with predictivemore » power are useful aids in the adaptation of methanogenic systems, but need to connect processes of wide-ranging time and length scales. In this project, we developed several computational methodologies for modeling the dynamic behavior of entire cells that connects stochastic reaction-diffusion dynamics of individual biochemical pathways with genome-scale modeling of metabolic networks. While each of these techniques were in the realm of well-defined computational methods, here we integrated them to develop several entirely new approaches to systems biology. The first scientific aim of the project was to model how noise in a biochemical pathway propagates into cellular phenotypes. Genetic circuits have been optimized by evolution to regulate molecular processes despite stochastic noise, but the effect of such noise on a cellular biochemical networks is currently unknown. An integrated stochastic/systems model of Escherichia coli species was created to analyze how noise in protein expression gives—and therefore noise in metabolic fluxes—gives rise to multiple cellular phenotype in isogenic population. After the initial work developing and validating methods that allow characterization of the heterogeneity in the model organism E. coli, the project

  1. Integrative proteomics and biochemical analyses define Ptc6p as the Saccharomyces cerevisiae pyruvate dehydrogenase phosphatase.

    PubMed

    Guo, Xiao; Niemi, Natalie M; Coon, Joshua J; Pagliarini, David J

    2017-07-14

    The pyruvate dehydrogenase complex (PDC) is the primary metabolic checkpoint connecting glycolysis and mitochondrial oxidative phosphorylation and is important for maintaining cellular and organismal glucose homeostasis. Phosphorylation of the PDC E1 subunit was identified as a key inhibitory modification in bovine tissue ∼50 years ago, and this regulatory process is now known to be conserved throughout evolution. Although Saccharomyces cerevisiae is a pervasive model organism for investigating cellular metabolism and its regulation by signaling processes, the phosphatase(s) responsible for activating the PDC in S. cerevisiae has not been conclusively defined. Here, using comparative mitochondrial phosphoproteomics, analyses of protein-protein interactions by affinity enrichment-mass spectrometry, and in vitro biochemistry, we define Ptc6p as the primary PDC phosphatase in S. cerevisiae Our analyses further suggest additional substrates for related S. cerevisiae phosphatases and describe the overall phosphoproteomic changes that accompany mitochondrial respiratory dysfunction. In summary, our quantitative proteomics and biochemical analyses have identified Ptc6p as the primary-and likely sole- S. cerevisiae PDC phosphatase, closing a key knowledge gap about the regulation of yeast mitochondrial metabolism. Our findings highlight the power of integrative omics and biochemical analyses for annotating the functions of poorly characterized signaling proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Biochemical mechanisms of cisplatin cytotoxicity.

    PubMed

    Cepeda, Victoria; Fuertes, Miguel A; Castilla, Josefina; Alonso, Carlos; Quevedo, Celia; Pérez, Jose M

    2007-01-01

    Since the discovery by Rosenberg and collaborators of the antitumor activity of cisplatin 35 years ago, three platinum antitumor drugs (cisplatin, carboplatin and oxaliplatin) have enjoyed a huge clinical and commercial hit. Ever since the initial discovery of the anticancer activity of cisplatin, major efforts have been devoted to elucidate the biochemical mechanisms of antitumor activity of cisplatin in order to be able to rationally design novel platinum based drugs with superior pharmacological profiles. In this report we attempt to provide a current picture of the known facts pertaining to the mechanism of action of the drug, including those involved in drug uptake, DNA damage signals transduction, and cell death through apoptosis or necrosis. A deep knowledge of the biochemical mechanisms, which are triggered in the tumor cell in response to cisplatin injury not only may lead to the design of more efficient platinum antitumor drugs but also may provide new therapeutic strategies based on the biochemical modulation of cisplatin activity.

  3. Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway.

    PubMed

    Keller, Markus A; Zylstra, Andre; Castro, Cecilia; Turchyn, Alexandra V; Griffin, Julian L; Ralser, Markus

    2016-01-01

    Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks.

  4. Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway

    PubMed Central

    Keller, Markus A.; Zylstra, Andre; Castro, Cecilia; Turchyn, Alexandra V.; Griffin, Julian L.; Ralser, Markus

    2016-01-01

    Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks. PMID:26824074

  5. Pseudomonas aeruginosa flagellar motility activates the phagocyte PI3K/Akt pathway to induce phagocytic engulfment.

    PubMed

    Lovewell, Rustin R; Hayes, Sandra M; O'Toole, George A; Berwin, Brent

    2014-04-01

    Phagocytosis of the bacterial pathogen Pseudomonas aeruginosa is the primary means by which the host controls bacterially induced pneumonia during lung infection. Previous studies have identified flagellar swimming motility as a key pathogen-associated molecular pattern (PAMP) recognized by phagocytes to initiate engulfment. Correspondingly, loss of flagellar motility is observed during chronic pulmonary infection with P. aeruginosa, and this likely reflects a selection for bacteria resistant to phagocytic clearance. However, the mechanism underlying the preferential phagocytic response to motile bacteria is unknown. Here we have identified a cellular signaling pathway in alveolar macrophages and other phagocytes that is specifically activated by flagellar motility. Genetic and biochemical methods were employed to identify that phagocyte PI3K/Akt activation is required for bacterial uptake and, importantly, it is specifically activated in response to P. aeruginosa flagellar motility. Based on these observations, the second important finding that emerged from these studies is that titration of the bacterial flagellar motility results in a proportional activation state of Akt. Therefore, the Akt pathway is responsive to, and corresponds with, the degree of bacterial flagellar motility, is independent of the actin polymerization that facilitates phagocytosis, and determines the phagocytic fate of P. aeruginosa. These findings elucidate the mechanism behind motility-dependent phagocytosis of extracellular bacteria and support a model whereby phagocytic clearance exerts a selective pressure on P. aeruginosa populations in vivo, which contributes to changes in pathogenesis during infections.

  6. Pseudomonas aeruginosa flagellar motility activates the phagocyte PI3K/Akt pathway to induce phagocytic engulfment

    PubMed Central

    Lovewell, Rustin R.; Hayes, Sandra M.; O'Toole, George A.

    2014-01-01

    Phagocytosis of the bacterial pathogen Pseudomonas aeruginosa is the primary means by which the host controls bacterially induced pneumonia during lung infection. Previous studies have identified flagellar swimming motility as a key pathogen-associated molecular pattern (PAMP) recognized by phagocytes to initiate engulfment. Correspondingly, loss of flagellar motility is observed during chronic pulmonary infection with P. aeruginosa, and this likely reflects a selection for bacteria resistant to phagocytic clearance. However, the mechanism underlying the preferential phagocytic response to motile bacteria is unknown. Here we have identified a cellular signaling pathway in alveolar macrophages and other phagocytes that is specifically activated by flagellar motility. Genetic and biochemical methods were employed to identify that phagocyte PI3K/Akt activation is required for bacterial uptake and, importantly, it is specifically activated in response to P. aeruginosa flagellar motility. Based on these observations, the second important finding that emerged from these studies is that titration of the bacterial flagellar motility results in a proportional activation state of Akt. Therefore, the Akt pathway is responsive to, and corresponds with, the degree of bacterial flagellar motility, is independent of the actin polymerization that facilitates phagocytosis, and determines the phagocytic fate of P. aeruginosa. These findings elucidate the mechanism behind motility-dependent phagocytosis of extracellular bacteria and support a model whereby phagocytic clearance exerts a selective pressure on P. aeruginosa populations in vivo, which contributes to changes in pathogenesis during infections. PMID:24487390

  7. Biochemical Defense Response: Characterizing the Plasticity of Source and Sink in Spring Wheat under Terminal Heat Stress.

    PubMed

    Kumar, Ranjeet R; Goswami, Suneha; Shamim, Mohammed; Mishra, Upama; Jain, Monika; Singh, Khushboo; Singh, Jyoti P; Dubey, Kavita; Singh, Shweta; Rai, Gyanendra K; Singh, Gyanendra P; Pathak, Himanshu; Chinnusamy, Viswanathan; Praveen, Shelly

    2017-01-01

    Wheat is highly prone to terminal heat stress (HS) under late-sown conditions. Delayed- sowing is one of the preferred methods to screen the genotypes for thermotolerance under open field conditions. We investigated the effect of terminal HS on the thermotolerance of four popular genotypes of wheat i.e. WR544, HD2967, HD2932, and HD2285 under field condition. We observed significant variations in the biochemical parameters like protein content, antioxidant activity, proline and total reducing sugar content in leaf, stem, and spike under normal (26 ± 2°C) and terminal HS (36 ± 2°C) conditions. Maximum protein, sugars and proline was observed in HD2967, as compared to other cultivars under terminal HS. Wheat cv. HD2967 showed more adaptability to the terminal HS. Differential protein-profiling in leaves, stem and spike of HD2967 under normal (26 ± 2°C) and terminal HS (36 ± 2°C) showed expression of some unique protein spots. MALDI-TOF/MS analysis showed the DEPs as RuBisCO (Rub), RuBisCO activase (Rca), oxygen evolving enhancer protein (OEEP), hypothetical proteins, etc. Expression analysis of genes associated with photosynthesis ( Rub and Rca ) and starch biosynthesis pathway ( AGPase, SSS and SBE ) showed significant variations in the expression under terminal HS. HD2967 showed better performance, as compared to other cultivars under terminal HS. SSS activity observed in HD2967 showed more stability under terminal HS, as compared with other cultivars. Triggering of different biochemical parameters in response to terminal HS was observed to modulate the plasticity of carbon assimilatory pathway. The identified DEPs will enrich the proteomic resources of wheat and will provide a potential biochemical marker for screening wheat germplasm for thermotolerance. The model hypothesized will help the researchers to work in a more focused way to develop terminal heat tolerant wheat without compromising with the quality and quantity of grains.

  8. The Glymphatic Pathway.

    PubMed

    Benveniste, Helene; Lee, Hedok; Volkow, Nora D

    2017-01-01

    The overall premise of this review is that cerebrospinal fluid (CSF) is transported within a dedicated peri-vascular network facilitating metabolic waste clearance from the central nervous system while we sleep. The anatomical profile of the network is complex and has been defined as a peri-arterial CSF influx pathway and peri-venous clearance routes, which are functionally coupled by interstitial bulk flow supported by astrocytic aquaporin 4 water channels. The role of the newly discovered system in the brain is equivalent to the lymphatic system present in other body organs and has been termed the "glymphatic pathway" or "(g)lymphatics" because of its dependence on glial cells. We will discuss and review the general anatomy and physiology of CSF from the perspective of the glymphatic pathway, a discovery which has greatly improved our understanding of key factors that control removal of metabolic waste products from the central nervous system in health and disease and identifies an additional purpose for sleep. A brief historical and factual description of CSF production and transport will precede the ensuing discussion of the glymphatic system along with a discussion of its clinical implications.

  9. Signaling Pathways of Purinergic Receptors and Their Interactions with Cholinergic and Adrenergic Pathways in the Lacrimal Gland

    PubMed Central

    Hodges, Robin R.

    2016-01-01

    Abstract Purpose: Purinergic receptors play a key role in the function of the lacrimal gland (LG) as P1 purinergic receptors A1, A2A, and A2B, P2X1–7 receptors, and many of the P2Y receptors are expressed. Methods: This review examines the current knowledge of purinergic receptors in the LG as well as the signaling pathways activated by these receptors. Results: These receptors are expressed on the acinar, ductal, and myoepithelial cells. Considerable crosstalk exists between the pathways activated by P2X7 receptors with those activated by M3 muscarinic or α1D adrenergic receptors. The mechanism of the crosstalk between P2X7 and M3 muscarinic receptors differs from that of the crosstalk between P2X7 and α1D adrenergic receptors. Conclusions: Understanding purinergic receptors and how they modulate protein secretion could play a key role in normal and pathological responses of the LG. PMID:27463365

  10. A biochemical approach to identifying microRNA targets

    PubMed Central

    Karginov, Fedor V.; Conaco, Cecilia; Xuan, Zhenyu; Schmidt, Bryan H.; Parker, Joel S.; Mandel, Gail; Hannon, Gregory J.

    2007-01-01

    Identifying the downstream targets of microRNAs (miRNAs) is essential to understanding cellular regulatory networks. We devised a direct biochemical method for miRNA target discovery that combined RNA-induced silencing complex (RISC) purification with microarray analysis of bound mRNAs. Because targets of miR-124a have been analyzed, we chose it as our model. We honed our approach both by examining the determinants of stable binding between RISC and synthetic target RNAs in vitro and by determining the dependency of both repression and RISC coimmunoprecipitation on miR-124a seed sites in two of its well characterized targets in vivo. Examining the complete spectrum of miR-124 targets in 293 cells yielded both a set that were down-regulated at the mRNA level, as previously observed, and a set whose mRNA levels were unaffected by miR-124a. Reporter assays validated both classes, extending the spectrum of mRNA targets that can be experimentally linked to the miRNA pathway. PMID:18042700

  11. mTOR Pathways in Cancer and Autophagy.

    PubMed

    Paquette, Mathieu; El-Houjeiri, Leeanna; Pause, Arnim

    2018-01-12

    TOR (target of rapamycin), an evolutionarily-conserved serine/threonine kinase, acts as a central regulator of cell growth, proliferation and survival in response to nutritional status, growth factor, and stress signals. It plays a crucial role in coordinating the balance between cell growth and cell death, depending on cellular conditions and needs. As such, TOR has been identified as a key modulator of autophagy for more than a decade, and several deregulations of this pathway have been implicated in a variety of pathological disorders, including cancer. At the molecular level, autophagy regulates several survival or death signaling pathways that may decide the fate of cancer cells; however, the relationship between autophagy pathways and cancer are still nascent. In this review, we discuss the recent cellular signaling pathways regulated by TOR, their interconnections to autophagy, and the clinical implications of TOR inhibitors in cancer.

  12. How to investigate neuro-biochemical relationships on a regional level in humans? Methodological considerations for combining functional with biochemical imaging.

    PubMed

    Duncan, Niall W; Wiebking, Christine; Muñoz-Torres, Zeidy; Northoff, Georg

    2014-01-15

    There is an increasing interest in combining different imaging modalities to investigate the relationship between neural and biochemical activity. More specifically, imaging techniques like MRS and PET that allow for biochemical measurement are combined with techniques like fMRI and EEG that measure neural activity in different states. Such combination of neural and biochemical measures raises not only technical issues, such as merging the different data sets, but also several methodological issues. These methodological issues – ranging from hypothesis generation and hypothesis-guided use of technical facilities to target measures and experimental measures – are the focus of this paper. We discuss the various methodological problems and issues raised by the combination of different imaging methodologies in order to investigate neuro-biochemical relationships on a regional level in humans. For example, the choice of transmitter and scan type is discussed, along with approaches to allow the establishment of particular specificities (such as regional or biochemical) to in turn make results fully interpretable. An algorithm that can be used as a form of checklist for designing such multimodal studies is presented. The paper concludes that while several methodological and technical caveats needs to be overcome and addressed, multimodal imaging of the neuro-biochemical relationship provides an important tool to better understand the physiological mechanisms of the human brain.

  13. How to investigate neuro-biochemical relationships on a regional level in humans? Methodological considerations for combining functional with biochemical imaging.

    PubMed

    Duncan, Niall W; Wiebking, Christine; Munoz-Torres, Zeidy; Northoff, Georg

    2013-10-25

    There is an increasing interest in combining different imaging modalities to investigate the relationship between neural and biochemical activity. More specifically, imaging techniques like MRS and PET that allow for biochemical measurement are combined with techniques like fMRI and EEG that measure neural activity in different states. Such combination of neural and biochemical measures raises not only technical issues, such as merging the different data sets, but also several methodological issues. These methodological issues - ranging from hypothesis generation and hypothesis-guided use of technical facilities to target measures and experimental measures - are the focus of this paper. We discuss the various methodological problems and issues raised by the combination of different imaging methodologies in order to investigate neuro-biochemical relationships on a regional level in humans. For example, the choice of transmitter and scan type is discussed, along with approaches to allow the establishment of particular specificities (such as regional or biochemical) to in turn make results fully interpretable. An algorithm that can be used as a form of checklist for designing such multimodal studies is presented. The paper concludes that while several methodological and technical caveats needs to be overcome and addressed, multimodal imaging of the neuro-biochemical relationship provides an important tool to better understand the physiological mechanisms of the human brain. Copyright © 2013. Published by Elsevier B.V.

  14. Multi-product biorefineries from lignocelluloses: a pathway to revitalisation of the sugar industry?

    PubMed

    Farzad, Somayeh; Mandegari, Mohsen Ali; Guo, Miao; Haigh, Kathleen F; Shah, Nilay; Görgens, Johann F

    2017-01-01

    Driven by a range of sustainability challenges, e.g. climate change, resource depletion and expanding populations, a circular bioeconomy is emerging and expected to evolve progressively in the coming decades. South Africa along with other BRICS countries (Brazil, Russia, India and China) represents the emerging bioeconomy and contributes significantly to global sugar market. In our research, South Africa is used as a case study to demonstrate the sustainable design for the future biorefineries annexed to existing sugar industry. Detailed techno-economic evaluation and Life Cycle Assessment (LCA) were applied to model alternative routes for converting sugarcane residues (bagasse and trash) to selected biofuel and/or biochemicals (ethanol, ethanol and lactic acid, ethanol and furfural, butanol, methanol and Fischer-Tropsch synthesis, with co-production of surplus electricity) in an energy self-sufficient biorefinery system. Economic assessment indicated that methanol synthesis with an internal rate of return (IRR) of 16.7% and ethanol-lactic acid co-production (20.5%) met the minimum investment criteria of 15%, while the latter had the lowest sensitivity to market price amongst all the scenarios. LCA results demonstrated that sugarcane cultivation was the most significant contributor to environmental impacts in all of the scenarios, other than the furfural production scenario in which a key step, a biphasic process with tetrahydrofuran solvent, had the most significant contribution. Overall, the thermochemical routes presented environmental advantages over biochemical pathways on most of the impact categories, except for acidification and eutrophication. Of the investigated scenarios, furfural production delivered the inferior environmental performance, while methanol production performed best due to its low reagent consumption. The combined techno-economic and environmental assessments identified the performance-limiting steps in the 2G biorefinery design for

  15. Key papers in prostate cancer.

    PubMed

    Rodney, Simon; Shah, Taimur Tariq; Patel, Hitendra R H; Arya, Manit

    2014-11-01

    Prostate cancer is the most common cancer and second leading cause of death in men. The evidence base for the diagnosis and treatment of prostate cancer is continually changing. We aim to review and discuss past and contemporary papers on these topics to provoke debate and highlight key dilemmas faced by the urological community. We review key papers on prostate-specific antigen screening, radical prostatectomy versus surveillance strategies, targeted therapies, timing of radiotherapy and alternative anti-androgen therapeutics. Previously, the majority of patients, irrespective of risk, underwent radical open surgical procedures associated with considerable morbidity and mortality. Evidence is emerging that not all prostate cancers are alike and that low-grade disease can be safely managed by surveillance strategies and localized treatment to the prostate. The question remains as to how to accurately stage the disease and ultimately choose which treatment pathway to follow.

  16. Evaluation of additional biogeochemical impacts on mitigation pathways in an energy sytem integrated assessment model.

    NASA Astrophysics Data System (ADS)

    Dessens, O.

    2017-12-01

    Within the last IPCC AR5 a large and systematic sensitivity study around available technologies and timing of policies applied in IAMs to achieve the 2°C target has been conducted. However the simple climate representations included in IAMs are generally tuned to the results of ensemble means. This may result in hiding within the ensemble mean results possible challenging mitigation pathways for the economy or the technology future scenarios. This work provides new insights on the sensitivity of the socio-economic response to different climate factors under a 2°C climate change target in order to help guide future efforts to reduce uncertainty in the climate mitigation decisions. The main objective is to understand and bring new insights on how future global warming will affect the natural biochemical feedbacks on the climate system and what could be the consequences of these feedbacks on the anthropogenic emission pathways with a specific focus on the energy-economy system. It specifically focuses on three issues of the climate representation affecting the energy system transformation and GHG emissions pathways: 1- Impacts of the climate sensitivity (or TCR); 2- Impacts of warming on the radiative forcing (cloudiness,...); 3- Impacts of warming on the carbon cycle (carbon cycle feedback). We use the integrated assessment model TIAM-UCL to examine the mitigation pathways compatible with the 2C target depending on assumptions regarding the 3 issues of the climate representation introduced above. The following key conclusions drawn from this study are that mitigation to 2°C is still possible under strong climate sensitivity (TCR), strong carbon cycle amplification or positive radiative forcing feedback. However, this level of climate mitigation will require a significant transformation in the way we produce and consume energy. Carbon capture and sequestration on electricity generation, industry and biomass is part of the technology pool needed to achieve this

  17. Modeling the optimal central carbon metabolic pathways under feedback inhibition using flux balance analysis.

    PubMed

    De, Rajat K; Tomar, Namrata

    2012-12-01

    Metabolism is a complex process for energy production for cellular activity. It consists of a cascade of reactions that form a highly branched network in which the product of one reaction is the reactant of the next reaction. Metabolic pathways efficiently produce maximal amount of biomass while maintaining a steady-state behavior. The steady-state activity of such biochemical pathways necessarily incorporates feedback inhibition of the enzymes. This observation motivates us to incorporate feedback inhibition for modeling the optimal activity of metabolic pathways using flux balance analysis (FBA). We demonstrate the effectiveness of the methodology on a synthetic pathway with and without feedback inhibition. Similarly, for the first time, the Central Carbon Metabolic (CCM) pathways of Saccharomyces cerevisiae and Homo sapiens have been modeled and compared based on the above understanding. The optimal pathway, which maximizes the amount of the target product(s), is selected from all those obtained by the proposed method. For this, we have observed the concentration of the product inhibited enzymes of CCM pathway and its influence on its corresponding metabolite/substrate. We have also studied the concentration of the enzymes which are responsible for the synthesis of target products. We further hypothesize that an optimal pathway would opt for higher flux rate reactions. In light of these observations, we can say that an optimal pathway should have lower enzyme concentration and higher flux rates. Finally, we demonstrate the superiority of the proposed method by comparing it with the extreme pathway analysis.

  18. Threonine-Insensitive Homoserine Dehydrogenase From Soybean: Genomic Organization, Kinetic Mechanism, and In vivo Activity

    USDA-ARS?s Scientific Manuscript database

    Aspartate kinase (AK) and homoserine dehydrogenase (HSD) functions as key regulatory enzymes at branch points in the aspartate amino acid pathway and are feedback inhibited by threonine. In plants, the biochemical properties of AK and bifunctional AK-HSD enzymes have been characterized, but the mol...

  19. Women's Work Pathways Across the Life Course.

    PubMed

    Damaske, Sarah; Frech, Adrianne

    2016-04-01

    Despite numerous changes in women's employment in the latter half of the twentieth century, women's employment continues to be uneven and stalled. Drawing from data on women's weekly work hours in the National Longitudinal Survey of Youth (NLSY79), we identify significant inequality in women's labor force experiences across adulthood. We find two pathways of stable full-time work for women, three pathways of part-time employment, and a pathway of unpaid labor. A majority of women follow one of the two full-time work pathways, while fewer than 10% follow a pathway of unpaid labor. Our findings provide evidence of the lasting influence of work-family conflict and early socioeconomic advantages and disadvantages on women's work pathways. Indeed, race, poverty, educational attainment, and early family characteristics significantly shaped women's work careers. Work-family opportunities and constraints also were related to women's work hours, as were a woman's gendered beliefs and expectations. We conclude that women's employment pathways are a product of both their resources and changing social environment as well as individual agency. Significantly, we point to social stratification, gender ideologies, and work-family constraints, all working in concert, as key explanations for how women are "tracked" onto work pathways from an early age.

  20. Quantitative Biology of Exercise-Induced Signal Transduction Pathways.

    PubMed

    Liu, Timon Cheng-Yi; Liu, Gang; Hu, Shao-Juan; Zhu, Ling; Yang, Xiang-Bo; Zhang, Quan-Guang

    2017-01-01

    Exercise is essential in regulating energy metabolism. Exercise activates cellular, molecular, and biochemical pathways with regulatory roles in training response adaptation. Among them, endurance/strength training of an individual has been shown to activate its respective signal transduction pathways in skeletal muscle. This was further studied from the viewpoint of quantitative difference (QD). For the mean values, [Formula: see text], of two sets of data, their QD is defined as [Formula: see text] ([Formula: see text]). The function-specific homeostasis (FSH) of a function of a biosystem is a negative-feedback response of the biosystem to maintain the function-specific conditions inside the biosystem so that the function is perfectly performed. A function in/far from its FSH is called a normal/dysfunctional function. A cellular normal function can resist the activation of other signal transduction pathways so that there are normal function-specific signal transduction pathways which full activation maintains the normal function. An acute endurance/strength training may be dysfunctional, but its regular training may be normal. The normal endurance/strength training of an individual may resist the activation of other signal transduction pathways in skeletal muscle so that there may be normal endurance/strength training-specific signal transduction pathways (NEPs/NSPs) in skeletal muscle. The endurance/strength training may activate NSPs/NEPs, but the QD from the control is smaller than 0.80. The simultaneous activation of both NSPs and NEPs may enhance their respective activation, and the QD from the control is larger than 0.80. The low level laser irradiation pretreatment of rats may promote the activation of NSPs in endurance training skeletal muscle. There may be NEPs/NSPs in skeletal muscle trained by normal endurance/strength training.

  1. Reconstructing metabolic flux vectors from extreme pathways: defining the alpha-spectrum.

    PubMed

    Wiback, Sharon J; Mahadevan, Radhakrishnan; Palsson, Bernhard Ø

    2003-10-07

    The move towards genome-scale analysis of cellular functions has necessitated the development of analytical (in silico) methods to understand such large and complex biochemical reaction networks. One such method is extreme pathway analysis that uses stoichiometry and thermodynamic irreversibly to define mathematically unique, systemic metabolic pathways. These extreme pathways form the edges of a high-dimensional convex cone in the flux space that contains all the attainable steady state solutions, or flux distributions, for the metabolic network. By definition, any steady state flux distribution can be described as a nonnegative linear combination of the extreme pathways. To date, much effort has been focused on calculating, defining, and understanding these extreme pathways. However, little work has been performed to determine how these extreme pathways contribute to a given steady state flux distribution. This study represents an initial effort aimed at defining how physiological steady state solutions can be reconstructed from a network's extreme pathways. In general, there is not a unique set of nonnegative weightings on the extreme pathways that produce a given steady state flux distribution but rather a range of possible values. This range can be determined using linear optimization to maximize and minimize the weightings of a particular extreme pathway in the reconstruction, resulting in what we have termed the alpha-spectrum. The alpha-spectrum defines which extreme pathways can and cannot be included in the reconstruction of a given steady state flux distribution and to what extent they individually contribute to the reconstruction. It is shown that accounting for transcriptional regulatory constraints can considerably shrink the alpha-spectrum. The alpha-spectrum is computed and interpreted for two cases; first, optimal states of a skeleton representation of core metabolism that include transcriptional regulation, and second for human red blood cell

  2. Branches of the NF-κB signaling pathway regulate proliferation of oval cells in rat liver regeneration.

    PubMed

    Zhao, W M; Qin, Y L; Niu, Z P; Chang, C F; Yang, J; Li, M H; Zhou, Y; Xu, C S

    2016-03-24

    The NF-kB (nuclear factor kB) pathway is involved in the proliferation of many cell types. To explore the mechanism of the NF-kB signaling pathway underlying the oval cell proliferation during rat liver regeneration, the Rat Genome 230 2.0 Array was used to detect expression changes of NF-kB signaling pathway-related genes in oval cells. The results revealed that the expression levels of many genes in the NF-kB pathway were significantly changed. This included 48 known genes and 16 homologous genes, as well as 370 genes and 85 homologous genes related to cell proliferation. To further understand the biological significance of these changes, an expression profile function was used to analyze the potential biological processes. The results showed that the NF-kB pathway promoted oval cell proliferation mainly through three signaling branches; the tumor necrosis factor alpha branch (TNF-a pathway), the growth factor branch, and the chemokine branch. An integrated statistics method was used to define the key genes in the NF-kB pathway. Seven genes were identified to play vital roles in the NF-kB pathway. To confirm these results, the protein content, including two key genes (TNF and FGF11) and two non-key genes (CCL2 and TNFRSF12A), were analyzed using two-dimensional gel electrophoresis and MALDI-TOF/TOF mass spectrometry. The results were generally consistent with those of the array data. To conclude, three branches and seven key genes were involved in the NF-kB signaling pathway that regulates oval cell proliferation during rat liver regeneration.

  3. The Hippo signaling pathway in stem cell biology and cancer

    PubMed Central

    Mo, Jung-Soon; Park, Hyun Woo; Guan, Kun-Liang

    2014-01-01

    The Hippo signaling pathway, consisting of a highly conserved kinase cascade (MST and Lats) and downstream transcription coactivators (YAP and TAZ), plays a key role in tissue homeostasis and organ size control by regulating tissue-specific stem cells. Moreover, this pathway plays a prominent role in tissue repair and regeneration. Dysregulation of the Hippo pathway is associated with cancer development. Recent studies have revealed a complex network of upstream inputs, including cell density, mechanical sensation, and G-protein-coupled receptor (GPCR) signaling, that modulate Hippo pathway activity. This review focuses on the role of the Hippo pathway in stem cell biology and its potential implications in tissue homeostasis and cancer. PMID:24825474

  4. biochem4j: Integrated and extensible biochemical knowledge through graph databases.

    PubMed

    Swainston, Neil; Batista-Navarro, Riza; Carbonell, Pablo; Dobson, Paul D; Dunstan, Mark; Jervis, Adrian J; Vinaixa, Maria; Williams, Alan R; Ananiadou, Sophia; Faulon, Jean-Loup; Mendes, Pedro; Kell, Douglas B; Scrutton, Nigel S; Breitling, Rainer

    2017-01-01

    Biologists and biochemists have at their disposal a number of excellent, publicly available data resources such as UniProt, KEGG, and NCBI Taxonomy, which catalogue biological entities. Despite the usefulness of these resources, they remain fundamentally unconnected. While links may appear between entries across these databases, users are typically only able to follow such links by manual browsing or through specialised workflows. Although many of the resources provide web-service interfaces for computational access, performing federated queries across databases remains a non-trivial but essential activity in interdisciplinary systems and synthetic biology programmes. What is needed are integrated repositories to catalogue both biological entities and-crucially-the relationships between them. Such a resource should be extensible, such that newly discovered relationships-for example, those between novel, synthetic enzymes and non-natural products-can be added over time. With the introduction of graph databases, the barrier to the rapid generation, extension and querying of such a resource has been lowered considerably. With a particular focus on metabolic engineering as an illustrative application domain, biochem4j, freely available at http://biochem4j.org, is introduced to provide an integrated, queryable database that warehouses chemical, reaction, enzyme and taxonomic data from a range of reliable resources. The biochem4j framework establishes a starting point for the flexible integration and exploitation of an ever-wider range of biological data sources, from public databases to laboratory-specific experimental datasets, for the benefit of systems biologists, biosystems engineers and the wider community of molecular biologists and biological chemists.

  5. biochem4j: Integrated and extensible biochemical knowledge through graph databases

    PubMed Central

    Batista-Navarro, Riza; Dunstan, Mark; Jervis, Adrian J.; Vinaixa, Maria; Ananiadou, Sophia; Faulon, Jean-Loup; Kell, Douglas B.

    2017-01-01

    Biologists and biochemists have at their disposal a number of excellent, publicly available data resources such as UniProt, KEGG, and NCBI Taxonomy, which catalogue biological entities. Despite the usefulness of these resources, they remain fundamentally unconnected. While links may appear between entries across these databases, users are typically only able to follow such links by manual browsing or through specialised workflows. Although many of the resources provide web-service interfaces for computational access, performing federated queries across databases remains a non-trivial but essential activity in interdisciplinary systems and synthetic biology programmes. What is needed are integrated repositories to catalogue both biological entities and–crucially–the relationships between them. Such a resource should be extensible, such that newly discovered relationships–for example, those between novel, synthetic enzymes and non-natural products–can be added over time. With the introduction of graph databases, the barrier to the rapid generation, extension and querying of such a resource has been lowered considerably. With a particular focus on metabolic engineering as an illustrative application domain, biochem4j, freely available at http://biochem4j.org, is introduced to provide an integrated, queryable database that warehouses chemical, reaction, enzyme and taxonomic data from a range of reliable resources. The biochem4j framework establishes a starting point for the flexible integration and exploitation of an ever-wider range of biological data sources, from public databases to laboratory-specific experimental datasets, for the benefit of systems biologists, biosystems engineers and the wider community of molecular biologists and biological chemists. PMID:28708831

  6. Discriminating response groups in metabolic and regulatory pathway networks.

    PubMed

    Van Hemert, John L; Dickerson, Julie A

    2012-04-01

    Analysis of omics experiments generates lists of entities (genes, metabolites, etc.) selected based on specific behavior, such as changes in response to stress or other signals. Functional interpretation of these lists often uses category enrichment tests using functional annotations like Gene Ontology terms and pathway membership. This approach does not consider the connected structure of biochemical pathways or the causal directionality of events. The Omics Response Group (ORG) method, described in this work, interprets omics lists in the context of metabolic pathway and regulatory networks using a statistical model for flow within the networks. Statistical results for all response groups are visualized in a novel Pathway Flow plot. The statistical tests are based on the Erlang distribution model under the assumption of independent and identically Exponential-distributed random walk flows through pathways. As a proof of concept, we applied our method to an Escherichia coli transcriptomics dataset where we confirmed common knowledge of the E.coli transcriptional response to Lipid A deprivation. The main response is related to osmotic stress, and we were also able to detect novel responses that are supported by the literature. We also applied our method to an Arabidopsis thaliana expression dataset from an abscisic acid study. In both cases, conventional pathway enrichment tests detected nothing, while our approach discovered biological processes beyond the original studies. We created a prototype for an interactive ORG web tool at http://ecoserver.vrac.iastate.edu/pathwayflow (source code is available from https://subversion.vrac.iastate.edu/Subversion/jlv/public/jlv/pathwayflow). The prototype is described along with additional figures and tables in Supplementary Material. julied@iastate.edu Supplementary data are available at Bioinformatics online.

  7. Nitric Oxide Plays a Key Role in Ovariectomy-Induced Apoptosis in Anterior Pituitary: Interplay between Nitric Oxide Pathway and Estrogen.

    PubMed

    Ronchetti, Sonia A; Machiavelli, Leticia I; Quinteros, Fernanda A; Duvilanski, Beatriz H; Cabilla, Jimena P

    2016-01-01

    Changes in the estrogenic status produce deep changes in pituitary physiology, mainly because estrogens (E2) are one of the main regulators of pituitary cell population. Also, E2 negatively regulate pituitary neuronal nitric oxide synthase (nNOS) activity and expression and may thereby modulate the production of nitric oxide (NO), an important regulator of cell death and survival. Little is known about how ovary ablation affects anterior pituitary cell remodelling and molecular mechanisms that regulate this process have not yet been elucidated. In this work we used freshly dispersed anterior pituitaries as well as cell cultures from ovariectomized female rats in order to study whether E2 deficiency induces apoptosis in the anterior pituitary cells, the role of NO in this process and effects of E2 on the NO pathway. Our results showed that cell activity gradually decreases after ovariectomy (OVX) as a consequence of cell death, which is completely prevented by a pan-caspase inhibitor. Furthermore, there is an increase of fragmented nuclei and DNA cleavage thereby presenting the first direct evidence of the existence of apoptosis in the anterior pituitary gland after OVX. NO production and soluble guanylyl cyclase (sGC) expression in anterior pituitary cells increased concomitantly to the apoptosis. Inhibition of both, NO synthase (NOS) and sGC activities prevented the drop of cell viability after OVX, showing for the first time that increased NO levels and sGC activity observed post-OVX play a key role in the induction of apoptosis. Conversely, E2 and prolactin treatments decreased nNOS expression and activity in pituitary cells from OVX rats in a time- and E2 receptor-dependent manner, thus suggesting interplay between NO and E2 pathways in anterior pituitary.

  8. Nitric Oxide Plays a Key Role in Ovariectomy-Induced Apoptosis in Anterior Pituitary: Interplay between Nitric Oxide Pathway and Estrogen

    PubMed Central

    Quinteros, Fernanda A.; Duvilanski, Beatriz H.; Cabilla, Jimena P.

    2016-01-01

    Changes in the estrogenic status produce deep changes in pituitary physiology, mainly because estrogens (E2) are one of the main regulators of pituitary cell population. Also, E2 negatively regulate pituitary neuronal nitric oxide synthase (nNOS) activity and expression and may thereby modulate the production of nitric oxide (NO), an important regulator of cell death and survival. Little is known about how ovary ablation affects anterior pituitary cell remodelling and molecular mechanisms that regulate this process have not yet been elucidated. In this work we used freshly dispersed anterior pituitaries as well as cell cultures from ovariectomized female rats in order to study whether E2 deficiency induces apoptosis in the anterior pituitary cells, the role of NO in this process and effects of E2 on the NO pathway. Our results showed that cell activity gradually decreases after ovariectomy (OVX) as a consequence of cell death, which is completely prevented by a pan-caspase inhibitor. Furthermore, there is an increase of fragmented nuclei and DNA cleavage thereby presenting the first direct evidence of the existence of apoptosis in the anterior pituitary gland after OVX. NO production and soluble guanylyl cyclase (sGC) expression in anterior pituitary cells increased concomitantly to the apoptosis. Inhibition of both, NO synthase (NOS) and sGC activities prevented the drop of cell viability after OVX, showing for the first time that increased NO levels and sGC activity observed post-OVX play a key role in the induction of apoptosis. Conversely, E2 and prolactin treatments decreased nNOS expression and activity in pituitary cells from OVX rats in a time- and E2 receptor-dependent manner, thus suggesting interplay between NO and E2 pathways in anterior pituitary. PMID:27611913

  9. Preliminary study on Emodin alleviating alpha-naphthylisothiocyanate-induced intrahepatic cholestasis by regulation of liver farnesoid X receptor pathway.

    PubMed

    Ding, Yan; Xiong, Xiao-Li; Zhou, Li-Shan; Yan, Su-Qi; Qin, Huan; Li, Hua-Rong; Zhang, Ling-Ling; Chen, Peng; Yao, Cong; Jiang, Zhi-Xia; Zhao, Lei

    2016-12-01

    The aim of this study is to investigate Emodin on alleviating intrahepatic cholestasis by regulation of liver farnesoid X receptor (FXR) pathway. Cell and animal models of intrahepatic cholestatis were established. Biochemical tests and histomorphology were performed. The messenger RNA (mRNA) and protein expression of FXR, small heterodimer partner (SHP), uridine diphosphate glucuronosyltransferase 2 family polypeptide B4 (UGT2B4), and bile salt export pump (BSEP) was detected. As a result, compared with the model group, the serum levels of biochemical test were significantly lower in the Emodin group (P <0.01). The histopathological changes were remitted significantly by Emodin treatment. In the model group, the mRNA and protein expression of FXR, SHP, UGT2B4, and BSEP was significantly lower than in the normal group in cell models (P <0.05). With Emodin intervention, the expression of FXR, SHP, UGT2B4, and BSEP was notably increased (P <0.05). In conclusion, Emodin plays a protective role in intrahepatic cholestasis by promoting FXR signal pathways. © The Author(s) 2016.

  10. Solid-Phase Enrichment and Analysis of Azide-Labeled Natural Products: Fishing Downstream of Biochemical Pathways.

    PubMed

    Pérez, Alexander J; Wesche, Frank; Adihou, Hélène; Bode, Helge B

    2016-01-11

    Many methods have been devised over the decades to trace precursors of specific molecules in cellular environments as, for example, in biosynthesis studies. The advent of click chemistry has facilitated the powerful combination of tracing and at the same time sieving the highly complex metabolome for compounds derived from simple or complex starting materials, especially when the click reaction takes place on a solid support. While the principle of solid-phase click reactions has already been successfully applied for selective protein and peptide enrichment, the successful enrichment of much smaller primary and secondary metabolites, showing great structural diversity and undergoing many different biosynthetic steps, has seen only little development. For bacterial secondary metabolism, a far broader tolerance for "clickable" precursors was observed than in ribosomal proteinogenesis, thus making this method a surprisingly valuable tool for the tracking and discovery of compounds within the cellular biochemical network. The implementation of this method has led to the identification of several new compounds from the bacterial genera Photorhabdus and Xenorhabdus, clearly proving its power. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Biochemical and Structural Characterization of the Arabidopsis Bifunctional Enzyme Dethiobiotin Synthetase–Diaminopelargonic Acid Aminotransferase: Evidence for Substrate Channeling in Biotin Synthesis[C][W

    PubMed Central

    Cobessi, David; Dumas, Renaud; Pautre, Virginie; Meinguet, Céline; Ferrer, Jean-Luc; Alban, Claude

    2012-01-01

    Diaminopelargonic acid aminotransferase (DAPA-AT) and dethiobiotin synthetase (DTBS) catalyze the antepenultimate and the penultimate steps, respectively, of biotin synthesis. Whereas DAPA-AT and DTBS are encoded by distinct genes in bacteria, in biotin-synthesizing eukaryotes (plants and most fungi), both activities are carried out by a single enzyme encoded by a bifunctional gene originating from the fusion of prokaryotic monofunctional ancestor genes. In few angiosperms, including Arabidopsis thaliana, this chimeric gene (named BIO3-BIO1) also produces a bicistronic transcript potentially encoding separate monofunctional proteins that can be produced following an alternative splicing mechanism. The functional significance of the occurrence of a bifunctional enzyme in biotin synthesis pathway in eukaryotes and the relative implication of each of the potential enzyme forms (bifunctional versus monofunctional) in the plant biotin pathway are unknown. In this study, we demonstrate that the BIO3-BIO1 fusion protein is the sole protein form produced by the BIO3-BIO1 locus in Arabidopsis. The enzyme catalyzes both DAPA-AT and DTBS reactions in vitro and is targeted to mitochondria in vivo. Our biochemical and kinetic characterizations of the pure recombinant enzyme show that in the course of the reaction, the DAPA intermediate is directly transferred from the DAPA-AT active site to the DTBS active site. Analysis of several structures of the enzyme crystallized in complex with and without its ligands reveals key structural elements involved for acquisition of bifunctionality and brings, together with mutagenesis experiments, additional evidences for substrate channeling. PMID:22547782

  12. Complexity and performance of on-chip biochemical assays

    NASA Astrophysics Data System (ADS)

    Kopf-Sill, Anne R.; Nikiforov, Theo; Bousse, Luc J.; Nagle, Rob; Parce, J. W.

    1997-03-01

    The use of microchips for performing biochemical processes has the potential to reduce reagent use and thus assay costs, increase throughput, and automate complex processes. We are building a multifunctional platform that provides sensing and actuation functions for a variety of microchip- based biochemical and analytical processes. Here we describe recent experiments that include on-chip dilution, reagent mixing, reaction, separation, and detection for important classes of biochemical assays. Issues in chip design and control are discussed.

  13. Developing and applying the adverse outcome pathway ...

    EPA Pesticide Factsheets

    To support a paradigm shift in regulatory toxicology testing and risk assessment, the Adverse Outcome Pathway (AOP) concept has recently been proposed. This concept is similar to that for Mode of Action (MOA), describing a sequence of measurable key events triggered by a molecular initiating event in which a stressor interacts with a biological target. The resulting cascade of key events includes molecular, cellular, structural and functional changes in biological systems, resulting in a measurable adverse outcome. Thereby, an AOP ideally provides information relevant to chemical structure-activity relationships as a basis to predict effects for structurally similar compounds. AOPs could potentially also form the basis for qualitative and quantitative predictive modeling of the human adverse outcome resulting from molecular initiating or other key events for which higher-throughput testing methods are available or can be developed.A variety of cellular and molecular processes are known to be critical to normal function of the central (CNS) and peripheral nervous systems (PNS). Because of the biological and functional complexity of the CNS and PNS, it has been challenging to establish causative links and quantitative relationships between key events that comprise the pathways leading from chemical exposure to an adverse outcome in the nervous system. Following introduction of principles of the description and assessment of MOA and AOPs, examples of adverse out

  14. Biochemical Validation of the Glyoxylate Cycle in the Cyanobacterium Chlorogloeopsis fritschii Strain PCC 9212.

    PubMed

    Zhang, Shuyi; Bryant, Donald A

    2015-05-29

    Cyanobacteria are important photoautotrophic bacteria with extensive but variable metabolic capacities. The existence of the glyoxylate cycle, a variant of the TCA cycle, is still poorly documented in cyanobacteria. Previous studies reported the activities of isocitrate lyase and malate synthase, the key enzymes of the glyoxylate cycle in some cyanobacteria, but other studies concluded that these enzymes are missing. In this study the genes encoding isocitrate lyase and malate synthase from Chlorogloeopsis fritschii PCC 9212 were identified, and the recombinant enzymes were biochemically characterized. Consistent with the presence of the enzymes of the glyoxylate cycle, C. fritschii could assimilate acetate under both light and dark growth conditions. Transcript abundances for isocitrate lyase and malate synthase increased, and C. fritschii grew faster, when the growth medium was supplemented with acetate. Adding acetate to the growth medium also increased the yield of poly-3-hydroxybutyrate. When the genes encoding isocitrate lyase and malate synthase were expressed in Synechococcus sp. PCC 7002, the acetate assimilation capacity of the resulting strain was greater than that of wild type. Database searches showed that the genes for the glyoxylate cycle exist in only a few other cyanobacteria, all of which are able to fix nitrogen. This study demonstrates that the glyoxylate cycle exists in a few cyanobacteria, and that this pathway plays an important role in the assimilation of acetate for growth in one of those organisms. The glyoxylate cycle might play a role in coordinating carbon and nitrogen metabolism under conditions of nitrogen fixation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Allocate carbon for a reason: priorities are reflected in the ¹³C/¹²C ratios of plant lipids synthesized via three independent biosynthetic pathways.

    PubMed

    Zhou, Youping; Stuart-Williams, Hilary; Grice, Kliti; Kayler, Zachary E; Zavadlav, Saša; Vogts, Angela; Rommerskirchen, Florian; Farquhar, Graham D; Gessler, Arthur

    2015-03-01

    It has long been theorized that carbon allocation, in addition to the carbon source and to kinetic isotopic effects associated with a particular lipid biosynthetic pathway, plays an important role in shaping the carbon isotopic composition ((13)C/(12)C) of lipids (Park and Epstein, 1961). If the latter two factors are properly constrained, valuable information about carbon allocation during lipid biosynthesis can be obtained from carbon isotope measurements. Published work of Chikaraishi et al. (2004) showed that leaf lipids isotopic shifts from bulk leaf tissue Δδ(13)C(bk-lp) (defined as δ(13)C(bulkleaftissue)-δ(13)C(lipid)) are pathway dependent: the acetogenic (ACT) pathway synthesizing fatty lipids has the largest isotopic shift, the mevalonic acid (MVA) pathway synthesizing sterols the lowest and the phytol synthesizing 1-deoxy-D-xylulose 5-phosphate (DXP) pathway gives intermediate values. The differences in Δδ(13)C(bk-lp) between C3 and C4 plants Δδ(13)C(bk-lp,C4-C3) are also pathway-dependent: Δδ(13)C(ACT)(bk-lp,C4-C3) > Δδ(13)C(DXP(bk-lp,C4-C3) > Δδ(13)C(MVA)(bk-lp,C4-C3). These pathway-dependent differences have been interpreted as resulting from kinetic isotopic effect differences of key but unspecified biochemical reactions involved in lipids biosynthesis between C3 and C4 plants. After quantitatively considering isotopic shifts caused by (dark) respiration, export-of-carbon (to sink tissues) and photorespiration, we propose that the pathway-specific differences Δδ(13)C(bk-lp,C4-C3) can be successfully explained by C4-C3 carbon allocation (flux) differences with greatest flux into the ACT pathway and lowest into the MVA pathways (when flux is higher, isotopic shift relative to source is smaller). Highest carbon allocation to the ACT pathway appears to be tied to the most stringent role of water-loss-minimization by leaf waxes (composed mainly of fatty lipids) while the lowest carbon allocation to the MVA pathway can be largely explained

  16. Physiological and biochemical performances of menthol-induced aposymbiotic corals.

    PubMed

    Wang, Jih-Terng; Chen, Yi-Yun; Tew, Kwee Siong; Meng, Pei-Jei; Chen, Chaolun A

    2012-01-01

    The unique mutualism between corals and their photosynthetic zooxanthellae (Symbiodinium spp.) is the driving force behind functional assemblages of coral reefs. However, the respective roles of hosts and Symbiodinium in this endosymbiotic association, particularly in response to environmental challenges (e.g., high sea surface temperatures), remain unsettled. One of the key obstacles is to produce and maintain aposymbiotic coral hosts for experimental purposes. In this study, a simple and gentle protocol to generate aposymbiotic coral hosts (Isopora palifera and Stylophora pistillata) was developed using repeated incubation in menthol/artificial seawater (ASW) medium under light and in ASW in darkness, which depleted more than 99% of Symbiodinium from the host within 4∼8 days. As indicated by the respiration rate, energy metabolism (by malate dehydrogenase activity), and nitrogen metabolism (by glutamate dehydrogenase activity and profiles of free amino acids), the physiological and biochemical performances of the menthol-induced aposymbiotic corals were comparable to their symbiotic counterparts without nutrient supplementation (e.g., for Stylophora) or with a nutrient supplement containing glycerol, vitamins, and a host mimic of free amino acid mixture (e.g., for Isopora). Differences in biochemical responses to menthol-induced bleaching between Stylophora and Isopora were attributed to the former digesting Symbiodinium rather than expelling the algae live as found in the latter species. Our studies showed that menthol could successfully bleach corals and provided aposymbiotic corals for further exploration of coral-alga symbioses.

  17. Biochemical Plant Responses to Ozone (IV. Cross-Induction of Defensive Pathways in Parsley (Petroselinum crispum L.) Plants).

    PubMed Central

    Eckey-Kaltenbach, H.; Ernst, D.; Heller, W.; Sandermann, H.

    1994-01-01

    Parsley (Petroselinum crispum L.) is known to respond to ultraviolet irradiation by the synthesis of flavone glycosides, whereas fungal or elicitor stress leads to the synthesis of furanocoumarin phytoalexins. We tested how these defensive pathways are affected by a single ozone treatment (200 nL L-1; 10 h). Assays were performed at the levels of transcripts, for enzyme activities, and for secondary products. The most rapid transcript accumulation was maximal at 3 h, whereas flavone glycosides and furanocoumarins were maximally induced at 12 and 24 h, respectively, after the start of ozone treatment. Ozone acted as a cross-inducer because the two distinct pathways were simultaneously induced. These results are consistent with the previously observed ozone induction of fungal and viral defense reactions in tobacco, spruce, and pine. PMID:12232062

  18. Modulation of inflammation and disease tolerance by DNA damage response pathways.

    PubMed

    Neves-Costa, Ana; Moita, Luis F

    2017-03-01

    The accurate replication and repair of DNA is central to organismal survival. This process is challenged by the many factors that can change genetic information such as replication errors and direct damage to the DNA molecule by chemical and physical agents. DNA damage can also result from microorganism invasion as an integral step of their life cycle or as collateral damage from host defense mechanisms against pathogens. Here we review the complex crosstalk of DNA damage response and immune response pathways that might be evolutionarily connected and argue that DNA damage response pathways can be explored therapeutically to induce disease tolerance through the activation of tissue damage control processes. Such approach may constitute the missing pillar in the treatment of critical illnesses caused by multiple organ failure, such as sepsis and septic shock. © 2016 Federation of European Biochemical Societies.

  19. Poliovirus Cell Entry: Common Structural Themes in Viral Cell Entry Pathways

    PubMed Central

    Hogle, James M.

    2006-01-01

    Structural studies of polio- and closely related viruses have provided a series of snapshots along their cell entry pathways. Based on the structures and related kinetic, biochemical, and genetic studies, we have proposed a model for the cell entry pathway for polio- and closely related viruses. In this model a maturation cleavage of a capsid protein precursor locks the virus in a metastable state, and the receptor acts like a transition-state catalyst to overcome an energy barrier and release the mature virion from the metastable state. This initiates a series of conformational changes that allow the virus to attach to membranes, form a pore, and finally release its RNA genome into the cytoplasm. This model has striking parallels with emerging models for the maturation and cell entry of more complex enveloped viruses such as influenza virus and HIV. PMID:12142481

  20. Frontier of Epilepsy Research - mTOR signaling pathway

    PubMed Central

    2011-01-01

    Studies of epilepsy have mainly focused on the membrane proteins that control neuronal excitability. Recently, attention has been shifting to intracellular proteins and their interactions, signaling cascades and feedback regulation as they relate to epilepsy. The mTOR (mammalian target of rapamycin) signal transduction pathway, especially, has been suggested to play an important role in this regard. These pathways are involved in major physiological processes as well as in numerous pathological conditions. Here, involvement of the mTOR pathway in epilepsy will be reviewed by presenting; an overview of the pathway, a brief description of key signaling molecules, a summary of independent reports and possible implications of abnormalities of those molecules in epilepsy, a discussion of the lack of experimental data, and questions raised for the understanding its epileptogenic mechanism. PMID:21467839

  1. AOP: An R Package For Sufficient Causal Analysis in Pathway-based Screening of Drugs and Chemicals for Adversity

    EPA Science Inventory

    Summary: How can I quickly find the key events in a pathway that I need to monitor to predict that a/an beneficial/adverse event/outcome will occur? This is a key question when using signaling pathways for drug/chemical screening in pharma-cology, toxicology and risk assessment. ...

  2. Alternative Pathways to Apprenticeships. Good Practice Guide

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2015

    2015-01-01

    Apprenticeships are changing. The increasing proportions of people entering apprenticeships at various levels of ability and backgrounds are stimulating demand for alternative pathways to completions. This good practice guide assembles the key findings for education practitioners and workplace supervisors from three related research reports on…

  3. Development of an adverse outcome pathway for acetylcholinesterase inhibition leading to acute mortality

    EPA Science Inventory

    Adverse outcome pathways (AOPs) are designed to describe linkages of key events (KEs) within a biological pathway that result in an adverse outcome associated with chemical perturbation of a well-defined molecular initiating event (MIE). Risk assessors have traditionally relied ...

  4. miR2Pathway: A novel analytical method to discover MicroRNA-mediated dysregulated pathways involved in hepatocellular carcinoma.

    PubMed

    Li, Chaoxing; Dinu, Valentin

    2018-05-01

    MicroRNAs (miRNAs) are small, non-coding RNAs involved in the regulation of gene expression at a post-transcriptional level. Recent studies have shown miRNAs as key regulators of a variety of biological processes, such as proliferation, differentiation, apoptosis, metabolism, etc. Aberrantly expressed miRNAs influence individual gene expression level, but rewired miRNA-mRNA connections can influence the activity of biological pathways. Here, we define rewired miRNA-mRNA connections as the differential (rewiring) effects on the activity of biological pathways between hepatocellular carcinoma (HCC) and normal phenotypes. Our work presented here uses a PageRank-based approach to measure the degree of miRNA-mediated dysregulation of biological pathways between HCC and normal samples based on rewired miRNA-mRNA connections. In our study, we regard the degree of miRNA-mediated dysregulation of biological pathways as disease risk of biological pathways. Therefore, we propose a new method, miR2Pathway, to measure and rank the degree of miRNA-mediated dysregulation of biological pathways by measuring the total differential influence of miRNAs on the activity of pathways between HCC and normal states. miR2Pathway proposed here systematically shows the first evidence for a mechanism of biological pathways being dysregulated by rewired miRNA-mRNA connections, and provides new insight into exploring mechanisms behind HCC. Thus, miR2Pathway is a novel method to identify and rank miRNA-dysregulated pathways in HCC. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Glucose and Insulin Stimulate Lipogenesis in Porcine Adipocytes: Dissimilar and Identical Regulation Pathway for Key Transcription Factors.

    PubMed

    Hua, Zhang Guo; Xiong, Lu Jian; Yan, Chen; Wei, Dai Hong; YingPai, ZhaXi; Qing, Zhao Yong; Lin, Qiao Zi; Fei, Feng Ruo; Ling, Wang Ya; Ren, Ma Zhong

    2016-11-30

    Lipogenesis is under the concerted action of ChREBP, SREBP-1c and other transcription factors in response to glucose and insulin. The isolated porcine preadipocytes were differentiated into mature adipocytes to investigate the roles and interrelation of these transcription factors in the context of glucose- and insulin-induced lipogenesis in pigs. In ChREBP-silenced adipocytes, glucose-induced lipogenesis decreased by ~70%, however insulin-induced lipogenesis was unaffected. Moreover, insulin had no effect on ChREBP expression of unperturbed adipocytes irrespective of glucose concentration, suggesting ChREBP mediate glucose-induced lipogenesis. Insulin stimulated SREBP-1c expression and when SREBP-1c activation was blocked, and the insulin-induced lipogenesis decreased by ~55%, suggesting SREBP-1c is a key transcription factor mediating insulin-induced lipogenesis. LXRα activation promoted lipogenesis and lipogenic genes expression. In ChREBP-silenced or SREBP-1c activation blocked adipocytes, LXRα activation facilitated lipogenesis and SREBP-1c expression, but had no effect on ChREBP expression. Therefore, LXRα might mediate lipogenesis via SREBP-1c rather than ChREBP. When ChREBP expression was silenced and SREBP-1c activation blocked simultaneously, glucose and insulin were still able to stimulated lipogenesis and lipogenic genes expression, and LXRα activation enhanced these effects, suggesting LXRα mediated directly glucose- and insulin-induced lipogenesis. In summary, glucose and insulin stimulated lipogenesis through both dissimilar and identical regulation pathway in porcine adipocytes.

  6. Heparin/heparan sulfate 6-O-sulfatase from Flavobacterium heparinum: integrated structural and biochemical investigation of enzyme active site and substrate specificity.

    PubMed

    Myette, James R; Soundararajan, Venkataramanan; Shriver, Zachary; Raman, Rahul; Sasisekharan, Ram

    2009-12-11

    Heparin and heparan sulfate glycosaminoglycans (HSGAGs) comprise a chemically heterogeneous class of sulfated polysaccharides. The development of structure-activity relationships for this class of polysaccharides requires the identification and characterization of degrading enzymes with defined substrate specificity and enzymatic activity. Toward this end, we report here the molecular cloning and extensive structure-function analysis of a 6-O-sulfatase from the Gram-negative bacterium Flavobacterium heparinum. In addition, we report the recombinant expression of this enzyme in Escherichia coli in a soluble, active form and identify it as a specific HSGAG sulfatase. We further define the mechanism of action of the enzyme through biochemical and structural studies. Through the use of defined substrates, we investigate the kinetic properties of the enzyme. This analysis was complemented by homology-based molecular modeling studies that sought to rationalize the substrate specificity of the enzyme and mode of action through an analysis of the active-site topology of the enzyme including identifying key enzyme-substrate interactions and assigning key amino acids within the active site of the enzyme. Taken together, our structural and biochemical studies indicate that 6-O-sulfatase is a predominantly exolytic enzyme that specifically acts on N-sulfated or N-acetylated 6-O-sulfated glucosamines present at the non-reducing end of HSGAG oligosaccharide substrates. This requirement for the N-acetyl or N-sulfo groups on the glucosamine substrate can be explained through eliciting favorable interactions with key residues within the active site of the enzyme. These findings provide a framework that enables the use of 6-O-sulfatase as a tool for HSGAG structure-activity studies as well as expand our biochemical and structural understanding of this important class of enzymes.

  7. Methotrexate Is a JAK/STAT Pathway Inhibitor

    PubMed Central

    Thomas, Sally; Fisher, Katherine H.; Snowden, John A.; Danson, Sarah J.; Brown, Stephen; Zeidler, Martin P.

    2015-01-01

    Background The JAK/STAT pathway transduces signals from multiple cytokines and controls haematopoiesis, immunity and inflammation. In addition, pathological activation is seen in multiple malignancies including the myeloproliferative neoplasms (MPNs). Given this, drug development efforts have targeted the pathway with JAK inhibitors such as ruxolitinib. Although effective, high costs and side effects have limited its adoption. Thus, a need for effective low cost treatments remains. Methods & Findings We used the low-complexity Drosophila melanogaster pathway to screen for small molecules that modulate JAK/STAT signalling. This screen identified methotrexate and the closely related aminopterin as potent suppressors of STAT activation. We show that methotrexate suppresses human JAK/STAT signalling without affecting other phosphorylation-dependent pathways. Furthermore, methotrexate significantly reduces STAT5 phosphorylation in cells expressing JAK2 V617F, a mutation associated with most human MPNs. Methotrexate acts independently of dihydrofolate reductase (DHFR) and is comparable to the JAK1/2 inhibitor ruxolitinib. However, cells treated with methotrexate still retain their ability to respond to physiological levels of the ligand erythropoietin. Conclusions Aminopterin and methotrexate represent the first chemotherapy agents developed and act as competitive inhibitors of DHFR. Methotrexate is also widely used at low doses to treat inflammatory and immune-mediated conditions including rheumatoid arthritis. In this low-dose regime, folate supplements are given to mitigate side effects by bypassing the biochemical requirement for DHFR. Although independent of DHFR, the mechanism-of-action underlying the low-dose effects of methotrexate is unknown. Given that multiple pro-inflammatory cytokines signal through the pathway, we suggest that suppression of the JAK/STAT pathway is likely to be the principal anti-inflammatory and immunosuppressive mechanism-of-action of low

  8. CAMPways: constrained alignment framework for the comparative analysis of a pair of metabolic pathways.

    PubMed

    Abaka, Gamze; Bıyıkoğlu, Türker; Erten, Cesim

    2013-07-01

    Given a pair of metabolic pathways, an alignment of the pathways corresponds to a mapping between similar substructures of the pair. Successful alignments may provide useful applications in phylogenetic tree reconstruction, drug design and overall may enhance our understanding of cellular metabolism. We consider the problem of providing one-to-many alignments of reactions in a pair of metabolic pathways. We first provide a constrained alignment framework applicable to the problem. We show that the constrained alignment problem even in a primitive setting is computationally intractable, which justifies efforts for designing efficient heuristics. We present our Constrained Alignment of Metabolic Pathways (CAMPways) algorithm designed for this purpose. Through extensive experiments involving a large pathway database, we demonstrate that when compared with a state-of-the-art alternative, the CAMPways algorithm provides better alignment results on metabolic networks as far as measures based on same-pathway inclusion and biochemical significance are concerned. The execution speed of our algorithm constitutes yet another important improvement over alternative algorithms. Open source codes, executable binary, useful scripts, all the experimental data and the results are freely available as part of the Supplementary Material at http://code.google.com/p/campways/. Supplementary data are available at Bioinformatics online.

  9. Exploring pathway interactions in insulin resistant mouse liver

    PubMed Central

    2011-01-01

    Background Complex phenotypes such as insulin resistance involve different biological pathways that may interact and influence each other. Interpretation of related experimental data would be facilitated by identifying relevant pathway interactions in the context of the dataset. Results We developed an analysis approach to study interactions between pathways by integrating gene and protein interaction networks, biological pathway information and high-throughput data. This approach was applied to a transcriptomics dataset to investigate pathway interactions in insulin resistant mouse liver in response to a glucose challenge. We identified regulated pathway interactions at different time points following the glucose challenge and also studied the underlying protein interactions to find possible mechanisms and key proteins involved in pathway cross-talk. A large number of pathway interactions were found for the comparison between the two diet groups at t = 0. The initial response to the glucose challenge (t = 0.6) was typed by an acute stress response and pathway interactions showed large overlap between the two diet groups, while the pathway interaction networks for the late response were more dissimilar. Conclusions Studying pathway interactions provides a new perspective on the data that complements established pathway analysis methods such as enrichment analysis. This study provided new insights in how interactions between pathways may be affected by insulin resistance. In addition, the analysis approach described here can be generally applied to different types of high-throughput data and will therefore be useful for analysis of other complex datasets as well. PMID:21843341

  10. European spruce bark beetle (Ips typographus, L.) green attack affects foliar reflectance and biochemical properties

    NASA Astrophysics Data System (ADS)

    Abdullah, Haidi; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Groen, Thomas A.; Heurich, Marco

    2018-02-01

    The European spruce bark beetle Ips typographus, L. (hereafter bark beetle), causes major economic loss to the forest industry in Europe, especially in Norway Spruce (Picea abies). To minimise economic loss and preclude a mass outbreak, early detection of bark beetle infestation (so-called ;green attack; stage - a period at which trees are yet to show visual signs of infestation stress) is, therefore, a crucial step in the management of Norway spruce stands. It is expected that a bark beetle infestation at the green attack stage affects a tree's physiological and chemical status. However, the concurrent effect on key foliar biochemical such as foliar nitrogen and chlorophyll as well as spectral responses are not well documented in the literature. Therefore, in this study, the early detection of bark beetle green attacks is investigated by examining foliar biochemical and spectral properties (400-2000 nm). We also assessed whether bark beetle infestation affects the estimation accuracy of foliar biochemicals. An extensive field survey was conducted in the Bavarian Forest National Park (BFNP), Germany, in the early summer of 2015 to collect leaf samples from 120 healthy and green attacked trees. The spectra of the leaf samples were measured using an ASD FieldSpec3 equipped with an integrating sphere. Significant differences (p < 0.05) between healthy and infested needle samples were found in the mean reflectance spectra, with the most pronounced differences being observed in the NIR and SWIR regions between 730 and 1370 nm. Furthermore, significant differences (p < 0.05) were found in the biochemical compositions (chlorophyll and nitrogen concentration) of healthy versus green attacked samples. Our results further demonstrate that the estimation accuracy of foliar chlorophyll and nitrogen concentrations, utilising partial least square regression model, was lower for the infested compared to the healthy trees. We show that early stage of infestation reduces not only

  11. Short-Chain Fatty Acids Inhibit Growth Hormone and Prolactin Gene Transcription via cAMP/PKA/CREB Signaling Pathway in Dairy Cow Anterior Pituitary Cells

    PubMed Central

    Wang, Jian-Fa; Fu, Shou-Peng; Li, Su-Nan; Hu, Zhong-Ming; Xue, Wen-Jing; Li, Zhi-Qiang; Huang, Bing-Xu; Lv, Qing-Kang; Liu, Ju-Xiong; Wang, Wei

    2013-01-01

    Short-chain fatty acids (SCFAs) play a key role in altering carbohydrate and lipid metabolism, influence endocrine pancreas activity, and as a precursor of ruminant milk fat. However, the effect and detailed mechanisms by which SCFAs mediate bovine growth hormone (GH) and prolactin (PRL) gene transcription remain unclear. In this study, we detected the effects of SCFAs (acetate, propionate, and butyrate) on the activity of the cAMP/PKA/CREB signaling pathway, GH, PRL, and Pit-1 gene transcription in dairy cow anterior pituitary cells (DCAPCs). The results showed that SCFAs decreased intracellular cAMP levels and a subsequent reduction in PKA activity. Inhibition of PKA activity decreased CREB phosphorylation, thereby inhibiting GH and PRL gene transcription. Furthermore, PTX blocked SCFAs- inhibited cAMP/PKA/CREB signaling pathway. These data showed that the inhibition of GH and PRL gene transcription induced by SCFAs is mediated by Gi activation and that propionate is more potent than acetate and butyrate in inhibiting GH and PRL gene transcription. In conclusion, this study identifies a biochemical mechanism for the regulation of SCFAs on bovine GH and PRL gene transcription in DCAPCs, which may serve as one of the factors that regulate pituitary function in accordance with dietary intake. PMID:24177567

  12. Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer

    PubMed Central

    Yu, Fa-Xing; Zhao, Bin; Guan, Kun-Liang

    2015-01-01

    Two decades of studies in multiple model organisms have established the Hippo pathway as a key regulator of organ size and tissue homeostasis. By inhibiting YAP and TAZ transcription co-activators, the Hippo pathway regulates cell proliferation, apoptosis, and stemness in response to a wide range of extracellular and intracellular signals, including cell-cell contact, cell polarity, mechanical cues, ligands of G-protein coupled receptors, and cellular energy status. Dysregulation of the Hippo pathway exerts a significant impact on cancer development. Further investigation of the functions and regulatory mechanisms of this pathway will help uncovering the mystery of organ size control and identify new targets for cancer treatment. PMID:26544935

  13. Comparative clinical study between the effect of fenofibrate alone and its combination with pentoxifylline on biochemical parameters and liver stiffness in patients with non-alcoholic fatty liver disease.

    PubMed

    El-Haggar, Sahar Mohamed; Mostafa, Tarek Mohamed

    2015-07-01

    Non-alcoholic fatty liver disease is a common health problem associated with increased liver and vascular specific complications. The purpose of this study was to assess and compare the effect of fenofibrate alone or in combination with pentoxifylline on the measured biochemical parameters, inflammatory pathway and liver stiffness in patients with non-alcoholic fatty liver disease. The study design was randomized controlled trial. From July 2013 to June 2014, we recruited 90 non-alcoholic fatty liver patients from the Internal Medicine Department at Tanta University Hospital, Egypt. They were classified randomly into two groups to receive fenofibrate 300 mg daily or fenofibrate 300 mg daily plus pentoxifylline 1200 mg/day in three divided doses for 24 weeks. Fasting blood sample was obtained before and 24 weeks after treatment for biochemical analysis of liver and lipid panels, tumor necrosis factor-alpha, hyaluronic acid, transforming growth factor beta 1, fasting plasma insulin and fasting glucose. Liver stiffness measurement was carried out using fibro-scan. Data were statistically analyzed by paired and unpaired Student's t test. The data obtained suggests that adding pentoxifylline to fenofibrate does not provide a beneficial effect on lipid panel, but has a beneficial effect on indirect biochemical markers of hepatic fibrosis, a direct marker linked to matrix deposition (hyaluronic acid), a cytokine/growth factor linked to liver fibrosis (transforming growth factor beta 1), the inflammatory pathway, insulin resistance and liver stiffness as compared to fenofibrate alone. The combination pentoxifylline plus fenofibrate may represent a new therapeutic strategy for non-alcoholic fatty liver disease as it resulted in more beneficial effects on direct and indirect markers of liver fibrosis, liver stiffness, insulin resistance and inflammatory pathway implicated in NAFLD.

  14. The Molecular Ecophysiology of Programmed Cell Death in Marine Phytoplankton

    NASA Astrophysics Data System (ADS)

    Bidle, Kay D.

    2015-01-01

    Planktonic, prokaryotic, and eukaryotic photoautotrophs (phytoplankton) share a diverse and ancient evolutionary history, during which time they have played key roles in regulating marine food webs, biogeochemical cycles, and Earth's climate. Because phytoplankton represent the basis of marine ecosystems, the manner in which they die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining upper-ocean biogeochemistry. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of nutrient stressors and are employed by parasitic viruses, play an integral role in determining the cell fate of diverse photoautotrophs in the modern ocean. Indeed, these multifaceted death pathways continue to shape the success and evolutionary trajectory of diverse phytoplankton lineages at sea. Research over the past two decades has employed physiological, biochemical, and genetic techniques to provide a novel, comprehensive, mechanistic understanding of the factors controlling this key process. Here, I discuss the current understanding of the genetics, activation, and regulation of PCD pathways in marine model systems; how PCD evolved in unicellular photoautotrophs; how it mechanistically interfaces with viral infection pathways; how stress signals are sensed and transduced into cellular responses; and how novel molecular and biochemical tools are revealing the impact of PCD genes on the fate of natural phytoplankton assemblages.

  15. Biochemical Characterization of Prions.

    PubMed

    Fiorini, Michele; Bongianni, Matilde; Monaco, Salvatore; Zanusso, Gianluigi

    2017-01-01

    Prion disease or transmissible spongiform encephalopathies are characterized by the presence of the abnormal form of the prion protein (PrP Sc ). The pathological and transmissible properties of PrP Sc are enciphered in its secondary and tertiary structures. Since it's well established that different strains of prions are linked to different conformations of PrP Sc , biochemical characterization of prions seems a preliminary but reliable approach to detect, analyze, and compare prion strains. Experimental biochemical procedures might be helpful in distinguishing PrP Sc physicochemical properties and include resistance to proteinase K (PK) digestion, insolubility in nonionic detergents, PK-resistance under denaturing conditions and sedimentation properties in sucrose gradients. This biochemical approach has been extensively applied in human prion disorders and subsequently expanded for PrP Sc characterization in animals. In particular, in sporadic Creutzfedlt-Jakob disease (sCJD) PrP Sc is characterized by two main glycotypes conventionally named Type 1 and Type 2, based on the apparent gel migration at 21 and 19kDa of the PrP Sc PK-resistant fragment. An additional PrP Sc type was identified in sCJD characterized by an unglycosylated dominant glycoform pattern and in 2010 a variably protease-sensitive prionopathy (VPSPr) was reported showing a PrP Sc with an electrophoretic ladder like pattern. Additionally, the presence of PrP Sc truncated fragments completes the electrophoretic characterization of different prion strains. By two-dimensional (2D) electrophoretic analysis additional PrP Sc pattern was identified, since this procedure provides information about the isoelectric point and the different peptides length related to PK cleavage, as well as to glycosylation extent or GPI anchor presence. We here provide and extensive review on PrP Sc biochemical analysis in human and animal prion disorders. Further, we show that PrP Sc glycotypes observed in CJD share

  16. Remote Sensing of plant functional types: Relative importance of biochemical and structural plant traits

    NASA Astrophysics Data System (ADS)

    Kattenborn, Teja; Schmidtlein, Sebastian

    2017-04-01

    Monitoring ecosystems is a key priority in order to understand vegetation patterns, underlying resource cycles and changes their off. Driven by biotic and abiotic factors, plant species within an ecosystem are likely to share similar structural, physiological or phenological traits and can therefore be grouped into plant functional types (PFT). It can be assumed that plants which share similar traits also share similar optical characteristics. Therefore optical remote sensing was identified as a valuable tool for differentiating PFT. Although several authors list structural and biochemical plant traits which are important for differentiating PFT using hyperspectral remote sensing, there is no quantitative or qualitative information on the relative importance of these traits. Thus, little is known about the explicit role of plant traits for an optical discrimination of PFT. One of the main reasons for this is that various optical traits affect the same wavelength regions and it is therefore difficult to isolate the discriminative power of a single trait. A way to determine the effect of single plant traits on the optical reflectance of plant canopies is given by radiative transfer models. The most established radiative transfer model is PROSAIL, which incorporates biochemical and structural plant traits, such as pigment contents or leaf area index. In the present study 25 grassland species of different PFT were cultivated and traits relevant for PROSAIL were measured for the entire vegetation season of 2016. The information content of each trait for differentiating PFTs was determined by applying a Multi-response Permutation Procedure on the actual traits, as well as on simulated canopy spectra derived from PROSAIL. According to our results some traits, especially biochemical traits, show a weaker separability of PFT on a spectral level than compared to the actual trait measurements. Overall structural traits (leaf angle and leaf area index) are more important for

  17. Patient-Level DNA Damage and Repair Pathway Profiles and Prognosis After Prostatectomy for High-Risk Prostate Cancer

    PubMed Central

    Evans, Joseph R.; Zhao, Shuang G.; Chang, S. Laura; Tomlins, Scott A.; Erho, Nicholas; Sboner, Andrea; Schiewer, Matthew J.; Spratt, Daniel E.; Kothari, Vishal; Klein, Eric A.; Den, Robert B.; Dicker, Adam P.; Karnes, R. Jeffrey; Yu, Xiaochun; Nguyen, Paul L.; Rubin, Mark A.; de Bono, Johann; Knudsen, Karen E.; Davicioni, Elai; Feng, Felix Y.

    2017-01-01

    IMPORTANCE A substantial number of patients diagnosed with high-risk prostate cancer are at risk for metastatic progression after primary treatment. Better biomarkers are needed to identify patients at the highest risk to guide therapy intensification. OBJECTIVE To create a DNA damage and repair (DDR) pathway profiling method for use as a prognostic signature biomarker in high-risk prostate cancer. DESIGN, SETTING, AND PARTICIPANTS A cohort of 1090 patients with high-risk prostate cancer who underwent prostatectomy and were treated at 3 different academic institutions were divided into a training cohort (n = 545) and 3 pooled validation cohorts (n = 232, 130, and 183) assembled for case-control or case-cohort studies. Profiling of 9 DDR pathways using 17 gene sets for GSEA (Gene Set Enrichment Analysis) of high-density microarray gene expression data from formalin-fixed paraffin-embedded prostatectomy samples with median 10.3 years follow-up was performed. Prognostic signature development from DDR pathway profiles was studied, and DDR pathway gene mutation in published cohorts was analyzed. MAIN OUTCOMES AND MEASURES Biochemical recurrence-free, metastasis-free, and overall survival. RESULTS Across the training cohort and pooled validation cohorts, 1090 men were studied; mean (SD) age at diagnosis was 65.3 (6.4) years. We found that there are distinct clusters of DDR pathways within the cohort, and DDR pathway enrichment is only weakly correlated with clinical variables such as age (Spearman ρ [ρ], range, −0.07 to 0.24), Gleason score (ρ, range, 0.03 to 0.20), prostate-specific antigen level (ρ, range, −0.07 to 0.10), while 13 of 17 DDR gene sets are strongly correlated with androgen receptor pathway enrichment (ρ, range, 0.33 to 0.82). In published cohorts, DDR pathway genes are rarely mutated. A DDR pathway profile prognostic signature built in the training cohort was significantly associated with biochemical recurrence-free, metastasis-free, and overall

  18. Patient-Level DNA Damage and Repair Pathway Profiles and Prognosis After Prostatectomy for High-Risk Prostate Cancer.

    PubMed

    Evans, Joseph R; Zhao, Shuang G; Chang, S Laura; Tomlins, Scott A; Erho, Nicholas; Sboner, Andrea; Schiewer, Matthew J; Spratt, Daniel E; Kothari, Vishal; Klein, Eric A; Den, Robert B; Dicker, Adam P; Karnes, R Jeffrey; Yu, Xiaochun; Nguyen, Paul L; Rubin, Mark A; de Bono, Johann; Knudsen, Karen E; Davicioni, Elai; Feng, Felix Y

    2016-04-01

    A substantial number of patients diagnosed with high-risk prostate cancer are at risk for metastatic progression after primary treatment. Better biomarkers are needed to identify patients at the highest risk to guide therapy intensification. To create a DNA damage and repair (DDR) pathway profiling method for use as a prognostic signature biomarker in high-risk prostate cancer. A cohort of 1090 patients with high-risk prostate cancer who underwent prostatectomy and were treated at 3 different academic institutions were divided into a training cohort (n = 545) and 3 pooled validation cohorts (n = 232, 130, and 183) assembled for case-control or case-cohort studies. Profiling of 9 DDR pathways using 17 gene sets for GSEA (Gene Set Enrichment Analysis) of high-density microarray gene expression data from formalin-fixed paraffin-embedded prostatectomy samples with median 10.3 years follow-up was performed. Prognostic signature development from DDR pathway profiles was studied, and DDR pathway gene mutation in published cohorts was analyzed. Biochemical recurrence-free, metastasis-free, and overall survival. Across the training cohort and pooled validation cohorts, 1090 men were studied; mean (SD) age at diagnosis was 65.3 (6.4) years. We found that there are distinct clusters of DDR pathways within the cohort, and DDR pathway enrichment is only weakly correlated with clinical variables such as age (Spearman ρ [ρ], range, -0.07 to 0.24), Gleason score (ρ, range, 0.03 to 0.20), prostate-specific antigen level (ρ, range, -0.07 to 0.10), while 13 of 17 DDR gene sets are strongly correlated with androgen receptor pathway enrichment (ρ, range, 0.33 to 0.82). In published cohorts, DDR pathway genes are rarely mutated. A DDR pathway profile prognostic signature built in the training cohort was significantly associated with biochemical recurrence-free, metastasis-free, and overall survival in the pooled validation cohorts independent of standard clinicopathological

  19. Eight-step method to build the clinical content of an evidence-based care pathway: the case for COPD exacerbation

    PubMed Central

    2012-01-01

    Background Optimization of the clinical care process by integration of evidence-based knowledge is one of the active components in care pathways. When studying the impact of a care pathway by using a cluster-randomized design, standardization of the care pathway intervention is crucial. This methodology paper describes the development of the clinical content of an evidence-based care pathway for in-hospital management of chronic obstructive pulmonary disease (COPD) exacerbation in the context of a cluster-randomized controlled trial (cRCT) on care pathway effectiveness. Methods The clinical content of a care pathway for COPD exacerbation was developed based on recognized process design and guideline development methods. Subsequently, based on the COPD case study, a generalized eight-step method was designed to support the development of the clinical content of an evidence-based care pathway. Results A set of 38 evidence-based key interventions and a set of 24 process and 15 outcome indicators were developed in eight different steps. Nine Belgian multidisciplinary teams piloted both the set of key interventions and indicators. The key intervention set was judged by the teams as being valid and clinically applicable. In addition, the pilot study showed that the indicators were feasible for the involved clinicians and patients. Conclusions The set of 38 key interventions and the set of process and outcome indicators were found to be appropriate for the development and standardization of the clinical content of the COPD care pathway in the context of a cRCT on pathway effectiveness. The developed eight-step method may facilitate multidisciplinary teams caring for other patient populations in designing the clinical content of their future care pathways. PMID:23190552

  20. Engineering the iron-oxidizing chemolithoautotroph Acidithiobacillus ferrooxidans for biochemical production.

    PubMed

    Kernan, Timothy; Majumdar, Sudipta; Li, Xiaozheng; Guan, Jingyang; West, Alan C; Banta, Scott

    2016-01-01

    There is growing interest in developing non-photosynthetic routes for the conversion of CO2 to fuels and chemicals. One underexplored approach is the transfer of energy to the metabolism of genetically modified chemolithoautotrophic bacteria. Acidithiobacillus ferrooxidans is an obligate chemolithoautotroph that derives its metabolic energy from the oxidation of iron or sulfur at low pH. Two heterologous biosynthetic pathways have been expressed in A. ferrooxidans to produce either isobutyric acid or heptadecane from CO2 and the oxidation of Fe(2+). A sevenfold improvement in productivity of isobutyric acid was obtained through improved media formulations in batch cultures. Steady-state efficiencies were lower in continuous cultures, likely due to ferric inhibition. If coupled to solar panels, the photon-to-fuel efficiency of this proof-of-principle process approaches estimates for agriculture-derived biofuels. These efforts lay the foundation for the utilization of this organism in the exploitation of electrical energy for biochemical synthesis. © 2015 Wiley Periodicals, Inc.

  1. Biochemical studies of membrane bound Plasmodium falciparum mitochondrial L-malate:quinone oxidoreductase, a potential drug target.

    PubMed

    Hartuti, Endah Dwi; Inaoka, Daniel Ken; Komatsuya, Keisuke; Miyazaki, Yukiko; Miller, Russell J; Xinying, Wang; Sadikin, Mohamad; Prabandari, Erwahyuni Endang; Waluyo, Danang; Kuroda, Marie; Amalia, Eri; Matsuo, Yuichi; Nugroho, Nuki B; Saimoto, Hiroyuki; Pramisandi, Amila; Watanabe, Yoh-Ichi; Mori, Mihoko; Shiomi, Kazuro; Balogun, Emmanuel Oluwadare; Shiba, Tomoo; Harada, Shigeharu; Nozaki, Tomoyoshi; Kita, Kiyoshi

    2018-03-01

    Plasmodium falciparum is an apicomplexan parasite that causes the most severe malaria in humans. Due to a lack of effective vaccines and emerging of drug resistance parasites, development of drugs with novel mechanisms of action and few side effects are imperative. To this end, ideal drug targets are those essential to parasite viability as well as absent in their mammalian hosts. The mitochondrial electron transport chain (ETC) of P. falciparum is one source of such potential targets because enzymes, such as L-malate:quinone oxidoreductase (PfMQO), in this pathway are absent humans. PfMQO catalyzes the oxidation of L-malate to oxaloacetate and the simultaneous reduction of ubiquinone to ubiquinol. It is a membrane protein, involved in three pathways (ETC, the tricarboxylic acid cycle and the fumarate cycle) and has been shown to be essential for parasite survival, at least, in the intra-erythrocytic asexual stage. These findings indicate that PfMQO would be a valuable drug target for development of antimalarial with novel mechanism of action. Up to this point in time, difficulty in producing active recombinant mitochondrial MQO has hampered biochemical characterization and targeted drug discovery with MQO. Here we report for the first time recombinant PfMQO overexpressed in bacterial membrane and the first biochemical study. Furthermore, about 113 compounds, consisting of ubiquinone binding site inhibitors and antiparasitic agents, were screened resulting in the discovery of ferulenol as a potent PfMQO inhibitor. Finally, ferulenol was shown to inhibit parasite growth and showed strong synergism in combination with atovaquone, a well-described anti-malarial and bc 1 complex inhibitor. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. [Modulating expression of key genes within β-carotene synthetic pathway in recombinant Escherichia coli with RBS library to improve β-carotene production].

    PubMed

    Dai, Guanping; Sun, Tao; Miao, Liangtian; Li, Qingyan; Xiao, Dongguang; Zhang, Xueli

    2014-08-01

    β-carotene belongs to carotenoids family, widely applied in pharmaceuticals, neutraceuticals, cosmetics and food industries. In this study, three key genes (dxs, idi, and crt operon) within β-carotene synthetic pathway in recombinant Escherichia coli strain CAR005 were modulated with RBS Library to improve β-carotene production. There were 7%, 11% and 17% increase of β-carotene yield respectively after modulating dxs, idi and crt operon genes with RBS Library, demonstrating that modulating gene expression with regulatory parts libraries would have more opportunities to obtain optimal production of target compound. Combined modulation of crt operon, dxs and idi genes led to 35% increase of β-carotene yield compared to parent strain CAR005. The optimal gene expression strength identified in single gene modulation would not be the optimal strength when used in combined modulation. Our study provides a new strategy for improving production of target compound through modulation of gene expression.

  3. Hypomagnesemia predicts postoperative biochemical hypocalcemia after thyroidectomy.

    PubMed

    Luo, Han; Yang, Hongliu; Zhao, Wanjun; Wei, Tao; Su, Anping; Wang, Bin; Zhu, Jingqiang

    2017-05-25

    To investigate the role of magnesium in biochemical and symptomatic hypocalcemia, a retrospective study was conducted. Less-than-total thyroidectomy patients were excluded from the final analysis. Identified the risk factors of biochemical and symptomatic hypocalcemia, and investigated the correlation by logistic regression and correlation test respectively. A total of 304 patients were included in the final analysis. General incidence of hypomagnesemia was 23.36%. Logistic regression showed that gender (female) (OR = 2.238, p = 0.015) and postoperative hypomagnesemia (OR = 2.010, p = 0.017) were independent risk factors for biochemical hypocalcemia. Both Pearson and partial correlation tests indicated there was indeed significant relation between calcium and magnesium. However, relative decreasing of iPTH (>70%) (6.691, p < 0.001) and hypocalcemia (2.222, p = 0.046) were identified as risk factors of symptomatic hypocalcemia. The difference remained significant even in normoparathyroidism patients. Postoperative hypomagnesemia was independent risk factor of biochemical hypocalcemia. Relative decline of iPTH was predominating in predicting symptomatic hypocalcemia.

  4. P38 pathway as a key downstream signal of connective tissue growth factor to regulate metastatic potential in non-small-cell lung cancer.

    PubMed

    Kato, Shinichiro; Yokoyama, Satoru; Hayakawa, Yoshihiro; Li, Luhui; Iwakami, Yusuke; Sakurai, Hiroaki; Saiki, Ikuo

    2016-10-01

    Although the secretory matricellular protein connective tissue growth factor (CTGF) has been reported to be related to lung cancer metastasis, the precise mechanism by which CTGF regulates lung cancer metastasis has not been elucidated. In the present study, we show the molecular link between CTGF secretion and the p38 pathway in the invasive and metastatic potential of non-small-cell lung cancer (NSCLC). Among three different human NSCLC cell lines (PC-14, A549, and PC-9), their in vitro invasiveness was inversely correlated with the level of CTGF secretion. By supplementing or reducing CTGF secretion in NSCLC culture, dysregulation of the invasive and metastatic potential of NSCLC cell lines was largely compensated. By focusing on the protein kinases that are known to be regulated by CTGF, we found that the p38 pathway is a key downstream signal of CTGF to regulate the metastatic potential of NSCLC. Importantly, a negative correlation between CTGF and phosphorylation status of p38 was identified in The Cancer Genome Atlas lung adenocarcinoma dataset. In the context of the clinical importance of our findings, we showed that p38 inhibitor, SB203580, reduced the metastatic potential of NSCLC secreting low levels of CTGF. Collectively, our present findings indicate that the CTGF/p38 axis is a novel therapeutic target of NSCLC metastasis, particularly NSCLC secreting low levels of CTGF. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  5. Pathway engineering and synthetic biology using acetogens.

    PubMed

    Schiel-Bengelsdorf, Bettina; Dürre, Peter

    2012-07-16

    Acetogenic anaerobic bacteria are defined as organisms employing the Wood-Ljungdahl pathway to synthesize acetyl-CoA from CO(2) or CO. Their autotrophic mode of metabolism offers the biotechnological chance to combine use of abundantly available substrates with reduction of greenhouse gases. Several companies have already established pilot and demonstration plants for converting waste gases into ethanol, an important biofuel and a natural product of many acetogens. Recombinant DNA approaches now opened the door to construct acetogens, synthesizing important industrial bulk chemicals and biofuels such as acetone and butanol. Thus, novel microbial production platforms are available that no longer compete with nutritional feedstocks. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Cellular and molecular mechanisms for the bone response to mechanical loading

    NASA Technical Reports Server (NTRS)

    Bloomfield, S. A.

    2001-01-01

    To define the cellular and molecular mechanisms for the osteogenic response of bone to increased loading, several key steps must be defined: sensing of the mechanical signal by cells in bone, transduction of the mechanical signal to a biochemical one, and transmission of that biochemical signal to effector cells. Osteocytes are likely to serve as sensors of loading, probably via interstitial fluid flow produced during loading. Evidence is presented for the role of integrins, the cell's actin cytoskeleton, G proteins, and various intracellular signaling pathways in transducing that mechanical signal to a biochemical one. Nitric oxide, prostaglandins, and insulin-like growth factors all play important roles in these pathways. There is growing evidence for modulation of these mechanotransduction steps by endocrine factors, particularly parathyroid hormone and estrogen. The efficiency of this process is also impaired in the aged animal, yet what remains undefined is at what step mechanotransduction is affected.

  7. Magnetic resonance microscopy: concepts, challenges, and state-of-the-art.

    PubMed

    Gimi, Barjor

    2006-01-01

    Recent strides in targeted therapy and regenerative medicine have created a need to identify molecules and metabolic pathways implicated in a disease and its treatment. These molecules and pathways must be discerned at the cellular level to meaningfully reveal the biochemical underpinnings of the disease and to identify key molecular targets for therapy. Magnetic resonance (MR) techniques are well suited for molecular and functional imaging because of their noninvasive nature and their versatility in extracting physiological, biochemical, and functional information over time. However, MR is an insensitive technique; MR microscopy seeks to increase detection sensitivity, thereby localizing biochemical and functional information at the level of single cells or small cellular clusters. Here, we discuss some of the challenges facing MR microscopy and the technical and phenomenological strategies used to overcome these challenges. Some of the applications of MR microscopy are highlighted in this chapter.

  8. Molecular Pathways: Hippo Signaling, a Critical Tumor Suppressor.

    PubMed

    Sebio, Ana; Lenz, Heinz-Josef

    2015-11-15

    The Salvador-Warts-Hippo pathway controls cell fate and tissue growth. The main function of the Hippo pathway is to prevent YAP and TAZ translocation to the nucleus where they induce the transcription of genes involved in cell proliferation, survival, and stem cell maintenance. Hippo signaling is, thus, a complex tumor suppressor, and its deregulation is a key feature in many cancers. Recent mounting evidence suggests that the overexpression of Hippo components can be useful prognostic biomarkers. Moreover, Hippo signaling appears to be intimately linked to some of the most important signaling pathways involved in cancer development and progression. A better understanding of the Hippo pathway is thus essential to untangle tumor biology and to develop novel anticancer therapies. Here, we comment on the progress made in understanding Hippo signaling and its connections, and also on how new drugs modulating this pathway, such as Verteporfin and C19, are highly promising cancer therapeutics. ©2015 American Association for Cancer Research.

  9. TRWG developmental pathway for biospecimen-based assessment modalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Translational Research Working Group; Srivastava, Sudhir; Gray, Joe W.

    The Translational Research Working Group (TRWG) was created as a national initiative to evaluate the current status of NCI's investment in translational research and envision its future. The TRWG conceptualized translational research as a set of six developmental processes or pathways focused on various clinical goals. One of those pathways describes the development of biospecimen-based assays that utilize biomarkers for the detection, diagnosis, prognosis, and assessment of response to cancer treatment. The biospecimen-based assessment modality (BM) pathway was conceived not as comprehensive description of the corresponding real-world processes, but rather as a tool designed to facilitate movement of a candidatemore » assay through the translational process to the point where it can be handed off for definitive clinical testing. This paper introduces the pathway in the context of prior work and discusses key challenges associated with the biomarker development process in light of the pathway.« less

  10. Experimental Approaches to Systematic Discovery and Development of Reproductive Adverse Outcome Pathways in Fish

    EPA Science Inventory

    Adverse outcome pathways (AOPs) are conceptual frameworks that portray causal and predictive linkages between key events at multiple scales of biological organization that connect molecular initiating events and early cellular perturbations (e.g., initiation of toxicity pathways)...

  11. The TGFβ pathway is a key player for the endothelial-to-hematopoietic transition in the embryonic aorta.

    PubMed

    Lempereur, A; Canto, P Y; Richard, C; Martin, S; Thalgott, J; Raymond, K; Lebrin, F; Drevon, C; Jaffredo, T

    2018-02-15

    The embryonic aorta produces hematopoietic stem and progenitor cells from a hemogenic endothelium localized in the aortic floor through an endothelial to hematopoietic transition. It has been long proposed that the Bone Morphogenetic Protein (BMP)/Transforming Growth Factor ß (TGFß) signaling pathway was implicated in aortic hematopoiesis but the very nature of the signal was unknown. Here, using thorough expression analysis of the BMP/TGFß signaling pathway members in the endothelial and hematopoietic compartments of the aorta at pre-hematopoietic and hematopoietic stages, we show that the TGFß pathway is preferentially balanced with a prominent role of Alk1/TgfßR2/Smad1 and 5 on both chicken and mouse species. Functional analysis using embryonic stem cells mutated for Acvrl1 revealed an enhanced propensity to produce hematopoietic cells. Collectively, we reveal that TGFß through the Alk1/TgfßR2 receptor axis is acting on endothelial cells to produce hematopoiesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Phaeochromocytoma: diagnostic challenges for biochemical screening and diagnosis.

    PubMed

    Barron, Jeffrey

    2010-08-01

    The aim of this article is to provide knowledge of the origin of catecholamines and metabolites so that there can be an informed approach to the methods for biochemical screening for a possible phaeochromocytoma; The article includes a review of catecholamine and metadrenaline metabolism, with methods used in biochemical screening. In the adrenal medulla and a phaeochromocytoma, catecholamines continuously leak from chromaffin granules into the cytoplasm and are converted to metadrenalines. For a phaeochromocytoma to become biochemically detectable, metnoradrenaline secretion needs to rise fourfold, whereas noradrenaline secretion needs to rise 15-fold. The prevalence of a sporadic phaeochromocytoma is low; therefore false-positive results exceed true-positive results. Assay sensitivity is high because it is important not to miss a possible phaeochromocytoma. The use of urine or plasma fractionated metadrenalines as the first-line test has been recommended due to improved sensitivity. A negative result excludes a phaeochromocytoma. Only after a sporadic phaeochromocytoma has been diagnosed biochemically is it cost effective to request imaging. Sensitivities and specificities of the assays differ according to pre-test probabilities of the presence of a phaeochromocytoma, with hereditary and incidentalomas having a higher pre-test probability than sporadic phaeochromocytoma. In conclusion, in screening for a possible phaeochromocytoma, biochemical investigations should be completed first to exclude or establish the diagnosis. The preferred biochemical screening test is fractionated metadrenalines, including methoxytyramine so as not to miss dopamine-secreting tumours.

  13. eQuilibrator--the biochemical thermodynamics calculator.

    PubMed

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like 'how much Gibbs energy is released by ATP hydrolysis at pH 5?' are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use.

  14. eQuilibrator—the biochemical thermodynamics calculator

    PubMed Central

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like ‘how much Gibbs energy is released by ATP hydrolysis at pH 5?’ are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use. PMID:22064852

  15. Biochemical response and the effects of bariatric surgeries on type 2 diabetes

    NASA Astrophysics Data System (ADS)

    Allen, Roland; Hughes, Tyler; Lerd Ng, Jia; Ortiz, Roberto; Abou Ghantous, Michel; Bouhali, Othmane; Arredouani, Abdelilah

    2013-03-01

    A general method is introduced for calculating the biochemical response to pharmaceuticals, surgeries, or other medical interventions. This method is then applied in a simple model of the response to Roux-en-Y gastric bypass (RYGB) surgery in obese diabetic patients. We specifically address the amazing fact that glycemia correction is usually achieved immediately after RYGB surgery, long before there is any appreciable weight loss. Many studies indicate that this result is not due merely to caloric restriction, and it is usually attributed to an increase in glucagon-like peptide 1 (GLP-1) levels observed after the surgery. However, our model indicates that this mechanism alone is not sufficient to explain either the largest declines in glucose levels or the measured declines in the homeostatic model assessment insulin resistance (HOMA-IR). The most robust additional mechanism would be production of a factor which opens an insulin-independent pathway for glucose transport into cells, perhaps related to the well-established insulin-independent pathway associated with exercise. Potential candidates include bradykinin, a 9 amino acid peptide. If such a substance were found to exist, it would offer hope for medications which mimic the immediate beneficial effect of RYGB surgery. Supported by Qatar Biomedical Research Institute and Science Program at Texas A&M University at Qatar

  16. Lung Macrophages “Digest” Carbon Nanotubes Using a Superoxide/Peroxynitrite Oxidative Pathway

    PubMed Central

    2015-01-01

    In contrast to short-lived neutrophils, macrophages display persistent presence in the lung of animals after pulmonary exposure to carbon nanotubes. While effective in the clearance of bacterial pathogens and injured host cells, the ability of macrophages to “digest” carbonaceous nanoparticles has not been documented. Here, we used chemical, biochemical, and cell and animal models and demonstrated oxidative biodegradation of oxidatively functionalized single-walled carbon nanotubes via superoxide/NO* → peroxynitrite-driven oxidative pathways of activated macrophages facilitating clearance of nanoparticles from the lung. PMID:24871084

  17. Biochemical adaptation to ocean acidification.

    PubMed

    Stillman, Jonathon H; Paganini, Adam W

    2015-06-01

    The change in oceanic carbonate chemistry due to increased atmospheric PCO2  has caused pH to decline in marine surface waters, a phenomenon known as ocean acidification (OA). The effects of OA on organisms have been shown to be widespread among diverse taxa from a wide range of habitats. The majority of studies of organismal response to OA are in short-term exposures to future levels of PCO2 . From such studies, much information has been gathered on plastic responses organisms may make in the future that are beneficial or harmful to fitness. Relatively few studies have examined whether organisms can adapt to negative-fitness consequences of plastic responses to OA. We outline major approaches that have been used to study the adaptive potential for organisms to OA, which include comparative studies and experimental evolution. Organisms that inhabit a range of pH environments (e.g. pH gradients at volcanic CO2 seeps or in upwelling zones) have great potential for studies that identify adaptive shifts that have occurred through evolution. Comparative studies have advanced our understanding of adaptation to OA by linking whole-organism responses with cellular mechanisms. Such optimization of function provides a link between genetic variation and adaptive evolution in tuning optimal function of rate-limiting cellular processes in different pH conditions. For example, in experimental evolution studies of organisms with short generation times (e.g. phytoplankton), hundreds of generations of growth under future conditions has resulted in fixed differences in gene expression related to acid-base regulation. However, biochemical mechanisms for adaptive responses to OA have yet to be fully characterized, and are likely to be more complex than simply changes in gene expression or protein modification. Finally, we present a hypothesis regarding an unexplored area for biochemical adaptation to ocean acidification. In this hypothesis, proteins and membranes exposed to the

  18. twzPEA: A Topology and Working Zone Based Pathway Enrichment Analysis Framework

    USDA-ARS?s Scientific Manuscript database

    Sensitive detection of involvement and adaptation of key signaling, regulatory, and metabolic pathways holds the key to deciphering molecular mechanisms such as those in the biomass-to-biofuel conversion process in yeast. Typical gene set enrichment analyses often do not use topology information in...

  19. Proteomic characterization of Aspergillus fumigatus treated with an antifungal coumarin for identification of novel target molecules of key pathways.

    PubMed

    Singh, Seema; Gupta, Shilpi; Singh, Bharat; Sharma, Sunil K; Gupta, Vijay K; Sharma, Gainda L

    2012-06-01

    A synthetic coumarin, N,N,N-triethyl-11-(4-methyl-2-oxo-2H-chromen-7-yloxy)-11-oxoundecan-1-aminium bromide (SCD-1), having potent activity against pathogenic Aspergilli (MIC90 15.62 μg/mL), was investigated to identify its molecular targets in the pathogen. The proteome of Aspergillus fumigatus was developed after treatment with sublethal doses of compound and analyzed. The results demonstrated 143 differentially expressed proteins on treatment with SCD-1. The expression of four proteins, namely cell division control protein, ubiquitin-like activating enzyme, vacuolar ATP synthase catalytic subunit A, and UTP-glucose-1-phosphate uridylyltransferase of A. fumigatus, was completely inhibited, whereas there were 13 newly expressed and 96 overexpressed proteins, mainly belonging to stress pathway. The treatment of A. fumigatus with SCD-1 also led to attenuation of proteins involved in cell replication and other important biosynthetic processes, including riboflavin biosynthesis, which has been pathogen-specific. In addition to key enzymatic players and antioxidants, nine hypothetical proteins were also identified, seven of which have been novel, being described for the first time. As no cellular functions have yet been described for these hypothetical proteins, their alteration in response to SCD-1 provides significant information about their putative roles in pathogen defense.

  20. Biosynthetic pathways of ergot alkaloids.

    PubMed

    Gerhards, Nina; Neubauer, Lisa; Tudzynski, Paul; Li, Shu-Ming

    2014-12-10

    Ergot alkaloids are nitrogen-containing natural products belonging to indole alkaloids. The best known producers are fungi of the phylum Ascomycota, e.g., Claviceps, Epichloë, Penicillium and Aspergillus species. According to their structures, ergot alkaloids can be divided into three groups: clavines, lysergic acid amides and peptides (ergopeptines). All of them share the first biosynthetic steps, which lead to the formation of the tetracyclic ergoline ring system (except the simplest, tricyclic compound: chanoclavine). Different modifications on the ergoline ring by specific enzymes result in an abundance of bioactive natural products, which are used as pharmaceutical drugs or precursors thereof. From the 1950s through to recent years, most of the biosynthetic pathways have been elucidated. Gene clusters from several ergot alkaloid producers have been identified by genome mining and the functions of many of those genes have been demonstrated by knock-out experiments or biochemical investigations of the overproduced enzymes.

  1. Cyclic di-GMP-dependent Signaling Pathways in the Pathogenic Firmicute Listeria monocytogenes

    PubMed Central

    Chen, Li-Hong; Köseoğlu, Volkan K.; Güvener, Zehra T.; Myers-Morales, Tanya; Reed, Joseph M.; D'Orazio, Sarah E. F.; Miller, Kurt W.; Gomelsky, Mark

    2014-01-01

    We characterized key components and major targets of the c-di-GMP signaling pathways in the foodborne pathogen Listeria monocytogenes, identified a new c-di-GMP-inducible exopolysaccharide responsible for motility inhibition, cell aggregation, and enhanced tolerance to disinfectants and desiccation, and provided first insights into the role of c-di-GMP signaling in listerial virulence. Genome-wide genetic and biochemical analyses of c-di-GMP signaling pathways revealed that L. monocytogenes has three GGDEF domain proteins, DgcA (Lmo1911), DgcB (Lmo1912) and DgcC (Lmo2174), that possess diguanylate cyclase activity, and three EAL domain proteins, PdeB (Lmo0131), PdeC (Lmo1914) and PdeD (Lmo0111), that possess c-di-GMP phosphodiesterase activity. Deletion of all phosphodiesterase genes (ΔpdeB/C/D) or expression of a heterologous diguanylate cyclase stimulated production of a previously unknown exopolysaccharide. The synthesis of this exopolysaccharide was attributed to the pssA-E (lmo0527-0531) gene cluster. The last gene of the cluster encodes the fourth listerial GGDEF domain protein, PssE, that functions as an I-site c-di-GMP receptor essential for exopolysaccharide synthesis. The c-di-GMP-inducible exopolysaccharide causes cell aggregation in minimal medium and impairs bacterial migration in semi-solid agar, however, it does not promote biofilm formation on abiotic surfaces. The exopolysaccharide also greatly enhances bacterial tolerance to commonly used disinfectants as well as desiccation, which may contribute to survival of L. monocytogenes on contaminated food products and in food-processing facilities. The exopolysaccharide and another, as yet unknown c-di-GMP-dependent target, drastically decrease listerial invasiveness in enterocytes in vitro, and lower pathogen load in the liver and gallbladder of mice infected via an oral route, which suggests that elevated c-di-GMP levels play an overall negative role in listerial virulence. PMID:25101646

  2. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI.

    PubMed

    Iliff, Jeffrey J; Lee, Hedok; Yu, Mei; Feng, Tian; Logan, Jean; Nedergaard, Maiken; Benveniste, Helene

    2013-03-01

    The glymphatic system is a recently defined brain-wide paravascular pathway for cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange that facilitates efficient clearance of solutes and waste from the brain. CSF enters the brain along para-arterial channels to exchange with ISF, which is in turn cleared from the brain along para-venous pathways. Because soluble amyloid β clearance depends on glymphatic pathway function, we proposed that failure of this clearance system contributes to amyloid plaque deposition and Alzheimer's disease progression. Here we provide proof of concept that glymphatic pathway function can be measured using a clinically relevant imaging technique. Dynamic contrast-enhanced MRI was used to visualize CSF-ISF exchange across the rat brain following intrathecal paramagnetic contrast agent administration. Key features of glymphatic pathway function were confirmed, including visualization of para-arterial CSF influx and molecular size-dependent CSF-ISF exchange. Whole-brain imaging allowed the identification of two key influx nodes at the pituitary and pineal gland recesses, while dynamic MRI permitted the definition of simple kinetic parameters to characterize glymphatic CSF-ISF exchange and solute clearance from the brain. We propose that this MRI approach may provide the basis for a wholly new strategy to evaluate Alzheimer's disease susceptibility and progression in the live human brain.

  3. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI

    PubMed Central

    Iliff, Jeffrey J.; Lee, Hedok; Yu, Mei; Feng, Tian; Logan, Jean; Nedergaard, Maiken; Benveniste, Helene

    2013-01-01

    The glymphatic system is a recently defined brain-wide paravascular pathway for cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange that facilitates efficient clearance of solutes and waste from the brain. CSF enters the brain along para-arterial channels to exchange with ISF, which is in turn cleared from the brain along para-venous pathways. Because soluble amyloid β clearance depends on glymphatic pathway function, we proposed that failure of this clearance system contributes to amyloid plaque deposition and Alzheimer’s disease progression. Here we provide proof of concept that glymphatic pathway function can be measured using a clinically relevant imaging technique. Dynamic contrast-enhanced MRI was used to visualize CSF-ISF exchange across the rat brain following intrathecal paramagnetic contrast agent administration. Key features of glymphatic pathway function were confirmed, including visualization of para-arterial CSF influx and molecular size-dependent CSF-ISF exchange. Whole-brain imaging allowed the identification of two key influx nodes at the pituitary and pineal gland recesses, while dynamic MRI permitted the definition of simple kinetic parameters to characterize glymphatic CSF-ISF exchange and solute clearance from the brain. We propose that this MRI approach may provide the basis for a wholly new strategy to evaluate Alzheimer’s disease susceptibility and progression in the live human brain. PMID:23434588

  4. Biochemical Testing in Thyroid Disorders.

    PubMed

    Esfandiari, Nazanene H; Papaleontiou, Maria

    2017-09-01

    This article summarizes the main principles for the appropriate use of laboratory testing in the diagnosis and management of thyroid disorders, as well as controversies that have arisen in association with some of these biochemical tests. To place a test in perspective, its sensitivity and accuracy should be taken into account. Ordering the correct laboratory tests facilitates the early diagnosis of a thyroid disorder and allows for timely and appropriate treatment. This article focuses on a comprehensive update regarding thyroid-stimulating hormone, thyroxine/triiodothyronine, thyroid autoantibodies, thyroglobulin, and calcitonin. Clinical uses of these biochemical tests are outlined. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Search for biochemical fossils on earth and non-biological organic molecules on Jupiter, Saturn and Titan

    NASA Astrophysics Data System (ADS)

    Nagy, Bartholomew

    1982-07-01

    Recognizable remnants of ancient biochemicals may survive under mild/moderate geological environments. Acyclic isoprenoid hydrocarbons, cyclic hydrocarbons with terpenoid carbon skeletons (e.g. hopanes) and vanadyl and nickel porphyrins have been isolated from organic matter, including petroleum, in Phanerozoic sedimentary rocks. Remnants of lignin have also been found. Usually, carbohydrates do not survive long; they degrade and/or react with other organic substances to form macromolecular matter. Proteins, e.g. apparently those in dinosaur bone collagen, break down relatively rapidly. Life arose during the Precambrian and potential biochemical fossils, e.g. n-alkanes, 2,5-dimethylfuran have been isolated from Precambrian kerogens. Traces of hydrocarbons, NH3, PH3 occur on Jupiter and Saturn. Hydrocarbons, N2 and HCN, the latter a key intermediary in the laboratory abiological syntheses of amino acids and nucleic acid bases, are present on Titan where life could not have evolved. Precursor abiological organic molecules of some complexity may have been synthesized on Titan and the Jovian planets.

  6. Supervised de novo reconstruction of metabolic pathways from metabolome-scale compound sets

    PubMed Central

    Kotera, Masaaki; Tabei, Yasuo; Yamanishi, Yoshihiro; Tokimatsu, Toshiaki; Goto, Susumu

    2013-01-01

    Motivation: The metabolic pathway is an important biochemical reaction network involving enzymatic reactions among chemical compounds. However, it is assumed that a large number of metabolic pathways remain unknown, and many reactions are still missing even in known pathways. Therefore, the most important challenge in metabolomics is the automated de novo reconstruction of metabolic pathways, which includes the elucidation of previously unknown reactions to bridge the metabolic gaps. Results: In this article, we develop a novel method to reconstruct metabolic pathways from a large compound set in the reaction-filling framework. We define feature vectors representing the chemical transformation patterns of compound–compound pairs in enzymatic reactions using chemical fingerprints. We apply a sparsity-induced classifier to learn what we refer to as ‘enzymatic-reaction likeness’, i.e. whether compound pairs are possibly converted to each other by enzymatic reactions. The originality of our method lies in the search for potential reactions among many compounds at a time, in the extraction of reaction-related chemical transformation patterns and in the large-scale applicability owing to the computational efficiency. In the results, we demonstrate the usefulness of our proposed method on the de novo reconstruction of 134 metabolic pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG). Our comprehensively predicted reaction networks of 15 698 compounds enable us to suggest many potential pathways and to increase research productivity in metabolomics. Availability: Softwares are available on request. Supplementary material are available at http://web.kuicr.kyoto-u.ac.jp/supp/kot/ismb2013/. Contact: goto@kuicr.kyoto-u.ac.jp PMID:23812977

  7. A Quantative Adverse Outcome Pathway Linking Aromatase Inhibition in Fathead Minnows with Population Dynamics

    EPA Science Inventory

    A Quantitative Adverse Outcome Pathway Linking Aromatase Inhibition in Fathead Minnows with Population DynamicsAn adverse outcome pathway (AOP) is a qualitative description linking a molecular initiating event (MIE) with measureable key events leading to an adverse outcome (AO). ...

  8. Integrating publicly-available data to generate computationally-predicted adverse outcome pathways for hepatic steatosis

    EPA Science Inventory

    The adverse outcome pathway (AOP) framework provides a way of organizing knowledge related to the key biological events that result in a particular health outcome. For the majority of environmental chemicals, the availability of curated pathways characterizing potential toxicity ...

  9. Bioreactor Transient Exposure Activates Specific Neurotrophic Pathway in Cortical Neurons

    NASA Astrophysics Data System (ADS)

    Zimmitti, V.; Benedetti, E.; Caracciolo, V.; Sebastiani, P.; Di Loreto, S.

    2010-02-01

    Altered gravity forces might influence neuroplasticity and can provoke changes in biochemical mechanisms. In this contest, neurotrophins have a pivotal role, particularly nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF). A suspension of dissociated cortical cells from rat embryos was exposed to 24 h of microgravity before plating in normal adherent culture system. Expression and transductional signalling pathways of NGF and BDNF were assessed at the end of maturational process (8-10 days in vitro). Rotating wall vessel bioreactor (RWV) pre-exposition did not induce changes in NGF expression and its high affinity receptor TrkA. On the contrary both BDNF expression and its high affinity receptor TrkB were strongly up-regulated, inducing Erk-5, but not Erk-1/2 activation and, in turn, MEF2C over-expression and activation. According to our previous and present results, we postulate that relatively short microgravitational stimuli, applied to neural cells during the developmental stage, exert a long time activation of specific neurotrophic pathways.

  10. Stress and DNA repair biology of the Fanconi anemia pathway

    PubMed Central

    Longerich, Simonne; Li, Jian; Xiong, Yong; Sung, Patrick

    2014-01-01

    Fanconi anemia (FA) represents a paradigm of rare genetic diseases, where the quest for cause and cure has led to seminal discoveries in cancer biology. Although a total of 16 FA genes have been identified thus far, the biochemical function of many of the FA proteins remains to be elucidated. FA is rare, yet the fact that 5 FA genes are in fact familial breast cancer genes and FA gene mutations are found frequently in sporadic cancers suggest wider applicability in hematopoiesis and oncology. Establishing the interaction network involving the FA proteins and their associated partners has revealed an intersection of FA with several DNA repair pathways, including homologous recombination, DNA mismatch repair, nucleotide excision repair, and translesion DNA synthesis. Importantly, recent studies have shown a major involvement of the FA pathway in the tolerance of reactive aldehydes. Moreover, despite improved outcomes in stem cell transplantation in the treatment of FA, many challenges remain in patient care. PMID:25237197

  11. Two-dimensional isobutyl acetate production pathways to improve carbon yield

    PubMed Central

    Tashiro, Yohei; Desai, Shuchi H.; Atsumi, Shota

    2015-01-01

    For an economically competitive biological process, achieving high carbon yield of a target chemical is crucial. In biochemical production, pyruvate and acetyl-CoA are primary building blocks. When sugar is used as the sole biosynthetic substrate, acetyl-CoA is commonly generated by pyruvate decarboxylation. However, pyruvate decarboxylation during acetyl-CoA formation limits the theoretical maximum carbon yield (TMCY) by releasing carbon, and in some cases also leads to redox imbalance. To avoid these problems, we describe here the construction of a metabolic pathway that simultaneously utilizes glucose and acetate. Acetate is utilized to produce acetyl-CoA without carbon loss or redox imbalance. We demonstrate the utility of this approach for isobutyl acetate (IBA) production, wherein IBA production with glucose and acetate achieves a higher carbon yield than with either sole carbon source. These results highlight the potential for this multiple carbon source approach to improve the TMCY and balance redox in biosynthetic pathways. PMID:26108471

  12. Factors and pathways involved in capacitation: how are they regulated?

    PubMed Central

    Jin, Shi-Kai; Yang, Wan-Xi

    2017-01-01

    In mammals, fertilization occurs via a comprehensive progression of events. Freshly ejaculated sperm have yet to acquire progressive motility or fertilization ability. They must first undergo a series of biochemical and physiological changes, collectively known as capacitation. Capacitation is a significant prerequisite to fertilization. During the process of capacitation, changes in membrane properties, intracellular ion concentration and the activities of enzymes, together with other protein modifications, induce multiple signaling events and pathways in defined media in vitro or in the female reproductive tract in vivo. These, in turn, stimulate the acrosome reaction and prepare spermatozoa for penetration of the egg zona pellucida prior to fertilization. In the present review, we conclude all mainstream factors and pathways regulate capacitation and highlight their crosstalk. We also summarize the relationship between capacitation and assisted reproductive technology or human disease. In the end, we sum up the open questions and future avenues in this field. PMID:27690295

  13. Resolution of carbon metabolism and sulfur-oxidation pathways of Metallosphaera cuprina Ar-4 via comparative proteomics.

    PubMed

    Jiang, Cheng-Ying; Liu, Li-Jun; Guo, Xu; You, Xiao-Yan; Liu, Shuang-Jiang; Poetsch, Ansgar

    2014-09-23

    Metallosphaera cuprina is able to grow either heterotrophically on organics or autotrophically on CO2 with reduced sulfur compounds as electron donor. These traits endowed the species desirable for application in biomining. In order to obtain a global overview of physiological adaptations on the proteome level, proteomes of cytoplasmic and membrane fractions from cells grown autotrophically on CO2 plus sulfur or heterotrophically on yeast extract were compared. 169 proteins were found to change their abundance depending on growth condition. The proteins with increased abundance under autotrophic growth displayed candidate enzymes/proteins of M. cuprina for fixing CO2 through the previously identified 3-hydroxypropionate/4-hydroxybutyrate cycle and for oxidizing elemental sulfur as energy source. The main enzymes/proteins involved in semi- and non-phosphorylating Entner-Doudoroff (ED) pathway and TCA cycle were less abundant under autotrophic growth. Also some transporter proteins and proteins of amino acid metabolism changed their abundances, suggesting pivotal roles for growth under the respective conditions. The described work is of great significance: For general microbiology: How do extremophile organisms use their unique metabolic capabilities in adapting to autotrophic and hetetrotrophic growth conditions? Which are important enzymes involved in the metabolic adaptation and which enzyme candidate should be investigated in more detail with microbiological/biochemical approaches? For applied microbiology: Which are the key enzymes and reaction pathways for sulfur oxidation and autotrophic growth? This knowledge should accelerate future design of improved bioleaching processes in biomining industries or bioremediation. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Biochemical and electrophysiological differentiation profile of a human neuroblastoma (IMR-32) cell line.

    PubMed

    Rao, Raj R; Kisaalita, William S

    2002-09-01

    A human neuroblastoma cell line (IMR-32), when differentiated, mimics large projections of the human cerebral cortex and under certain tissue culture conditions, forms intracellular fibrillary material, commonly observed in brains of patients affected with Alzheimer's disease. Our purpose is to use differentiated IMR-32 cells as an in vitro system for magnetic field exposure studies. We have previously studied in vitro differentiation of murine neuroblastoma (N1E-115) cells with respect to resting membrane potential development. The purpose of this study was to extend our investigation to IMR-32 cells. Electrophysiological (resting membrane potential, V(m)) and biochemical (neuron-specific enolase activity [NSE]) measurements were taken every 2 d for a period of 16 d. A voltage-sensitive oxonol dye together with flow cytometry was used to measure relative changes in V(m). To rule out any effect due to mechanical cell detachment, V(m) was indirectly measured by using a slow potentiometric dye (tetramethylrhodamine methyl ester) together with confocal digital imaging microscopy. Neuron-specific enolase activity was measured by following the production of phosphoenolpyruvate from 2-phospho-d-glycerate at 240 nm. Our results indicate that in IMR-32, in vitro differentiation as characterized by an increase in NSE activity is not accompanied by resting membrane potential development. This finding suggests that pathways for morphological-biochemical and electrophysiological differentiations in IMR-32 cells are independent of one another.

  15. Dietary grape seed proanthocyanidin extract regulates metabolic disturbance in rat liver exposed to lead associated with PPARα signaling pathway.

    PubMed

    Yang, Daqian; Jiang, Huijie; Lu, Jingjing; Lv, Yueying; Baiyun, Ruiqi; Li, Siyu; Liu, Biying; Lv, Zhanjun; Zhang, Zhigang

    2018-06-01

    Lead, a pervasive environmental hazard worldwide, causes a wide range of physiological and biochemical destruction, including metabolic dysfunction. Grape seed proanthocyanidin extract (GSPE) is a natural production with potential metabolic regulation in liver. This study was performed to investigate the protective role of GSPE against lead-induced metabolic dysfunction in liver and elucidate the potential molecular mechanism of this event. Wistar rats received GSPE (200 mg/kg) daily with or without lead acetate (PbA, 0.5 g/L) exposure for 56 d. According to biochemical and histopathologic analysis, GSPE attenuated lead-induced metabolic dysfunction, oxidative stress, and liver dysfunction. Liver gene expression profiling was assessed by RNA sequencing and validated by qRT-PCR. Expression of some genes in peroxisome proliferator-activated receptor alpha (PPARα) signaling pathway was significantly suppressed in PbA group and revived in PbA + GSPE group, which was manifested by Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis and validated by western blot analysis. This study supports that dietary GSPE ameliorates lead-induced fatty acids metabolic disturbance in rat liver associated with PPARα signaling pathway, and suggests that dietary GSPE may be a protector against lead-induced metabolic dysfunction and liver injury, providing a novel therapy to protect liver against lead exposure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Conditional robustness analysis for fragility discovery and target identification in biochemical networks and in cancer systems biology.

    PubMed

    Bianconi, Fortunato; Baldelli, Elisa; Ludovini, Vienna; Luovini, Vienna; Petricoin, Emanuel F; Crinò, Lucio; Valigi, Paolo

    2015-10-19

    The study of cancer therapy is a key issue in the field of oncology research and the development of target therapies is one of the main problems currently under investigation. This is particularly relevant in different types of tumor where traditional chemotherapy approaches often fail, such as lung cancer. We started from the general definition of robustness introduced by Kitano and applied it to the analysis of dynamical biochemical networks, proposing a new algorithm based on moment independent analysis of input/output uncertainty. The framework utilizes novel computational methods which enable evaluating the model fragility with respect to quantitative performance measures and parameters such as reaction rate constants and initial conditions. The algorithm generates a small subset of parameters that can be used to act on complex networks and to obtain the desired behaviors. We have applied the proposed framework to the EGFR-IGF1R signal transduction network, a crucial pathway in lung cancer, as an example of Cancer Systems Biology application in drug discovery. Furthermore, we have tested our framework on a pulse generator network as an example of Synthetic Biology application, thus proving the suitability of our methodology to the characterization of the input/output synthetic circuits. The achieved results are of immediate practical application in computational biology, and while we demonstrate their use in two specific examples, they can in fact be used to study a wider class of biological systems.

  17. Oxidative Pentose Phosphate Pathway Inhibition Is A Key Determinant of Antimalarial Induced Cancer Cell Death

    PubMed Central

    Salas, Eduardo; Roy, Srirupa; Marsh, Timothy; Rubin, Brian; Debnath, Jayanta

    2015-01-01

    Despite immense interest in employing antimalarials as autophagy inhibitors to treat cancer, it remains unclear if these agents act predominantly via autophagy inhibition or whether other pathways direct their anti-cancer properties. By comparing the treatment effects of the antimalarials chloroquine (CQ) and quinacrine (Q) on KRAS mutant lung cancer cells, we demonstrate that inhibition of the oxidative arm of the pentose phosphate pathway (oxPPP) is required for antimalarial induced apoptosis. Despite inhibiting autophagy, neither CQ treatment nor RNAi against autophagy regulators (ATGs) promote cell death. In contrast, Q triggers high levels of apoptosis, both in vitro and in vivo, and this phenotype requires both autophagy inhibition and p53-dependent inhibition of the oxPPP. Simultaneous genetic targeting of the oxPPP and autophagy is sufficient to trigger apoptosis in lung cancer cells, including cells lacking p53. Thus, in addition to reduced autophagy, oxPPP inhibition serves as an important determinant of antimalarial cytotoxicity in cancer cells. PMID:26434592

  18. Computational methods for diffusion-influenced biochemical reactions.

    PubMed

    Dobrzynski, Maciej; Rodríguez, Jordi Vidal; Kaandorp, Jaap A; Blom, Joke G

    2007-08-01

    We compare stochastic computational methods accounting for space and discrete nature of reactants in biochemical systems. Implementations based on Brownian dynamics (BD) and the reaction-diffusion master equation are applied to a simplified gene expression model and to a signal transduction pathway in Escherichia coli. In the regime where the number of molecules is small and reactions are diffusion-limited predicted fluctuations in the product number vary between the methods, while the average is the same. Computational approaches at the level of the reaction-diffusion master equation compute the same fluctuations as the reference result obtained from the particle-based method if the size of the sub-volumes is comparable to the diameter of reactants. Using numerical simulations of reversible binding of a pair of molecules we argue that the disagreement in predicted fluctuations is due to different modeling of inter-arrival times between reaction events. Simulations for a more complex biological study show that the different approaches lead to different results due to modeling issues. Finally, we present the physical assumptions behind the mesoscopic models for the reaction-diffusion systems. Input files for the simulations and the source code of GMP can be found under the following address: http://www.cwi.nl/projects/sic/bioinformatics2007/

  19. Qualitative evaluation of a local coronary heart disease treatment pathway: practical implications and theoretical framework

    PubMed Central

    2012-01-01

    Background Coronary heart disease (CHD) is a common medical problem in general practice. Due to its chronic character, shared care of the patient between general practitioner (GP) and cardiologist (C) is required. In order to improve the cooperation between both medical specialists for patients with CHD, a local treatment pathway was developed. The objective of this study was first to evaluate GPs’ opinions regarding the pathway and its practical implications, and secondly to suggest a theoretical framework of the findings by feeding the identified key factors influencing the pathway implementation into a multi-dimensional model. Methods The evaluation of the pathway was conducted in a qualitative design on a sample of 12 pathway developers (8 GPs and 4 cardiologists) and 4 pathway users (GPs). Face-to face interviews, which were aligned with previously conducted studies of the department and assumptions of the theory of planned behaviour (TPB), were performed following a semi-structured interview guideline. These were audio-taped, transcribed verbatim, coded, and analyzed according to the standards of qualitative content analysis. Results We identified 10 frequently mentioned key factors having an impact on the implementation success of the CHD treatment pathway. We thereby differentiated between pathway related (pathway content, effort, individual flexibility, ownership), behaviour related (previous behaviour, support), interaction related (patient, shared care/colleagues), and system related factors (context, health care system). The overall evaluation of the CHD pathway was positive, but did not automatically lead to a change of clinical behaviour as some GPs felt to have already acted as the pathway recommends. Conclusions By providing an account of our experience creating and implementing an intersectoral care pathway for CHD, this study contributes to our knowledge of factors that may influence physicians’ decisions regarding the use of a local treatment

  20. Qualitative evaluation of a local coronary heart disease treatment pathway: practical implications and theoretical framework.

    PubMed

    Kramer, Lena; Schlößler, Kathrin; Träger, Susanne; Donner-Banzhoff, Norbert

    2012-05-14

    Coronary heart disease (CHD) is a common medical problem in general practice. Due to its chronic character, shared care of the patient between general practitioner (GP) and cardiologist (C) is required. In order to improve the cooperation between both medical specialists for patients with CHD, a local treatment pathway was developed. The objective of this study was first to evaluate GPs' opinions regarding the pathway and its practical implications, and secondly to suggest a theoretical framework of the findings by feeding the identified key factors influencing the pathway implementation into a multi-dimensional model. The evaluation of the pathway was conducted in a qualitative design on a sample of 12 pathway developers (8 GPs and 4 cardiologists) and 4 pathway users (GPs). Face-to face interviews, which were aligned with previously conducted studies of the department and assumptions of the theory of planned behaviour (TPB), were performed following a semi-structured interview guideline. These were audio-taped, transcribed verbatim, coded, and analyzed according to the standards of qualitative content analysis. We identified 10 frequently mentioned key factors having an impact on the implementation success of the CHD treatment pathway. We thereby differentiated between pathway related (pathway content, effort, individual flexibility, ownership), behaviour related (previous behaviour, support), interaction related (patient, shared care/colleagues), and system related factors (context, health care system). The overall evaluation of the CHD pathway was positive, but did not automatically lead to a change of clinical behaviour as some GPs felt to have already acted as the pathway recommends. By providing an account of our experience creating and implementing an intersectoral care pathway for CHD, this study contributes to our knowledge of factors that may influence physicians' decisions regarding the use of a local treatment pathway. An improved adaptation of the