Key-peck durations under behavioral contrast and differential reinforcement
Whipple, William R.; Fantino, Edmund
1980-01-01
Pigeons were maintained on a multiple schedule in which both components were variable-interval one-minute schedules. When they were switched to a condition in which one component was extinction, behavioral contrast was observed. The median durations of the key pecks in the unchanged component did not decrease in size. The results are incompatible with a theory of behavioral contrast which considers the added pecks to be short-duration responses. In a second experiment, pigeons were required to emit short-duration key pecks in one component of a multiple schedule, and long-duration pecks in the other. Two of three pigeons learned to emit responses appropriate to the requirements of the component in effect, suggesting that the duration of the key-peck response is sensitive to differential reinforcement. PMID:16812185
Special Education Law: Illustrative Basics and Nuances of Key IDEA Components
ERIC Educational Resources Information Center
Zirkel, Perry A.
2015-01-01
Intended as professional development for both new and experienced special educators, this article provides both the basic requirements and nuanced issues for foundational, successive, and overlapping key components under the Individuals With Disabilities Education Act (IDEA): (a) child find, (b) eligibility, and (c) free appropriate public…
Second-order schedules: discrimination of components1
Squires, Nancy; Norborg, James; Fantino, Edmund
1975-01-01
Pigeons were exposed to a series of second-order schedules in which the completion of a fixed number of fixed-interval components produced food. In Experiment 1, brief (2 sec) stimulus presentations occurred as each fixed-interval component was completed. During the brief-stimulus presentation terminating the last fixed-interval component, a response was required on a second key, the brief-stimulus key, to produce food. Responses on the brief-stimulus key before the last brief-stimulus presentation had no scheduled consequences, but served as a measure of the extent to which the final component was discriminated from preceding components. Whether there were one, two, four, or eight fixed-interval components, responses on the brief-stimulus key occurred during virtually every brief-stimulus presentation. In Experiment 2, an attempt was made to punish unnecessary responses on the brief-stimulus key, i.e., responses on the brief-stimulus key that occurred before the last component. None of the pigeons learned to withhold these responses, even though they produced a 15-sec timeout and loss of primary reinforcement. In Experiment 3, different key colors were associated with each component of a second-order schedule (a chain schedule). In contrast to Experiment 1, brief-stimulus key responses were confined to the last component. It was concluded that pigeons do not discriminate well between components of second-order schedules unless a unique exteroceptive cue is provided for each component. The relative discriminability of the components may account for the observed differences in initial-component response rates between comparable brief-stimulus, tandem, and chain schedules. PMID:16811868
Life prediction systems for critical rotating components
NASA Technical Reports Server (NTRS)
Cunningham, Susan E.
1993-01-01
With the advent of advanced materials in rotating gas turbine engine components, the methodologies for life prediction of these parts must also increase in sophistication and capability. Pratt & Whitney's view of generic requirements for composite component life prediction systems are presented, efforts underway to develop these systems are discussed, and industry participation in key areas requiring development is solicited.
Evolving Systems: An Outcome of Fondest Hopes and Wildest Dreams
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Balas, Mark J.
2012-01-01
New theory is presented for evolving systems, which are autonomously controlled subsystems that self-assemble into a new evolved system with a higher purpose. Evolving systems of aerospace structures often require additional control when assembling to maintain stability during the entire evolution process. This is the concept of Adaptive Key Component Control that operates through one specific component to maintain stability during the evolution. In addition, this control must often overcome persistent disturbances that occur while the evolution is in progress. Theoretical results will be presented for Adaptive Key Component control for persistent disturbance rejection. An illustrative example will demonstrate the Adaptive Key Component controller on a system composed of rigid body and flexible body modes.
ERIC Educational Resources Information Center
Packard, Richard D.; Dereshiwsky, Mary I.
Despite current interest with the concept of the "New American School" model discussed in "America 2000," school systems continue to approach educational reform and restructuring by tinkering with key organizational components in isolation. The total school organization requires assessment and profiling to determine which key components are drags…
Key optical components for spaceborne lasers
NASA Astrophysics Data System (ADS)
Löhring, J.; Winzen, M.; Faidel, H.; Miesner, J.; Plum, D.; Klein, J.; Fitzau, O.; Giesberts, M.; Brandenburg, W.; Seidel, A.; Schwanen, N.; Riesters, D.; Hengesbach, S.; Hoffmann, H.-D.
2016-03-01
Spaceborne lidar (light detection and ranging) systems have a large potential to become powerful instruments in the field of atmospheric research. Obviously, they have to be in operation for about three years without any maintenance like readjusting. Furthermore, they have to withstand strong temperature cycles typically in the range of -30 to +50 °C as well as mechanical shocks and vibrations, especially during launch. Additionally, the avoidance of any organic material inside the laser box is required, particularly in UV lasers. For atmospheric research pulses of about several 10 mJ at repetition rates of several 10 Hz are required in many cases. Those parameters are typically addressed by DPSSL that comprise components like: laser crystals, nonlinear crystals in pockels cells, faraday isolators and frequency converters, passive fibers, diode lasers and of course a lot of mirrors and lenses. In particular, some components have strong requirements regarding their tilt stability that is often in the 10 μrad range. In most of the cases components and packages that are used for industrial lasers do not fulfil all those requirements. Thus, the packaging of all these key components has been developed to meet those specifications only making use of metal and ceramics beside the optical component itself. All joints between the optical component and the laser baseplate are soldered or screwed. No clamps or adhesives are used. Most of the critical properties like tilting after temperature cycling have been proven in several tests. Currently, these components are used to build up first prototypes for spaceborne systems.
Promising Electric Aircraft Drive Systems
NASA Technical Reports Server (NTRS)
Dudley, Michael R.
2010-01-01
An overview of electric aircraft propulsion technology performance thresholds for key power system components is presented. A weight comparison of electric drive systems with equivalent total delivered energy is made to help identify component performance requirements, and promising research and development opportunities.
Current Challenges for HTCMC Aero-Propulsion Components
NASA Technical Reports Server (NTRS)
DiCarlo, James A.; Bansal, Narottam P.
2007-01-01
In comparison to the best metallic materials, HTCMC aero-propulsion engine components offer the opportunity of reduced weight and higher temperature operation, with corresponding improvements in engine cooling requirements, emissions, thrust, and specific fuel consumption. Although much progress has been made in the development of advanced HTCMC constituent materials and processes, major challenges still remain for their implementation into these components. The objectives of this presentation are to briefly review (1) potential HTCMC aero-propulsion components and their generic material performance requirements, (2) recent progress at NASA and elsewhere concerning advanced constituents and processes for meeting these requirements, (3) key HTCMC component implementation challenges that are currently being encountered, and (4) on-going activities within the new NASA Fundamental Aeronautics Program that are addressing these challenges.
Multicomponent reactions provide key molecules for secret communication.
Boukis, Andreas C; Reiter, Kevin; Frölich, Maximiliane; Hofheinz, Dennis; Meier, Michael A R
2018-04-12
A convenient and inherently more secure communication channel for encoding messages via specifically designed molecular keys is introduced by combining advanced encryption standard cryptography with molecular steganography. The necessary molecular keys require large structural diversity, thus suggesting the application of multicomponent reactions. Herein, the Ugi four-component reaction of perfluorinated acids is utilized to establish an exemplary database consisting of 130 commercially available components. Considering all permutations, this combinatorial approach can unambiguously provide 500,000 molecular keys in only one synthetic procedure per key. The molecular keys are transferred nondigitally and concealed by either adsorption onto paper, coffee, tea or sugar as well as by dissolution in a perfume or in blood. Re-isolation and purification from these disguises is simplified by the perfluorinated sidechains of the molecular keys. High resolution tandem mass spectrometry can unequivocally determine the molecular structure and thus the identity of the key for a subsequent decryption of an encoded message.
Discrete Event Simulation Modeling and Analysis of Key Leader Engagements
2012-06-01
to offer. GreenPlayer agents require four parameters, pC, pKLK, pTK, and pRK , which give probabilities for being corrupt, having key leader...HandleMessageRequest component. The same parameter constraints apply to these four parameters. The parameter pRK is the same parameter from the CreatePlayers component...whether the local Green player has resource critical knowledge by using the parameter pRK . It schedules an EndResourceKnowledgeRequest event, passing
Authentication Without Secrets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierson, Lyndon G.; Robertson, Perry J.
This work examines a new approach to authentication, which is the most fundamental security primitive that underpins all cyber security protections. Current Internet authentication techniques require the protection of one or more secret keys along with the integrity protection of the algorithms/computations designed to prove possession of the secret without actually revealing it. Protecting a secret requires physical barriers or encryption with yet another secret key. The reason to strive for "Authentication without Secret Keys" is that protecting secrets (even small ones only kept in a small corner of a component or device) is much harder than protecting the integritymore » of information that is not secret. Promising methods are examined for authentication of components, data, programs, network transactions, and/or individuals. The successful development of authentication without secret keys will enable far more tractable system security engineering for high exposure, high consequence systems by eliminating the need for brittle protection mechanisms to protect secret keys (such as are now protected in smart cards, etc.). This paper is a re-release of SAND2009-7032 with new figures numerous edits.« less
Development of a New Multiport SpaceWire Router
NASA Astrophysics Data System (ADS)
Habinc, Sandi; Isomaki, Marko
2012-08-01
The Multiport SpaceWire router is a new stand-alone router component currently being specified by Aeroflex Gaisler. Today there is no component available on the world market exhibiting more than eight SpaceWire ports. The goal with this new development is to provide this missing key component to the ever increasing number of customers requiring manifold ports.
Work Keys: Developing the Assessments.
ERIC Educational Resources Information Center
McLarty, Joyce R.
The American College Testing Program is developing a new program, Work Keys, a system to develop and assess employability skills. It consists of four components: (1) a systematic process for profiling job skill requirements; (2) assessments that measure learners' job skill levels; (3) procedures and formats for conveying assessment results so they…
Protein requirements for long term missions
NASA Astrophysics Data System (ADS)
Stein, T. P.
1994-11-01
A key component of the diet for a space mission is protein. This first part of this paper reviews the reasons for emphasizing protein nutrition and then discusses what the requirements are likely to be. The second part discusses potential advantages of modifying these requirements and describes potential approaches to effecting these modifications based on well established ground based models.
Protein requirements for long term missions
NASA Technical Reports Server (NTRS)
Stein, T. P.
1994-01-01
A key component of the diet for a space mission is protein. This first part of this paper reviews the reasons for emphasizing protein nurtition and then discusses what the requirements are likely to be. The second part discusses potential advantages of modifying these requirements and describes potential potential approaches to effecting these modificatons based on well established ground based models.
TPV Power Source Using Infrared-Sensitive Cells with Commercially Available Radiant Tube Burner
NASA Astrophysics Data System (ADS)
Fraas, Lewis; Minkin, Leonid; Hui, She; Avery, James; Howells, Christopher
2004-11-01
Over the last several years, JX Crystals has invented and systematically developed the key components for thermophotovoltaic systems. These key components include GaSb infrared sensitive cells, high power density shingle circuits, dielectric filters, and hydrocarbon-fueled radiant tube burners. Most recently, we invented and demonstrated an antireflection (AR)-coated tungsten IR emitter which when integrated with the other key components should make TPV systems with efficiencies over 10% practical. However, the use of the AR tungsten emitter requires an oxygen-free hermetic seal enclosure. During a 2003 Small Business Innovative Research (SBIR) Phase I contract, we integrated a tungsten emitter foil and a commercial SiC radiant tube burner within an emitter thermos and successfully demonstrated its operation at high temperature. We also designed a complete stand alone 500 W TPV generator. During the upcoming SBIR Phase II, we plan to implement this design in hardware.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the atmosphere. (ii) Car-seal or lock-and-key valve closures. Secure any bypass line valve in the closed position with a car-seal or a lock-and-key type configuration. You must visually inspect the seal... sensor. (vii) At least monthly, inspect components for integrity and electrical connections for...
Code of Federal Regulations, 2014 CFR
2014-07-01
... the atmosphere. (ii) Car-seal or lock-and-key valve closures. Secure any bypass line valve in the closed position with a car-seal or a lock-and-key type configuration. You must visually inspect the seal... sensor. (vii) At least monthly, inspect components for integrity and electrical connections for...
Anthropometry and Standards for Wheeled Mobility: An International Comparison
ERIC Educational Resources Information Center
Steinfeld, Edward; Maisel, Jordana; Feathers, David; D'Souza, Clive
2010-01-01
Space requirements for accommodating wheeled mobility devices and their users in the built environment are key components of standards for accessible design. These requirements typically include dimensions for clear floor areas, maneuvering clearances, seat and knee clearance heights, as well as some reference dimensions on wheeled mobility device…
An SSH key management system: easing the pain of managing key/user/account associations
NASA Astrophysics Data System (ADS)
Arkhipkin, D.; Betts, W.; Lauret, J.; Shiryaev, A.
2008-07-01
Cyber security requirements for secure access to computing facilities often call for access controls via gatekeepers and the use of two-factor authentication. Using SSH keys to satisfy the two factor authentication requirement has introduced a potentially challenging task of managing the keys and their associations with individual users and user accounts. Approaches for a facility with the simple model of one remote user corresponding to one local user would not work at facilities that require a many-to-many mapping between users and accounts on multiple systems. We will present an SSH key management system we developed, tested and deployed to address the many-to-many dilemma in the environment of the STAR experiment. We will explain its use in an online computing context and explain how it makes possible the management and tracing of group account access spread over many sub-system components (data acquisition, slow controls, trigger, detector instrumentation, etc.) without the use of shared passwords for remote logins.
Space Tug systems study (storable). Volume 3: Executive summary
NASA Technical Reports Server (NTRS)
1974-01-01
Space tug program options that consider key issues and mission requirements are assessed, component and subsystem candidates are evaluated, and tug configurations synthesized. Three tug program options are defined and evaluated.
Harvey, Jasmine; Avery, Anthony J; Ashcroft, Darren; Boyd, Matthew; Phipps, Denham L; Barber, Nicholas
2015-01-01
Identifying risk is an important facet of a safety practice in an organization. To identify risk, all components within a system of operation should be considered. In clinical safety practice, a team of people, technologies, procedures and protocols, management structure and environment have been identified as key components in a system of operation. To explore risks in relation to prescription dispensing in community pharmacies by taking into account relationships between key components that relate to the dispensing process. Fifteen community pharmacies in England with varied characteristics were identified, and data were collected using non-participant observations, shadowing and interviews. Approximately 360 hours of observations and 38 interviews were conducted by the team. Observation field notes from each pharmacy were written into case studies. Overall, 52,500 words from 15 case studies and interview transcripts were analyzed using thematic and line-by-line analyses. Validation techniques included multiple data collectors co-authoring each case study for consensus, review of case studies by members of the wider team including academic and practicing community pharmacists, and patient safety experts and two presentations (internally and externally) to review and discuss findings. Risks identified were related to relationships between people and other key components in dispensing. This included how different levels of staff communicated internally and externally, followed procedures, interacted with technical systems, worked with management, and engaged with the environment. In a dispensing journey, the following categories were identified which show how risks are inextricably linked through relationships between human components and other key components: 1) dispensing with divided attention; 2) dispensing under pressure; 3) dispensing in a restricted space or environment; and, 4) managing external influences. To identify and evaluate risks effectively, an approach that includes understanding relationships between key components in dispensing is required. Since teams of people in community pharmacies are a key dispensing component, and therefore part of the operational process, it is important to note how they relate to other components in the environment within which they operate. Pharmacies can take the opportunity to reflect on the organization of their systems and review in particular how they can improve on the four key categories identified. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Rocket Engine Health Management: Early Definition of Critical Flight Measurements
NASA Technical Reports Server (NTRS)
Christenson, Rick L.; Nelson, Michael A.; Butas, John P.
2003-01-01
The NASA led Space Launch Initiative (SLI) program has established key requirements related to safety, reliability, launch availability and operations cost to be met by the next generation of reusable launch vehicles. Key to meeting these requirements will be an integrated vehicle health management ( M) system that includes sensors, harnesses, software, memory, and processors. Such a system must be integrated across all the vehicle subsystems and meet component, subsystem, and system requirements relative to fault detection, fault isolation, and false alarm rate. The purpose of this activity is to evolve techniques for defining critical flight engine system measurements-early within the definition of an engine health management system (EHMS). Two approaches, performance-based and failure mode-based, are integrated to provide a proposed set of measurements to be collected. This integrated approach is applied to MSFC s MC-1 engine. Early identification of measurements supports early identification of candidate sensor systems whose design and impacts to the engine components must be considered in engine design.
A Co-modeling Method Based on Component Features for Mechatronic Devices in Aero-engines
NASA Astrophysics Data System (ADS)
Wang, Bin; Zhao, Haocen; Ye, Zhifeng
2017-08-01
Data-fused and user-friendly design of aero-engine accessories is required because of their structural complexity and stringent reliability. This paper gives an overview of a typical aero-engine control system and the development process of key mechatronic devices used. Several essential aspects of modeling and simulation in the process are investigated. Considering the limitations of a single theoretic model, feature-based co-modeling methodology is suggested to satisfy the design requirements and compensate for diversity of component sub-models for these devices. As an example, a stepper motor controlled Fuel Metering Unit (FMU) is modeled in view of the component physical features using two different software tools. An interface is suggested to integrate the single discipline models into the synthesized one. Performance simulation of this device using the co-model and parameter optimization for its key components are discussed. Comparison between delivery testing and the simulation shows that the co-model for the FMU has a high accuracy and the absolute superiority over a single model. Together with its compatible interface with the engine mathematical model, the feature-based co-modeling methodology is proven to be an effective technical measure in the development process of the device.
Optical components damage parameters database system
NASA Astrophysics Data System (ADS)
Tao, Yizheng; Li, Xinglan; Jin, Yuquan; Xie, Dongmei; Tang, Dingyong
2012-10-01
Optical component is the key to large-scale laser device developed by one of its load capacity is directly related to the device output capacity indicators, load capacity depends on many factors. Through the optical components will damage parameters database load capacity factors of various digital, information technology, for the load capacity of optical components to provide a scientific basis for data support; use of business processes and model-driven approach, the establishment of component damage parameter information model and database systems, system application results that meet the injury test optical components business processes and data management requirements of damage parameters, component parameters of flexible, configurable system is simple, easy to use, improve the efficiency of the optical component damage test.
Resistance to Change and Preference for Variable versus Fixed Response Sequences
ERIC Educational Resources Information Center
Arantes, Joana; Berg, Mark E.; Le, Dien; Grace, Randolph C.
2012-01-01
In Experiment 1, 4 pigeons were trained on a multiple chain schedule in which the initial link was a variable-interval (VI) 20-s schedule signalled by a red or green center key, and terminal links required four responses made to the left (L) and/or right (R) keys. In the REPEAT component, signalled by red keylights, only LRLR terminal-link…
Evolving Systems: Adaptive Key Component Control and Inheritance of Passivity and Dissipativity
NASA Technical Reports Server (NTRS)
Frost, S. A.; Balas, M. J.
2010-01-01
We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. Autonomous assembly of large, complex flexible structures in space is a target application for Evolving Systems. A critical requirement for autonomous assembling structures is that they remain stable during and after assembly. The fundamental topic of inheritance of stability, dissipativity, and passivity in Evolving Systems is the primary focus of this research. In this paper, we develop an adaptive key component controller to restore stability in Nonlinear Evolving Systems that would otherwise fail to inherit the stability traits of their components. We provide sufficient conditions for the use of this novel control method and demonstrate its use on an illustrative example.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, Bruce Duncan
The objective of the report is to provide an assessment of the domestic supply chain and manufacturing infrastructure supporting the U.S. offshore wind market. The report provides baseline information and develops a strategy for future development of the supply chain required to support projected offshore wind deployment levels. A brief description of each of the key chapters includes: » Chapter 1: Offshore Wind Plant Costs and Anticipated Technology Advancements. Determines the cost breakdown of offshore wind plants and identifies technical trends and anticipated advancements in offshore wind manufacturing and construction. » Chapter 2: Potential Supply Chain Requirements and Opportunities. Providesmore » an organized, analytical approach to identifying and bounding the uncertainties associated with a future U.S. offshore wind market. It projects potential component-level supply chain needs under three demand scenarios and identifies key supply chain challenges and opportunities facing the future U.S. market as well as current suppliers of the nation’s land-based wind market. » Chapter 3: Strategy for Future Development. Evaluates the gap or competitive advantage of adding manufacturing capacity in the U.S. vs. overseas, and evaluates examples of policies that have been successful . » Chapter 4: Pathways for Market Entry. Identifies technical and business pathways for market entry by potential suppliers of large-scale offshore turbine components and technical services. The report is intended for use by the following industry stakeholder groups: (a) Industry participants who seek baseline cost and supplier information for key component segments and the overall U.S. offshore wind market (Chapters 1 and 2). The component-level requirements and opportunities presented in Section 2.3 will be particularly useful in identifying market sizes, competition, and risks for the various component segments. (b) Federal, state, and local policymakers and economic development agencies, to assist in identifying policies with low effort and high impact (Chapter 3). Section 3.3 provides specific policy examples that have been demonstrated to be effective in removing barriers to development. (c) Current and potential domestic suppliers in the offshore wind market, in evaluating areas of opportunity and understanding requirements for participation (Chapter 4). Section 4.4 provides a step-by-step description of the qualification process that suppliers looking to sell components into a future U.S. offshore wind market will need to follow.« less
Capstone Interdisciplinary Team Project: A Requirement for the MS in Sustainability Degree
ERIC Educational Resources Information Center
Jiji, Latif M.; Schonfeld, Irvin Sam; Smith, George A.
2015-01-01
Purpose: This paper aims to describe experience gained with a required six-credit year-long course, the Capstone Interdisciplinary Team Project, a key component of the Master of Science (MS) in Sustainability degree at the City College of New York. A common feature of sustainability problems is their interdisciplinary nature. Solutions to…
The Design of a Templated C++ Small Vector Class for Numerical Computing
NASA Technical Reports Server (NTRS)
Moran, Patrick J.
2000-01-01
We describe the design and implementation of a templated C++ class for vectors. The vector class is templated both for vector length and vector component type; the vector length is fixed at template instantiation time. The vector implementation is such that for a vector of N components of type T, the total number of bytes required by the vector is equal to N * size of (T), where size of is the built-in C operator. The property of having a size no bigger than that required by the components themselves is key in many numerical computing applications, where one may allocate very large arrays of small, fixed-length vectors. In addition to the design trade-offs motivating our fixed-length vector design choice, we review some of the C++ template features essential to an efficient, succinct implementation. In particular, we highlight some of the standard C++ features, such as partial template specialization, that are not supported by all compilers currently. This report provides an inventory listing the relevant support currently provided by some key compilers, as well as test code one can use to verify compiler capabilities.
Baker, Erin H; Siddiqui, Imran; Vrochides, Dionisios; Iannitti, David A; Martinie, John B; Rorabaugh, Lauren; Jeyarajah, D Rohan; Swan, Ryan Z
2016-12-01
Early in their careers, many new surgeons lack the background and experience to understand essential components needed to build a surgical practice. Surgical resident education is often devoid of specific instruction on the business of medicine and practice management. In particular, hepatobiliary and pancreatic (HPB) surgeons require many key components to build a successful practice secondary to significant interdisciplinary coordination and a scope of complex surgery, which spans challenging benign and malignant disease processes. In the following, we describe the required clinical and financial components for developing a successful HPB surgery practice in the nonuniversity tertiary care center. We discuss significant financial considerations for understanding community need and hospital investment, contract establishment, billing, and coding. We summarize the structural elements and key personnel necessary for establishing an effectual HPB surgical team. This article provides useful, essential information for a new HPB surgeon looking to establish a surgical practice. It also provides insight for health-care administrators as to the value an HPB surgeon can bring to a hospital or health-care system.
Thermoelectric-Driven Sustainable Sensing and Actuation Systems for Fault-Tolerant Nuclear Incidents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longtin, Jon
2016-02-08
The Fukushima Daiichi nuclear incident in March 2011 represented an unprecedented stress test on the safety and backup systems of a nuclear power plant. The lack of reliable information from key components due to station blackout was a serious setback, leaving sensing, actuation, and reporting systems unable to communicate, and safety was compromised. Although there were several independent backup power sources for required safety function on site, ultimately the batteries were drained and the systems stopped working. If, however, key system components were instrumented with self-powered sensing and actuation packages that could report indefinitely on the status of the system,more » then critical system information could be obtained while providing core actuation and control during off-normal status for as long as needed. This research project focused on the development of such a self-powered sensing and actuation system. The electrical power is derived from intrinsic heat in the reactor components, which is both reliable and plentiful. The key concept was based around using thermoelectric generators that can be integrated directly onto key nuclear components, including pipes, pump housings, heat exchangers, reactor vessels, and shielding structures, as well as secondary-side components. Thermoelectric generators are solid-state devices capable of converting heat directly into electricity. They are commercially available technology. They are compact, have no moving parts, are silent, and have excellent reliability. The key components to the sensor package include a thermoelectric generator (TEG), microcontroller, signal processing, and a wireless radio package, environmental hardening to survive radiation, flooding, vibration, mechanical shock (explosions), corrosion, and excessive temperature. The energy harvested from the intrinsic heat of reactor components can be then made available to power sensors, provide bi-directional communication, recharge batteries for other safety systems, etc. Such an approach is intrinsically fault tolerant: in the event that system temperatures increase, the amount of available energy will increase, which will make more power available for applications. The system can also be used during normal conditions to provide enhanced monitoring of key system components.« less
Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F; Schnabel, Roman
2015-10-30
Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.
Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F.; Schnabel, Roman
2015-01-01
Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein–Podolsky–Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components. PMID:26514280
Design-build agreements : a case study review of the included handover requirements.
DOT National Transportation Integrated Search
2009-04-01
Road infrastructure is a key component of any regions transportation system. It allows : unprecedented levels of mobility, accessibility, and economic growth. On the other hand, the cost : associated with inadequate road infrastructure can amount ...
Drug discrimination under two concurrent fixed-interval fixed-interval schedules.
McMillan, D E; Li, M
2000-07-01
Pigeons were trained to discriminate 5.0 mg/kg pentobarbital from saline under a two-key concurrent fixed-interval (FI) 100-s FI 200-s schedule of food presentation, and later tinder a concurrent FI 40-s FI 80-s schedule, in which the FI component with the shorter time requirement reinforced responding on one key after drug administration (pentobarbital-biased key) and on the other key after saline administration (saline-biased key). After responding stabilized under the concurrent FI 100-s FI 200-s schedule, pigeons earned an average of 66% (after pentobarbital) to 68% (after saline) of their reinforcers for responding under the FI 100-s component of the concurrent schedule. These birds made an average of 70% of their responses on both the pentobarbital-biased key after the training dose of pentobarbital and the saline-biased key after saline. After responding stabilized under the concurrent FI 40-s FI 80-s schedule, pigeons earned an average of 67% of their reinforcers for responding under the FI 40 component after both saline and the training dose of pentobarbital. These birds made an average of 75% of their responses on the pentobarbital-biased key after the training dose of pentobarbital, but only 55% of their responses on the saline-biased key after saline. In test sessions preceded by doses of pentobarbital, chlordiazepoxide, ethanol, phencyclidine, or methamphetamine, the dose-response curves were similar under these two concurrent schedules. Pentobarbital, chlordiazepoxide, and ethanol produced dose-dependent increases in responding on the pentobarbital-biased key as the doses increased. For some birds, at the highest doses of these drugs, the dose-response curve turned over. Increasing doses of phencyclidine produced increased responding on the pentobarbital-biased key in some, but not all, birds. After methamphetamine, responding was largely confined to the saline-biased key. These data show that pigeons can perform drug discriminations under concurrent schedules in which the reinforcement frequency under the schedule components differs only by a factor of two, and that when other drugs are substituted for the training drugs they produce dose-response curves similar to the curves produced by these drugs under other concurrent interval schedules.
Human factors research on performance-based navigation instrument procedures for NextGEN
DOT National Transportation Integrated Search
2012-10-14
Area navigation (RNAV) and required navigation performance (RNP) are key components of performance-based navigation (PBN). Instrument procedures that use RNAV and RNP can have more flexible and precise paths than conventional routes that are defined ...
NGNP Infrastructure Readiness Assessment: Consolidation Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brian K Castle
2011-02-01
The Next Generation Nuclear Plant (NGNP) project supports the development, demonstration, and deployment of high temperature gas-cooled reactors (HTGRs). The NGNP project is being reviewed by the Nuclear Energy Advisory Council (NEAC) to provide input to the DOE, who will make a recommendation to the Secretary of Energy, whether or not to continue with Phase 2 of the NGNP project. The NEAC review will be based on, in part, the infrastructure readiness assessment, which is an assessment of industry's current ability to provide specified components for the FOAK NGNP, meet quality assurance requirements, transport components, have the necessary workforce inmore » place, and have the necessary construction capabilities. AREVA and Westinghouse were contracted to perform independent assessments of industry's capabilities because of their experience with nuclear supply chains, which is a result of their experiences with the EPR and AP-1000 reactors. Both vendors produced infrastructure readiness assessment reports that identified key components and categorized these components into three groups based on their ability to be deployed in the FOAK plant. The NGNP project has several programs that are developing key components and capabilities. For these components, the NGNP project have provided input to properly assess the infrastructure readiness for these components.« less
Polymer, metal and ceramic matrix composites for advanced aircraft engine applications
NASA Technical Reports Server (NTRS)
Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.
1985-01-01
Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.
Yavuz, Sevil; Warren, Graham
2017-01-01
A single Golgi stack is duplicated and partitioned into two daughter cells during the cell cycle of the protozoan parasite Trypanosoma brucei. The source of components required to generate the new Golgi and the mechanism by which it forms are poorly understood. Using photoactivatable GFP, we show that the existing Golgi supplies components directly to the newly forming Golgi in both intact and semipermeabilized cells. The movement of a putative glycosyltransferase, GntB, requires the Sar1 and ARF1 GTPases in intact cells. In addition, we show that transfer of GntB from the existing Golgi to the new Golgi can be recapitulated in semipermeabilized cells and is sensitive to the GTP analogue GTPγS. We suggest that the existing Golgi is a key source of components required to form the new Golgi and that this process is regulated by small GTPases. PMID:28495798
2010-01-01
photometry , timing measurements of suitable cadence, and advanced theory are the keys to understanding the physics of million degree plasmas in...Disentangling these components requires time - and phase- resolved spectroscopic observations of a sample that spans a range of mass accretion rates...many narrow lines, or a continuum with strong, broad absorption features. Key Objective: Obtaining time - and phase- resolved high-resolution EUV
Renehan, Emma; Goeman, Dianne; Koch, Susan
2017-07-20
In Australia, dementia is a national health priority. With the rising number of people living with dementia and shortage of formal and informal carers predicted in the near future, developing approaches to coordinating services in quality-focused ways is considered an urgent priority. Key worker support models are one approach that have been used to assist people living with dementia and their caring unit coordinate services and navigate service systems; however, there is limited literature outlining comprehensive frameworks for the implementation of community dementia key worker roles in practice. In this paper an optimised key worker framework for people with dementia, their family and caring unit living in the community is developed and presented. A number of processes were undertaken to inform the development of a co-designed optimised key worker framework: an expert working and reference group; a systematic review of the literature; and a qualitative evaluation of 14 dementia key worker models operating in Australia involving 14 interviews with organisation managers, 19 with key workers and 15 with people living with dementia and/or their caring unit. Data from the systematic review and evaluation of dementia key worker models were analysed by the researchers and the expert working and reference group using a constant comparative approach to define the essential components of the optimised framework. The developed framework consisted of four main components: overarching philosophies; organisational context; role definition; and key worker competencies. A number of more clearly defined sub-themes sat under each component. Reflected in the framework is the complexity of the dementia journey and the difficulty in trying to develop a 'one size fits all' approach. This co-designed study led to the development of an evidence based framework which outlines a comprehensive synthesis of components viewed as being essential to the implementation of a dementia key worker model of care in the community. The framework was informed and endorsed by people living with dementia and their caring unit, key workers, managers, Australian industry experts, policy makers and researchers. An evaluation of its effectiveness and relevance for practice within the dementia care space is required.
Staff Development in Problem-based Learning.
ERIC Educational Resources Information Center
Murray, Ian; Savin-Baden, Maggi
2000-01-01
Argues that, for problem-based learning (PBL) to succeed, a sound program of staff development is required and describes the introduction of PBL into Nursing and Midwifery curricula at the University of Dundee (Scotland) including key components and evaluatory evidence to support its efficacy. (DB)
Theoretical models for coronary vascular biomechanics: Progress & challenges
Waters, Sarah L.; Alastruey, Jordi; Beard, Daniel A.; Bovendeerd, Peter H.M.; Davies, Peter F.; Jayaraman, Girija; Jensen, Oliver E.; Lee, Jack; Parker, Kim H.; Popel, Aleksander S.; Secomb, Timothy W.; Siebes, Maria; Sherwin, Spencer J.; Shipley, Rebecca J.; Smith, Nicolas P.; van de Vosse, Frans N.
2013-01-01
A key aim of the cardiac Physiome Project is to develop theoretical models to simulate the functional behaviour of the heart under physiological and pathophysiological conditions. Heart function is critically dependent on the delivery of an adequate blood supply to the myocardium via the coronary vasculature. Key to this critical function of the coronary vasculature is system dynamics that emerge via the interactions of the numerous constituent components at a range of spatial and temporal scales. Here, we focus on several components for which theoretical approaches can be applied, including vascular structure and mechanics, blood flow and mass transport, flow regulation, angiogenesis and vascular remodelling, and vascular cellular mechanics. For each component, we summarise the current state of the art in model development, and discuss areas requiring further research. We highlight the major challenges associated with integrating the component models to develop a computational tool that can ultimately be used to simulate the responses of the coronary vascular system to changing demands and to diseases and therapies. PMID:21040741
Staffing for Cyberspace Operations: Summary of Analysis
2016-08-01
appropriate total force mix, defined as the choice between military, civilian, and contractor performance of DoD activities, is a key component in this...designated for civilian performance if the requirement is inherently governmental or subject to least-cost government civilian or contractor performance if...activities open to the least costly performance type (government civilian or contractor ). To understand the CMF mission requirements, we studied existing
Sharabi, Kfir; Charar, Chayki; Friedman, Nurit; Mizrahi, Inbar; Zaslaver, Alon; Sznajder, Jacob I.; Gruenbaum, Yosef
2014-01-01
Carbon dioxide (CO2) is a key molecule in many biological processes; however, mechanisms by which organisms sense and respond to high CO2 levels remain largely unknown. Here we report that acute CO2 exposure leads to a rapid cessation in the contraction of the pharynx muscles in Caenorhabditis elegans. To uncover the molecular mechanisms underlying this response, we performed a forward genetic screen and found that hid-1, a key component in neuropeptide signaling, regulates this inhibition in muscle contraction. Surprisingly, we found that this hid-1-mediated pathway is independent of any previously known pathways controlling CO2 avoidance and oxygen sensing. In addition, animals with mutations in unc-31 and egl-21 (neuropeptide secretion and maturation components) show impaired inhibition of muscle contraction following acute exposure to high CO2 levels, in further support of our findings. Interestingly, the observed response in the pharynx muscle requires the BAG neurons, which also mediate CO2 avoidance. This novel hid-1-mediated pathway sheds new light on the physiological effects of high CO2 levels on animals at the organism-wide level. PMID:25101962
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saifee, T.; Konnerth, A. III
1991-11-01
Solar Kinetics, Inc. (SKI) has been developing point-focus concentrating PV modules since 1986. SKI is currently in position to manufacture between 200 to 600 kilowatts annually of the current design by a combination of manual and semi-automated methods. This report reviews the current status of module manufacture and specifies the required approach to achieve a high-volume manufacturing capability and low cost. The approach taken will include process development concurrent with module design for automated manufacturing. The current effort reviews the major manufacturing costs and identifies components and processes whose improvements would produce the greatest effect on manufacturability and cost reduction.more » The Fresnel lens is one such key component. Investigating specific alternative manufacturing methods and sources has substantially reduced the lens costs and has exceeded the DOE cost-reduction goals. 15 refs.« less
NASA Astrophysics Data System (ADS)
Yu, Long; Xu, Juanjuan; Zhang, Lifang; Xu, Xiaogang
2018-03-01
Based on stress-strength interference theory to establish the reliability mathematical model for high temperature and high pressure multi-stage decompression control valve (HMDCV), and introduced to the temperature correction coefficient for revising material fatigue limit at high temperature. Reliability of key dangerous components and fatigue sensitivity curve of each component are calculated and analyzed by the means, which are analyzed the fatigue life of control valve and combined with reliability theory of control valve model. The impact proportion of each component on the control valve system fatigue failure was obtained. The results is shown that temperature correction factor makes the theoretical calculations of reliability more accurate, prediction life expectancy of main pressure parts accords with the technical requirements, and valve body and the sleeve have obvious influence on control system reliability, the stress concentration in key part of control valve can be reduced in the design process by improving structure.
A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation
USDA-ARS?s Scientific Manuscript database
Perception of pathogen-associated molecular patterns (PAMPs) by surface-localised pattern-recognition receptors (PRRs) is a key component of plant innate immunity. Most known plant PRRs are receptor kinases and initiation of PAMP-triggered immunity (PTI) signalling requires phosphorylation of the PR...
DETERMINING THE ECONOMIC VALUE OF IMPROVED HUMAN EXPOSURE DATA
The U.S. EPA develops and revises environmental regulations and policies to protect the environment and human health. One of the key components of the regulatory process is establishing the proposed action level, which requires high quality exposure data. In many cases, expos...
DOT National Transportation Integrated Search
1975-02-01
Rail fasteners for concrete ties and direct fixation and bolted rail joints have been identified as key components for improving track performance. However, the lack of statistical load data limits the development of improved design criteria and eval...
The Changing Shape of Technology on Campus from Ermergence to Convergence.
ERIC Educational Resources Information Center
Cunningham, Kevin; Rainey, Sylvia
2001-01-01
Explores the basics in technology convergence in making today's college and university campuses more "intelligent." Two key components required for effective technology convergence are described as are the benefits of convergence on campus safety and security and utility cost management. (GR)
A Study of the Effectiveness of the Army’s National Advertising Expenditures. Volume 3. Appendices.
1981-08-31
N W Ayer Incorpor- ated to study the effectiveness of the Army’s national recruitment advertising . N W Ayer’s Marketing Services Department undertook...Army priorities for the quality of the recruit mix required investigating the differential impact of advertising on key market segments. Segmentation... market segment. Three key considerations in specifying the advertising variables are that ’ *individual media components were analyzed to account for
Water balance dynamics in the Nile Basin
Senay, Gabriel B.; Asante, Kwabena; Artan, Guleid A.
2009-01-01
Understanding the temporal and spatial dynamics of key water balance components of the Nile River will provide important information for the management of its water resources. This study used satellite-derived rainfall and other key weather variables derived from the Global Data Assimilation System to estimate and map the distribution of rainfall, actual evapotranspiration (ETa), and runoff. Daily water balance components were modelled in a grid-cell environment at 0·1 degree (∼10 km) spatial resolution for 7 years from 2001 through 2007. Annual maps of the key water balance components and derived variables such as runoff and ETa as a percent of rainfall were produced. Generally, the spatial patterns of rainfall and ETa indicate high values in the upstream watersheds (Uganda, southern Sudan, and southwestern Ethiopia) and low values in the downstream watersheds. However, runoff as a percent of rainfall is much higher in the Ethiopian highlands around the Blue Nile subwatershed. The analysis also showed the possible impact of land degradation in the Ethiopian highlands in reducing ETa magnitudes despite the availability of sufficient rainfall. Although the model estimates require field validation for the different subwatersheds, the runoff volume estimate for the Blue Nile subwatershed is within 7·0% of a figure reported from an earlier study. Further research is required for a thorough validation of the results and their integration with ecohydrologic models for better management of water and land resources in the various Nile Basin ecosystems.
An iterative requirements specification procedure for decision support systems.
Brookes, C H
1987-08-01
Requirements specification is a key element in a DSS development project because it not only determines what is to be done, it also drives the evolution process. A procedure for requirements elicitation is described that is based on the decomposition of the DSS design task into a number of functions, subfunctions, and operators. It is postulated that the procedure facilitates the building of a DSS that is complete and integrates MIS, modelling and expert system components. Some examples given are drawn from the health administration field.
Team Training and Institutional Protocols to Prevent Shoulder Dystocia Complications.
Smith, Samuel
2016-12-01
Shoulder dystocia is an obstetrical emergency that may result in significant neonatal complications. It requires rapid recognition and a coordinated response. Standardization of care, teamwork and communication, and clinical simulation are the key components of patient safety programs in obstetrics. Simulation-based team training and institutional protocols for the management of shoulder dystocia are emerging as integral components of many labor and delivery safety initiatives because of their impact on technical skills and team performance.
Participation versus Privacy in the Training of Group Counselors.
ERIC Educational Resources Information Center
Pierce, Keith A.; Baldwin, Cynthia
1990-01-01
Examines the process of requiring and evaluating personal growth group participation for students in counselor education programs. Discusses the key components in the dilemma of protecting privacy while evaluating competencies, including ethical practices and program alternatives to avoid evaluation. Proposes a model that will enable participation…
Intersections of Writing, Reflection, and Integration
ERIC Educational Resources Information Center
Herrington, Anne J.; Stassen, Martha L. A.
2016-01-01
In fall 2010, the University of Massachusetts Amherst instituted a new upper-division General Education requirement, the Integrative Experience (IE), designed to help students integrate the various components of their undergraduate experience and reflect upon their learning and development as a result of those experiences, both key dimensions of…
ERIC Educational Resources Information Center
Bergman, Daniel J.; Olson, Joanne
2011-01-01
Many elementary teachers encounter science lessons with a hands-on component that requires very little engaged thinking by the students. The good news is that any teacher can create successful minds-on inquiry opportunities by adding key instructional strategies to a typical "cookbook" activity. The authors discuss some of these strategies using a…
Graphic Design in Libraries: A Conceptual Process
ERIC Educational Resources Information Center
Ruiz, Miguel
2014-01-01
Providing successful library services requires efficient and effective communication with users; therefore, it is important that content creators who develop visual materials understand key components of design and, specifically, develop a holistic graphic design process. Graphic design, as a form of visual communication, is the process of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bragg-Sitton, Shannon M.; Boardman, Richard; Ruth, Mark
2016-08-01
An international workshop was organized in June 2016 to explore synergies between nuclear and renewable energy sources. Synergies crossing electricity, transportation, and industrial sectors were the focus of the workshop, recognizing that deep decarbonization will require efforts that go far beyond the electricity sector alone. This report summarizes the key points made within each presentation and highlights outcomes that were arrived at in the discussions.
Design for Verification: Using Design Patterns to Build Reliable Systems
NASA Technical Reports Server (NTRS)
Mehlitz, Peter C.; Penix, John; Koga, Dennis (Technical Monitor)
2003-01-01
Components so far have been mainly used in commercial software development to reduce time to market. While some effort has been spent on formal aspects of components, most of this was done in the context of programming language or operating system framework integration. As a consequence, increased reliability of composed systems is mainly regarded as a side effect of a more rigid testing of pre-fabricated components. In contrast to this, Design for Verification (D4V) puts the focus on component specific property guarantees, which are used to design systems with high reliability requirements. D4V components are domain specific design pattern instances with well-defined property guarantees and usage rules, which are suitable for automatic verification. The guaranteed properties are explicitly used to select components according to key system requirements. The D4V hypothesis is that the same general architecture and design principles leading to good modularity, extensibility and complexity/functionality ratio can be adapted to overcome some of the limitations of conventional reliability assurance measures, such as too large a state space or too many execution paths.
An Outcome-Based Assessment Process for Accrediting Computing Programmes
ERIC Educational Resources Information Center
Harmanani, Haidar M.
2017-01-01
The calls for accountability in higher education have made outcome-based assessment a key accreditation component. Accreditation remains a well-regarded seal of approval on college quality, and requires the programme to set clear, appropriate, and measurable goals and courses to attain them. Furthermore, programmes must demonstrate that…
Undergraduate Research in the Dartmouth Economics Department
ERIC Educational Resources Information Center
Feyrer, James
2017-01-01
One of the key components to the undergraduate research enterprise at Dartmouth is the recognition that learning to do research requires both directed instruction and learning by doing. The economics faculty have tailored a fruitful undergraduate research program based on this philosophy, and this article describes these efforts while also…
33 CFR 155.1045 - Response plan requirements for vessels carrying oil as a secondary cargo.
Code of Federal Regulations, 2014 CFR
2014-07-01
... must include the following functional areas and must further include information for key components within each functional area: (i) Command and control; (ii) Public information; (iii) Safety; (iv) Liaison with government agencies; (v) Spill response operations; (vi) Planning; (vii) Logistics support; and...
33 CFR 155.1045 - Response plan requirements for vessels carrying oil as a secondary cargo.
Code of Federal Regulations, 2012 CFR
2012-07-01
... must include the following functional areas and must further include information for key components within each functional area: (i) Command and control; (ii) Public information; (iii) Safety; (iv) Liaison with government agencies; (v) Spill response operations; (vi) Planning; (vii) Logistics support; and...
33 CFR 155.1045 - Response plan requirements for vessels carrying oil as a secondary cargo.
Code of Federal Regulations, 2013 CFR
2013-07-01
... must include the following functional areas and must further include information for key components within each functional area: (i) Command and control; (ii) Public information; (iii) Safety; (iv) Liaison with government agencies; (v) Spill response operations; (vi) Planning; (vii) Logistics support; and...
33 CFR 155.1045 - Response plan requirements for vessels carrying oil as a secondary cargo.
Code of Federal Regulations, 2011 CFR
2011-07-01
... must include the following functional areas and must further include information for key components within each functional area: (i) Command and control; (ii) Public information; (iii) Safety; (iv) Liaison with government agencies; (v) Spill response operations; (vi) Planning; (vii) Logistics support; and...
Creative Financing for Workforce Training.
ERIC Educational Resources Information Center
Spina, Peter A.
Worker education and retraining is a key component of economic competitiveness, requiring the collective efforts of business, government, and education to secure and use revenue creatively and efficiently. Approximately 85% of the workforce of the year 2000 is already employed today, and up to 75% of those workers will need significant job…
An analysis framework to link ecological change to economic benefits for multiple stakeholders requires several key components. First, since we aim to support policy decisions, the framework should link a factor that can be controlled or influenced by policy (discharge limit, ca...
EVALUATION OF THE IMPLEMENTATION OF OPERATIONS AND MAINTENANCE PROGRAMS IN NEW JERSEY SCHOOLS
The Asbestos Hazard Emergency Response Act (AHERA) required all schools to develop and implement an asbestos management plan (AMP). The key component of the AMP is the operations and maintenance (O&M) program. A study was conducted to evaluate the implementation of O&M programs a...
Assessing the Financial Viability of Academic Programmes
ERIC Educational Resources Information Center
Swift, Lynette
2012-01-01
This paper reviews and examines approaches to determining the financial viability of academic programmes as a critical component of assessing a programme's overall sustainability. Key to assessing the financial viability of a programme is understanding the teaching activities required to deliver the programme and the cost of those activities. A…
Blencowe, Natalie S; Blazeby, Jane M; Donovan, Jenny L; Mills, Nicola
2015-12-28
Multi-centre randomised controlled trials (RCTs) in surgery are challenging. It is particularly difficult to establish standards of surgery and ensure that interventions are delivered as intended. This study developed and tested methods for identifying the key components of surgical interventions and standardising interventions within RCTs. Qualitative case studies of surgical interventions were undertaken within the internal pilot phase of a surgical RCT for obesity (the By-Band study). Each case study involved video data capture and non-participant observation of gastric bypass surgery in the operating theatre and interviews with surgeons. Methods were developed to transcribe and synchronise data from video recordings with observational data to identify key intervention components, which were then explored in the interviews with surgeons. Eight qualitative case studies were undertaken. A novel combination of video data capture, observation and interview data identified variations in intervention delivery between surgeons and centres. Although surgeons agreed that the most critical intervention component was the size and shape of the gastric pouch, there was no consensus regarding other aspects of the procedure. They conceded that evidence about the 'best way' to perform bypass was lacking and, combined with the pragmatic nature of the By-Band study, agreed that strict standardisation of bypass might not be required. This study has developed and tested methods for understanding how surgical interventions are designed and delivered delivered in RCTs. Applying these methods more widely may help identify key components of interventions to be delivered by surgeons in trials, enabling monitoring of key components and adherence to the protocol. These methods are now being tested in the context of other surgical RCTs. Current Controlled Trials ISRCTN00786323 , 05/09/2011.
Biomarkers for diet and cancer prevention research: potentials and challenges.
Davis, Cindy D; Milner, John A
2007-09-01
As cancer incidence is projected to increase for decades there is a need for effective preventive strategies. Fortunately, evidence continues to mount that altering dietary habits is an effective and cost-efficient approach for reducing cancer risk and for modifying the biological behavior of tumors. Predictive, validated and sensitive biomarkers, including those that reliably evaluate "intake" or exposure to a specific food or bioactive component, that assess one or more specific biological "effects" that are linked to cancer, and that effectively predict individual "susceptibility" as a function of nutrient-nutrient interactions and genetics, are fundamental to evaluating who will benefit most from dietary interventions. These biomarkers must be readily accessible, easily and reliably assayed, and predictive of a key process(es) involved in cancer. The response to a food is determined not only by the effective concentration of the bioactive food component(s) reaching the target tissue, but also by the amount of the target requiring modification. Thus, this threshold response to foods and their components will vary from individual to individual. The key to understanding a personalized response is a greater knowledge of nutrigenomics, proteomics and metabolomics.
Fast image interpolation for motion estimation using graphics hardware
NASA Astrophysics Data System (ADS)
Kelly, Francis; Kokaram, Anil
2004-05-01
Motion estimation and compensation is the key to high quality video coding. Block matching motion estimation is used in most video codecs, including MPEG-2, MPEG-4, H.263 and H.26L. Motion estimation is also a key component in the digital restoration of archived video and for post-production and special effects in the movie industry. Sub-pixel accurate motion vectors can improve the quality of the vector field and lead to more efficient video coding. However sub-pixel accuracy requires interpolation of the image data. Image interpolation is a key requirement of many image processing algorithms. Often interpolation can be a bottleneck in these applications, especially in motion estimation due to the large number pixels involved. In this paper we propose using commodity computer graphics hardware for fast image interpolation. We use the full search block matching algorithm to illustrate the problems and limitations of using graphics hardware in this way.
Preliminary design for a reverse Brayton cycle cryogenic cooler
NASA Technical Reports Server (NTRS)
Swift, Walter L.
1993-01-01
A long life, single stage, reverse Brayton cycle cryogenic cooler is being developed for applications in space. The system is designed to provide 5 W of cooling at a temperature of 65 Kelvin with a total cycle input power of less than 200 watts. Key features of the approach include high speed, miniature turbomachines; an all metal, high performance, compact heat exchanger; and a simple, high frequency, three phase motor drive. In Phase 1, a preliminary design of the system was performed. Analyses and trade studies were used to establish the thermodynamic performance of the system and the performance specifications for individual components. Key mechanical features for components were defined and assembly layouts for the components and the system were prepared. Critical materials and processes were identified. Component and brassboard system level tests were conducted at cryogenic temperatures. The system met the cooling requirement of 5 W at 65 K. The system was also operated over a range of cooling loads from 0.5 W at 37 K to 10 W at 65 K. Input power to the system was higher than target values. The heat exchanger and inverter met or exceeded their respective performance targets. The compresssor/motor assembly was marginally below its performance target. The turboexpander met its aerodynamic efficiency target, but overall performance was below target because of excessive heat leak. The heat leak will be reduced to an acceptable value in the engineering model. The results of Phase 1 indicate that the 200 watt input power requirement can be met with state-of-the-art technology in a system which has very flexible integration requirements and negligible vibration levels.
Preliminary design for a reverse Brayton cycle cryogenic cooler
NASA Astrophysics Data System (ADS)
Swift, Walter L.
1993-12-01
A long life, single stage, reverse Brayton cycle cryogenic cooler is being developed for applications in space. The system is designed to provide 5 W of cooling at a temperature of 65 Kelvin with a total cycle input power of less than 200 watts. Key features of the approach include high speed, miniature turbomachines; an all metal, high performance, compact heat exchanger; and a simple, high frequency, three phase motor drive. In Phase 1, a preliminary design of the system was performed. Analyses and trade studies were used to establish the thermodynamic performance of the system and the performance specifications for individual components. Key mechanical features for components were defined and assembly layouts for the components and the system were prepared. Critical materials and processes were identified. Component and brassboard system level tests were conducted at cryogenic temperatures. The system met the cooling requirement of 5 W at 65 K. The system was also operated over a range of cooling loads from 0.5 W at 37 K to 10 W at 65 K. Input power to the system was higher than target values. The heat exchanger and inverter met or exceeded their respective performance targets. The compresssor/motor assembly was marginally below its performance target. The turboexpander met its aerodynamic efficiency target, but overall performance was below target because of excessive heat leak. The heat leak will be reduced to an acceptable value in the engineering model. The results of Phase 1 indicate that the 200 watt input power requirement can be met with state-of-the-art technology in a system which has very flexible integration requirements and negligible vibration levels.
Public key infrastructure for DOE security research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aiken, R.; Foster, I.; Johnston, W.E.
This document summarizes the Department of Energy`s Second Joint Energy Research/Defence Programs Security Research Workshop. The workshop, built on the results of the first Joint Workshop which reviewed security requirements represented in a range of mission-critical ER and DP applications, discussed commonalties and differences in ER/DP requirements and approaches, and identified an integrated common set of security research priorities. One significant conclusion of the first workshop was that progress in a broad spectrum of DOE-relevant security problems and applications could best be addressed through public-key cryptography based systems, and therefore depended upon the existence of a robust, broadly deployed public-keymore » infrastructure. Hence, public-key infrastructure ({open_quotes}PKI{close_quotes}) was adopted as a primary focus for the second workshop. The Second Joint Workshop covered a range of DOE security research and deployment efforts, as well as summaries of the state of the art in various areas relating to public-key technologies. Key findings were that a broad range of DOE applications can benefit from security architectures and technologies built on a robust, flexible, widely deployed public-key infrastructure; that there exists a collection of specific requirements for missing or undeveloped PKI functionality, together with a preliminary assessment of how these requirements can be met; that, while commercial developments can be expected to provide many relevant security technologies, there are important capabilities that commercial developments will not address, due to the unique scale, performance, diversity, distributed nature, and sensitivity of DOE applications; that DOE should encourage and support research activities intended to increase understanding of security technology requirements, and to develop critical components not forthcoming from other sources in a timely manner.« less
High-precision relative position and attitude measurement for on-orbit maintenance of spacecraft
NASA Astrophysics Data System (ADS)
Zhu, Bing; Chen, Feng; Li, Dongdong; Wang, Ying
2018-02-01
In order to realize long-term on-orbit running of satellites, space stations, etc spacecrafts, in addition to the long life design of devices, The life of the spacecraft can also be extended by the on-orbit servicing and maintenance. Therefore, it is necessary to keep precise and detailed maintenance of key components. In this paper, a high-precision relative position and attitude measurement method used in the maintenance of key components is given. This method mainly considers the design of the passive cooperative marker, light-emitting device and high resolution camera in the presence of spatial stray light and noise. By using a series of algorithms, such as background elimination, feature extraction, position and attitude calculation, and so on, the high precision relative pose parameters as the input to the control system between key operation parts and maintenance equipment are obtained. The simulation results show that the algorithm is accurate and effective, satisfying the requirements of the precision operation technique.
Material selection and assembly method of battery pack for compact electric vehicle
NASA Astrophysics Data System (ADS)
Lewchalermwong, N.; Masomtob, M.; Lailuck, V.; Charoenphonphanich, C.
2018-01-01
Battery packs become the key component in electric vehicles (EVs). The main costs of which are battery cells and assembling processes. The battery cell is indeed priced from battery manufacturers while the assembling cost is dependent on battery pack designs. Battery pack designers need overall cost as cheap as possible, but it still requires high performance and more safety. Material selection and assembly method as well as component design are very important to determine the cost-effectiveness of battery modules and battery packs. Therefore, this work presents Decision Matrix, which can aid in the decision-making process of component materials and assembly methods for a battery module design and a battery pack design. The aim of this study is to take the advantage of incorporating Architecture Analysis method into decision matrix methods by capturing best practices for conducting design architecture analysis in full account of key design components critical to ensure efficient and effective development of the designs. The methodology also considers the impacts of choice-alternatives along multiple dimensions. Various alternatives for materials and assembly techniques of battery pack are evaluated, and some sample costs are presented. Due to many components in the battery pack, only seven components which are positive busbar and Z busbar are represented in this paper for using decision matrix methods.
A feasibility work on the applications of MRE to automotive components
NASA Astrophysics Data System (ADS)
Kim, S. H.; Park, Y. J.; Cha, A. R.; Kim, G. W.; Bang, J. H.; Lim, C. S.; Choi, S. B.
2018-03-01
A feasibility work on the application of magneto-rheological elastomers (MREs) to automotive components, such as engine mounts is presented. While vehicle components require the high resonance frequency in terms of ride quality and handling, it is required to have the low resonance frequency to isolate the incoming vibration. With the conventional automotive technologies, it is challenging to combine these two conflicting performance trade-offs, ride quality including handling, and NVH (noise, vibration and harshness). Over the last decades, MREs, one of the new emerging smart materials, have been widely used to resolve this technical limitation. For example, an advanced engine mount was developed by using MRE to isolate the vibration transmitting from engines. In this paper, we will focus on rear cross member bushes, which is a key component for isolating the vibration from the road, and demonstrate their improved performance by utilizing MRE. The resonance frequency shift induced by the stiffness change of MRE will be presented through the frequency response functions estimated by simulation result.
System design of a 1 MW north-facing, solid particle receiver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christian, J.; Ho, C.
Falling solid particle receivers (SPR) utilize small particles as a heat collecting medium within a cavity receiver structure. The components required to operate an SPR include the receiver (to heat the particles), bottom hopper (to catch the falling particles), particle lift elevator (to lift particles back to the top of the receiver), top hopper (to store particles before being dropped through the receiver), and ducting. In addition to the required components, there are additional features needed for an experimental system. These features include: a support structure to house all components, calibration panel to measure incident radiation, cooling loops, and sensorsmore » (flux gages, thermocouples, pressure gages). Each of these components had to be designed to withstand temperatures ranging from ambient to 700 °C. Thermal stresses from thermal expansion become a key factor in these types of high temperature systems. The SPR will be housing ~3000 kg of solid particles. The final system will be tested at the National Solar Thermal Test Facility in Albuquerque, NM.« less
System design of a 1 MW north-facing, solid particle receiver
Christian, J.; Ho, C.
2015-05-01
Falling solid particle receivers (SPR) utilize small particles as a heat collecting medium within a cavity receiver structure. The components required to operate an SPR include the receiver (to heat the particles), bottom hopper (to catch the falling particles), particle lift elevator (to lift particles back to the top of the receiver), top hopper (to store particles before being dropped through the receiver), and ducting. In addition to the required components, there are additional features needed for an experimental system. These features include: a support structure to house all components, calibration panel to measure incident radiation, cooling loops, and sensorsmore » (flux gages, thermocouples, pressure gages). Each of these components had to be designed to withstand temperatures ranging from ambient to 700 °C. Thermal stresses from thermal expansion become a key factor in these types of high temperature systems. The SPR will be housing ~3000 kg of solid particles. The final system will be tested at the National Solar Thermal Test Facility in Albuquerque, NM.« less
ERIC Educational Resources Information Center
Stainsby, Kate; Bannigan, Katrina
2012-01-01
Physiotherapy became a graduate profession in the 1990s marking a shift from "training" to "education". This means students are required to develop as reflective, innovative and autonomous practitioners. Traditional work-based learning has remained a key component in the curricula of physiotherapy programmes in higher…
Code of Federal Regulations, 2013 CFR
2013-07-01
... the towing vessel crew and facility or fleeting area personnel, if any, to initiate a response and... functional areas and must further include information for key components within each functional area: (i...) Spill response operations; (vi) Planning; (vii) Logistics support; and (viii) Finance. (5) The...
Code of Federal Regulations, 2011 CFR
2011-07-01
... the towing vessel crew and facility or fleeting area personnel, if any, to initiate a response and... functional areas and must further include information for key components within each functional area: (i...) Spill response operations; (vi) Planning; (vii) Logistics support; and (viii) Finance. (5) The...
33 CFR 155.1035 - Response plan requirements for manned vessels carrying oil as a primary cargo.
Code of Federal Regulations, 2014 CFR
2014-07-01
... be used to manage the response actions. This structure must include the following functional areas and must further include information for key components within each functional area: (i) Command and... operations; (vi) Planning; (vii) Logistics support; and (viii) Finance. (5) The responsibilities of, duties...
Code of Federal Regulations, 2012 CFR
2012-07-01
... the towing vessel crew and facility or fleeting area personnel, if any, to initiate a response and... functional areas and must further include information for key components within each functional area: (i...) Spill response operations; (vi) Planning; (vii) Logistics support; and (viii) Finance. (5) The...
33 CFR 155.1035 - Response plan requirements for manned vessels carrying oil as a primary cargo.
Code of Federal Regulations, 2013 CFR
2013-07-01
... be used to manage the response actions. This structure must include the following functional areas and must further include information for key components within each functional area: (i) Command and... operations; (vi) Planning; (vii) Logistics support; and (viii) Finance. (5) The responsibilities of, duties...
Code of Federal Regulations, 2014 CFR
2014-07-01
... the towing vessel crew and facility or fleeting area personnel, if any, to initiate a response and... functional areas and must further include information for key components within each functional area: (i...) Spill response operations; (vi) Planning; (vii) Logistics support; and (viii) Finance. (5) The...
33 CFR 155.1035 - Response plan requirements for manned vessels carrying oil as a primary cargo.
Code of Federal Regulations, 2011 CFR
2011-07-01
... be used to manage the response actions. This structure must include the following functional areas and must further include information for key components within each functional area: (i) Command and... operations; (vi) Planning; (vii) Logistics support; and (viii) Finance. (5) The responsibilities of, duties...
33 CFR 155.5035 - Nontank vessel response plan requirements: Specific content.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-hour basis; (3) A list of the Captain of the Port (COTP) zones, ports, and offshore transit areas in... areas and information for key components within each functional area— (i) Command and control; (ii...; (vi) Planning; (vii) Logistics support; and (viii) Finance; and (5) The responsibilities and duties of...
33 CFR 155.1035 - Response plan requirements for manned vessels carrying oil as a primary cargo.
Code of Federal Regulations, 2012 CFR
2012-07-01
... be used to manage the response actions. This structure must include the following functional areas and must further include information for key components within each functional area: (i) Command and... operations; (vi) Planning; (vii) Logistics support; and (viii) Finance. (5) The responsibilities of, duties...
USDA-ARS?s Scientific Manuscript database
Proteins that mediate cellular and subcellular membrane fusion are key factors in vesicular trafficking in all eukaryotic cells, including the secretion and transport of plant pathogen virulence factors. In this study, we identified vesicle fusion components that included 22 soluble N-ethylmaleimide...
Single Event Effects (SEE) for Power Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs)
NASA Technical Reports Server (NTRS)
Lauenstein, Jean-Marie
2011-01-01
Single-event gate rupture (SEGR) continues to be a key failure mode in power MOSFETs. (1) SEGR is complex, making rate prediction difficult SEGR mechanism has two main components: (1) Oxide damage-- Reduces field required for rupture (2) Epilayer response -- Creates transient high field across the oxide.
Failure Impact Analysis of Key Management in AMI Using Cybernomic Situational Assessment (CSA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abercrombie, Robert K; Sheldon, Frederick T; Hauser, Katie R
2013-01-01
In earlier work, we presented a computational framework for quantifying the security of a system in terms of the average loss a stakeholder stands to sustain as a result of threats to the system. We named this system, the Cyberspace Security Econometrics System (CSES). In this paper, we refine the framework and apply it to cryptographic key management within the Advanced Metering Infrastructure (AMI) as an example. The stakeholders, requirements, components, and threats are determined. We then populate the matrices with justified values by addressing the AMI at a higher level, rather than trying to consider every piece of hardwaremore » and software involved. We accomplish this task by leveraging the recently established NISTR 7628 guideline for smart grid security. This allowed us to choose the stakeholders, requirements, components, and threats realistically. We reviewed the literature and selected an industry technical working group to select three representative threats from a collection of 29 threats. From this subset, we populate the stakes, dependency, and impact matrices, and the threat vector with realistic numbers. Each Stakeholder s Mean Failure Cost is then computed.« less
Yuan, Meng; Ke, Yinggen; Huang, Renyan; Ma, Ling; Yang, Zeyu; Chu, Zhaohui; Xiao, Jinghua; Li, Xianghua; Wang, Shiping
2016-07-29
Transcription activator-like effectors (TALEs) are sequence-specific DNA binding proteins found in a range of plant pathogenic bacteria, where they play important roles in host-pathogen interactions. However, it has been unclear how TALEs, after they have been injected into the host cells, activate transcription of host genes required for infection success. Here, we show that the basal transcription factor IIA gamma subunit TFIIAγ5 from rice is a key component for infection by the TALE-carrying bacterium Xanthomonas oryzae pv. oryzae, the causal agent for bacterial blight. Direct interaction of several TALEs with TFIIAγ5 is required for activation of disease susceptibility genes. Conversely, reduced expression of the TFIIAγ5 host gene limits the induction of susceptibility genes and thus decreases bacterial blight symptoms. Suppression or mutation of TFIIAγ5 can also reduce bacterial streak, another devastating disease of rice caused by TALE-carrying X. oryzae pv. oryzicola. These results have important implications for formulating a widely applicable strategy with which to improve resistance of plants to TALE-carrying pathogens.
Laser diodes for sensing applications: adaptive cruise control and more
NASA Astrophysics Data System (ADS)
Heerlein, Joerg; Morgott, Stefan; Ferstl, Christian
2005-02-01
Adaptive Cruise Controls (ACC) and pre-crash sensors require an intelligent eye which can recognize traffic situations and deliver a 3-dimensional view. Both microwave RADAR and "Light RADAR" (LIDAR) systems are well suited as sensors. In order to utilize the advantages of LIDARs -- such as lower cost, simpler assembly and high reliability -- the key component, the laser diode, is of primary importance. Here, we present laser diodes which meet the requirements of the automotive industry.
2013-03-01
The Baseline Capabilities for State and Major Urban Area Fusion Centers required fusion centers to establish programs to interact with the private...sector. These programs took the form of Public and Private Sector outreach programs. This requirement had a profound budgetary and operational impact on...fusion centers, but agencies received very little guidance about how to plan, organize, and sustain these programs. The goal of this thesis was to
NASA Technical Reports Server (NTRS)
Baumann, E. D.
1989-01-01
The technological developments required to reduce the electrical power system component weights from the state-of-the-art 2.0 kg/kW to the range of 0.1 to 0.2 kg/kW are discussed. Power level requirements and their trends in aerospace applications are identified and presented. The projected weight and launch costs for a 1MW power converter built using state-of-the-art technology are established to illustrate the need for reliable, ultralightweight advanced power components. The key factors affecting converter weight are given and some of the tradeoffs between component ratings and circuit topology are identified. The weight and launch costs for a 1MW converter using 0.1 kg/kW technology are presented. Finally, the objectives and goals of the Multi-Megawatt Program at the NASA Lewis Research Center, which is funded by the SDIO through the Air Force, are given.
Electrical Components for Marine Renewable Energy Arrays: A Techno-Economic Review
Collin, Adam J.; Nambiar, Anup J.; Bould, David; ...
2017-11-27
This paper presents a review of the main electrical components that are expected to be present in marine renewable energy arrays. The review is put in context by appraising the current needs of the industry and identifying the key components required in both device and array-scale developments. For each component, electrical, mechanical and cost considerations are discussed; with quantitative data collected during the review made freely available for use by the community via an open access online repository. Here, this data collection updates previous research and addresses gaps specific to emerging offshore technologies, such as marine and floating wind, andmore » provides a comprehensive resource for the techno-economic assessment of offshore energy arrays.« less
Electrical Components for Marine Renewable Energy Arrays: A Techno-Economic Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collin, Adam J.; Nambiar, Anup J.; Bould, David
This paper presents a review of the main electrical components that are expected to be present in marine renewable energy arrays. The review is put in context by appraising the current needs of the industry and identifying the key components required in both device and array-scale developments. For each component, electrical, mechanical and cost considerations are discussed; with quantitative data collected during the review made freely available for use by the community via an open access online repository. Here, this data collection updates previous research and addresses gaps specific to emerging offshore technologies, such as marine and floating wind, andmore » provides a comprehensive resource for the techno-economic assessment of offshore energy arrays.« less
Avionics and Power Management for Low-Cost High-Altitude Balloon Science Platforms
NASA Technical Reports Server (NTRS)
Chin, Jeffrey; Roberts, Anthony; McNatt, Jeremiah
2016-01-01
High-altitude balloons (HABs) have become popular as educational and scientific platforms for planetary research. This document outlines key components for missions where low cost and rapid development are desired. As an alternative to ground-based vacuum and thermal testing, these systems can be flight tested at comparable costs. Communication, solar, space, and atmospheric sensing experiments often require environments where ground level testing can be challenging or impossible in certain cases. When performing HAB research the ability to monitor the status of the platform and gather data is key for both scientific and recoverability aspects of the mission. A few turnkey platform solutions are outlined that leverage rapidly evolving open-source engineering ecosystems. Rather than building custom components from scratch, these recommendations attempt to maximize simplicity and cost of HAB platforms to make launches more accessible to everyone.
Stiewing, Janis
2002-01-01
Revising the strategic plan was the beginning of a multiyear initiative that will determine the path of the JRCERT. The key word in the preceding statement is beginning. The strategic plan is an ever-changing document. Although some components, such as the values statements, will stand over time, other components will change as accreditation and educational arenas change. That is the paradox of strategic planning: Remaining true to the vision, values and mission statements requires knowing when to change to keep the JRCERT aligned with the responsive to its communities of interest.
Static and dynamic high power, space nuclear electric generating systems
NASA Technical Reports Server (NTRS)
Wetch, J. R.; Begg, L. L.; Koester, J. K.
1985-01-01
Space nuclear electric generating systems concepts have been assessed for their potential in satisfying future spacecraft high power (several megawatt) requirements. Conceptual designs have been prepared for reactor power systems using the most promising static (thermionic) and the most promising dynamic conversion processes. Component and system layouts, along with system mass and envelope requirements have been made. Key development problems have been identified and the impact of the conversion process selection upon thermal management and upon system and vehicle configuration is addressed.
Advanced solar dynamic space power systems perspectives, requirements and technology needs
NASA Technical Reports Server (NTRS)
Dustin, M. O.; Savino, J. M.; Lacy, D. E.; Migra, R. P.; Juhasz, A. J.; Coles, C. E.
1986-01-01
Projected NASA, Civil, Commercial, and Military missions will require space power systems of increased versatility and power levels. The Advanced Solar Dynamic (ASD) Power systems offer the potential for efficient, lightweight, survivable, relatively compact, long-lived space power systems applicable to a wide range of power levels (3 to 300 kWe), and a wide variety of orbits. The successful development of these systems could satisfy the power needs for a wide variety of these projected missions. Thus, the NASA Lewis Research Center has embarked upon an aggressive ASD reserach project under the direction of NASA's Office of Aeronautics and Space Technology (DAST). The project is being implemented through a combination of in-house and contracted efforts. Key elements of this project are missions analysis to determine the power systems requirements, systems analysis to identify the most attractive ASD power systems to meet these requirements, and to guide the technology development efforts, and technology development of key components.
Standard plane localization in ultrasound by radial component model and selective search.
Ni, Dong; Yang, Xin; Chen, Xin; Chin, Chien-Ting; Chen, Siping; Heng, Pheng Ann; Li, Shengli; Qin, Jing; Wang, Tianfu
2014-11-01
Acquisition of the standard plane is crucial for medical ultrasound diagnosis. However, this process requires substantial experience and a thorough knowledge of human anatomy. Therefore it is very challenging for novices and even time consuming for experienced examiners. We proposed a hierarchical, supervised learning framework for automatically detecting the standard plane from consecutive 2-D ultrasound images. We tested this technique by developing a system that localizes the fetal abdominal standard plane from ultrasound video by detecting three key anatomical structures: the stomach bubble, umbilical vein and spine. We first proposed a novel radial component-based model to describe the geometric constraints of these key anatomical structures. We then introduced a novel selective search method which exploits the vessel probability algorithm to produce probable locations for the spine and umbilical vein. Next, using component classifiers trained by random forests, we detected the key anatomical structures at their probable locations within the regions constrained by the radial component-based model. Finally, a second-level classifier combined the results from the component detection to identify an ultrasound image as either a "fetal abdominal standard plane" or a "non- fetal abdominal standard plane." Experimental results on 223 fetal abdomen videos showed that the detection accuracy of our method was as high as 85.6% and significantly outperformed both the full abdomen and the separate anatomy detection methods without geometric constraints. The experimental results demonstrated that our system shows great promise for application to clinical practice. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Yeung, Marine; Li, Tilo
2018-01-01
As one of the essential skills for success in work and studies, English communication is often made a key component in the GE curriculum of tertiary study programmes. In addition to the provision of required English proficiency courses, many tertiary institutions have established English centres of some description to promote English learning on…
Evaluation of the Implementation of Operations and Maintenance Programs in New Jersey Schools.
ERIC Educational Resources Information Center
Kominsky, John R.; Freyberg, Ronald W.; Gerber, Donald R.; Centifonti, Gary J.
All schools are required to develop and implement an asbestos management plan (AMP). The key component of this plan is each school's operations and maintenance (O&M) program. This report outlines the importance of such programs. It describes an O&M program as an administrative framework that prescribes specific activities and work…
Click, Swipe, and Read: Sharing e-Books with Toddlers and Preschoolers
ERIC Educational Resources Information Center
Hoffman, Jessica L.; Paciga, Kathleen A.
2014-01-01
e-Books share some key features with traditional printed picture books, but also include distinct features such as live animation, interactive components, and the operation of the technology that require new approaches to shared reading with young children. The purpose of this paper is to better inform adults working with young children (teachers,…
ERIC Educational Resources Information Center
Finesilver, Carla
2017-01-01
The move from additive to multiplicative thinking requires significant change in children's comprehension and manipulation of numerical relationships, involves various conceptual components, and can be a slow, multistage process for some. Unit arrays are a key visuospatial representation for supporting learning, but most research focuses on 2D…
ERIC Educational Resources Information Center
Nurhayati, Sri
2015-01-01
Currently, professionals and academics of non-formal education in Indonesia have began to question the competences of the non-formal education instructors. Non-formal education is a profession that requires knowledge (subject-content area), skill (ability to deliver content in regard to the needs of society) and programme content (the content…
The Every Student Succeeds Act: A Summary of Federal Policy and Implications for Maine
ERIC Educational Resources Information Center
Fairman, Janet; Johnson, Amy; Eberle, Francis
2017-01-01
Part I summarizes key topics of federal education policy articulating accountability requirements for state education agencies (SEAs) and local education agencies (LEAs, or school districts). In that section we describe major goals of the legislation and which components are the same or changed in the federal law. The findings are grouped into…
ERIC Educational Resources Information Center
Gouveia, Cindy
2014-01-01
This paper discusses the idea that for Ontario's colleges to meet the intentions and legal requirements of their original mandates, they will need to consider extending the scope of their advancement departments to implement key components of both the Total Resource Development Model (Worth, 2002, ascited by Barrette, 2013) and the Strategic…
California’s Hardwood Resource: Seeds, Seedlings, and Sprouts of Three Important Forest-Zone Species
Philip M. McDonald; John C. Tappeiner
2002-01-01
Although California black oak, tanoak, and Pacific madrone are the principal hardwood species in the forest zone of California and Oregon and are key components of many plant communities, their seed production, regeneration, and early growth requirements have received little study. Information is presented on seed production, storage, and germination, and on the...
Integrated Teaching of Structure-Based Drug Design and Biopharmaceutics: A Computer-Based Approach
ERIC Educational Resources Information Center
Sutch, Brian T.; Romero, Rebecca M.; Neamati, Nouri; Haworth, Ian S.
2012-01-01
Rational drug design requires expertise in structural biology, medicinal chemistry, physiology, and related fields. In teaching structure-based drug design, it is important to develop an understanding of the need for early recognition of molecules with "drug-like" properties as a key component. That is, it is not merely sufficient to teach…
The development of neural stimulators: a review of preclinical safety and efficacy studies.
Shepherd, Robert K; Villalobos, Joel; Burns, Owen; Nayagam, David
2018-05-14
Given the rapid expansion of the field of neural stimulation and the rigorous regulatory approval requirements required before these devices can be applied clinically, it is important that there is clarity around conducting preclinical safety and efficacy studies required for the development of this technology. The present review examines basic design principles associated with the development of a safe neural stimulator and describes the suite of preclinical safety studies that need to be considered when taking a device to clinical trial. Neural stimulators are active implantable devices that provide therapeutic intervention, sensory feedback or improved motor control via electrical stimulation of neural or neuro-muscular tissue in response to trauma or disease. Because of their complexity, regulatory bodies classify these devices in the highest risk category (Class III), and they are therefore required to go through a rigorous regulatory approval process before progressing to market. The successful development of these devices is achieved through close collaboration across disciplines including engineers, scientists and a surgical/clinical team, and the adherence to clear design principles. Preclinical studies form one of several key components in the development pathway from concept to product release of neural stimulators. Importantly, these studies provide iterative feedback in order to optimise the final design of the device. Key components of any preclinical evaluation include: in vitro studies that are focussed on device reliability and include accelerated testing under highly controlled environments; in vivo studies using animal models of the disease or injury in order to assess safety and, given an appropriate animal model, the efficacy of the technology under both passive and electrically active conditions; and human cadaver and ex vivo studies designed to ensure the device's form factor conforms to human anatomy, to optimise the surgical approach and to develop any specialist surgical tooling required. The pipeline from concept to commercialisation of these devices is long and expensive; careful attention to both device design and its preclinical evaluation will have significant impact on the duration and cost associated with taking a device through to commercialisation. Carefully controlled in vitro and in vivo studies together with ex vivo and human cadaver trials are key components of a thorough preclinical evaluation of any new neural stimulator. © 2018 IOP Publishing Ltd.
The success of the X-33 depends on its technology—an overview
NASA Astrophysics Data System (ADS)
Bunting, Jackie O.; Sasso, Steven E.
1996-03-01
The success of the X-33, and therefore the Reusable Launch Vehicle (RLV) program, is highly dependent on the maturity of the components and subsystems selected and the ability to verify their performance, cost, and operability goals. The success of the technology that will be developed to support these components and subsystems will be critical to developing an operationally efficient X-33 that is traceable to a full-scale RLV system. This paper will delineate the key objectives of each technology demonstration area and provide an assessment of its ability to meet the X-33/RLV requirements. It is our intent to focus on these key technology areas to achieve the ambitious but achievable goals of the RLV and X-33 programs. Based on our assessment of the X-33 and RLV systems, we have focused on the performance verification and validation of the linear aerospike engine. This engine, first developed in the mid-1960s, shows promise in achieving the RLV objectives. Equally critical to the engine selection is the development of cryogenic composite tanks and the associated health management system required to meet the operability goals. We are also developing a highly reusable form of thermal protection system based on years of hypersonic research and Space Shuttle experience. To meet the mass fraction goals, reduction in engine component weights will also be developed. Due to the high degree of operability required, we will investigate the use of real-time integrated system health management and propulsion systems diagnostics, and mature the use of electromechanical actuators for highly reusable systems. The rapid turn-around requirements will require an adaptive guidance, navigation, and control algorithm toolset, which is well underway. We envision our X-33 and RLV to use mature, low-risk technologies that will allow truly low-cost access to space (Lockheed Martin Internal Document, 1995).
NASA Astrophysics Data System (ADS)
Veenendaal, Ian T.; Naylor, David A.; Gom, Brad G.
2014-08-01
The Japanese SPace Infrared telescope for Cosmology and Astrophysics (SPICA), a 3 m class telescope cooled to ~ 6 K, will provide extremely low thermal background far-infrared observations. An imaging Fourier transform spectrometer (SAFARI) is being developed to exploit the low background provided by SPICA. Evaluating the performance of the interferometer translation stage and key optical components requires a cryogenic test facility. In this paper we discuss the design challenges of a pulse tube cooled cryogenic test facility that is under development for this purpose. We present the design of the cryostat and preliminary results from component characterization and external optical metrology.
NASA Astrophysics Data System (ADS)
Miret, Josep M.; Sebé, Francesc
Low-cost devices are the key component of several applications: RFID tags permit an automated supply chain management while smart cards are a secure means of storing cryptographic keys required for remote and secure authentication in e-commerce and e-government applications. These devices must be cheap in order to permit their cost-effective massive manufacturing and deployment. Unfortunately, their low cost limits their computational power. Other devices such as nodes of sensor networks suffer from an additional constraint, namely, their limited battery life. Secure applications designed for these devices cannot make use of classical cryptographic primitives designed for full-fledged computers.
Ferroelectric Based High Power Components for L-Band Accelerator Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanareykin, Alex; Jing, Chunguang; Kostin, Roman
2018-01-16
We are developing a new electronic device to control the power in particle accelerators. The key technology is a new nanostructured material developed by Euclid that changes its properties with an applied electric field. Both superconducting and conventional accelerating structures require fast electronic control of the input rf power. A fast controllable phase shifter would allow for example the control of the rf power delivered to multiple accelerating cavities from a single power amplifier. Nonlinear ferroelectric microwave components can control the tuning or the input power coupling for rf cavities. Applying a bias voltage across a nonlinear ferroelectric changes itsmore » permittivity. This effect can be used to cause a phase change of a propagating rf signal or change the resonant frequency of a cavity. The key is the development of a low loss highly tunable ferroelectric material.« less
Premetazoan origin of the Hippo signaling pathway
Sebé-Pedrós, Arnau; Zheng, Yonggang; Ruiz-Trillo, Iñaki; Pan, Duojia
2012-01-01
Summary Non-aggregative multicellularity requires strict control of cell number. The Hippo signaling pathway coordinates cell proliferation and apoptosis and is a central regulator of organ size in animals. Recent studies have shown the presence of key members of the Hippo pathway in non-bilaterian animals, but failed to identify this pathway outside Metazoa. Through comparative analyses of recently sequenced holozoan genomes, we show that Hippo pathway components, such as the kinases Hippo and Warts, the co-activator Yorkie and the transcription factor Scalloped, were already present in the unicellular ancestors of animals. Remarkably, functional analysis of Hippo components of the amoeboid holozoan Capsaspora owczarzaki, performed in Drosophila, demonstrate that the growth-regulatory activity of the Hippo pathway is conserved in this unicellular lineage. Our findings show that the Hippo pathway evolved well before the origin of Metazoa and highlight the importance of Hippo signaling as a key developmental mechanism pre-dating the origin of Metazoa. PMID:22832104
MODIS information, data and control system (MIDACS) level 2 functional requirements
NASA Technical Reports Server (NTRS)
Han, D.; Salomonson, V.; Ormsby, J.; Sharts, B.; Folta, D.; Ardanuy, P.; Mckay, A.; Hoyt, D.; Jaffin, S.; Vallette, B.
1988-01-01
The MODIS Information, Data and Control System (MIDACS) Level 2 Functional Requirements Document establishes the functional requirements for MIDACS and provides a basis for the mutual understanding between the users and the designers of the EosDIS, including the requirements, operating environment, external interfaces, and development plan. In defining the requirements and scope of the system, this document describes how MIDACS will operate as an element of the EOS within the EosDIS environment. This version of the Level 2 Requirements Document follows an earlier release of a preliminary draft version. The sections on functional and performance requirements do not yet fully represent the requirements of the data system needed to achieve the scientific objectives of the MODIS instruments and science teams. Indeed, the team members have not yet been selected and the team has not yet been formed; however, it has been possible to identify many relevant requirements based on the present concept of EosDIS and through interviews and meetings with key members of the scientific community. These requirements have been grouped by functional component of the data system, and by function within each component. These requirements have been merged with the complete set of Level 1 and Level 2 context diagrams, data flow diagrams, and data dictionary.
When oak ordinances fail: unaddressed issues of oak conservation
Rudolph H. Light; Linda E. Pedroni
2002-01-01
The mandate by the California Board of Forestry in 1993 required each of the 41 counties which have significant oak woodlands to develop programs for the ultimate protection of this resource. As of 2001, a few counties have planned for the sustainability of their oak woodlands, but some counties may not be addressing the key components that will determine the overall...
Morphine Tolerance as a Function of Ratio Schedule: Response Requirement or Unit Price?
ERIC Educational Resources Information Center
Hughes, Christine; Sigmon, Stacey C.; Pitts, Raymond C.; Dykstra, Linda A.
2005-01-01
Key pecking by 3 pigeons was maintained by a multiple fixed-ratio 10, fixed-ratio 30, fixed-ratio 90 schedule of food presentation. Components differed with respect to amount of reinforcement, such that the unit price was 10 responses per 1-s access to food. Acute administration of morphine, "l"-methadone, and cocaine dose-dependently decreased…
Joint Live Virtual and Constructive (JLVC) Federation Integration Guide. Version 3.1
2010-01-13
Coordinate Systems ........................................................................................ 5-22 5.1.3.1 Geocentric Coordinate System...matures. • Data ownership and accessibility. A key component of JWFC’s approach to exercise support is the training audience’s responsibility to...flexibility underscored the necessity of a web-based approach and imposed performance requirements toward which the development team is still working
ERIC Educational Resources Information Center
Pietz, Victoria Lynn
2014-01-01
Continuous Quality Improvement (CQI) programs are growing in popularity in higher education settings and a key component is the use of work groups, which require active employee involvement. The problem addressed in this research was the lack of employee engagement in the Quality Review Process (QRP), which is a statewide CQI model developed by…
Multipass reconfiguration of the HELEN Nd:glass laser at the Atomic Weapons Establishment.
Norman, Michael J; Andrew, James E; Bett, Thomas H; Clifford, Roger K; England, John E; Hopps, Nicholas W; Parker, Kenneth W; Porter, Kenneth; Stevenson, Mark
2002-06-20
The HELEN high-power Nd:glass laser has been rebuilt in a new multipass configuration that requires fewer components to maintain existing performance. This is expected to lead to greater system availability and reduced running costs. We describe the new design, discuss some of the key issues that had to be addressed, and present operational results.
49 CFR Appendix A to Part 355 - Guidelines for the Regulatory Review
Code of Federal Regulations, 2010 CFR
2010-10-01
... working at the required performance level, and other key components included in 49 CFR part 393. Hours of... hours following 8 consecutive hours off duty; after being on duty 15 hours, after being on duty more than 60 hours in any 7 consecutive days; or after being on duty more than 70 hours in any 8 consecutive...
A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria
Yuan, Meng; Ke, Yinggen; Huang, Renyan; Ma, Ling; Yang, Zeyu; Chu, Zhaohui; Xiao, Jinghua; Li, Xianghua; Wang, Shiping
2016-01-01
Transcription activator-like effectors (TALEs) are sequence-specific DNA binding proteins found in a range of plant pathogenic bacteria, where they play important roles in host-pathogen interactions. However, it has been unclear how TALEs, after they have been injected into the host cells, activate transcription of host genes required for infection success. Here, we show that the basal transcription factor IIA gamma subunit TFIIAγ5 from rice is a key component for infection by the TALE-carrying bacterium Xanthomonas oryzae pv. oryzae, the causal agent for bacterial blight. Direct interaction of several TALEs with TFIIAγ5 is required for activation of disease susceptibility genes. Conversely, reduced expression of the TFIIAγ5 host gene limits the induction of susceptibility genes and thus decreases bacterial blight symptoms. Suppression or mutation of TFIIAγ5 can also reduce bacterial streak, another devastating disease of rice caused by TALE-carrying X. oryzae pv. oryzicola. These results have important implications for formulating a widely applicable strategy with which to improve resistance of plants to TALE-carrying pathogens. DOI: http://dx.doi.org/10.7554/eLife.19605.001 PMID:27472897
NASA Astrophysics Data System (ADS)
Fu, Jinglin; Yang, Yuhe Renee; Johnson-Buck, Alexander; Liu, Minghui; Liu, Yan; Walter, Nils G.; Woodbury, Neal W.; Yan, Hao
2014-07-01
Swinging arms are a key functional component of multistep catalytic transformations in many naturally occurring multi-enzyme complexes. This arm is typically a prosthetic chemical group that is covalently attached to the enzyme complex via a flexible linker, allowing the direct transfer of substrate molecules between multiple active sites within the complex. Mimicking this method of substrate channelling outside the cellular environment requires precise control over the spatial parameters of the individual components within the assembled complex. DNA nanostructures can be used to organize functional molecules with nanoscale precision and can also provide nanomechanical control. Until now, protein-DNA assemblies have been used to organize cascades of enzymatic reactions by controlling the relative distance and orientation of enzymatic components or by facilitating the interface between enzymes/cofactors and electrode surfaces. Here, we show that a DNA nanostructure can be used to create a multi-enzyme complex in which an artificial swinging arm facilitates hydride transfer between two coupled dehydrogenases. By exploiting the programmability of DNA nanostructures, key parameters including position, stoichiometry and inter-enzyme distance can be manipulated for optimal activity.
Fu, Jinglin; Yang, Yuhe Renee; Johnson-Buck, Alexander; Liu, Minghui; Liu, Yan; Walter, Nils G; Woodbury, Neal W; Yan, Hao
2014-07-01
Swinging arms are a key functional component of multistep catalytic transformations in many naturally occurring multi-enzyme complexes. This arm is typically a prosthetic chemical group that is covalently attached to the enzyme complex via a flexible linker, allowing the direct transfer of substrate molecules between multiple active sites within the complex. Mimicking this method of substrate channelling outside the cellular environment requires precise control over the spatial parameters of the individual components within the assembled complex. DNA nanostructures can be used to organize functional molecules with nanoscale precision and can also provide nanomechanical control. Until now, protein-DNA assemblies have been used to organize cascades of enzymatic reactions by controlling the relative distance and orientation of enzymatic components or by facilitating the interface between enzymes/cofactors and electrode surfaces. Here, we show that a DNA nanostructure can be used to create a multi-enzyme complex in which an artificial swinging arm facilitates hydride transfer between two coupled dehydrogenases. By exploiting the programmability of DNA nanostructures, key parameters including position, stoichiometry and inter-enzyme distance can be manipulated for optimal activity.
Wide field-of-view dual-band multispectral muzzle flash detection
NASA Astrophysics Data System (ADS)
Montoya, J.; Melchor, J.; Spiliotis, P.; Taplin, L.
2013-06-01
Sensor technologies are undergoing revolutionary advances, as seen in the rapid growth of multispectral methodologies. Increases in spatial, spectral, and temporal resolution, and in breadth of spectral coverage, render feasible sensors that function with unprecedented performance. A system was developed that addresses many of the key hardware requirements for a practical dual-band multispectral acquisition system, including wide field of view and spectral/temporal shift between dual bands. The system was designed using a novel dichroic beam splitter and dual band-pass filter configuration that creates two side-by-side images of a scene on a single sensor. A high-speed CMOS sensor was used to simultaneously capture data from the entire scene in both spectral bands using a short focal-length lens that provided a wide field-of-view. The beam-splitter components were arranged such that the two images were maintained in optical alignment and real-time intra-band processing could be carried out using only simple arithmetic on the image halves. An experiment related to limitations of the system to address multispectral detection requirements was performed. This characterized the system's low spectral variation across its wide field of view. This paper provides lessons learned on the general limitation of key hardware components required for multispectral muzzle flash detection, using the system as a hardware example combined with simulated multispectral muzzle flash and background signatures.
Lee, Sang-Won; Jeong, Kyu-Sik; Han, Sang-Wook; Lee, Seung-Eun; Phee, Bong-Kwan; Hahn, Tae-Ryong; Ronald, Pamela
2008-01-01
The rice pathogen recognition receptor, XA21, confers resistance to Xanthomonas oryzae pv. oryzae strains producing the type one system-secreted molecule, AvrXA21. X. oryzae pv. oryzae requires a regulatory two-component system (TCS) called RaxRH to regulate expression of eight rax (required for AvrXA21 activity) genes and to sense population cell density. To identify other key components in this critical regulatory circuit, we assayed proteins expressed in a raxR gene knockout strain. This survey led to the identification of the phoP gene encoding a response regulator that is up-regulated in the raxR knockout strain. Next we generated a phoP knockout strain and found it to be impaired in X. oryzae pv. oryzae virulence and no longer able to activate the response regulator HrpG (hypersensitive reaction and pathogenicity G) in response to low levels of Ca2+. The impaired virulence of the phoP knockout strain can be partially complemented by constitutive expression of hrpG, indicating that PhoP controls a key aspect of X. oryzae pv. oryzae virulence through regulation of hrpG. A gene encoding the cognate putative histidine protein kinase, phoQ, was also isolated. Growth curve analysis revealed that AvrXA21 activity is impaired in a phoQ knockout strain as reflected by enhanced growth of this strain in rice lines carrying XA21. These results suggest that the X. oryzae pv. oryzae PhoPQ TCS functions in virulence and in the production of AvrXA21 in partnership with RaxRH. PMID:18203830
Linares-Clemente, Pedro; Rozas, José L; Mircheski, Josif; García-Junco-Clemente, Pablo; Martínez-López, José A; Nieto-González, José L; Vázquez, M Eugenio; Pintado, C Oscar; Fernández-Chacón, Rafael
2015-01-01
Key points Neurotransmitter release requires a tight coupling between synaptic vesicle exocytosis and endocytosis with dynamin being a key protein in that process. We used imaging techniques to examine the time course of endocytosis at mouse motor nerve terminals expressing synaptopHluorin, a genetically encoded reporter of the synaptic vesicle cycle. We separated two sequential phases of endocytosis taking place during the stimulation train: early and late endocytosis. Freshly released synaptic vesicle proteins are preferentially retrieved during the early phase, which is very sensitive to dynasore, an inhibitor of dynamin GTPase activity. Synaptic vesicle proteins pre-existing at the plasma membrane before the stimulation are preferentially retrieved during the late phase, which is very sensitive to myristyl trimethyl ammonium bromide (MitMAB), an inhibitor of the dynamin–phospholipid interaction. Abstract Synaptic endocytosis is essential at nerve terminals to maintain neurotransmitter release by exocytosis. Here, at the neuromuscular junction of synaptopHluorin (spH) transgenic mice, we have used imaging to study exo- and endocytosis occurring simultaneously during nerve stimulation. We observed two endocytosis components, which occur sequentially during stimulation. The early component of endocytosis apparently internalizes spH molecules freshly exocytosed. This component was sensitive to dynasore, a blocker of dynamin 1 GTPase activity. In contrast, this early component was resistant to myristyl trimethyl ammonium bromide (MiTMAB), a competitive agent that blocks dynamin binding to phospholipid membranes. The late component of endocytosis is likely to internalize spH molecules that pre-exist at the plasma membrane before stimulation starts. This component was blocked by MiTMAB, perhaps by impairing the binding of dynamin or other key endocytic proteins to phospholipid membranes. Our study suggests the co-existence of two sequential synaptic endocytosis steps taking place during stimulation that are susceptible to pharmacological dissection: an initial step, preferentially sensitive to dynasore, that internalizes vesicular components immediately after they are released, and a MiTMAB-sensitive step that internalizes vesicular components pre-existing at the plasma membrane surface. In addition, we report that post-stimulus endocytosis also has several components with different sensitivities to dynasore and MiTMAB. PMID:25981717
Adverse Outcome Pathways – Organizing Toxicological ...
The number of chemicals for which environmental regulatory decisions are required far exceeds the current capacity for toxicity testing. High throughput screening (HTS) commonly used for drug discovery has the potential to increase this capacity. The adverse outcome pathway (AOP) concept has emerged as a natural framework for connecting high throughput toxicity testing (HTT) results to potential impacts on humans and wildlife populations. An AOP consists of two main components that describe the biological mechanisms driving toxicity. Key events represent biological processes essential for causing the adverse outcome that are also measurable experimentally. Key event relationships capture the biological processes connecting the key events. Evidence documented for each KER based on measurements of the KEs can provide the confidence needed for extrapolating HTT from early key events to overt toxicity represented by later key events based on the AOP. The IPCS mode of action (MOA) framework incorporates information required for making a chemical-specific toxicity determination. Given the close relationship between the AOP and MOA frameworks, it is possible to assemble an MOA by incorporating HTT results, chemical properties including absorption, distribution, metabolism, and excretion (ADME), and an AOP describing the biological basis of toxicity thereby streamlining the process. While current applications focus on the assessment of risk for environmental chemicals,
A Noninvasive Imaging Modality for Cardiac Arrhythmias
Burnes, John E.; Taccardi, Bruno; Rudy, Yoram
2007-01-01
Background The last decade witnessed an explosion of information regarding the genetic, molecular, and mechanistic basis of heart disease. Translating this information into clinical practice requires the development of novel functional imaging modalities for diagnosis, localization, and guided intervention. A noninvasive modality for imaging cardiac arrhythmias is not yet available. Present electrocardiographic methods cannot precisely localize a ventricular tachycardia (VT) or its key reentrant circuit components. Recently, we developed a noninvasive electrocardiographic imaging modality (ECGI) that can reconstruct epicardial electrophysiological information from body surface potentials. Here, we extend its application to image reentrant arrhythmias. Methods and Results Epicardial potentials were recorded during VT with a 490 electrode sock during an open chest procedure in 2 dogs with 4-day-old myocardial infarctions. Body surface potentials were generated from these epicardial potentials in a human torso model. Realistic geometry errors and measurement noise were added to the torso data, which were then used to noninvasively reconstruct epicardial isochrones, electrograms, and potentials with excellent accuracy. ECGI reconstructed the reentry pathway and its key components, including (1) the central common pathway, (2) the VT exit site, (3) lines of block, and (4) regions of slow and fast conduction. This allowed for detailed characterization of the reentrant circuit morphology. Conclusions ECGI can noninvasively image arrhythmic activation on the epicardium during VT to identify and localize key components of the arrhythmogenic pathway that can be effective targets for antiarrhythmic intervention. PMID:11044435
Mutations in the NHEJ Component XRCC4 Cause Primordial Dwarfism
Murray, Jennie E.; van der Burg, Mirjam; IJspeert, Hanna; Carroll, Paula; Wu, Qian; Ochi, Takashi; Leitch, Andrea; Miller, Edward S.; Kysela, Boris; Jawad, Alireza; Bottani, Armand; Brancati, Francesco; Cappa, Marco; Cormier-Daire, Valerie; Deshpande, Charu; Faqeih, Eissa A.; Graham, Gail E.; Ranza, Emmanuelle; Blundell, Tom L.; Jackson, Andrew P.; Stewart, Grant S.; Bicknell, Louise S.
2015-01-01
Non-homologous end joining (NHEJ) is a key cellular process ensuring genome integrity. Mutations in several components of the NHEJ pathway have been identified, often associated with severe combined immunodeficiency (SCID), consistent with the requirement for NHEJ during V(D)J recombination to ensure diversity of the adaptive immune system. In contrast, we have recently found that biallelic mutations in LIG4 are a common cause of microcephalic primordial dwarfism (MPD), a phenotype characterized by prenatal-onset extreme global growth failure. Here we provide definitive molecular genetic evidence supported by biochemical, cellular, and immunological data for mutations in XRCC4, encoding the obligate binding partner of LIG4, causing MPD. We report the identification of biallelic mutations in XRCC4 in five families. Biochemical and cellular studies demonstrate that these alterations substantially decrease XRCC4 protein levels leading to reduced cellular ligase IV activity. Consequently, NHEJ-dependent repair of ionizing-radiation-induced DNA double-strand breaks is compromised in XRCC4 cells. Similarly, immunoglobulin junctional diversification is impaired in cells. However, immunoglobulin levels are normal, and individuals lack overt signs of immunodeficiency. Additionally, in contrast to individuals with LIG4 mutations, pancytopenia leading to bone marrow failure has not been observed. Hence, alterations that alter different NHEJ proteins give rise to a phenotypic spectrum, from SCID to extreme growth failure, with deficiencies in certain key components of this repair pathway predominantly exhibiting growth deficits, reflecting differential developmental requirements for NHEJ proteins to support growth and immune maturation. PMID:25728776
Surface Nuclear Power for Human Mars Missions
NASA Technical Reports Server (NTRS)
Mason, Lee S.
1999-01-01
The Design Reference Mission for NASA's human mission to Mars indicates the desire for in-situ propellant production and bio-regenerative life systems to ease Earth launch requirements. These operations, combined with crew habitation and science, result in surface power requirements approaching 160 kilowatts. The power system, delivered on an early cargo mission, must be deployed and operational prior to crew departure from Earth. The most mass efficient means of satisfying these requirements is through the use of nuclear power. Studies have been performed to identify a potential system concept using a mobile cart to transport the power system away from the Mars lander and provide adequate separation between the reactor and crew. The studies included an assessment of reactor and power conversion technology options, selection of system and component redundancy, determination of optimum separation distance, and system performance sensitivity to some key operating parameters. The resulting system satisfies the key mission requirements including autonomous deployment, high reliability, and cost effectiveness at a overall system mass of 12 tonnes and a stowed volume of about 63 cu m.
Development of Pain Endpoint Models for Use in Prostate Cancer Clinical Trials and Drug Approval
2017-10-01
publication delineating key methodological components of pain studies in prostate cancer. KEYWORDS Pain, metastatic castrate resistant prostate cancer...pain palliation and pain progression in prostate cancer clinical trials that are feasible, methodologically rigorous, and meet regulatory...requirements for drug approval and labeling. The primary aim of this award is to conduct an observational longitudinal study in men with castrate-resistant
Philip Radtke; David Walker; Jereme Frank; Aaron Weiskittel; Clara DeYoung; David MacFarlane; Grant Domke; Christopher Woodall; John Coulston; James Westfall
2017-01-01
Accurate estimation of forest biomass and carbon stocks at regional to national scales is a key requirement in determining terrestrial carbon sources and sinks on United States (US) forest lands. To that end, comprehensive assessment and testing of alternative volume and biomass models were conducted for individual tree models employed in the component ratio method (...
ERIC Educational Resources Information Center
Dotson, Wesley H.
2010-01-01
The purpose of the present study was to identify components of an optional mock exam review session (e.g. requiring students to write answers, providing students grading keys for questions) responsible for improvements in student performance on application-based short-essay exams in an undergraduate behavior modification course. Both…
Operations management: a tool to increase profitability.
Mulvehill, M J
2001-03-01
Operations management enables the efficient utilization of the production systems in a business. This paper will address several key elements in the business competency of operations management. Specifically, this discussion will review the components of a material requirement planning system and a "just-in-time" system for inventory control and time management to enable the dentist to monitor a portion of the practice's overhead costs.
Modelling Creativity: Identifying Key Components through a Corpus-Based Approach.
Jordanous, Anna; Keller, Bill
2016-01-01
Creativity is a complex, multi-faceted concept encompassing a variety of related aspects, abilities, properties and behaviours. If we wish to study creativity scientifically, then a tractable and well-articulated model of creativity is required. Such a model would be of great value to researchers investigating the nature of creativity and in particular, those concerned with the evaluation of creative practice. This paper describes a unique approach to developing a suitable model of how creative behaviour emerges that is based on the words people use to describe the concept. Using techniques from the field of statistical natural language processing, we identify a collection of fourteen key components of creativity through an analysis of a corpus of academic papers on the topic. Words are identified which appear significantly often in connection with discussions of the concept. Using a measure of lexical similarity to help cluster these words, a number of distinct themes emerge, which collectively contribute to a comprehensive and multi-perspective model of creativity. The components provide an ontology of creativity: a set of building blocks which can be used to model creative practice in a variety of domains. The components have been employed in two case studies to evaluate the creativity of computational systems and have proven useful in articulating achievements of this work and directions for further research.
Energy harvesting concepts for small electric unmanned systems
NASA Astrophysics Data System (ADS)
Qidwai, Muhammad A.; Thomas, James P.; Kellogg, James C.; Baucom, Jared N.
2004-07-01
In this study, we identify and survey energy harvesting technologies for small electrically powered unmanned systems designed for long-term (>1 day) time-on-station missions. An environmental energy harvesting scheme will provide long-term, energy additions to the on-board energy source. We have identified four technologies that cover a broad array of available energy sources: solar, kinetic (wind) flow, autophagous structure-power (both combustible and metal air-battery systems) and electromagnetic (EM) energy scavenging. We present existing conceptual designs, critical system components, performance, constraints and state-of-readiness for each technology. We have concluded that the solar and autophagous technologies are relatively matured for small-scale applications and are capable of moderate power output levels (>1 W). We have identified key components and possible multifunctionalities in each technology. The kinetic flow and EM energy scavenging technologies will require more in-depth study before they can be considered for implementation. We have also realized that all of the harvesting systems require design and integration of various electrical, mechanical and chemical components, which will require modeling and optimization using hybrid mechatronics-circuit simulation tools. This study provides a starting point for detailed investigation into the proposed technologies for unmanned system applications under current development.
SiC/SiC Composites for 1200 C and Above
NASA Technical Reports Server (NTRS)
DiCarlo, J. A.; Yun, H.-M.; Morscher, G. N.; Bhatt, R. T.
2004-01-01
The successful replacement of metal alloys by ceramic matrix composites (CMC) in high-temperature engine components will require the development of constituent materials and processes that can provide CMC systems with enhanced thermal capability along with the key thermostructural properties required for long-term component service. This chapter presents information concerning processes and properties for five silicon carbide (SiC) fiber-reinforced SiC matrix composite systems recently developed by NASA that can operate under mechanical loading and oxidizing conditions for hundreds of hours at 1204, 1315, and 1427 C, temperatures well above current metal capability. This advanced capability stems in large part from specific NASA-developed processes that significantly improve the creep-rupture and environmental resistance of the SiC fiber as well as the thermal conductivity, creep resistance, and intrinsic thermal stability of the SiC matrices.
Security of quantum key distribution with multiphoton components
Yin, Hua-Lei; Fu, Yao; Mao, Yingqiu; Chen, Zeng-Bing
2016-01-01
Most qubit-based quantum key distribution (QKD) protocols extract the secure key merely from single-photon component of the attenuated lasers. However, with the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) QKD protocol, the unconditionally secure key can be extracted from the two-photon component by modifying the classical post-processing procedure in the BB84 protocol. Employing the merits of SARG04 QKD protocol and six-state preparation, one can extract secure key from the components of single photon up to four photons. In this paper, we provide the exact relations between the secure key rate and the bit error rate in a six-state SARG04 protocol with single-photon, two-photon, three-photon, and four-photon sources. By restricting the mutual information between the phase error and bit error, we obtain a higher secure bit error rate threshold of the multiphoton components than previous works. Besides, we compare the performances of the six-state SARG04 with other prepare-and-measure QKD protocols using decoy states. PMID:27383014
Advanced Electrical Materials and Components Being Developed
NASA Technical Reports Server (NTRS)
Schwarze, Gene E.
2004-01-01
All aerospace systems require power management and distribution (PMAD) between the energy and power source and the loads. The PMAD subsystem can be broadly described as the conditioning and control of unregulated power from the energy source and its transmission to a power bus for distribution to the intended loads. All power and control circuits for PMAD require electrical components for switching, energy storage, voltage-to-current transformation, filtering, regulation, protection, and isolation. Advanced electrical materials and component development technology is a key technology to increasing the power density, efficiency, reliability, and operating temperature of the PMAD. The primary means to develop advanced electrical components is to develop new and/or significantly improved electronic materials for capacitors, magnetic components, and semiconductor switches and diodes. The next important step is to develop the processing techniques to fabricate electrical and electronic components that exceed the specifications of presently available state-of-the-art components. The NASA Glenn Research Center's advanced electrical materials and component development technology task is focused on the following three areas: 1) New and/or improved dielectric materials for the development of power capacitors with increased capacitance volumetric efficiency, energy density, and operating temperature; 2) New and/or improved high-frequency, high-temperature soft magnetic materials for the development of transformers and inductors with increased power density, energy density, electrical efficiency, and operating temperature; 3) Packaged high-temperature, high-power density, high-voltage, and low-loss SiC diodes and switches.
Key components of financial-analysis education for clinical nurses.
Lim, Ji Young; Noh, Wonjung
2015-09-01
In this study, we identified key components of financial-analysis education for clinical nurses. We used a literature review, focus group discussions, and a content validity index survey to develop key components of financial-analysis education. First, a wide range of references were reviewed, and 55 financial-analysis education components were gathered. Second, two focus group discussions were performed; the participants were 11 nurses who had worked for more than 3 years in a hospital, and nine components were agreed upon. Third, 12 professionals, including professors, nurse executive, nurse managers, and an accountant, participated in the content validity index. Finally, six key components of financial-analysis education were selected. These key components were as follows: understanding the need for financial analysis, introduction to financial analysis, reading and implementing balance sheets, reading and implementing income statements, understanding the concepts of financial ratios, and interpretation and practice of financial ratio analysis. The results of this study will be used to develop an education program to increase financial-management competency among clinical nurses. © 2015 Wiley Publishing Asia Pty Ltd.
Argo workstation: a key component of operational oceanography
NASA Astrophysics Data System (ADS)
Dong, Mingmei; Xu, Shanshan; Miao, Qingsheng; Yue, Xinyang; Lu, Jiawei; Yang, Yang
2018-02-01
Operational oceanography requires the quantity, quality, and availability of data set and the timeliness and effectiveness of data products. Without steady and strong operational system supporting, operational oceanography will never be proceeded far. In this paper we describe an integrated platform named Argo Workstation. It operates as a data processing and management system, capable of data collection, automatic data quality control, visualized data check, statistical data search and data service. After it is set up, Argo workstation provides global high quality Argo data to users every day timely and effectively. It has not only played a key role in operational oceanography but also set up an example for operational system.
Heat Treatment Used to Strengthen Enabling Coating Technology for Oil-Free Turbomachinery
NASA Technical Reports Server (NTRS)
Edmonds, Brian J.; DellaCorte, Christopher
2002-01-01
The PS304 high-temperature solid lubricant coating is a key enabling technology for Oil- Free turbomachinery propulsion and power systems. Breakthroughs in the performance of advanced foil air bearings and improvements in computer-based finite element modeling techniques are the key technologies enabling the development of Oil-Free aircraft engines being pursued by the Oil-Free Turbomachinery team at the NASA Glenn Research Center. PS304 is a plasma spray coating applied to the surface of shafts operating against foil air bearings or in any other component requiring solid lubrication at high temperatures, where conventional materials such as graphite cannot function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, John T; Holladay, John; Wagner, Robert
The U.S. Department of Energy's (DOE's) Co-Optimization of Fuels & Engines (Co-Optima) initiative is conducting the early-stage research needed to accelerate the market introduction of advanced fuel and engine technologies. The research includes both spark-ignition (SI) and compression-ignition (CI) combustion approaches, targeting applications that impact the entire on-road fleet (light-, medium-, and heavy-duty vehicles). The initiative's major goals include significant improvements in vehicle fuel economy, lower-cost pathways to reduce emissions, and leveraging diverse U.S. fuel resources. A key objective of Co-Optima's research is to identify new blendstocks that enhance current petroleum blending components, increase blendstock diversity, and provide refiners withmore » increased flexibility to blend fuels with the key properties required to optimize advanced internal combustion engines. This report identifies eight representative blendstocks from five chemical families that have demonstrated the potential to increase boosted SI engine efficiency, meet key fuel quality requirements, and be viable for production at commercial scale by 2025-2030.« less
When 1+1 can be >2: Uncertainties compound when simulating climate, fisheries and marine ecosystems
NASA Astrophysics Data System (ADS)
Evans, Karen; Brown, Jaclyn N.; Sen Gupta, Alex; Nicol, Simon J.; Hoyle, Simon; Matear, Richard; Arrizabalaga, Haritz
2015-03-01
Multi-disciplinary approaches that combine oceanographic, biogeochemical, ecosystem, fisheries population and socio-economic models are vital tools for modelling whole ecosystems. Interpreting the outputs from such complex models requires an appreciation of the many different types of modelling frameworks being used and their associated limitations and uncertainties. Both users and developers of particular model components will often have little involvement or understanding of other components within such modelling frameworks. Failure to recognise limitations and uncertainties associated with components and how these uncertainties might propagate throughout modelling frameworks can potentially result in poor advice for resource management. Unfortunately, many of the current integrative frameworks do not propagate the uncertainties of their constituent parts. In this review, we outline the major components of a generic whole of ecosystem modelling framework incorporating the external pressures of climate and fishing. We discuss the limitations and uncertainties associated with each component of such a modelling system, along with key research gaps. Major uncertainties in modelling frameworks are broadly categorised into those associated with (i) deficient knowledge in the interactions of climate and ocean dynamics with marine organisms and ecosystems; (ii) lack of observations to assess and advance modelling efforts and (iii) an inability to predict with confidence natural ecosystem variability and longer term changes as a result of external drivers (e.g. greenhouse gases, fishing effort) and the consequences for marine ecosystems. As a result of these uncertainties and intrinsic differences in the structure and parameterisation of models, users are faced with considerable challenges associated with making appropriate choices on which models to use. We suggest research directions required to address these uncertainties, and caution against overconfident predictions. Understanding the full impact of uncertainty makes it clear that full comprehension and robust certainty about the systems themselves are not feasible. A key research direction is the development of management systems that are robust to this unavoidable uncertainty.
Effects of "D"-Amphetamine and Ethanol on Variable and Repetitive Key-Peck Sequences in Pigeons
ERIC Educational Resources Information Center
Ward, Ryan D.; Bailey, Ericka M.; Odum, Amy L.
2006-01-01
This experiment assessed the effects of "d"-Amphetamine and ethanol on reinforced variable and repetitive key-peck sequences in pigeons. Pigeons responded on two keys under a multiple schedule of Repeat and Vary components. In the Repeat component, completion of a target sequence of right, right, left, left resulted in food. In the Vary component,…
Implementing corporate wellness programs: a business approach to program planning.
Helmer, D C; Dunn, L M; Eaton, K; Macedonio, C; Lubritz, L
1995-11-01
1. Support of key decision makers is critical to the successful implementation of a corporate wellness program. Therefore, the program implementation plan must be communicated in a format and language readily understood by business people. 2. A business approach to corporate wellness program planning provides a standardized way to communicate the implementation plan. 3. A business approach incorporates the program planning components in a format that ranges from general to specific. This approach allows for flexibility and responsiveness to changes in program planning. 4. Components of the business approach are the executive summary, purpose, background, ground rules, approach, requirements, scope of work, schedule, and financials.
Leslie, Laurel K; Maciolek, Susan; Biebel, Kathleen; Debordes-Jackson, Gifty; Nicholson, Joanne
2014-11-01
This case study explored core components of knowledge exchange among researchers, policymakers, and practitioners within the context of the Rosie D. versus Romney class action lawsuit in Massachusetts and the development and implementation of its remedial plan. We identified three distinct, sequential knowledge exchange episodes with different purposes, stakeholders, and knowledge exchanged, as decision-making moved from Federal Medicaid policy to state Medicaid program standards and to community-level practice. The knowledge exchanged included research regarding Wraparound, a key component of the remedial plan, as well as contextual information critical for implementation (e.g., Federal Medicaid policy, managed care requirements, community organizations' characteristics).
Advanced optical manufacturing digital integrated system
NASA Astrophysics Data System (ADS)
Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong
2012-10-01
It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abercrombie, R. K.; Peters, Scott
The Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) Cyber Security for Energy Delivery Systems (CSEDS) industry led program (DE-FOA-0000359) entitled "Innovation for Increasing Cyber Security for Energy Delivery Systems (12CSEDS)," awarded a contract to Sypris Electronics LLC to develop a Cryptographic Key Management System for the smart grid (Scalable Key Management Solutions for Critical Infrastructure Protection). Oak Ridge National Laboratory (ORNL) and Sypris Electronics, LLC as a result of that award entered into a CRADA (NFE-11-03562) between ORNL and Sypris Electronics, LLC. ORNL provided its Cyber Security Econometrics System (CSES) as a tool to be modifiedmore » and used as a metric to address risks and vulnerabilities in the management of cryptographic keys within the Advanced Metering Infrastructure (AMI) domain of the electric sector. ORNL concentrated our analysis on the AMI domain of which the National Electric Sector Cyber security Organization Resource (NESCOR) Working Group 1 (WG1) has documented 29 failure scenarios. The computational infrastructure of this metric involves system stakeholders, security requirements, system components and security threats. To compute this metric, we estimated the stakes that each stakeholder associates with each security requirement, as well as stochastic matrices that represent the probability of a threat to cause a component failure and the probability of a component failure to cause a security requirement violation. We applied this model to estimate the security of the AMI, by leveraging the recently established National Institute of Standards and Technology Interagency Report (NISTIR) 7628 guidelines for smart grid security and the International Electrotechnical Commission (IEC) 63351, Part 9 to identify the life cycle for cryptographic key management, resulting in a vector that assigned to each stakeholder an estimate of their average loss in terms of dollars per day of system operation. To further address probabilities of threats, information security analysis can be performed using game theory implemented in dynamic Agent Based Game Theoretic (ABGT) simulations. Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, and information assets. The strategy for the game was developed by analyzing five electric sector representative failure scenarios contained in the AMI functional domain from NESCOR WG1. From these five selected scenarios, we characterized them into three specific threat categories affecting confidentiality, integrity and availability (CIA). The analysis using our ABGT simulation demonstrated how to model the AMI functional domain using a set of rationalized game theoretic rules decomposed from the failure scenarios in terms of how those scenarios might impact the AMI network with respect to CIA.« less
Cryptographic Key Management and Critical Risk Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abercrombie, Robert K
The Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) CyberSecurity for Energy Delivery Systems (CSEDS) industry led program (DE-FOA-0000359) entitled "Innovation for Increasing CyberSecurity for Energy Delivery Systems (12CSEDS)," awarded a contract to Sypris Electronics LLC to develop a Cryptographic Key Management System for the smart grid (Scalable Key Management Solutions for Critical Infrastructure Protection). Oak Ridge National Laboratory (ORNL) and Sypris Electronics, LLC as a result of that award entered into a CRADA (NFE-11-03562) between ORNL and Sypris Electronics, LLC. ORNL provided its Cyber Security Econometrics System (CSES) as a tool to be modified and usedmore » as a metric to address risks and vulnerabilities in the management of cryptographic keys within the Advanced Metering Infrastructure (AMI) domain of the electric sector. ORNL concentrated our analysis on the AMI domain of which the National Electric Sector Cyber security Organization Resource (NESCOR) Working Group 1 (WG1) has documented 29 failure scenarios. The computational infrastructure of this metric involves system stakeholders, security requirements, system components and security threats. To compute this metric, we estimated the stakes that each stakeholder associates with each security requirement, as well as stochastic matrices that represent the probability of a threat to cause a component failure and the probability of a component failure to cause a security requirement violation. We applied this model to estimate the security of the AMI, by leveraging the recently established National Institute of Standards and Technology Interagency Report (NISTIR) 7628 guidelines for smart grid security and the International Electrotechnical Commission (IEC) 63351, Part 9 to identify the life cycle for cryptographic key management, resulting in a vector that assigned to each stakeholder an estimate of their average loss in terms of dollars per day of system operation. To further address probabilities of threats, information security analysis can be performed using game theory implemented in dynamic Agent Based Game Theoretic (ABGT) simulations. Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, and information assets. The strategy for the game was developed by analyzing five electric sector representative failure scenarios contained in the AMI functional domain from NESCOR WG1. From these five selected scenarios, we characterized them into three specific threat categories affecting confidentiality, integrity and availability (CIA). The analysis using our ABGT simulation demonstrated how to model the AMI functional domain using a set of rationalized game theoretic rules decomposed from the failure scenarios in terms of how those scenarios might impact the AMI network with respect to CIA.« less
NASA Astrophysics Data System (ADS)
Han, Jinhyup; Hwang, Soo Min; Go, Wooseok; Senthilkumar, S. T.; Jeon, Donghoon; Kim, Youngsik
2018-01-01
Cell design and optimization of the components, including active materials and passive components, play an important role in constructing robust, high-performance rechargeable batteries. Seawater batteries, which utilize earth-abundant and natural seawater as the active material in an open-structured cathode, require a new platform for building and testing the cells other than typical Li-ion coin-type or pouch-type cells. Herein, we present new findings based on our optimized cell. Engineering the cathode components-improving the wettability of cathode current collector and seawater catholyte flow-improves the battery performance (voltage efficiency). Optimizing the cell component and design is the key to identifying the electrochemical processes and reactions of active materials. Hence, the outcome of this research can provide a systematic study of potentially active materials used in seawater batteries and their effectiveness on the electrochemical performance.
Pritchard, Shane A; Blackstock, Felicity C; Keating, Jennifer L; Nestel, Debra
2017-11-01
The inclusion of simulated patients (SPs) in health professional education is growing internationally. However, there is limited evidence for best practice in SP methodology. This study investigated how experienced SP educators support SPs in providing SP-based education for health professional students. Experienced SP educators were identified via relevant professional associations, peer-reviewed publications, and peer referral. Semi-structured individual interviews were conducted via telephone. Data were analyzed independently by three researchers using principles of inductive thematic analysis. Four themes were identified that represent the key structural components of SP programs considered by educators seeking to optimize learning for health professional students in SP programs: managing SPs by operationalizing an effective program, selecting SPs by rigorously screening for suitability, preparing SPs by educating for a specific scenario, and directing SPs by leading safe and meaningful interactions. Within these components, subthemes were described, with considerable variation in approaches. Key structural components to SP programs were consistently described by experienced SP educators who operationalize them. A framework has been proposed to assist educators in designing high-quality SP programs that support SPs and learners. Future research is required to evaluate and refine this framework and other evidence-based resources for SP educators.
A primer on precision medicine informatics.
Sboner, Andrea; Elemento, Olivier
2016-01-01
In this review, we describe key components of a computational infrastructure for a precision medicine program that is based on clinical-grade genomic sequencing. Specific aspects covered in this review include software components and hardware infrastructure, reporting, integration into Electronic Health Records for routine clinical use and regulatory aspects. We emphasize informatics components related to reproducibility and reliability in genomic testing, regulatory compliance, traceability and documentation of processes, integration into clinical workflows, privacy requirements, prioritization and interpretation of results to report based on clinical needs, rapidly evolving knowledge base of genomic alterations and clinical treatments and return of results in a timely and predictable fashion. We also seek to differentiate between the use of precision medicine in germline and cancer. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Next-generation genotype imputation service and methods.
Das, Sayantan; Forer, Lukas; Schönherr, Sebastian; Sidore, Carlo; Locke, Adam E; Kwong, Alan; Vrieze, Scott I; Chew, Emily Y; Levy, Shawn; McGue, Matt; Schlessinger, David; Stambolian, Dwight; Loh, Po-Ru; Iacono, William G; Swaroop, Anand; Scott, Laura J; Cucca, Francesco; Kronenberg, Florian; Boehnke, Michael; Abecasis, Gonçalo R; Fuchsberger, Christian
2016-10-01
Genotype imputation is a key component of genetic association studies, where it increases power, facilitates meta-analysis, and aids interpretation of signals. Genotype imputation is computationally demanding and, with current tools, typically requires access to a high-performance computing cluster and to a reference panel of sequenced genomes. Here we describe improvements to imputation machinery that reduce computational requirements by more than an order of magnitude with no loss of accuracy in comparison to standard imputation tools. We also describe a new web-based service for imputation that facilitates access to new reference panels and greatly improves user experience and productivity.
NASA Technical Reports Server (NTRS)
Cross, Cynthia D.; Lewis, John F.; Barido, Richard A.; Carrasquillo, Robyn; Rains, George E.
2011-01-01
Recent changes in the overall NASA vision has resulted in further cost and schedule challenges for the Orion program. As a result, additional scrutiny has been focused on the use of new developments for hardware in the environmental control and life support systems. This paper will examine the Orion architecture as it is envisioned to support missions to the International Space Station and future exploration missions and determine what if any functions can be satisfied through the use of existing, heritage hardware designs. An initial evaluation of each component is included and where a heritage component was deemed likely further details are examined. Key technical parameters, mass, volume and vibration loads are a few of the specific items that are evaluated. Where heritage hardware has been identified that may be substituted in the Orion architecture a discussion of key requirement changes that may need to be made as well as recommendation to further evaluate applicability are noted.
Semantically Enhanced Online Configuration of Feedback Control Schemes.
Milis, Georgios M; Panayiotou, Christos G; Polycarpou, Marios M
2018-03-01
Recent progress toward the realization of the "Internet of Things" has improved the ability of physical and soft/cyber entities to operate effectively within large-scale, heterogeneous systems. It is important that such capacity be accompanied by feedback control capabilities sufficient to ensure that the overall systems behave according to their specifications and meet their functional objectives. To achieve this, such systems require new architectures that facilitate the online deployment, composition, interoperability, and scalability of control system components. Most current control systems lack scalability and interoperability because their design is based on a fixed configuration of specific components, with knowledge of their individual characteristics only implicitly passed through the design. This paper addresses the need for flexibility when replacing components or installing new components, which might occur when an existing component is upgraded or when a new application requires a new component, without the need to readjust or redesign the overall system. A semantically enhanced feedback control architecture is introduced for a class of systems, aimed at accommodating new components into a closed-loop control framework by exploiting the semantic inference capabilities of an ontology-based knowledge model. This architecture supports continuous operation of the control system, a crucial property for large-scale systems for which interruptions have negative impact on key performance metrics that may include human comfort and welfare or economy costs. A case-study example from the smart buildings domain is used to illustrate the proposed architecture and semantic inference mechanisms.
Materials and structural aspects of advanced gas-turbine helicopter engines
NASA Technical Reports Server (NTRS)
Freche, J. C.; Acurio, J.
1979-01-01
The key to improved helicopter gas turbine engine performance lies in the development of advanced materials and advanced structural and design concepts. The modification of the low temperature components of helicopter engines (such as the inlet particle separator), the introduction of composites for use in the engine front frame, the development of advanced materials with increased use-temperature capability for the engine hot section, can result in improved performance and/or decreased engine maintenance cost. A major emphasis in helicopter engine design is the ability to design to meet a required lifetime. This, in turn, requires that the interrelated aspects of higher operating temperatures and pressures, cooling concepts, and environmental protection schemes be integrated into component design. The major material advances, coatings, and design life-prediction techniques pertinent to helicopter engines are reviewed; the current state-of-the-art is identified; and when appropriate, progress, problems, and future directions are assessed.
Goldberg, Jesse H.
2011-01-01
Young songbirds produce vocal “babbling,” and the variability of their songs is thought to underlie a process of trial-and-error vocal learning. It is known that this exploratory variability requires the “cortical” component of a basal ganglia (BG) thalamocortical loop, but less understood is the role of the BG and thalamic components in this behavior. We found that large bilateral lesions to the songbird BG homolog Area X had little or no effect on song variability during vocal babbling. In contrast, lesions to the BG-recipient thalamic nucleus DLM (medial portion of the dorsolateral thalamus) largely abolished normal vocal babbling in young birds and caused a dramatic increase in song stereotypy. These findings support the idea that the motor thalamus plays a key role in the expression of exploratory juvenile behaviors during learning. PMID:21430276
NASA Astrophysics Data System (ADS)
Goldston, Robert; Brooks, Jeffrey; Hubbard, Amanda; Leonard, Anthony; Lipschultz, Bruce; Maingi, Rajesh; Ulrickson, Michael; Whyte, Dennis
2009-11-01
The plasma facing components in a Demo reactor will face much more extreme boundary plasma conditions and operating requirements than any present or planned experiment. These include 1) Power density a factor of four or more greater than in ITER, 2) Continuous operation resulting in annual energy and particle throughput 100-200 times larger than ITER, 3) Elevated surface operating temperature for efficient electricity production, 4) Tritium fuel cycle control for safety and breeding requirements, and 5) Steady state plasma confinement and control. Consistent with ReNeW Thrust 12, design options are being explored for a new moderate-scale facility to assess core-edge interaction issues and solutions. Key desired features include high power density, sufficient pulse length and duty cycle, elevated wall temperature, steady-state control of an optimized core plasma, and flexibility in changing boundary components as well as access for comprehensive measurements.
Mitochondrial transcription: Lessons from mouse models
Peralta, Susana; Wang, Xiao; Moraes, Carlos T.
2012-01-01
Mammalian mitochondrial DNA (mtDNA) is a circular double-stranded DNA genome of ∼ 16.5 kilobase pairs (kb) that encodes 13 catalytic proteins of the ATP-producing oxidative phosphorylation system (OXPHOS), and the rRNAs and tRNAs required for the translation of the mtDNA transcripts. All the components needed for transcription and replication of the mtDNA are, therefore, encoded in the nuclear genome, as are the remaining components of the OXPHOS system and the mitochondrial translation machinery. Regulation of mtDNA gene expression is very important for modulating the OXPHOS capacity in response to metabolic requirements and in pathological processes. The combination of in vitro and in vivo studies has allowed the identification of the core machinery required for basal mtDNA transcription in mammals and a few proteins that regulate mtDNA transcription. Specifically, the generation of knockout mouse strains in the last several years, has been key to understanding the basis of mtDNA transcription in vivo. However, it is well accepted that many components of the transcription machinery are still unknown and little is known about mtDNA gene expression regulation under different metabolic requirements or disease processes. In this review we will focus on how the creation of knockout mouse models and the study of their phenotypes have contributed to the understanding of mitochondrial transcription in mammals. PMID:22120174
Richardson, Lynn G. L.; Paila, Yamuna D.; Siman, Steven R.; Chen, Yi; Smith, Matthew D.; Schnell, Danny J.
2014-01-01
The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β–barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus. PMID:24966864
Richardson, Lynn G L; Paila, Yamuna D; Siman, Steven R; Chen, Yi; Smith, Matthew D; Schnell, Danny J
2014-01-01
The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β-barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.
Centromere Transcription: Means and Motive.
Duda, Zachary; Trusiak, Sarah; O'Neill, Rachel
2017-01-01
The chromosome biology field at large has benefited from studies of the cell cycle components, protein cascades and genomic landscape that are required for centromere identity, assembly and stable transgenerational inheritance. Research over the past 20 years has challenged the classical descriptions of a centromere as a stable, unmutable, and transcriptionally silent chromosome component. Instead, based on studies from a broad range of eukaryotic species, including yeast, fungi, plants, and animals, the centromere has been redefined as one of the more dynamic areas of the eukaryotic genome, requiring coordination of protein complex assembly, chromatin assembly, and transcriptional activity in a cell cycle specific manner. What has emerged from more recent studies is the realization that the transcription of specific types of nucleic acids is a key process in defining centromere integrity and function. To illustrate the transcriptional landscape of centromeres across eukaryotes, we focus this review on how transcripts interact with centromere proteins, when in the cell cycle centromeric transcription occurs, and what types of sequences are being transcribed. Utilizing data from broadly different organisms, a picture emerges that places centromeric transcription as an integral component of centromere function.
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2014-01-01
Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned CMC components to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing advanced environmental barrier coating systems, the coating integrations with next generation CMC turbine components having improved environmental stability, cyclic durability and system performance will be described. The development trends for turbine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.
Mutations in the NHEJ component XRCC4 cause primordial dwarfism.
Murray, Jennie E; van der Burg, Mirjam; IJspeert, Hanna; Carroll, Paula; Wu, Qian; Ochi, Takashi; Leitch, Andrea; Miller, Edward S; Kysela, Boris; Jawad, Alireza; Bottani, Armand; Brancati, Francesco; Cappa, Marco; Cormier-Daire, Valerie; Deshpande, Charu; Faqeih, Eissa A; Graham, Gail E; Ranza, Emmanuelle; Blundell, Tom L; Jackson, Andrew P; Stewart, Grant S; Bicknell, Louise S
2015-03-05
Non-homologous end joining (NHEJ) is a key cellular process ensuring genome integrity. Mutations in several components of the NHEJ pathway have been identified, often associated with severe combined immunodeficiency (SCID), consistent with the requirement for NHEJ during V(D)J recombination to ensure diversity of the adaptive immune system. In contrast, we have recently found that biallelic mutations in LIG4 are a common cause of microcephalic primordial dwarfism (MPD), a phenotype characterized by prenatal-onset extreme global growth failure. Here we provide definitive molecular genetic evidence supported by biochemical, cellular, and immunological data for mutations in XRCC4, encoding the obligate binding partner of LIG4, causing MPD. We report the identification of biallelic mutations in XRCC4 in five families. Biochemical and cellular studies demonstrate that these alterations substantially decrease XRCC4 protein levels leading to reduced cellular ligase IV activity. Consequently, NHEJ-dependent repair of ionizing-radiation-induced DNA double-strand breaks is compromised in XRCC4 cells. Similarly, immunoglobulin junctional diversification is impaired in cells. However, immunoglobulin levels are normal, and individuals lack overt signs of immunodeficiency. Additionally, in contrast to individuals with LIG4 mutations, pancytopenia leading to bone marrow failure has not been observed. Hence, alterations that alter different NHEJ proteins give rise to a phenotypic spectrum, from SCID to extreme growth failure, with deficiencies in certain key components of this repair pathway predominantly exhibiting growth deficits, reflecting differential developmental requirements for NHEJ proteins to support growth and immune maturation. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Qin, Fangcheng; Li, Yongtang; Qi, Huiping; Ju, Li
2017-01-01
Research on compact manufacturing technology for shape and performance controllability of metallic components can realize the simplification and high-reliability of manufacturing process on the premise of satisfying the requirement of macro/micro-structure. It is not only the key paths in improving performance, saving material and energy, and green manufacturing of components used in major equipments, but also the challenging subjects in frontiers of advanced plastic forming. To provide a novel horizon for the manufacturing in the critical components is significant. Focused on the high-performance large-scale components such as bearing rings, flanges, railway wheels, thick-walled pipes, etc, the conventional processes and their developing situations are summarized. The existing problems including multi-pass heating, wasting material and energy, high cost and high-emission are discussed, and the present study unable to meet the manufacturing in high-quality components is also pointed out. Thus, the new techniques related to casting-rolling compound precise forming of rings, compact manufacturing for duplex-metal composite rings, compact manufacturing for railway wheels, and casting-extruding continuous forming of thick-walled pipes are introduced in detail, respectively. The corresponding research contents, such as casting ring blank, hot ring rolling, near solid-state pressure forming, hot extruding, are elaborated. Some findings in through-thickness microstructure evolution and mechanical properties are also presented. The components produced by the new techniques are mainly characterized by fine and homogeneous grains. Moreover, the possible directions for further development of those techniques are suggested. Finally, the key scientific problems are first proposed. All of these results and conclusions have reference value and guiding significance for the integrated control of shape and performance in advanced compact manufacturing.
Modelling Creativity: Identifying Key Components through a Corpus-Based Approach
2016-01-01
Creativity is a complex, multi-faceted concept encompassing a variety of related aspects, abilities, properties and behaviours. If we wish to study creativity scientifically, then a tractable and well-articulated model of creativity is required. Such a model would be of great value to researchers investigating the nature of creativity and in particular, those concerned with the evaluation of creative practice. This paper describes a unique approach to developing a suitable model of how creative behaviour emerges that is based on the words people use to describe the concept. Using techniques from the field of statistical natural language processing, we identify a collection of fourteen key components of creativity through an analysis of a corpus of academic papers on the topic. Words are identified which appear significantly often in connection with discussions of the concept. Using a measure of lexical similarity to help cluster these words, a number of distinct themes emerge, which collectively contribute to a comprehensive and multi-perspective model of creativity. The components provide an ontology of creativity: a set of building blocks which can be used to model creative practice in a variety of domains. The components have been employed in two case studies to evaluate the creativity of computational systems and have proven useful in articulating achievements of this work and directions for further research. PMID:27706185
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reheis, N.; Zabernig, A.; Ploechl, L.
1994-12-31
Actively cooled in-vessel components like divertors or limiters require high quality and reliability to ensure safe operation during long term use. Such components are subjected to very severe thermal and mechanical cyclic loads and high power densities. Key requirements for materials in question are e.g. high melting point and thermal conductivity and low atomic mass number. Since no single material can simultaneously meet all of these requirements the selection of materials to be combined in composite components as well as of manufacturing and non-destructive inspection (NDI) methods is a particularly challenging task. Armour materials like graphite intended to face themore » plasma and help to maintain its desired properties, are bonded to metallic substrates like copper, molybdenum or stainless steel providing cooling and mechanical support. Several techniques such as brazing and active metal casting have been developed and successfully applied for joining materials with different thermophysical properties, pursuing the objective of sufficient heat dissipation from the hot, plasma facing surface to the coolant. NDI methods are an integral part of the manufacturing schedule of these components, starting in the design phase and ending in the final inspection. They apply all kinds of divertor types (monobloc and flat-tile concept). Particular focus is put on the feasibility of detecting small flaws and defects in complex interfaces and on the limits of these techniques. Special test pieces with defined defects acting as standards were inspected. Accompanying metallographic investigations were carried out to compare actual defects with results recorded during NDI.« less
International Space Station Major Constituent Analyzer On-Orbit Performance
NASA Technical Reports Server (NTRS)
Gardner, Ben D.; Erwin, Phillip M.; Thoresen, Souzan; Wiedemann, Rachel; Matty, Chris
2015-01-01
The Major Constituent Analyzer is a mass spectrometer based system that measures the major atmospheric constituents on the International Space Station. A number of limited-life components require periodic change-out, including the ORU 02 analyzer and the ORU 08 Verification Gas Assembly. Improvements to ion pump operation and ion source tuning have improved lifetime performance of the current ORU 02 design. The most recent ORU 02 analyzer assemblies, as well as ORU 08, have operated nominally. For ORU 02, the ion source filaments and ion pump lifetime continue to be key determinants of MCA performance and logistical support. Monitoring several key parameters provides the capacity to monitor ORU health and properly anticipate end of life.
A Quasi-Copysafe Security of Documents on Normal Papersheets
2000-10-01
Commercial Components ", held in Budapest, Hungary, 23-25 October 2000, and published in RTO MP-072. 32-2 Steganography : Hiding/embedding the secret information...hostile attacks (jitter attack, etc.) aiming to fool the receiver/detector by either impairing or diminishing or removing the secret message. After a...replace a watermark, when that requires the secret key. Problems : Attackers rather try to modify the watermark content. Or try to discredit the
V-band integrated quadriphase modulator
NASA Technical Reports Server (NTRS)
Grote, A.; Chang, K.
1983-01-01
A V-band integrated circuit quadriphase shift keyed modulator/exciter for space communications systems was developed. Intersatellite communications systems require direct modulation at 60 GHz to enhance signal processing capability. For most systems, particularly space applications, small and lightweight components are essential to alleviate severe system design constraints. Thus to achieve wideband, high data rate systems, direct modulation techniques at millimeter waves using solid state integrated circuit technology are an integral part of the overall technology developments.
A Proven Ground System Architecture for Promoting Collaboration and Common Solutions at NASA
NASA Technical Reports Server (NTRS)
Smith, Danford
2005-01-01
Requirement: Improve how NASA develops and maintains ground data systems for dozens of missions, with a couple new missions always in the development phase. Decided in 2001 on enhanced message-bus architecture. Users offered choices for major components. They plug and play because key interfaces are all the same. Can support COTS, heritage, and new software. Even the middleware can be switched. Project name: GMSEC. Goddard Mission Services Evolution Center.
ERIC Educational Resources Information Center
Zwick, Rebecca
2012-01-01
Differential item functioning (DIF) analysis is a key component in the evaluation of the fairness and validity of educational tests. The goal of this project was to review the status of ETS DIF analysis procedures, focusing on three aspects: (a) the nature and stringency of the statistical rules used to flag items, (b) the minimum sample size…
Nuclear pore complex integrity requires Lnp1, a regulator of cortical endoplasmic reticulum
Casey, Amanda K.; Chen, Shuliang; Novick, Peter; Ferro-Novick, Susan; Wente, Susan R.
2015-01-01
The nuclear envelope (NE) and endoplasmic reticulum (ER) are components of the same contiguous membrane system and yet have distinct cellular functions. Mounting evidence suggests roles for some ER proteins in the NE for proper nuclear pore complex (NPC) structure and function. In this study, we identify a NE role in Saccharomyces cerevisiae for Lnp1 and Sey1, proteins required for proper cortical ER formation. Both lnp1Δ and sey1Δ mutants exhibit synthetic genetic interactions with mutants in genes encoding key NPC structural components. Both Lnp1 and Sey1 physically associate with other ER components that have established NPC roles, including Rtn1, Yop1, Pom33, and Per33. Of interest, lnp1Δ rtn1Δ mutants but not rtn1Δ sey1Δ mutants exhibit defects in NPC distribution. Furthermore, the essential NPC assembly factor Ndc1 has altered interactions in the absence of Sey1. Lnp1 dimerizes in vitro via its C-terminal zinc finger motif, a property that is required for proper ER structure but not NPC integrity. These findings suggest that Lnp1's role in NPC integrity is separable from functions in the ER and is linked to Ndc1 and Rtn1 interactions. PMID:26041935
Observing the Global Water Cycle from Space
NASA Technical Reports Server (NTRS)
Hildebrand, Peter H.; Houser, Paul; Schlosser, C. Adam
2003-01-01
This paper presents an approach to measuring all major components of the water cycle from space. The goal of the paper is to explore the concept of using a sensor-web of satellites to observe the global water cycle. The details of the required measurements and observation systems are therefore only an initial approach and will undergo future refinement, as their details will be highly important. Key elements include observation and evaluation of all components of the water cycle in terms of the storage of water-in the ocean, air, cloud and precipitation, in soil, ground water, snow and ice, and in lakes and rivers-and in terms of the global fluxes of water between these reservoirs. For each component of the water cycle that must be observed, the appropriate temporal and spatial scales of measurement are estimated, along with the some of the frequencies that have been used for active and passive microwave observations of the quantities. The suggested types of microwave observations are based on the heritage for such measurements, and some aspects of the recent heritage of these measurement algorithms are listed. The observational requirements are based on present observational systems, as modified by expectations for future needs. Approaches to the development of space systems for measuring the global water cycle can be based on these observational requirements.
Renardi, Mikhael Bagus; Basjaruddin, Noor Cholis; Rakhman, Edi
2018-01-01
Doctors usually require patients' medical records before medical examinations. Nevertheless, obtaining such records may take time. Hence, Near Field Communication (NFC) could be used to store and send medical records between doctors and patients. Another issue is that there could be a threat such as, Man In The Middle Attack and eavesdropping, thus, a security method is required to secure the data. Furthermore, the information regarding the key and initialisation vector in NFC cannot be sent using one data package, hence, the data transmission should be done several times. Therefore, the initialisation vector that changed in each transmission is implemented, and the key utilised is based on the component agreed by both parties. This study aims at applying the cryptography process that does disturb and hinder the speed of data transmission. The result demonstrated that the data transmitted could be secured and the encryption process did not hinder data exchange. Also, different number of characters in plaintexts required different amount of time for encryption and decryption. It could be affected by the specifications of the devices used and the processes happening in the devices.
McLean, A P; Blampied, N M
1995-01-01
Behavioral momentum theory relates resistance to change of responding in a multiple-schedule component to the total reinforcement obtained in that component, regardless of how the reinforcers are produced. Four pigeons responded in a series of multiple-schedule conditions in which a variable-interval 40-s schedule arranged reinforcers for pecking in one component and a variable-interval 360-s schedule arranged them in the other. In addition, responses on a second key were reinforced according to variable-interval schedules that were equal in the two components. In different parts of the experiment, responding was disrupted by changing the rate of reinforcement on the second key or by delivering response-independent food during a blackout separating the two components. Consistent with momentum theory, responding on the first key in Part 1 changed more in the component with the lower reinforcement total when it was disrupted by changes in the rate of reinforcement on the second key. However, responding on the second key changed more in the component with the higher reinforcement total. In Parts 2 and 3, responding was disrupted with free food presented during intercomponent blackouts, with extinction (Part 2) or variable-interval 80-s reinforcement (Part 3) arranged on the second key. Here, resistance to change was greater for the component with greater overall reinforcement. Failures of momentum theory to predict short-term differences in resistance to change occurred with disruptors that caused greater change between steady states for the richer component. Consistency of effects across disruptors may yet be found if short-term effects of disruptors are assessed relative to the extent of change observed after prolonged exposure.
Exoskeleton for Soldier Enhancement Systems Feasibility Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansen, J.F.
2000-09-28
The development of a successful exoskeleton for human performance augmentation (EHPA) will require a multi-disciplinary systems approach based upon sound biomechanics, power generation and actuation systems, controls technology, and operator interfaces. The ability to integrate key components into a system that enhances performance without impeding operator mobility is essential. The purpose of this study and report are to address the issue of feasibility of building a fieldable EHPA. Previous efforts, while demonstrating progress and enhancing knowledge, have not approached the level required for a fully functional, fieldable system. It is doubtless that the technologies required for a successful exoskeleton havemore » advanced, and some of them significantly. The question to be addressed in this report is have they advanced to the point of making a system feasible in the next three to five years? In this study, the key technologies required to successfully build an exoskeleton have been examined. The primary focus has been on the key technologies of power sources, actuators, and controls. Power sources, including internal combustion engines, fuel cells, batteries, super capacitors, and hybrid sources have been investigated and compared with respect to the exoskeleton application. Both conventional and non-conventional actuator technologies that could impact EHPA have been assessed. In addition to the current state of the art of actuators, the potential for near-term improvements using non-conventional actuators has also been addressed. Controls strategies, and their implication to the design approach, and the exoskeleton to soldier interface have also been investigated. In addition to these key subsystems and technologies, this report addresses technical concepts and issues relating to an integrated design. A recommended approach, based on the results of the study is also presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandford, M.T. II; Bradley, J.N.; Handel, T.G.
Data embedding is a new steganographic method for combining digital information sets. This paper describes the data embedding method and gives examples of its application using software written in the C-programming language. Sandford and Handel produced a computer program (BMPEMBED, Ver. 1.51 written for IBM PC/AT or compatible, MS/DOS Ver. 3.3 or later) that implements data embedding in an application for digital imagery. Information is embedded into, and extracted from, Truecolor or color-pallet images in Microsoft{reg_sign} bitmap (.BMP) format. Hiding data in the noise component of a host, by means of an algorithm that modifies or replaces the noise bits,more » is termed {open_quote}steganography.{close_quote} Data embedding differs markedly from conventional steganography, because it uses the noise component of the host to insert information with few or no modifications to the host data values or their statistical properties. Consequently, the entropy of the host data is affected little by using data embedding to add information. The data embedding method applies to host data compressed with transform, or {open_quote}lossy{close_quote} compression algorithms, as for example ones based on discrete cosine transform and wavelet functions. Analysis of the host noise generates a key required for embedding and extracting the auxiliary data from the combined data. The key is stored easily in the combined data. Images without the key cannot be processed to extract the embedded information. To provide security for the embedded data, one can remove the key from the combined data and manage it separately. The image key can be encrypted and stored in the combined data or transmitted separately as a ciphertext much smaller in size than the embedded data. The key size is typically ten to one-hundred bytes, and it is in data an analysis algorithm.« less
NASA Astrophysics Data System (ADS)
Sandford, Maxwell T., II; Bradley, Jonathan N.; Handel, Theodore G.
1996-01-01
Data embedding is a new steganographic method for combining digital information sets. This paper describes the data embedding method and gives examples of its application using software written in the C-programming language. Sandford and Handel produced a computer program (BMPEMBED, Ver. 1.51 written for IBM PC/AT or compatible, MS/DOS Ver. 3.3 or later) that implements data embedding in an application for digital imagery. Information is embedded into, and extracted from, Truecolor or color-pallet images in MicrosoftTM bitmap (BMP) format. Hiding data in the noise component of a host, by means of an algorithm that modifies or replaces the noise bits, is termed `steganography.' Data embedding differs markedly from conventional steganography, because it uses the noise component of the host to insert information with few or no modifications to the host data values or their statistical properties. Consequently, the entropy of the host data is affected little by using data embedding to add information. The data embedding method applies to host data compressed with transform, or `lossy' compression algorithms, as for example ones based on discrete cosine transform and wavelet functions. Analysis of the host noise generates a key required for embedding and extracting the auxiliary data from the combined data. The key is stored easily in the combined data. Images without the key cannot be processed to extract the embedded information. To provide security for the embedded data, one can remove the key from the combined data and manage it separately. The image key can be encrypted and stored in the combined data or transmitted separately as a ciphertext much smaller in size than the embedded data. The key size is typically ten to one-hundred bytes, and it is derived from the original host data by an analysis algorithm.
Buying health: the costs of commercialism and an alternative philosophy.
Churchill, Larry R; Churchill, Shelley C
2013-08-01
This paper argues that commercial forces have steadily encroached into our understanding of medicine and health in modern industrial societies. The impact on the delivery of personal medical services and on common ideas about food and nutrition is profound and largely deleterious to public health. A key component of commercialization is reductionism of medical services, health products and nutritional components into small, marketable units. This reductive force makes both medical services and nutritional components more costly and is corrosive to more holistic concepts of health. We compare commercial and holistic approaches to nutrition in detail and offer an alternative philosophy. Adopting this alternative will require sound public policies that rely less on marketing as a distribution system and that enfranchise individuals to be reflective on their use of medical services, their food and nutrition choices, and their larger health needs.
Rainbow peacock spiders inspire miniature super-iridescent optics.
Hsiung, Bor-Kai; Siddique, Radwanul Hasan; Stavenga, Doekele G; Otto, Jürgen C; Allen, Michael C; Liu, Ying; Lu, Yong-Feng; Deheyn, Dimitri D; Shawkey, Matthew D; Blackledge, Todd A
2017-12-22
Colour produced by wavelength-dependent light scattering is a key component of visual communication in nature and acts particularly strongly in visual signalling by structurally-coloured animals during courtship. Two miniature peacock spiders (Maratus robinsoni and M. chrysomelas) court females using tiny structured scales (~ 40 × 10 μm 2 ) that reflect the full visual spectrum. Using TEM and optical modelling, we show that the spiders' scales have 2D nanogratings on microscale 3D convex surfaces with at least twice the resolving power of a conventional 2D diffraction grating of the same period. Whereas the long optical path lengths required for light-dispersive components to resolve individual wavelengths constrain current spectrometers to bulky sizes, our nano-3D printed prototypes demonstrate that the design principle of the peacock spiders' scales could inspire novel, miniature light-dispersive components.
Alloy 740H Component Manufacturing Development
NASA Astrophysics Data System (ADS)
de Barbadillo, J. J.; Baker, B. A.; Gollihue, R. D.; Patel, S. J.
Alloy 740H was developed specifically for use in A-USC power plants. This alloy has been intensively evaluated in collaborative programs throughout the world, and the key properties have been verified and documented. In 2011 the alloy was approved for use in welded construction under ASME Code Case 2702. At present, alloy 740H is the only age-hardened nickel-base alloy that is ASME code approved. The emphasis for A-USC materials development is now on verification of the metalworking industry's capability to make the full range of mill product forms and sizes and to produce fittings and fabrications required for construction of a power plant. This paper presents the results of recent developments in component manufacture and evaluation.
Design and Development of a Two-Axis Thruster Gimbal with Xenon Propellant Lines
NASA Technical Reports Server (NTRS)
Asadurian, Armond
2010-01-01
A Two-Axis Thruster Gimbal was developed for a two degree-of-freedom tip-tilt gimbal application. This light weight gimbal mechanism is equipped with flexible xenon propellant lines and features numerous thermal control features for all its critical components. Unique thermal profiles and operating environments have been the key design drivers for this mechanism which is fully tolerant of extreme space environmental conditions. Providing thermal controls that are compatible with flexible components and are also capable of surviving launch vibration within this gimbal mechanism has proven to be especially demanding, requiring creativity and significant development effort. Some of these features, design drivers, and lessons learned will be examined herein.
Evolution of Requirements and Assumptions for Future Exploration Missions
NASA Technical Reports Server (NTRS)
Anderson, Molly; Sargusingh, Miriam; Perry, Jay
2017-01-01
NASA programs are maturing technologies, systems, and architectures to enabling future exploration missions. To increase fidelity as technologies mature, developers must make assumptions that represent the requirements of a future program. Multiple efforts have begun to define these requirements, including team internal assumptions, planning system integration for early demonstrations, and discussions between international partners planning future collaborations. For many detailed life support system requirements, existing NASA documents set limits of acceptable values, but a future vehicle may be constrained in other ways, and select a limited range of conditions. Other requirements are effectively set by interfaces or operations, and may be different for the same technology depending on whether the hard-ware is a demonstration system on the International Space Station, or a critical component of a future vehicle. This paper highlights key assumptions representing potential life support requirements and explanations of the driving scenarios, constraints, or other issues that drive them.
EssC: domain structures inform on the elusive translocation channel in the Type VII secretion system
Zoltner, Martin; Ng, Wui M.A.V.; Money, Jillian J.; Fyfe, Paul K.; Kneuper, Holger; Palmer, Tracy; Hunter, William N.
2016-01-01
The membrane-bound protein EssC is an integral component of the bacterial Type VII secretion system (T7SS), which is a determinant of virulence in important Gram-positive pathogens. The protein is predicted to consist of an intracellular repeat of forkhead-associated (FHA) domains at the N-terminus, two transmembrane helices and three P-loop-containing ATPase-type domains, D1–D3, forming the C-terminal intracellular segment. We present crystal structures of the N-terminal FHA domains (EssC-N) and a C-terminal fragment EssC-C from Geobacillus thermodenitrificans, encompassing two of the ATPase-type modules, D2 and D3. Module D2 binds ATP with high affinity whereas D3 does not. The EssC-N and EssC-C constructs are monomeric in solution, but the full-length recombinant protein, with a molecular mass of approximately 169 kDa, forms a multimer of approximately 1 MDa. The observation of protomer contacts in the crystal structure of EssC-C together with similarity to the DNA translocase FtsK, suggests a model for a hexameric EssC assembly. Such an observation potentially identifies the key, and to date elusive, component of pore formation required for secretion by this recently discovered secretion system. The juxtaposition of the FHA domains suggests potential for interacting with other components of the secretion system. The structural data were used to guide an analysis of which domains are required for the T7SS machine to function in pathogenic Staphylococcus aureus. The extreme C-terminal ATPase domain appears to be essential for EssC activity as a key part of the T7SS, whereas D2 and FHA domains are required for the production of a stable and functional protein. PMID:27130157
Holland, William L; Bikman, Benjamin T; Wang, Li-Ping; Yuguang, Guan; Sargent, Katherine M; Bulchand, Sarada; Knotts, Trina A; Shui, Guanghou; Clegg, Deborah J; Wenk, Markus R; Pagliassotti, Michael J; Scherer, Philipp E; Summers, Scott A
2011-05-01
Obesity is associated with an enhanced inflammatory response that exacerbates insulin resistance and contributes to diabetes, atherosclerosis, and cardiovascular disease. One mechanism accounting for the increased inflammation associated with obesity is activation of the innate immune signaling pathway triggered by TLR4 recognition of saturated fatty acids, an event that is essential for lipid-induced insulin resistance. Using in vitro and in vivo systems to model lipid induction of TLR4-dependent inflammatory events in rodents, we show here that TLR4 is an upstream signaling component required for saturated fatty acid-induced ceramide biosynthesis. This increase in ceramide production was associated with the upregulation of genes driving ceramide biosynthesis, an event dependent of the activity of the proinflammatory kinase IKKβ. Importantly, increased ceramide production was not required for TLR4-dependent induction of inflammatory cytokines, but it was essential for TLR4-dependent insulin resistance. These findings suggest that sphingolipids such as ceramide might be key components of the signaling networks that link lipid-induced inflammatory pathways to the antagonism of insulin action that contributes to diabetes.
UTM UAS Service Supplier Specification
NASA Technical Reports Server (NTRS)
Rios, Joseph Lucio
2017-01-01
Within the Unmanned Aircraft Systems (UAS) Traffic Management (UTM) system, the UAS Service Supplier (USS) is a key component. The USS serves several functions. At a high level, those include the following: Bridging communication between UAS Operators and Flight Information Management System (FIMS) Supporting planning of UAS operations Assisting strategic deconfliction of the UTM airspace Providing information support to UAS Operators during operations Helping UAS Operators meet their formal requirements This document provides the minimum set of requirements for a USS. In order to be recognized as a USS within UTM, successful demonstration of satisfying the requirements described herein will be a prerequisite. To ensure various desired qualities (security, fairness, availability, efficiency, maintainability, etc.), this specification relies on references to existing public specifications whenever possible.
Miniaturized NIR scanning grating spectrometer for use in mobile phones
NASA Astrophysics Data System (ADS)
Knobbe, Jens; Pügner, Tino; Grüger, Heinrich
2016-05-01
An extremely miniaturized scanning grating spectrometer at the size of a sugar cube has been developed at Fraunhofer IPMS. To meet the requirements for the integration into a mobile phone a new system approach has been pursued. The key component within the system is a silicon-based deflectable diffraction grating with an integrated driving mechanism. A first sample of the new spectrometer was built and characterized. It was found to have a spectral range from 950 nm to 1900 nm at a resolution of 10 nm. The results show that the performance of the new MEMS spectrometer is in good agreement with the requirements for mobile phone integration.
Measurement-device-independent quantum key distribution.
Lo, Hoi-Kwong; Curty, Marcos; Qi, Bing
2012-03-30
How to remove detector side channel attacks has been a notoriously hard problem in quantum cryptography. Here, we propose a simple solution to this problem--measurement-device-independent quantum key distribution (QKD). It not only removes all detector side channels, but also doubles the secure distance with conventional lasers. Our proposal can be implemented with standard optical components with low detection efficiency and highly lossy channels. In contrast to the previous solution of full device independent QKD, the realization of our idea does not require detectors of near unity detection efficiency in combination with a qubit amplifier (based on teleportation) or a quantum nondemolition measurement of the number of photons in a pulse. Furthermore, its key generation rate is many orders of magnitude higher than that based on full device independent QKD. The results show that long-distance quantum cryptography over say 200 km will remain secure even with seriously flawed detectors.
Requirements, techniques, and costs for contaminant removal from landfill gas.
Kuhn, John N; Elwell, Anthony C; Elsayed, Nada H; Joseph, Babu
2017-05-01
Waste-to-energy projects are an increasingly prominent component of future energy portfolios. Landfill gas (LFG)-to-energy (LFGTE) projects are particularly important as they address greenhouse gas emissions. Contaminants in LFG may hamper these projects both from environmental and economic standpoints. The purpose of this review is to highlight key aspects (LFG composition ranges, LFG flowrates, and allowable tolerances for LFGTE technologies, performance and costs for contaminant removal by adsorption). Removal of key contaminants, H 2 S and siloxanes, by adsorption are surveyed in terms of adsorption capacities and regeneration abilities. Based on the open literature, costing analyses are tabulated and discussed. The findings indicate economics of contaminant removal depend heavily on the feed concentrations of contaminants, allowable tolerances for the LFGTE technology, and the current market for the product. Key trends, identification of challenges, and general purification guidelines for purifying LFG for energy projects are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems
NASA Technical Reports Server (NTRS)
Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.
2016-01-01
Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.
ERIC Educational Resources Information Center
Grubb, W. Norton; Badway, Norena
Co-op seminars are a key component of the cooperative education (CE) program at LaGuardia Community College in New York City. All LaGuardia students must enroll in CE and attend a series of co-op seminars that raise general issues about work, occupations in general, and the competencies required on the job. The seminars serve as a form of career…
Recommendations for control of East african sleeping sickness in Uganda.
Kotlyar, Simon
2010-01-01
East African sleeping sickness, caused by Trypanosoma brucei rhodesiense, is prominent in Uganda and poses a serious public health challenge in the region. This publication attempts to provide key components for designing a strategy for a nationwide initiative to provide insecticide-treatment of the animal reservoir to control T. b. rhodesiense. The contents of this article will focus on insecticide-based vector control strategies, monitoring and evaluation framework, and knowledge gaps required for future initiatives.
Environmental assessment overview
NASA Technical Reports Server (NTRS)
Valentino, A. R.
1980-01-01
The assessment program has as its objectives: to identify the environmental issues associated with the SPS Reference System; to prepare a preliminary assessment based on existing data; to suggest mitigating strategies and provide environmental data and guidance to other components of the program as required; and to plan long-range research to reduce the uncertainty in the preliminary assessment. The key environmental issues associated with the satellite power system are discussed and include human health and safety, ecosystems, climate, and interaction with electromagnetic systems.
Marston, Daniel J.; Higgins, Christopher D.; Peters, Kimberly A.; Cupp, Timothy D.; Dickinson, Daniel J.; Pani, Ariel M.; Moore, Regan P.; Cox, Amanda H.; Kiehart, Daniel P.; Goldstein, Bob
2016-01-01
Summary Apical constriction is a change in cell shape that drives key morphogenetic events including gastrulation and neural tube formation. Apical force-producing actomyosin networks drive apical constriction by contracting while connected to cell-cell junctions. The mechanisms by which developmental patterning regulates these actomyosin networks and associated junctions with spatial precision are not fully understood. Here, we identify a myosin light chain kinase MRCK-1 as a key regulator of C. elegans gastrulation that integrates spatial and developmental patterning information. We show that MRCK-1 is required for activation of contractile actomyosin dynamics and elevated cortical tension in the apical cell cortex of endodermal precursor cells. MRCK-1 is apically localized by active Cdc42 at the external, cell-cell contact-free surfaces of apically constricting cells, downstream of cell fate determination mechanisms. We establish that the junctional components α-catenin, β-catenin, and cadherin become highly enriched at the apical junctions of apically-constricting cells, and that MRCK-1 and myosin activity are required in vivo for this enrichment. Taken together, our results define mechanisms that position a myosin activator to a specific cell surface where it both locally increases cortical tension and locally enriches junctional components to facilitate apical constriction. These results reveal crucial links that can tie spatial information to local force generation to drive morphogenesis. PMID:27451898
Fast and simple high-capacity quantum cryptography with error detection
Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Zhang, Jun; Pan, Lei; Li, Shudong; Orgun, Mehmet A.
2017-01-01
Quantum cryptography is commonly used to generate fresh secure keys with quantum signal transmission for instant use between two parties. However, research shows that the relatively low key generation rate hinders its practical use where a symmetric cryptography component consumes the shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, which leads to a higher consumption of the internal one-time-pad communication bandwidth, since it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately be simplified to matrix multiplication, which is implemented and optimized in modern computers. Most importantly, considerably information capacity can be improved effectively and efficiently by the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical conditions, such as the communication bandwidth. PMID:28406240
Fast and simple high-capacity quantum cryptography with error detection.
Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Zhang, Jun; Pan, Lei; Li, Shudong; Orgun, Mehmet A
2017-04-13
Quantum cryptography is commonly used to generate fresh secure keys with quantum signal transmission for instant use between two parties. However, research shows that the relatively low key generation rate hinders its practical use where a symmetric cryptography component consumes the shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, which leads to a higher consumption of the internal one-time-pad communication bandwidth, since it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately be simplified to matrix multiplication, which is implemented and optimized in modern computers. Most importantly, considerably information capacity can be improved effectively and efficiently by the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical conditions, such as the communication bandwidth.
Fast and simple high-capacity quantum cryptography with error detection
NASA Astrophysics Data System (ADS)
Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Zhang, Jun; Pan, Lei; Li, Shudong; Orgun, Mehmet A.
2017-04-01
Quantum cryptography is commonly used to generate fresh secure keys with quantum signal transmission for instant use between two parties. However, research shows that the relatively low key generation rate hinders its practical use where a symmetric cryptography component consumes the shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, which leads to a higher consumption of the internal one-time-pad communication bandwidth, since it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately be simplified to matrix multiplication, which is implemented and optimized in modern computers. Most importantly, considerably information capacity can be improved effectively and efficiently by the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical conditions, such as the communication bandwidth.
VfrB Is a Key Activator of the Staphylococcus aureus SaeRS Two-Component System.
Krute, Christina N; Rice, Kelly C; Bose, Jeffrey L
2017-03-01
In previous studies, we identified the fatty acid kinase virulence factor regulator B (VfrB) as a potent regulator of α-hemolysin and other virulence factors in Staphylococcus aureus In this study, we demonstrated that VfrB is a positive activator of the SaeRS two-component regulatory system. Analysis of vfrB , saeR , and saeS mutant strains revealed that VfrB functions in the same pathway as SaeRS. At the transcriptional level, the promoter activities of SaeRS class I ( coa ) and class II ( hla ) target genes were downregulated during the exponential growth phase in the vfrB mutant, compared to the wild-type strain. In addition, saePQRS expression was decreased in the vfrB mutant strain, demonstrating a need for this protein in the autoregulation of SaeRS. The requirement for VfrB-mediated activation was circumvented when SaeS was constitutively active due to an SaeS (L18P) substitution. Furthermore, activation of SaeS via human neutrophil peptide 1 (HNP-1) overcame the dependence on VfrB for transcription from class I Sae promoters. Consistent with the role of VfrB in fatty acid metabolism, hla expression was decreased in the vfrB mutant with the addition of exogenous myristic acid. Lastly, we determined that aspartic acid residues D38 and D40, which are predicted to be key to VfrB enzymatic activity, were required for VfrB-mediated α-hemolysin production. Collectively, this study implicates VfrB as a novel accessory protein needed for the activation of SaeRS in S. aureus IMPORTANCE The SaeRS two-component system is a key regulator of virulence determinant production in Staphylococcus aureus Although the regulon of this two-component system is well characterized, the activation mechanisms, including the specific signaling molecules, remain elusive. Elucidating the complex regulatory circuit of SaeRS regulation is important for understanding how the system contributes to disease causation by this pathogen. To this end, we have identified the fatty acid kinase VfrB as a positive regulatory modulator of SaeRS-mediated transcription of virulence factors in S. aureus In addition to describing a new regulatory aspect of SaeRS, this study establishes a link between fatty acid kinase activity and virulence factor regulation. Copyright © 2017 American Society for Microbiology.
Reiter, Kristin L; Song, Paula H; Minasian, Lori; Good, Marjorie; Weiner, Bryan J; McAlearney, Ann Scheck
2012-09-01
The Community Clinical Oncology Program (CCOP) plays an essential role in the efforts of the National Cancer Institute (NCI) to increase enrollment in clinical trials. Currently, there is little practical guidance in the literature to assist provider organizations in analyzing the return on investment (ROI), or business case, for establishing and operating a provider-based research network (PBRN) such as the CCOP. In this article, the authors present a conceptual model of the business case for PBRN participation, a spreadsheet-based tool and advice for evaluating the business case for provider participation in a CCOP organization. A comparative, case-study approach was used to identify key components of the business case for hospitals attempting to support a CCOP research infrastructure. Semistructured interviews were conducted with providers and administrators. Key themes were identified and used to develop the financial analysis tool. Key components of the business case included CCOP start-up costs, direct revenue from the NCI CCOP grant, direct expenses required to maintain the CCOP research infrastructure, and incidental benefits, most notably downstream revenues from CCOP patients. The authors recognized the value of incidental benefits as an important contributor to the business case for CCOP participation; however, currently, this component is not calculated. The current results indicated that providing a method for documenting the business case for CCOP or other PBRN involvement will contribute to the long-term sustainability and expansion of these programs by improving providers' understanding of the financial implications of participation. Copyright © 2011 American Cancer Society.
Levasseur, Mélanie; Dubois, Marie-France; Généreux, Mélissa; Menec, Verena; Raina, Parminder; Roy, Mathieu; Gabaude, Catherine; Couturier, Yves; St-Pierre, Catherine
2017-05-25
To address the challenges of the global aging population, the World Health Organization promoted age-friendly communities as a way to foster the development of active aging community initiatives. Accordingly, key components (i.e., policies, services and structures related to the communities' physical and social environments) should be designed to be age-friendly and help all aging adults to live safely, enjoy good health and stay involved in their communities. Although age-friendly communities are believed to be a promising way to help aging Canadians lead healthy and active lives, little is known about which key components best foster positive health, social participation and health equity, and their underlying mechanisms. This study aims to better understand which and how key components of age-friendly communities best foster positive health, social participation and health equity in aging Canadians. Specifically, the research objectives are to: 1) Describe and compare age-friendly key components of communities across Canada 2) Identify key components best associated with positive health, social participation and health equity of aging adults 3) Explore how these key components foster positive health, social participation and health equity METHODS: A mixed-method sequential explanatory design will be used. The quantitative part will involve a survey of Canadian communities and secondary analysis of cross-sectional data from the Canadian Longitudinal Study on Aging (CLSA). The survey will include an age-friendly questionnaire targeting key components in seven domains: physical environment, housing options, social environment, opportunities for participation, community supports and healthcare services, transportation options, communication and information. The CLSA is a large, national prospective study representative of the Canadian aging population designed to examine health transitions and trajectories of adults as they age. In the qualitative part, a multiple case study will be conducted in five Canadian communities performing best on positive health, social participation and health equity. Building on new and existing collaborations and generating evidence from real-world interventions, the results of this project will help communities to promote age-friendly policies, services and structures which foster positive health, social participation and health equity at a population level.
MEMS Deformable Mirror Technology Development for Space-Based Exoplanet Detection
NASA Astrophysics Data System (ADS)
Bierden, Paul; Cornelissen, S.; Ryan, P.
2014-01-01
In the search for earth-like extrasolar planets that has become an important objective for NASA, a critical technology development requirement is to advance deformable mirror (DM) technology. High-actuator-count DMs are critical components for nearly all proposed coronagraph instrument concepts. The science case for exoplanet imaging is strong, and rapid recent advances in test beds with DMs made using microelectromechanical system (MEMS) technology have motivated a number of compelling mission concepts that set technical specifications for their use as wavefront controllers. This research will advance the technology readiness of the MEMS DMs components that are currently at the forefront of the field, and the project will be led by the manufacturer of those components, Boston Micromachines Corporation (BMC). The project aims to demonstrate basic functionality and performance of this key component in critical test environments and in simulated operational environments, while establishing model-based predictions of its performance relative to launch and space environments. Presented will be the current status of the project with modeling and initial test results.
Common and dissociable neural correlates associated with component processes of inductive reasoning.
Jia, Xiuqin; Liang, Peipeng; Lu, Jie; Yang, Yanhui; Zhong, Ning; Li, Kuncheng
2011-06-15
The ability to draw numerical inductive reasoning requires two key cognitive processes, identification and extrapolation. This study aimed to identify the neural correlates of both component processes of numerical inductive reasoning using event-related fMRI. Three kinds of tasks: rule induction (RI), rule induction and application (RIA), and perceptual judgment (Jud) were solved by twenty right-handed adults. Our results found that the left superior parietal lobule (SPL) extending into the precuneus and left dorsolateral prefrontal cortex (DLPFC) were commonly recruited in the two components. It was also observed that the fronto-parietal network was more specific to identification, whereas the striatal-thalamic network was more specific to extrapolation. The findings suggest that numerical inductive reasoning is mediated by the coordination of multiple brain areas including the prefrontal, parietal, and subcortical regions, of which some are more specific to demands on only one of these two component processes, whereas others are sensitive to both. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Thylén, Lars
2006-07-01
The design and manufacture of components and systems underpin the European and indeed worldwide photonics industry. Optical materials and photonic components serve as the basis for systems building at different levels of complexity. In most cases, they perform a key function and dictate the performance of these systems. New products and processes will generate economic activity for the European photonics industry into the 21 st century. However, progress will rely on Europe's ability to develop new and better materials, components and systems. To achieve success, photonic components and systems must: •be reliable and inexpensive •be generic and adaptable •offer superior functionality •be innovative and protected by Intellectual Property •be aligned to market opportunities The challenge in the short-, medium-, and long-term is to put a coordinating framework in place which will make the European activity in this technology area competitive as compared to those in the US and Asia. In the short term the aim should be to facilitate the vibrant and profitable European photonics industry to further develop its ability to commercialize advances in photonic related technologies. In the medium and longer terms the objective must be to place renewed emphasis on materials research and the design and manufacturing of key components and systems to form the critical link between science endeavour and commercial success. All these general issues are highly relevant for the component intensive broadband communications industry. Also relevant for this development is the convergence of data and telecom, where the low cost of data com meets with the high reliability requirements of telecom. The text below is to a degree taken form the Strategic Research Agenda of the Technology Platform Photonics 21 [1], as this contains a concerted effort to iron out a strategy for EU in the area of photonics components and systems.
NASA Technical Reports Server (NTRS)
Fatig, Michael
1993-01-01
Flight operations and the preparation for it has become increasingly complex as mission complexities increase. Further, the mission model dictates that a significant increase in flight operations activities is upon us. Finally, there is a need for process improvement and economy in the operations arena. It is therefore time that we recognize flight operations as a complex process requiring a defined, structured, and life cycle approach vitally linked to space segment, ground segment, and science operations processes. With this recognition, an FOT Tool Kit consisting of six major components designed to provide tools to guide flight operations activities throughout the mission life cycle was developed. The major components of the FOT Tool Kit and the concepts behind the flight operations life cycle process as developed at NASA's GSFC for GSFC-based missions are addressed. The Tool Kit is therefore intended to increase productivity, quality, cost, and schedule performance of the flight operations tasks through the use of documented, structured methodologies; knowledge of past lessons learned and upcoming new technology; and through reuse and sharing of key products and special application programs made possible through the development of standardized key products and special program directories.
Identification of the odour and chemical composition of alumina refinery air emissions.
Coffey, P S; Ioppolo-Armanios, M
2004-01-01
Alcoa World Alumina Australia has undertaken comprehensive air emissions monitoring aimed at characterising and quantifying the complete range of emissions to the atmosphere from Bayer refining of alumina at its Western Australian refineries. To the best of our knowledge, this project represents the most complete air emissions inventory of a Bayer refinery conducted in the worldwide alumina industry. It adds considerably to knowledge of air emission factors available for use in emissions estimation required under national pollutant release and transfer registers (NPRTs), such as the Toxic Releases Inventory, USA, and the National Pollutant Inventory, Australia. It also allows the preliminary identification of the key chemical components responsible for characteristic alumina refinery odours and the contribution of these components to the quality, or hedonic tone, of the odours. The strength and acceptability of refinery odours to employees and neighbours appears to be dependent upon where and in what proportion the odorous gases have been emitted from the refineries. This paper presents the results of the programme and develops a basis for classifying the odour properties of the key emission sources in the alumina-refining process.
Residual stress evaluation of components produced via direct metal laser sintering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kemerling, Brandon; Lippold, John C.; Fancher, Christopher M.
Direct metal laser sintering is an additive manufacturing process which is capable of fabricating three-dimensional components using a laser energy source and metal powder particles. Despite the numerous benefits offered by this technology, the process maturity is low with respect to traditional subtractive manufacturing methods. Relationships between key processing parameters and final part properties are generally lacking and require further development. In this study, residual stresses were evaluated as a function of key process variables. The variables evaluated included laser scan strategy and build plate preheat temperature. Residual stresses were measured experimentally via neutron diffraction and computationally via finite elementmore » analysis. Good agreement was shown between the experimental and computational results. Results showed variations in the residual stress profile as a function of laser scan strategy. Compressive stresses were dominant along the build height (z) direction, and tensile stresses were dominant in the x and y directions. Build plate preheating was shown to be an effective method for alleviating residual stress due to the reduction in thermal gradient.« less
Residual stress evaluation of components produced via direct metal laser sintering
Kemerling, Brandon; Lippold, John C.; Fancher, Christopher M.; ...
2018-03-22
Direct metal laser sintering is an additive manufacturing process which is capable of fabricating three-dimensional components using a laser energy source and metal powder particles. Despite the numerous benefits offered by this technology, the process maturity is low with respect to traditional subtractive manufacturing methods. Relationships between key processing parameters and final part properties are generally lacking and require further development. In this study, residual stresses were evaluated as a function of key process variables. The variables evaluated included laser scan strategy and build plate preheat temperature. Residual stresses were measured experimentally via neutron diffraction and computationally via finite elementmore » analysis. Good agreement was shown between the experimental and computational results. Results showed variations in the residual stress profile as a function of laser scan strategy. Compressive stresses were dominant along the build height (z) direction, and tensile stresses were dominant in the x and y directions. Build plate preheating was shown to be an effective method for alleviating residual stress due to the reduction in thermal gradient.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corum, J.M.; Simpson, W.A. Jr.; Sun, C.T.
1995-07-01
A key unanswered question that must be addressed before polymeric composites will be widely used in automotive structural components is their known durability. Major durability issues are the effects that cyclic loadings, creep, automotive fluid environments, and low-energy impacts have on dimensional stability, strength, and stiffness throughout the required life of a composite component. This report reviews the current state of understanding in each of these areas. It also discusses the limited information that exists on one of the prime candidate materials for automotive structural applications--an isocyanurate reinforced with a continuous strand, swirl mat. Because of the key role thatmore » nondestructive evaluations must play in understanding damage development and progression, a chapter is included on ultrasonic techniques. A final chapter then gives conclusions and recommendations for research needed to resolve the various durability issues. These recommendations will help provide a sound basis for program planning for the Durability of Lightweight Composite Structures Project sponsored by the US Department of Energy in cooperation with the Automotive Composites Consortium of Chrysler, Ford, and General Motors.« less
Documenting Models for Interoperability and Reusability ...
Many modeling frameworks compartmentalize science via individual models that link sets of small components to create larger modeling workflows. Developing integrated watershed models increasingly requires coupling multidisciplinary, independent models, as well as collaboration between scientific communities, since component-based modeling can integrate models from different disciplines. Integrated Environmental Modeling (IEM) systems focus on transferring information between components by capturing a conceptual site model; establishing local metadata standards for input/output of models and databases; managing data flow between models and throughout the system; facilitating quality control of data exchanges (e.g., checking units, unit conversions, transfers between software languages); warning and error handling; and coordinating sensitivity/uncertainty analyses. Although many computational software systems facilitate communication between, and execution of, components, there are no common approaches, protocols, or standards for turn-key linkages between software systems and models, especially if modifying components is not the intent. Using a standard ontology, this paper reviews how models can be described for discovery, understanding, evaluation, access, and implementation to facilitate interoperability and reusability. In the proceedings of the International Environmental Modelling and Software Society (iEMSs), 8th International Congress on Environmental Mod
Buying Health: The Costs of Commercialism and an Alternative Philosophy
Churchill, Larry R.; Churchill, Shelley C.
2013-01-01
This paper argues that commercial forces have steadily encroached into our understanding of medicine and health in modern industrial societies. The impact on the delivery of personal medical services and on common ideas about food and nutrition is profound and largely deleterious to public health. A key component of commercialization is reductionism of medical services, health products and nutritional components into small, marketable units. This reductive force makes both medical services and nutritional components more costly and is corrosive to more holistic concepts of health. We compare commercial and holistic approaches to nutrition in detail and offer an alternative philosophy. Adopting this alternative will require sound public policies that rely less on marketing as a distribution system and that enfranchise individuals to be reflective on their use of medical services, their food and nutrition choices, and their larger health needs. PMID:24596842
[Law and educational components of patient's safety in surgery].
Sazhin, V P; Karsanov, A M; Maskin, S S
2018-01-01
To evaluate law and educational components of patient's safety (PS) in surgery. In order to analyze complex causes of adverse outcomes in surgery we performed an interviewing of 110 surgeons, 42 emergency physicians and 25 health care managers. The main keynote consisted in assessing law and educational components of PS. The study revealed significant professional shortcomings in law PS level and low educational and motivational activity of physicians of all specialties. Multi-faceted nature of PS problem requires multidisciplinary training of modern surgeons not only in the knowledge of key risk factors for adverse outcomes, but also in satisfaction of non-medical expectations of patients. Due to numerous objective reasons Russian surgical school should have the opportunity not to blindly copy the experience of our foreign colleagues, but to scientifically substantiate the development of own national security system both for surgical patients and medical workers themselves.
Brigé, Ann; Motte, Bart; Borloo, Jimmy; Buysschaert, Géraldine; Devreese, Bart; Van Beeumen, Jozef J.
2008-01-01
Summary Many studies have reported microorganisms as efficient biocatalysts for colour removal of dye‐containing industrial wastewaters. We present the first comprehensive study to identify all molecular components involved in decolorization by bacterial cells. Mutants from the model organism Shewanella oneidensis MR‐1, generated by random transposon and targeted insertional mutagenesis, were screened for defects in decolorization of an oxazine and diazo dye. We demonstrate that decolorization is an extracellular reduction process requiring a multicomponent electron transfer pathway that consists of cytoplasmic membrane, periplasmic and outer membrane components. The presence of melanin, a redox‐active molecule excreted by S. oneidensis, was shown to enhance the dye reduction rates. Menaquinones and the cytochrome CymA are the crucial cytoplasmic membrane components of the pathway, which then branches off via a network of periplasmic cytochromes to three outer membrane cytochromes. The key proteins of this network are MtrA and OmcB in the periplasm and outer membrane respectively. A model of the complete dye reduction pathway is proposed in which the dye molecules are reduced by the outer membrane cytochromes either directly or indirectly via melanin. PMID:21261820
Designers workbench: toward real-time immersive modeling
NASA Astrophysics Data System (ADS)
Kuester, Falko; Duchaineau, Mark A.; Hamann, Bernd; Joy, Kenneth I.; Ma, Kwan-Liu
2000-05-01
This paper introduces the Designers Workbench, a semi- immersive virtual environment for two-handed modeling, sculpting and analysis tasks. The paper outlines the fundamental tools, design metaphors and hardware components required for an intuitive real-time modeling system. As companies focus on streamlining productivity to cope with global competition, the migration to computer-aided design (CAD), computer-aided manufacturing, and computer-aided engineering systems has established a new backbone of modern industrial product development. However, traditionally a product design frequently originates form a clay model that, after digitization, forms the basis for the numerical description of CAD primitives. The Designers Workbench aims at closing this technology or 'digital gap' experienced by design and CAD engineers by transforming the classical design paradigm into its fully integrate digital and virtual analog allowing collaborative development in a semi- immersive virtual environment. This project emphasizes two key components form the classical product design cycle: freeform modeling and analysis. In the freedom modeling stage, content creation in the form of two-handed sculpting of arbitrary objects using polygonal, volumetric or mathematically defined primitives is emphasized, whereas the analysis component provides the tools required for pre- and post-processing steps for finite element analysis tasks applied to the created models.
Asokan, G V
2012-11-01
Allied healthcare workers are from diverse professions and the key skill required is providing evidence-based care but this concept has not permeated enough for using it skillfully in their professions. A well structured curriculum in allied health professions is needed to strengthen concerted teaching, research, and practice to empower their professionals and make considerable differences in the lives of people by adopting evidence-based practice. Information sources for allied health professionals have relied on advice of their supervisors and colleagues, personal experiences, authoritative theory and texts for practice. Because of "research-practice" gap, often the use of evidence is not reflected in an individual day to day professional practice. Although allied health professionals work in resource and evidence challenged settings, there are certain barriers and facilitators, which need to be addressed. To implement practice-related research findings and uptake of evidence requires two essential components, namely, practical component and knowledge component. Research bench marking and research metrics for quality assurance and standardization through evidence-based practice will promote academic status and credibility of allied health profession. © 2012 Wiley Publishing Asia Pty Ltd and Chinese Cochrane Center, West China Hospital of Sichuan University.
Validating the Test Procedures Described in UL 1741 SA and IEEE P1547.1: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahmud, Rasel; Hoke, Anderson F; Narang, David J
This paper investigates the test procedures specified in UL 1741 SA and the upcoming revision to IEEE P1547.1. A 550 kVA photovoltaic inverter was chosen for the tests. This research reveals some of key the components to consider while doing certification tests for UL 1741 SA and IEEE P1547.1. This paper also identifies some issues requiring consideration for future releases of the standard, i.e. IEEE P1547.1. This paper investigates the test procedures specified in UL 1741 SA and the upcoming revision to IEEE P1547.1. A 550 kVA photovoltaic inverter was chosen for the tests. This research reveals some of keymore » the components to consider while doing certification tests for UL 1741 SA and IEEE P1547.1. This paper also identifies some issues requiring consideration for future releases of the standard, i.e. IEEE P1547.1.« less
Validation of gamma irradiator controls for quality and regulatory compliance
NASA Astrophysics Data System (ADS)
Harding, Rorry B.; Pinteric, Francis J. A.
1995-09-01
Since 1978 the U.S. Food and Drug Administration (FDA) has had both the legal authority and the Current Good Manufacturing Practice (CGMP) regulations in place to require irradiator owners who process medical devices to produce evidence of Irradiation Process Validation. One of the key components of Irradiation Process Validation is the validation of the irradiator controls. However, it is only recently that FDA audits have focused on this component of the process validation. What is Irradiator Control System Validation? What constitutes evidence of control? How do owners obtain evidence? What is the irradiator supplier's role in validation? How does the ISO 9000 Quality Standard relate to the FDA's CGMP requirement for evidence of Control System Validation? This paper presents answers to these questions based on the recent experiences of Nordion's engineering and product management staff who have worked with several US-based irradiator owners. This topic — Validation of Irradiator Controls — is a significant regulatory compliance and operations issue within the irradiator suppliers' and users' community.
Generation of microfluidic flow using an optically assembled and magnetically driven microrotor
NASA Astrophysics Data System (ADS)
Köhler, J.; Ghadiri, R.; Ksouri, S. I.; Guo, Q.; Gurevich, E. L.; Ostendorf, A.
2014-12-01
The key components in microfluidic systems are micropumps, valves and mixers. Depending on the chosen technology, the realization of these microsystems often requires rotational and translational control of subcomponents. The manufacturing of such active components as well as the driving principle are still challenging tasks. A promising all-optical approach could be the combination of laser direct writing and actuation based on optical forces. However, when higher actuation velocities are required, optical driving might be too slow. Hence, a novel approach based on optical assembling of microfluidic structures and subsequent magnetic actuation is proposed. By applying the optical assembly of microspherical building blocks as the manufacturing method and magnetic actuation, a microrotor was successfully fabricated and tested within a microfluidic channel. The resulting fluid flow was characterized by introducing an optically levitated measuring probe particle. Finally, a freely moving tracer particle visualizes the generated flow. The tracer particle analysis shows average velocities of 0.4-0.5 µm s-1 achieved with the presented technology.
NASA Astrophysics Data System (ADS)
Jendras, P.; Lötsch, K.; von Unwerth, T.
2017-03-01
To reduce emissions and to substitute combustion engines automotive manufacturers, legislature and first users aspire hydrogen fuel cell vehicles. Up to now the focus of research was set on ensuring functionality and increasing durability of fuel cell components. Therefore, expensive materials were used. Contemporary research and development try to substitute these substances by more cost-effective material combinations. The bipolar plate is a key component with the greatest influence on volume and mass of a fuel cell stack and they have to meet complex requirements. They support bending sensitive components of stack, spread reactants over active cell area and form the electrical contact to another cell. Furthermore, bipolar plates dissipate heat of reaction and separate one cell gastight from the other. Consequently, they need a low interfacial contact resistance (ICR) to the gas diffusion layer, high flexural strength, good thermal conductivity and a high durability. To reduce costs stainless steel is a favoured material for bipolar plates in automotive applications. Steel is characterized by good electrical and thermal conductivity but the acid environment requires a high chemical durability against corrosion as well. On the one hand formation of a passivating oxide layer increasing ICR should be inhibited. On the other hand pitting corrosion leading to increased permeation rate may not occur. Therefore, a suitable substrate lamination combination is wanted. In this study material testing methods for bipolar plates are considered.
[Motivation as a basis of mental activity].
Sudakov, K V
2006-01-01
Motivation is considered as a key component of systemic organization of mental activity. Forming on the stage of afferent synthesis, motivation determines activity of the subsequent systemic architectonic stages of mental acts: decision-making, construction of an acceptor of resulting actions, efferent synthesis and the very purposeful action. It is shown that motivation acts as an energy basis of mental activity. The foresight instrument of required resulting actions--an acceptor of resulting actions that, strongly linked to dominating motivation, is a leading guiding component of mental actions. A role of motivation in the processes of perception, memory, movement organization, intellectual and creative activity and their relationship to emotions are considered. A conception of motivation as a basis of intellect is formulated.
A superconducting large-angle magnetic suspension
NASA Technical Reports Server (NTRS)
Downer, James; Goldie, James; Torti, Richard
1991-01-01
The component technologies were developed required for an advanced control moment gyro (CMG) type of slewing actuator for large payloads. The key component of the CMG is a large-angle magnetic suspension (LAMS). The LAMS combines the functions of the gimbal structure, torque motors, and rotor bearings of a CMG. The LAMS uses a single superconducting source coil and an array of cryoresistive control coils to produce a specific output torque more than an order of magnitude greater than conventional devices. The designed and tested LAMS system is based around an available superconducting solenoid, an array of twelve room-temperature normal control coils, and a multi-input, multi-output control system. The control laws were demonstrated for stabilizing and controlling the LAMS system.
The LAM space active optics facility
NASA Astrophysics Data System (ADS)
Engel, C.; Ferrari, M.; Hugot, E.; Escolle, C.; Bonnefois, A.; Bernot, M.; Bret-Dibat, T.; Carlavan, M.; Falzon, F.; Fusco, T.; Laubier, D.; Liotard, A.; Michau, V.; Mugnier, L.
2017-11-01
The next generation of large lightweight space telescopes will require the use of active optics systems to enhance the performance and increase the spatial resolution. Since almost 10 years now, LAM, CNES, THALES and ONERA conjugate their experience and efforts for the development of space active optics through the validation of key technological building blocks: correcting devices, metrology components and control strategies. This article presents the work done so far on active correcting mirrors and wave front sensing, as well as all the facilities implemented. The last part of this paper focuses on the merging of the MADRAS and RASCASSE test-set up. This unique combination will provide to the active optics community an automated, flexible and versatile facility able to feed and characterise space active optics components.
Müller, Thomas J J; Lessing, Timo; van Mark, Hauke
2018-05-04
Substituted 1H-1,2,3-triazol-4-yl-pyrrolo[2,3-b]pyridines are efficiently prepared by a one-pot coupling-cyclization-desilylation-CuAAC-sequence in the sense of a consecutive three-component fashion. The key feature of this novel de novo formation of azole and triazole anellation is the sequentially Pd/Cu-catalyzed process employing tri(iso-propyl)silylbutadiyne (TIPS-butadiyne) as a four-carbon building block. In addition, the sequence can be expanded in a four-component fashion also employing the in situ formation of the require azides. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kot, Wing K.; Pegg, Ian L.; Brandys, Marek
One of the primary roles of waste pretreatment at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is to separate the majority of the radioactive components from the majority of the nonradioactive components in retrieved tank wastes, producing a high level waste (HLW) stream and a low activity waste (LAW) stream. This separation process is a key element in the overall strategy to reduce the volume of HLW that requires vitrification and subsequent disposal in a national deep geological repository for high level nuclear waste. After removal of the radioactive constituents, the LAW stream, which has a much largermore » volume but smaller fraction of radioactivity than the HLW stream, will be immobilized and disposed of in near surface facilities at the Hanford site.« less
Integrating bioethics into postgraduate medical education: the University of Toronto model.
Howard, Frazer; McKneally, Martin F; Levin, Alex V
2010-06-01
Bioethics training is a vital component of postgraduate medical education and required by accreditation organizations in Canada and the United States. Residency program ethics curricula should ensure trainees develop core knowledge, skills, and competencies, and should encourage lifelong learning and teaching of bioethics. Many physician-teachers, however, feel unprepared to teach bioethics and face challenges in developing and implementing specialty-specific bioethics curricula. The authors present, as one model, the innovative strategies employed by the University of Toronto Joint Centre for Bioethics. They postulate that centralized support is a key component to ensure the success of specialty-specific bioethics teaching, to reinforce the importance of ethics in medical training, and to ensure it is not overshadowed by other educational concerns.
Advanced Rotorcraft Transmission (ART) program-Boeing helicopters status report
NASA Technical Reports Server (NTRS)
Lenski, Joseph W., Jr.; Valco, Mark J.
1991-01-01
The Advanced Rotorcraft Transmission (ART) program is structured to incorporate key emerging material and component technologies into an advanced rotorcraft transmission with the intention of making significant improvements in the state of the art (SOA). Specific objectives of ART are: (1) Reduce transmission weight by 25 pct.; (2) Reduce transmission noise by 10 dB; and (3) Improve transmission life and reliability, while extending Mean Time Between Removal to 5000 hr. Boeing selected a transmission sized for the Tactical Tilt Rotor (TTR) aircraft which meets the Future Air Attack Vehicle (FAVV) requirements. Component development testing will be conducted to evaluate the high risk concepts prior to finalizing the advanced transmission configuration. The results of tradeoff studies and development test which were completed are summarized.
Insights into the role of neuronal glucokinase
De Backer, Ivan; Hussain, Sufyan S.; Gardiner, James V.
2016-01-01
Glucokinase is a key component of the neuronal glucose-sensing mechanism and is expressed in brain regions that control a range of homeostatic processes. In this review, we detail recently identified roles for neuronal glucokinase in glucose homeostasis and counterregulatory responses to hypoglycemia and in regulating appetite. We describe clinical implications from these advances in our knowledge, especially for developing novel treatments for diabetes and obesity. Further research required to extend our knowledge and help our efforts to tackle the diabetes and obesity epidemics is suggested. PMID:27189932
Havill, Nancy L
2013-05-01
Because increasing evidence suggests that the environment plays a role in transmission of health care-associated infections, more attention is focusing on environmental cleaning and improving its efficacy. Creating and sustaining a successful cleaning and disinfection program should include several key components using a bundle approach and requires ongoing commitment within the institution. Copyright © 2013 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
Off Grid Photovoltaic Wastewater Treatment and Management Lagoons
NASA Technical Reports Server (NTRS)
LaPlace, Lucas A.; Moody, Bridget D.
2015-01-01
The SSC wastewater treatment system is comprised of key components that require a constant source of electrical power or diesel fuel to effectively treat the wastewater. In alignment with the President's new Executive Order 13653, Planning for Federal Sustainability in the Next Decade, this project aims to transform the wastewater treatment system into a zero emissions operation by incorporating the advantages of an off grid, photovoltaic system. Feasibility of implementation will be based on an analytical evaluation of electrical data, fuel consumption, and site observations.
NASA Technical Reports Server (NTRS)
1977-01-01
A slotted waveguide planar array was established as the baseline design for the spaceborne transmitter antenna. Key aspects of efficient energy conversion at both ends of the power transfer link were analyzed and optimized alternate approaches in the areas of antenna and tube design are discussed. An integrated design concept was developed which meets design requirements, observes structural and thermal constraints, exhibits good performance and was developed in adequate depth to permit cost estimating at the subsystem/component level.
Status of 20 kHz space station power distribution technology
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1988-01-01
Power Distribution on the NASA Space Station will be accomplished by a 20 kHz sinusoidal, 440 VRMS, single phase system. In order to minimize both system complexity and the total power coversion steps required, high frequency power will be distributed end-to-end in the system. To support the final design of flight power system hardware, advanced development and demonstrations have been made on key system technologies and components. The current status of this program is discussed.
Structural and functional diversity of cadherin at the adherens junction
2011-01-01
Adhesion between cells is essential to the evolution of multicellularity. Indeed, morphogenesis in animals requires firm but flexible intercellular adhesions that are mediated by subcellular structures like the adherens junction (AJ). A key component of AJs is classical cadherins, a group of transmembrane proteins that maintain dynamic cell–cell associations in many animal species. An evolutionary reconstruction of cadherin structure and function provides a comprehensive framework with which to appreciate the diversity of morphogenetic mechanisms in animals. PMID:21708975
West Virginia hospital preparedness: vision for the future.
Rose, D William; Shorr, Terry; Veazey, Amy Johnson
2006-01-01
The ability of hospitals to respond to individuals who have been chemically contaminated or victims of biologic warfare has been limited. This article reviews the current state of readiness of West Virginia hospitals and how new requirements have resulted in better preparedness for future events. Increased isolation capacity, hospital decontamination units and stockpiling of medications, forward deployment of chemical antidotes, electronic disease surveillance, and advanced credentialing of medical personnel are all key components in the overall plan for the state's preparedness.
Oldenhuis, Hilbrand KE; de Groot, Martijn; Polstra, Louis; Velthuijsen, Hugo; van Gemert-Pijnen, Julia EWC
2017-01-01
Background The combination of self-tracking and persuasive eCoaching in automated interventions is a new and promising approach for healthy lifestyle management. Objective The aim of this study was to identify key components of self-tracking and persuasive eCoaching in automated healthy lifestyle interventions that contribute to their effectiveness on health outcomes, usability, and adherence. A secondary aim was to identify the way in which these key components should be designed to contribute to improved health outcomes, usability, and adherence. Methods The scoping review methodology proposed by Arskey and O’Malley was applied. Scopus, EMBASE, PsycINFO, and PubMed were searched for publications dated from January 1, 2013 to January 31, 2016 that included (1) self-tracking, (2) persuasive eCoaching, and (3) healthy lifestyle intervention. Results The search resulted in 32 publications, 17 of which provided results regarding the effect on health outcomes, 27 of which provided results regarding usability, and 13 of which provided results regarding adherence. Among the 32 publications, 27 described an intervention. The most commonly applied persuasive eCoaching components in the described interventions were personalization (n=24), suggestion (n=19), goal-setting (n=17), simulation (n=17), and reminders (n=15). As for self-tracking components, most interventions utilized an accelerometer to measure steps (n=11). Furthermore, the medium through which the user could access the intervention was usually a mobile phone (n=10). The following key components and their specific design seem to influence both health outcomes and usability in a positive way: reduction by setting short-term goals to eventually reach long-term goals, personalization of goals, praise messages, reminders to input self-tracking data into the technology, use of validity-tested devices, integration of self-tracking and persuasive eCoaching, and provision of face-to-face instructions during implementation. In addition, health outcomes or usability were not negatively affected when more effort was requested from participants to input data into the technology. The data extracted from the included publications provided limited ability to identify key components for adherence. However, one key component was identified for both usability and adherence, namely the provision of personalized content. Conclusions This scoping review provides a first overview of the key components in automated healthy lifestyle interventions combining self-tracking and persuasive eCoaching that can be utilized during the development of such interventions. Future studies should focus on the identification of key components for effects on adherence, as adherence is a prerequisite for an intervention to be effective. PMID:28765103
Manufacturing of glassy thin shell for adaptive optics: results achieved
NASA Astrophysics Data System (ADS)
Poutriquet, F.; Rinchet, A.; Carel, J.-L.; Leplan, H.; Ruch, E.; Geyl, R.; Marque, G.
2012-07-01
Glassy thin shells are key components for the development of adaptive optics and are part of future & innovative projects such as ELT. However, manufacturing thin shells is a real challenge. Even though optical requirements for the front face - or optical face - are relaxed compared to conventional passive mirrors, requirements concerning thickness uniformity are difficult to achieve. In addition, process has to be completely re-defined as thin mirror generates new manufacturing issues. In particular, scratches and digs requirement is more difficult as this could weaken the shell, handling is also an important issue due to the fragility of the mirror. Sagem, through REOSC program, has recently manufactured different types of thin shells in the frame of European projects: E-ELT M4 prototypes and VLT Deformable Secondary Mirror (VLT DSM).
Progress and prospect of true steady state operation with RF
NASA Astrophysics Data System (ADS)
Jacquinot, Jean
2017-10-01
Operation of fusion confinement experiments in full steady state is a major challenge for the development towards fusion energy. Critical to achieving this goal is the availability of actively cooled plasma facing components and auxiliary systems withstanding the very harsh plasma environment. Equally challenging are physics issues related to achieving plasma conditions and current drive efficiency required by reactor plasmas. RF heating and current drive systems have been key instruments for obtaining the progress made until today towards steady state. They hold all the records of long pulse plasma operation both in tokamaks and in stellarators. Nevertheless much progress remains to be made in particular for integrating all the requirements necessary for maintaining in steady state the density and plasma pressure conditions of a reactor. This is an important stated aim of ITER and of devices equipped with superconducting magnets. After considering the present state of the art, this review will address the key issues which remain to be solved both in physics and technology for reaching this goal. They constitute very active subjects of research which will require much dedicated experimentation in the new generation of superconducting devices which are now in operation or becoming close to it.
Advancing antimicrobial stewardship: Summary of the 2015 CIDSC Report.
Khan, F; Arthur, J; Maidment, L; Blue, D
2016-11-03
Antimicrobial resistance (AMR) is recognized as an important global public health concern that has a cross-cutting impact on human health, animal health, food and agriculture and the environment. The Communicable and Infectious Disease Steering Committee (CIDSC) of the Pan-Canadian Public Health Network (PHN) created a Task Group on Antimicrobial Stewardship to look at this issue from a Canadian perspective. To summarize the key findings of the Task Group Report that identified core components of antimicrobial stewardship programs, best practices, key challenges, gaps and recommendations to advance stewardship across jurisdictions. Search strategies were developed to identify scientific literature, grey literature and relevant websites on antimicrobial stewardship. The information was reviewed and based on this evidence, expert opinion and consensus-building, the Task Group identified core components, best practices, key challenges and gaps and developed recommendations to advance stewardship in Canada. The four components of a promising antimicrobial stewardship initiative were: leadership, interventions, monitoring/evaluation and future research. Best practices include a multi-sectoral/multipronged approach involving a wide range of stakeholders at the national, provincial/territorial, local and health care organizational levels. Key challenges and gaps identified were: the success and sustainability of stewardship undertakings require appropriate and sustained resourcing and expertise; there is limited evidence about how to effectively implement treatment guidance; and there is a challenge in ensuring accessibility, standardization and consistency of use among professionals. : Recommendations to the CIDSC about how to advance stewardship across jurisdictions included the following: institute a national infrastructure; develop best practices to implement stewardship programs; develop education and promote awareness; establish consistent evidence-based guidance, resources, tools and training; mandate the incorporation of stewardship education; develop audit and feedback tools; establish benchmarks and performance targets for stewardship; and conduct timely evaluation of stewardship programs. Findings of this report will inform a more systematic approach to addressing antimicrobial stewardship Canada-wide.
How to: Surveillance of Clostridium difficile infections.
Krutova, M; Kinross, P; Barbut, F; Hajdu, A; Wilcox, M H; Kuijper, E J
2018-05-01
The increasing incidence of Clostridium difficile infections (CDI) in healthcare settings in Europe since 2003 has affected both patients and healthcare systems. The implementation of effective CDI surveillance is key to enable monitoring of the occurrence and spread of C. difficile in healthcare and the timely detection of outbreaks. The aim of this review is to provide a summary of key components of effective CDI surveillance and to provide some practical recommendations. We also summarize the recent and current national CDI surveillance activities, to illustrate strengths and weaknesses of CDI surveillance in Europe. For the definition of key components of CDI surveillance, we consulted the current European Society of Clinical Microbiology and Infectious Diseases (ESCMID) CDI-related guidance documents and the European Centre for Disease Prevention and Control (ECDC) protocol for CDI surveillance in acute care hospitals. To summarize the recent and current national CDI surveillance activities, we discussed international multicentre CDI surveillance studies performed in 2005-13. In 2017, we also performed a new survey of existing CDI surveillance systems in 33 European countries. Key components for CDI surveillance are appropriate case definitions of CDI, standardized CDI diagnostics, agreement on CDI case origin definition, and the presentation of CDI rates with well-defined numerators and denominators. Incorporation of microbiological data is required to provide information on prevailing PCR ribotypes and antimicrobial susceptibility to first-line CDI treatment drugs. In 2017, 20 European countries had a national CDI surveillance system and 21 countries participated in ECDC-coordinated CDI surveillance. Since 2014, the number of centres with capacity for C. difficile typing has increased to 35 reference or central laboratories in 26 European countries. Incidence rates of CDI, obtained from a standardized CDI surveillance system, can be used as an important quality indicator of healthcare at hospital as well as country level. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Isothermal dendritic growth: A low gravity experiment
NASA Technical Reports Server (NTRS)
Glicksman, M. E.; Hahn, R. C.; Lograsso, T. A.; Rubinstein, E. R.; Selleck, M. E.; Winsa, E.
1988-01-01
The Isothermal Dendritic Growth Experiment is an active crystal growth experiment designed to test dendritic growth theory at low undercoolings where convection prohibits such studies at 1 g. The experiment will be essentially autonomous, though limited in-flight interaction through a computer interface is planned. One of the key components of the apparatus will be a crystal growth chamber capable of achieving oriented single crystal dendritic growth. Recent work indicates that seeding the chamber with a crystal of the proper orientation will not, in and of itself, be sufficient to meet this requirement. Additional flight hardware and software required for the STS flight experiment are currently being developed at NASA Lewis Research Center and at Rensselaer Polytechnic Institute.
DEPS-1 promotes P-granule assembly and RNA interference in C. elegans germ cells
Spike, Caroline A.; Bader, Jason; Reinke, Valerie; Strome, Susan
2008-01-01
P granules are germ-cell-specific cytoplasmic structures containing RNA and protein, and required for proper germ cell development in C. elegans. PGL-1 and GLH-1 were previously identified as critical components of P granules. We have identified a new P-granule-associated protein, DEPS-1, the loss of which disrupts P-granule structure and function. DEPS-1 is required for the proper localization of PGL-1 to P granules, the accumulation of glh-1 mRNA and protein, and germ cell proliferation and fertility at elevated temperatures. In addition, DEPS-1 is required for RNA interference (RNAi) of germline-expressed genes, possibly because DEPS-1 promotes the accumulation of RDE-4, a dsRNA-binding protein required for RNAi. A genome wide analysis of gene expression in deps-1 mutant germ lines identified additional targets of DEPS-1 regulation, many of which are also regulated by the RNAi factor RDE-3. Our studies suggest that DEPS-1 is a key component of the P-granule assembly pathway and that its roles include promoting accumulation of some mRNAs, such as glh-1 and rde-4, and reducing accumulation of other mRNAs, perhaps by collaborating with RDE-3 to generate endogenous short interfering RNAs (endo-siRNAs). PMID:18234720
DEPS-1 promotes P-granule assembly and RNA interference in C. elegans germ cells.
Spike, Caroline A; Bader, Jason; Reinke, Valerie; Strome, Susan
2008-03-01
P granules are germ-cell-specific cytoplasmic structures containing RNA and protein, and required for proper germ cell development in C. elegans. PGL-1 and GLH-1 were previously identified as critical components of P granules. We have identified a new P-granule-associated protein, DEPS-1, the loss of which disrupts P-granule structure and function. DEPS-1 is required for the proper localization of PGL-1 to P granules, the accumulation of glh-1 mRNA and protein, and germ cell proliferation and fertility at elevated temperatures. In addition, DEPS-1 is required for RNA interference (RNAi) of germline-expressed genes, possibly because DEPS-1 promotes the accumulation of RDE-4, a dsRNA-binding protein required for RNAi. A genome wide analysis of gene expression in deps-1 mutant germ lines identified additional targets of DEPS-1 regulation, many of which are also regulated by the RNAi factor RDE-3. Our studies suggest that DEPS-1 is a key component of the P-granule assembly pathway and that its roles include promoting accumulation of some mRNAs, such as glh-1 and rde-4, and reducing accumulation of other mRNAs, perhaps by collaborating with RDE-3 to generate endogenous short interfering RNAs (endo-siRNAs).
Reboul, Angéline; Lemaître, Nadine; Titecat, Marie; Merchez, Maud; Deloison, Gaspard; Ricard, Isabelle; Pradel, Elizabeth; Marceau, Michaël; Sebbane, Florent
2014-11-01
Plague is transmitted by fleas or contaminated aerosols. To successfully produce disease, the causal agent (Yersinia pestis) must rapidly sense and respond to rapid variations in its environment. Here, we investigated the role of 2-component regulatory systems (2CSs) in plague because the latter are known to be key players in bacterial adaptation to environmental change. Along with the previously studied PhoP-PhoQ system, OmpR-EnvZ was the only one of Y. pestis' 23 other 2CSs required for production of bubonic, septicemic, and pneumonic plague. In vitro, OmpR-EnvZ was needed to counter serum complement and leukocytes but was not required for the secretion of antiphagocyte exotoxins. In vivo, Y. pestis lacking OmpR-EnvZ did not induce an early immune response in the skin and was fully virulent in neutropenic mice. We conclude that, throughout the course of Y. pestis infection, OmpR-EnvZ is required to counter toxic effectors secreted by polymorphonuclear leukocytes in the tissues. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
SMG-1 and mTORC1 Act Antagonistically to Regulate Response to Injury and Growth in Planarians
González-Estévez, Cristina; Felix, Daniel A.; Smith, Matthew D.; Paps, Jordi; Morley, Simon J.; James, Victoria; Sharp, Tyson V.; Aboobaker, A. Aziz
2012-01-01
Planarian flatworms are able to both regenerate their whole bodies and continuously adapt their size to nutrient status. Tight control of stem cell proliferation and differentiation during these processes is the key feature of planarian biology. Here we show that the planarian homolog of the phosphoinositide 3-kinase-related kinase (PIKK) family member SMG-1 and mTOR complex 1 components are required for this tight control. Loss of smg-1 results in a hyper-responsiveness to injury and growth and the formation of regenerative blastemas that remain undifferentiated and that lead to lethal ectopic outgrowths. Invasive stem cell hyper-proliferation, hyperplasia, hypertrophy, and differentiation defects are hallmarks of this uncontrolled growth. These data imply a previously unappreciated and novel physiological function for this PIKK family member. In contrast we found that planarian members of the mTOR complex 1, tor and raptor, are required for the initial response to injury and blastema formation. Double smg-1 RNAi experiments with tor or raptor show that abnormal growth requires mTOR signalling. We also found that the macrolide rapamycin, a natural compound inhibitor of mTORC1, is able to increase the survival rate of smg-1 RNAi animals by decreasing cell proliferation. Our findings support a model where Smg-1 acts as a novel regulator of both the response to injury and growth control mechanisms. Our data suggest the possibility that this may be by suppressing mTOR signalling. Characterisation of both the planarian mTORC1 signalling components and another PIKK family member as key regulators of regeneration and growth will influence future work on regeneration, growth control, and the development of anti-cancer therapies that target mTOR signalling. PMID:22479207
Spacesuit Portable Life Support System Breadboard (PLSS 1.0) Development and Test Results
NASA Technical Reports Server (NTRS)
Vogel, Matt R.; Watts, Carly
2011-01-01
A multi-year effort has been carried out at NASA-JSC to develop an advanced Extravehicular Activity (EVA) PLSS design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station (ISS) Extravehicular Mobility Unit (EMU) PLSS, the advanced PLSS comprises of three subsystems required to sustain the crew during EVA including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test rig that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, ventilation loop fan, Rapid Cycle Amine (RCA) swingbed, and Spacesuit Water Membrane Evaporator (SWME). Testing accumulated 239 hours over 45 days, while executing 172 test points. Specific PLSS 1.0 test objectives assessed during this testing include: confirming key individual components perform in a system level test as they have performed during component level testing; identifying unexpected system-level interactions; operating PLSS 1.0 in nominal steady-state EVA modes to baseline subsystem performance with respect to metabolic rate, ventilation loop pressure and flow rate, and environmental conditions; simulating nominal transient EVA operational scenarios; simulating contingency EVA operational scenarios; and further evaluating individual technology development components. Successful testing of the PLSS 1.0 provided a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected; furthermore, many system responses trended in accordance with pre-test predictions.
Development of Airport Surface Required Navigation Performance (RNP)
NASA Technical Reports Server (NTRS)
Cassell, Rick; Smith, Alex; Hicok, Dan
1999-01-01
The U.S. and international aviation communities have adopted the Required Navigation Performance (RNP) process for defining aircraft performance when operating the en-route, approach and landing phases of flight. RNP consists primarily of the following key parameters - accuracy, integrity, continuity, and availability. The processes and analytical techniques employed to define en-route, approach and landing RNP have been applied in the development of RNP for the airport surface. To validate the proposed RNP requirements several methods were used. Operational and flight demonstration data were analyzed for conformance with proposed requirements, as were several aircraft flight simulation studies. The pilot failure risk component was analyzed through several hypothetical scenarios. Additional simulator studies are recommended to better quantify crew reactions to failures as well as additional simulator and field testing to validate achieved accuracy performance, This research was performed in support of the NASA Low Visibility Landing and Surface Operations Programs.
Design requirements for ubiquitous computing environments for healthcare professionals.
Bång, Magnus; Larsson, Anders; Eriksson, Henrik
2004-01-01
Ubiquitous computing environments can support clinical administrative routines in new ways. The aim of such computing approaches is to enhance routine physical work, thus it is important to identify specific design requirements. We studied healthcare professionals in an emergency room and developed the computer-augmented environment NOSTOS to support teamwork in that setting. NOSTOS uses digital pens and paper-based media as the primary input interface for data capture and as a means of controlling the system. NOSTOS also includes a digital desk, walk-up displays, and sensor technology that allow the system to track documents and activities in the workplace. We propose a set of requirements and discuss the value of tangible user interfaces for healthcare personnel. Our results suggest that the key requirements are flexibility in terms of system usage and seamless integration between digital and physical components. We also discuss how ubiquitous computing approaches like NOSTOS can be beneficial in the medical workplace.
Holland, William L.; Bikman, Benjamin T.; Wang, Li-Ping; Yuguang, Guan; Sargent, Katherine M.; Bulchand, Sarada; Knotts, Trina A.; Shui, Guanghou; Clegg, Deborah J.; Wenk, Markus R.; Pagliassotti, Michael J.; Scherer, Philipp E.; Summers, Scott A.
2011-01-01
Obesity is associated with an enhanced inflammatory response that exacerbates insulin resistance and contributes to diabetes, atherosclerosis, and cardiovascular disease. One mechanism accounting for the increased inflammation associated with obesity is activation of the innate immune signaling pathway triggered by TLR4 recognition of saturated fatty acids, an event that is essential for lipid-induced insulin resistance. Using in vitro and in vivo systems to model lipid induction of TLR4-dependent inflammatory events in rodents, we show here that TLR4 is an upstream signaling component required for saturated fatty acid–induced ceramide biosynthesis. This increase in ceramide production was associated with the upregulation of genes driving ceramide biosynthesis, an event dependent of the activity of the proinflammatory kinase IKKβ. Importantly, increased ceramide production was not required for TLR4-dependent induction of inflammatory cytokines, but it was essential for TLR4-dependent insulin resistance. These findings suggest that sphingolipids such as ceramide might be key components of the signaling networks that link lipid-induced inflammatory pathways to the antagonism of insulin action that contributes to diabetes. PMID:21490391
Schnell, Oliver; Hinzmann, Rolf; Kulzer, Bernd; Freckmann, Guido; Erbach, Michael; Lodwig, Volker; Heinemann, Lutz
2013-01-01
Reliability of blood glucose (BG) measurements is a prerequisite for successful diabetes management. Publications on the evaluation of self-monitored glucose values, however, are frequently characterized by a confusion in terminology. We provide an inventory of key terms such as accuracy, trueness, precision, traceability, calibration, and matrix effect to avoid future misunderstanding. Definitions are taken from the metrological literature and international norms and explained in a language intended for nonspecialists in metrology. The terms are presented in light of the need to apply generally accepted definitions. In addition, a description of requirements and components for a sound evaluation of BG measurement systems is presented. These factors will also enable improvement in future comparisons of study results. PMID:24351185
Link, Jana; Jahn, Daniel; Alsheimer, Manfred
2015-01-01
Numerous studies in the past years provided definite evidence that the nuclear envelope is much more than just a simple barrier. It rather constitutes a multifunctional platform combining structural and dynamic features to fulfill many fundamental functions such as chromatin organization, regulation of transcription, signaling, but also structural duties like maintaining general nuclear architecture and shape. One additional and, without doubt, highly impressive aspect is the recently identified key function of selected nuclear envelope components in driving meiotic chromosome dynamics, which in turn is essential for accurate recombination and segregation of the homologous chromosomes. Here, we summarize the recent work identifying new key players in meiotic telomere attachment and movement and discuss the latest advances in our understanding of the actual function of the meiotic nuclear envelope.
Experimental Implementation of a Quantum Optical State Comparison Amplifier
NASA Astrophysics Data System (ADS)
Donaldson, Ross J.; Collins, Robert J.; Eleftheriadou, Electra; Barnett, Stephen M.; Jeffers, John; Buller, Gerald S.
2015-03-01
We present an experimental demonstration of a practical nondeterministic quantum optical amplification scheme that employs two mature technologies, state comparison and photon subtraction, to achieve amplification of known sets of coherent states with high fidelity. The amplifier uses coherent states as a resource rather than single photons, which allows for a relatively simple light source, such as a diode laser, providing an increased rate of amplification. The amplifier is not restricted to low amplitude states. With respect to the two key parameters, fidelity and the amplified state production rate, we demonstrate significant improvements over previous experimental implementations, without the requirement of complex photonic components. Such a system may form the basis of trusted quantum repeaters in nonentanglement-based quantum communications systems with known phase alphabets, such as quantum key distribution or quantum digital signatures.
International Space Station Major Constituent Analyzer On-Orbit Performance
NASA Technical Reports Server (NTRS)
Gardner, Ben D.; Erwin, Phillip M.; Thoresen, Souzan; Granahan, John; Matty, Chris
2012-01-01
The Major Constituent Analyzer is a mass spectrometer based system that measures the major atmospheric constituents on the International Space Station. A number of limited-life components require periodic changeout, including the ORU 02 analyzer and the ORU 08 Verification Gas Assembly. Over the past two years, two ORU 02 analyzer assemblies have operated nominally while two others have experienced premature on-orbit failures. These failures as well as nominal performances demonstrate that ORU 02 performance remains a key determinant of MCA performance and logistical support. It can be shown that monitoring several key parameters can maximize the capacity to monitor ORU health and properly anticipate end of life. Improvements to ion pump operation and ion source tuning are expected to improve lifetime performance of the current ORU 02 design.
Barriers and facilitators to establishing a national public health observatory.
Pooransingh, Shalini; Misir, Akenath; Ramdath, Dan; Ramsewak, Samuel; Jaglal, Susan; Cameron, Cathy; Goel, Vivek
2015-11-01
To determine what stakeholders perceive as barriers and facilitators to creating a national public health observatory (PHO) in Trinidad and Tobago. A descriptive study was conducted based on 15 key informant interviews carried out from April to September 2013. The key informants worked within the health care sector in Trinidad and Tobago. Using a semi-structured interview guide, information was collected on knowledge, attitudes, and beliefs about creating a PHO; barriers and facilitators to creating and sustaining a PHO; legal considerations; and human resource and information technology requirements. Common themes of the responses were identified. The majority of participants supported the development of a national PHO, recognized its value in informing their work, and indicated that a national PHO could 1) provide information to support evidence-informed decision-making for health policy and strategic planning; 2) facilitate data management by establishing data policies, procedures, and standards; 3) increase the use of data by synthesizing and disseminating information; and 4) provide data for benchmarking. However, a number of barriers were identified, including 1) the perception that data collection is not valued; 2) untimely availability of data; 3) limited data synthesis, dissemination, and utilization to inform decision-making; and 4) challenges related to the allocation of human resources and existing information technology. Key informants support the development of a national PHO in Trinidad and Tobago. The findings align well within the components of the conceptual framework for establishing national health observatories. A stepwise approach to establishing a national PHO in Trinidad and Tobago, beginning with structural components and followed by functional components, is recommended. A national PHO in Trinidad and Tobago could serve as a model for other countries in the Caribbean.
Tomolo, A M; Lawrence, R H; Aron, D C
2009-10-01
In 2002, the Accreditation Council for Graduate Medical Education (ACGME) introduced a new requirement: residents must demonstrate competency in Practice-Based Learning and Improvement (PBLI). Training in this domain is still not consistently integrated into programmes, with few, if any, adequately going beyond knowledge of basic content and addressing all components of the requirement. To summarise the implementation of a PBLI curriculum designed to address all components of the requirement and to evaluate the impact on the practice system. A case-study approach was used for identifying and evaluating the steps for delivering the curriculum, along with the Model for Improvement's successive Plan-Do-Study-Act (PDSA) cycles (July 2004-May 2006). Notes from curriculum development meetings, notes and presentation slides made by teams about their projects, resident curriculum exit evaluations curriculum and interviews. Residents reported high levels of comfort by applying PBLI-related knowledge and skills and that the curriculum improved their ability to do various PBLI tasks. The involvement of multiple stakeholders increased. Twelve of the 15 teams' suggestions with practical systems-relevant outcomes were implemented and sustained beyond residents' project periods. While using the traditional PDSA cycles was helpful, there were limitations. A PBLI curriculum that is centred around practice-based quality improvement projects can fulfil the objectives of this ACGME competency while accomplishing sustained outcomes in quality improvement. A comprehensive curriculum is an investment but offers organisational rewards. We propose a more realistic and informative representation of rapid PDSA cycle changes.
Tomolo, A M; Lawrence, R H; Aron, D C
2009-06-01
In 2002, the Accreditation Council for Graduate Medical Education (ACGME) introduced a new requirement: residents must demonstrate competency in Practice-Based Learning and Improvement (PBLI). Training in this domain is still not consistently integrated into programmes, with few, if any, adequately going beyond knowledge of basic content and addressing all components of the requirement. To summarise the implementation of a PBLI curriculum designed to address all components of the requirement and to evaluate the impact on the practice system. A case-study approach was used for identifying and evaluating the steps for delivering the curriculum, along with the Model for Improvement's successive Plan-Do-Study-Act (PDSA) cycles (July 2004-May 2006). Notes from curriculum development meetings, notes and presentation slides made by teams about their projects, resident curriculum exit evaluations curriculum and interviews. Residents reported high levels of comfort by applying PBLI-related knowledge and skills and that the curriculum improved their ability to do various PBLI tasks. The involvement of multiple stakeholders increased. Twelve of the 15 teams' suggestions with practical systems-relevant outcomes were implemented and sustained beyond residents' project periods. While using the traditional PDSA cycles was helpful, there were limitations. A PBLI curriculum that is centred around practice-based quality improvement projects can fulfil the objectives of this ACGME competency while accomplishing sustained outcomes in quality improvement. A comprehensive curriculum is an investment but offers organisational rewards. We propose a more realistic and informative representation of rapid PDSA cycle changes.
Güler, Özgür; Yaniv, Ziv
2012-01-01
Teaching the key technical aspects of image-guided interventions using a hands-on approach is a challenging task. This is primarily due to the high cost and lack of accessibility to imaging and tracking systems. We provide a software and data infrastructure which addresses both challenges. Our infrastructure allows students, patients, and clinicians to develop an understanding of the key technologies by using them, and possibly by developing additional components and integrating them into a simple navigation system which we provide. Our approach requires minimal hardware, LEGO blocks to construct a phantom for which we provide CT scans, and a webcam which when combined with our software provides the functionality of a tracking system. A premise of this approach is that tracking accuracy is sufficient for our purpose. We evaluate the accuracy provided by a consumer grade webcam and show that it is sufficient for educational use. We provide an open source implementation of all the components required for a basic image-guided navigation as part of the Image-Guided Surgery Toolkit (IGSTK). It has long been known that in education there is no substitute for hands-on experience, to quote Sophocles, "One must learn by doing the thing; for though you think you know it, you have no certainty, until you try.". Our work provides this missing capability in the context of image-guided navigation. Enabling a wide audience to learn and experience the use of a navigation system.
Stroke disease management--a framework for comprehensive stroke care.
Venketasubramanian, N; Chan, B P L; Lim, E; Hafizah, Noor; Goh, K T; Lew, Y J; Loo, L; Yin, A; Widjaja, L; Loke, W C; Kuick, G; Lee, N L; Ong, B S; Koh, S F; Heng, B H; Cheah, J
2002-07-01
Disease management is an approach to patient care that coordinates medical resources for the patient across the entire healthcare delivery system throughout the lifetime of the patient with the disease. Stroke is suitable for disease management as it is a well-known disease with a high prevalence, high cost, variable practice pattern, poor clinical outcome, and managed by a non-integrated healthcare system. It has measurable and actionable outcomes, with available local expertise and support of the Ministry of Health. Developing the programme requires a multidisciplinary team, baseline data on target populations and healthcare services, identification of core components, collaboration with key stakeholders, development of evidence-based clinical practice guidelines and carepaths, institution of care coordinators, use of information technology and continuous quality improvement to produce an effective plan. Core components include public education, risk factor screening and management, primary care and specialist clinics, acute stroke units, inpatient and outpatient rehabilitation facilities, and supportive community services including medical, nursing, therapy, home help and support groups for patients and carers. The family physician plays a key role. Coordination of services is best done by a network of hospital and community-based care managers, and is enhanced by a coordinating call centre. Continuous quality improvement is required, with audit of processes and outcomes, facilitated by a disease registry. Pitfalls include inappropriate exclusion of deserving patients, misuse, loss of physician and patient independence, over-estimation of benefits, and care fragmentation. Collaboration and cooperative among all parties will help ensure a successful and sustainable programme.
Linares-Clemente, Pedro; Rozas, José L; Mircheski, Josif; García-Junco-Clemente, Pablo; Martínez-López, José A; Nieto-González, José L; Vázquez, M Eugenio; Pintado, C Oscar; Fernández-Chacón, Rafael
2015-07-01
Neurotransmitter release requires a tight coupling between synaptic vesicle exocytosis and endocytosis with dynamin being a key protein in that process. We used imaging techniques to examine the time course of endocytosis at mouse motor nerve terminals expressing synaptopHluorin, a genetically encoded reporter of the synaptic vesicle cycle. We separated two sequential phases of endocytosis taking place during the stimulation train: early and late endocytosis. Freshly released synaptic vesicle proteins are preferentially retrieved during the early phase, which is very sensitive to dynasore, an inhibitor of dynamin GTPase activity. Synaptic vesicle proteins pre-existing at the plasma membrane before the stimulation are preferentially retrieved during the late phase, which is very sensitive to myristyl trimethyl ammonium bromide (MitMAB), an inhibitor of the dynamin-phospholipid interaction. Synaptic endocytosis is essential at nerve terminals to maintain neurotransmitter release by exocytosis. Here, at the neuromuscular junction of synaptopHluorin (spH) transgenic mice, we have used imaging to study exo- and endocytosis occurring simultaneously during nerve stimulation. We observed two endocytosis components, which occur sequentially during stimulation. The early component of endocytosis apparently internalizes spH molecules freshly exocytosed. This component was sensitive to dynasore, a blocker of dynamin 1 GTPase activity. In contrast, this early component was resistant to myristyl trimethyl ammonium bromide (MiTMAB), a competitive agent that blocks dynamin binding to phospholipid membranes. The late component of endocytosis is likely to internalize spH molecules that pre-exist at the plasma membrane before stimulation starts. This component was blocked by MiTMAB, perhaps by impairing the binding of dynamin or other key endocytic proteins to phospholipid membranes. Our study suggests the co-existence of two sequential synaptic endocytosis steps taking place during stimulation that are susceptible to pharmacological dissection: an initial step, preferentially sensitive to dynasore, that internalizes vesicular components immediately after they are released, and a MiTMAB-sensitive step that internalizes vesicular components pre-existing at the plasma membrane surface. In addition, we report that post-stimulus endocytosis also has several components with different sensitivities to dynasore and MiTMAB. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Wang, Chun-Hua; Zhong, Yi; Zhang, Yan; Liu, Jin-Ping; Wang, Yue-Fei; Jia, Wei-Na; Wang, Guo-Cai; Li, Zheng; Zhu, Yan; Gao, Xiu-Mei
2016-02-01
Chinese medicine is known to treat complex diseases with multiple components and multiple targets. However, the main effective components and their related key targets and functions remain to be identified. Herein, a network analysis method was developed to identify the main effective components and key targets of a Chinese medicine, Lianhua-Qingwen Formula (LQF). The LQF is commonly used for the prevention and treatment of viral influenza in China. It is composed of 11 herbs, gypsum and menthol with 61 compounds being identified in our previous work. In this paper, these 61 candidate compounds were used to find their related targets and construct the predicted-target (PT) network. An influenza-related protein-protein interaction (PPI) network was constructed and integrated with the PT network. Then the compound-effective target (CET) network and compound-ineffective target network (CIT) were extracted, respectively. A novel approach was developed to identify effective components by comparing CET and CIT networks. As a result, 15 main effective components were identified along with 61 corresponding targets. 7 of these main effective components were further experimentally validated to have antivirus efficacy in vitro. The main effective component-target (MECT) network was further constructed with main effective components and their key targets. Gene Ontology (GO) analysis of the MECT network predicted key functions such as NO production being modulated by the LQF. Interestingly, five effective components were experimentally tested and exhibited inhibitory effects on NO production in the LPS induced RAW 264.7 cell. In summary, we have developed a novel approach to identify the main effective components in a Chinese medicine LQF and experimentally validated some of the predictions.
Lentferink, Aniek J; Oldenhuis, Hilbrand Ke; de Groot, Martijn; Polstra, Louis; Velthuijsen, Hugo; van Gemert-Pijnen, Julia Ewc
2017-08-01
The combination of self-tracking and persuasive eCoaching in automated interventions is a new and promising approach for healthy lifestyle management. The aim of this study was to identify key components of self-tracking and persuasive eCoaching in automated healthy lifestyle interventions that contribute to their effectiveness on health outcomes, usability, and adherence. A secondary aim was to identify the way in which these key components should be designed to contribute to improved health outcomes, usability, and adherence. The scoping review methodology proposed by Arskey and O'Malley was applied. Scopus, EMBASE, PsycINFO, and PubMed were searched for publications dated from January 1, 2013 to January 31, 2016 that included (1) self-tracking, (2) persuasive eCoaching, and (3) healthy lifestyle intervention. The search resulted in 32 publications, 17 of which provided results regarding the effect on health outcomes, 27 of which provided results regarding usability, and 13 of which provided results regarding adherence. Among the 32 publications, 27 described an intervention. The most commonly applied persuasive eCoaching components in the described interventions were personalization (n=24), suggestion (n=19), goal-setting (n=17), simulation (n=17), and reminders (n=15). As for self-tracking components, most interventions utilized an accelerometer to measure steps (n=11). Furthermore, the medium through which the user could access the intervention was usually a mobile phone (n=10). The following key components and their specific design seem to influence both health outcomes and usability in a positive way: reduction by setting short-term goals to eventually reach long-term goals, personalization of goals, praise messages, reminders to input self-tracking data into the technology, use of validity-tested devices, integration of self-tracking and persuasive eCoaching, and provision of face-to-face instructions during implementation. In addition, health outcomes or usability were not negatively affected when more effort was requested from participants to input data into the technology. The data extracted from the included publications provided limited ability to identify key components for adherence. However, one key component was identified for both usability and adherence, namely the provision of personalized content. This scoping review provides a first overview of the key components in automated healthy lifestyle interventions combining self-tracking and persuasive eCoaching that can be utilized during the development of such interventions. Future studies should focus on the identification of key components for effects on adherence, as adherence is a prerequisite for an intervention to be effective. ©Aniek J Lentferink, Hilbrand KE Oldenhuis, Martijn de Groot, Louis Polstra, Hugo Velthuijsen, Julia EWC van Gemert-Pijnen. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 01.08.2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamann, Thomas
Dye-sensitized solar cells (DSSCs) have attracted a lot of interest as they proffer the possibility of extremely inexpensive and efficient solar energy conversion. The excellent performance of the most efficient DSSCs relies on two main features: 1) a high surface area nanoparticle semiconductor photoanode to allow for excellent light absorption with moderate extinction molecular dyes and 2) slow recombination rates from the photoanode to I 3 - allowing good charge collection. The I 3 -/I - couple, however, has some disadvantages, notably the redox potential limits the maximum open-circuit voltage, and the dye regeneration requires a large driving force whichmore » constrains the light harvesting ability. Thus, the design features that allow DSSCs to perform as well as they do also prevent further significant improvements in performance. As a consequence, the most efficient device configuration, and the maximum efficiency, has remained essentially unchanged over the last 16 years. Significant gains in performance are possible; however it will likely require a substantial paradigm shift. The general goal of this project is to understand the fundamental role of dye-sensitized solar cell, DSSC, components (sensitizer, redox shuttle, and photoanode) involved in key processes in order to overcome the kinetic and energetic constraints of current generation DSSCs. For example, the key to achieving high energy conversion efficiency DSSCs is the realization of a redox shuttle which fulfills the dual requirements of 1) efficient dye regeneration with a minimal driving force and 2) efficient charge collection. In current generation DSSCs, however, only one or the other of these requirements is met. We are currently primarily interested in understanding the physical underpinnings of the regeneration and recombination reactions. Our approach is to systematically vary the components involved in reactions and interrogate them with a series of photoelectrochemical (PEC) measurements. The lessons learned will ultimately be used to develop design rules for next generation DSSCs.« less
Gap Analysis of Material Properties Data for Ferritic/Martensitic HT-9 Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Neil R.; Serrano De Caro, Magdalena; Rodriguez, Edward A.
2012-08-28
The US Department of Energy (DOE), Office of Nuclear Energy (NE), is supporting the development of an ASME Code Case for adoption of 12Cr-1Mo-VW ferritic/martensitic (F/M) steel, commonly known as HT-9, primarily for use in elevated temperature design of liquid-metal fast reactors (LMFR) and components. In 2011, Los Alamos National Laboratory (LANL) nuclear engineering staff began assisting in the development of a small modular reactor (SMR) design concept, previously known as the Hyperion Module, now called the Gen4 Module. LANL staff immediately proposed HT-9 for the reactor vessel and components, as well as fuel clad and ducting, due to itsmore » superior thermal qualities. Although the ASME material Code Case, for adoption of HT-9 as an approved elevated temperature material for LMFR service, is the ultimate goal of this project, there are several key deliverables that must first be successfully accomplished. The most important key deliverable is the research, accumulation, and documentation of specific material parameters; physical, mechanical, and environmental, which becomes the basis for an ASME Code Case. Time-independent tensile and ductility data and time-dependent creep and creep-rupture behavior are some of the material properties required for a successful ASME Code case. Although this report provides a cursory review of the available data, a much more comprehensive study of open-source data would be necessary. This report serves three purposes: (a) provides a list of already existing material data information that could ultimately be made available to the ASME Code, (b) determines the HT-9 material properties data missing from available sources that would be required and (c) estimates the necessary material testing required to close the gap. Ultimately, the gap analysis demonstrates that certain material properties testing will be required to fulfill the necessary information package for an ASME Code Case.« less
The Importance of Technology Readiness in NASA Earth Venture Missions
NASA Technical Reports Server (NTRS)
Wells, James E.; Komar, George J.
2009-01-01
The first set of Venture-class investigations share the characteristic that the technology should be mature and all investigations must use mature technology that has been modeled or demonstrated in a relevant environment (Technology Readiness Level (TRL) >5). Technology Readiness Levels are a systematic metric/measurement system that supports assessments of the maturity of a particular technology and the consistent comparison of maturity between different types of technology. The TRL is used in NASA technology planning. A major step in the level of fidelity of the technology demonstration follows the completion of TRL 5. At TRL 6, a system or subsystem model or prototype must be demonstrated in a relevant environment (ground or space) representative model or prototype system or system, which would go well beyond ad hoc, "patch-cord," or discrete component level breadboarding. These TRL levels are chosen as target objectives for the Program. The challenge for offerors is that they must identify key aspects (uncertainty, multi subsystem complexity, etc) of the TRL estimate that should be properly explained in a submitted proposal. Risk minimization is a key component of the Earth Venture missions. Experiences of prior airborne missions will be shared. The discussion will address aspects of uncertainty and issues surrounding three areas of airborne earth science missions: (1) Aircraft or proposed flight platform -- Expressing the capability of the aircraft in terms of the supporting mission requirements. These issues include airplane performance characteristics (duration, range, altitude, among others) and multiship complexities. (2) Instruments -- Establishing that the instruments have been demonstrated in a relevant environment. Instruments with heritage in prior space missions meet this requirement, as do instruments tested on the ground. Evidence that the instruments have demonstrated the ability to collect data as advertised will be described. The complexity of the integration of multiple subsystems will also be addressed. Issues associated with tailoring the instrument to meet the specific Venture mission objectives must be thoroughly explained and justified. (3) Aircraft/Instrument Integration -- Explicitly defining what development may be required to harden the instrument and integrate the instrument. The challenges associated with this key aspect of major airborne earth science investigations will be presented.
The intercultural and interracial therapeutic relationship: challenges and recommendations.
Qureshi, Adil; Collazos, Francisco
2011-01-01
Although research has demonstrated that mental health services function with patients from different cultural backgrounds, a variety of culture- and race-related factors can result in services being of lower quality than that which occurs when the clinician and patient are from the same culture. The provision of culturally competent care requires many institutional and organizational adaptations that lie beyond the control of most mental health professionals. The therapeutic relationship, however, remains a key factor of mental healthcare that can be attended to by individual therapists. The therapeutic relationship plays an important role in almost every therapeutic approach, and has been increasingly recognized as representing a means to the provision of quality intercultural and interracial treatment. At the same time, a host of cultural and racial factors relating to both the patient and clinician can compromise the development of the therapeutic relationship. This paper will explore some of the key issues that complicate therapeutic contact and communication, and will outline means by which to strengthen key components of the therapeutic relationship.
Monitoring biological diversity: strategies, tools, limitations, and challenges
Beever, E.A.
2006-01-01
Monitoring is an assessment of the spatial and temporal variability in one or more ecosystem properties, and is an essential component of adaptive management. Monitoring can help determine whether mandated environmental standards are being met and can provide an early-warning system of ecological change. Development of a strategy for monitoring biological diversity will likely be most successful when based upon clearly articulated goals and objectives and may be enhanced by including several key steps in the process. Ideally, monitoring of biological diversity will measure not only composition, but also structure and function at the spatial and temporal scales of interest. Although biodiversity monitoring has several key limitations as well as numerous theoretical and practical challenges, many tools and strategies are available to address or overcome such challenges; I summarize several of these. Due to the diversity of spatio-temporal scales and comprehensiveness encompassed by existing definitions of biological diversity, an effective monitoring design will reflect the desired sampling domain of interest and its key stressors, available funding, legal requirements, and organizational goals.
Secure communications using nonlinear silicon photonic keys.
Grubel, Brian C; Bosworth, Bryan T; Kossey, Michael R; Cooper, A Brinton; Foster, Mark A; Foster, Amy C
2018-02-19
We present a secure communication system constructed using pairs of nonlinear photonic physical unclonable functions (PUFs) that harness physical chaos in integrated silicon micro-cavities. Compared to a large, electronically stored one-time pad, our method provisions large amounts of information within the intrinsically complex nanostructure of the micro-cavities. By probing a micro-cavity with a rapid sequence of spectrally-encoded ultrafast optical pulses and measuring the lightwave responses, we experimentally demonstrate the ability to extract 2.4 Gb of key material from a single micro-cavity device. Subsequently, in a secure communication experiment with pairs of devices, we achieve bit error rates below 10 -5 at code rates of up to 0.1. The PUFs' responses are never transmitted over the channel or stored in digital memory, thus enhancing the security of the system. Additionally, the micro-cavity PUFs are extremely small, inexpensive, robust, and fully compatible with telecommunications infrastructure, components, and electronic fabrication. This approach can serve one-time pad or public key exchange applications where high security is required.
New Generation Power System for Space Applications
NASA Technical Reports Server (NTRS)
Jones, Loren; Carr, Greg; Deligiannis, Frank; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treicler, John; Wester, Gene; Sauers, Jim;
2004-01-01
The Deep Space Avionics (DSA) Project is developing a new generation of power system building blocks. Using application specific integrated circuits (ASICs) and power switching modules a scalable power system can be constructed for use on multiple deep space missions including future missions to Mars, comets, Jupiter and its moons. The key developments of the DSA power system effort are five power ASICs and a mod ule for power switching. These components enable a modular and scalab le design approach, which can result in a wide variety of power syste m architectures to meet diverse mission requirements and environments . Each component is radiation hardened to one megarad) total dose. The power switching module can be used for power distribution to regular spacecraft loads, to propulsion valves and actuation of pyrotechnic devices. The number of switching elements per load, pyrotechnic firin gs and valve drivers can be scaled depending on mission needs. Teleme try data is available from the switch module via an I2C data bus. The DSA power system components enable power management and distribution for a variety of power buses and power system architectures employing different types of energy storage and power sources. This paper will describe each power ASIC#s key performance characteristics as well a s recent prototype test results. The power switching module test results will be discussed and will demonstrate its versatility as a multip urpose switch. Finally, the combination of these components will illu strate some of the possible power system architectures achievable fro m small single string systems to large fully redundant systems.
Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS)
Downes, Martin J; Brennan, Marnie L; Williams, Hywel C; Dean, Rachel S
2016-01-01
Objectives The aim of this study was to develop a critical appraisal (CA) tool that addressed study design and reporting quality as well as the risk of bias in cross-sectional studies (CSSs). In addition, the aim was to produce a help document to guide the non-expert user through the tool. Design An initial scoping review of the published literature and key epidemiological texts was undertaken prior to the formation of a Delphi panel to establish key components for a CA tool for CSSs. A consensus of 80% was required from the Delphi panel for any component to be included in the final tool. Results An initial list of 39 components was identified through examination of existing resources. An international Delphi panel of 18 medical and veterinary experts was established. After 3 rounds of the Delphi process, the Appraisal tool for Cross-Sectional Studies (AXIS tool) was developed by consensus and consisted of 20 components. A detailed explanatory document was also developed with the tool, giving expanded explanation of each question and providing simple interpretations and examples of the epidemiological concepts being examined in each question to aid non-expert users. Conclusions CA of the literature is a vital step in evidence synthesis and therefore evidence-based decision-making in a number of different disciplines. The AXIS tool is therefore unique and was developed in a way that it can be used across disciplines to aid the inclusion of CSSs in systematic reviews, guidelines and clinical decision-making. PMID:27932337
WRKY Transcription Factors: Key Components in Abscisic Acid Signaling
2011-01-01
Review article WRKY transcription factors : key components in abscisic acid signalling Deena L. Rushton1, Prateek Tripathi1, Roel C. Rabara1, Jun Lin1...May 2011. *Correspondence (Tel +605 688 5749; fax +605 688 5624; email paul.rushton@sdstate.edu) Keywords: abscisic acid, WRKY transcription factor ...seed germination, drought, abiotic stress. Summary WRKY transcription factors (TFs) are key regulators of many plant processes, including the responses
Joint electrical engineering/physics course sequence for optics fundamentals and design
NASA Astrophysics Data System (ADS)
Magnusson, Robert; Maldonado, Theresa A.; Black, Truman D.
2000-06-01
Optics is a key technology in a broad range of engineering and science applications of high national priority. Engineers and scientists with a sound background in this field are needed to preserve technical leadership and to establish new directions of research and development. To meet this educational need, a joint Electrical Engineering/Physics optics course sequence was created as PHYS 3445 Fundamentals of Optics and EE 4444 Optical Systems Design, both with a laboratory component. The objectives are to educate EE and Physics undergraduate students in the fundamentals of optics; in interdisciplinary problem solving; in design and analysis; in handling optical components; and in skills such as communications and team cooperation. Written technical reports in professional format are required, formal presentations are given, and participation in paper design contests is encouraged.
NASA Astrophysics Data System (ADS)
Zielinski, Jonas; Mindt, Hans-Wilfried; Düchting, Jan; Schleifenbaum, Johannes Henrich; Megahed, Mustafa
2017-12-01
Powder bed fusion additive manufacturing of titanium alloys is an interesting manufacturing route for many applications requiring high material strength combined with geometric complexity. Managing powder bed fusion challenges, including porosity, surface finish, distortions and residual stresses of as-built material, is the key to bringing the advantages of this process to production main stream. This paper discusses the application of experimental and numerical analysis towards optimizing the manufacturing process of a demonstration component. Powder characterization including assessment of the reusability, assessment of material consolidation and process window optimization is pursued prior to applying the identified optima to study the distortion and residual stresses of the demonstrator. Comparisons of numerical predictions with measurements show good correlations along the complete numerical chain.
A homolog of Drosophila grainy head is essential for epidermal integrity in mice.
Ting, Stephen B; Caddy, Jacinta; Hislop, Nikki; Wilanowski, Tomasz; Auden, Alana; Zhao, Lin-Lin; Ellis, Sarah; Kaur, Pritinder; Uchida, Yoshikazu; Holleran, Walter M; Elias, Peter M; Cunningham, John M; Jane, Stephen M
2005-04-15
The Drosophila cuticle is essential for maintaining the surface barrier defenses of the fly. Integral to cuticle resilience is the transcription factor grainy head, which regulates production of the enzyme required for covalent cross-linking of the cuticular structural components. We report that formation and maintenance of the epidermal barrier in mice are dependent on a mammalian homolog of grainy head, Grainy head-like 3. Mice lacking this factor display defective skin barrier function and deficient wound repair, accompanied by reduced expression of transglutaminase 1, the key enzyme involved in cross-linking the structural components of the superficial epidermis. These findings suggest that the functional mechanisms involving protein cross-linking that maintain the epidermal barrier and induce tissue repair are conserved across 700 million years of evolution.
NASA Technical Reports Server (NTRS)
White, Mark
2012-01-01
New space missions will increasingly rely on more advanced technologies because of system requirements for higher performance, particularly in instruments and high-speed processing. Component-level reliability challenges with scaled CMOS in spacecraft systems from a bottom-up perspective have been presented. Fundamental Front-end and Back-end processing reliability issues with more aggressively scaled parts have been discussed. Effective thermal management from system-level to the componentlevel (top-down) is a key element in overall design of reliable systems. Thermal management in space systems must consider a wide range of issues, including thermal loading of many different components, and frequent temperature cycling of some systems. Both perspectives (top-down and bottom-up) play a large role in robust, reliable spacecraft system design.
System for the Management of Trauma and Emergency Surgery in Space
NASA Technical Reports Server (NTRS)
Houtchens, B.
1984-01-01
The need to develop a systems approach to the management of trauma and other major clinical medical events in space along with appropriate development and evaluation of surgical techniques and required hardware was investigated. A prototype zero gravity surgical module was constructed and tested aboard a KC-135 aircraft during parabolic arc zero G flight. To insure parity of quality care to that available on Earth, it was recommended that a clinical medical and bioengineering advisory committee define and help develop the necessary components of the clinical medical care system for the space station and lunar base. Key components of the system are aerospace surgical training, medical equipment development, including support hardware and software, rapid access to a network of specialty expertise, and continued research and development.
A Federated Digital Identity Management Approach for Business Processes
NASA Astrophysics Data System (ADS)
Bertino, Elisa; Ferrini, Rodolfo; Musci, Andrea; Paci, Federica; Steuer, Kevin J.
Business processes have gained a lot of attention because of the pressing need for integrating existing resources and services to better fulfill customer needs. A key feature of business processes is that they are built from composable services, referred to as component services, that may belong to different domains. In such a context, flexible multi-domain identity management solutions are crucial for increased security and user-convenience. In particular, it is important that during the execution of a business process the component services be able to verify the identity of the client to check that it has the required permissions for accessing the services. To address the problem of multi-domain identity management, we propose a multi-factor identity attribute verification protocol for business processes that assures clients privacy and handles naming heterogeneity.
Herbert, Robert; Kim, Jong-Hoon; Kim, Yun Soung; Lee, Hye Moon
2018-01-01
Flexible hybrid electronics (FHE), designed in wearable and implantable configurations, have enormous applications in advanced healthcare, rapid disease diagnostics, and persistent human-machine interfaces. Soft, contoured geometries and time-dynamic deformation of the targeted tissues require high flexibility and stretchability of the integrated bioelectronics. Recent progress in developing and engineering soft materials has provided a unique opportunity to design various types of mechanically compliant and deformable systems. Here, we summarize the required properties of soft materials and their characteristics for configuring sensing and substrate components in wearable and implantable devices and systems. Details of functionality and sensitivity of the recently developed FHE are discussed with the application areas in medicine, healthcare, and machine interactions. This review concludes with a discussion on limitations of current materials, key requirements for next generation materials, and new application areas. PMID:29364861
Enabling campus grids with open science grid technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weitzel, Derek; Bockelman, Brian; Swanson, David
2011-01-01
The Open Science Grid is a recognized key component of the US national cyber-infrastructure enabling scientific discovery through advanced high throughput computing. The principles and techniques that underlie the Open Science Grid can also be applied to Campus Grids since many of the requirements are the same, even if the implementation technologies differ. We find five requirements for a campus grid: trust relationships, job submission, resource independence, accounting, and data management. The Holland Computing Center's campus grid at the University of Nebraska-Lincoln was designed to fulfill the requirements of a campus grid. A bridging daemon was designed to bring non-Condormore » clusters into a grid managed by Condor. Condor features which make it possible to bridge Condor sites into a multi-campus grid have been exploited at the Holland Computing Center as well.« less
Herbert, Robert; Kim, Jong-Hoon; Kim, Yun Soung; Lee, Hye Moon; Yeo, Woon-Hong
2018-01-24
Flexible hybrid electronics (FHE), designed in wearable and implantable configurations, have enormous applications in advanced healthcare, rapid disease diagnostics, and persistent human-machine interfaces. Soft, contoured geometries and time-dynamic deformation of the targeted tissues require high flexibility and stretchability of the integrated bioelectronics. Recent progress in developing and engineering soft materials has provided a unique opportunity to design various types of mechanically compliant and deformable systems. Here, we summarize the required properties of soft materials and their characteristics for configuring sensing and substrate components in wearable and implantable devices and systems. Details of functionality and sensitivity of the recently developed FHE are discussed with the application areas in medicine, healthcare, and machine interactions. This review concludes with a discussion on limitations of current materials, key requirements for next generation materials, and new application areas.
Cochrane, Anita J; Dick, Bob; King, Neil A; Hills, Andrew P; Kavanagh, David J
2017-10-16
There have been consistent recommendations for multicomponent and multidisciplinary approaches for obesity management. However, there is no clear agreement on the components, disciplines or processes to be considered within such an approach. In this study, we explored multicomponent and multidisciplinary approaches through an examination of knowledge, skills, beliefs, and recommendations of stakeholders involved in obesity management. These stakeholders included researchers, practitioners, educators, and patients. We used qualitative action research methods, including convergent interviewing and observation, to assist the process of inquiry. The consensus was that a multicomponent and multidisciplinary approach should be based on four central meta-components (patient, practitioner, process, and environmental factors), and specific components of these factors were identified. Psychologists, dieticians, exercise physiologists and general practitioners were nominated as key practitioners to be included. A complex condition like obesity requires that multiple components be addressed, and that both patients and multiple disciplines are involved in developing solutions. Implementing cycles of continuous improvement to deal with complexity, instead of trying to control for it, offers an effective way to deal with complex, changing multisystem problems like obesity.
Does the context of reinforcement affect resistance to change?
Nevin, J A; Grace, R C
1999-04-01
Eight pigeons were trained on multiple schedules of reinforcement where pairs of components alternated in blocks on different keys to define 2 local contexts. On 1 key, components arranged 160 and 40 reinforcers/hr; on the other, components arranged 40 and 10 reinforcers/hr. Response rates in the 40/hr component were higher in the latter pair. Within pairs, resistance to prefeeding and resistance to extinction were generally greater in the richer component. The two 40/hr components did not differ in resistance to prefeeding, but the 40/hr component that alternated with 10/hr was more resistant to extinction. This discrepancy was interpreted by an algebraic model relating response strength to component reinforcer rate, including generalization decrement. According to this model, strength is independent of context, consistent with research on schedule preference.
Three-dimensional bioprinting is not only about cell-laden structures.
Zhang, Hong-Bo; Xing, Tian-Long; Yin, Rui-Xue; Shi, Yong; Yang, Shi-Mo; Zhang, Wen-Jun
2016-08-01
In this review, we focused on a few obstacles that hinder three-dimensional (3D) bioprinting process in tissue engineering. One of the obstacles is the bioinks used to deliver cells. Hydrogels are the most widely used bioink materials; however, they aremechanically weak in nature and cannot meet the requirements for supporting structures, especially when the tissues, such as cartilage, require extracellular matrix to be mechanically strong. Secondly and more importantly, tissue regeneration is not only about building all the components in a way that mimics the structures of living tissues, but also about how to make the constructs function normally in the long term. One of the key issues is sufficient nutrient and oxygen supply to the engineered living constructs. The other is to coordinate the interplays between cells, bioactive agents and extracellular matrix in a natural way. This article reviews the approaches to improve the mechanical strength of hydrogels and their suitability for 3D bioprinting; moreover, the key issues of multiple cell lines coprinting with multiple growth factors, vascularization within engineered living constructs etc. were also reviewed.
Zhao, Lei; Cheng, Dongmei; Huang, Xiahe; Chen, Mei; Xing, Jiale; Gao, Liyan; Li, Lingyu; Wang, Yale; Peng, Lianwei; Wang, Yingchun
2017-01-01
Using a genetic approach, we have identified and characterized a novel protein, named Msf1 (Maintenance factor for photosystem I), that is required for the maintenance of specific components of the photosynthetic apparatus in the green alga Chlamydomonas reinhardtii. Msf1 belongs to the superfamily of light-harvesting complex proteins with three transmembrane domains and consensus chlorophyll-binding sites. Loss of Msf1 leads to reduced accumulation of photosystem I and chlorophyll-binding proteins/complexes. Msf1is a component of a thylakoid complex containing key enzymes of the tetrapyrrole biosynthetic pathway, thus revealing a possible link between Msf1 and chlorophyll biosynthesis. Protein interaction assays and greening experiments demonstrate that Msf1 interacts with Copper target homolog1 (CHL27B) and accumulates concomitantly with chlorophyll in Chlamydomonas, implying that chlorophyll stabilizes Msf1. Contrary to other light-harvesting complex-like genes, the expression of Msf1 is not stimulated by high-light stress, but its protein level increases significantly under heat shock, iron and copper limitation, as well as in stationary cells. Based on these results, we propose that Msf1 is required for the maintenance of photosystem I and specific protein-chlorophyll complexes especially under certain stress conditions. PMID:28637830
Designers Workbench: Towards Real-Time Immersive Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuester, F; Duchaineau, M A; Hamann, B
2001-10-03
This paper introduces the DesignersWorkbench, a semi-immersive virtual environment for two-handed modeling, sculpting and analysis tasks. The paper outlines the fundamental tools, design metaphors and hardware components required for an intuitive real-time modeling system. As companies focus on streamlining productivity to cope with global competition, the migration to computer-aided design (CAD), computer-aided manufacturing (CAM), and computer-aided engineering (CAE) systems has established a new backbone of modern industrial product development. However, traditionally a product design frequently originates from a clay model that, after digitization, forms the basis for the numerical description of CAD primitives. The DesignersWorkbench aims at closing this technologymore » or ''digital gap'' experienced by design and CAD engineers by transforming the classical design paradigm into its filly integrated digital and virtual analog allowing collaborative development in a semi-immersive virtual environment. This project emphasizes two key components from the classical product design cycle: freeform modeling and analysis. In the freeform modeling stage, content creation in the form of two-handed sculpting of arbitrary objects using polygonal, volumetric or mathematically defined primitives is emphasized, whereas the analysis component provides the tools required for pre- and post-processing steps for finite element analysis tasks applied to the created models.« less
Cases for Additive Manufacturing on the International Space Station
NASA Technical Reports Server (NTRS)
Cooper, Kenneth G.; McLemore, Carole; Anderson, Theodore " Ted"
2012-01-01
There are thousands of plastic or non-structural metal components on the International Space Station (ISS), any of which could require replacing sometime between resupply missions. While these may not be life critical, it can cause significant delays to flight projects that have to wait several weeks to months to receive a key part one that could have been designed and built on-board the ISS within a few hours. A plastic deposition additive manufacturing process is a low-energy, low-mass solution to many common needs on board the ISS.
Decision support systems and the healthcare strategic planning process: a case study.
Lundquist, D L; Norris, R M
1991-01-01
The repertoire of applications that comprises health-care decision support systems (DSS) includes analyses of clinical, financial, and operational activities. As a whole, these applications facilitate developing comprehensive and interrelated business and medical models that support the complex decisions required to successfully manage today's health-care organizations. Kennestone Regional Health Care System's use of DSS to facilitate strategic planning has precipitated marked changes in the organization's method of determining capital allocations. This case study discusses Kennestone's use of DSS in the strategic planning process, including profiles of key DSS modeling components.
Endoscopic management of ingested foreign bodies and food impactions.
Malick, K Jane
2013-01-01
Endoscopy plays a major role in the management of foreign bodies and food impactions. Because of their frequent occurrence and potential for complications, it is important for the gastroenterology nurse and associate to gain an understanding of the incidence, diagnosis, and management of patients who present with ingested foreign bodies or food impaction. This article summarizes the clinical approach to patient: assessment, preparation for endoscopic procedure, preparation of endoscopic accessories, and follow-up care. Finally, an interesting case presentation highlights key components of caring for patients requiring endoscopic intervention.
Partnerships and the Future of NASA
NASA Technical Reports Server (NTRS)
Blome, Elizabeth; Gowan, John W.; Sampson, Margarita
2015-01-01
Partnerships have become a more integral part of the journey to Mars as NASA continues to lead human space exploration. The current budgetary and political reality requires that partnerships be a key component of moving beyond Low Earth Orbit. This paper will discuss the challenge of finding innovative partnerships that take advantage of the capabilities of the growing commercial space market. Challenges include identifying specific technological needs, recognizing the growing expertise and desires of commercial space to move beyond Low Earth Orbit, incorporating commercial partners into the Mars Roadmap, and working with international partners.
Enhancement of High-Speed Infrared Array Electronics (Center Director's Discretionary Fund)
NASA Technical Reports Server (NTRS)
Sutherland, W. T.
1996-01-01
A state-of-the-art infrared detector was to be used as the sensor in a new spectrometer-camera for astronomical observations. The sensitivity of the detector required the use of low-noise, high-speed electronics in the system design. The key component in the electronic system was the pre-amplifier that amplified the low voltage signal coming from the detector. The system was designed based on the selection of the amplifier and that was driven by the maximum noise level, which would yield the desired sensitivity for the telescope system.
Insights into the role of neuronal glucokinase.
De Backer, Ivan; Hussain, Sufyan S; Bloom, Stephen R; Gardiner, James V
2016-07-01
Glucokinase is a key component of the neuronal glucose-sensing mechanism and is expressed in brain regions that control a range of homeostatic processes. In this review, we detail recently identified roles for neuronal glucokinase in glucose homeostasis and counterregulatory responses to hypoglycemia and in regulating appetite. We describe clinical implications from these advances in our knowledge, especially for developing novel treatments for diabetes and obesity. Further research required to extend our knowledge and help our efforts to tackle the diabetes and obesity epidemics is suggested. Copyright © 2016 the American Physiological Society.
International Space Station Major Constituent Analyzer On-Orbit Performance
NASA Technical Reports Server (NTRS)
Gardner, Ben D.; Erwin, Phillip M.; Cougar, Tamara; Ulrich, BettyLynn
2017-01-01
The Major Constituent Analyzer (MCA) is a mass spectrometer based system that measures the major atmospheric constituents on the International Space Station. A number of limited-life components require periodic change-out, including the ORU 02 analyzer and the ORU 08 Verification Gas Assembly. The most recent ORU 02 and ORU 08 assemblies in the LAB MCA are operating nominally. For ORU 02, the ion source filaments and ion pump lifetime continue to be key determinants of MCA performance. Finally, the Node 3 MCA is being brought to an operational configuration.
NASA Astrophysics Data System (ADS)
1980-07-01
In most of the processes, a portion of the potassium seed material is converted to a compound not containing sulfur. The potassium in this form can, when injected upstream of the MHD channel, capture the sulfur released during the combustion of coal and eliminate the need for flue gas desulfurization equipment. Criteria considered in the evaluation included cost, state of development, seed loss, power requirements, availability, durability, key component risk, environmental impact, safety, controllability, and impurities buildup.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Medical University of South Carolina`s vision is to become the premier national resource for medical information and for environmental/health risk assessment. A key component to the success of the many missions of the Environmental Hazards Assessment Program (EHAP) is timely access to large volumes of data. This study documents the results of the needs assessment effort conducted to determine the information access and processing requirements of EHAP. This report addresses the Department of Environmental Health Science, education and training initiative.
A Novel Technique Applying Spectral Estimation to Johnson Noise Thermometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ezell, N. Dianne Bull; Britton, Chuck; Ericson, Nance
Johnson noise thermometry is one of many important measurement techniques used to monitor the safety levels and stability in a nuclear reactor. However, this measurement is very dependent on the minimal electromagnetic environment. Properly removing unwanted electromagnetic interference (EMI) is critical for accurate drift-free temperature measurements. The two techniques developed by Oak Ridge National Laboratory (ORNL) to remove transient and periodic EMI are briefly discussed here. Spectral estimation is a key component in the signal processing algorithm used for EMI removal and temperature calculation. The cross-power spectral density is a key component in the Johnson noise temperature computation. Applying eithermore » technique requires the simple addition of electronics and signal processing to existing resistive thermometers. With minimal installation changes, the system discussed here can be installed on existing nuclear power plants. The Johnson noise system developed is tested at three locations: ORNL, Sandia National Laboratory, and the Tennessee Valley Authority’s Kingston Fossil Plant. Each of these locations enabled improvement on the EMI removal algorithm. Finally, the conclusions made from the results at each of these locations is discussed, as well as possible future work.« less
A Novel Technique Applying Spectral Estimation to Johnson Noise Thermometry
Ezell, N. Dianne Bull; Britton, Chuck; Ericson, Nance; ...
2018-03-30
Johnson noise thermometry is one of many important measurement techniques used to monitor the safety levels and stability in a nuclear reactor. However, this measurement is very dependent on the minimal electromagnetic environment. Properly removing unwanted electromagnetic interference (EMI) is critical for accurate drift-free temperature measurements. The two techniques developed by Oak Ridge National Laboratory (ORNL) to remove transient and periodic EMI are briefly discussed here. Spectral estimation is a key component in the signal processing algorithm used for EMI removal and temperature calculation. The cross-power spectral density is a key component in the Johnson noise temperature computation. Applying eithermore » technique requires the simple addition of electronics and signal processing to existing resistive thermometers. With minimal installation changes, the system discussed here can be installed on existing nuclear power plants. The Johnson noise system developed is tested at three locations: ORNL, Sandia National Laboratory, and the Tennessee Valley Authority’s Kingston Fossil Plant. Each of these locations enabled improvement on the EMI removal algorithm. Finally, the conclusions made from the results at each of these locations is discussed, as well as possible future work.« less
Improvements to the ShipIR/NTCS adaptive track gate algorithm and 3D flare particle model
NASA Astrophysics Data System (ADS)
Ramaswamy, Srinivasan; Vaitekunas, David A.; Gunter, Willem H.; February, Faith J.
2017-05-01
A key component in any image-based tracking system is the adaptive tracking algorithm used to segment the image into potential targets, rank-and-select the best candidate target, and gate the selected target to further improve tracker performance. Similarly, a key component in any soft-kill response to an incoming guided missile is the flare/chaff decoy used to distract or seduce the seeker homing system away from the naval platform. This paper describes the recent improvements to the naval threat countermeasure simulator (NTCS) of the NATO-standard ship signature model (ShipIR). Efforts to analyse and match the 3D flare particle model against actual IR measurements of the Chemring TALOS IR round resulted in further refinement of the 3D flare particle distribution. The changes in the flare model characteristics were significant enough to require an overhaul to the adaptive track gate (ATG) algorithm in the way it detects the presence of flare decoys and reacquires the target after flare separation. A series of test scenarios are used to demonstrate the impact of the new flare and ATG on IR tactics simulation.
Di Domenico, Antonella; Hofer, Annette; Tundo, Federica; Wenz, Tina
2014-11-01
Changes in nutrient supply require global metabolic reprogramming to optimize the utilization of the nutrients. Mitochondria as a central component of the cellular metabolism play a key role in this adaptive process. Since mitochondria harbor their own genome, which encodes essential enzymes, mitochondrial protein synthesis is a determinant of metabolic adaptation. While regulation of cytoplasmic protein synthesis in response to metabolic challenges has been studied in great detail, mechanisms which adapt mitochondrial translation in response to metabolic challenges remain elusive. Our results suggest that the mitochondrial acetylation status controlled by Sirt3 and its proposed opponent GCN5L1 is an important regulator of the metabolic adaptation of mitochondrial translation. Moreover, both proteins modulate regulators of cytoplasmic protein synthesis as well as the mitonuclear protein balance making Sirt3 and GCN5L1 key players in synchronizing mitochondrial and cytoplasmic translation. Our results thereby highlight regulation of mitochondrial translation as a novel component in the cellular nutrient sensing scheme and identify mitochondrial acetylation as a new regulatory principle for the metabolic competence of mitochondrial protein synthesis. © 2014 International Union of Biochemistry and Molecular Biology.
Commercial Off-the-Shelf (COTS) Components and Enterprise Component Information System (eCIS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Minihan; Ed Schmidt; Greg Enserro
The purpose of the project was to develop the processes for using commercial off-the-shelf (COTS) parts for WR production and to put in place a system for implementing the data management tools required to disseminate, store, track procurement, and qualify vendors. Much of the effort was devoted to determining if the use of COTS parts was possible. A basic question: How does the Nuclear Weapons Complex (NWC) begin to use COTS in the weapon Stockpile Life Extension Programs with high reliability, affordability, while managing risk at acceptable levels? In FY00, it was determined that a certain weapon refurbishment program couldmore » not be accomplished without the use of COTS components. The elements driving the use of COTS components included decreased cost, greater availability, and shorter delivery time. Key factors that required implementation included identifying the best suppliers and components, defining life cycles and predictions of obsolescence, testing the feasibility of using COTS components with a test contractor to ensure capability, as well as quality and reliability, and implementing the data management tools required to disseminate, store, track procurement, and qualify vendors. The primary effort of this project then was to concentrate on the risks involved in the use of COTS and address the issues of part and vendor selection, procurement and acceptance processes, and qualification of the parts via part and sample testing. The Enterprise Component Information System (eCIS) was used to manage the information generated by the COTS process. eCIS is a common interface for both the design and production of NWC components and systems integrating information between SNL National Laboratory (SNL) and the Kansas City Plant (KCP). The implementation of COTS components utilizes eCIS from part selection through qualification release. All part related data is linked across an unclassified network for access by both SNL and KCP personnel. The system includes not only NWC part information but also includes technical reference data for over 25 Million electronic and electromechanical commercial and military parts via a data subscription. With the capabilities added to the system through this project, eCIS provides decision support, parts list/BOM analysis, editing, tracking, workflows, reporting, and history/legacy information integrating manufacturer reference, company technical, company business, and design data.« less
Learning the Language of Copernicus.
Lubowitz, James H; Provencher, Matthew T; Brand, Jefferson C; Rossi, Michael J
2015-08-01
The Copernicus Initiative was a bold and important undertaking by the Arthroscopy Association of North America to help further our learning the art of arthroscopy in a controlled setting. Understanding arthroscopic learning, training, and simulation research requires mastery of a lexicon of new terms, which AANA Copernicus researchers define in a glossary. Learning requires practice to develop proficiency. Developing new ability is a rewarding challenge. Metrics may be used to quantitatively measure objective performance, and is a key component of the Copernicus Initiative. A dedicated group of AANA researchers and educators have taken on an important and challenging task to help us improve in the realm of surgical education. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Conceptual design of an advanced Stirling conversion system for terrestrial power generation
NASA Technical Reports Server (NTRS)
1988-01-01
A free piston Stirling engine coupled to an electric generator or alternator with a nominal kWe power output absorbing thermal energy from a nominal 100 square meter parabolic solar collector and supplying electric power to a utility grid was identified. The results of the conceptual design study of an Advanced Stirling Conversion System (ASCS) were documented. The objectives are as follows: define the ASCS configuration; provide a manufacturability and cost evaluation; predict ASCS performance over the range of solar input required to produce power; estimate system and major component weights; define engine and electrical power condidtioning control requirements; and define key technology needs not ready by the late 1980s in meeting efficiency, life, cost, and with goalds for the ASCS.
Design of short-range terahertz wave passive detecting system
NASA Astrophysics Data System (ADS)
Zhang, Chao; Lou, Guowei; Zhu, Li; Qian, Songsong; Li, Ting
2016-09-01
Based on the study of radiation and transmission characteristics on THz waveband, a short-range passive detecting system is designed. The scheme originated from microwave passive detecting system. A prototype was developed following the design of key components including antennas and a harmonic mixer. The system operated at 0.36 THz. A dual-beam Cassegrain antenna was adopted for receiving signals which radiated by object and background. Local oscillator signal was generated by frequency multiplication. Harmonic mixing is adopted for reducing local oscillator signal frequency required by half. Superheterodyne technology is employed for signal acquisition. The system implemented easily. Tests and measurements were taken, which showed that the scheme was feasible and the performance of the prototype system met the design requirements.
Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense.
Zhang, Mengmeng; Su, Jianbin; Zhang, Yan; Xu, Juan; Zhang, Shuqun
2018-05-09
Mitogen-activated protein kinase (MAPK) cascades are key signaling modules downstream of receptors/sensors that perceive endogenous and exogenous stimuli such as hormones, peptide ligands, and pathogen-derived patterns/effectors. In this review, we summarize recent advances in the establishment of MAPK cascades as unified signaling modules downstream of receptor-like kinases (RLKs) and receptor-like proteins (RLPs) in plant growth and defense, the identification of components connecting the RLK/RLP receptor complexes to the MAPK cascades, and the interactions between MAPK and hormone signaling pathways. We also propose a set of criteria for defining the physiological substrates of plant MAPKs. With only a limited number of MAPK components, multiple functional pathways often share the same MAPK cascade. As a result, understanding the signaling specificity, which requires detailed information about the spatiotemporal expression of the components involved, their complex formation, and the consequence of substrate phosphorylation, is central to our study of MAPK functions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Development of high purity large forgings for nuclear power plants
NASA Astrophysics Data System (ADS)
Tanaka, Yasuhiko; Sato, Ikuo
2011-10-01
The recent increase in the size of energy plants has been supported by the development of manufacturing technology for high purity large forgings for the key components of the plant. To assure the reliability and performance of the large forgings, refining technology to make high purity steels, casting technology for gigantic ingots, forging technology to homogenize the material and consolidate porosity are essential, together with the required heat treatment and machining technologies. To meet these needs, the double degassing method to reduce impurities, multi-pouring methods to cast the gigantic ingots, vacuum carbon deoxidization, the warm forging process and related technologies have been developed and further improved. Furthermore, melting facilities including vacuum induction melting and electro slag re-melting furnaces have been installed. By using these technologies and equipment, large forgings have been manufactured and shipped to customers. These technologies have also been applied to the manufacture of austenitic steel vessel components of the fast breeder reactors and components for fusion experiments.
Childhood Immunization: A Key Component of Early Childhood Development
ERIC Educational Resources Information Center
Messonnier, Nancy
2017-01-01
Physical health is a key component of early childhood development and school readiness. By keeping children healthy and decreasing the chances of disease outbreaks, immunizations help early childhood programs create a safe environment for children. While overall vaccination rates are high nationally for most vaccines routinely recommended for…
A Connected History of Health and Education: Learning Together toward a Better City
ERIC Educational Resources Information Center
Howard, Joanne; Howard, Diane; Dotson, Ebbin
2015-01-01
The infrastructure, financial, and human resource histories of health and education are offered as key components of future strategic planning initiatives in learning cities, and 10 key components of strategic planning initiatives designed to enhance the health and wealth of citizens of learning cities are discussed.
Shen, Yajing; Wu, Congyu; Uyeda, Taro Q P; Plaza, Gustavo R; Liu, Bin; Han, Yu; Lesniak, Maciej S; Cheng, Yu
2017-01-01
Magnetic nanoparticles (MNPs) functionalized with targeting moieties can recognize specific cell components and induce mechanical actuation under magnetic field. Their size is adequate for reaching tumors and targeting cancer cells. However, due to the nanometric size, the force generated by MNPs is smaller than the force required for largely disrupting key components of cells. Here, we show the magnetic assembly process of the nanoparticles inside the cells, to form elongated aggregates with the size required to produce elevated mechanical forces. We synthesized iron oxide nanoparticles doped with zinc, to obtain high magnetization, and functionalized with the epidermal growth factor (EGF) peptide for targeting cancer cells. Under a low frequency rotating magnetic field at 15 Hz and 40 mT, the internalized EGF-MNPs formed elongated aggregates and generated hundreds of pN to dramatically damage the plasma and lysosomal membranes. The physical disruption, including leakage of lysosomal hydrolases into the cytosol, led to programmed cell death and necrosis. Our work provides a novel strategy of designing magnetic nanomedicines for mechanical destruction of cancer cells.
Liu, Helene Minyi; Loo, Yueh-Ming; Horner, Stacy M.; Zornetzer, Gregory A.; Katze, Michael G.; Gale, Michael
2012-01-01
Summary RIG-I is a cytosolic pathogen recognition receptor that initiates immune responses against RNA viruses. Upon viral RNA recognition, anti-viral signalling requires RIG-I redistribution from the cytosol to membranes where it binds the adaptor protein, MAVS. Here we identify the mitochondrial targeting chaperone protein, 14-3-3ε, as a RIG-I-binding partner and essential component of a translocation complex or “translocon” containing RIG-I, 14-3-3ε, and the TRIM25 ubiquitin ligase. The RIG-I translocon directs RIG-I redistribution from the cytosol to membranes where it mediates MAVS-dependent innate immune signalling during acute RNA virus infection. 14-3-3ε is essential for the stable interaction of RIG-I with TRIM25, which facilitates RIG-I ubiquitination and initiation of innate immunity against hepatitis C virus and other pathogenic RNA viruses. Our results define 14-3-3ε as a key component of a RIG-I translocon required for innate antiviral immunity. PMID:22607805
Liu, Helene Minyi; Loo, Yueh-Ming; Horner, Stacy M; Zornetzer, Gregory A; Katze, Michael G; Gale, Michael
2012-05-17
RIG-I is a cytosolic pathogen recognition receptor that initiates immune responses against RNA viruses. Upon viral RNA recognition, antiviral signaling requires RIG-I redistribution from the cytosol to membranes where it binds the adaptor protein, MAVS. Here we identify the mitochondrial targeting chaperone protein, 14-3-3ε, as a RIG-I-binding partner and essential component of a translocation complex or "translocon" containing RIG-I, 14-3-3ε, and the TRIM25 ubiquitin ligase. The RIG-I translocon directs RIG-I redistribution from the cytosol to membranes where it mediates MAVS-dependent innate immune signaling during acute RNA virus infection. 14-3-3ε is essential for the stable interaction of RIG-I with TRIM25, which facilitates RIG-I ubiquitination and initiation of innate immunity against hepatitis C virus and other pathogenic RNA viruses. Our results define 14-3-3ε as a key component of a RIG-I translocon required for innate antiviral immunity. Copyright © 2012 Elsevier Inc. All rights reserved.
Shen, Yajing; Wu, Congyu; Uyeda, Taro Q. P.; Plaza, Gustavo R.; Liu, Bin; Han, Yu; Lesniak, Maciej S.; Cheng, Yu
2017-01-01
Magnetic nanoparticles (MNPs) functionalized with targeting moieties can recognize specific cell components and induce mechanical actuation under magnetic field. Their size is adequate for reaching tumors and targeting cancer cells. However, due to the nanometric size, the force generated by MNPs is smaller than the force required for largely disrupting key components of cells. Here, we show the magnetic assembly process of the nanoparticles inside the cells, to form elongated aggregates with the size required to produce elevated mechanical forces. We synthesized iron oxide nanoparticles doped with zinc, to obtain high magnetization, and functionalized with the epidermal growth factor (EGF) peptide for targeting cancer cells. Under a low frequency rotating magnetic field at 15 Hz and 40 mT, the internalized EGF-MNPs formed elongated aggregates and generated hundreds of pN to dramatically damage the plasma and lysosomal membranes. The physical disruption, including leakage of lysosomal hydrolases into the cytosol, led to programmed cell death and necrosis. Our work provides a novel strategy of designing magnetic nanomedicines for mechanical destruction of cancer cells. PMID:28529648
Diomandé, Sara Esther; Chamot, Stéphanie; Antolinos, Vera; Vasai, Florian; Guinebretière, Marie-Hélène; Bornard, Isabelle; Nguyen-the, Christophe; Broussolle, Véronique
2014-01-01
The different strains of Bacillus cereus can grow at temperatures covering a very diverse range. Some B. cereus strains can grow in chilled food and consequently cause food poisoning. We have identified a new sensor/regulator mechanism involved in low-temperature B. cereus growth. Construction of a mutant of this two-component system enabled us to show that this system, called CasKR, is required for growth at the minimal temperature (Tmin). CasKR was also involved in optimal cold growth above Tmin and in cell survival below Tmin. Microscopic observation showed that CasKR plays a key role in cell shape during cold growth. Introducing the casKR genes in a ΔcasKR mutant restored its ability to grow at Tmin. Although it was first identified in the ATCC 14579 model strain, this mechanism has been conserved in most strains of the B. cereus group. We show that the role of CasKR in cold growth is similar in other B. cereus sensu lato strains with different growth temperature ranges, including psychrotolerant strains. PMID:24509924
Overview of Intelligent Systems and Operations Development
NASA Technical Reports Server (NTRS)
Pallix, Joan; Dorais, Greg; Penix, John
2004-01-01
To achieve NASA's ambitious mission objectives for the future, aircraft and spacecraft will need intelligence to take the correct action in a variety of circumstances. Vehicle intelligence can be defined as the ability to "do the right thing" when faced with a complex decision-making situation. It will be necessary to implement integrated autonomous operations and low-level adaptive flight control technologies to direct actions that enhance the safety and success of complex missions despite component failures, degraded performance, operator errors, and environment uncertainty. This paper will describe the array of technologies required to meet these complex objectives. This includes the integration of high-level reasoning and autonomous capabilities with multiple subsystem controllers for robust performance. Future intelligent systems will use models of the system, its environment, and other intelligent agents with which it interacts. They will also require planners, reasoning engines, and adaptive controllers that can recommend or execute commands enabling the system to respond intelligently. The presentation will also address the development of highly dependable software, which is a key component to ensure the reliability of intelligent systems.
Mechanically Flexible and High-Performance CMOS Logic Circuits.
Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2015-10-13
Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal-oxide-semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices.
New French Regulation for NPPs and Code Consequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faidy, Claude
2006-07-01
On December 2005, the French regulator issued a new regulation for French nuclear power plants, in particular for pressure equipment (PE). This regulation need first to agree with non-nuclear PE regulation and add to that some specific requirements, in particular radiation protection requirements. Different advantages are in these proposal, it's more qualitative risk oriented and it's an important link with non-nuclear industry. Only few components are nuclear specific. But, the general philosophy of the existing Codes (RCC-M [15], KTA [16] or ASME [17]) have to be improved. For foreign Codes, it's plan to define the differences in the user specifications.more » In parallel to that, a new safety classification has been developed by French utility. The consequences is the need to cross all these specifications to define a minimum quality level for each components or systems. In the same time a new concept has been developed to replace the well known 'Leak Before Break methodology': the 'Break Exclusion' methodology. This paper will summarize the key aspects of these different topics. (authors)« less
Mechanically Flexible and High-Performance CMOS Logic Circuits
Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2015-01-01
Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal–oxide–semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices. PMID:26459882
Light fidelity (Li-Fi): towards all-optical networking
NASA Astrophysics Data System (ADS)
Tsonev, Dobroslav; Videv, Stefan; Haas, Harald
2013-12-01
Motivated by the looming radio frequency (RF) spectrum crisis, this paper aims at demonstrating that optical wireless communication (OWC) has now reached a state where it can demonstrate that it is a viable and matured solution to this fundamental problem. In particular, for indoor communications where most mobile data traffic is consumed, light fidelity (Li-Fi) which is related to visible light communication (VLC) offers many key advantages, and effective solutions to the issues that have been posed in the last decade. This paper discusses all key component technologies required to realize optical cellular communication systems referred to here as optical attocell networks. Optical attocells are the next step in the progression towards ever smaller cells, a progression which is known to be the most significant contributor to the improvements in network spectral efficiencies in RF wireless networks.
Statistical issues in quality control of proteomic analyses: good experimental design and planning.
Cairns, David A
2011-03-01
Quality control is becoming increasingly important in proteomic investigations as experiments become more multivariate and quantitative. Quality control applies to all stages of an investigation and statistics can play a key role. In this review, the role of statistical ideas in the design and planning of an investigation is described. This involves the design of unbiased experiments using key concepts from statistical experimental design, the understanding of the biological and analytical variation in a system using variance components analysis and the determination of a required sample size to perform a statistically powerful investigation. These concepts are described through simple examples and an example data set from a 2-D DIGE pilot experiment. Each of these concepts can prove useful in producing better and more reproducible data. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Methodology for Quantifying Certain Design Requirements During the Design Phase
NASA Technical Reports Server (NTRS)
Adams, Timothy; Rhodes, Russel
2005-01-01
A methodology for developing and balancing quantitative design requirements for safety, reliability, and maintainability has been proposed. Conceived as the basis of a more rational approach to the design of spacecraft, the methodology would also be applicable to the design of automobiles, washing machines, television receivers, or almost any other commercial product. Heretofore, it has been common practice to start by determining the requirements for reliability of elements of a spacecraft or other system to ensure a given design life for the system. Next, safety requirements are determined by assessing the total reliability of the system and adding redundant components and subsystems necessary to attain safety goals. As thus described, common practice leaves the maintainability burden to fall to chance; therefore, there is no control of recurring costs or of the responsiveness of the system. The means that have been used in assessing maintainability have been oriented toward determining the logistical sparing of components so that the components are available when needed. The process established for developing and balancing quantitative requirements for safety (S), reliability (R), and maintainability (M) derives and integrates NASA s top-level safety requirements and the controls needed to obtain program key objectives for safety and recurring cost (see figure). Being quantitative, the process conveniently uses common mathematical models. Even though the process is shown as being worked from the top down, it can also be worked from the bottom up. This process uses three math models: (1) the binomial distribution (greaterthan- or-equal-to case), (2) reliability for a series system, and (3) the Poisson distribution (less-than-or-equal-to case). The zero-fail case for the binomial distribution approximates the commonly known exponential distribution or "constant failure rate" distribution. Either model can be used. The binomial distribution was selected for modeling flexibility because it conveniently addresses both the zero-fail and failure cases. The failure case is typically used for unmanned spacecraft as with missiles.
NASA Technical Reports Server (NTRS)
DiCarlo, J. A.; Yun, Hee Mann; Morscher, Gregory N.; Bhatt, Ramakrishna T.
2002-01-01
The successful application of ceramic matrix composites as hot-section components in advanced gas turbine engines will require the development of constituent materials and processes that can provide the material systems with the key thermostructural properties required for long-term component service. Much initial progress in identifying these materials and processes was made under the former NASA Enabling Propulsion Materials Program using stoichiometric Sylramic (trademark) silicon-carbide (SiC) fibers, 2D (two dimensional)-woven fiber architectures, chemically vapor-infiltrated (CVI) BN fiber coatings (interphases), and SiC-based matrices containing CVI SiC interphase over-coatings, slurry-infiltrated SiC particulate, and melt-infiltrated (MI) silicon. The objective of this paper is to discuss the property benefits of this SiC/SiC composite system for high-temperature engine components and to elaborate on further progress in SiC/SiC development made under the new NASA Ultra Efficient Engine Technology Program. This progress stems from the recent development of advanced constituent materials and manufacturing processes, including specific treatments at NASA that improve the creep, rupture, and environmental resistance of the Sylramic fiber as well as the thermal conductivity and creep resistance of the CVI SiC over-coatings. Also discussed are recent observations concerning the detrimental effects of inadvertent carbon in the fiber-BN interfacial region and the beneficial effects of certain 2D-architectures for thin-walled SiC/SiC panels.
Designing Tracking Software for Image-Guided Surgery Applications: IGSTK Experience
Enquobahrie, Andinet; Gobbi, David; Turek, Matt; Cheng, Patrick; Yaniv, Ziv; Lindseth, Frank; Cleary, Kevin
2009-01-01
Objective Many image-guided surgery applications require tracking devices as part of their core functionality. The Image-Guided Surgery Toolkit (IGSTK) was designed and developed to interface tracking devices with software applications incorporating medical images. Methods IGSTK was designed as an open source C++ library that provides the basic components needed for fast prototyping and development of image-guided surgery applications. This library follows a component-based architecture with several components designed for specific sets of image-guided surgery functions. At the core of the toolkit is the tracker component that handles communication between a control computer and navigation device to gather pose measurements of surgical instruments present in the surgical scene. The representations of the tracked instruments are superimposed on anatomical images to provide visual feedback to the clinician during surgical procedures. Results The initial version of the IGSTK toolkit has been released in the public domain and several trackers are supported. The toolkit and related information are available at www.igstk.org. Conclusion With the increased popularity of minimally invasive procedures in health care, several tracking devices have been developed for medical applications. Designing and implementing high-quality and safe software to handle these different types of trackers in a common framework is a challenging task. It requires establishing key software design principles that emphasize abstraction, extensibility, reusability, fault-tolerance, and portability. IGSTK is an open source library that satisfies these needs for the image-guided surgery community. PMID:20037671
Reliability Assessment Approach for Stirling Convertors and Generators
NASA Technical Reports Server (NTRS)
Shah, Ashwin R.; Schreiber, Jeffrey G.; Zampino, Edward; Best, Timothy
2004-01-01
Stirling power conversion is being considered for use in a Radioisotope Power System for deep-space science missions because it offers a multifold increase in the conversion efficiency of heat to electric power. Quantifying the reliability of a Radioisotope Power System that utilizes Stirling power conversion technology is important in developing and demonstrating the capability for long-term success. A description of the Stirling power convertor is provided, along with a discussion about some of the key components. Ongoing efforts to understand component life, design variables at the component and system levels, related sources, and the nature of uncertainties is discussed. The requirement for reliability also is discussed, and some of the critical areas of concern are identified. A section on the objectives of the performance model development and a computation of reliability is included to highlight the goals of this effort. Also, a viable physics-based reliability plan to model the design-level variable uncertainties at the component and system levels is outlined, and potential benefits are elucidated. The plan involves the interaction of different disciplines, maintaining the physical and probabilistic correlations at all the levels, and a verification process based on rational short-term tests. In addition, both top-down and bottom-up coherency were maintained to follow the physics-based design process and mission requirements. The outlined reliability assessment approach provides guidelines to improve the design and identifies governing variables to achieve high reliability in the Stirling Radioisotope Generator design.
Ion beam deposition system for depositing low defect density extreme ultraviolet mask blanks
NASA Astrophysics Data System (ADS)
Jindal, V.; Kearney, P.; Sohn, J.; Harris-Jones, J.; John, A.; Godwin, M.; Antohe, A.; Teki, R.; Ma, A.; Goodwin, F.; Weaver, A.; Teora, P.
2012-03-01
Extreme ultraviolet lithography (EUVL) is the leading next-generation lithography (NGL) technology to succeed optical lithography at the 22 nm node and beyond. EUVL requires a low defect density reflective mask blank, which is considered to be one of the top two critical technology gaps for commercialization of the technology. At the SEMATECH Mask Blank Development Center (MBDC), research on defect reduction in EUV mask blanks is being pursued using the Veeco Nexus deposition tool. The defect performance of this tool is one of the factors limiting the availability of defect-free EUVL mask blanks. SEMATECH identified the key components in the ion beam deposition system that is currently impeding the reduction of defect density and the yield of EUV mask blanks. SEMATECH's current research is focused on in-house tool components to reduce their contributions to mask blank defects. SEMATECH is also working closely with the supplier to incorporate this learning into a next-generation deposition tool. This paper will describe requirements for the next-generation tool that are essential to realize low defect density EUV mask blanks. The goal of our work is to enable model-based predictions of defect performance and defect improvement for targeted process improvement and component learning to feed into the new deposition tool design. This paper will also highlight the defect reduction resulting from process improvements and the restrictions inherent in the current tool geometry and components that are an impediment to meeting HVM quality EUV mask blanks will be outlined.
2006 Precision Strike Technology Symposium
2006-10-19
s Navy Unique Joint system 14 A/C Unique Components Framework JMPS Common Components Crypto Key GCCS-M Interface Carrier Intel Feed Carrier...210 GPS Prediction CUPC GPS Crypto Key TAMMAC SLAM-ER GPS Almanac ETIRMS PMA-281 NGMS PMA-209 Boeing PMA-201 Raytheon ESC (USAF) Hill AFB PMA-234 PMA...242 F/A-18 UPC GPS Prediction CUPC GPS Crypto Key TAMMAC SLAM-ER GPS Almanac HARM WASP Framework ARC-210 ETIRMS PMA-281 Integration/Test/ Support TLAM
Evans, William D [Cupertino, CA
2009-02-24
A secure content object protects electronic documents from unauthorized use. The secure content object includes an encrypted electronic document, a multi-key encryption table having at least one multi-key component, an encrypted header and a user interface device. The encrypted document is encrypted using a document encryption key associated with a multi-key encryption method. The encrypted header includes an encryption marker formed by a random number followed by a derivable variation of the same random number. The user interface device enables a user to input a user authorization. The user authorization is combined with each of the multi-key components in the multi-key encryption key table and used to try to decrypt the encrypted header. If the encryption marker is successfully decrypted, the electronic document may be decrypted. Multiple electronic documents or a document and annotations may be protected by the secure content object.
Procurement engineering - the productivity factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bargerstock, S.B.
1993-01-01
The industry is several years on the road to implementation of the Nuclear Management and Resources Council (NUMARC) initiatives on commercial-grade item dedication and procurement. Utilities have taken several approaches to involve engineering in the procurement process. A common result for the approaches is the additional operations and maintenance (O M) cost imposed by the added resource requirements. Procurement engineering productivity is a key element in controlling this business area. Experience shows that 400 to 500% improvements in productivity are possible with a 2-yr period. Improving the productivity of the procurement engineering function is important in today's competitive utility environment.more » Procurement engineering typically involves four distinct technical evaluation responsibilities along with several administrative areas. Technical evaluations include the functionally based safety classification of replacement components and parts (lacking a master parts list), the determination of dedication requirements for safety-related commercial-grade items, the preparation of a procurement specification to maintain the licensed design bases, and the equivalency evaluation of alternate items not requiring the design-change process. Administrative duties include obtaining technical review of vendor-supplied documentation, identifying obsolete parts and components, resolving material nonconformances, initiating the design-change process for replacement items (as needed), and providing technical support to O M. Although most utilities may not perform or require all the noted activities, a large percentage will apply to each utility station.« less
Modular System to Enable Extravehicular Activity
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam J.
2011-01-01
The ability to perform extravehicular activity (EVA), both human and robotic, has been identified as a key component to space missions to support such operations as assembly and maintenance of space system (e.g. construction and maintenance of the International Space Station), and unscheduled activities to repair an element of the transportation and habitation systems that can only be accessed externally and via unpressurized areas. In order to make human transportation beyond lower earth orbit (BLEO) practical, efficiencies must be incorporated into the integrated transportation systems to reduce system mass and operational complexity. Affordability is also a key aspect to be considered in space system development; this could be achieved through commonality, modularity and component reuse. Another key aspect identified for the EVA system was the ability to produce flight worthy hardware quickly to support early missions and near Earth technology demonstrations. This paper details a conceptual architecture for a modular extravehicular activity system (MEVAS) that would meet these stated needs for EVA capability that is affordable, and that could be produced relatively quickly. Operational concepts were developed to elaborate on the defined needs and define the key capabilities, operational and design constraints, and general timelines. The operational concept lead to a high level design concept for a module that interfaces with various space transportation elements and contains the hardware and systems required to support human and telerobotic EVA; the module would not be self-propelled and would rely on an interfacing element for consumable resources. The conceptual architecture was then compared to EVA Systems used in the Shuttle Orbiter, on the International Space Station to develop high level design concepts that incorporate opportunities for cost savings through hardware reuse, and quick production through the use of existing technologies and hardware designs. An upgrade option was included to make use of the developing suitport technologies.
NASA Technical Reports Server (NTRS)
Lee, Paul U.; Sheridan, Tom; Poage, james L.; Martin, Lynne Hazel; Jobe, Kimberly K.
2010-01-01
This report identifies key human-performance-related issues associated with Next Generation Air Transportation System (NextGen) research in the NASA NextGen-Airspace Project. Four Research Focus Areas (RFAs) in the NextGen-Airspace Project - namely Separation Assurance (SA), Airspace Super Density Operations (ASDO), Traffic Flow Management (TFM), and Dynamic Airspace Configuration (DAC) - were examined closely. In the course of the research, it was determined that the identified human performance issues needed to be analyzed in the context of NextGen operations rather than through basic human factors research. The main gaps in human factors research in NextGen were found in the need for accurate identification of key human-systems related issues within the context of specific NextGen concepts and better design of the operational requirements for those concepts. By focusing on human-system related issues for individual concepts, key human performance issues for the four RFAs were identified and described in this report. In addition, mixed equipage airspace with components of two RFAs were characterized to illustrate potential human performance issues that arise from the integration of multiple concepts.
An Exploratory Qualitative Inquiry of Key Indicators on IT Disaster Recovery Planning
ERIC Educational Resources Information Center
Gardner, Brian
2016-01-01
Disaster recovery planning is a crucial component to maintaining a business's economic stability. However, it is unclear how key performance indicators (KPIs) are perceived in the emergency medical service (EMS) industry during the disaster recover planning process. The problem addressed in this study was to understand KPIs and their components.…
Assuring Quality in Online Course Delivery
ERIC Educational Resources Information Center
Matuga, Julia M.; Wooldridge, Deborah G.; Poirier, Sandra
2011-01-01
This paper examines the critical issue of assuring quality online course delivery by examining four key components of online teaching and learning. The topic of course delivery is viewed as a cultural issue that permeates processes from the design of an online course to its evaluation. First, the authors examine and review key components of and…
Design integration for minimal energy and cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halldane, J.E.
The authors present requirements for creating alternative energy conserving designs including energy management and architectural, plumbing, mechanical, electrical, electronic and optical design. Parameters of power, energy, life cycle costs and benefit for resource for an evaluation by the interested parties are discussed. They present an analysis of power systems through a seasonal power distribution diagram. An analysis of cost systems includes capital cost from the power components, annual costs from the utility energy use, and finance costs with loans, taxes, settlement and design fees. Equations are transposed to the evaluative parameter and are uniquely explicit with consistent symbols, parameter definitions,more » dual and balanced units, unit conversions, criteria for operation, incorporated constants for rapid calculations, references to data in the handbook, other common terms, and instrumentation for the measurement. Each component equation has a key power diagram.« less
A system-level view of optimizing high-channel-count wireless biosignal telemetry.
Chandler, Rodney J; Gibson, Sarah; Karkare, Vaibhav; Farshchi, Shahin; Marković, Dejan; Judy, Jack W
2009-01-01
In this paper we perform a system-level analysis of a wireless biosignal telemetry system. We perform an analysis of each major system component (e.g., analog front end, analog-to-digital converter, digital signal processor, and wireless link), in which we consider physical, algorithmic, and design limitations. Since there are a wide range applications for wireless biosignal telemetry systems, each with their own unique set of requirements for key parameters (e.g., channel count, power dissipation, noise level, number of bits, etc.), our analysis is equally broad. The net result is a set of plots, in which the power dissipation for each component and as the system as a whole, are plotted as a function of the number of channels for different architectural strategies. These results are also compared to existing implementations of complete wireless biosignal telemetry systems.
Wen, Li; Lin, Yi; Zhang, Zhi-Ling; Lu, Wen; Lv, Cheng; Chen, Zhi-Liang; Wang, Han-Zhong; Pang, Dai-Wen
2016-08-01
Envelope, capsid and nucleic acids are key viral components that are all involved in crucial events during virus infection. Thus simultaneous labeling of these key components is an indispensable prerequisite for monitoring comprehensive virus infection process and dissecting virus infection mechanism. Baculovirus was genetically tagged with biotin on its envelope protein GP64 and enhanced green fluorescent protein (EGFP) on its capsid protein VP39. Spodoptera frugiperda 9 (Sf9) cells were infected by the recombinant baculovirus and subsequently fed with streptavidin-conjugated quantum dots (SA-QDs) and cell-permeable nucleic acids dye SYTO 82. Just by genetic engineering and virus propagation, multi-labeling of envelope, capsid and nucleic acids was spontaneously accomplished during virus inherent self-assembly process, significantly simplifying the labeling process while maintaining virus infectivity. Intracellular dissociation and transportation of all the key viral components, which was barely reported previously, was real-time monitored based on the multi-labeling approach, offering opportunities for deeply understanding virus infection and developing anti-virus treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
An analytical approach to customer requirement information processing
NASA Astrophysics Data System (ADS)
Zhou, Zude; Xiao, Zheng; Liu, Quan; Ai, Qingsong
2013-11-01
'Customer requirements' (CRs) management is a key component of customer relationship management (CRM). By processing customer-focused information, CRs management plays an important role in enterprise systems (ESs). Although two main CRs analysis methods, quality function deployment (QFD) and Kano model, have been applied to many fields by many enterprises in the past several decades, the limitations such as complex processes and operations make them unsuitable for online businesses among small- and medium-sized enterprises (SMEs). Currently, most SMEs do not have the resources to implement QFD or Kano model. In this article, we propose a method named customer requirement information (CRI), which provides a simpler and easier way for SMEs to run CRs analysis. The proposed method analyses CRs from the perspective of information and applies mathematical methods to the analysis process. A detailed description of CRI's acquisition, classification and processing is provided.
Responsible gambling: general principles and minimal requirements.
Blaszczynski, Alex; Collins, Peter; Fong, Davis; Ladouceur, Robert; Nower, Lia; Shaffer, Howard J; Tavares, Hermano; Venisse, Jean-Luc
2011-12-01
Many international jurisdictions have introduced responsible gambling programs. These programs intend to minimize negative consequences of excessive gambling, but vary considerably in their aims, focus, and content. Many responsible gambling programs lack a conceptual framework and, in the absence of empirical data, their components are based only on general considerations and impressions. This paper outlines the consensus viewpoint of an international group of researchers suggesting fundamental responsible gambling principles, roles of key stakeholders, and minimal requirements that stakeholders can use to frame and inform responsible gambling programs across jurisdictions. Such a framework does not purport to offer value statements regarding the legal status of gambling or its expansion. Rather, it proposes gambling-related initiatives aimed at government, industry, and individuals to promote responsible gambling and consumer protection. This paper argues that there is a set of basic principles and minimal requirements that should form the basis for every responsible gambling program.
Test and Validation of the Mars Science Laboratory Robotic Arm
NASA Technical Reports Server (NTRS)
Robinson, M.; Collins, C.; Leger, P.; Kim, W.; Carsten, J.; Tompkins, V.; Trebi-Ollennu, A.; Florow, B.
2013-01-01
The Mars Science Laboratory Robotic Arm (RA) is a key component for achieving the primary scientific goals of the mission. The RA supports sample acquisition by precisely positioning a scoop above loose regolith or accurately preloading a percussive drill on Martian rocks or rover-mounted organic check materials. It assists sample processing by orienting a sample processing unit called CHIMRA through a series of gravity-relative orientations and sample delivery by positioning the sample portion door above an instrument inlet or the observation tray. In addition the RA facilitates contact science by accurately positioning the dust removal tool, Alpha Particle X-Ray Spectrometer (APXS) and the Mars Hand Lens Imager (MAHLI) relative to surface targets. In order to fulfill these seemingly disparate science objectives the RA must satisfy a variety of accuracy and performance requirements. This paper describes the necessary arm requirement specification and the test campaign to demonstrate these requirements were satisfied.
Mini-Satellites for Affordable Space Science
NASA Astrophysics Data System (ADS)
Phipps, Andy; da Silva Curiel, Alex; Gibbon, Dave; Richardson, Guy; Cropp, Alex; Sweeting, Martin, , Sir
Magnetospheric science missions are a key component of solar terrestrial physics programmes - charged with the unravelling of these fundamental processes. These missions require distributed science gathering in a wide variety of alternative orbits. Missions typically require constellations of high delta-v formation flying spacecraft - single launch vehicles are usually mandated. Typical missions baseline space standard technology and standard communication and operations architectures - all driving up programme cost. By trading on the requirements, applying prudent analysis of performance as well as selection of subsystems outside the traditional space range most of the mission objectives can be met for a reduced overall mission cost. This paper describes Surrey's platform solution which has been studied for a future NASA opportunity. It will emphasise SSTL's proven spacecraft engineering philosophies and the use of terrestrial commercial off-the-shelf technology in this demanding environment. This will lead to a cost-capped science mission, and extend the philosophy of affordable access to space beyond Low Earth Orbit.
Giménez, Estela; Dominguez, Eva; Pineda, Benito; Heredia, Antonio; Moreno, Vicente; Angosto, Trinidad
2015-01-01
Fruit development and ripening entail key biological and agronomic events, which ensure the appropriate formation and dispersal of seeds and determine productivity and yield quality traits. The MADS box gene ARLEQUIN/TOMATO AGAMOUS-LIKE1 (hereafter referred to as TAGL1) was reported as a key regulator of tomato (Solanum lycopersicum) reproductive development, mainly involved in flower development, early fruit development, and ripening. It is shown here that silencing of the TAGL1 gene (RNA interference lines) promotes significant changes affecting cuticle development, mainly a reduction of thickness and stiffness, as well as a significant decrease in the content of cuticle components (cutin, waxes, polysaccharides, and phenolic compounds). Accordingly, overexpression of TAGL1 significantly increased the amount of cuticle and most of its components while rendering a mechanically weak cuticle. Expression of the genes involved in cuticle biosynthesis agreed with the biochemical and biomechanical features of cuticles isolated from transgenic fruits; it also indicated that TAGL1 participates in the transcriptional control of cuticle development mediating the biosynthesis of cuticle components. Furthermore, cell morphology and the arrangement of epidermal cell layers, on whose activity cuticle formation depends, were altered when TAGL1 was either silenced or constitutively expressed, indicating that this transcription factor regulates cuticle development, probably through the biosynthetic activity of epidermal cells. Our results also support cuticle development as an integrated event in the fruit expansion and ripening processes that characterize fleshy-fruited species such as tomato. PMID:26019301
Kamadjeu, Raoul; Gathenji, Caroline
2017-01-01
In April 2013, a case of wild polio virus (WPV) was detected in the Somalia capital Mogadishu. This inaugurated what is now referred to as the 2013-2014 Horn of Africa Polio outbreak with cases reported in Somalia, Kenya and Ethiopia. By the notification of the last polio case in August 2014, 223 cases of WPV had been reported in Somalia, Kenya and Ethiopia of which 199 in Somalia alone. The outbreak response required timely exchange of information between the outbreak response coordination unit (in Nairobi) and local staff located in multiple locations inside the country. The need to track and timely respond to information requests, to satisfy the information/data needs of polio partners and to track key outbreak response performance indicators dictated the need to urgently set up an online dashboard. The Somalia Polio Room dashboard provided a graphical display of the polio outbreak data to track progress and inform decision making. The system was designed using free and open sources components and seamlessly integrated existing polio surveillance data for real time monitoring of key outbreak response performance indicators. In this article, we describe the design and operation of an electronic dashboard for disease surveillance in an outbreak situation and used the lessons learned to propose key design considerations and functional requirements for online electronic dashboards for disease outbreak response. PMID:29296157
Cigna, Natacha; Farrokhi Moshai, Elika; Brayer, Stéphanie; Marchal-Somme, Joëlle; Wémeau-Stervinou, Lidwine; Fabre, Aurélie; Mal, Hervé; Lesèche, Guy; Dehoux, Monique; Soler, Paul; Crestani, Bruno; Mailleux, Arnaud A
2012-12-01
Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown cause. Key signaling developmental pathways are aberrantly expressed in IPF. The hedgehog pathway plays a key role during fetal lung development and may be involved in lung fibrogenesis. We determined the expression pattern of several Sonic hedgehog (SHH) pathway members in normal and IPF human lung biopsies and primary fibroblasts. The effect of hedgehog pathway inhibition was assayed by lung fibroblast proliferation and differentiation with and without transforming growth factor (TGF)-β1. We showed that the hedgehog pathway was reactivated in the IPF lung. Importantly, we deciphered the cross talk between the hedgehog and TGF-β pathway in human lung fibroblasts. TGF-β1 modulated the expression of key components of the hedgehog pathway independent of Smoothened, the obligatory signal transducer of the pathway. Smoothened was required for TGF-β1-induced myofibroblastic differentiation of control fibroblasts, but differentiation of IPF fibroblasts was partially resistant to Smoothened inhibition. Furthermore, functional hedgehog pathway machinery from the primary cilium, as well as GLI-dependent transcription in the nucleus, was required for the TGF-β1 effects on normal and IPF fibroblasts during myofibroblastic differentiation. These data identify the GLI transcription factors as potential therapeutic targets in lung fibrosis. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Kamadjeu, Raoul; Gathenji, Caroline
2017-01-01
In April 2013, a case of wild polio virus (WPV) was detected in the Somalia capital Mogadishu. This inaugurated what is now referred to as the 2013-2014 Horn of Africa Polio outbreak with cases reported in Somalia, Kenya and Ethiopia. By the notification of the last polio case in August 2014, 223 cases of WPV had been reported in Somalia, Kenya and Ethiopia of which 199 in Somalia alone. The outbreak response required timely exchange of information between the outbreak response coordination unit (in Nairobi) and local staff located in multiple locations inside the country. The need to track and timely respond to information requests, to satisfy the information/data needs of polio partners and to track key outbreak response performance indicators dictated the need to urgently set up an online dashboard. The Somalia Polio Room dashboard provided a graphical display of the polio outbreak data to track progress and inform decision making. The system was designed using free and open sources components and seamlessly integrated existing polio surveillance data for real time monitoring of key outbreak response performance indicators. In this article, we describe the design and operation of an electronic dashboard for disease surveillance in an outbreak situation and used the lessons learned to propose key design considerations and functional requirements for online electronic dashboards for disease outbreak response.
MODIS Information, Data, and Control System (MIDACS) system specifications and conceptual design
NASA Technical Reports Server (NTRS)
Han, D.; Salomonson, V.; Ormsby, J.; Ardanuy, P.; Mckay, A.; Hoyt, D.; Jaffin, S.; Vallette, B.; Sharts, B.; Folta, D.
1988-01-01
The MODIS Information, Data, and Control System (MIDACS) Specifications and Conceptual Design Document discusses system level requirements, the overall operating environment in which requirements must be met, and a breakdown of MIDACS into component subsystems, which include the Instrument Support Terminal, the Instrument Control Center, the Team Member Computing Facility, the Central Data Handling Facility, and the Data Archive and Distribution System. The specifications include sizing estimates for the processing and storage capacities of each data system element, as well as traffic analyses of data flows between the elements internally, and also externally across the data system interfaces. The specifications for the data system, as well as for the individual planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, and data archive and distribution components, do not yet fully specify the data system in the complete manner needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams have not yet been formed; however, it was possible to develop the specifications and conceptual design based on the present concept of EosDIS, the Level-1 and Level-2 Functional Requirements Documents, the Operations Concept, and through interviews and meetings with key members of the scientific community.
Qiao, Hong; Li, Yinlin; Li, Fengfu; Xi, Xuanyang; Wu, Wei
2016-10-01
Recently, many biologically inspired visual computational models have been proposed. The design of these models follows the related biological mechanisms and structures, and these models provide new solutions for visual recognition tasks. In this paper, based on the recent biological evidence, we propose a framework to mimic the active and dynamic learning and recognition process of the primate visual cortex. From principle point of view, the main contributions are that the framework can achieve unsupervised learning of episodic features (including key components and their spatial relations) and semantic features (semantic descriptions of the key components), which support higher level cognition of an object. From performance point of view, the advantages of the framework are as follows: 1) learning episodic features without supervision-for a class of objects without a prior knowledge, the key components, their spatial relations and cover regions can be learned automatically through a deep neural network (DNN); 2) learning semantic features based on episodic features-within the cover regions of the key components, the semantic geometrical values of these components can be computed based on contour detection; 3) forming the general knowledge of a class of objects-the general knowledge of a class of objects can be formed, mainly including the key components, their spatial relations and average semantic values, which is a concise description of the class; and 4) achieving higher level cognition and dynamic updating-for a test image, the model can achieve classification and subclass semantic descriptions. And the test samples with high confidence are selected to dynamically update the whole model. Experiments are conducted on face images, and a good performance is achieved in each layer of the DNN and the semantic description learning process. Furthermore, the model can be generalized to recognition tasks of other objects with learning ability.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-15
... receiver, electrical key and an electronic control module (ECM). The conventional key components consist of a transponder key ECU assembly, transponder key coil, security indicator, ignition key and an ECM... certification ECU and steering lock ECU receive confirmation of the valid key, allowing the ECM to start the...
Advanced Small Modular Reactor Economics Model Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Thomas J.
2014-10-01
The US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (SMR) research and development activities focus on four key areas: Developing assessment methods for evaluating advanced SMR technologies and characteristics; and Developing and testing of materials, fuels and fabrication techniques; and Resolving key regulatory issues identified by US Nuclear Regulatory Commission and industry; and Developing advanced instrumentation and controls and human-machine interfaces. This report focuses on development of assessment methods to evaluate advanced SMR technologies and characteristics. Specifically, this report describes the expansion and application of the economic modeling effort at Oak Ridge National Laboratory. Analysis ofmore » the current modeling methods shows that one of the primary concerns for the modeling effort is the handling of uncertainty in cost estimates. Monte Carlo–based methods are commonly used to handle uncertainty, especially when implemented by a stand-alone script within a program such as Python or MATLAB. However, a script-based model requires each potential user to have access to a compiler and an executable capable of handling the script. Making the model accessible to multiple independent analysts is best accomplished by implementing the model in a common computing tool such as Microsoft Excel. Excel is readily available and accessible to most system analysts, but it is not designed for straightforward implementation of a Monte Carlo–based method. Using a Monte Carlo algorithm requires in-spreadsheet scripting and statistical analyses or the use of add-ons such as Crystal Ball. An alternative method uses propagation of error calculations in the existing Excel-based system to estimate system cost uncertainty. This method has the advantage of using Microsoft Excel as is, but it requires the use of simplifying assumptions. These assumptions do not necessarily bring into question the analytical results. In fact, the analysis shows that the propagation of error method introduces essentially negligible error, especially when compared to the uncertainty associated with some of the estimates themselves. The results of these uncertainty analyses generally quantify and identify the sources of uncertainty in the overall cost estimation. The obvious generalization—that capital cost uncertainty is the main driver—can be shown to be an accurate generalization for the current state of reactor cost analysis. However, the detailed analysis on a component-by-component basis helps to demonstrate which components would benefit most from research and development to decrease the uncertainty, as well as which components would benefit from research and development to decrease the absolute cost.« less
Atkinson, Nicky; Feike, Doreen; Mackinder, Luke C M; Meyer, Moritz T; Griffiths, Howard; Jonikas, Martin C; Smith, Alison M; McCormick, Alistair J
2016-05-01
Many eukaryotic green algae possess biophysical carbon-concentrating mechanisms (CCMs) that enhance photosynthetic efficiency and thus permit high growth rates at low CO2 concentrations. They are thus an attractive option for improving productivity in higher plants. In this study, the intracellular locations of ten CCM components in the unicellular green alga Chlamydomonas reinhardtii were confirmed. When expressed in tobacco, all of these components except chloroplastic carbonic anhydrases CAH3 and CAH6 had the same intracellular locations as in Chlamydomonas. CAH6 could be directed to the chloroplast by fusion to an Arabidopsis chloroplast transit peptide. Similarly, the putative inorganic carbon (Ci) transporter LCI1 was directed to the chloroplast from its native location on the plasma membrane. CCP1 and CCP2 proteins, putative Ci transporters previously reported to be in the chloroplast envelope, localized to mitochondria in both Chlamydomonas and tobacco, suggesting that the algal CCM model requires expansion to include a role for mitochondria. For the Ci transporters LCIA and HLA3, membrane location and Ci transport capacity were confirmed by heterologous expression and H(14) CO3 (-) uptake assays in Xenopus oocytes. Both were expressed in Arabidopsis resulting in growth comparable with that of wild-type plants. We conclude that CCM components from Chlamydomonas can be expressed both transiently (in tobacco) and stably (in Arabidopsis) and retargeted to appropriate locations in higher plant cells. As expression of individual Ci transporters did not enhance Arabidopsis growth, stacking of further CCM components will probably be required to achieve a significant increase in photosynthetic efficiency in this species. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Successful Space Flight of High-Speed InGaAs Photodiode Onboard the International Space Station
NASA Technical Reports Server (NTRS)
Joshi, Abhay; Prasad, Narasimha; Datta, Shubbashish
2017-01-01
Photonic systems are required for several space applications, including satellite communication links and lidar sensors. Although such systems are ubiquitous in terrestrial applications, deployment in space requires the constituent components to withstand extreme environmental conditions, including wide operating temperature range, mechanical shock and vibration, and radiation. These conditions are significantly more stringent than alternative standards, namely Bellcore GR-468 and MIL-STD 883, which may be satisfied by typical, commercially available, photonic components. Furthermore, it is very difficult to simultaneously reproduce several aspects of space environment, including exposure to galactic cosmic rays (GCR), in a laboratory. Therefore, it is necessary to operate key photonic components in space to achieve a technology readiness level of 7 and beyond. Accordingly, the International Space Station (ISS) provides an invaluable test bed for qualifying such components for space missions. We present a fiber-pigtailed photodiode module, having a -3 dB bandwidth of 16.8 GHz, that survived 18 months on the ISS as part of the Materials International Space Station Experiment (MISSE) 7 mission. This module was launched by NASA Langley Research Center on November 16, 2009 on the Space Shuttle Atlantis (STS-129), as part of their lidar transceiver components. While orbiting on the ISS in a passive experiment container, the photodiode module was exposed to extreme temperature cycling from -157 degrees Celsius to +121 degrees Celsius 16 times a day, proton radiation from the inner Van Allen belt at the South Atlantic Anomaly, and galactic cosmic rays. The module returned to Earth on the Space Shuttle Endeavor (STS-134) on June 1, 2011 for further characterization. The post flight test of the photodiode module, shown in Fig. 1a, demonstrates no change in the module's performance, thus proving its survivability during launch and in space environment.
ERIC Educational Resources Information Center
DeFulio, Anthony; Hackenberg, Timothy D.
2008-01-01
Pigeons pecked a response key on a variable-interval (VI) schedule, in which responses produced food every 40 s, on average. These VI periods, or components, alternated in irregular fashion with extinction components in which food was unavailable. Pecks on a second (observing) key briefly produced exteroceptive stimuli (houselight flashes)…
NASA Astrophysics Data System (ADS)
Könning, Tobias; Bayer, Andreas; Plappert, Nora; Faßbender, Wilhelm; Dürsch, Sascha; Küster, Matthias; Hubrich, Ralf; Wolf, Paul; Köhler, Bernd; Biesenbach, Jens
2018-02-01
A novel 3-dimensional arrangement of mirrors is used to re-arrange beams from 1-D and 2-D high power diode laser arrays. The approach allows for a variety of stacking geometries, depending on individual requirements. While basic building blocks, including collimating optics, always remain the same, most adaptations can be realized by simple rearrangement of a few optical components. Due to fully automated alignment processes, the required changes can be realized in software by changing coordinates, rather than requiring customized mechanical components. This approach minimizes development costs due to its flexibility, while reducing overall product cost by using similar building blocks for a variety of products and utilizing a high grade of automation. The modules can be operated with industrial grade water, lowering overall system and maintenance cost. Stackable macro coolers are used as the smallest building block of the system. Each cooler can hold up to five diode laser bars. Micro optical components, collimating the beam, are mounted directly to the cooler. All optical assembly steps are fully automated. Initially, the beams from all laser bars propagate in the same direction. Key to the concept is an arrangement of deflectors, which re-arrange the beams into a 2-D array of the desired shape and high fill factor. Standard multiplexing techniques like polarization- or wavelengths-multiplexing have been implemented as well. A variety of fiber coupled modules ranging from a few hundred watts of optical output power to multiple kilowatts of power, as well as customized laser spot geometries like uniform line sources, have been realized.
VCE testbed program planning and definition study
NASA Technical Reports Server (NTRS)
Westmoreland, J. S.; Godston, J.
1978-01-01
The flight definition of the Variable Stream Control Engine (VSCE) was updated to reflect design improvements in the two key components: (1) the low emissions duct burner, and (2) the coannular exhaust nozzle. The testbed design was defined and plans for the overall program were formulated. The effect of these improvements was evaluated for performance, emissions, noise, weight, and length. For experimental large scale testing of the duct burner and coannular nozzle, a design definition of the VCE testbed configuration was made. This included selecting the core engine, determining instrumentation requirements, and selecting the test facilities, in addition to defining control system and assembly requirements. Plans for a comprehensive test program to demonstrate the duct burner and nozzle technologies were formulated. The plans include both aeroacoustic and emissions testing.
Preliminary design and analysis of an advanced rotorcraft transmission
NASA Technical Reports Server (NTRS)
Henry, Z. S.
1990-01-01
Future rotorcraft transmissions of the 1990s and beyond the year 2000 require the incorporation of key emerging material and component technologies using advanced and innovative design practices in order to meet the requirements for a reduced weight-to-power ratio, a decreased noise level, and a substantially increased reliability. The specific goals for future rotocraft transmissions when compared with current state-of-the-art transmissions are a 25 percent weight reduction, a 10-dB reduction in the transmitted noise level, and a system reliability of 5000 hours mean-time-between-removal for the transmission. This paper presents the results of the design studies conducted to meet the stated goals for an advanced rotorcraft transmission. These design studies include system configuration, planetary gear train selection, and reliability prediction methods.
Bioreactor design for tendon/ligament engineering.
Wang, Tao; Gardiner, Bruce S; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B; Wang, Allan; Xu, Jiake; Smith, David W; Lloyd, David G; Zheng, Ming H
2013-04-01
Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a suitable culture environment, which mimics the dynamics of the in vivo environment for tendon/ligament maturation. For clinical settings, bioreactors also have the advantages of less-contamination risk, high reproducibility of cell propagation by minimizing manual operation, and a consistent end product. In this review, we identify the key components, design preferences, and criteria that are required for the development of an ideal bioreactor for engineering tendons and ligaments.
Bioreactor Design for Tendon/Ligament Engineering
Wang, Tao; Gardiner, Bruce S.; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B.; Wang, Allan; Xu, Jiake
2013-01-01
Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a suitable culture environment, which mimics the dynamics of the in vivo environment for tendon/ligament maturation. For clinical settings, bioreactors also have the advantages of less-contamination risk, high reproducibility of cell propagation by minimizing manual operation, and a consistent end product. In this review, we identify the key components, design preferences, and criteria that are required for the development of an ideal bioreactor for engineering tendons and ligaments. PMID:23072472
High data rate modem simulation for the space station multiple-access communications system
NASA Technical Reports Server (NTRS)
Horan, Stephen
1987-01-01
The communications system for the space station will require a space based multiple access component to provide communications between the space based program elements and the station. A study was undertaken to investigate two of the concerns of this multiple access system, namely, the issues related to the frequency spectrum utilization and the possibilities for higher order (than QPSK) modulation schemes for use in possible modulators and demodulators (modems). As a result of the investigation, many key questions about the frequency spectrum utilization were raised. At this point, frequency spectrum utilization is seen as an area requiring further work. Simulations were conducted using a computer aided communications system design package to provide a straw man modem structure to be used for both QPSK and 8-PSK channels.
Bead-based screening in chemical biology and drug discovery.
Komnatnyy, Vitaly V; Nielsen, Thomas E; Qvortrup, Katrine
2018-06-11
High-throughput screening is an important component of the drug discovery process. The screening of libraries containing hundreds of thousands of compounds requires assays amenable to miniaturisation and automization. Combinatorial chemistry holds a unique promise to deliver structurally diverse libraries for early drug discovery. Among the various library forms, the one-bead-one-compound (OBOC) library, where each bead carries many copies of a single compound, holds the greatest potential for the rapid identification of novel hits against emerging drug targets. However, this potential has not yet been fully realized due to a number of technical obstacles. In this feature article, we review the progress that has been made in bead-based library screening and its application to the discovery of bioactive compounds. We identify the key challenges of this approach and highlight key steps needed for making a greater impact in the field.
The DRG shift: a new twist for ICD-10 preparation.
Long, Peri L
2012-06-01
Analysis of your specific business is a key component of ICD-10 implementation. An understanding of your organization's current reimbursement trends will go a long way to assessing and preparing for the impact of ICD-10 in your environment. If you cannot be prepared for each detailed scenario, remember that much of the analysis and resolution requires familiar coding, DRG analysis, and claims processing best practices. Now, they simply have the new twist of researching new codes and some new concepts. The news of a delay in the implementation compliance date, along with the release of grouper Version 29, should encourage your educational and business analysis efforts. This is a great opportunity to maintain open communication with the Centers for Medicare & Medicaid Services, Department of Health and Human Services, and Centers for Disease Control. This is also a key time to report any unusual or discrepant findings in order to provide input to the final rule.
Needs for Robotic Assessments of Nuclear Disasters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Victor Walker; Derek Wadsworth
Following the nuclear disaster at the Fukushima nuclear reactor plant in Japan, the need for systems which can assist in dynamic high-radiation environments such as nuclear incidents has become more apparent. The INL participated in delivering robotic technologies to Japan and has identified key components which are needed for success and obstacles to their deployment. In addition, we are proposing new work and methods to improve assessments and reactions to such events in the future. Robotics needs in disaster situations include phases such as: Assessment, Remediation, and Recovery Our particular interest is in the initial assessment activities. In assessment wemore » need collection of environmental parameters, determination of conditions, and physical sample collection. Each phase would require key tools and efforts to develop. This includes study of necessary sensors and their deployment methods, the effects of radiation on sensors and deployment, and the development of training and execution systems.« less
Chip-based quantum key distribution
NASA Astrophysics Data System (ADS)
Sibson, P.; Erven, C.; Godfrey, M.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; Tanner, M. G.; Natarajan, C. M.; Hadfield, R. H.; O'Brien, J. L.; Thompson, M. G.
2017-02-01
Improvement in secure transmission of information is an urgent need for governments, corporations and individuals. Quantum key distribution (QKD) promises security based on the laws of physics and has rapidly grown from proof-of-concept to robust demonstrations and deployment of commercial systems. Despite these advances, QKD has not been widely adopted, and large-scale deployment will likely require chip-based devices for improved performance, miniaturization and enhanced functionality. Here we report low error rate, GHz clocked QKD operation of an indium phosphide transmitter chip and a silicon oxynitride receiver chip--monolithically integrated devices using components and manufacturing processes from the telecommunications industry. We use the reconfigurability of these devices to demonstrate three prominent QKD protocols--BB84, Coherent One Way and Differential Phase Shift--with performance comparable to state-of-the-art. These devices, when combined with integrated single photon detectors, pave the way for successfully integrating QKD into future telecommunications networks.
Final Report - Advanced High Energy Li-Ion Cell for PHEV and EV Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Jagat
2017-03-22
Lithium Ion Battery (LIB) technology’s potential to enable a commercially viable high energy density is the key to a lower $/Wh, thereby a low cost battery. The design of a LIB with high energy, high power, safety and long life is a challenge that requires cell design from the ground up and synergy between all components. 3M Company (3M), the Recipient, led by its Principal Investigator, Jagat Singh, pursued this challenging task of a LIB by ‘teaming’ key commercial businesses [General Motors (GM), Umicore and Iontensity] and labs [Army Research Laboratory (ARL) and Lawrence Berkley National Laboratory (LBNL)]. The technologymore » from each team member was complimentary and a close working relationship spanning the value chain drove productivity.The completion of this project is a significant step towards more energy efficient and environmentally friendly vehicles, making America less dependent on imported oil.« less
Engineering model system study for a regenerative fuel cell: Study report
NASA Technical Reports Server (NTRS)
Chang, B. J.; Schubert, F. H.; Kovach, A. J.; Wynveen, R. A.
1984-01-01
Key design issues of the regenerative fuel cell system concept were studied and a design definition of an alkaline electrolyte based engineering model system or low Earth orbit missions was completed. Definition of key design issues for a regenerative fuel cell system include gaseous reactant storage, shared heat exchangers and high pressure pumps. A power flow diagram for the 75 kW initial space station and the impact of different regenerative fuel cell modular sizes on the total 5 year to orbit weight and volume are determined. System characteristics, an isometric drawing, component sizes and mass and energy balances are determined for the 10 kW engineering model system. An open loop regenerative fuel cell concept is considered for integration of the energy storage system with the life support system of the space station. Technical problems and their solutions, pacing technologies and required developments and demonstrations for the regenerative fuel cell system are defined.
Chip-based quantum key distribution
Sibson, P.; Erven, C.; Godfrey, M.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; Tanner, M. G.; Natarajan, C. M.; Hadfield, R. H.; O'Brien, J. L.; Thompson, M. G.
2017-01-01
Improvement in secure transmission of information is an urgent need for governments, corporations and individuals. Quantum key distribution (QKD) promises security based on the laws of physics and has rapidly grown from proof-of-concept to robust demonstrations and deployment of commercial systems. Despite these advances, QKD has not been widely adopted, and large-scale deployment will likely require chip-based devices for improved performance, miniaturization and enhanced functionality. Here we report low error rate, GHz clocked QKD operation of an indium phosphide transmitter chip and a silicon oxynitride receiver chip—monolithically integrated devices using components and manufacturing processes from the telecommunications industry. We use the reconfigurability of these devices to demonstrate three prominent QKD protocols—BB84, Coherent One Way and Differential Phase Shift—with performance comparable to state-of-the-art. These devices, when combined with integrated single photon detectors, pave the way for successfully integrating QKD into future telecommunications networks. PMID:28181489
Parrish, Richard H.
2015-01-01
Numerous gaps in the current medication use system impede complete transmission of electronically identifiable and standardized extemporaneous formulations as well as a uniform approach to medication therapy management (MTM) for paediatric patients. The Pharmacy Health Information Technology Collaborative (Pharmacy HIT) identified six components that may have direct importance for pharmacy related to medication use in children. This paper will discuss key positions within the information technology infrastructure (HIT) where an electronic repository for the medication management of paediatric patients’ compounded non-sterile products (pCNP) and care provision could be housed optimally to facilitate and maintain transmission of e-prescriptions (eRx) from initiation to fulfillment. Further, the paper will propose key placement requirements to provide for maximal interoperability of electronic medication management systems to minimize disruptions across the continuum of care. PMID:28970375
Design of Diaphragm and Coil for Stable Performance of an Eddy Current Type Pressure Sensor.
Lee, Hyo Ryeol; Lee, Gil Seung; Kim, Hwa Young; Ahn, Jung Hwan
2016-07-01
The aim of this work was to develop an eddy current type pressure sensor and investigate its fundamental characteristics affected by the mechanical and electrical design parameters of sensor. The sensor has two key components, i.e., diaphragm and coil. On the condition that the outer diameter of sensor is 10 mm, two key parts should be designed so as to keep a good linearity and sensitivity. Experiments showed that aluminum is the best target material for eddy current detection. A round-grooved diaphragm is suggested in order to measure more precisely its deflection caused by applied pressures. The design parameters of a round-grooved diaphragm can be selected depending on the measuring requirements. A developed pressure sensor with diaphragm of t = 0.2 mm and w = 1.05 mm was verified to measure pressure up to 10 MPa with very good linearity and errors of less than 0.16%.
Townley, Ian K; Roux, Michelle M; Foltz, Kathy R
2006-04-01
Gamete interaction and fusion triggers a number of events that lead to egg activation and development of a new organism. A key event at fertilization is the rise in intracellular calcium. In deuterostomes, this calcium is released from the egg's endoplasmic reticulum and is necessary for proper activation. This article reviews recent data regarding how gamete interaction triggers the initial calcium release, focusing on the echinoderms (invertebrate deuterostomes) as model systems. In eggs of these animals, Src-type kinases and phospholipase C-gamma are required components of the initial calcium trigger pathway in eggs.
Laminates and reinforced metals
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1980-01-01
A selective review is presented of the state of the art of metallic laminates and fiber reinforced metals called metallic matrix laminates (MMLs). Design and analysis procedures that are used for, and typical structural components that have been made from MMLs are emphasized. Selected MMLs, constituent materials, typical material properties and fabrication procedures are briefly described, including hybrids and superhybrids. Advantages, disadvantages, and special considerations required during design, analysis, and fabrication of MMLs are examined. Tabular and graphical data are included to illustrate key aspects of MMLs. Appropriate references are cited to provide a selective bibliography of a rapidly expanding and very promising research and development field.
High speed holographic digital recorder.
Roberts, H N; Watkins, J W; Johnson, R H
1974-04-01
Concepts, feasibility experiments, and key component developments are described for a holographic digital record/reproduce system with the potential for 1.0 Gbit/sec rates and higher. Record rates of 500 Mbits/sec have been demonstrated with a ten-channel acoustooptic modulator array and a mode-locked, cavity-dumped argon-ion laser. Acoustooptic device technology has been advanced notably during the development of mode lockers, cavity dumpers, beam deflectors, and multichannel modulator arrays. The development of high speed multichannel photodetector arrays for the readout subsystem requires special attention. The feasibility of 1.0 Gbits/sec record rates has been demonstrated.
Functional Interface Considerations within an Exploration Life Support System Architecture
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad
2016-01-01
As notional life support system (LSS) architectures are developed and evaluated, myriad options must be considered pertaining to process technologies, components, and equipment assemblies. Each option must be evaluated relative to its impact on key functional interfaces within the LSS architecture. A leading notional architecture has been developed to guide the path toward realizing future crewed space exploration goals. This architecture includes atmosphere revitalization, water recovery and management, and environmental monitoring subsystems. Guiding requirements for developing this architecture are summarized and important interfaces within the architecture are discussed. The role of environmental monitoring within the architecture is described.
The Future of Pediatric Obesity.
Hutchinson, Jeff; Emerick, Jill; Saxena, Harshita
2016-03-01
The National Health and Nutrition Examination Survey from the Centers for Disease Control and Prevention reports a steady increase in obesity over the last 30 years. The greatest increase was seen in 15 to 19 year olds, whose obesity prevalence almost doubled from 10.5% to 19.4%. The solution to pediatric obesity requires a multidisciplinary approach addressing cultural norms, technologic advances, and family engagement. Future treatment strategies to combat the obesity epidemic will have to extend beyond the health care provider's office. Behavior modification remains the key component to pediatric obesity prevention and treatment. Published by Elsevier Inc.
Advanced catalyst supports for PEM fuel cell cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Lei; Shao, Yuyan; Sun, Junming
2016-11-01
Electrocatalyst support materials are key components for polymer exchange membrane (PEM) fuel cells, which play a critical role in determining electrocatalyst durability and activity, mass transfer and water management. The commonly-used supports, e.g. porous carbon black, cannot meet all the requirements under the harsh operation condition of PEM fuel cells. Great efforts have been made in the last few years in developing alternative support materials. In this paper, we selectively review recent progress on three types of important support materials: carbon, non-carbon and hybrid carbon-oxides nanocomposites. A perspective on future R&D of electrocatalyst support materials is also provided.
Evaluation of Chemical Coating Processes for AXAF
NASA Technical Reports Server (NTRS)
Engelhaupt, Darell E.
1997-01-01
The need existed at MSFC for the development and fabrication of radioisotope calibration sources of cadmium 109 and iron 55 isotopes. This was in urgent response to the AXAF program. Several issues persisted in creating manufacturing difficulties for the supplier. In order to meet the MSFC requirements very stringent control needed to be maintained for the coating quality, specific activity and thickness. Due to the difficulties in providing the precisely controlled devices for testing, the delivery of the sources was seriously delayed. It became imperative that these fabrication issues be resolved to avoid further delays in this AXAF observatory key component.
NASA Astrophysics Data System (ADS)
Khripko, Elena
2017-10-01
In the present article we study the issues of organizational resistance to reengineering of business processes in construction of transport infrastructure. Reengineering in a company of transport sector is, first and foremost, an innovative component of business strategy. We analyze the choice of forward and reverse reengineering tools and terms of their application in connection with organizational resistance. Reengineering is defined taking into account four aspects: fundamentality, radicality, abruptness, business process. We describe the stages of reengineering and analyze key requirements to newly created business processes.
A risk-based auditing process for pharmaceutical manufacturers.
Vargo, Susan; Dana, Bob; Rangavajhula, Vijaya; Rönninger, Stephan
2014-01-01
The purpose of this article is to share ideas on developing a risk-based model for the scheduling of audits (both internal and external). Audits are a key element of a manufacturer's quality system and provide an independent means of evaluating the manufacturer's or the supplier/vendor's compliance status. Suggestions for risk-based scheduling approaches are discussed in the article. Pharmaceutical manufacturers are required to establish and implement a quality system. The quality system is an organizational structure defining responsibilities, procedures, processes, and resources that the manufacturer has established to ensure quality throughout the manufacturing process. Audits are a component of the manufacturer's quality system and provide a systematic and an independent means of evaluating the manufacturer's overall quality system and compliance status. Audits are performed at defined intervals for a specified duration. The intention of the audit process is to focus on key areas within the quality system and may not cover all relevant areas during each audit. In this article, the authors provide suggestions for risk-based scheduling approaches to aid pharmaceutical manufacturers in identifying the key focus areas for an audit.
Syrzycka, Monika; McEachern, Lori A; Kinneard, Jennifer; Prabhu, Kristel; Fitzpatrick, Kathleen; Schulze, Sandra; Rawls, John M; Lloyd, Vett K; Sinclair, Donald A R; Honda, Barry M
2007-06-01
Hermansky-Pudlak syndrome (HPS) consists of a set of human autosomal recessive disorders, with symptoms resulting from defects in genes required for protein trafficking in lysosome-related organelles such as melanosomes and platelet dense granules. A number of human HPS genes and rodent orthologues have been identified whose protein products are key components of 1 of 4 different protein complexes (AP-3 or BLOC-1, -2, and -3) that are key participants in the process. Drosophila melanogaster has been a key model organism in demonstrating the in vivo significance of many genes involved in protein trafficking pathways; for example, mutations in the "granule group" genes lead to changes in eye colour arising from improper protein trafficking to pigment granules in the developing eye. An examination of the chromosomal positioning of Drosophila HPS gene orthologues suggested that CG9770, the Drosophila HPS5 orthologue, might correspond to the pink locus. Here we confirm this gene assignment, making pink the first eye colour gene in flies to be identified as a BLOC complex gene.
El Allaki, Farouk; Harrington, Noel; Howden, Krista
2016-11-01
The objectives of this study were (1) to estimate the annual sensitivity of Canada's bTB surveillance system and its three system components (slaughter surveillance, export testing and disease investigation) using a scenario tree modelling approach, and (2) to identify key model parameters that influence the estimates of the surveillance system sensitivity (SSSe). To achieve these objectives, we designed stochastic scenario tree models for three surveillance system components included in the analysis. Demographic data, slaughter data, export testing data, and disease investigation data from 2009 to 2013 were extracted for input into the scenario trees. Sensitivity analysis was conducted to identify key influential parameters on SSSe estimates. The median annual SSSe estimates generated from the study were very high, ranging from 0.95 (95% probability interval [PI]: 0.88-0.98) to 0.97 (95% PI: 0.93-0.99). Median annual sensitivity estimates for the slaughter surveillance component ranged from 0.95 (95% PI: 0.88-0.98) to 0.97 (95% PI: 0.93-0.99). This shows that slaughter surveillance to be the major contributor to overall surveillance system sensitivity with a high probability to detect M. bovis infection if present at a prevalence of 0.00028% or greater during the study period. The export testing and disease investigation components had extremely low component sensitivity estimates-the maximum median sensitivity estimates were 0.02 (95% PI: 0.014-0.023) and 0.0061 (95% PI: 0.0056-0.0066) respectively. The three most influential input parameters on the model's output (SSSe) were the probability of a granuloma being detected at slaughter inspection, the probability of a granuloma being present in older animals (≥12 months of age), and the probability of a granuloma sample being submitted to the laboratory. Additional studies are required to reduce the levels of uncertainty and variability associated with these three parameters influencing the surveillance system sensitivity. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Zheng
2002-08-01
Facing the new demands of the optical fiber communications market, almost all the performance and reliability of optical network system are dependent on the qualification of the fiber optics components. So, how to comply with the system requirements, the Telcordia / Bellcore reliability and high-power testing has become the key issue for the fiber optics components manufacturers. The qualification of Telcordia / Bellcore reliability or high-power testing is a crucial issue for the manufacturers. It is relating to who is the outstanding one in the intense competition market. These testing also need maintenances and optimizations. Now, work on the reliability and high-power testing have become the new demands in the market. The way is needed to get the 'Triple-Win' goal expected by the component-makers, the reliability-testers and the system-users. To those who are meeting practical problems for the testing, there are following seven topics that deal with how to shoot the common mistakes to perform qualify reliability and high-power testing: ¸ Qualification maintenance requirements for the reliability testing ¸ Lots control for preparing the reliability testing ¸ Sampling select per the reliability testing ¸ Interim measurements during the reliability testing ¸ Basic referencing factors relating to the high-power testing ¸ Necessity of re-qualification testing for the changing of producing ¸ Understanding the similarity for product family by the definitions
Research on criticality analysis method of CNC machine tools components under fault rate correlation
NASA Astrophysics Data System (ADS)
Gui-xiang, Shen; Xian-zhuo, Zhao; Zhang, Ying-zhi; Chen-yu, Han
2018-02-01
In order to determine the key components of CNC machine tools under fault rate correlation, a system component criticality analysis method is proposed. Based on the fault mechanism analysis, the component fault relation is determined, and the adjacency matrix is introduced to describe it. Then, the fault structure relation is hierarchical by using the interpretive structure model (ISM). Assuming that the impact of the fault obeys the Markov process, the fault association matrix is described and transformed, and the Pagerank algorithm is used to determine the relative influence values, combined component fault rate under time correlation can obtain comprehensive fault rate. Based on the fault mode frequency and fault influence, the criticality of the components under the fault rate correlation is determined, and the key components are determined to provide the correct basis for equationting the reliability assurance measures. Finally, taking machining centers as an example, the effectiveness of the method is verified.
21 CFR 1311.30 - Requirements for storing and using a private key for digitally signing orders.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 9 2014-04-01 2014-04-01 false Requirements for storing and using a private key... Certificates for Electronic Orders § 1311.30 Requirements for storing and using a private key for digitally... private key. (b) The certificate holder must provide FIPS-approved secure storage for the private key, as...
21 CFR 1311.30 - Requirements for storing and using a private key for digitally signing orders.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 9 2012-04-01 2012-04-01 false Requirements for storing and using a private key... Certificates for Electronic Orders § 1311.30 Requirements for storing and using a private key for digitally... private key. (b) The certificate holder must provide FIPS-approved secure storage for the private key, as...
21 CFR 1311.30 - Requirements for storing and using a private key for digitally signing orders.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Requirements for storing and using a private key... Certificates for Electronic Orders § 1311.30 Requirements for storing and using a private key for digitally... private key. (b) The certificate holder must provide FIPS-approved secure storage for the private key, as...
21 CFR 1311.30 - Requirements for storing and using a private key for digitally signing orders.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 9 2013-04-01 2013-04-01 false Requirements for storing and using a private key... Certificates for Electronic Orders § 1311.30 Requirements for storing and using a private key for digitally... private key. (b) The certificate holder must provide FIPS-approved secure storage for the private key, as...
Rütten, A; Wolff, A; Streber, A
2016-03-01
This article discusses 2 current issues in the field of public health research: (i) transfer of scientific knowledge into practice and (ii) sustainable implementation of good practice projects. It also supports integration of scientific and practice-based evidence production. Furthermore, it supports utilisation of interactive models that transcend deductive approaches to the process of knowledge transfer. Existing theoretical approaches, pilot studies and thoughtful conceptual considerations are incorporated into a framework showing the interplay of science, politics and prevention practice, which fosters a more sustainable implementation of health promotion programmes. The framework depicts 4 key processes of interaction between science and prevention practice: interactive knowledge to action, capacity building, programme adaptation and adaptation of the implementation context. Ensuring sustainability of health promotion programmes requires a concentrated process of integrating scientific and practice-based evidence production in the context of implementation. Central to the integration process is the approach of interactive knowledge to action, which especially benefits from capacity building processes that facilitate participation and systematic interaction between relevant stakeholders. Intense cooperation also induces a dynamic interaction between multiple actors and components such as health promotion programmes, target groups, relevant organisations and social, cultural and political contexts. The reciprocal adaptation of programmes and key components of the implementation context can foster effectiveness and sustainability of programmes. Sustainable implementation of evidence-based health promotion programmes requires alternatives to recent deductive models of knowledge transfer. Interactive approaches prove to be promising alternatives. Simultaneously, they change the responsibilities of science, policy and public health practice. Existing boundaries within disciplines and sectors are overcome by arranging transdisciplinary teams as well as by developing common agendas and procedures. Such approaches also require adaptations of the structure of research projects such as extending the length of funding. © Georg Thieme Verlag KG Stuttgart · New York.
Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis
Pamenter, Matthew E.; Powell, Frank L.
2016-01-01
Ventilatory responses to hypoxia vary widely depending on the pattern and length of hypoxic exposure. Acute, prolonged, or intermittent hypoxic episodes can increase or decrease breathing for seconds to years, both during the hypoxic stimulus, and also after its removal. These myriad effects are the result of a complicated web of molecular interactions that underlie plasticity in the respiratory control reflex circuits and ultimately control the physiology of breathing in hypoxia. Since the time domains of the physiological hypoxic ventilatory response (HVR) were identified, considerable research effort has gone toward elucidating the underlying molecular mechanisms that mediate these varied responses. This research has begun to describe complicated and plastic interactions in the relay circuits between the peripheral chemoreceptors and the ventilatory control circuits within the central nervous system. Intriguingly, many of these molecular pathways seem to share key components between the different time domains, suggesting that varied physiological HVRs are the result of specific modifications to overlapping pathways. This review highlights what has been discovered regarding the cell and molecular level control of the time domains of the HVR, and highlights key areas where further research is required. Understanding the molecular control of ventilation in hypoxia has important implications for basic physiology and is emerging as an important component of several clinical fields. PMID:27347896
Bellgard, Matthew I; Walker, Caroline E; Napier, Kathryn R; Lamont, Leanne; Hunter, Adam A; Render, Lee; Radochonski, Maciej; Pang, Jing; Pedrotti, Annette; Sullivan, David R; Kostner, Karam; Bishop, Warrick; George, Peter M; O'Brien, Richard C; Clifton, Peter M; Bockxmeer, Frank M Van; Nicholls, Stephen J; Hamilton-Craig, Ian; Dawkins, Hugh Js; Watts, Gerald F
2017-10-01
Familial Hypercholesterolemia (FH) is the most common and serious monogenic disorder of lipoprotein metabolism that leads to premature coronary heart disease. There are over 65,000 people estimated to have FH in Australia, but many remain undiagnosed. Patients with FH are often under-treated, but with early detection, cascade family testing and adequate treatment, patient outcomes can improve. Patient registries are key tools for providing new information on FH and enhancing care worldwide. The development and design of the FH Australasia Network Registry is a crucial component in the comprehensive model of care for FH, which aims to provide a standardized, high-quality and cost-effective system of care that is likely to have the highest impact on patient outcomes. Informed by stakeholder engagement, the FH Australasia Network Registry was collaboratively developed by government, patient and clinical networks and research groups. The open-source, web-based Rare Disease Registry Framework was the architecture chosen for this registry owing to its open-source standards, modular design, interoperability, scalability and security features; all these are key components required to meet the ever changing clinical demands across regions. This paper provides a high level blueprint for other countries and jurisdictions to help inform and map out the critical features of an FH registry to meet their particular health system needs.
The Water Risks of Hydraulic Fracturing (Fracking): Key Issues from the New California Assessment
NASA Astrophysics Data System (ADS)
Gleick, P. H.
2015-12-01
A key component of the Water-Energy Nexus is the effort over the past decade or so to quantify the volumes and form of water required for the energy fuel cycle from extraction to generation to waste disposal. The vast majority of the effort in this area has focused on the water needs of electricity generation, but other fuel-cycle components also entail significant water demands and threats to water quality. Recent work for the State of California (managed by the California Council on Science and Technology - CCST) has produced a new state-of-the-art assessment of a range of potential water risks associated with hydraulic fracturing and related oil and gas extraction, including volumetric water demands, methods of disposal of produced water, and aquifer contamination. For example, this assessment produced new information on the disposal of produced water in surface percolation pits and the potential for contamination of local groundwater (see Figure). Understanding these risks raises questions about current production and future plans to expand production, as well as tools used by state and federal agencies to manage these risks. This talk will summarize the science behind the CCST assessment and related policy recommendations for both water and energy managers.
Salient Features of a Proposed Adolescent Health Policy Draft for India
Dehury, Ranjit Kumar
2017-01-01
India is one of the most populous countries in the world. The adolescent population in India constitutes about one fifth of the total Indian population. Adolescent phase is a transitional phase in life and the adolescents are neither child nor adult at this stage and are full of energy, have significant drive and new ideas. The relatively lower death rate and relatively good health status of the adolescents has always been a misleading measure to adolescent health and thus given lesser priorities. In order to respond effectively to the needs of adolescent health and development, it is important to place adolescence in a life-span perspective within dynamic sociological, cultural and economic realities. For this, government of India has started a national programme known as “Rashtriya Kishor Swathya Karyakram” in 2014. However, India as a country does not have an adolescent health policy till date and hence the country requires a national adolescent health policy. The key priorities should include sexual and reproductive health, nutritional problems (both under and over nutrition), substance abuse, mental health, road traffic accidents, intentional violence and non-communicable diseases. In addition to key priorities, the policy draft should include pertinent components such as a preamble, guiding principles, coordinating agencies, monitoring and evaluation, research and documentation components. PMID:28658817
Salient Features of a Proposed Adolescent Health Policy Draft for India.
Samal, Janmejaya; Dehury, Ranjit Kumar
2017-05-01
India is one of the most populous countries in the world. The adolescent population in India constitutes about one fifth of the total Indian population. Adolescent phase is a transitional phase in life and the adolescents are neither child nor adult at this stage and are full of energy, have significant drive and new ideas. The relatively lower death rate and relatively good health status of the adolescents has always been a misleading measure to adolescent health and thus given lesser priorities. In order to respond effectively to the needs of adolescent health and development, it is important to place adolescence in a life-span perspective within dynamic sociological, cultural and economic realities. For this, government of India has started a national programme known as " Rashtriya Kishor Swathya Karyakram " in 2014. However, India as a country does not have an adolescent health policy till date and hence the country requires a national adolescent health policy. The key priorities should include sexual and reproductive health, nutritional problems (both under and over nutrition), substance abuse, mental health, road traffic accidents, intentional violence and non-communicable diseases. In addition to key priorities, the policy draft should include pertinent components such as a preamble, guiding principles, coordinating agencies, monitoring and evaluation, research and documentation components.
Space Suit Portable Life Support System Test Bed (PLSS 1.0) Development and Testing
NASA Technical Reports Server (NTRS)
Watts, Carly; Campbell, Colin; Vogel, Matthew; Conger, Bruce
2012-01-01
A multi-year effort has been carried out at NASA-JSC to develop an advanced extra-vehicular activity Portable Life Support System (PLSS) design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station Extra-vehicular Mobility Unit PLSS, the advanced PLSS comprises three subsystems required to sustain the crew during extra-vehicular activity including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test bed that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, Ventilation Subsystem fan, Rapid Cycle Amine swingbed carbon dioxide and water vapor removal device, and Spacesuit Water Membrane Evaporator heat rejection device. The overall PLSS 1.0 test objective was to demonstrate the capability of the Advanced PLSS to provide key life support functions including suit pressure regulation, carbon dioxide and water vapor removal, thermal control and contingency purge operations. Supplying oxygen was not one of the specific life support functions because the PLSS 1.0 test was not oxygen rated. Nitrogen was used for the working gas. Additional test objectives were to confirm PLSS technology development components performance within an integrated test bed, identify unexpected system level interactions, and map the PLSS 1.0 performance with respect to key variables such as crewmember metabolic rate and suit pressure. Successful PLSS 1.0 testing completed 168 test points over 44 days of testing and produced a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected; furthermore, many system responses trended in accordance with pre-test predictions.
Mironova, Yevgeniya A; Lenk, Guy M; Lin, Jing-Ping; Lee, Seung Joon; Twiss, Jeffery L; Vaccari, Ilaria; Bolino, Alessandra; Havton, Leif A; Min, Sang H; Abrams, Charles S; Shrager, Peter; Meisler, Miriam H; Giger, Roman J
2016-01-01
Proper development of the CNS axon-glia unit requires bi-directional communication between axons and oligodendrocytes (OLs). We show that the signaling lipid phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2] is required in neurons and in OLs for normal CNS myelination. In mice, mutations of Fig4, Pikfyve or Vac14, encoding key components of the PI(3,5)P2 biosynthetic complex, each lead to impaired OL maturation, severe CNS hypomyelination and delayed propagation of compound action potentials. Primary OLs deficient in Fig4 accumulate large LAMP1+ and Rab7+ vesicular structures and exhibit reduced membrane sheet expansion. PI(3,5)P2 deficiency leads to accumulation of myelin-associated glycoprotein (MAG) in LAMP1+perinuclear vesicles that fail to migrate to the nascent myelin sheet. Live-cell imaging of OLs after genetic or pharmacological inhibition of PI(3,5)P2 synthesis revealed impaired trafficking of plasma membrane-derived MAG through the endolysosomal system in primary cells and brain tissue. Collectively, our studies identify PI(3,5)P2 as a key regulator of myelin membrane trafficking and myelinogenesis. DOI: http://dx.doi.org/10.7554/eLife.13023.001 PMID:27008179
DuBois, James M.; Schilling, Debie A.; Heitman, Elizabeth; Steneck, Nicholas H.; Kon, Alexander A.
2010-01-01
Abstract The National Institutes of Health (NIH) require instruction in the responsible conduct of research (RCR) as a component of any Clinical and Translational Science Award (CTSA). The Educational Materials Group of the NIH CTSA Consortium's Clinical Research Ethics Key Function Committee (CRE‐KFC) conducted a survey of the 38 institutions that held CTSA funding as of January 2009 to determine how they satisfy RCR training requirements. An 8‐item questionnaire was sent by email to directors of the Clinical Research Ethics, the Educational and Career Development, and the Regulatory Knowledge cores. We received 78 completed surveys from 38 CTSAs (100%). We found that there is no unified approach to RCR training across CTSAs, many programs lack a coherent plan for RCR instruction, and most CTSAs have not developed unique instructional materials tailored to the needs of clinical and translational scientists. We recommend collaboration among CTSAs and across CTSA key function committees to address these weaknesses. We also requested that institutions send electronic copies of original RCR training materials to share among CTSAs via the CTSpedia website. Twenty institutions submitted at least one educational product. The CTSpedia now contains more than 90 RCR resources. PMID:20590680
DuBois, James M; Schilling, Debie A; Heitman, Elizabeth; Steneck, Nicholas H; Kon, Alexander A
2010-06-01
The National Institutes of Health (NIH) require instruction in the responsible conduct of research (RCR) as a component of any Clinical and Translational Science Award (CTSA). The Educational Materials Group of the NIH CTSA Consortium's Clinical Research Ethics Key Function Committee (CRE-KFC) conducted a survey of the 38 institutions that held CTSA funding as of January 2009 to determine how they satisfy RCR training requirements. An 8-item questionnaire was sent by email to directors of the Clinical Research Ethics, the Educational and Career Development, and the Regulatory Knowledge cores. We received 78 completed surveys from 38 CTSAs (100%). We found that there is no unified approach to RCR training across CTSAs, many programs lack a coherent plan for RCR instruction, and most CTSAs have not developed unique instructional materials tailored to the needs of clinical and translational scientists. We recommend collaboration among CTSAs and across CTSA key function committees to address these weaknesses. We also requested that institutions send electronic copies of original RCR training materials to share among CTSAs via the CTSpedia website. Twenty institutions submitted at least one educational product. The CTSpedia now contains more than 90 RCR resources.
Population Health Management for Inflammatory Bowel Disease.
Dulai, Parambir S; Singh, Siddharth; Ohno-Machado, Lucilla; Sandborn, William J
2018-01-01
Inflammatory bowel diseases (IBDs) are chronic and impose significant, multidimensional burdens on patients and health care systems. The increasing prevalence of IBD will only worsen this problem globally-population health management (PHM) strategies are needed to increase quality of care and population health outcomes while reducing health care costs. We discuss the key components of PHM in IBD. Effective implementation of PHM strategies requires accurate identification of at-risk patients and key areas of variability in care. Improving outcomes of the at-risk population requires implementation of a multicomponent chronic care model designed to shift delivery of ambulatory care from acute, episodic, and reactive encounters, to proactive, planned, long-term care. This is achieved through team care of an activated patient with the help of remote monitoring, clinical information systems, and integrated decision support, with accompanying changes in delivery systems. Performance measurement is integral to any PHM strategy. This involves developing and implementing meaningful metrics of different phases of quality of IBD care and measuring them efficiently using modern clinical information systems. Such an integrated framework of PHM in IBD will facilitate the delivery of high-value care to patients. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Teamwork situated in multiteam systems: Key lessons learned and future opportunities.
Shuffler, Marissa L; Carter, Dorothy R
2018-01-01
Many important contexts requiring teamwork, including health care, space exploration, national defense, and scientific discovery, present important challenges that cannot be addressed by a single team working independently. Instead, the complex goals these contexts present often require effectively coordinated efforts of multiple specialized teams working together as a multiteam system (MTS). For almost 2 decades, researchers have endeavored to understand the novelties and nuances for teamwork and collaboration that ensue when teams operate together as "component teams" in these interdependent systems. In this special issue on the settings of teamwork, we aim to synthesize what is known thus far regarding teamwork situated in MTS contexts and offer new directions and considerations for developing, maintaining, and sustaining effective collaboration in MTSs. Our review of extant research on MTSs reveals 7 key lessons learned regarding teamwork situated in MTSs, but also reveals that much is left to learn about the science and practice of ensuring effective multiteam functioning. We elaborate these lessons and delineate 4 major opportunities for advancing the science of MTSs as a critical embedding context for collaboration and teamwork, now and in the future. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Electronic Voting Protocol Using Identity-Based Cryptography.
Gallegos-Garcia, Gina; Tapia-Recillas, Horacio
2015-01-01
Electronic voting protocols proposed to date meet their properties based on Public Key Cryptography (PKC), which offers high flexibility through key agreement protocols and authentication mechanisms. However, when PKC is used, it is necessary to implement Certification Authority (CA) to provide certificates which bind public keys to entities and enable verification of such public key bindings. Consequently, the components of the protocol increase notably. An alternative is to use Identity-Based Encryption (IBE). With this kind of cryptography, it is possible to have all the benefits offered by PKC, without neither the need of certificates nor all the core components of a Public Key Infrastructure (PKI). Considering the aforementioned, in this paper we propose an electronic voting protocol, which meets the privacy and robustness properties by using bilinear maps.
Electronic Voting Protocol Using Identity-Based Cryptography
Gallegos-Garcia, Gina; Tapia-Recillas, Horacio
2015-01-01
Electronic voting protocols proposed to date meet their properties based on Public Key Cryptography (PKC), which offers high flexibility through key agreement protocols and authentication mechanisms. However, when PKC is used, it is necessary to implement Certification Authority (CA) to provide certificates which bind public keys to entities and enable verification of such public key bindings. Consequently, the components of the protocol increase notably. An alternative is to use Identity-Based Encryption (IBE). With this kind of cryptography, it is possible to have all the benefits offered by PKC, without neither the need of certificates nor all the core components of a Public Key Infrastructure (PKI). Considering the aforementioned, in this paper we propose an electronic voting protocol, which meets the privacy and robustness properties by using bilinear maps. PMID:26090515
Hu, Shan-Zhou; Chen, Fen-Fei; Zeng, Li-Bo; Wu, Qiong-Shui
2013-01-01
Imaging AOTF is an important optical filter component for new spectral imaging instruments developed in recent years. The principle of imaging AOTF component was demonstrated, and a set of testing methods for some key performances were studied, such as diffraction efficiency, wavelength shift with temperature, homogeneity in space for diffraction efficiency, imaging shift, etc.
USDA-ARS?s Scientific Manuscript database
Cover crops are a key component of conservation cropping systems. They can also be a key component of integrated crop-livestock systems by offering high-quality forage during short periods between cash crops. The impact of cattle grazing on biologically active soil C and N fractions has not receiv...
NASA Astrophysics Data System (ADS)
Huang, Chien-Yao; Chang, Chun-Ming; Ho, Cheng-Fong; Lee, Tai-Wen; Lin, Ping-Hung; Hsu, Wei-Yao
2017-06-01
The advantage of 3D printing technique is flexible in design and fabrication. Using 3D printing technique, the traditional manufacturing limitations are not considered. The optical lens is the key component in an optical system. The traditional process to manufacture optical plastic lens is injection molding. However injection molding is only suitable for plastics lens, it cannot fabricate optical and mechanical components at same time. The assembly error of optical system can be reduced effectively with fabricating optical and mechanical components at same time. The process of printing optical and mechanical components simultaneously is proposed in previous papers, but the optical surface of printing components is not transparent. If we increase the transmittance of the optical surface, the printing components which fabricated by 3D printing process could be high transmission. Therefore, precise diamond turning technique has been used to turning the surface of 3D printing optical lens in this paper. The precise diamond turning techniques could process surfaces of components to meet the requirements of optical system. A 3D printing machine, Stratasys Connex 500, and a precise diamond turning machine, Precitech Freeform705XG, have been used in this paper, respectively. The dimension, roughness, transmission and printing types of 3D printing components have been discussed in this paper. After turning and polishing process, the roughness of 3D printing component is below 0.05 μm and the transmittance increase above 80 %. This optical module can be used in hand-held telescope and other system which need lens and special mechanical structure fabricated simultaneously.
Gender-Mainstreaming in Technical and Vocational Education and Training
NASA Astrophysics Data System (ADS)
Nurhaeni, I. D. A.; Kurniawan, Y.
2018-02-01
Gender differences should be considered in vocational high schools so women and men can develop their potentials without being inhibited by gender bias. Gender mainstreaming in vocational high schools is a strategy to integrate gender differences at all stages in teaching-learning process for achieving gender equality and equity. This research evaluates the implementation of gender mainstreaming in vocational high schools consisting of seven key components of gender mainstreaming. Four vocational high schools in Sragen Regency Indonesia have been purposively selected. The data were obtained through in-depth interviews and documentation studies. The data were analyzed using Kabeer’s model of gender analysis. The findings show that not all key components of gender mainstreaming have been implemented in vocational high schools. Most vocational high schools have implemented three of seven key components of gender mainstreaming, namely political will and leadership, policy framework and gender statistics. Meanwhile four of seven key components of gender mainstreaming, namely structure and mechanism, resources, infra structures and civil society have not been well-implemented. In conclusion gender mainstreaming has not been implemented effectively in vocational high schools. Accordingly, the government’s education office should continue to encourage and publish guidelines on the implementation of gender-mainstreaming in vocational high schools.
Hanss, Sabine; Schaaf, T; Wetzel, T; Hahn, C; Schrader, T; Tolxdorff, T
2009-01-01
In this paper we present a general concept and describe the difficulties for the integration of data from various clinical partners in one data warehouse using the Open European Nephrology Science Center (OpEN.SC) as an example. This includes a requirements analysis of the data integration process and also the design according to these requirements. This conceptual approach based on the Rational Unified Process (RUP) and paradigm of Service-Oriented Architecture (SOA). Because we have to enhance the confidence of our partners in the OpEN.SC system and with this the willingness of them to participate, important requirements are controllability, transparency and security for all partners. Reusable and fine-grained components were found to be necessary when working with diverse data sources. With SOA the requested reusability is implemented easily. A key step in the development of a data integration process within such a health information system like OpEN.SC is to analyze the requirements. And to show that this is not only a theoretical work, we present a design - developed with RUP and SOA - which fulfills these requirements.
A 4 K tactical cryocooler using reverse-Brayton machines
NASA Astrophysics Data System (ADS)
Zagarola, M.; Cragin, K.; McCormick, J.; Hill, R.
2017-12-01
Superconducting electronics and spectral-spatial holography have the potential to revolutionize digital communications, but must operate at cryogenic temperatures, near 4 K. Liquid helium is undesirable for military missions due to logistics and scarcity, and commercial low temperature cryocoolers are unable to meet size, weight, power, and environmental requirements for many missions. To address this need, Creare is developing a reverse turbo-Brayton cryocooler that provides refrigeration at 4.2 K and rejects heat at 77 K to an upper-stage cryocooler or through boil-off of liquid nitrogen. The cooling system is predicted to reduce size, weight, and input power by at least an order of magnitude as compared to the current state-of-the-art 4.2 K cryocooler. For systems utilizing nitrogen boil-off, the boil-off rate is reasonable. This paper reviews the design of the cryocooler, the key components, and component test results.
Sphingolipids from the human fungal pathogen Aspergillus fumigatus.
Fontaine, Thierry
2017-10-01
Sphingolipids (SPLs) are key components of the plasma membrane in yeast and filamentous fungi. These molecules are involved in a number of cellular processes, and particularly, SGLs are essential components of the highly polarized fungal growth where they are required for the formation of the polarisome organization at the hyphal apex. Aspergillus fumigatus, a human fungal pathogen, produce SGLs that are discriminated into neutral cerebrosides, glycosylinositolphosphoceramides (GIPCs) and glycosylphosphatidylinositol (GPI) anchors. In addition to complex hydrophilic head groups of GIPCs, A. fumigatus is, to date, the sole fungus that produces a GPI-anchored polysaccharide. These SPLs follow three different biosynthetic pathways. Genetics blockage leading to the inhibition of any SPL biosynthesis or to the alteration of the structure of SPL induces growth and virulence defects. The complete lipid moiety of SPLs is essential for the lipid microdomain organization and their biosynthetic pathways are potential antifungal targets but remains understudied. Copyright © 2017. Published by Elsevier B.V.
DLR MiroSurge: a versatile system for research in endoscopic telesurgery.
Hagn, Ulrich; Konietschke, R; Tobergte, A; Nickl, M; Jörg, S; Kübler, B; Passig, G; Gröger, M; Fröhlich, F; Seibold, U; Le-Tien, L; Albu-Schäffer, A; Nothhelfer, A; Hacker, F; Grebenstein, M; Hirzinger, G
2010-03-01
Research on surgical robotics demands systems for evaluating scientific approaches. Such systems can be divided into dedicated and versatile systems. Dedicated systems are designed for a single surgical task or technique, whereas versatile systems are designed to be expandable and useful in multiple surgical applications. Versatile systems are often based on industrial robots, though, and because of this, are hardly suitable for close contact with humans. To achieve a high degree of versatility the Miro robotic surgery platform (MRSP) consists of versatile components, dedicated front-ends towards surgery and configurable interfaces for the surgeon. This paper presents MiroSurge, a configuration of the MRSP that allows for bimanual endoscopic telesurgery with force feedback. While the components of the MiroSurge system are shown to fulfil the rigid design requirements for robotic telesurgery with force feedback, the system remains versatile, which is supposed to be a key issue for the further development and optimisation.
Spatio-temporal distribution of global solar radiation for Mexico using GOES data
NASA Astrophysics Data System (ADS)
Bonifaz, R.; Cuahutle, M.; Valdes, M.; Riveros, D.
2013-05-01
Increased need of sustainable and renewable energies around the world requires studies about the amount and distribution of such types of energies. Global solar radiation distribution in space and time is a key component on order to know the availability of the energy for different applications. Using GOES hourly data, the heliosat model was implemented for Mexico. Details about the model and its components are discussed step by stem an once obtained the global solar radiation images, different time datasets (hourly, daily, monthly and seasonal) were built in order to know the spatio-temporal behavior of this type of energy. Preliminary maps of the available solar global radiation energy for Mexico are presented, the amount and variation of the solar radiation by regions are analyzed and discussed. Future work includes a better parametrization of the model using calibrated ground stations data and more use of more complex models for better results.
Transcriptional regulation by the Set7 lysine methyltransferase
Keating, Samuel; El-Osta, Assam
2013-01-01
Posttranslational histone modifications define chromatin structure and function. In recent years, a number of studies have characterized many of the enzymatic activities and diverse regulatory components required for monomethylation of histone H3 lysine 4 (H3K4me1) and the expression of specific genes. The challenge now is to understand how this specific chemical modification is written and the Set7 methyltransferase has emerged as a key regulatory enzyme mediating methylation of lysine residues of histone and non-histone proteins. In this review, we comprehensively explore the regulatory proteins modified by Set7 and highlight mechanisms of specific co-recruitment of the enzyme to activating promoters. With a focus on signaling and transcriptional control in disease we discuss recent experimental data emphasizing specific components of diverse regulatory complexes that mediate chromatin modification and reinterpretation of Set7-mediated gene expression. PMID:23478572
An ethical framework for the management of pain in the emergency department.
Venkat, Arvind; Fromm, Christian; Isaacs, Eric; Ibarra, Jordan
2013-07-01
Pain is a ubiquitous problem, affecting more than 100 million individuals in the United States chronically and many more in the acute setting. Up to three-quarters of patients presenting to the emergency department (ED) report pain as a key component of their reasons for requiring acute care. While pain management is a fundamental component of emergency medicine (EM), there are numerous attitudinal and structural barriers that have been identified to effectively providing pain control in the ED. Coupled with public demands and administrative mandates, concerns surrounding ED pain management have reached a crisis level that should be considered an ethical issue in the profession of EM. In this article, the authors propose an ethical framework based on a combination of virtue, narrative, and relationship theories that can be used to address the clinical dilemmas that arise in managing pain in ED patients. © 2013 by the Society for Academic Emergency Medicine.
Laser interferometer for space-based mapping of Earth's gravity field
NASA Astrophysics Data System (ADS)
Dehne, Marina; Sheard, Benjamin; Gerberding, Oliver; Mahrdt, Christoph; Heinzel, Gerhard; Danzmann, Karsten
2010-05-01
Laser interferometry will play a key role in the next generation of GRACE-type satellite gravity missions. The measurement concepts for future missions include a heterodyne laser interferometer. Furthermore, it is favourable to use polarising components in the laser interferometer for beam splitting. In the first step the influence of these components on the interferometer sensitivity has been investigated. Additionally, a length stability on a nm-scale has been validated. The next step will include a performance test of an interferometric SST system in an active symmetric transponder setup including two lasers and two optical benches. The design and construction of a quasi-monolithic interferometer for comparing the interferometric performance of non-polarising and polarising optics will be discussed. The results of the interferometric readout of a heterodyne configuration together with polarising optics will be presented to fulfil the phase sensitivity requirement of 1nm/√Hz-- for a typical SSI scenario.
Design of Control Software for a High-Speed Coherent Doppler Lidar System for CO2 Measurement
NASA Technical Reports Server (NTRS)
Vanvalkenburg, Randal L.; Beyon, Jeffrey Y.; Koch, Grady J.; Yu, Jirong; Singh, Upendra N.; Kavaya, Michael J.
2010-01-01
The design of the software for a 2-micron coherent high-speed Doppler lidar system for CO2 measurement at NASA Langley Research Center is discussed in this paper. The specific strategy and design topology to meet the requirements of the system are reviewed. In order to attain the high-speed digitization of the different types of signals to be sampled on multiple channels, a carefully planned design of the control software is imperative. Samples of digitized data from each channel and their roles in data analysis post processing are also presented. Several challenges of extremely-fast, high volume data acquisition are discussed. The software must check the validity of each lidar return as well as other monitoring channel data in real-time. For such high-speed data acquisition systems, the software is a key component that enables the entire scope of CO2 measurement studies using commercially available system components.
Activation and synchronization of the oscillatory morphodynamics in multicellular monolayer
Lin, Shao-Zhen; Li, Bo; Lan, Ganhui; Feng, Xi-Qiao
2017-01-01
Oscillatory morphodynamics provides necessary mechanical cues for many multicellular processes. Owing to their collective nature, these processes require robustly coordinated dynamics of individual cells, which are often separated too distantly to communicate with each other through biomaterial transportation. Although it is known that the mechanical balance generally plays a significant role in the systems’ morphologies, it remains elusive whether and how the mechanical components may contribute to the systems’ collective morphodynamics. Here, we study the collective oscillations in the Drosophila amnioserosa tissue to elucidate the regulatory roles of the mechanical components. We identify that the tensile stress is the key activator that switches the collective oscillations on and off. This regulatory role is shown analytically using the Hopf bifurcation theory. We find that the physical properties of the tissue boundary are directly responsible for synchronizing the oscillatory intensity and polarity of all inner cells and for orchestrating the spatial oscillation patterns inthe tissue. PMID:28716911
Numerical Simulation of the RTA Combustion Rig
NASA Technical Reports Server (NTRS)
Davoudzadeh, Farhad; Buehrle, Robert; Liu, Nan-Suey; Winslow, Ralph
2005-01-01
The Revolutionary Turbine Accelerator (RTA)/Turbine Based Combined Cycle (TBCC) project is investigating turbine-based propulsion systems for access to space. NASA Glenn Research Center and GE Aircraft Engines (GEAE) planned to develop a ground demonstrator engine for validation testing. The demonstrator (RTA-1) is a variable cycle, turbofan ramjet designed to transition from an augmented turbofan to a ramjet that produces the thrust required to accelerate the vehicle from Sea Level Static (SLS) to Mach 4. The RTA-1 is designed to accommodate a large variation in bypass ratios from sea level static to Mach 4 conditions. Key components of this engine are new, such as a nickel alloy fan, advanced trapped vortex combustor, a Variable Area Bypass Injector (VABI), radial flameholders, and multiple fueling zones. A means to mitigate risks to the RTA development program was the use of extensive component rig tests and computational fluid dynamics (CFD) analysis.
Nanobonding: A key technology for emerging applications in health and environmental sciences
NASA Astrophysics Data System (ADS)
Howlader, Matiar M. R.; Deen, M. Jamal; Suga, Tadatomo
2015-03-01
In this paper, surface-activation-based nanobonding technology and its applications are described. This bonding technology allows for the integration of electronic, photonic, fluidic and mechanical components into small form-factor systems for emerging sensing and imaging applications in health and environmental sciences. Here, we describe four different nanobonding techniques that have been used for the integration of various substrates — silicon, gallium arsenide, glass, and gold. We use these substrates to create electronic (silicon), photonic (silicon and gallium arsenide), microelectromechanical (glass and silicon), and fluidic (silicon and glass) components for biosensing and bioimaging systems being developed. Our nanobonding technologies provide void-free, strong, and nanometer scale bonding at room temperature or at low temperatures (<200 °C), and do not require chemicals, adhesives, or high external pressure. The interfaces of the nanobonded materials in ultra-high vacuum and in air correspond to covalent bonds, and hydrogen or hydroxyl bonds, respectively.
Schwartz, Diane Brady; Spencer, Tammy; Wilson, Brigitte; Wood, Kim
2011-06-01
A perioperative nurse leader's ability to effect positive change and inspire others to higher levels of achievement is related to his or her leadership style in the practice setting and the leadership style that is present across the organization. The American Nurses Credentialing Center's Magnet™ designation and redesignation process requires the demonstration of transformational leadership as one of the components of excellence. Transformational leadership can increase nurses' job satisfaction and commitment to the organization and organizational culture. Engaging staff members in the transition to transformational leadership and developing a common mission, vision, and goals are keys to success in the surgical setting. Bass's four interrelated leadership components-idealized influence, inspirational motivation, intellectual stimulation, and individual consideration-and associated behaviors were used by surgical services leaders in an East Coast, two-hospital system to successfully achieve redesignation as a Magnet facility. Copyright © 2011 AORN, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bilgunde, Prathamesh N.; Bond, Leonard J.
2018-04-01
Ultrasonic imaging is a key enabling technology required for in-service inspection of advanced sodium fast reactors at the hot stand-by operating mode (˜250C). Current work presents development of a single element, 2.4MHz, planar, ultrasonic immersion transducer for a potential application in ranging, inspection and imaging of the reactor components. The prototype immersion transducer is first tested in water for three thermal cycles up to 92C. The transducer is further evaluated for four thermal cycles in silicone oil, with total seven thermal cycles that exceeded operation period of 21 hours. Moreover, the preliminary data acquired for speed of sound in silicone oil indicates 24% reduction from 22C to 142C. Sensitivity of the ultrasonic transducer is also measured as a function of temperature and demonstrates the effect of multiple thermal cycles on the transducer components.
Improvements in Cz silicon PV module manufacturing
NASA Astrophysics Data System (ADS)
King, Richard R.; Mitchell, Kim W.; Jester, Theresa L.
1997-02-01
Work focused on reducing the cost per watt of Cz Si photovoltaic modules under Phase I of Siemens Solar Industries' DOE/NREL PVMaT 4A subcontract is described. Module cost components are analyzed and solutions to high-cost items are discussed in terms of specific module designs. The approaches of using larger cells and modules to reduce per-part processing cost, and of minimizing yield loss are particularly leveraging. Yield components for various parts of the fabrication process and various types of defects are shown, and measurements of the force required to break wafers throughout the cell fabrication sequence are given. The most significant type of yield loss is mechanical breakage. The implementation of statistical process control on key manufacturing processes at Siemens Solar Industries is described. Module configurations prototyped during Phase I of this project and scheduled to begin production in Phase II have a projected cost per watt reduction of 19%.
Separating vegetation and soil temperature using airborne multiangular remote sensing image data
NASA Astrophysics Data System (ADS)
Liu, Qiang; Yan, Chunyan; Xiao, Qing; Yan, Guangjian; Fang, Li
2012-07-01
Land surface temperature (LST) is a key parameter in land process research. Many research efforts have been devoted to increase the accuracy of LST retrieval from remote sensing. However, because natural land surface is non-isothermal, component temperature is also required in applications such as evapo-transpiration (ET) modeling. This paper proposes a new algorithm to separately retrieve vegetation temperature and soil background temperature from multiangular thermal infrared (TIR) remote sensing data. The algorithm is based on the localized correlation between the visible/near-infrared (VNIR) bands and the TIR band. This method was tested on the airborne image data acquired during the Watershed Allied Telemetry Experimental Research (WATER) campaign. Preliminary validation indicates that the remote sensing-retrieved results can reflect the spatial and temporal trend of component temperatures. The accuracy is within three degrees while the difference between vegetation and soil temperature can be as large as twenty degrees.
Altair Lunar Lander Development Status: Enabling Human Lunar Exploration
NASA Technical Reports Server (NTRS)
Laurini, Kathleen C.; Connolly, John F.
2009-01-01
As a critical part of the NASA Constellation Program lunar transportation architecture, the Altair lunar lander will return humans to the moon and enable a sustained program of lunar exploration. The Altair is to deliver up to four crew to the surface of the moon and return them to low lunar orbit at the completion of their mission. Altair will also be used to deliver large cargo elements to the lunar surface, enabling the buildup of an outpost. The Altair Project initialized its design using a minimum functionality approach that identified critical functionality required to meet a minimum set of Altair requirements. The Altair team then performed several analysis cycles using risk-informed design to selectively add back components and functionality to increase the vehicles safety and reliability. The analysis cycle results were captured in a reference Altair design. This design was reviewed at the Constellation Lunar Capabilities Concept Review, a Mission Concept Review, where key driving requirements were confirmed and the Altair Project was given authorization to begin Phase A project formulation. A key objective of Phase A is to revisit the Altair vehicle configuration, to better optimize it to complete its broad range of crew and cargo delivery missions. Industry was invited to partner with NASA early in the design to provide their insights regarding Altair configuration and key engineering challenges. A blended NASA-industry team will continue to refine the lander configuration and mature the vehicle design over the next few years. This paper will update the international community on the status of the Altair Project as it addresses the challenges of project formulation, including optimizing a vehicle configuration based on the work of the NASA Altair Project team, industry inputs and the plans going forward in designing the Altair lunar lander.
Altair Lunar Lander Development Status: Enabling Lunar Exploration
NASA Technical Reports Server (NTRS)
Laurini, Kathleen C.; Connolly, John F.
2009-01-01
As a critical part of the NASA Constellation Program lunar transportation architecture, the Altair lunar lander will return humans to the moon and enable a sustained program of lunar exploration. The Altair is to deliver up to four crew to the surface of the moon and return them to low lunar orbit at the completion of their mission. Altair will also be used to deliver large cargo elements to the lunar surface, enabling the buildup of an outpost. The Altair Project initialized its design using a "minimum functionality" approach that identified critical functionality required to meet a minimum set of Altair requirements. The Altair team then performed several analysis cycles using risk-informed design to selectively add back components and functionality to increase the vehicle's safety and reliability. The analysis cycle results were captured in a reference Altair design. This design was reviewed at the Constellation Lunar Capabilities Concept Review, a Mission Concept Review, where key driving requirements were confirmed and the Altair Project was given authorization to began Phase A project formulation. A key objective of Phase A is to revisit the Altair vehicle configuration, to better optimize it to complete its broad range of crew and cargo delivery missions. Industry was invited to partner with NASA early in the design to provide their insights regarding Altair configuration and key engineering challenges. NASA intends to continue to seek industry involvement in project formulation activities. This paper will update the international coimmunity on the status of the Altair Project as it addresses the challenges of project formulation, including optinuzing a vehicle configuration based on the work of the NASA Altair Project team, industry inputs and the plans going forward in designing the Altair lunar lander.
Soban, Lynn M; Finley, Erin P; Miltner, Rebecca S
2016-01-01
To describe the presence or absence of key components of hospital pressure ulcer (PU) prevention programs in 6 acute care hospitals. Multisite comparative case study. Using purposeful selection based on PU rates (high vs low) and hospital size, 6 hospitals within the Veterans Health Administration health care system were invited to participate. Key informant interviews (n = 48) were conducted in each of the 6 participating hospitals among individuals playing key roles in PU prevention: senior nursing leadership (n = 9), nurse manager (n = 7), wound care specialist (n = 6), frontline RNs (n = 26). Qualitative data were collected during face-to-face, semistructured interviews. Interview protocols were tailored to each interviewee's role with a core set of common questions covering 3 major content areas: (1) practice environment (eg, policies and wound care specialists), (2) current prevention practices (eg, conduct of PU risk assessment and skin inspection), and (3) barriers to PU prevention. We conducted structured coding of 5 key components of PU prevention programs and cross-case analysis to identify patterns in operationalization and implementation of program components across hospitals based on facility size and PU rates (low vs high). All hospitals had implemented all PU prevention program components. Component operationalization varied considerably across hospitals. Wound care specialists were integral to the operationalization of the 4 other program components examined; however, staffing levels and work assignments of wound care specialists varied widely. Patterns emerged among hospitals with low and high PU rates with respect to wound care specialist staffing, data monitoring, and staff education. We found hospital-level variations in PU prevention programs. Wound care specialist staffing may represent a potential point of leverage in achieving other PU program components, particularly performance monitoring and staff education.
Evaluating Security Controls Based on Key Performance Indicators and Stakeholder Mission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheldon, Frederick T; Abercrombie, Robert K; Mili, Ali
2008-01-01
Good security metrics are required to make good decisions about how to design security countermeasures, to choose between alternative security architectures, and to improve security during operations. Therefore, in essence, measurement can be viewed as a decision aid. The lack of sound practical security metrics is severely hampering progress in the development of secure systems. The Cyberspace Security Econometrics System (CSES) offers the following advantages over traditional measurement systems: (1) CSES reflects the variances that exist amongst different stakeholders of the same system. Different stakeholders will typically attach different stakes to the same requirement or service (e.g., a service maymore » be provided by an information technology system or process control system, etc.). (2) For a given stakeholder, CSES reflects the variance that may exist among the stakes she/he attaches to meeting each requirement. The same stakeholder may attach different stakes to satisfying different requirements within the overall system specification. (3) For a given compound specification (e.g., combination(s) of commercial off the shelf software and/or hardware), CSES reflects the variance that may exist amongst the levels of verification and validation (i.e., certification) performed on components of the specification. The certification activity may produce higher levels of assurance across different components of the specification than others. Consequently, this paper introduces the basis, objectives and capabilities for the CSES including inputs/outputs and the basic structural and mathematical underpinnings.« less
Designing the microturbine engine for waste-derived fuels.
Seljak, Tine; Katrašnik, Tomaž
2016-01-01
Presented paper deals with adaptation procedure of a microturbine (MGT) for exploitation of refuse derived fuels (RDF). RDF often possess significantly different properties than conventional fuels and usually require at least some adaptations of internal combustion systems to obtain full functionality. With the methodology, developed in the paper it is possible to evaluate the extent of required adaptations by performing a thorough analysis of fuel combustion properties in a dedicated experimental rig suitable for testing of wide-variety of waste and biomass derived fuels. In the first part key turbine components are analyzed followed by cause and effect analysis of interaction between different fuel properties and design parameters of the components. The data are then used to build a dedicated test system where two fuels with diametric physical and chemical properties are tested - liquefied biomass waste (LW) and waste tire pyrolysis oil (TPO). The analysis suggests that exploitation of LW requires higher complexity of target MGT system as stable combustion can be achieved only with regenerative thermodynamic cycle, high fuel preheat temperatures and optimized fuel injection nozzle. Contrary, TPO requires less complex MGT design and sufficient operational stability is achieved already with simple cycle MGT and conventional fuel system. The presented approach of testing can significantly reduce the extent and cost of required adaptations of commercial system as pre-selection procedure of suitable MGT is done in developed test system. The obtained data can at the same time serve as an input for fine-tuning the processes for RDF production. Copyright © 2015. Published by Elsevier Ltd.
SPOKES: An end-to-end simulation facility for spectroscopic cosmological surveys
Nord, B.; Amara, A.; Refregier, A.; ...
2016-03-03
The nature of dark matter, dark energy and large-scale gravity pose some of the most pressing questions in cosmology today. These fundamental questions require highly precise measurements, and a number of wide-field spectroscopic survey instruments are being designed to meet this requirement. A key component in these experiments is the development of a simulation tool to forecast science performance, define requirement flow-downs, optimize implementation, demonstrate feasibility, and prepare for exploitation. We present SPOKES (SPectrOscopic KEn Simulation), an end-to-end simulation facility for spectroscopic cosmological surveys designed to address this challenge. SPOKES is based on an integrated infrastructure, modular function organization, coherentmore » data handling and fast data access. These key features allow reproducibility of pipeline runs, enable ease of use and provide flexibility to update functions within the pipeline. The cyclic nature of the pipeline offers the possibility to make the science output an efficient measure for design optimization and feasibility testing. We present the architecture, first science, and computational performance results of the simulation pipeline. The framework is general, but for the benchmark tests, we use the Dark Energy Spectrometer (DESpec), one of the early concepts for the upcoming project, the Dark Energy Spectroscopic Instrument (DESI). As a result, we discuss how the SPOKES framework enables a rigorous process to optimize and exploit spectroscopic survey experiments in order to derive high-precision cosmological measurements optimally.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nord, B.; Amara, A.; Refregier, A.
The nature of dark matter, dark energy and large-scale gravity pose some of the most pressing questions in cosmology today. These fundamental questions require highly precise measurements, and a number of wide-field spectroscopic survey instruments are being designed to meet this requirement. A key component in these experiments is the development of a simulation tool to forecast science performance, define requirement flow-downs, optimize implementation, demonstrate feasibility, and prepare for exploitation. We present SPOKES (SPectrOscopic KEn Simulation), an end-to-end simulation facility for spectroscopic cosmological surveys designed to address this challenge. SPOKES is based on an integrated infrastructure, modular function organization, coherentmore » data handling and fast data access. These key features allow reproducibility of pipeline runs, enable ease of use and provide flexibility to update functions within the pipeline. The cyclic nature of the pipeline offers the possibility to make the science output an efficient measure for design optimization and feasibility testing. We present the architecture, first science, and computational performance results of the simulation pipeline. The framework is general, but for the benchmark tests, we use the Dark Energy Spectrometer (DESpec), one of the early concepts for the upcoming project, the Dark Energy Spectroscopic Instrument (DESI). As a result, we discuss how the SPOKES framework enables a rigorous process to optimize and exploit spectroscopic survey experiments in order to derive high-precision cosmological measurements optimally.« less
Overview of Variable-Speed Power-Turbine Research
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
2011-01-01
The vertical take-off and landing (VTOL) and high-speed cruise capability of the NASA Large Civil Tilt-Rotor (LCTR) notional vehicle is envisaged to enable increased throughput in the national airspace. A key challenge of the LCTR is the requirement to vary the main rotor speeds from 100% at take-off to near 50% at cruise as required to minimize mission fuel burn. The variable-speed power-turbine (VSPT), driving a fixed gear-ratio transmission, provides one approach for effecting this wide speed variation. The key aerodynamic and rotordynamic challenges of the VSPT were described in the FAP Conference presentation. The challenges include maintaining high turbine efficiency at high work factor, wide (60 deg.) of incidence variation in all blade rows due to the speed variation, and operation at low Reynolds numbers (with transitional flow). The PT -shaft of the VSPT must be designed for safe operation in the wide speed range required, and therefore poses challenges associated with rotordynamics. The technical challenges drive research activities underway at NASA. An overview of the NASA SRW VSPT research activities was provided. These activities included conceptual and preliminary aero and mechanical (rotordynamics) design of the VSPT for the LCTR application, experimental and computational research supporting the development of incidence tolerant blading, and steps toward component-level testing of a variable-speed power-turbine of relevance to the LCTR application.
Key success factors of health research centers: A mixed method study.
Tofighi, Shahram; Teymourzadeh, Ehsan; Heydari, Majid
2017-08-01
In order to achieve success in future goals and activities, health research centers are required to identify their key success factors. This study aimed to extract and rank the factors affecting the success of research centers at one of the medical universities in Iran. This study is a mixed method (qualitative-quantitative) study, which was conducted between May to October in 2016. The study setting was 22 health research centers. In qualitative phase, we extracted the factors affecting the success in research centers through purposeful interviews with 10 experts of centers, and classified them into themes and sub-themes. In the quantitative phase, we prepared a questionnaire and scored and ranked the factors recognized by 54 of the study samples by Friedman test. Nine themes and 42 sub-themes were identified. Themes included: strategic orientation, management, human capital, support, projects, infrastructure, communications and collaboration, paradigm and innovation and they were rated respectively as components of success in research centers. Among the 42 identified factors, 10 factors were ranked respectively as the key factors of success, and included: science and technology road map, strategic plan, evaluation indexes, committed human resources, scientific evaluation of members and centers, innovation in research and implementation, financial support, capable researchers, equipment infrastructure and teamwork. According to the results, the strategic orientation was the most important component in the success of research centers. Therefore, managers and authorities of research centers should pay more attention to strategic areas in future planning, including the science and technology road map and strategic plan.
Key success factors of health research centers: A mixed method study
Tofighi, Shahram; Teymourzadeh, Ehsan; Heydari, Majid
2017-01-01
Background In order to achieve success in future goals and activities, health research centers are required to identify their key success factors. Objective This study aimed to extract and rank the factors affecting the success of research centers at one of the medical universities in Iran. Methods This study is a mixed method (qualitative-quantitative) study, which was conducted between May to October in 2016. The study setting was 22 health research centers. In qualitative phase, we extracted the factors affecting the success in research centers through purposeful interviews with 10 experts of centers, and classified them into themes and sub-themes. In the quantitative phase, we prepared a questionnaire and scored and ranked the factors recognized by 54 of the study samples by Friedman test. Results Nine themes and 42 sub-themes were identified. Themes included: strategic orientation, management, human capital, support, projects, infrastructure, communications and collaboration, paradigm and innovation and they were rated respectively as components of success in research centers. Among the 42 identified factors, 10 factors were ranked respectively as the key factors of success, and included: science and technology road map, strategic plan, evaluation indexes, committed human resources, scientific evaluation of members and centers, innovation in research and implementation, financial support, capable researchers, equipment infrastructure and teamwork. Conclusion According to the results, the strategic orientation was the most important component in the success of research centers. Therefore, managers and authorities of research centers should pay more attention to strategic areas in future planning, including the science and technology road map and strategic plan. PMID:28979733
NASA Astrophysics Data System (ADS)
Rubel, Marek; Petersson, Per; Alves, Eduardo; Brezinsek, Sebastijan; Coad, Joseph Paul; Heinola, Kalle; Mayer, Matej; Widdowson, Anna
2016-03-01
First wall materials in controlled fusion devices undergo serious modification by several physical and chemical processes arising from plasma-wall interactions. Detailed information is required for the assessment of material lifetime and accumulation of hydrogen isotopes in wall materials. The intention of this work is to give a concise overview of key issues in the characterization of plasma-facing materials and components in tokamaks, especially in JET with an ITER-Like Wall. IBA techniques play a particularly prominent role here because of their isotope selectivity in the low-Z range (1-10), high sensitivity and combination of several methods in a single run. The role of 3He-based NRA, RBS (standard and micro-size beam) and HIERDA in fuel retention and material migration studies is presented. The use of tracer techniques with rare isotopes (e.g. 15N) or marker layers on wall diagnostic components is described. Special instrumentation, development of equipment to enhance research capabilities and issues in handling of contaminated materials are addressed.
Hong, Sunghyun; Song, Hae-Ryong; Lutz, Kerry; Kerstetter, Randall A; Michael, Todd P; McClung, C Robertson
2010-12-07
Posttranslational modification is an important element in circadian clock function from cyanobacteria through plants and mammals. For example, a number of key clock components are phosphorylated and thereby marked for subsequent ubiquitination and degradation. Through forward genetic analysis we demonstrate that protein arginine methyltransferase 5 (PRMT5; At4g31120) is a critical determinant of circadian period in Arabidopsis. PRMT5 is coregulated with a set of 1,253 genes that shows alterations in phase of expression in response to entrainment to thermocycles versus photocycles in constant temperature. PRMT5 encodes a type II protein arginine methyltransferase that catalyzes the symmetric dimethylation of arginine residues (Rsme2). Rsme2 modification has been observed in many taxa, and targets include histones, components of the transcription complex, and components of the spliceosome. Neither arginine methylation nor PRMT5 has been implicated previously in circadian clock function, but the period lengthening associated with mutational disruption of prmt5 indicates that Rsme2 is a decoration important for the Arabidopsis clock and possibly for clocks in general.
Investigation of soft component in cosmic ray detection
NASA Astrophysics Data System (ADS)
Oláh, László; Varga, Dezső
2017-07-01
Cosmic ray detection is a research area which finds various applications in tomographic imaging of large size objects. In such applications, the background sources which contaminate cosmic muon signal require a good understanding of the creation processes, as well as reliable simulation frameworks with high predictive power are needed. One of the main background source is the ;soft component;, that is electrons and positrons. In this paper a simulation framework based on GEANT4 has been established to pin down the key features of the soft component. We have found that the electron and positron flux shows a remarkable invariance against various model parameters including the muon emission altitude or primary particle energy distribution. The correlation between simultaneously arriving particles have been quantitatively investigated, demonstrating that electrons and positrons tend to arrive within a close distance and with low relative angle. This feature, which is highly relevant for counting detectors, has been experimentally verified under open sky and at shallow depth underground. The simulation results have been compared to existing other measurements as well as other simulation programs.
Fabrication and installation of the Solar Two central receiver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litwin, R.Z.; Rogers, R.D.
The heart of the Solar Two power plant is the molten salt central receiver that has been designed, fabricated, and installed over an 18 month schedule. During this time, the receiver system from Solar One was also completely disassembled and removed. The receiver tower structure, for the most part, was left intact because Solar Two was designed to fit this structure such that construction time and costs could be minimized. In order to meet this aggressive schedule, receiver panel fabrication required the parallel production of many components. The sequence for assembly of the four major receiver panel components (i.e., tubes,more » header assembly, strongback, and header oven covers) and key fabrication activities such as welding are described. Once the receiver panels were complete, their installation at the site was begun, and the order in which receiver system components were installed in the tower is described. The completion of the Solar Two receiver proved the fabricability of this important system. However, successful operation of the system at Solar Two is needed to demonstrate the technical feasibility of the molten salt central receiver concept.« less
Scobbie, Lesley; Dixon, Diane; Wyke, Sally
2011-05-01
Setting and achieving goals is fundamental to rehabilitation practice but has been criticized for being a-theoretical and the key components of replicable goal-setting interventions are not well established. To describe the development of a theory-based goal setting practice framework for use in rehabilitation settings and to detail its component parts. Causal modelling was used to map theories of behaviour change onto the process of setting and achieving rehabilitation goals, and to suggest the mechanisms through which patient outcomes are likely to be affected. A multidisciplinary task group developed the causal model into a practice framework for use in rehabilitation settings through iterative discussion and implementation with six patients. Four components of a goal-setting and action-planning practice framework were identified: (i) goal negotiation, (ii) goal identification, (iii) planning, and (iv) appraisal and feedback. The variables hypothesized to effect change in patient outcomes were self-efficacy and action plan attainment. A theory-based goal setting practice framework for use in rehabilitation settings is described. The framework requires further development and systematic evaluation in a range of rehabilitation settings.
Molecular Architecture of the 40S⋅eIF1⋅eIF3 Translation Initiation Complex
Erzberger, Jan P.; Stengel, Florian; Pellarin, Riccardo; Zhang, Suyang; Schaefer, Tanja; Aylett, Christopher H.S.; Cimermančič, Peter; Boehringer, Daniel; Sali, Andrej; Aebersold, Ruedi; Ban, Nenad
2014-01-01
Summary Eukaryotic translation initiation requires the recruitment of the large, multiprotein eIF3 complex to the 40S ribosomal subunit. We present X-ray structures of all major components of the minimal, six-subunit Saccharomyces cerevisiae eIF3 core. These structures, together with electron microscopy reconstructions, cross-linking coupled to mass spectrometry, and integrative structure modeling, allowed us to position and orient all eIF3 components on the 40S⋅eIF1 complex, revealing an extended, modular arrangement of eIF3 subunits. Yeast eIF3 engages 40S in a clamp-like manner, fully encircling 40S to position key initiation factors on opposite ends of the mRNA channel, providing a platform for the recruitment, assembly, and regulation of the translation initiation machinery. The structures of eIF3 components reported here also have implications for understanding the architecture of the mammalian 43S preinitiation complex and the complex of eIF3, 40S, and the hepatitis C internal ribosomal entry site RNA. PMID:25171412
Plasma facing components: a conceptual design strategy for the first wall in FAST tokamak
NASA Astrophysics Data System (ADS)
Labate, C.; Di Gironimo, G.; Renno, F.
2015-09-01
Satellite tokamaks are conceived with the main purpose of developing new or alternative ITER- and DEMO-relevant technologies, able to contribute in resolving the pending issues about plasma operation. In particular, a high criticality needs to be associated to the design of plasma facing components, i.e. first wall (FW) and divertor, due to physical, topological and thermo-structural reasons. In such a context, the design of the FW in FAST fusion plant, whose operational range is close to ITER’s one, takes place. According to the mission of experimental satellites, the FW design strategy, which is presented in this paper relies on a series of innovative design choices and proposals with a particular attention to the typical key points of plasma facing components design. Such an approach, taking into account a series of involved physical constraints and functional requirements to be fulfilled, marks a clear borderline with the FW solution adopted in ITER, in terms of basic ideas, manufacturing aspects, remote maintenance procedure, manifolds management, cooling cycle and support system configuration.
NASA Technical Reports Server (NTRS)
Willett, Mike
2015-01-01
Orbital Research, Inc., developed, built, and tested three high-temperature components for use in the design of a data concentrator module in distributed turbine engine control. The concentrator receives analog and digital signals related to turbine engine control and communicates with a full authority digital engine control (FADEC) or high-level command processor. This data concentrator follows the Distributed Engine Controls Working Group (DECWG) roadmap for turbine engine distributed controls communication development that operates at temperatures at least up to 225 C. In Phase I, Orbital Research developed detailed specifications for each component needed for the system and defined the total system specifications. This entailed a combination of system design, compiling existing component specifications, laboratory testing, and simulation. The results showed the feasibility of the data concentrator. Phase II of this project focused on three key objectives. The first objective was to update the data concentrator design modifications from DECWG and prime contractors. Secondly, the project defined requirements for the three new high-temperature, application-specific integrated circuits (ASICs): one-time programmable (OTP), transient voltage suppression (TVS), and 3.3V. Finally, the project validated each design by testing over temperature and under load.
A modified procedure for mixture-model clustering of regional geochemical data
Ellefsen, Karl J.; Smith, David B.; Horton, John D.
2014-01-01
A modified procedure is proposed for mixture-model clustering of regional-scale geochemical data. The key modification is the robust principal component transformation of the isometric log-ratio transforms of the element concentrations. This principal component transformation and the associated dimension reduction are applied before the data are clustered. The principal advantage of this modification is that it significantly improves the stability of the clustering. The principal disadvantage is that it requires subjective selection of the number of clusters and the number of principal components. To evaluate the efficacy of this modified procedure, it is applied to soil geochemical data that comprise 959 samples from the state of Colorado (USA) for which the concentrations of 44 elements are measured. The distributions of element concentrations that are derived from the mixture model and from the field samples are similar, indicating that the mixture model is a suitable representation of the transformed geochemical data. Each cluster and the associated distributions of the element concentrations are related to specific geologic and anthropogenic features. In this way, mixture model clustering facilitates interpretation of the regional geochemical data.
Hong, Sunghyun; Lutz, Kerry; Kerstetter, Randall A.; Michael, Todd P.; McClung, C. Robertson
2010-01-01
Posttranslational modification is an important element in circadian clock function from cyanobacteria through plants and mammals. For example, a number of key clock components are phosphorylated and thereby marked for subsequent ubiquitination and degradation. Through forward genetic analysis we demonstrate that protein arginine methyltransferase 5 (PRMT5; At4g31120) is a critical determinant of circadian period in Arabidopsis. PRMT5 is coregulated with a set of 1,253 genes that shows alterations in phase of expression in response to entrainment to thermocycles versus photocycles in constant temperature. PRMT5 encodes a type II protein arginine methyltransferase that catalyzes the symmetric dimethylation of arginine residues (Rsme2). Rsme2 modification has been observed in many taxa, and targets include histones, components of the transcription complex, and components of the spliceosome. Neither arginine methylation nor PRMT5 has been implicated previously in circadian clock function, but the period lengthening associated with mutational disruption of prmt5 indicates that Rsme2 is a decoration important for the Arabidopsis clock and possibly for clocks in general. PMID:21097700
AGC 2 Irradiation Creep Strain Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windes, William E.; Rohrbaugh, David T.; Swank, W. David
2016-08-01
The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. Nuclear graphite H-451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core components within amore » commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less
NASA Astrophysics Data System (ADS)
Ramkilowan, A.; Griffith, D. J.
2017-10-01
Surveillance modelling in terms of the standard Detect, Recognise and Identify (DRI) thresholds remains a key requirement for determining the effectiveness of surveillance sensors. With readily available computational resources it has become feasible to perform statistically representative evaluations of the effectiveness of these sensors. A new capability for performing this Monte-Carlo type analysis is demonstrated in the MORTICIA (Monte- Carlo Optical Rendering for Theatre Investigations of Capability under the Influence of the Atmosphere) software package developed at the Council for Scientific and Industrial Research (CSIR). This first generation, python-based open-source integrated software package, currently in the alpha stage of development aims to provide all the functionality required to perform statistical investigations of the effectiveness of optical surveillance systems in specific or generic deployment theatres. This includes modelling of the mathematical and physical processes that govern amongst other components of a surveillance system; a sensor's detector and optical components, a target and its background as well as the intervening atmospheric influences. In this paper we discuss integral aspects of the bespoke framework that are critical to the longevity of all subsequent modelling efforts. Additionally, some preliminary results are presented.
Aquarius main structure configuration
NASA Astrophysics Data System (ADS)
Eremenko, A.
The Aquarius/SAC-D Observatory is a joint US-Argentine mission to map the salinity at the ocean surface. This information is critical to improving our understanding of two major components of Earth's climate system - the water cycle and ocean circulation. By measuring ocean salinity from space, the Aquarius/SAC-D Mission will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Aquarius is the primary instrument on the SAC-D spacecraft. It consists of a Passive Microwave Radiometer to detect the surface emission that is used to obtain salinity and an Active Scatterometer to measure the ocean waves that affect the precision of the salinity measurement. The Aquarius Primary Structure houses instrument electronics, feed assemblies, and supports a deployable boom with a 2.5 m Reflector, and provides the structural interface to the SAC-D Spacecraft. The key challenge for the Aquarius main structure configuration is to satisfy the needs of component accommodations, ensuring that the instrument can meet all operational, pointing, environmental, and launch vehicle requirements. This paper describes the evolution of the Aquarius main structure configuration, the challenges of balancing the conflicting requirements, and the major configuration driving decisions and compromises.
An Efficient and Versatile Means for Assembling and Manufacturing Systems in Space
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Doggett, William R.; Hafley, Robert A.; Komendera, Erik; Correll, Nikolaus; King, Bruce
2012-01-01
Within NASA Space Science, Exploration and the Office of Chief Technologist, there are Grand Challenges and advanced future exploration, science and commercial mission applications that could benefit significantly from large-span and large-area structural systems. Of particular and persistent interest to the Space Science community is the desire for large (in the 10- 50 meter range for main aperture diameter) space telescopes that would revolutionize space astronomy. Achieving these systems will likely require on-orbit assembly, but previous approaches for assembling large-scale telescope truss structures and systems in space have been perceived as very costly because they require high precision and custom components. These components rely on a large number of mechanical connections and supporting infrastructure that are unique to each application. In this paper, a new assembly paradigm that mitigates these concerns is proposed and described. A new assembly approach, developed to implement the paradigm, is developed incorporating: Intelligent Precision Jigging Robots, Electron-Beam welding, robotic handling/manipulation, operations assembly sequence and path planning, and low precision weldable structural elements. Key advantages of the new assembly paradigm, as well as concept descriptions and ongoing research and technology development efforts for each of the major elements are summarized.
Barrier Coatings for Refractory Metals and Superalloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
SM Sabol; BT Randall; JD Edington
2006-02-23
In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements.more » Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life.« less
ConfocalCheck - A Software Tool for the Automated Monitoring of Confocal Microscope Performance
Hng, Keng Imm; Dormann, Dirk
2013-01-01
Laser scanning confocal microscopy has become an invaluable tool in biomedical research but regular quality testing is vital to maintain the system’s performance for diagnostic and research purposes. Although many methods have been devised over the years to characterise specific aspects of a confocal microscope like measuring the optical point spread function or the field illumination, only very few analysis tools are available. Our aim was to develop a comprehensive quality assurance framework ranging from image acquisition to automated analysis and documentation. We created standardised test data to assess the performance of the lasers, the objective lenses and other key components required for optimum confocal operation. The ConfocalCheck software presented here analyses the data fully automatically. It creates numerous visual outputs indicating potential issues requiring further investigation. By storing results in a web browser compatible file format the software greatly simplifies record keeping allowing the operator to quickly compare old and new data and to spot developing trends. We demonstrate that the systematic monitoring of confocal performance is essential in a core facility environment and how the quantitative measurements obtained can be used for the detailed characterisation of system components as well as for comparisons across multiple instruments. PMID:24224017
Strategies for Validation Testing of Ground Systems
NASA Technical Reports Server (NTRS)
Annis, Tammy; Sowards, Stephanie
2009-01-01
In order to accomplish the full Vision for Space Exploration announced by former President George W. Bush in 2004, NASA will have to develop a new space transportation system and supporting infrastructure. The main portion of this supporting infrastructure will reside at the Kennedy Space Center (KSC) in Florida and will either be newly developed or a modification of existing vehicle processing and launch facilities, including Ground Support Equipment (GSE). This type of large-scale launch site development is unprecedented since the time of the Apollo Program. In order to accomplish this successfully within the limited budget and schedule constraints a combination of traditional and innovative strategies for Verification and Validation (V&V) have been developed. The core of these strategies consists of a building-block approach to V&V, starting with component V&V and ending with a comprehensive end-to-end validation test of the complete launch site, called a Ground Element Integration Test (GEIT). This paper will outline these strategies and provide the high level planning for meeting the challenges of implementing V&V on a large-scale development program. KEY WORDS: Systems, Elements, Subsystem, Integration Test, Ground Systems, Ground Support Equipment, Component, End Item, Test and Verification Requirements (TVR), Verification Requirements (VR)
Aquarius Main Structure Configuration
NASA Technical Reports Server (NTRS)
Eremenko, Alexander
2012-01-01
The Aquarius/SAC-D Observatory is a joint US-Argentine mission to map the salinity at the ocean surface. This information is critical to improving our understanding of two major components of Earth's climate system - the water cycle and ocean circulation. By measuring ocean salinity from space, the Aquarius/SAC-D Mission will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Aquarius is the primary instrument on the SAC-D spacecraft. It consists of a Passive Microwave Radiometer to detect the surface emission that is used to obtain salinity and an Active Scatterometer to measure the ocean waves that affect the precision of the salinity measurement. The Aquarius Primary Structure houses instrument electronics, feed assemblies, and supports a deployable boom with a 2.5 m Reflector, and provides the structural interface to the SAC-D Spacecraft. The key challenge for the Aquarius main structure configuration is to satisfy the needs of component accommodations, ensuring that the instrument can meet all operational, pointing, environmental, and launch vehicle requirements. This paper describes the evolution of the Aquarius main structure configuration, the challenges of balancing the conflicting requirements, and the major configuration driving decisions and compromises.
Thermal management of high heat flux electronic components in space and aircraft systems, phase 1
NASA Astrophysics Data System (ADS)
Iversen, Arthur H.
1991-03-01
The objectives of this Phase 1 program were to analyze, design, construct and demonstrate the application of curved surface cooling to power devices with the goal of demonstrating greater than 200 W/sq cm chip dissipation while maintaining junction temperatures within specification. Major components of the experiment comprised the test fixture for mounting the device under test and the cooling loop equipment and instrumentation. The work conducted in this Phase 1 study was to establish the basic parameters for the design of an entire class of efficient, compact, lightweight and cost competitive power conversion/conditioning systems for space, aircraft and general DOD requirements. This has been accomplished. Chip power dissipation of greater than 400 W/sq cm was demonstrated, and a general packaging and the thermal management design has been devised to meet the above requirements. The power limit reached was dictated by the junction temperature and not power dissipation, i.e., critical heat flux. The key to the packaging design is a basic construction concept that provides low junction to fluid thermal resistance. High heat flux dissipation without low thermal resistance is useless because excessive junction temperatures will results.
Shape component analysis: structure-preserving dimension reduction on biological shape spaces.
Lee, Hao-Chih; Liao, Tao; Zhang, Yongjie Jessica; Yang, Ge
2016-03-01
Quantitative shape analysis is required by a wide range of biological studies across diverse scales, ranging from molecules to cells and organisms. In particular, high-throughput and systems-level studies of biological structures and functions have started to produce large volumes of complex high-dimensional shape data. Analysis and understanding of high-dimensional biological shape data require dimension-reduction techniques. We have developed a technique for non-linear dimension reduction of 2D and 3D biological shape representations on their Riemannian spaces. A key feature of this technique is that it preserves distances between different shapes in an embedded low-dimensional shape space. We demonstrate an application of this technique by combining it with non-linear mean-shift clustering on the Riemannian spaces for unsupervised clustering of shapes of cellular organelles and proteins. Source code and data for reproducing results of this article are freely available at https://github.com/ccdlcmu/shape_component_analysis_Matlab The implementation was made in MATLAB and supported on MS Windows, Linux and Mac OS. geyang@andrew.cmu.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Identification of Increasing Green Behaviour in Citraland Bagya City, Medan
NASA Astrophysics Data System (ADS)
Aulia, D. N.; Marpaung, B. O. Y.; Suryani, L.
2017-03-01
This present time, Indonesia just began applying the concept of Green Architecture. The actions require community participation as residents and the users of the building. The built environment is designed around the idea of Green Architecture but inhabited and managed improperly; the goal of sustainable built environment is not achieved. The aspect of behaviour is the key factor in the implementation of Green Architecture’s concept. This research is a descriptive exploratory which is to identify the problems to the implementation of Green Architecture’s concept in planned housing. Then the study will explore the components causes of the problems used as a problem solver. The study conducted on the living behaviour in Citraland Bagya City’s resident. The estate is designed and built with the concept of Green Architecture in Medan city. The research was carried out by the four aspects of housing are the physical, social and cultural, policy, and management issue. These three components will indirectly relate to the economic issues that are the efficiency and effectiveness of living behaviour. The results showed that the increasing of green behavior is still small and the occupant requires motivation and socialization of living green.
Signor, Dawn; Wedaman, Karen P.; Rose, Lesilee S.; Scholey, Jonathan M.
1999-01-01
Chemosensation in the nervous system of the nematode Caenorhabditis elegans depends on sensory cilia, whose assembly and maintenance requires the transport of components such as axonemal proteins and signal transduction machinery to their site of incorporation into ciliary structures. Members of the heteromeric kinesin family of microtubule motors are prime candidates for playing key roles in these transport events. Here we describe the molecular characterization and partial purification of two heteromeric kinesin complexes from C. elegans, heterotrimeric CeKinesin-II and dimeric CeOsm-3. Transgenic worms expressing green fluorescent protein driven by endogenous heteromeric kinesin promoters reveal that both CeKinesin-II and CeOsm-3 are expressed in amphid, inner labial, and phasmid chemosensory neurons. Additionally, immunolocalization experiments on fixed worms show an intense concentration of CeKinesin-II and CeOsm-3 polypeptides in the ciliated endings of these chemosensory neurons and a punctate localization pattern in the corresponding cell bodies and dendrites. These results, together with the phenotypes of known mutants in the pathway of sensory ciliary assembly, suggest that CeKinesin-II and CeOsm-3 drive the transport of ciliary components required for sequential steps in the assembly of chemosensory cilia. PMID:9950681
ERIC Educational Resources Information Center
Liu, Xiongyi; Li, Lan; Zhang, Zhihong
2018-01-01
The purpose of this study is to examine the effect of online assessment training, with synchronous group discussion as a key component, on subsequent web-based peer assessment results. Participants included 81 college students, mostly women, taking a business writing class. After initial submission of a draft counter-offer letter, they completed…
Einstein, Andrew J.; Berman, Daniel S.; Min, James K.; Hendel, Robert C.; Gerber, Thomas C.; Carr, J. Jeffrey; Cerqueira, Manuel D.; Cullom, S. James; DeKemp, Robert; Dickert, Neal; Dorbala, Sharmila; Garcia, Ernest V.; Gibbons, Raymond J.; Halliburton, Sandra S.; Hausleiter, Jörg; Heller, Gary V.; Jerome, Scott; Lesser, John R.; Fazel, Reza; Raff, Gilbert L.; Tilkemeier, Peter; Williams, Kim A.; Shaw, Leslee J.
2014-01-01
Objective To identify key components of a radiation accountability framework fostering patient-centered imaging and shared decision-making in cardiac imaging. Background An NIH-NHLBI/NCI-sponsored symposium was held in November 2012 to address these issues. Methods Symposium participants, working in three tracks, identified key components of a framework to target critical radiation safety issues for the patient, the laboratory, and the larger population of patients with known or suspected cardiovascular disease. Results Use of ionizing radiation during an imaging procedure should be disclosed to all patients by the ordering provider at the time of ordering, and reinforced by the performing provider team. An imaging protocol with effective dose ≤3mSv is considered very low risk, not warranting extensive discussion or written consent. However, a protocol effective dose <20mSv was proposed as a level requiring particular attention in terms of shared decision-making and either formal discussion or written informed consent. Laboratory reporting of radiation dosimetry is a critical component of creating a quality laboratory fostering a patient-centered environment with transparent procedural methodology. Efforts should be directed to avoiding testing involving radiation, in patients with inappropriate indications. Standardized reporting and diagnostic reference levels for computed tomography and nuclear cardiology are important for the goal of public reporting of laboratory radiation dose levels in conjunction with diagnostic performance. Conclusions The development of cardiac imaging technologies revolutionized cardiology practice by allowing routine, noninvasive assessment of myocardial perfusion and anatomy. It is now incumbent upon the imaging community to create an accountability framework to safely drive appropriate imaging utilization. PMID:24530677
Córdoba-Aguilar, A; Nava-Sánchez, A; González-Tokman, D M; Munguía-Steyer, R; Gutiérrez-Cabrera, A E
2016-08-01
Some insect species are capable of producing an enhanced immune response after a first pathogenic encounter, a process called immune priming. However, whether and how such ability is driven by particular diet components (protein/carbohydrate) have not been explored. Such questions are sound given that, in general, immune response is dietary dependent. We have used adults of the house cricket Acheta domesticus L. (Orthoptera: Gryllidae) and exposed them to the bacteria Serratia marcescens. We first addressed whether survival rate after priming and nonpriming treatments is dietary dependent based on access/no access to proteins and carbohydrates. Second, we investigated how these dietary components affected fat reserves, muscle mass, and body weight, three key traits in insect fitness. Thus, we exposed adult house crickets to either a protein or a carbohydrate diet and measured the three traits. After being provided with protein, primed animals survived longer compared to the other diet treatments. Interestingly, this effect was also sex dependent with primed males having a higher survival than primed females when protein was supplemented. For the second experiment, protein-fed animals had more fat, muscle mass, and body weight than carbohydrate-fed animals. Although we are not aware of the immune component underlying immune priming, our results suggest that its energetic demand for its functioning and/or consequent survival requires a higher demand of protein with respect to carbohydrate. Thus, protein shortage can impair key survival-related traits related to immune and energetic condition. Further studies varying nutrient ratios should verify our results.
Backhouse, Amy; Richards, David A; McCabe, Rose; Watkins, Ross; Dickens, Chris
2017-11-22
Interventions aiming to coordinate services for the community-based dementia population vary in components, organisation and implementation. In this review we aimed to investigate the views of stakeholders on the key components of community-based interventions coordinating care in dementia. We searched four databases from inception to June 2015; Medline, The Cochrane Library, EMBASE and PsycINFO, this was aided by a search of four grey literature databases, and backward and forward citation tracking of included papers. Title and abstract screening was followed by a full text screen by two independent reviewers, and quality was assessed using the CASP appraisal tool. We then conducted thematic synthesis on extracted data. A total of seven papers from five independent studies were included in the review, and encompassed the views of over 100 participants from three countries. Through thematic synthesis we identified 32 initial codes that were grouped into 5 second-order themes: (1) case manager had four associated codes and described preferences for the case manager personal and professional attributes, including a sound knowledge in dementia and availability of local services; (2) communication had five associated codes and emphasized the importance stakeholders placed on multichannel communication with service users, as well as between multidisciplinary teams and across organisations; (3) intervention had 11 associated codes which focused primarily on the practicalities of implementation such as the contact type and frequency between case managers and service users, and the importance of case manager training and service evaluation; (4) resources had five associated codes which outlined stakeholder views on the required resources for coordinating interventions and potential overlap with existing resources, as well as arising issues when available resources do not meet those required for successful implementation; and (5) support had seven associated codes that reflect the importance that was placed on the support network around the case manager and the investment of professionals involved directly in care as well as the wider professional network. The synthesis of relevant qualitative studies has shown how various stakeholder groups considered dementia care coordination interventions to be acceptable, useful and appropriate for dementia care, and have clear preferences for components, implementation methods and settings of these interventions. By incorporating stakeholders' perspectives and preferences when planning and developing coordinating interventions we may increase the likelihood of successful implementation and patient benefits.
funRNA: a fungi-centered genomics platform for genes encoding key components of RNAi.
Choi, Jaeyoung; Kim, Ki-Tae; Jeon, Jongbum; Wu, Jiayao; Song, Hyeunjeong; Asiegbu, Fred O; Lee, Yong-Hwan
2014-01-01
RNA interference (RNAi) is involved in genome defense as well as diverse cellular, developmental, and physiological processes. Key components of RNAi are Argonaute, Dicer, and RNA-dependent RNA polymerase (RdRP), which have been functionally characterized mainly in model organisms. The key components are believed to exist throughout eukaryotes; however, there is no systematic platform for archiving and dissecting these important gene families. In addition, few fungi have been studied to date, limiting our understanding of RNAi in fungi. Here we present funRNA http://funrna.riceblast.snu.ac.kr/, a fungal kingdom-wide comparative genomics platform for putative genes encoding Argonaute, Dicer, and RdRP. To identify and archive genes encoding the abovementioned key components, protein domain profiles were determined from reference sequences obtained from UniProtKB/SwissProt. The domain profiles were searched using fungal, metazoan, and plant genomes, as well as bacterial and archaeal genomes. 1,163, 442, and 678 genes encoding Argonaute, Dicer, and RdRP, respectively, were predicted. Based on the identification results, active site variation of Argonaute, diversification of Dicer, and sequence analysis of RdRP were discussed in a fungus-oriented manner. funRNA provides results from diverse bioinformatics programs and job submission forms for BLAST, BLASTMatrix, and ClustalW. Furthermore, sequence collections created in funRNA are synced with several gene family analysis portals and databases, offering further analysis opportunities. funRNA provides identification results from a broad taxonomic range and diverse analysis functions, and could be used in diverse comparative and evolutionary studies. It could serve as a versatile genomics workbench for key components of RNAi.
Viper cabin-fuselage structural design concept with engine installation and wing structural design
NASA Technical Reports Server (NTRS)
Marchesseault, B.; Carr, D.; Mccorkle, T.; Stevens, C.; Turner, D.
1993-01-01
This report describes the process and considerations in designing the cabin, nose, drive shaft, and wing assemblies for the 'Viper' concept aircraft. Interfaces of these assemblies, as well as interfaces with the sections of the aircraft aft of the cabin, are also discussed. The results of the design process are included. The goal of this project is to provide a structural design which complies with FAR 23 requirements regarding occupant safety, emergency landing loads, and maneuvering loads. The design must also address the interfaces of the various systems in the cabin, nose, and wing, including the drive shaft, venting, vacuum, electrical, fuel, and control systems. Interfaces between the cabin assembly and the wing carrythrough and empennage assemblies were required, as well. In the design of the wing assemblies, consistency with the existing cabin design was required. The major areas considered in this report are materials and construction, loading, maintenance, environmental considerations, wing assembly fatigue, and weight. The first three areas are developed separately for the nose, cabin, drive shaft, and wing assemblies, while the last three are discussed for the entire design. For each assembly, loading calculations were performed to determine the proper sizing of major load carrying components. Table 1.0 lists the resulting margins of safety for these key components, along with the types of the loads involved, and the page number upon which they are discussed.
Emerging applications of high temperature superconductors for space communications
NASA Technical Reports Server (NTRS)
Heinen, Vernon O.; Bhasin, Kul B.; Long, Kenwyn J.
1990-01-01
Proposed space missions require longevity of communications system components, high input power levels, and high speed digital logic devices. The complexity of these missions calls for a high data bandwidth capacity. Incorporation of high temperature superconducting (HTS) thin films into some of these communications system components may provide a means of meeting these requirements. Space applications of superconducting technology has previously been limited by the requirement of cooling to near liquid helium temperatures. Development of HTS materials with transition temperatures above 77 K along with the natural cooling ability of space suggest that space applications may lead the way in the applications of high temperature superconductivity. In order for HTS materials to be incorporated into microwave and millimeter wave devices, the material properties such as electrical conductivity, current density, surface resistivity and others as a function of temperature and frequency must be well characterized and understood. The millimeter wave conductivity and surface resistivity were well characterized, and at 77 K are better than copper. Basic microwave circuits such as ring resonators were used to determine transmission line losses. Higher Q values than those of gold resonator circuits were observed below the transition temperature. Several key HTS circuits including filters, oscillators, phase shifters and phased array antenna feeds are feasible in the near future. For technology to improve further, good quality, large area films must be reproducibly grown on low dielectric constant, low loss microwave substrates.
Mohibi, Shakur; Srivastava, Shashank; Bele, Aditya; Mirza, Sameer; Band, Hamid; Band, Vimla
2016-10-01
Alteration/deficiency in activation 3 (ADA3) is an essential component of specific histone acetyltransferase (HAT) complexes. We have previously shown that ADA3 is required for establishing global histone acetylation patterns and for normal cell cycle progression (S. Mohibi et al., J Biol Chem 287:29442-29456, 2012, http://dx.doi.org/10.1074/jbc.M112.378901). Here, we report that these functional roles of ADA3 require its acetylation. We show that ADA3 acetylation, which is dynamically regulated in a cell cycle-dependent manner, reflects a balance of coordinated actions of its associated HATs, GCN5, PCAF, and p300, and a new partner that we define, the deacetylase SIRT1. We use mass spectrometry and site-directed mutagenesis to identify major sites of ADA3 acetylated by GCN5 and p300. Acetylation-defective mutants are capable of interacting with HATs and other components of HAT complexes but are deficient in their ability to restore ADA3-dependent global or locus-specific histone acetylation marks and cell proliferation in Ada3-deleted murine embryonic fibroblasts (MEFs). Given the key importance of ADA3-containing HAT complexes in the regulation of various biological processes, including the cell cycle, our study presents a novel mechanism to regulate the function of these complexes through dynamic ADA3 acetylation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Mohibi, Shakur; Srivastava, Shashank; Bele, Aditya; Mirza, Sameer; Band, Hamid
2016-01-01
Alteration/deficiency in activation 3 (ADA3) is an essential component of specific histone acetyltransferase (HAT) complexes. We have previously shown that ADA3 is required for establishing global histone acetylation patterns and for normal cell cycle progression (S. Mohibi et al., J Biol Chem 287:29442–29456, 2012, http://dx.doi.org/10.1074/jbc.M112.378901). Here, we report that these functional roles of ADA3 require its acetylation. We show that ADA3 acetylation, which is dynamically regulated in a cell cycle-dependent manner, reflects a balance of coordinated actions of its associated HATs, GCN5, PCAF, and p300, and a new partner that we define, the deacetylase SIRT1. We use mass spectrometry and site-directed mutagenesis to identify major sites of ADA3 acetylated by GCN5 and p300. Acetylation-defective mutants are capable of interacting with HATs and other components of HAT complexes but are deficient in their ability to restore ADA3-dependent global or locus-specific histone acetylation marks and cell proliferation in Ada3-deleted murine embryonic fibroblasts (MEFs). Given the key importance of ADA3-containing HAT complexes in the regulation of various biological processes, including the cell cycle, our study presents a novel mechanism to regulate the function of these complexes through dynamic ADA3 acetylation. PMID:27402865
Forecast of the general aviation air traffic control environment for the 1980's
NASA Technical Reports Server (NTRS)
Hoffman, W. C.; Hollister, W. M.
1976-01-01
The critical information required for the design of a reliable, low cost, advanced avionics system which would enhance the safety and utility of general aviation is stipulated. Sufficient data is accumulated upon which industry can base the design of a reasonably priced system having the capability required by general aviation in and beyond the 1980's. The key features of the Air Traffic Control (ATC) system are: a discrete address beacon system, a separation assurance system, area navigation, a microwave landing system, upgraded ATC automation, airport surface traffic control, a wake vortex avoidance system, flight service stations, and aeronautical satellites. The critical parameters that are necessary for component design are identified. The four primary functions of ATC (control, surveillance, navigation, and communication) and their impact on the onboard avionics system design are assessed.
Verification of Functional Fault Models and the Use of Resource Efficient Verification Tools
NASA Technical Reports Server (NTRS)
Bis, Rachael; Maul, William A.
2015-01-01
Functional fault models (FFMs) are a directed graph representation of the failure effect propagation paths within a system's physical architecture and are used to support development and real-time diagnostics of complex systems. Verification of these models is required to confirm that the FFMs are correctly built and accurately represent the underlying physical system. However, a manual, comprehensive verification process applied to the FFMs was found to be error prone due to the intensive and customized process necessary to verify each individual component model and to require a burdensome level of resources. To address this problem, automated verification tools have been developed and utilized to mitigate these key pitfalls. This paper discusses the verification of the FFMs and presents the tools that were developed to make the verification process more efficient and effective.
Methodology for fleet deployment decisions. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stremel, J.; Matousek, M.
1995-01-01
In today`s more competitive energy market, selecting investment and operating plans for a generating system, specific plants, and major plant components is becoming increasingly critical and complex. As utilities consider off-system sales, the key factor for fleet deployment decisions is no longer simply minimizing revenue requirements. Rather, system-level value dominates. This is a measure that can be difficult to determine in the context of traditional decision making methods. Selecting the best fleet deployment option requires the ability to account for multiple sources of value under uncertain conditions for multiple utility stakeholders. The object of this paper was to develope andmore » test an approach for assessing the system-wide value of alternative fleet deployment decisions. This was done, and the approach was tested at Consolidated Edison and at Central Illinois Public Service Company.« less
Terrestrial Planet Finder: Technology Development Plans
NASA Technical Reports Server (NTRS)
Lindensmith, Chris
2004-01-01
One of humanity's oldest questions is whether life exists elsewhere in the universe. The Terrestrial Planet Finder (TPF) mission will survey stars in our stellar neighborhood to search for planets and perform spectroscopic measurements to identify potential biomarkers in their atmospheres. In response to the recently published President's Plan for Space Exploration, TPF has plans to launch a visible-light coronagraph in 2014, and a separated-spacecraft infrared interferometer in 2016. Substantial funding has been committed to the development of the key technologies that are required to meet these goals for launch in the next decade. Efforts underway through industry and university contracts and at JPL include a number of system and subsystem testbeds, as well as components and numerical modeling capabilities. The science, technology, and design efforts are closely coupled to ensure that requirements and capabilities will be consistent and meet the science goals.
Generic worklist handler for workflow-enabled products
NASA Astrophysics Data System (ADS)
Schmidt, Joachim; Meetz, Kirsten; Wendler, Thomas
1999-07-01
Workflow management (WfM) is an emerging field of medical information technology. It appears as a promising key technology to model, optimize and automate processes, for the sake of improved efficiency, reduced costs and improved patient care. The Application of WfM concepts requires the standardization of architectures and interfaces. A component of central interest proposed in this report is a generic work list handler: A standardized interface between a workflow enactment service and application system. Application systems with embedded work list handlers will be called 'Workflow Enabled Application Systems'. In this paper we discus functional requirements of work list handlers, as well as their integration into workflow architectures and interfaces. To lay the foundation for this specification, basic workflow terminology, the fundamentals of workflow management and - later in the paper - the available standards as defined by the Workflow Management Coalition are briefly reviewed.
SLS Navigation Model-Based Design Approach
NASA Technical Reports Server (NTRS)
Oliver, T. Emerson; Anzalone, Evan; Geohagan, Kevin; Bernard, Bill; Park, Thomas
2018-01-01
The SLS Program chose to implement a Model-based Design and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team has been responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for the navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1-B design, the additional GPS Receiver hardware is managed as a DMM at the vehicle design level. This paper provides a discussion of the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the Navigation components. These include composing system requirements, requirements verification, model development, model verification and validation, and modeling and analysis approaches. The Model-based Design and Requirements approach does not reduce the effort associated with the design process versus previous processes used at Marshall Space Flight Center. Instead, the approach takes advantage of overlap between the requirements development and management process, and the design and analysis process by efficiently combining the control (i.e. the requirement) and the design mechanisms. The design mechanism is the representation of the component behavior and performance in design and analysis tools. The focus in the early design process shifts from the development and management of design requirements to the development of usable models, model requirements, and model verification and validation efforts. The models themselves are represented in C/C++ code and accompanying data files. Under the idealized process, potential ambiguity in specification is reduced because the model must be implementable versus a requirement which is not necessarily subject to this constraint. Further, the models are shown to emulate the hardware during validation. For models developed by the Navigation Team, a common interface/standalone environment was developed. The common environment allows for easy implementation in design and analysis tools. Mechanisms such as unit test cases ensure implementation as the developer intended. The model verification and validation process provides a very high level of component design insight. The origin and implementation of the SLS variant of Model-based Design is described from the perspective of the SLS Navigation Team. The format of the models and the requirements are described. The Model-based Design approach has many benefits but is not without potential complications. Key lessons learned associated with the implementation of the Model Based Design approach and process from infancy to verification and certification are discussed
NASA Technical Reports Server (NTRS)
Stromgren, Chel; Goodliff, Kandyce; Cirillo, William; Owens, Andrew
2016-01-01
Through the Evolvable Mars Campaign (EMC) study, the National Aeronautics and Space Administration (NASA) continues to evaluate potential approaches for sending humans beyond low Earth orbit (LEO). A key aspect of these missions is the strategy that is employed to maintain and repair the spacecraft systems, ensuring that they continue to function and support the crew. Long duration missions beyond LEO present unique and severe maintainability challenges due to a variety of factors, including: limited to no opportunities for resupply, the distance from Earth, mass and volume constraints of spacecraft, high sensitivity of transportation element designs to variation in mass, the lack of abort opportunities to Earth, limited hardware heritage information, and the operation of human-rated systems in a radiation environment with little to no experience. The current approach to maintainability, as implemented on ISS, which includes a large number of spares pre-positioned on ISS, a larger supply sitting on Earth waiting to be flown to ISS, and an on demand delivery of logistics from Earth, is not feasible for future deep space human missions. For missions beyond LEO, significant modifications to the maintainability approach will be required.Through the EMC evaluations, several key findings related to the reliability and safety of the Mars spacecraft have been made. The nature of random and induced failures presents significant issues for deep space missions. Because spare parts cannot be flown as needed for Mars missions, all required spares must be flown with the mission or pre-positioned. These spares must cover all anticipated failure modes and provide a level of overall reliability and safety that is satisfactory for human missions. This will require a large amount of mass and volume be dedicated to storage and transport of spares for the mission. Further, there is, and will continue to be, a significant amount of uncertainty regarding failure rates for spacecraft components. This uncertainty makes it much more difficult to anticipate failures and will potentially require an even larger amount of spares to provide an acceptable level of safety. Ultimately, the approach to maintenance and repair applied to ISS, focusing on the supply of spare parts, may not be tenable for deep space missions. Other approaches, such as commonality of components, simplification of systems, and in-situ manufacturing will be required.
Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration
NASA Technical Reports Server (NTRS)
Brown, Kendall K.; Nelson, Karl W.
2005-01-01
Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bi-propellant engines used in the Apollo program. A multi-use engine. one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, bum duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).
Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration
NASA Astrophysics Data System (ADS)
Brown, Kendall K.; Nelson, Karl W.
2005-02-01
Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bipropellant engines used in the Apollo program. A multi-use engine, one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, burn duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).
Sizing Power Components of an Electrically Driven Tail Cone Thruster and a Range Extender
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy
2016-01-01
The aeronautics industry has been challenged on many fronts to increase efficiency, reduce emissions, and decrease dependency on carbon-based fuels. This paper provides an overview of the turboelectric and hybrid electric technologies being developed under NASA's Advanced Air Transportation Technology (AATT) Project and discusses how these technologies can impact vehicle design. The discussion includes an overview of key hybrid electric studies and technology investments, the approach to making informed investment decisions based on key performance parameters and mission studies, and the power system architectures for two candidate aircraft. Finally, the power components for a single-aisle turboelectric aircraft with an electrically driven tail cone thruster and for a hybrid-electric nine-passenger aircraft with a range extender are parametrically sized, and the sensitivity of these components to key parameters is presented.
21 CFR 1311.30 - Requirements for storing and using a private key for digitally signing orders.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Requirements for storing and using a private key... Digital Certificates for Electronic Orders § 1311.30 Requirements for storing and using a private key for... and private key. (b) The certificate holder must provide FIPS-approved secure storage for the private...
Quantum cryptography and applications in the optical fiber network
NASA Astrophysics Data System (ADS)
Luo, Yuhui
2005-09-01
Quantum cryptography, as part of quantum information and communications, can provide absolute security for information transmission because it is established on the fundamental laws of quantum theory, such as the principle of uncertainty, No-cloning theorem and quantum entanglement. In this thesis research, a novel scheme to implement quantum key distribution based on multiphoton entanglement with a new protocol is proposed. Its advantages are: a larger information capacity can be obtained with a longer transmission distance and the detection of multiple photons is easier than that of a single photon. The security and attacks pertaining to such a system are also studied. Next, a quantum key distribution over wavelength division multiplexed (WDM) optical fiber networks is realized. Quantum key distribution in networks is a long-standing problem for practical applications. Here we combine quantum cryptography and WDM to solve this problem because WDM technology is universally deployed in the current and next generation fiber networks. The ultimate target is to deploy quantum key distribution over commercial networks. The problems arising from the networks are also studied in this part. Then quantum key distribution in multi-access networks using wavelength routing technology is investigated in this research. For the first time, quantum cryptography for multiple individually targeted users has been successfully implemented in sharp contrast to that using the indiscriminating broadcasting structure. It overcomes the shortcoming that every user in the network can acquire the quantum key signals intended to be exchanged between only two users. Furthermore, a more efficient scheme of quantum key distribution is adopted, hence resulting in a higher key rate. Lastly, a quantum random number generator based on quantum optics has been experimentally demonstrated. This device is a key component for quantum key distribution as it can create truly random numbers, which is an essential requirement to perform quantum key distribution. This new generator is composed of a single optical fiber coupler with fiber pigtails, which can be easily used in optical fiber communications.
ERIC Educational Resources Information Center
Research Triangle Inst., Research Triangle Park, NC.
This document contains the five papers presented at a meeting at which key issues in evaluating workplace literacy programs were discussed. In "Key Components of Workplace Liteacy Projects and Definitions of Project 'Modules,'" Judith A. Alamprese describes the context for evaluating the National Extension Program, components of workplace literacy…
Air Reserve Component: Key to the Air Force’s Future
2013-03-01
REPORT TYPE STRATEGY RESEARCH PROJECT .33 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Air Reserve Component: Key to the Air Force’s...b. ABSTRACT UU c. THIS PAGE UU 19b. TELEPHONE NUMBER (Include area code) USAWC STRATEGY RESEARCH PROJECT...RAND Corporation, Prepared for the Office of Secretary of Defense, 2008), XV. 64 T.X. Hammes, "Offshore Control: A Proposed Strategy ," Infinity
Space astronomy for the mid-21st century: Robotically maintained space telescopes
NASA Astrophysics Data System (ADS)
Schartel, N.
2012-04-01
The historical development of ground based astronomical telescopes leads us to expect that space-based astronomical telescopes will need to be operational for many decades. The exchange of scientific instruments in space will be a prerequisite for the long lasting scientific success of such missions. Operationally, the possibility to repair or replace key spacecraft components in space will be mandatory. We argue that these requirements can be fulfilled with robotic missions and see the development of the required engineering as the main challenge. Ground based operations, scientifically and technically, will require a low operational budget of the running costs. These can be achieved through enhanced autonomy of the spacecraft and mission independent concepts for the support of the software. This concept can be applied to areas where the mirror capabilities do not constrain the lifetime of the mission. Online material is available at the CDS via http://cdsarc.u-strasbg.fr/cgi-bin/qcat?J/AN/333/209
The Astroculture (tm)-1 experiment on the USML-1 mission
NASA Technical Reports Server (NTRS)
Tibbitts, Theodore; Bula, R. J.; Morrow, R. C.
1994-01-01
Permanent human presence in space will require a life support system that minimizes athe need for resupply of consumables from Earth resources. Plants that convert radiant energy to chemical energy via photosynthesis are a key component of a bioregenerative life support system. Providing the proper root environment for plants in reduced gravity is an essential aspect of the development of facilities for growing plants in a space environment. The ASTROCULTURE(TM)-1 experiment, included in the USML-1 mission, successfully demonstrated the ability of the Wisconsin Center for Space Automation and Robotics porous tube water delivery system to control water movement through a rooting matrix in a microgravity environment.
Smart sensor technology for advanced launch vehicles
NASA Astrophysics Data System (ADS)
Schoess, Jeff
1989-07-01
Next-generation advanced launch vehicles will require improved use of sensor data and the management of multisensor resources to achieve automated preflight checkout, prelaunch readiness assessment and vehicle inflight condition monitoring. Smart sensor technology is a key component in meeting these needs. This paper describes the development of a smart sensor-based condition monitoring system concept referred to as the Distributed Sensor Architecture. A significant event and anomaly detection scheme that provides real-time condition assessment and fault diagnosis of advanced launch system rocket engines is described. The design and flight test of a smart autonomous sensor for Space Shuttle structural integrity health monitoring is presented.
Novel EO/IR sensor technologies
NASA Astrophysics Data System (ADS)
Lewis, Keith
2011-10-01
The requirements for advanced EO/IR sensor technologies are discussed in the context of evolving military operations, with significant emphasis on the development of new sensing technologies to meet the challenges posed by asymmetric threats. The Electro-Magnetic Remote Sensing (EMRS DTC) was established in 2003 to provide a centre of excellence in sensor research and development, supporting new capabilities in key military areas such as precision attack, battlespace manoeuvre and information superiority. In the area of advanced electro-optic technology, the DTC has supported work on discriminative imaging, advanced detectors, laser components/technologies, and novel optical techniques. This paper provides a summary of some of the EO/IR technologies explored by the DTC.
Atmospheric entry probes for outer planet exploration. Outer planet entry probe technical summary
NASA Technical Reports Server (NTRS)
1974-01-01
The use of unmanned space probes for investigating the conditions existing on and around the outer planets of the solar system is discussed. The subjects included in the report are: (1) the design of a common entry probe for outer planet missions, (2) the significant trades related to the development of a common probe design, (3) the impact of bus selection on probe design, (4) the impact of probe requirements on bus modifications, and (5) the key technology elements recommended for advanced development. Drawings and illustrations of typical probes are included to show the components and systems used in the space probes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Medical University of South Carolina`s vision is to become the premier national resource for medical information and for environmental/health risk assessment. A key component to the success of the many missions of the Environmental Hazards Assessment Program (EHAP) is timely access to large volumes of data. This study documents the results of the needs assessment effort conducted to determine the information access and processing requirement of EHAP. The following topics are addressed in this report: environmental medicine and risk communication: curriculum and a professional support network-Department of Family Medicine; environmental hazards assessment and education program in pharmacy graduate educationmore » in risk assessment; and graduate education risk assessment.« less
Development of the V4.2m5 and V5.0m0 Multigroup Cross Section Libraries for MPACT for PWR and BWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kang Seog; Clarno, Kevin T.; Gentry, Cole
2017-03-01
The MPACT neutronics module of the Consortium for Advanced Simulation of Light Water Reactors (CASL) core simulator is a 3-D whole core transport code being developed for the CASL toolset, Virtual Environment for Reactor Analysis (VERA). Key characteristics of the MPACT code include (1) a subgroup method for resonance selfshielding and (2) a whole-core transport solver with a 2-D/1-D synthesis method. The MPACT code requires a cross section library to support all the MPACT core simulation capabilities which would be the most influencing component for simulation accuracy.
Automatic Generation of Test Oracles - From Pilot Studies to Application
NASA Technical Reports Server (NTRS)
Feather, Martin S.; Smith, Ben
1998-01-01
There is a trend towards the increased use of automation in V&V. Automation can yield savings in time and effort. For critical systems, where thorough V&V is required, these savings can be substantial. We describe a progression from pilot studies to development and use of V&V automation. We used pilot studies to ascertain opportunities for, and suitability of, automating various analyses whose results would contribute to V&V. These studies culminated in the development of an automatic generator of automated test oracles. This was then applied and extended in the course of testing an Al planning system that is a key component of an autonomous spacecraft.
Crew systems: integrating human and technical subsystems for the exploration of space.
Connors, M M; Harrison, A A; Summit, J
1994-07-01
Space exploration missions will require combining human and technical subsystems into overall "crew systems" capable of performing under the rigorous conditions of outer space. This report describes substantive and conceptual relationships among humans, intelligent machines, and communication systems, and explores how these components may be combined to complement and strengthen one another. We identify key research issues in the combination of humans and technology and examine the role of individual differences, group processes, and environmental conditions. We conclude that a crew system is, in effect, a social cyborg, a living system consisting of multiple individuals whose capabilities are extended by advanced technology.
Crew systems: integrating human and technical subsystems for the exploration of space
NASA Technical Reports Server (NTRS)
Connors, M. M.; Harrison, A. A.; Summit, J.
1994-01-01
Space exploration missions will require combining human and technical subsystems into overall "crew systems" capable of performing under the rigorous conditions of outer space. This report describes substantive and conceptual relationships among humans, intelligent machines, and communication systems, and explores how these components may be combined to complement and strengthen one another. We identify key research issues in the combination of humans and technology and examine the role of individual differences, group processes, and environmental conditions. We conclude that a crew system is, in effect, a social cyborg, a living system consisting of multiple individuals whose capabilities are extended by advanced technology.
Cabaleiro, Joe
2007-01-01
A key component of qualifying for accreditation with the Pharmacy Compounding Accreditation Board is having a set of comprehensive standard operating procedures that are being used by the pharmacy staff. The three criteria in standard operating procedures for which the Pharmacy Compounding Accreditation Board looks are: (1)written standard operating procedures; (2)standard operating procedures that reflect what the organization actualy does; and (3) whether the written standard operating procedures are implemented. Following specified steps in the preparation of standard operating procedures will result in procedures that meet Pharmacy Compounding Accreditation Board Requirements, thereby placing pharmacies one step closer to qualifying for accreditation.
A NOVEL TECHNIQUE APPLYING SPECTRAL ESTIMATION TO JOHNSON NOISE THERMOMETRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ezell, N Dianne Bull; Britton Jr, Charles L; Roberts, Michael
Johnson noise thermometry (JNT) is one of many important measurements used to monitor the safety levels and stability in a nuclear reactor. However, this measurement is very dependent on the electromagnetic environment. Properly removing unwanted electromagnetic interference (EMI) is critical for accurate drift free temperature measurements. The two techniques developed by Oak Ridge National Laboratory (ORNL) to remove transient and periodic EMI are briefly discussed in this document. Spectral estimation is a key component in the signal processing algorithm utilized for EMI removal and temperature calculation. Applying these techniques requires the simple addition of the electronics and signal processing tomore » existing resistive thermometers.« less
International Space Station Major Constituent Analyzer On-orbit Performance
NASA Technical Reports Server (NTRS)
Gardner, Ben D.; Erwin, Phillip M.; Wiedemann, Rachel; Matty, Chris
2016-01-01
The Major Constituent Analyzer (MCA) is a mass spectrometer based system that measures the major atmospheric constituents on the International Space Station. A number of limited-life components require periodic change-out, including the ORU 02 analyzer and the ORU 08 Verification Gas Assembly. The most recent ORU 02 and ORU 08 assemblies are operating nominally. For ORU 02, the ion source filaments and ion pump lifetime continue to be key determinants of MCA performance. Additionally, testing is underway to evaluate the capacity of the MCA to analyze ammonia. Finally, plans are being made to bring the second MCA on ISS to an operational configuration.
Sittig, D F; Franklin, M; Turetsky, M; Sussman, A J; Bates, D W; Komaroff, A L; Teich, J M
1998-01-01
The process of creating a clinical referral for a patient and the transfer of information from the primary care physician to the specialist and back again is a key component in the struggle to deliver less costly and more effective clinical care. We have created a computer-based clinical referral application which facilitates 1) identifying an appropriate specialist; 2) collecting the clinical, demographic, and financial data required to generate a referral; and 3) transferring the information between the specialist and the primary care physician. Preliminary results indicate that the new computer-based process is faster.
A video-based system for hand-driven stop-motion animation.
Han, Xiaoguang; Fu, Hongbo; Zheng, Hanlin; Liu, Ligang; Wang, Jue
2013-01-01
Stop-motion is a well-established animation technique but is often laborious and requires craft skills. A new video-based system can animate the vast majority of everyday objects in stop-motion style, more flexibly and intuitively. Animators can perform and capture motions continuously instead of breaking them into increments and shooting one still picture per increment. More important, the system permits direct hand manipulation without resorting to rigs, achieving more natural object control for beginners. The system's key component is two-phase keyframe-based capturing and processing, assisted by computer vision techniques. With this system, even amateurs can generate high-quality stop-motion animations.
Parameter Estimation for Viscoplastic Material Modeling
NASA Technical Reports Server (NTRS)
Saleeb, Atef F.; Gendy, Atef S.; Wilt, Thomas E.
1997-01-01
A key ingredient in the design of engineering components and structures under general thermomechanical loading is the use of mathematical constitutive models (e.g. in finite element analysis) capable of accurate representation of short and long term stress/deformation responses. In addition to the ever-increasing complexity of recent viscoplastic models of this type, they often also require a large number of material constants to describe a host of (anticipated) physical phenomena and complicated deformation mechanisms. In turn, the experimental characterization of these material parameters constitutes the major factor in the successful and effective utilization of any given constitutive model; i.e., the problem of constitutive parameter estimation from experimental measurements.
Flexible architecture of data acquisition firmware based on multi-behaviors finite state machine
NASA Astrophysics Data System (ADS)
Arpaia, Pasquale; Cimmino, Pasquale
2016-11-01
A flexible firmware architecture for different kinds of data acquisition systems, ranging from high-precision bench instruments to low-cost wireless transducers networks, is presented. The key component is a multi-behaviors finite state machine, easily configurable to both low- and high-performance requirements, to diverse operating systems, as well as to on-line and batch measurement algorithms. The proposed solution was validated experimentally on three case studies with data acquisition architectures: (i) concentrated, in a high-precision instrument for magnetic measurements at CERN, (ii) decentralized, for telemedicine remote monitoring of patients at home, and (iii) distributed, for remote monitoring of building's energy loss.
Benninger, M S
2011-02-01
The human voice is not only the key to human communication but also serves as the primary musical instrument. Many professions rely on the voice, but the most noticeable and visible are singers. Care of the performing voice requires a thorough understanding of the interaction between the anatomy and physiology of voice production, along with an awareness of the interrelationships between vocalisation, acoustic science and non-vocal components of performance. This review gives an overview of the care and prevention of professional voice disorders by describing the unique and integrated anatomy and physiology of singing, the roles of development and training, and the importance of the voice care team.
Current Research Activities in Drive System Technology in Support of the NASA Rotorcraft Program
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Zakrajsek, James J.
2006-01-01
Drive system technology is a key area for improving rotorcraft performance, noise/vibration reduction, and reducing operational and manufacturing costs. An overview of current research areas that support the NASA Rotorcraft Program will be provided. Work in drive system technology is mainly focused within three research areas: advanced components, thermal behavior/emergency lubrication system operation, and diagnostics/prognostics (also known as Health and Usage Monitoring Systems (HUMS)). Current research activities in each of these activities will be presented. Also, an overview of the conceptual drive system requirements and possible arrangements for the Heavy Lift Rotorcraft program will be reviewed.
Systems engineering implementation in the preliminary design phase of the Giant Magellan Telescope
NASA Astrophysics Data System (ADS)
Maiten, J.; Johns, M.; Trancho, G.; Sawyer, D.; Mady, P.
2012-09-01
Like many telescope projects today, the 24.5-meter Giant Magellan Telescope (GMT) is truly a complex system. The primary and secondary mirrors of the GMT are segmented and actuated to support two operating modes: natural seeing and adaptive optics. GMT is a general-purpose telescope supporting multiple science instruments operated in those modes. GMT is a large, diverse collaboration and development includes geographically distributed teams. The need to implement good systems engineering processes for managing the development of systems like GMT becomes imperative. The management of the requirements flow down from the science requirements to the component level requirements is an inherently difficult task in itself. The interfaces must also be negotiated so that the interactions between subsystems and assemblies are well defined and controlled. This paper will provide an overview of the systems engineering processes and tools implemented for the GMT project during the preliminary design phase. This will include requirements management, documentation and configuration control, interface development and technical risk management. Because of the complexity of the GMT system and the distributed team, using web-accessible tools for collaboration is vital. To accomplish this GMTO has selected three tools: Cognition Cockpit, Xerox Docushare, and Solidworks Enterprise Product Data Management (EPDM). Key to this is the use of Cockpit for managing and documenting the product tree, architecture, error budget, requirements, interfaces, and risks. Additionally, drawing management is accomplished using an EPDM vault. Docushare, a documentation and configuration management tool is used to manage workflow of documents and drawings for the GMT project. These tools electronically facilitate collaboration in real time, enabling the GMT team to track, trace and report on key project metrics and design parameters.
30 CFR 75.1103-7 - Electrical components; permissibility requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electrical components; permissibility... Protection § 75.1103-7 Electrical components; permissibility requirements. The electrical components of each... dust when the electrical power is deenergized as required by § 75.313, but these components shall be...
30 CFR 75.1103-7 - Electrical components; permissibility requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electrical components; permissibility... Protection § 75.1103-7 Electrical components; permissibility requirements. The electrical components of each... dust when the electrical power is deenergized as required by § 75.313, but these components shall be...
30 CFR 75.1103-7 - Electrical components; permissibility requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electrical components; permissibility... Protection § 75.1103-7 Electrical components; permissibility requirements. The electrical components of each... dust when the electrical power is deenergized as required by § 75.313, but these components shall be...
30 CFR 75.1103-7 - Electrical components; permissibility requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electrical components; permissibility... Protection § 75.1103-7 Electrical components; permissibility requirements. The electrical components of each... dust when the electrical power is deenergized as required by § 75.313, but these components shall be...