Sample records for key control parameters

  1. Key parameters controlling the performance of catalytic motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esplandiu, Maria J.; Afshar Farniya, Ali; Reguera, David, E-mail: dreguera@ub.edu

    2016-03-28

    The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential andmore » the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.« less

  2. Key parameters controlling the performance of catalytic motors.

    PubMed

    Esplandiu, Maria J; Afshar Farniya, Ali; Reguera, David

    2016-03-28

    The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential and the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.

  3. The Research and Implementation of Vehicle Bluetooth Hands-free Devices Key Parameters Downloading Algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-bo; Wang, Zhi-xue; Li, Jian-xin; Ma, Jian-hui; Li, Yang; Li, Yan-qiang

    In order to facilitate Bluetooth function realization and information can be effectively tracked in the process of production, the vehicle Bluetooth hands-free devices need to download such key parameters as Bluetooth address, CVC license and base plate numbers, etc. Therefore, it is the aim to search simple and effective methods to download parameters for each vehicle Bluetooth hands-free device, and to control and record the use of parameters. In this paper, by means of Bluetooth Serial Peripheral Interface programmer device, the parallel port is switched to SPI. The first step is to download parameters is simulating SPI with the parallel port. To perform SPI function, operating the parallel port in accordance with the SPI timing. The next step is to achieve SPI data transceiver functions according to the programming parameters of options. Utilizing the new method, downloading parameters is fast and accurate. It fully meets vehicle Bluetooth hands-free devices production requirements. In the production line, it has played a large role.

  4. Parameter Estimation with Almost No Public Communication for Continuous-Variable Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Lupo, Cosmo; Ottaviani, Carlo; Papanastasiou, Panagiotis; Pirandola, Stefano

    2018-06-01

    One crucial step in any quantum key distribution (QKD) scheme is parameter estimation. In a typical QKD protocol the users have to sacrifice part of their raw data to estimate the parameters of the communication channel as, for example, the error rate. This introduces a trade-off between the secret key rate and the accuracy of parameter estimation in the finite-size regime. Here we show that continuous-variable QKD is not subject to this constraint as the whole raw keys can be used for both parameter estimation and secret key generation, without compromising the security. First, we show that this property holds for measurement-device-independent (MDI) protocols, as a consequence of the fact that in a MDI protocol the correlations between Alice and Bob are postselected by the measurement performed by an untrusted relay. This result is then extended beyond the MDI framework by exploiting the fact that MDI protocols can simulate device-dependent one-way QKD with arbitrarily high precision.

  5. Key parameters and practices controlling pesticide degradation efficiency of biobed substrates.

    PubMed

    Karanasios, Evangelos; Karpouzas, Dimitrios G; Tsiropoulos, Nikolaos G

    2012-01-01

    We studied the contribution of each of the components of a compost-based biomixture (BX), commonly used in Europe, on pesticide degradation. The impact of other key parameters including pesticide dose, temperature and repeated applications on the degradation of eight pesticides, applied as a mixture, in a BX and a peat-based biomixture (OBX) was compared and contrasted to their degradation in soil. Incubation studies showed that straw was essential in maintaining a high pesticide degradation capacity of the biomixture, whereas compost, when mixed with soil, retarded pesticide degradation. The highest rates of degradation were shown in the biomixture composed of soil/compost/straw suggesting that all three components are essential for maximum biobed performance. Increasing doses prolonged the persistence of most pesticides with biomixtures showing a higher tolerance to high pesticide dose levels compared to soil. Increasing the incubation temperature from 15 °C to 25 °C resulted in lower t(1/2) values, with biomixtures performing better than soil at the lower temperature. Repeated applications led to a decrease in the degradation rates of most pesticides in all the substrates, with the exception of iprodione and metalaxyl. Overall, our results stress the ability of biomixtures to perform better than soil under unfavorable conditions and extreme pesticide dose levels. Copyright © Taylor & Francis Group, LLC

  6. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2016-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  7. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2015-01-01

    The purpose of this presentation is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  8. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2015-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  9. A systemic study on key parameters affecting nanocomposite coatings on magnesium substrates.

    PubMed

    Johnson, Ian; Wang, Sebo Michelle; Silken, Christine; Liu, Huinan

    2016-05-01

    Nanocomposite coatings offer multiple functions simultaneously to improve the interfacial properties of magnesium (Mg) alloys for skeletal implant applications, e.g., controlling the degradation rate of Mg substrates, improving bone cell functions, and providing drug delivery capability. However, the effective service time of nanocomposite coatings may be limited due to their early delamination from the Mg-based substrates. Therefore, the objective of this study was to address the delamination issue of nanocomposite coatings, improve the coating properties for reducing the degradation of Mg-based substrates, and thus improve their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The surface conditions of the substrates, polymer component type of the nanocomposite coatings, and post-deposition processing are the key parameters that contribute to the efficacy of the nanocomposite coatings in regulating substrate degradation and bone cell responses. Specifically, the effects of metallic surface versus alkaline heat-treated hydroxide surface of the substrates on coating quality were investigated. For the nanocomposite coatings, nanophase hydroxyapatite (nHA) was dispersed in three types of biodegradable polymers, i.e., poly(lactic-co-glycolic acid) (PLGA), poly(l-lactic acid) (PLLA), or poly(caprolactone) (PCL) to determine which polymer component could provide integrated properties for slowest Mg degradation. The nanocomposite coatings with or without post-deposition processing, i.e., melting, annealing, were compared to determine which processing route improved the properties of the nanocomposite coatings most significantly. The results showed that optimizing the coating processes addressed the delamination issue. The melted then annealed nHA/PCL coating on the metallic Mg substrates showed the slowest degradation and the best coating adhesion, among all the combinations of conditions studied; and, it improved the adhesion density of BMSCs

  10. A Bayesian Framework for Coupled Estimation of Key Unknown Parameters of Land Water and Energy Balance Equations

    NASA Astrophysics Data System (ADS)

    Farhadi, L.; Abdolghafoorian, A.

    2015-12-01

    The land surface is a key component of climate system. It controls the partitioning of available energy at the surface between sensible and latent heat, and partitioning of available water between evaporation and runoff. Water and energy cycle are intrinsically coupled through evaporation, which represents a heat exchange as latent heat flux. Accurate estimation of fluxes of heat and moisture are of significant importance in many fields such as hydrology, climatology and meteorology. In this study we develop and apply a Bayesian framework for estimating the key unknown parameters of terrestrial water and energy balance equations (i.e. moisture and heat diffusion) and their uncertainty in land surface models. These equations are coupled through flux of evaporation. The estimation system is based on the adjoint method for solving a least-squares optimization problem. The cost function consists of aggregated errors on state (i.e. moisture and temperature) with respect to observation and parameters estimation with respect to prior values over the entire assimilation period. This cost function is minimized with respect to parameters to identify models of sensible heat, latent heat/evaporation and drainage and runoff. Inverse of Hessian of the cost function is an approximation of the posterior uncertainty of parameter estimates. Uncertainty of estimated fluxes is estimated by propagating the uncertainty for linear and nonlinear function of key parameters through the method of First Order Second Moment (FOSM). Uncertainty analysis is used in this method to guide the formulation of a well-posed estimation problem. Accuracy of the method is assessed at point scale using surface energy and water fluxes generated by the Simultaneous Heat and Water (SHAW) model at the selected AmeriFlux stations. This method can be applied to diverse climates and land surface conditions with different spatial scales, using remotely sensed measurements of surface moisture and temperature states

  11. Server-Controlled Identity-Based Authenticated Key Exchange

    NASA Astrophysics Data System (ADS)

    Guo, Hua; Mu, Yi; Zhang, Xiyong; Li, Zhoujun

    We present a threshold identity-based authenticated key exchange protocol that can be applied to an authenticated server-controlled gateway-user key exchange. The objective is to allow a user and a gateway to establish a shared session key with the permission of the back-end servers, while the back-end servers cannot obtain any information about the established session key. Our protocol has potential applications in strong access control of confidential resources. In particular, our protocol possesses the semantic security and demonstrates several highly-desirable security properties such as key privacy and transparency. We prove the security of the protocol based on the Bilinear Diffie-Hellman assumption in the random oracle model.

  12. Calculations of key magnetospheric parameters using the isotropic and anisotropic SPSU global MHD code

    NASA Astrophysics Data System (ADS)

    Samsonov, Andrey; Gordeev, Evgeny; Sergeev, Victor

    2017-04-01

    As it was recently suggested (e.g., Gordeev et al., 2015), the global magnetospheric configuration can be characterized by a set of key parameters, such as the magnetopause distance at the subsolar point and on the terminator plane, the magnetic field in the magnetotail lobe and the plasma sheet thermal pressure, the cross polar cap electric potential drop and the total field-aligned current. For given solar wind conditions, the values of these parameters can be obtained from both empirical models and global MHD simulations. We validate the recently developed global MHD code SPSU-16 using the key magnetospheric parameters mentioned above. The code SPSU-16 can calculate both the isotropic and anisotropic MHD equations. In the anisotropic version, we use the modified double-adiabatic equations in which the T⊥/T∥ (the ratio of perpendicular to parallel thermal pressures) has been bounded from above by the mirror and ion-cyclotron thresholds and from below by the firehose threshold. The results of validation for the SPSU-16 code well agree with the previously published results of other global codes. Some key parameters coincide in the isotropic and anisotropic MHD simulations, but some are different.

  13. Partially Turboelectric Aircraft Drive Key Performance Parameters

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Duffy, Kirsten P.; Brown, Gerald V.

    2017-01-01

    The purpose of this paper is to propose electric drive specific power, electric drive efficiency, and electrical propulsion fraction as the key performance parameters for a partially turboelectric aircraft power system and to investigate their impact on the overall aircraft performance. Breguet range equations for a base conventional turbofan aircraft and a partially turboelectric aircraft are found. The benefits and costs that may result from the partially turboelectric system are enumerated. A break even analysis is conducted to find the minimum allowable electric drive specific power and efficiency, for a given electrical propulsion fraction, that can preserve the range, fuel weight, operating empty weight, and payload weight of the conventional aircraft. Current and future power system performance is compared to the required performance to determine the potential benefit.

  14. Understanding which parameters control shallow ascent of silicic effusive magma

    NASA Astrophysics Data System (ADS)

    Thomas, Mark E.; Neuberg, Jurgen W.

    2014-11-01

    The estimation of the magma ascent rate is key to predicting volcanic activity and relies on the understanding of how strongly the ascent rate is controlled by different magmatic parameters. Linking potential changes of such parameters to monitoring data is an essential step to be able to use these data as a predictive tool. We present the results of a suite of conduit flow models Soufrière that assess the influence of individual model parameters such as the magmatic water content, temperature or bulk magma composition on the magma flow in the conduit during an extrusive dome eruption. By systematically varying these parameters we assess their relative importance to changes in ascent rate. We show that variability in the rate of low frequency seismicity, assumed to correlate directly with the rate of magma movement, can be used as an indicator for changes in ascent rate and, therefore, eruptive activity. The results indicate that conduit diameter and excess pressure in the magma chamber are amongst the dominant controlling variables, but the single most important parameter is the volatile content (assumed as only water). Modeling this parameter in the range of reported values causes changes in the calculated ascent velocities of up to 800%.

  15. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0139

    NASA Technical Reports Server (NTRS)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    1999-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  16. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0192

    NASA Technical Reports Server (NTRS)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  17. Channel-parameter estimation for satellite-to-submarine continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Xie, Cailang; Huang, Peng; Li, Jiawei; Zhang, Ling; Huang, Duan; Zeng, Guihua

    2018-05-01

    This paper deals with a channel-parameter estimation for continuous-variable quantum key distribution (CV-QKD) over a satellite-to-submarine link. In particular, we focus on the channel transmittances and the excess noise which are affected by atmospheric turbulence, surface roughness, zenith angle of the satellite, wind speed, submarine depth, etc. The estimation method is based on proposed algorithms and is applied to low-Earth orbits using the Monte Carlo approach. For light at 550 nm with a repetition frequency of 1 MHz, the effects of the estimated parameters on the performance of the CV-QKD system are assessed by a simulation by comparing the secret key bit rate in the daytime and at night. Our results show the feasibility of satellite-to-submarine CV-QKD, providing an unconditionally secure approach to achieve global networks for underwater communications.

  18. Key parameters design of an aerial target detection system on a space-based platform

    NASA Astrophysics Data System (ADS)

    Zhu, Hanlu; Li, Yejin; Hu, Tingliang; Rao, Peng

    2018-02-01

    To ensure flight safety of an aerial aircraft and avoid recurrence of aircraft collisions, a method of multi-information fusion is proposed to design the key parameter to realize aircraft target detection on a space-based platform. The key parameters of a detection wave band and spatial resolution using the target-background absolute contrast, target-background relative contrast, and signal-to-clutter ratio were determined. This study also presented the signal-to-interference ratio for analyzing system performance. Key parameters are obtained through the simulation of a specific aircraft. And the simulation results show that the boundary ground sampling distance is 30 and 35 m in the mid- wavelength infrared (MWIR) and long-wavelength infrared (LWIR) bands for most aircraft detection, and the most reasonable detection wavebands is 3.4 to 4.2 μm and 4.35 to 4.5 μm in the MWIR bands, and 9.2 to 9.8 μm in the LWIR bands. We also found that the direction of detection has a great impact on the detection efficiency, especially in MWIR bands.

  19. Partially Key Distribution with Public Key Cryptosystem Based on Error Control Codes

    NASA Astrophysics Data System (ADS)

    Tavallaei, Saeed Ebadi; Falahati, Abolfazl

    Due to the low level of security in public key cryptosystems based on number theory, fundamental difficulties such as "key escrow" in Public Key Infrastructure (PKI) and a secure channel in ID-based cryptography, a new key distribution cryptosystem based on Error Control Codes (ECC) is proposed . This idea is done by some modification on McEliece cryptosystem. The security of ECC cryptosystem obtains from the NP-Completeness of block codes decoding. The capability of generating public keys with variable lengths which is suitable for different applications will be provided by using ECC. It seems that usage of these cryptosystems because of decreasing in the security of cryptosystems based on number theory and increasing the lengths of their keys would be unavoidable in future.

  20. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0185

    NASA Technical Reports Server (NTRS)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2000-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  1. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0161

    NASA Technical Reports Server (NTRS)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2000-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  2. Planning Robot-Control Parameters With Qualitative Reasoning

    NASA Technical Reports Server (NTRS)

    Peters, Stephen F.

    1993-01-01

    Qualitative-reasoning planning algorithm helps to determine quantitative parameters controlling motion of robot. Algorithm regarded as performing search in multidimensional space of control parameters from starting point to goal region in which desired result of robotic manipulation achieved. Makes use of directed graph representing qualitative physical equations describing task, and interacts, at each sampling period, with history of quantitative control parameters and sensory data, to narrow search for reliable values of quantitative control parameters.

  3. Integrating machine learning to achieve an automatic parameter prediction for practical continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Liu, Weiqi; Huang, Peng; Peng, Jinye; Fan, Jianping; Zeng, Guihua

    2018-02-01

    For supporting practical quantum key distribution (QKD), it is critical to stabilize the physical parameters of signals, e.g., the intensity, phase, and polarization of the laser signals, so that such QKD systems can achieve better performance and practical security. In this paper, an approach is developed by integrating a support vector regression (SVR) model to optimize the performance and practical security of the QKD system. First, a SVR model is learned to precisely predict the time-along evolutions of the physical parameters of signals. Second, such predicted time-along evolutions are employed as feedback to control the QKD system for achieving the optimal performance and practical security. Finally, our proposed approach is exemplified by using the intensity evolution of laser light and a local oscillator pulse in the Gaussian modulated coherent state QKD system. Our experimental results have demonstrated three significant benefits of our SVR-based approach: (1) it can allow the QKD system to achieve optimal performance and practical security, (2) it does not require any additional resources and any real-time monitoring module to support automatic prediction of the time-along evolutions of the physical parameters of signals, and (3) it is applicable to any measurable physical parameter of signals in the practical QKD system.

  4. Linear Parameter Varying Control Synthesis for Actuator Failure, Based on Estimated Parameter

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Wu, N. Eva; Belcastro, Christine

    2002-01-01

    The design of a linear parameter varying (LPV) controller for an aircraft at actuator failure cases is presented. The controller synthesis for actuator failure cases is formulated into linear matrix inequality (LMI) optimizations based on an estimated failure parameter with pre-defined estimation error bounds. The inherent conservatism of an LPV control synthesis methodology is reduced using a scaling factor on the uncertainty block which represents estimated parameter uncertainties. The fault parameter is estimated using the two-stage Kalman filter. The simulation results of the designed LPV controller for a HiMXT (Highly Maneuverable Aircraft Technology) vehicle with the on-line estimator show that the desired performance and robustness objectives are achieved for actuator failure cases.

  5. Controlling Continuous-Variable Quantum Key Distribution with Entanglement in the Middle Using Tunable Linear Optics Cloning Machines

    NASA Astrophysics Data System (ADS)

    Wu, Xiao Dong; Chen, Feng; Wu, Xiang Hua; Guo, Ying

    2017-02-01

    Continuous-variable quantum key distribution (CVQKD) can provide detection efficiency, as compared to discrete-variable quantum key distribution (DVQKD). In this paper, we demonstrate a controllable CVQKD with the entangled source in the middle, contrast to the traditional point-to-point CVQKD where the entanglement source is usually created by one honest party and the Gaussian noise added on the reference partner of the reconciliation is uncontrollable. In order to harmonize the additive noise that originates in the middle to resist the effect of malicious eavesdropper, we propose a controllable CVQKD protocol by performing a tunable linear optics cloning machine (LOCM) at one participant's side, say Alice. Simulation results show that we can achieve the optimal secret key rates by selecting the parameters of the tuned LOCM in the derived regions.

  6. A parameter control method in reinforcement learning to rapidly follow unexpected environmental changes.

    PubMed

    Murakoshi, Kazushi; Mizuno, Junya

    2004-11-01

    In order to rapidly follow unexpected environmental changes, we propose a parameter control method in reinforcement learning that changes each of learning parameters in appropriate directions. We determine each appropriate direction on the basis of relationships between behaviors and neuromodulators by considering an emergency as a key word. Computer experiments show that the agents using our proposed method could rapidly respond to unexpected environmental changes, not depending on either two reinforcement learning algorithms (Q-learning and actor-critic (AC) architecture) or two learning problems (discontinuous and continuous state-action problems).

  7. Prediction of Geomagnetic Activity and Key Parameters in High-Latitude Ionosphere-Basic Elements

    NASA Technical Reports Server (NTRS)

    Lyatsky, W.; Khazanov, G. V.

    2007-01-01

    Prediction of geomagnetic activity and related events in the Earth's magnetosphere and ionosphere is an important task of the Space Weather program. Prediction reliability is dependent on the prediction method and elements included in the prediction scheme. Two main elements are a suitable geomagnetic activity index and coupling function -- the combination of solar wind parameters providing the best correlation between upstream solar wind data and geomagnetic activity. The appropriate choice of these two elements is imperative for any reliable prediction model. The purpose of this work was to elaborate on these two elements -- the appropriate geomagnetic activity index and the coupling function -- and investigate the opportunity to improve the reliability of the prediction of geomagnetic activity and other events in the Earth's magnetosphere. The new polar magnetic index of geomagnetic activity and the new version of the coupling function lead to a significant increase in the reliability of predicting the geomagnetic activity and some key parameters, such as cross-polar cap voltage and total Joule heating in high-latitude ionosphere, which play a very important role in the development of geomagnetic and other activity in the Earth s magnetosphere, and are widely used as key input parameters in modeling magnetospheric, ionospheric, and thermospheric processes.

  8. Measuring Two Key Parameters of H3 Color Centers in Diamond

    NASA Technical Reports Server (NTRS)

    Roberts, W. Thomas

    2005-01-01

    A method of measuring two key parameters of H3 color centers in diamond has been created as part of a continuing effort to develop tunable, continuous-wave, visible lasers that would utilize diamond as the lasing medium. (An H3 color center in a diamond crystal lattice comprises two nitrogen atoms substituted for two carbon atoms bonded to a third carbon atom. H3 color centers can be induced artificially; they also occur naturally. If present in sufficient density, they impart a yellow hue.) The method may also be applicable to the corresponding parameters of other candidate lasing media. One of the parameters is the number density of color centers, which is needed for designing an efficient laser. The other parameter is an optical-absorption cross section, which, as explained below, is needed for determining the number density. The present method represents an improvement over prior methods in which optical-absorption measurements have been used to determine absorption cross sections or number densities. Heretofore, in order to determine a number density from such measurements, it has been necessary to know the applicable absorption cross section; alternatively, to determine the absorption cross section from such measurements, it has been necessary to know the number density. If, as in this case, both the number density and the absorption cross section are initially unknown, then it is impossible to determine either parameter in the absence of additional information.

  9. The need for control of magnetic parameters for energy efficient performance of magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Farhat, I. A. H.; Gale, E.; Alpha, C.; Isakovic, A. F.

    2017-07-01

    Optimizing energy performance of Magnetic Tunnel Junctions (MTJs) is the key for embedding Spin Transfer Torque-Random Access Memory (STT-RAM) in low power circuits. Due to the complex interdependencies of the parameters and variables of the device operating energy, it is important to analyse parameters with most effective control of MTJ power. The impact of threshold current density, Jco , on the energy and the impact of HK on Jco are studied analytically, following the expressions that stem from Landau-Lifshitz-Gilbert-Slonczewski (LLGS-STT) model. In addition, the impact of other magnetic material parameters, such as Ms , and geometric parameters such as tfree and λ is discussed. Device modelling study was conducted to analyse the impact at the circuit level. Nano-magnetism simulation based on NMAGTM package was conducted to analyse the impact of controlling HK on the switching dynamics of the film.

  10. Developing Cognitive Control: Three Key Transitions

    PubMed Central

    Munakata, Yuko; Snyder, Hannah R.; Chatham, Christopher H.

    2012-01-01

    The ability to flexibly break out of routine behaviors develops gradually and is essential for success in life. We discuss three key developmental transitions toward more flexible behavior. First, children develop an increasing ability to overcome habits by engaging cognitive control in response to environmental signals. Second, children shift from recruiting cognitive control reactively, as needed in the moment, to recruiting cognitive control proactively, in preparation for needing it. Third, children shift from relying on environmental signals for engaging cognitive control to becoming more self-directed. All three transitions can be understood in terms of the development of increasingly active and abstract goal representations in prefrontal cortex. PMID:22711982

  11. Numerical optimization methods for controlled systems with parameters

    NASA Astrophysics Data System (ADS)

    Tyatyushkin, A. I.

    2017-10-01

    First- and second-order numerical methods for optimizing controlled dynamical systems with parameters are discussed. In unconstrained-parameter problems, the control parameters are optimized by applying the conjugate gradient method. A more accurate numerical solution in these problems is produced by Newton's method based on a second-order functional increment formula. Next, a general optimal control problem with state constraints and parameters involved on the righthand sides of the controlled system and in the initial conditions is considered. This complicated problem is reduced to a mathematical programming one, followed by the search for optimal parameter values and control functions by applying a multimethod algorithm. The performance of the proposed technique is demonstrated by solving application problems.

  12. Evolving Systems and Adaptive Key Component Control

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.

    2009-01-01

    We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. An introduction to Evolving Systems and exploration of the essential topics of the control and stability properties of Evolving Systems is provided. This chapter defines a framework for Evolving Systems, develops theory and control solutions for fundamental characteristics of Evolving Systems, and provides illustrative examples of Evolving Systems and their control with adaptive key component controllers.

  13. Key parameters of the sediment surface morphodynamics in an estuary - An assessment of model solutions

    NASA Astrophysics Data System (ADS)

    Sampath, D. M. R.; Boski, T.

    2018-05-01

    Large-scale geomorphological evolution of an estuarine system was simulated by means of a hybrid estuarine sedimentation model (HESM) applied to the Guadiana Estuary, in Southwest Iberia. The model simulates the decadal-scale morphodynamics of the system under environmental forcing, using a set of analytical solutions to simplified equations of tidal wave propagation in shallow waters, constrained by empirical knowledge of estuarine sedimentary dynamics and topography. The key controlling parameters of the model are bed friction (f), current velocity power of the erosion rate function (N), and sea-level rise rate. An assessment of sensitivity of the simulated sediment surface elevation (SSE) change to these controlling parameters was performed. The model predicted the spatial differentiation of accretion and erosion, the latter especially marked in the mudflats within mean sea level and low tide level and accretion was mainly in a subtidal channel. The average SSE change mutually depended on both the friction coefficient and power of the current velocity. Analysis of the average annual SSE change suggests that the state of intertidal and subtidal compartments of the estuarine system vary differently according to the dominant processes (erosion and accretion). As the Guadiana estuarine system shows dominant erosional behaviour in the context of sea-level rise and sediment supply reduction after the closure of the Alqueva Dam, the most plausible sets of parameter values for the Guadiana Estuary are N = 1.8 and f = 0.8f0, or N = 2 and f = f0, where f0 is the empirically estimated value. For these sets of parameter values, the relative errors in SSE change did not exceed ±20% in 73% of simulation cells in the studied area. Such a limit of accuracy can be acceptable for an idealized modelling of coastal evolution in response to uncertain sea-level rise scenarios in the context of reduced sediment supply due to flow regulation. Therefore, the idealized but cost

  14. Effect of the Key Mixture Parameters on Shrinkage of Reactive Powder Concrete

    PubMed Central

    Zubair, Ahmed

    2014-01-01

    Reactive powder concrete (RPC) mixtures are reported to have excellent mechanical and durability characteristics. However, such concrete mixtures having high amount of cementitious materials may have high early shrinkage causing cracking of concrete. In the present work, an attempt has been made to study the simultaneous effects of three key mixture parameters on shrinkage of the RPC mixtures. Considering three different levels of the three key mixture factors, a total of 27 mixtures of RPC were prepared according to 33 factorial experiment design. The specimens belonging to all 27 mixtures were monitored for shrinkage at different ages over a total period of 90 days. The test results were plotted to observe the variation of shrinkage with time and to see the effects of the key mixture factors. The experimental data pertaining to 90-day shrinkage were used to conduct analysis of variance to identify significance of each factor and to obtain an empirical equation correlating the shrinkage of RPC with the three key mixture factors. The rate of development of shrinkage at early ages was higher. The water to binder ratio was found to be the most prominent factor followed by cement content with the least effect of silica fume content. PMID:25050395

  15. Effect of the key mixture parameters on shrinkage of reactive powder concrete.

    PubMed

    Ahmad, Shamsad; Zubair, Ahmed; Maslehuddin, Mohammed

    2014-01-01

    Reactive powder concrete (RPC) mixtures are reported to have excellent mechanical and durability characteristics. However, such concrete mixtures having high amount of cementitious materials may have high early shrinkage causing cracking of concrete. In the present work, an attempt has been made to study the simultaneous effects of three key mixture parameters on shrinkage of the RPC mixtures. Considering three different levels of the three key mixture factors, a total of 27 mixtures of RPC were prepared according to 3(3) factorial experiment design. The specimens belonging to all 27 mixtures were monitored for shrinkage at different ages over a total period of 90 days. The test results were plotted to observe the variation of shrinkage with time and to see the effects of the key mixture factors. The experimental data pertaining to 90-day shrinkage were used to conduct analysis of variance to identify significance of each factor and to obtain an empirical equation correlating the shrinkage of RPC with the three key mixture factors. The rate of development of shrinkage at early ages was higher. The water to binder ratio was found to be the most prominent factor followed by cement content with the least effect of silica fume content.

  16. Sequential weighted Wiener estimation for extraction of key tissue parameters in color imaging: a phantom study

    NASA Astrophysics Data System (ADS)

    Chen, Shuo; Lin, Xiaoqian; Zhu, Caigang; Liu, Quan

    2014-12-01

    Key tissue parameters, e.g., total hemoglobin concentration and tissue oxygenation, are important biomarkers in clinical diagnosis for various diseases. Although point measurement techniques based on diffuse reflectance spectroscopy can accurately recover these tissue parameters, they are not suitable for the examination of a large tissue region due to slow data acquisition. The previous imaging studies have shown that hemoglobin concentration and oxygenation can be estimated from color measurements with the assumption of known scattering properties, which is impractical in clinical applications. To overcome this limitation and speed-up image processing, we propose a method of sequential weighted Wiener estimation (WE) to quickly extract key tissue parameters, including total hemoglobin concentration (CtHb), hemoglobin oxygenation (StO2), scatterer density (α), and scattering power (β), from wide-band color measurements. This method takes advantage of the fact that each parameter is sensitive to the color measurements in a different way and attempts to maximize the contribution of those color measurements likely to generate correct results in WE. The method was evaluated on skin phantoms with varying CtHb, StO2, and scattering properties. The results demonstrate excellent agreement between the estimated tissue parameters and the corresponding reference values. Compared with traditional WE, the sequential weighted WE shows significant improvement in the estimation accuracy. This method could be used to monitor tissue parameters in an imaging setup in real time.

  17. Tag Content Access Control with Identity-based Key Exchange

    NASA Astrophysics Data System (ADS)

    Yan, Liang; Rong, Chunming

    2010-09-01

    Radio Frequency Identification (RFID) technology that used to identify objects and users has been applied to many applications such retail and supply chain recently. How to prevent tag content from unauthorized readout is a core problem of RFID privacy issues. Hash-lock access control protocol can make tag to release its content only to reader who knows the secret key shared between them. However, in order to get this shared secret key required by this protocol, reader needs to communicate with a back end database. In this paper, we propose to use identity-based secret key exchange approach to generate the secret key required for hash-lock access control protocol. With this approach, not only back end database connection is not needed anymore, but also tag cloning problem can be eliminated at the same time.

  18. Using a Functional Simulation of Crisis Management to Test the C2 Agility Model Parameters on Key Performance Variables

    DTIC Science & Technology

    2013-06-01

    1 18th ICCRTS Using a Functional Simulation of Crisis Management to Test the C2 Agility Model Parameters on Key Performance Variables...AND SUBTITLE Using a Functional Simulation of Crisis Management to Test the C2 Agility Model Parameters on Key Performance Variables 5a. CONTRACT...command in crisis management. C2 Agility Model Agility can be conceptualized at a number of different levels; for instance at the team

  19. An Improved Method to Control the Critical Parameters of a Multivariable Control System

    NASA Astrophysics Data System (ADS)

    Subha Hency Jims, P.; Dharmalingam, S.; Wessley, G. Jims John

    2017-10-01

    The role of control systems is to cope with the process deficiencies and the undesirable effect of the external disturbances. Most of the multivariable processes are highly iterative and complex in nature. Aircraft systems, Modern Power Plants, Refineries, Robotic systems are few such complex systems that involve numerous critical parameters that need to be monitored and controlled. Control of these important parameters is not only tedious and cumbersome but also is crucial from environmental, safety and quality perspective. In this paper, one such multivariable system, namely, a utility boiler has been considered. A modern power plant is a complex arrangement of pipework and machineries with numerous interacting control loops and support systems. In this paper, the calculation of controller parameters based on classical tuning concepts has been presented. The controller parameters thus obtained and employed has controlled the critical parameters of a boiler during fuel switching disturbances. The proposed method can be applied to control the critical parameters like elevator, aileron, rudder, elevator trim rudder and aileron trim, flap control systems of aircraft systems.

  20. Determination of key parameters of vector multifractal vector fields

    NASA Astrophysics Data System (ADS)

    Schertzer, D. J. M.; Tchiguirinskaia, I.

    2017-12-01

    For too long time, multifractal analyses and simulations have been restricted to scalar-valued fields (Schertzer and Tchiguirinskaia, 2017a,b). For instance, the wind velocity multifractality has been mostly analysed in terms of scalar structure functions and with the scalar energy flux. This restriction has had the unfortunate consequences that multifractals were applicable to their full extent in geophysics, whereas it has inspired them. Indeed a key question in geophysics is the complexity of the interactions between various fields or they components. Nevertheless, sophisticated methods have been developed to determine the key parameters of scalar valued fields. In this communication, we first present the vector extensions of the universal multifractal analysis techniques to multifractals whose generator belong to a Levy-Clifford algebra (Schertzer and Tchiguirinskaia, 2015). We point out further extensions noting the increased complexity. For instance, the (scalar) index of multifractality becomes a matrice. Schertzer, D. and Tchiguirinskaia, I. (2015) `Multifractal vector fields and stochastic Clifford algebra', Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(12), p. 123127. doi: 10.1063/1.4937364. Schertzer, D. and Tchiguirinskaia, I. (2017) `An Introduction to Multifractals and Scale Symmetry Groups', in Ghanbarian, B. and Hunt, A. (eds) Fractals: Concepts and Applications in Geosciences. CRC Press, p. (in press). Schertzer, D. and Tchiguirinskaia, I. (2017b) `Pandora Box of Multifractals: Barely Open ?', in Tsonis, A. A. (ed.) 30 Years of Nonlinear Dynamics in Geophysics. Berlin: Springer, p. (in press).

  1. Parameter optimization in biased decoy-state quantum key distribution with both source errors and statistical fluctuations

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Rong; Li, Jian; Zhang, Chun-Mei; Wang, Qin

    2017-10-01

    The decoy-state method has been widely used in commercial quantum key distribution (QKD) systems. In view of the practical decoy-state QKD with both source errors and statistical fluctuations, we propose a universal model of full parameter optimization in biased decoy-state QKD with phase-randomized sources. Besides, we adopt this model to carry out simulations of two widely used sources: weak coherent source (WCS) and heralded single-photon source (HSPS). Results show that full parameter optimization can significantly improve not only the secure transmission distance but also the final key generation rate. And when taking source errors and statistical fluctuations into account, the performance of decoy-state QKD using HSPS suffered less than that of decoy-state QKD using WCS.

  2. Key Parameters for Operator Diagnosis of BWR Plant Condition during a Severe Accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clayton, Dwight A.; Poore, III, Willis P.

    2015-01-01

    The objective of this research is to examine the key information needed from nuclear power plant instrumentation to guide severe accident management and mitigation for boiling water reactor (BWR) designs (specifically, a BWR/4-Mark I), estimate environmental conditions that the instrumentation will experience during a severe accident, and identify potential gaps in existing instrumentation that may require further research and development. This report notes the key parameters that instrumentation needs to measure to help operators respond to severe accidents. A follow-up report will assess severe accident environmental conditions as estimated by severe accident simulation model analysis for a specific US BWR/4-Markmore » I plant for those instrumentation systems considered most important for accident management purposes.« less

  3. Crop Damage by Primates: Quantifying the Key Parameters of Crop-Raiding Events

    PubMed Central

    Wallace, Graham E.; Hill, Catherine M.

    2012-01-01

    Human-wildlife conflict often arises from crop-raiding, and insights regarding which aspects of raiding events determine crop loss are essential when developing and evaluating deterrents. However, because accounts of crop-raiding behaviour are frequently indirect, these parameters are rarely quantified or explicitly linked to crop damage. Using systematic observations of the behaviour of non-human primates on farms in western Uganda, this research identifies number of individuals raiding and duration of raid as the primary parameters determining crop loss. Secondary factors include distance travelled onto farm, age composition of the raiding group, and whether raids are in series. Regression models accounted for greater proportions of variation in crop loss when increasingly crop and species specific. Parameter values varied across primate species, probably reflecting differences in raiding tactics or perceptions of risk, and thereby providing indices of how comfortable primates are on-farm. Median raiding-group sizes were markedly smaller than the typical sizes of social groups. The research suggests that key parameters of raiding events can be used to measure the behavioural impacts of deterrents to raiding. Furthermore, farmers will benefit most from methods that discourage raiding by multiple individuals, reduce the size of raiding groups, or decrease the amount of time primates are on-farm. This study demonstrates the importance of directly relating crop loss to the parameters of raiding events, using systematic observations of the behaviour of multiple primate species. PMID:23056378

  4. Resilience of Key Biological Parameters of the Senegalese Flat Sardinella to Overfishing and Climate Change.

    PubMed

    Ba, Kamarel; Thiaw, Modou; Lazar, Najih; Sarr, Alassane; Brochier, Timothée; Ndiaye, Ismaïla; Faye, Alioune; Sadio, Oumar; Panfili, Jacques; Thiaw, Omar Thiom; Brehmer, Patrice

    2016-01-01

    The stock of the Senegalese flat sardinella, Sardinella maderensis, is highly exploited in Senegal, West Africa. Its growth and reproduction parameters are key biological indicators for improving fisheries management. This study reviewed these parameters using landing data from small-scale fisheries in Senegal and literature information dated back more than 25 years. Age was estimated using length-frequency data to calculate growth parameters and assess the growth performance index. With global climate change there has been an increase in the average sea surface temperature along the Senegalese coast but the length-weight parameters, sex ratio, size at first sexual maturity, period of reproduction and condition factor of S. maderensis have not changed significantly. The above parameters of S. maderensis have hardly changed, despite high exploitation and fluctuations in environmental conditions that affect the early development phases of small pelagic fish in West Africa. This lack of plasticity of the species regarding of the biological parameters studied should be considered when planning relevant fishery management plans.

  5. Key node selection in minimum-cost control of complex networks

    NASA Astrophysics Data System (ADS)

    Ding, Jie; Wen, Changyun; Li, Guoqi

    2017-11-01

    Finding the key node set that is connected with a given number of external control sources for driving complex networks from initial state to any predefined state with minimum cost, known as minimum-cost control problem, is critically important but remains largely open. By defining an importance index for each node, we propose revisited projected gradient method extension (R-PGME) in Monte-Carlo scenario to determine key node set. It is found that the importance index of a node is strongly correlated to occurrence rate of that node to be selected as a key node in Monte-Carlo realizations for three elementary topologies, Erdős-Rényi and scale-free networks. We also discover the distribution patterns of key nodes when the control cost reaches its minimum. Specifically, the importance indices of all nodes in an elementary stem show a quasi-periodic distribution with high peak values in the beginning and end of a quasi-period while they approach to a uniform distribution in an elementary cycle. We further point out that an elementary dilation can be regarded as two elementary stems whose lengths are the closest, and the importance indices in each stem present similar distribution as in an elementary stem. Our results provide a better understanding and deep insight of locating the key nodes in different topologies with minimum control cost.

  6. Linear Parameter Varying Control for Actuator Failure

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Wu, N. Eva; Belcastro, Christine; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    A robust linear parameter varying (LPV) control synthesis is carried out for an HiMAT vehicle subject to loss of control effectiveness. The scheduling parameter is selected to be a function of the estimates of the control effectiveness factors. The estimates are provided on-line by a two-stage Kalman estimator. The inherent conservatism of the LPV design is reducing through the use of a scaling factor on the uncertainty block that represents the estimation errors of the effectiveness factors. Simulations of the controlled system with the on-line estimator show that a superior fault-tolerance can be achieved.

  7. Genetic Algorithm Optimizes Q-LAW Control Parameters

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard

    2008-01-01

    A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.

  8. Concurrently adjusting interrelated control parameters to achieve optimal engine performance

    DOEpatents

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2015-12-01

    Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.

  9. Optimizing chaos time-delay signature in two mutually-coupled semiconductor lasers through controlling internal parameters

    NASA Astrophysics Data System (ADS)

    Mu, Penghua; Pan, Wei; Yan, Lianshan; Luo, Bin; Zou, Xihua

    2017-04-01

    In this contribution, the effects of two key internal parameters, i.e. the linewidth-enhancement factor (α) and gain nonlinearity (𝜀), on time-delay signatures (TDS) concealment of two mutually-coupled semiconductor lasers (MCSLs) are numerically investigated. In particular, the influences of α and 𝜀 on the TDS concealment are compared and discussed systematically by setting different values of frequency detuning (Δf) and injection strength (η). The results show that the TDS can be better suppressed with high α or lower 𝜀 in the MCSLs. Two sets of desired optical chaos with TDS being strongly suppressed can be generated simultaneously in a wide injection parameter plane provided that α and 𝜀 are properly chosen, indicating that optimizing TDS suppression through controlling internal parameters can be generalized to any delayed-coupled laser systems.

  10. Key Performance Parameter Driven Technology Goals for Electric Machines and Power Systems

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl; Jansen, Ralph; Brown, Gerald; Duffy, Kirsten; Trudell, Jeffrey

    2015-01-01

    Transitioning aviation to low carbon propulsion is one of the crucial strategic research thrust and is a driver in the search for alternative propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The feasibility of scaling up various electric drive system technologies to meet the requirements of a large commercial transport is discussed in terms of key parameters. Functional requirements are identified that impact the power system design. A breakeven analysis is presented to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  11. Turbulence study in the vicinity of piano key weir: relevance, instrumentation, parameters and methods

    NASA Astrophysics Data System (ADS)

    Tiwari, Harinarayan; Sharma, Nayan

    2017-05-01

    This research paper focuses on the need of turbulence, instruments reliable to capture turbulence, different turbulence parameters and some advance methodology which can decompose various turbulence structures at different levels near hydraulic structures. Small-scale turbulence research has valid prospects in open channel flow. The relevance of the study is amplified as we introduce any hydraulic structure in the channel which disturbs the natural flow and creates discontinuity. To recover this discontinuity, the piano key weir (PKW) might be used with sloped keys. Constraints of empirical results in the vicinity of PKW necessitate extensive laboratory experiments with fair and reliable instrumentation techniques. Acoustic Doppler velocimeter was established to be best suited within range of some limitations using principal component analysis. Wavelet analysis is proposed to decompose the underlying turbulence structure in a better way.

  12. Modelling the effect of heterogeneity of shedding on the within herd Coxiella burnetii spread and identification of key parameters by sensitivity analysis.

    PubMed

    Courcoul, Aurélie; Monod, Hervé; Nielen, Mirjam; Klinkenberg, Don; Hogerwerf, Lenny; Beaudeau, François; Vergu, Elisabeta

    2011-09-07

    Coxiella burnetii is the bacterium responsible for Q fever, a worldwide zoonosis. Ruminants, especially cattle, are recognized as the most important source of human infections. Although a great heterogeneity between shedder cows has been described, no previous studies have determined which features such as shedding route and duration or the quantity of bacteria shed have the strongest impact on the environmental contamination and thus on the zoonotic risk. Our objective was to identify key parameters whose variation highly influences C. burnetii spread within a dairy cattle herd, especially those related to the heterogeneity of shedding. To compare the impact of epidemiological parameters on different dynamical aspects of C. burnetii infection, we performed a sensitivity analysis on an original stochastic model describing the bacterium spread and representing the individual variability of the shedding duration, routes and intensity as well as herd demography. This sensitivity analysis consisted of a principal component analysis followed by an ANOVA. Our findings show that the most influential parameters are the probability distribution governing the levels of shedding, especially in vaginal mucus and faeces, the characteristics of the bacterium in the environment (i.e. its survival and the fraction of bacteria shed reaching the environment), and some physiological parameters related to the intermittency of shedding (transition probability from a non-shedding infected state to a shedding state) or to the transition from one type of shedder to another one (transition probability from a seronegative shedding state to a seropositive shedding state). Our study is crucial for the understanding of the dynamics of C. burnetii infection and optimization of control measures. Indeed, as control measures should impact the parameters influencing the bacterium spread most, our model can now be used to assess the effectiveness of different control strategies of Q fever within

  13. Market-Based Coordination of Thermostatically Controlled Loads—Part II: Unknown Parameters and Case Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sen; Zhang, Wei; Lian, Jianming

    This two-part paper considers the coordination of a population of Thermostatically Controlled Loads (TCLs) with unknown parameters to achieve group objectives. The problem involves designing the bidding and market clearing strategy to motivate self-interested users to realize efficient energy allocation subject to a peak power constraint. The companion paper (Part I) formulates the problem and proposes a load coordination framework using the mechanism design approach. To address the unknown parameters, Part II of this paper presents a joint state and parameter estimation framework based on the expectation maximization algorithm. The overall framework is then validated using real-world weather data andmore » price data, and is compared with other approaches in terms of aggregated power response. Simulation results indicate that our coordination framework can effectively improve the efficiency of the power grid operations and reduce power congestion at key times.« less

  14. Switching State-Feedback LPV Control with Uncertain Scheduling Parameters

    NASA Technical Reports Server (NTRS)

    He, Tianyi; Al-Jiboory, Ali Khudhair; Swei, Sean Shan-Min; Zhu, Guoming G.

    2017-01-01

    This paper presents a new method to design Robust Switching State-Feedback Gain-Scheduling (RSSFGS) controllers for Linear Parameter Varying (LPV) systems with uncertain scheduling parameters. The domain of scheduling parameters are divided into several overlapped subregions to undergo hysteresis switching among a family of simultaneously designed LPV controllers over the corresponding subregion with the guaranteed H-infinity performance. The synthesis conditions are given in terms of Parameterized Linear Matrix Inequalities that guarantee both stability and performance at each subregion and associated switching surfaces. The switching stability is ensured by descent parameter-dependent Lyapunov function on switching surfaces. By solving the optimization problem, RSSFGS controller can be obtained for each subregion. A numerical example is given to illustrate the effectiveness of the proposed approach over the non-switching controllers.

  15. An effective and secure key-management scheme for hierarchical access control in E-medicine system.

    PubMed

    Odelu, Vanga; Das, Ashok Kumar; Goswami, Adrijit

    2013-04-01

    Recently several hierarchical access control schemes are proposed in the literature to provide security of e-medicine systems. However, most of them are either insecure against 'man-in-the-middle attack' or they require high storage and computational overheads. Wu and Chen proposed a key management method to solve dynamic access control problems in a user hierarchy based on hybrid cryptosystem. Though their scheme improves computational efficiency over Nikooghadam et al.'s approach, it suffers from large storage space for public parameters in public domain and computational inefficiency due to costly elliptic curve point multiplication. Recently, Nikooghadam and Zakerolhosseini showed that Wu-Chen's scheme is vulnerable to man-in-the-middle attack. In order to remedy this security weakness in Wu-Chen's scheme, they proposed a secure scheme which is again based on ECC (elliptic curve cryptography) and efficient one-way hash function. However, their scheme incurs huge computational cost for providing verification of public information in the public domain as their scheme uses ECC digital signature which is costly when compared to symmetric-key cryptosystem. In this paper, we propose an effective access control scheme in user hierarchy which is only based on symmetric-key cryptosystem and efficient one-way hash function. We show that our scheme reduces significantly the storage space for both public and private domains, and computational complexity when compared to Wu-Chen's scheme, Nikooghadam-Zakerolhosseini's scheme, and other related schemes. Through the informal and formal security analysis, we further show that our scheme is secure against different attacks and also man-in-the-middle attack. Moreover, dynamic access control problems in our scheme are also solved efficiently compared to other related schemes, making our scheme is much suitable for practical applications of e-medicine systems.

  16. A parameter optimization approach to controller partitioning for integrated flight/propulsion control application

    NASA Technical Reports Server (NTRS)

    Schmidt, Phillip; Garg, Sanjay; Holowecky, Brian

    1992-01-01

    A parameter optimization framework is presented to solve the problem of partitioning a centralized controller into a decentralized hierarchical structure suitable for integrated flight/propulsion control implementation. The controller partitioning problem is briefly discussed and a cost function to be minimized is formulated, such that the resulting 'optimal' partitioned subsystem controllers will closely match the performance (including robustness) properties of the closed-loop system with the centralized controller while maintaining the desired controller partitioning structure. The cost function is written in terms of parameters in a state-space representation of the partitioned sub-controllers. Analytical expressions are obtained for the gradient of this cost function with respect to parameters, and an optimization algorithm is developed using modern computer-aided control design and analysis software. The capabilities of the algorithm are demonstrated by application to partitioned integrated flight/propulsion control design for a modern fighter aircraft in the short approach to landing task. The partitioning optimization is shown to lead to reduced-order subcontrollers that match the closed-loop command tracking and decoupling performance achieved by a high-order centralized controller.

  17. A parameter optimization approach to controller partitioning for integrated flight/propulsion control application

    NASA Technical Reports Server (NTRS)

    Schmidt, Phillip H.; Garg, Sanjay; Holowecky, Brian R.

    1993-01-01

    A parameter optimization framework is presented to solve the problem of partitioning a centralized controller into a decentralized hierarchical structure suitable for integrated flight/propulsion control implementation. The controller partitioning problem is briefly discussed and a cost function to be minimized is formulated, such that the resulting 'optimal' partitioned subsystem controllers will closely match the performance (including robustness) properties of the closed-loop system with the centralized controller while maintaining the desired controller partitioning structure. The cost function is written in terms of parameters in a state-space representation of the partitioned sub-controllers. Analytical expressions are obtained for the gradient of this cost function with respect to parameters, and an optimization algorithm is developed using modern computer-aided control design and analysis software. The capabilities of the algorithm are demonstrated by application to partitioned integrated flight/propulsion control design for a modern fighter aircraft in the short approach to landing task. The partitioning optimization is shown to lead to reduced-order subcontrollers that match the closed-loop command tracking and decoupling performance achieved by a high-order centralized controller.

  18. Particle swarm optimization algorithm based parameters estimation and control of epileptiform spikes in a neural mass model

    NASA Astrophysics Data System (ADS)

    Shan, Bonan; Wang, Jiang; Deng, Bin; Wei, Xile; Yu, Haitao; Zhang, Zhen; Li, Huiyan

    2016-07-01

    This paper proposes an epilepsy detection and closed-loop control strategy based on Particle Swarm Optimization (PSO) algorithm. The proposed strategy can effectively suppress the epileptic spikes in neural mass models, where the epileptiform spikes are recognized as the biomarkers of transitions from the normal (interictal) activity to the seizure (ictal) activity. In addition, the PSO algorithm shows capabilities of accurate estimation for the time evolution of key model parameters and practical detection for all the epileptic spikes. The estimation effects of unmeasurable parameters are improved significantly compared with unscented Kalman filter. When the estimated excitatory-inhibitory ratio exceeds a threshold value, the epileptiform spikes can be inhibited immediately by adopting the proportion-integration controller. Besides, numerical simulations are carried out to illustrate the effectiveness of the proposed method as well as the potential value for the model-based early seizure detection and closed-loop control treatment design.

  19. Linear-parameter-varying gain-scheduled control of aerospace systems

    NASA Astrophysics Data System (ADS)

    Barker, Jeffrey Michael

    The dynamics of many aerospace systems vary significantly as a function of flight condition. Robust control provides methods of guaranteeing performance and stability goals across flight conditions. In mu-syntthesis, changes to the dynamical system are primarily treated as uncertainty. This method has been successfully applied to many control problems, and here is applied to flutter control. More recently, two techniques for generating robust gain-scheduled controller have been developed. Linear fractional transformation (LFT) gain-scheduled control is an extension of mu-synthesis in which the plant and controller are explicit functions of parameters measurable in real-time. This LFT gain-scheduled control technique is applied to the Benchmark Active Control Technology (BACT) wing, and compared with mu-synthesis control. Linear parameter-varying (LPV) gain-scheduled control is an extension of Hinfinity control to parameter varying systems. LPV gain-scheduled control directly incorporates bounds on the rate of change of the scheduling parameters, and often reduces conservatism inherent in LFT gain-scheduled control. Gain-scheduled LPV control of the BACT wing compares very favorably with the LFT controller. Gain-scheduled LPV controllers are generated for the lateral-directional and longitudinal axes of the Innovative Control Effectors (ICE) aircraft and implemented in nonlinear simulations and real-time piloted nonlinear simulations. Cooper-Harper and pilot-induced oscillation ratings were obtained for an initial design, a reference aircraft and a redesign. Piloted simulation results for the initial LPV gain-scheduled control of the ICE aircraft are compared with results for a conventional fighter aircraft in discrete pitch and roll angle tracking tasks. The results for the redesigned controller are significantly better than both the previous LPV controller and the conventional aircraft.

  20. A key factor to the spin parameter of uniformly rotating compact stars: crust structure

    NASA Astrophysics Data System (ADS)

    Qi, Bin; Zhang, Nai-Bo; Sun, Bao-Yuan; Wang, Shou-Yu; Gao, Jian-Hua

    2016-04-01

    We study the dimensionless spin parameter j ≡ cJ/(GM2) of different kinds of uniformly rotating compact stars, including traditional neutron stars, hyperonic neutron stars and hybrid stars, based on relativistic mean field theory and the MIT bag model. It is found that jmax ˜ 0.7, which had been suggested in traditional neutron stars, is sustained for hyperonic neutron stars and hybrid stars with M > 0.5 M⊙. Not the interior but rather the crust structure of the stars is a key factor to determine jmax for three kinds of selected compact stars. Furthermore, a universal formula j = 0.63(f/fK) - 0.42(f/fK)2 + 0.48(f/fK)3 is suggested to determine the spin parameter at any rotational frequency f smaller than the Keplerian frequency fK.

  1. Willingness to Pay for Mosquito Control in Key West, Florida and Tucson, Arizona.

    PubMed

    Dickinson, Katherine L; Hayden, Mary H; Haenchen, Steven; Monaghan, Andrew J; Walker, Kathleen R; Ernst, Kacey C

    2016-04-01

    Mosquito-borne illnesses like West Nile virus (WNV) and dengue are growing threats to the United States. Proactive mosquito control is one strategy to reduce the risk of disease transmission. In 2012, we measured the public's willingness to pay (WTP) for increased mosquito control in two cities: Key West, FL, where there have been recent dengue outbreaks, and Tucson, AZ, where dengue vectors are established and WNV has been circulating for over a decade. Nearly three quarters of respondents in both cities (74% in Tucson and 73% in Key West) would be willing to pay $25 or more annually toward an increase in publicly funded mosquito control efforts. WTP was positively associated with income (both cities), education (Key West), and perceived mosquito abundance (Tucson). Concerns about environmental impacts of mosquito control were associated with lower WTP in Key West. Expanded mosquito control efforts should incorporate public opinion as they respond to evolving disease risks. © The American Society of Tropical Medicine and Hygiene.

  2. Dark energy and key physical parameters of clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Chernin, A. D.

    2012-04-01

    We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: (1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; (2) the halo averaged density is equal to two densities of dark energy; (3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.

  3. Choosing the appropriate forecasting model for predictive parameter control.

    PubMed

    Aleti, Aldeida; Moser, Irene; Meedeniya, Indika; Grunske, Lars

    2014-01-01

    All commonly used stochastic optimisation algorithms have to be parameterised to perform effectively. Adaptive parameter control (APC) is an effective method used for this purpose. APC repeatedly adjusts parameter values during the optimisation process for optimal algorithm performance. The assignment of parameter values for a given iteration is based on previously measured performance. In recent research, time series prediction has been proposed as a method of projecting the probabilities to use for parameter value selection. In this work, we examine the suitability of a variety of prediction methods for the projection of future parameter performance based on previous data. All considered prediction methods have assumptions the time series data has to conform to for the prediction method to provide accurate projections. Looking specifically at parameters of evolutionary algorithms (EAs), we find that all standard EA parameters with the exception of population size conform largely to the assumptions made by the considered prediction methods. Evaluating the performance of these prediction methods, we find that linear regression provides the best results by a very small and statistically insignificant margin. Regardless of the prediction method, predictive parameter control outperforms state of the art parameter control methods when the performance data adheres to the assumptions made by the prediction method. When a parameter's performance data does not adhere to the assumptions made by the forecasting method, the use of prediction does not have a notable adverse impact on the algorithm's performance.

  4. Linear parameter varying representations for nonlinear control design

    NASA Astrophysics Data System (ADS)

    Carter, Lance Huntington

    Linear parameter varying (LPV) systems are investigated as a framework for gain-scheduled control design and optimal hybrid control. An LPV system is defined as a linear system whose dynamics depend upon an a priori unknown but measurable exogenous parameter. A gain-scheduled autopilot design is presented for a bank-to-turn (BTT) missile. The method is novel in that the gain-scheduled design does not involve linearizations about operating points. Instead, the missile dynamics are brought to LPV form via a state transformation. This idea is applied to the design of a coupled longitudinal/lateral BTT missile autopilot. The pitch and yaw/roll dynamics are separately transformed to LPV form, where the cross axis states are treated as "exogenous" parameters. These are actually endogenous variables, so such a plant is called "quasi-LPV." Once in quasi-LPV form, a family of robust controllers using mu synthesis is designed for both the pitch and yaw/roll channels, using angle-of-attack and roll rate as the scheduling variables. The closed-loop time response is simulated using the original nonlinear model and also using perturbed aerodynamic coefficients. Modeling and control of engine idle speed is investigated using LPV methods. It is shown how generalized discrete nonlinear systems may be transformed into quasi-LPV form. A discrete nonlinear engine model is developed and expressed in quasi-LPV form with engine speed as the scheduling variable. An example control design is presented using linear quadratic methods. Simulations are shown comparing the LPV based controller performance to that using PID control. LPV representations are also shown to provide a setting for hybrid systems. A hybrid system is characterized by control inputs consisting of both analog signals and discrete actions. A solution is derived for the optimal control of hybrid systems with generalized cost functions. This is shown to be computationally intensive, so a suboptimal strategy is proposed that

  5. Impact of dissolved oxygen concentration on some key parameters and production of rhG-CSF in batch fermentation.

    PubMed

    Krishna Rao, Dasari V; Ramu, Chatadi T; Rao, Joginapally V; Narasu, Mangamoori L; Bhujanga Rao, Adibhatla Kali S

    2008-09-01

    The impact of different levels of agitation speed, carbondioxide and dissolved oxygen concentration on the key parameters and production of rhG-CSF in Escherichia coli BL21(DE3)PLysS were studied. Lower carbondioxide concentrations as well as higher agitation speeds and dissolved oxygen concentrations led to reduction in the acetate concentrations, and enhanced the cell growth, but inhibited plasmid stability and rhG-CSF expression. Similarly, higher carbondioxide concentrations and lower agitation speeds as well as dissolved oxygen concentrations led to enhanced acetate concentrations, but inhibited the cell growth and protein expression. To address the bottlenecks, a two-stage agitation control strategy (strategy-1) and two-stage dissolved oxygen control strategy (strategy-2) were employed to establish the physiological and metabolic conditions, so as to improve the expression of rhG-CSF. By adopting strategy-1 the yields were improved 1.4-fold over constant speed of 550 rpm, 1.1-fold over constant dissolved oxygen of 45%, respectively. Similarly, using strategy-2 the yields were improved 1.6-fold over constant speed of 550 rpm, 1.3-fold over constant dissolved oxygen of 45%, respectively.

  6. Modern control concepts in hydrology. [parameter identification in adaptive stochastic control approach

    NASA Technical Reports Server (NTRS)

    Duong, N.; Winn, C. B.; Johnson, G. R.

    1975-01-01

    Two approaches to an identification problem in hydrology are presented, based upon concepts from modern control and estimation theory. The first approach treats the identification of unknown parameters in a hydrologic system subject to noisy inputs as an adaptive linear stochastic control problem; the second approach alters the model equation to account for the random part in the inputs, and then uses a nonlinear estimation scheme to estimate the unknown parameters. Both approaches use state-space concepts. The identification schemes are sequential and adaptive and can handle either time-invariant or time-dependent parameters. They are used to identify parameters in the Prasad model of rainfall-runoff. The results obtained are encouraging and confirm the results from two previous studies; the first using numerical integration of the model equation along with a trial-and-error procedure, and the second using a quasi-linearization technique. The proposed approaches offer a systematic way of analyzing the rainfall-runoff process when the input data are imbedded in noise.

  7. Control of Groundwater Remediation Process as Distributed Parameter System

    NASA Astrophysics Data System (ADS)

    Mendel, M.; Kovács, T.; Hulkó, G.

    2014-12-01

    Pollution of groundwater requires the implementation of appropriate solutions which can be deployed for several years. The case of local groundwater contamination and its subsequent spread may result in contamination of drinking water sources or other disasters. This publication aims to design and demonstrate control of pumping wells for a model task of groundwater remediation. The task consists of appropriately spaced soil with input parameters, pumping wells and control system. Model of controlled system is made in the program MODFLOW using the finitedifference method as distributed parameter system. Control problem is solved by DPS Blockset for MATLAB & Simulink.

  8. An Anaylsis of Control Requirements and Control Parameters for Direct-Coupled Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Novik, David; Otto, Edward W.

    1947-01-01

    Requirements of an automatic engine control, as affected by engine characteristics, have been analyzed for a direct-coupled turbojet engine. Control parameters for various conditions of engine operation are discussed. A hypothetical engine control is presented to illustrate the use of these parameters. An adjustable speed governor was found to offer a desirable method of over-all engine control. The selection of a minimum value of fuel flow was found to offer a means of preventing unstable burner operation during steady-state operation. Until satisfactory high-temperature-measuring devices are developed, air-fuel ratio is considered to be a satisfactory acceleration-control parameter for the attainment of the maximum acceleration rates consistent with safe turbine temperatures. No danger of unstable burner operation exists during acceleration if a temperature-limiting acceleration control is assumed to be effective. Deceleration was found to be accompanied by the possibility of burner blow-out even if a minimum fuel-flow control that prevents burner blow-out during steady-state operation is assumed to be effective. Burner blow-out during deceleration may be eliminated by varying the value of minimum fuel flow as a function of compressor-discharge pressure, but in no case should the fuel flow be allowed to fall below the value required for steady-state burner operation.

  9. Effect of cinnamon on glucose control and lipid parameters.

    PubMed

    Baker, William L; Gutierrez-Williams, Gabriela; White, C Michael; Kluger, Jeffrey; Coleman, Craig I

    2008-01-01

    To perform a meta-analysis of randomized controlled trials of cinnamon to better characterize its impact on glucose and plasma lipids. A systematic literature search through July 2007 was conducted to identify randomized placebo-controlled trials of cinnamon that reported data on A1C, fasting blood glucose (FBG), or lipid parameters. The mean change in each study end point from baseline was treated as a continuous variable, and the weighted mean difference was calculated as the difference between the mean value in the treatment and control groups. A random-effects model was used. Five prospective randomized controlled trials (n = 282) were identified. Upon meta-analysis, the use of cinnamon did not significantly alter A1C, FBG, or lipid parameters. Subgroup and sensitivity analyses did not significantly change the results. Cinnamon does not appear to improve A1C, FBG, or lipid parameters in patients with type 1 or type 2 diabetes.

  10. Device-independent secret-key-rate analysis for quantum repeaters

    NASA Astrophysics Data System (ADS)

    Holz, Timo; Kampermann, Hermann; Bruß, Dagmar

    2018-01-01

    The device-independent approach to quantum key distribution (QKD) aims to establish a secret key between two or more parties with untrusted devices, potentially under full control of a quantum adversary. The performance of a QKD protocol can be quantified by the secret key rate, which can be lower bounded via the violation of an appropriate Bell inequality in a setup with untrusted devices. We study secret key rates in the device-independent scenario for different quantum repeater setups and compare them to their device-dependent analogon. The quantum repeater setups under consideration are the original protocol by Briegel et al. [Phys. Rev. Lett. 81, 5932 (1998), 10.1103/PhysRevLett.81.5932] and the hybrid quantum repeater protocol by van Loock et al. [Phys. Rev. Lett. 96, 240501 (2006), 10.1103/PhysRevLett.96.240501]. For a given repeater scheme and a given QKD protocol, the secret key rate depends on a variety of parameters, such as the gate quality or the detector efficiency. We systematically analyze the impact of these parameters and suggest optimized strategies.

  11. Quantifying Key Climate Parameter Uncertainties Using an Earth System Model with a Dynamic 3D Ocean

    NASA Astrophysics Data System (ADS)

    Olson, R.; Sriver, R. L.; Goes, M. P.; Urban, N.; Matthews, D.; Haran, M.; Keller, K.

    2011-12-01

    Climate projections hinge critically on uncertain climate model parameters such as climate sensitivity, vertical ocean diffusivity and anthropogenic sulfate aerosol forcings. Climate sensitivity is defined as the equilibrium global mean temperature response to a doubling of atmospheric CO2 concentrations. Vertical ocean diffusivity parameterizes sub-grid scale ocean vertical mixing processes. These parameters are typically estimated using Intermediate Complexity Earth System Models (EMICs) that lack a full 3D representation of the oceans, thereby neglecting the effects of mixing on ocean dynamics and meridional overturning. We improve on these studies by employing an EMIC with a dynamic 3D ocean model to estimate these parameters. We carry out historical climate simulations with the University of Victoria Earth System Climate Model (UVic ESCM) varying parameters that affect climate sensitivity, vertical ocean mixing, and effects of anthropogenic sulfate aerosols. We use a Bayesian approach whereby the likelihood of each parameter combination depends on how well the model simulates surface air temperature and upper ocean heat content. We use a Gaussian process emulator to interpolate the model output to an arbitrary parameter setting. We use Markov Chain Monte Carlo method to estimate the posterior probability distribution function (pdf) of these parameters. We explore the sensitivity of the results to prior assumptions about the parameters. In addition, we estimate the relative skill of different observations to constrain the parameters. We quantify the uncertainty in parameter estimates stemming from climate variability, model and observational errors. We explore the sensitivity of key decision-relevant climate projections to these parameters. We find that climate sensitivity and vertical ocean diffusivity estimates are consistent with previously published results. The climate sensitivity pdf is strongly affected by the prior assumptions, and by the scaling

  12. Cavity parameters identification for TESLA control system development

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Pozniak, Krysztof T.; Romaniuk, Ryszard S.; Simrock, Stefan

    2005-08-01

    Aim of the control system development for TESLA cavity is a more efficient stabilization of the pulsed, accelerating EM field inside resonator. Cavity parameters identification is an essential task for the comprehensive control algorithm. TESLA cavity simulator has been successfully implemented using high-speed FPGA technology. Electromechanical model of the cavity resonator includes Lorentz force detuning and beam loading. The parameters identification is based on the electrical model of the cavity. The model is represented by state space equation for envelope of the cavity voltage driven by current generator and beam loading. For a given model structure, the over-determined matrix equation is created covering long enough measurement range with the solution according to the least-squares method. A low-degree polynomial approximation is applied to estimate the time-varying cavity detuning during the pulse. The measurement channel distortion is considered, leading to the external cavity model seen by the controller. The comprehensive algorithm of the cavity parameters identification was implemented in the Matlab system with different modes of operation. Some experimental results were presented for different cavity operational conditions. The following considerations have lead to the synthesis of the efficient algorithm for the cavity control system predicted for the potential FPGA technology implementation.

  13. Orbit control of a stratospheric satellite with parameter uncertainties

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Huo, Wei

    2016-12-01

    When a stratospheric satellite travels by prevailing winds in the stratosphere, its cross-track displacement needs to be controlled to keep a constant latitude orbital flight. To design the orbit control system, a 6 degree-of-freedom (DOF) model of the satellite is established based on the second Lagrangian formulation, it is proven that the input/output feedback linearization theory cannot be directly implemented for the orbit control with this model, thus three subsystem models are deduced from the 6-DOF model to develop a sequential nonlinear control strategy. The control strategy includes an adaptive controller for the balloon-tether subsystem with uncertain balloon parameters, a PD controller based on feedback linearization for the tether-sail subsystem, and a sliding mode controller for the sail-rudder subsystem with uncertain sail parameters. Simulation studies demonstrate that the proposed control strategy is robust to uncertainties and satisfies high precision requirements for the orbit flight of the satellite.

  14. Investigating the Martian Ionospheric Conductivity Using MAVEN Key Parameter Data

    NASA Astrophysics Data System (ADS)

    Aleryani, O.; Raftery, C. L.; Fillingim, M. O.; Fogle, A. L.; Dunn, P.; McFadden, J. P.; Connerney, J. E. P.; Mahaffy, P. R.; Ergun, R. E.; Andersson, L.

    2015-12-01

    Since the Viking orbiters and landers in 1976, the Martian atmospheric composition has scarcely been investigated. New data from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, launched in 2013, allows for a thorough study of the electrically conductive nature of the Martian ionosphere. Determinations of the electrical conductivity will be made using in-situ atmospheric and ionospheric measurements, rather than scientific models for the first time. The objective of this project is to calculate the conductivity of the Martian atmosphere, whenever possible, throughout the trajectory of the MAVEN spacecraft. MAVEN instrumentation used includes the Neutral Gas and Ion Mass Spectrometer (NGIMS) for neutral species density, the Suprathermal and Thermal Ion Compositions (STATIC) for ion composition, temperature and density, the Magnetometer (MAG) for the magnetic field strength and the Langmuir Probe and Waves (LPW) for electron temperature and density. MAVEN key parameter data are used for these calculations. We compare our results with previous, model-based estimates of the conductivity. These results will allow us to quantify the flow of atmospheric electric currents which can be analyzed further for a deeper understanding of the Martian ionospheric electrodynamics, bringing us closer to understanding the mystery of the loss of the Martian atmosphere.

  15. Advanced rotorcraft control using parameter optimization

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1991-01-01

    A reliable algorithm for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters is presented. The algorithm is part of a design algorithm for an optimal linear dynamic output feedback controller that minimizes a finite time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed loop eigensystem. This approach through the use of a accurate Pade series approximation does not require the closed loop system matrix to be diagonalizable. The algorithm has been included in a control design package for optimal robust low order controllers. Usefulness of the proposed numerical algorithm has been demonstrated using numerous practical design cases where degeneracies occur frequently in the closed loop system under an arbitrary controller design initialization and during the numerical search.

  16. Longitudinal control of aircraft dynamics based on optimization of PID parameters

    NASA Astrophysics Data System (ADS)

    Deepa, S. N.; Sudha, G.

    2016-03-01

    Recent years many flight control systems and industries are employing PID controllers to improve the dynamic behavior of the characteristics. In this paper, PID controller is developed to improve the stability and performance of general aviation aircraft system. Designing the optimum PID controller parameters for a pitch control aircraft is important in expanding the flight safety envelope. Mathematical model is developed to describe the longitudinal pitch control of an aircraft. The PID controller is designed based on the dynamic modeling of an aircraft system. Different tuning methods namely Zeigler-Nichols method (ZN), Modified Zeigler-Nichols method, Tyreus-Luyben tuning, Astrom-Hagglund tuning methods are employed. The time domain specifications of different tuning methods are compared to obtain the optimum parameters value. The results prove that PID controller tuned by Zeigler-Nichols for aircraft pitch control dynamics is better in stability and performance in all conditions. Future research work of obtaining optimum PID controller parameters using artificial intelligence techniques should be carried out.

  17. On Complete Control and Synchronization of Zhang Chaotic System with Uncertain Parameters using Adaptive Control Method

    NASA Astrophysics Data System (ADS)

    Tirandaz, Hamed

    2018-03-01

    Chaos control and synchronization of chaotic systems is seemingly a challenging problem and has got a lot of attention in recent years due to its numerous applications in science and industry. This paper concentrates on the control and synchronization problem of the three-dimensional (3D) Zhang chaotic system. At first, an adaptive control law and a parameter estimation law are achieved for controlling the behavior of the Zhang chaotic system. Then, non-identical synchronization of Zhang chaotic system is provided with considering the Lü chaotic system as the follower system. The synchronization problem and parameters identification are achieved by introducing an adaptive control law and a parameters estimation law. Stability analysis of the proposed method is proved by the Lyapanov stability theorem. In addition, the convergence of the estimated parameters to their truly unknown values are evaluated. Finally, some numerical simulations are carried out to illustrate and to validate the effectiveness of the suggested method.

  18. On Using Exponential Parameter Estimators with an Adaptive Controller

    NASA Technical Reports Server (NTRS)

    Patre, Parag; Joshi, Suresh M.

    2011-01-01

    Typical adaptive controllers are restricted to using a specific update law to generate parameter estimates. This paper investigates the possibility of using any exponential parameter estimator with an adaptive controller such that the system tracks a desired trajectory. The goal is to provide flexibility in choosing any update law suitable for a given application. The development relies on a previously developed concept of controller/update law modularity in the adaptive control literature, and the use of a converse Lyapunov-like theorem. Stability analysis is presented to derive gain conditions under which this is possible, and inferences are made about the tracking error performance. The development is based on a class of Euler-Lagrange systems that are used to model various engineering systems including space robots and manipulators.

  19. Gait parameter control timing with dynamic manual contact or visual cues.

    PubMed

    Rabin, Ely; Shi, Peter; Werner, William

    2016-06-01

    We investigated the timing of gait parameter changes (stride length, peak toe velocity, and double-, single-support, and complete step duration) to control gait speed. Eleven healthy participants adjusted their gait speed on a treadmill to maintain a constant distance between them and a fore-aft oscillating cue (a place on a conveyor belt surface). The experimental design balanced conditions of cue modality (vision: eyes-open; manual contact: eyes-closed while touching the cue); treadmill speed (0.2, 0.4, 0.85, and 1.3 m/s); and cue motion (none, ±10 cm at 0.09, 0.11, and 0.18 Hz). Correlation analyses revealed a number of temporal relationships between gait parameters and cue speed. The results suggest that neural control ranged from feedforward to feedback. Specifically, step length preceded cue velocity during double-support duration suggesting anticipatory control. Peak toe velocity nearly coincided with its most-correlated cue velocity during single-support duration. The toe-off concluding step and double-support durations followed their most-correlated cue velocity, suggesting feedback control. Cue-tracking accuracy and cue velocity correlations with timing parameters were higher with the manual contact cue than visual cue. The cue/gait timing relationships generalized across cue modalities, albeit with greater delays of step-cycle events relative to manual contact cue velocity. We conclude that individual kinematic parameters of gait are controlled to achieve a desired velocity at different specific times during the gait cycle. The overall timing pattern of instantaneous cue velocities associated with different gait parameters is conserved across cues that afford different performance accuracies. This timing pattern may be temporally shifted to optimize control. Different cue/gait parameter latencies in our nonadaptation paradigm provide general-case evidence of the independent control of gait parameters previously demonstrated in gait adaptation paradigms

  20. Gait parameter control timing with dynamic manual contact or visual cues

    PubMed Central

    Shi, Peter; Werner, William

    2016-01-01

    We investigated the timing of gait parameter changes (stride length, peak toe velocity, and double-, single-support, and complete step duration) to control gait speed. Eleven healthy participants adjusted their gait speed on a treadmill to maintain a constant distance between them and a fore-aft oscillating cue (a place on a conveyor belt surface). The experimental design balanced conditions of cue modality (vision: eyes-open; manual contact: eyes-closed while touching the cue); treadmill speed (0.2, 0.4, 0.85, and 1.3 m/s); and cue motion (none, ±10 cm at 0.09, 0.11, and 0.18 Hz). Correlation analyses revealed a number of temporal relationships between gait parameters and cue speed. The results suggest that neural control ranged from feedforward to feedback. Specifically, step length preceded cue velocity during double-support duration suggesting anticipatory control. Peak toe velocity nearly coincided with its most-correlated cue velocity during single-support duration. The toe-off concluding step and double-support durations followed their most-correlated cue velocity, suggesting feedback control. Cue-tracking accuracy and cue velocity correlations with timing parameters were higher with the manual contact cue than visual cue. The cue/gait timing relationships generalized across cue modalities, albeit with greater delays of step-cycle events relative to manual contact cue velocity. We conclude that individual kinematic parameters of gait are controlled to achieve a desired velocity at different specific times during the gait cycle. The overall timing pattern of instantaneous cue velocities associated with different gait parameters is conserved across cues that afford different performance accuracies. This timing pattern may be temporally shifted to optimize control. Different cue/gait parameter latencies in our nonadaptation paradigm provide general-case evidence of the independent control of gait parameters previously demonstrated in gait adaptation paradigms

  1. Nonlinear adaptive control system design with asymptotically stable parameter estimation error

    NASA Astrophysics Data System (ADS)

    Mishkov, Rumen; Darmonski, Stanislav

    2018-01-01

    The paper presents a new general method for nonlinear adaptive system design with asymptotic stability of the parameter estimation error. The advantages of the approach include asymptotic unknown parameter estimation without persistent excitation and capability to directly control the estimates transient response time. The method proposed modifies the basic parameter estimation dynamics designed via a known nonlinear adaptive control approach. The modification is based on the generalised prediction error, a priori constraints with a hierarchical parameter projection algorithm, and the stable data accumulation concepts. The data accumulation principle is the main tool for achieving asymptotic unknown parameter estimation. It relies on the parametric identifiability system property introduced. Necessary and sufficient conditions for exponential stability of the data accumulation dynamics are derived. The approach is applied in a nonlinear adaptive speed tracking vector control of a three-phase induction motor.

  2. A no-key-exchange secure image sharing scheme based on Shamir's three-pass cryptography protocol and the multiple-parameter fractional Fourier transform.

    PubMed

    Lang, Jun

    2012-01-30

    In this paper, we propose a novel secure image sharing scheme based on Shamir's three-pass protocol and the multiple-parameter fractional Fourier transform (MPFRFT), which can safely exchange information with no advance distribution of either secret keys or public keys between users. The image is encrypted directly by the MPFRFT spectrum without the use of phase keys, and information can be shared by transmitting the encrypted image (or message) three times between users. Numerical simulation results are given to verify the performance of the proposed algorithm.

  3. NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Marks, Virginia B. (Compiler); Keckler, Claude R. (Compiler)

    1994-01-01

    Although significant advances have been made in modeling and controlling flexible systems, there remains a need for improvements in model accuracy and in control performance. The finite element models of flexible systems are unduly complex and are almost intractable to optimum parameter estimation for refinement using experimental data. Distributed parameter or continuum modeling offers some advantages and some challenges in both modeling and control. Continuum models often result in a significantly reduced number of model parameters, thereby enabling optimum parameter estimation. The dynamic equations of motion of continuum models provide the advantage of allowing the embedding of the control system dynamics, thus forming a complete set of system dynamics. There is also increased insight provided by the continuum model approach.

  4. Dynamic parameter identification of robot arms with servo-controlled electrical motors

    NASA Astrophysics Data System (ADS)

    Jiang, Zhao-Hui; Senda, Hiroshi

    2005-12-01

    This paper addresses the issue of dynamic parameter identification of the robot manipulator with servo-controlled electrical motors. An assumption is made that all kinematical parameters, such as link lengths, are known, and only dynamic parameters containing mass, moment of inertia, and their functions need to be identified. First, we derive dynamics of the robot arm with a linear form of the unknown dynamic parameters by taking dynamic characteristics of the motor and servo unit into consideration. Then, we implement the parameter identification approach to identify the unknown parameters with respect to individual link separately. A pseudo-inverse matrix is used for formulation of the parameter identification. The optimal solution is guaranteed in a sense of least-squares of the mean errors. A Direct Drive (DD) SCARA type industrial robot arm AdeptOne is used as an application example of the parameter identification. Simulations and experiments for both open loop and close loop controls are carried out. Comparison of the results confirms the correctness and usefulness of the parameter identification and the derived dynamic model.

  5. Factorization and reduction methods for optimal control of distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Burns, J. A.; Powers, R. K.

    1985-01-01

    A Chandrasekhar-type factorization method is applied to the linear-quadratic optimal control problem for distributed parameter systems. An aeroelastic control problem is used as a model example to demonstrate that if computationally efficient algorithms, such as those of Chandrasekhar-type, are combined with the special structure often available to a particular problem, then an abstract approximation theory developed for distributed parameter control theory becomes a viable method of solution. A numerical scheme based on averaging approximations is applied to hereditary control problems. Numerical examples are given.

  6. Exploring the Parameters Controlling the Crystallinity-Conductivity Correlation of PFSA Ionomers

    NASA Astrophysics Data System (ADS)

    Kusoglu, Ahmet; Shi, Shouwen; Weber, Adam

    Perfluorosulfonic-acid (PFSA) ionomers are the most commonly used solid-electrolyte in electrochemical energy devices because of their remarkable conductivity and chemical/mechanical stability, with the latter imparted by their semi-crystalline fluorocarbon backbone. PFSAs owe this unique combination of transport/stability functionalities to their phase-separated morphology of conductive hydrophilic ionic domains and the non-conductive hydrophobic backbone, which are connected via pendant chains. Thus, phase-separation is governed by fractions of backbone and ionic groups, which is controlled by the equivalent weight (EW). Therefore, EW, along with the pendant chain chemistry, directly impact the conductive vs non-conductive regions, and consequently the interrelation between transport and stability. Driven by the need to achieve higher conductivities without disrupting the crystallinity, various pendant-chain chemistries have been developed. In this talk, we will report the results of a systematic investigation on hydration, conductivity, mechanical properties and crystallinity of various types and EWs of PFSA ionomers to (i) develop a structure/property map, and (ii) identify the key parameters controlling morphology and properties. It will be discussed how the pendant-chain and backbone lengths affect the conductivity and crystallinity, respectively. Lastly, the data set will be analyzed to explore universal structure/property relationships for PFSAs.

  7. Effect of varying two key parameters in simulating evacuation for a dormitory in China

    NASA Astrophysics Data System (ADS)

    Lei, Wenjun; Li, Angui; Gao, Ran

    2013-01-01

    Student dormitories are both living and resting areas for students in their spare time. There are many small rooms in the dormitories. And the students are distributed densely in the dormitories. High occupant density is the main characteristic of student dormitories. Once there is an accident, such as fire or earthquake, the losses will be cruel. Computer evacuation models developed overseas are commonly applied in working out safety management schemes. The average minimum widths of corridor and exit are the two key parameters affecting the evacuation for the dormitory. The effect of varying these two parameters will be studied in this paper by taking a dormitory in our university as an example. Evacuation performance is predicted with the software FDS + Evac. The default values in the software are used and adjusted through a field survey. The effect of varying either of the two parameters is discussed. It is found that the simulated results agree well with the experimental results. From our study it seems that the evacuation time is not in proportion to the evacuation distance. And we also named a phenomenon of “the closer is not the faster”. For the building researched in this article, a corridor width of 3 m is the most appropriate. And the suitable exit width of the dormitory for evacuation is about 2.5 to 3 m. The number of people has great influence on the walking speed of people. The purpose of this study is to optimize the building, and to make the building in favor of personnel evacuation. Then the damage could be minimized.

  8. 3-D simulations of M9 earthquakes on the Cascadia Megathrust: Key parameters and uncertainty

    USGS Publications Warehouse

    Wirth, Erin; Frankel, Arthur; Vidale, John; Marafi, Nasser A.; Stephenson, William J.

    2017-01-01

    Geologic and historical records indicate that the Cascadia subduction zone is capable of generating large, megathrust earthquakes up to magnitude 9. The last great Cascadia earthquake occurred in 1700, and thus there is no direct measure on the intensity of ground shaking or specific rupture parameters from seismic recordings. We use 3-D numerical simulations to generate broadband (0-10 Hz) synthetic seismograms for 50 M9 rupture scenarios on the Cascadia megathrust. Slip consists of multiple high-stress drop subevents (~M8) with short rise times on the deeper portion of the fault, superimposed on a background slip distribution with longer rise times. We find a >4x variation in the intensity of ground shaking depending upon several key parameters, including the down-dip limit of rupture, the slip distribution and location of strong-motion-generating subevents, and the hypocenter location. We find that extending the down-dip limit of rupture to the top of the non-volcanic tremor zone results in a ~2-3x increase in peak ground acceleration for the inland city of Seattle, Washington, compared to a completely offshore rupture. However, our simulations show that allowing the rupture to extend to the up-dip limit of tremor (i.e., the deepest rupture extent in the National Seismic Hazard Maps), even when tapering the slip to zero at the down-dip edge, results in multiple areas of coseismic coastal uplift. This is inconsistent with coastal geologic evidence (e.g., buried soils, submerged forests), which suggests predominantly coastal subsidence for the 1700 earthquake and previous events. Defining the down-dip limit of rupture as the 1 cm/yr locking contour (i.e., mostly offshore) results in primarily coseismic subsidence at coastal sites. We also find that the presence of deep subevents can produce along-strike variations in subsidence and ground shaking along the coast. Our results demonstrate the wide range of possible ground motions from an M9 megathrust earthquake in

  9. At-line monitoring of key parameters of nisin fermentation by near infrared spectroscopy, chemometric modeling and model improvement.

    PubMed

    Guo, Wei-Liang; Du, Yi-Ping; Zhou, Yong-Can; Yang, Shuang; Lu, Jia-Hui; Zhao, Hong-Yu; Wang, Yao; Teng, Li-Rong

    2012-03-01

    An analytical procedure has been developed for at-line (fast off-line) monitoring of 4 key parameters including nisin titer (NT), the concentration of reducing sugars, cell concentration and pH during a nisin fermentation process. This procedure is based on near infrared (NIR) spectroscopy and Partial Least Squares (PLS). Samples without any preprocessing were collected at intervals of 1 h during fifteen batch of fermentations. These fermentation processes were implemented in 3 different 5 l fermentors at various conditions. NIR spectra of the samples were collected in 10 min. And then, PLS was used for modeling the relationship between NIR spectra and the key parameters which were determined by reference methods. Monte Carlo Partial Least Squares (MCPLS) was applied to identify the outliers and select the most efficacious methods for preprocessing spectra, wavelengths and the suitable number of latent variables (n (LV)). Then, the optimum models for determining NT, concentration of reducing sugars, cell concentration and pH were established. The correlation coefficients of calibration set (R (c)) were 0.8255, 0.9000, 0.9883 and 0.9581, respectively. These results demonstrated that this method can be successfully applied to at-line monitor of NT, concentration of reducing sugars, cell concentration and pH during nisin fermentation processes.

  10. Estimation of Saxophone Control Parameters by Convex Optimization.

    PubMed

    Wang, Cheng-I; Smyth, Tamara; Lipton, Zachary C

    2014-12-01

    In this work, an approach to jointly estimating the tone hole configuration (fingering) and reed model parameters of a saxophone is presented. The problem isn't one of merely estimating pitch as one applied fingering can be used to produce several different pitches by bugling or overblowing. Nor can a fingering be estimated solely by the spectral envelope of the produced sound (as it might for estimation of vocal tract shape in speech) since one fingering can produce markedly different spectral envelopes depending on the player's embouchure and control of the reed. The problem is therefore addressed by jointly estimating both the reed (source) parameters and the fingering (filter) of a saxophone model using convex optimization and 1) a bank of filter frequency responses derived from measurement of the saxophone configured with all possible fingerings and 2) sample recordings of notes produced using all possible fingerings, played with different overblowing, dynamics and timbre. The saxophone model couples one of several possible frequency response pairs (corresponding to the applied fingering), and a quasi-static reed model generating input pressure at the mouthpiece, with control parameters being blowing pressure and reed stiffness. Applied fingering and reed parameters are estimated for a given recording by formalizing a minimization problem, where the cost function is the error between the recording and the synthesized sound produced by the model having incremental parameter values for blowing pressure and reed stiffness. The minimization problem is nonlinear and not differentiable and is made solvable using convex optimization. The performance of the fingering identification is evaluated with better accuracy than previous reported value.

  11. A new ball launching system with controlled flight parameters for catching experiments.

    PubMed

    d'Avella, A; Cesqui, B; Portone, A; Lacquaniti, F

    2011-03-30

    Systematic investigations of sensorimotor control of interceptive actions in naturalistic conditions, such as catching or hitting a ball moving in three-dimensional space, requires precise control of the projectile flight parameters and of the associated visual stimuli. Such control is challenging when air drag cannot be neglected because the mapping of launch parameters into flight parameters cannot be computed analytically. We designed, calibrated, and experimentally validated an actuated launching apparatus that can control the average spatial position and flight duration of a ball at a given distance from a fixed launch location. The apparatus was constructed by mounting a ball launching machine with adjustable delivery speed on an actuated structure capable of changing the spatial orientation of the launch axis while projecting balls through a hole in a screen hiding the apparatus. The calibration procedure relied on tracking the balls with a motion capture system and on approximating the mapping of launch parameters into flight parameters by means of polynomials functions. Polynomials were also used to estimate the variability of the flight parameters. The coefficients of these polynomials were obtained using the launch and flight parameters of 660 launches with 65 different initial conditions. The relative accuracy and precision of the apparatus were larger than 98% for flight times and larger than 96% for ball heights at a distance of 6m from the screen. Such novel apparatus, by reliably and automatically controlling desired ball flight characteristics without neglecting air drag, allows for a systematic investigation of naturalistic interceptive tasks. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Changing Throwing Pattern: Instruction and Control Parameter

    ERIC Educational Resources Information Center

    Southard, Dan

    2006-01-01

    The purpose of this study was to determine the effects of instruction and scaling up a control parameter (velocity of throw) on changes in throwing pattern. Sixty adult female throwers (ages 20-26 years) were randomly placed into one of four practice conditions: (a) scale up on velocity with no instruction, (b) maintain constant velocity with no…

  13. Estimation of key parameters in adaptive neuron model according to firing patterns based on improved particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Yuan, Chunhua; Wang, Jiang; Yi, Guosheng

    2017-03-01

    Estimation of ion channel parameters is crucial to spike initiation of neurons. The biophysical neuron models have numerous ion channel parameters, but only a few of them play key roles in the firing patterns of the models. So we choose three parameters featuring the adaptation in the Ermentrout neuron model to be estimated. However, the traditional particle swarm optimization (PSO) algorithm is still easy to fall into local optimum and has the premature convergence phenomenon in the study of some problems. In this paper, we propose an improved method that uses a concave function and dynamic logistic chaotic mapping mixed to adjust the inertia weights of the fitness value, effectively improve the global convergence ability of the algorithm. The perfect predicting firing trajectories of the rebuilt model using the estimated parameters prove that only estimating a few important ion channel parameters can establish the model well and the proposed algorithm is effective. Estimations using two classic PSO algorithms are also compared to the improved PSO to verify that the algorithm proposed in this paper can avoid local optimum and quickly converge to the optimal value. The results provide important theoretical foundations for building biologically realistic neuron models.

  14. Robust linear parameter-varying control of blood pressure using vasoactive drugs

    NASA Astrophysics Data System (ADS)

    Luspay, Tamas; Grigoriadis, Karolos

    2015-10-01

    Resuscitation of emergency care patients requires fast restoration of blood pressure to a target value to achieve hemodynamic stability and vital organ perfusion. A robust control design methodology is presented in this paper for regulating the blood pressure of hypotensive patients by means of the closed-loop administration of vasoactive drugs. To this end, a dynamic first-order delay model is utilised to describe the vasoactive drug response with varying parameters that represent intra-patient and inter-patient variability. The proposed framework consists of two components: first, an online model parameter estimation is carried out using a multiple-model extended Kalman-filter. Second, the estimated model parameters are used for continuously scheduling a robust linear parameter-varying (LPV) controller. The closed-loop behaviour is characterised by parameter-varying dynamic weights designed to regulate the mean arterial pressure to a target value. Experimental data of blood pressure response of anesthetised pigs to phenylephrine injection are used for validating the LPV blood pressure models. Simulation studies are provided to validate the online model estimation and the LPV blood pressure control using phenylephrine drug injection models representing patients showing sensitive, nominal and insensitive response to the drug.

  15. An extended harmonic balance method based on incremental nonlinear control parameters

    NASA Astrophysics Data System (ADS)

    Khodaparast, Hamed Haddad; Madinei, Hadi; Friswell, Michael I.; Adhikari, Sondipon; Coggon, Simon; Cooper, Jonathan E.

    2017-02-01

    A new formulation for calculating the steady-state responses of multiple-degree-of-freedom (MDOF) non-linear dynamic systems due to harmonic excitation is developed. This is aimed at solving multi-dimensional nonlinear systems using linear equations. Nonlinearity is parameterised by a set of 'non-linear control parameters' such that the dynamic system is effectively linear for zero values of these parameters and nonlinearity increases with increasing values of these parameters. Two sets of linear equations which are formed from a first-order truncated Taylor series expansion are developed. The first set of linear equations provides the summation of sensitivities of linear system responses with respect to non-linear control parameters and the second set are recursive equations that use the previous responses to update the sensitivities. The obtained sensitivities of steady-state responses are then used to calculate the steady state responses of non-linear dynamic systems in an iterative process. The application and verification of the method are illustrated using a non-linear Micro-Electro-Mechanical System (MEMS) subject to a base harmonic excitation. The non-linear control parameters in these examples are the DC voltages that are applied to the electrodes of the MEMS devices.

  16. Key Parameters Evaluation for Hip Prosthesis with Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Guo, Hongqiang; Li, Dichen; Lian, Qin; Li, Xiang; Jin, Zhongmin

    2007-09-01

    Stem length and cross section are two key parameters that influence the stability and longevity of metallic hip prosthesis in the total hip arthroplasty (THA). In order to assess their influence to the stress and fatigue behavior of hip prosthesis, a series model of hip prosthesis with round-shaped or drum-shaped cross section, and with different stem lengths were created. These models were analyzed under both static and dynamic loading conditions with finite element analysis, and dynamic loading represents normal walking was used in the dynamic analysis. The stress on the metallic stem, cement, and adjacent bone were got, micromotion on the cement-metal interface were got too. Safety factors for fatigue life of the hip prothesis were calculated based on data obtained from dynamic analysis. Static analysis shows that drum-shaped cross section can decrease the displacement of the stem, that stress on drum-shaped stem focus on the corner of the femoral neck and the distal part of hip prosthesis, whereas the stress on the round-shaped stem distributes evenly over most part of the stem, and maximum stress on stem prosthesis fluctuates with stem length bottoming out at stem length range from 80 mm to 110 mm, that drum-shaped stems with drum height 8 mm generate more stress at the distal part of stem than drum-shaped stems with drum height 10 mm and round stems do. Dynamic and fatigue analysis shows that drum-shaped stem with drum height 10 mm and stem length 90 mm has the greatest safety factor therefore long fatigue life.

  17. What Contributes to Self-Control and Grit?: The Key Factors in College Students

    ERIC Educational Resources Information Center

    Sriram, Rishi; Glanzer, Perry L.; Allen, Cara Cliburn

    2018-01-01

    Although scholars know an increasing amount about the benefits of self-control and grit for college students, they know less about what influences self-control and grit in students. In this study we examined influences on self-control and a key element of grit in a national sample of college students. Results indicated that 5 of the 13 predictor…

  18. Parameter Transient Behavior Analysis on Fault Tolerant Control System

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine (Technical Monitor); Shin, Jong-Yeob

    2003-01-01

    In a fault tolerant control (FTC) system, a parameter varying FTC law is reconfigured based on fault parameters estimated by fault detection and isolation (FDI) modules. FDI modules require some time to detect fault occurrences in aero-vehicle dynamics. This paper illustrates analysis of a FTC system based on estimated fault parameter transient behavior which may include false fault detections during a short time interval. Using Lyapunov function analysis, the upper bound of an induced-L2 norm of the FTC system performance is calculated as a function of a fault detection time and the exponential decay rate of the Lyapunov function.

  19. 3-D Simulation of Earthquakes on the Cascadia Megathrust: Key Parameters and Constraints from Offshore Structure and Seismicity

    NASA Astrophysics Data System (ADS)

    Wirth, E. A.; Frankel, A. D.; Vidale, J. E.; Stone, I.; Nasser, M.; Stephenson, W. J.

    2017-12-01

    The Cascadia subduction zone has a long history of M8 to M9 earthquakes, inferred from coastal subsidence, tsunami records, and submarine landslides. These megathrust earthquakes occur mostly offshore, and an improved characterization of the megathrust is critical for accurate seismic hazard assessment in the Pacific Northwest. We run numerical simulations of 50 magnitude 9 earthquake rupture scenarios on the Cascadia megathrust, using a 3-D velocity model based on geologic constraints and regional seismicity, as well as active and passive source seismic studies. We identify key parameters that control the intensity of ground shaking and resulting seismic hazard. Variations in the down-dip limit of rupture (e.g., extending rupture to the top of the non-volcanic tremor zone, compared to a completely offshore rupture) result in a 2-3x difference in peak ground acceleration (PGA) for the inland city of Seattle, Washington. Comparisons of our simulations to paleoseismic data suggest that rupture extending to the 1 cm/yr locking contour (i.e., mostly offshore) provides the best fit to estimates of coastal subsidence during previous Cascadia earthquakes, but further constraints on the down-dip limit from microseismicity, offshore geodetics, and paleoseismic evidence are needed. Similarly, our simulations demonstrate that coastal communities experience a four-fold increase in PGA depending upon their proximity to strong-motion-generating areas (i.e., high strength asperities) on the deeper portions of the megathrust. An improved understanding of the structure and rheology of the plate interface and accretionary wedge, and better detection of offshore seismicity, may allow us to forecast locations of these asperities during a future Cascadia earthquake. In addition to these parameters, the seismic velocity and attenuation structure offshore also strongly affects the resulting ground shaking. This work outlines the range of plausible ground motions from an M9 Cascadia

  20. Assessing the performance of community-available global MHD models using key system parameters and empirical relationships

    NASA Astrophysics Data System (ADS)

    Gordeev, E.; Sergeev, V.; Honkonen, I.; Kuznetsova, M.; Rastätter, L.; Palmroth, M.; Janhunen, P.; Tóth, G.; Lyon, J.; Wiltberger, M.

    2015-12-01

    Global magnetohydrodynamic (MHD) modeling is a powerful tool in space weather research and predictions. There are several advanced and still developing global MHD (GMHD) models that are publicly available via Community Coordinated Modeling Center's (CCMC) Run on Request system, which allows the users to simulate the magnetospheric response to different solar wind conditions including extraordinary events, like geomagnetic storms. Systematic validation of GMHD models against observations still continues to be a challenge, as well as comparative benchmarking of different models against each other. In this paper we describe and test a new approach in which (i) a set of critical large-scale system parameters is explored/tested, which are produced by (ii) specially designed set of computer runs to simulate realistic statistical distributions of critical solar wind parameters and are compared to (iii) observation-based empirical relationships for these parameters. Being tested in approximately similar conditions (similar inputs, comparable grid resolution, etc.), the four models publicly available at the CCMC predict rather well the absolute values and variations of those key parameters (magnetospheric size, magnetic field, and pressure) which are directly related to the large-scale magnetospheric equilibrium in the outer magnetosphere, for which the MHD is supposed to be a valid approach. At the same time, the models have systematic differences in other parameters, being especially different in predicting the global convection rate, total field-aligned current, and magnetic flux loading into the magnetotail after the north-south interplanetary magnetic field turning. According to validation results, none of the models emerges as an absolute leader. The new approach suggested for the evaluation of the models performance against reality may be used by model users while planning their investigations, as well as by model developers and those interesting to quantitatively

  1. Asymmetry of short-term control of spatio-temporal gait parameters during treadmill walking

    NASA Astrophysics Data System (ADS)

    Kozlowska, Klaudia; Latka, Miroslaw; West, Bruce J.

    2017-03-01

    Optimization of energy cost determines average values of spatio-temporal gait parameters such as step duration, step length or step speed. However, during walking, humans need to adapt these parameters at every step to respond to exogenous and/or endogenic perturbations. While some neurological mechanisms that trigger these responses are known, our understanding of the fundamental principles governing step-by-step adaptation remains elusive. We determined the gait parameters of 20 healthy subjects with right-foot preference during treadmill walking at speeds of 1.1, 1.4 and 1.7 m/s. We found that when the value of the gait parameter was conspicuously greater (smaller) than the mean value, it was either followed immediately by a smaller (greater) value of the contralateral leg (interleg control), or the deviation from the mean value decreased during the next movement of ipsilateral leg (intraleg control). The selection of step duration and the selection of step length during such transient control events were performed in unique ways. We quantified the symmetry of short-term control of gait parameters and observed the significant dominance of the right leg in short-term control of all three parameters at higher speeds (1.4 and 1.7 m/s).

  2. Influence of key processing parameters and seeding density effects of microencapsulated chondrocytes fabricated using electrohydrodynamic spraying.

    PubMed

    Gansau, Jennifer; Kelly, Lara; Buckley, Conor

    2018-06-11

    Cell delivery and leakage during injection remains a challenge for cell-based intervertebral disc regeneration strategies. Cellular microencapsulation may offer a promising approach to overcome these limitations by providing a protective niche during intradiscal injection. Electrohydrodynamic spraying (EHDS) is a versatile one-step approach for microencapsulation of cells using a high voltage electric field. The primary objective of this work was to characterise key processing parameters such as applied voltage (0, 5, 10 or 15kV), emitter needle gauge (21, 26 or 30G), alginate concentration (1, 2 or 3%) and flow rate (50, 100, 250 or 500 µl/min) to regulate the morphology of alginate microcapsules and subsequent cell viability when altering these parameters. The effect of initial cell seeding density (5, 10 and 20x10<sup>6</sup> cells/ml) on subsequent matrix accumulation of microencapsulated articular chondrocytes was also evaluated. Results showed that increasing alginate concentration and thus viscosity increased overall microcapsule size but also affected the geometry towards ellipsoidal-shaped gels. Altering the electric field strength and needle diameter regulated microcapsule size towards a smaller diameter with increasing voltage and smaller needle diameter. Needle size did not appear to affect cell viability when operating with lower alginate concentrations (1% and 2%), although higher concentrations (3%) and thus higher viscosity hydrogels resulted in diminished viability with decreasing needle diameter. Increasing cell density resulted in decreased cell viability and a concomitant decrease in DNA content, perhaps due to competing nutrient demands as a result of more closely packed cells. However, higher cell densities resulted in increased levels of extracellular matrix accumulated. Overall, this work highlights the potential of EHDS as a controllable and versatile approach to fabricate microcapsules for injectable delivery which can be

  3. [Strategy of comprehensive control for schistosomiasis and its effect in key areas of Jiangsu Province].

    PubMed

    Sun, Le-Ping; Tian, Zeng-Xi; Yang, Kun; Hong, Qing-Biao; Gao, Yang; Gao, Yuan; Zhang, Lian-Heng; Yang, Guo-Jing; Min, Jie; Ge, Jun; Wu, Hong-Hui; Huang, Yi-Xin; Liang, You-Sheng

    2011-12-01

    To evaluate the effect of comprehensive control for schistosomiasis in key areas of Jiangsu Province. The basic data and the data of implementation of comprehensive control measures were collected from the key areas of Jiangsu Province, including 30 townships, 87 marshlands and 78 anchor points. A field survey was carried out to investigate the Oncomelania snail status by using the systematic sampling method and schistosomiasis morbidity in humans and animals in the 12 key counties (districts). The changes of snail status and morbidity of humans and animals were statistically analyzed in key counties (districts) where comprehensive control measures was implemented, and the effects of schistosomiasis control before and after the implementation of the comprehensive control were compared. From 2008 to 2010, a total of 84 100 harmless latrines were constructed, 339 600 persons were examined, 2.6938 million people received health education, 112 000 protective creams and 798 000 publicity materials were allocated, 9 085 domestic animals were reared in pens, 11 800 domestic animals were examined, 130 high-risk cattle were eliminated in 30 key townships of 12 countries (districts), Jiangsu Province. A total of 19 640.78 hm2 were controlled with molluscicides, 798 warning tablets were placed, 116.07 hm2 of farmlands were ploughed up and planted, 306.80 hm2 were dug for fish culture, and 506.74 hm2 were planted with trees for snail control in 87 high-risk marshlands. A total of 118.83 million Yuan were invested into the water resources development projects, 39.82 km-long rivers were dredged, 70.04 km-long bank were concreted, 30 culvert gates were re-constructed, and 22 snail sedimentation tanks were built. In the 78 anchor points, 95 harmless public toilets were built, 3 192 stool container were allocated, 28 700 boatmen were examined, 71 600 protective creams and 53 200 publicity materials were allocated, and 46 600 persons received health education. Following the

  4. Stochastic control system parameter identifiability

    NASA Technical Reports Server (NTRS)

    Lee, C. H.; Herget, C. J.

    1975-01-01

    The parameter identification problem of general discrete time, nonlinear, multiple input/multiple output dynamic systems with Gaussian white distributed measurement errors is considered. The knowledge of the system parameterization was assumed to be known. Concepts of local parameter identifiability and local constrained maximum likelihood parameter identifiability were established. A set of sufficient conditions for the existence of a region of parameter identifiability was derived. A computation procedure employing interval arithmetic was provided for finding the regions of parameter identifiability. If the vector of the true parameters is locally constrained maximum likelihood (CML) identifiable, then with probability one, the vector of true parameters is a unique maximal point of the maximum likelihood function in the region of parameter identifiability and the constrained maximum likelihood estimation sequence will converge to the vector of true parameters.

  5. Automobile Engine Control Parameters Study : Volume 1. Summary and Status of Domestic Engine Control Practice

    DOT National Transportation Integrated Search

    1977-02-01

    This report contains the results of a study to evaluate automobile engine control parameters and their effects on vehicle fuel economy and emissions. Volume I presents detailed technical information on the engine control practices used by selected do...

  6. Robust parameter design for automatically controlled systems and nanostructure synthesis

    NASA Astrophysics Data System (ADS)

    Dasgupta, Tirthankar

    2007-12-01

    This research focuses on developing comprehensive frameworks for developing robust parameter design methodology for dynamic systems with automatic control and for synthesis of nanostructures. In many automatically controlled dynamic processes, the optimal feedback control law depends on the parameter design solution and vice versa and therefore an integrated approach is necessary. A parameter design methodology in the presence of feedback control is developed for processes of long duration under the assumption that experimental noise factors are uncorrelated over time. Systems that follow a pure-gain dynamic model are considered and the best proportional-integral and minimum mean squared error control strategies are developed by using robust parameter design. The proposed method is illustrated using a simulated example and a case study in a urea packing plant. This idea is also extended to cases with on-line noise factors. The possibility of integrating feedforward control with a minimum mean squared error feedback control scheme is explored. To meet the needs of large scale synthesis of nanostructures, it is critical to systematically find experimental conditions under which the desired nanostructures are synthesized reproducibly, at large quantity and with controlled morphology. The first part of the research in this area focuses on modeling and optimization of existing experimental data. Through a rigorous statistical analysis of experimental data, models linking the probabilities of obtaining specific morphologies to the process variables are developed. A new iterative algorithm for fitting a Multinomial GLM is proposed and used. The optimum process conditions, which maximize the above probabilities and make the synthesis process less sensitive to variations of process variables around set values, are derived from the fitted models using Monte-Carlo simulations. The second part of the research deals with development of an experimental design methodology, tailor

  7. Leader-follower formation control of underactuated surface vehicles based on sliding mode control and parameter estimation.

    PubMed

    Sun, Zhijian; Zhang, Guoqing; Lu, Yu; Zhang, Weidong

    2018-01-01

    This paper studies the leader-follower formation control of underactuated surface vehicles with model uncertainties and environmental disturbances. A parameter estimation and upper bound estimation based sliding mode control scheme is proposed to solve the problem of the unknown plant parameters and environmental disturbances. For each of these leader-follower formation systems, the dynamic equations of position and attitude are analyzed using coordinate transformation with the aid of the backstepping technique. All the variables are guaranteed to be uniformly ultimately bounded stable in the closed-loop system, which is proven by the distribution design Lyapunov function synthesis. The main advantages of this approach are that: first, parameter estimation based sliding mode control can enhance the robustness of the closed-loop system in presence of model uncertainties and environmental disturbances; second, a continuous function is developed to replace the signum function in the design of sliding mode scheme, which devotes to reduce the chattering of the control system. Finally, numerical simulations are given to demonstrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Key management of the double random-phase-encoding method using public-key encryption

    NASA Astrophysics Data System (ADS)

    Saini, Nirmala; Sinha, Aloka

    2010-03-01

    Public-key encryption has been used to encode the key of the encryption process. In the proposed technique, an input image has been encrypted by using the double random-phase-encoding method using extended fractional Fourier transform. The key of the encryption process have been encoded by using the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. The encoded key has then been transmitted to the receiver side along with the encrypted image. In the decryption process, first the encoded key has been decrypted using the secret key and then the encrypted image has been decrypted by using the retrieved key parameters. The proposed technique has advantage over double random-phase-encoding method because the problem associated with the transmission of the key has been eliminated by using public-key encryption. Computer simulation has been carried out to validate the proposed technique.

  9. Automobile Engine Control Parameters Study : Volume 2. Status of Foreign Engine Control Practices.

    DOT National Transportation Integrated Search

    1977-02-01

    The report contains the results of a study to evaluate automobile engine control parameters and their effects on vehicle fuel economy and emissions. Volume II treats selected foreign manufacturers. The principal topics reviewed for the twenty-eight e...

  10. Key Items to Get Right When Conducting a Randomized Controlled Trial in Education

    ERIC Educational Resources Information Center

    Coalition for Evidence-Based Policy, 2005

    2005-01-01

    This is a checklist of key items to get right when conducting a randomized controlled trial to evaluate an educational program or practice ("intervention"). It is intended as a practical resource for researchers and sponsors of research, describing items that are often critical to the success of a randomized controlled trial. A significant…

  11. Three parameters optimizing closed-loop control in sequential segmental neuromuscular stimulation.

    PubMed

    Zonnevijlle, E D; Somia, N N; Perez Abadia, G; Stremel, R W; Maldonado, C J; Werker, P M; Kon, M; Barker, J H

    1999-05-01

    In conventional dynamic myoplasties, the force generation is poorly controlled. This causes unnecessary fatigue of the transposed/transplanted electrically stimulated muscles and causes damage to the involved tissues. We introduced sequential segmental neuromuscular stimulation (SSNS) to reduce muscle fatigue by allowing part of the muscle to rest periodically while the other parts work. Despite this improvement, we hypothesize that fatigue could be further reduced in some applications of dynamic myoplasty if the muscles were made to contract according to need. The first necessary step is to gain appropriate control over the contractile activity of the dynamic myoplasty. Therefore, closed-loop control was tested on a sequentially stimulated neosphincter to strive for the best possible control over the amount of generated pressure. A selection of parameters was validated for optimizing control. We concluded that the frequency of corrections, the threshold for corrections, and the transition time are meaningful parameters in the controlling algorithm of the closed-loop control in a sequentially stimulated myoplasty.

  12. Design of Life Extending Controls Using Nonlinear Parameter Optimization

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Holmes, Michael S.; Ray, Asok

    1998-01-01

    This report presents the conceptual development of a life extending control system where the objective is to achieve high performance and structural durability of the plant. A life extending controller is designed for a reusable rocket engine via damage mitigation in both the fuel and oxidizer turbines while achieving high performance for transient responses of the combustion chamber pressure and the O2/H2 mixture ratio. This design approach makes use of a combination of linear and nonlinear controller synthesis techniques and also allows adaptation of the life extending controller module to augment a conventional performance controller of a rocket engine. The nonlinear aspect of the design is achieved using nonlinear parameter optimization of a prescribed control structure.

  13. Long-distance continuous-variable quantum key distribution by controlling excess noise

    NASA Astrophysics Data System (ADS)

    Huang, Duan; Huang, Peng; Lin, Dakai; Zeng, Guihua

    2016-01-01

    Quantum cryptography founded on the laws of physics could revolutionize the way in which communication information is protected. Significant progresses in long-distance quantum key distribution based on discrete variables have led to the secure quantum communication in real-world conditions being available. However, the alternative approach implemented with continuous variables has not yet reached the secure distance beyond 100 km. Here, we overcome the previous range limitation by controlling system excess noise and report such a long distance continuous-variable quantum key distribution experiment. Our result paves the road to the large-scale secure quantum communication with continuous variables and serves as a stepping stone in the quest for quantum network.

  14. Long-distance continuous-variable quantum key distribution by controlling excess noise.

    PubMed

    Huang, Duan; Huang, Peng; Lin, Dakai; Zeng, Guihua

    2016-01-13

    Quantum cryptography founded on the laws of physics could revolutionize the way in which communication information is protected. Significant progresses in long-distance quantum key distribution based on discrete variables have led to the secure quantum communication in real-world conditions being available. However, the alternative approach implemented with continuous variables has not yet reached the secure distance beyond 100 km. Here, we overcome the previous range limitation by controlling system excess noise and report such a long distance continuous-variable quantum key distribution experiment. Our result paves the road to the large-scale secure quantum communication with continuous variables and serves as a stepping stone in the quest for quantum network.

  15. Long-distance continuous-variable quantum key distribution by controlling excess noise

    PubMed Central

    Huang, Duan; Huang, Peng; Lin, Dakai; Zeng, Guihua

    2016-01-01

    Quantum cryptography founded on the laws of physics could revolutionize the way in which communication information is protected. Significant progresses in long-distance quantum key distribution based on discrete variables have led to the secure quantum communication in real-world conditions being available. However, the alternative approach implemented with continuous variables has not yet reached the secure distance beyond 100 km. Here, we overcome the previous range limitation by controlling system excess noise and report such a long distance continuous-variable quantum key distribution experiment. Our result paves the road to the large-scale secure quantum communication with continuous variables and serves as a stepping stone in the quest for quantum network. PMID:26758727

  16. ROLE OF DOM PHOTOREACTIONS IN CONTROLLING UV EXPOSURE OF CORAL ASSEMBLAGES IN THE FLORIDA KEYS

    EPA Science Inventory

    Recent studies have indicated that solar LTV radiation is a significant stressor of coral assemblages in tropical and subtropical marine environments. Here evidence is presented that UV exposure of coral reefs in the Florida Keys near Key West is controlled by the colored compone...

  17. Key performance indicators score (KPIs-score) based on clinical and laboratorial parameters can establish benchmarks for internal quality control in an ART program.

    PubMed

    Franco, José G; Petersen, Claudia G; Mauri, Ana L; Vagnini, Laura D; Renzi, Adriana; Petersen, Bruna; Mattila, M C; Comar, Vanessa A; Ricci, Juliana; Dieamant, Felipe; Oliveira, João Batista A; Baruffi, Ricardo L R

    2017-06-01

    KPIs have been employed for internal quality control (IQC) in ART. However, clinical KPIs (C-KPIs) such as age, AMH and number of oocytes collected are never added to laboratory KPIs (L-KPIs), such as fertilization rate and morphological quality of the embryos for analysis, even though the final endpoint is the evaluation of clinical pregnancy rates. This paper analyzed if a KPIs-score strategy with clinical and laboratorial parameters could be used to establish benchmarks for IQC in ART cycles. In this prospective cohort study, 280 patients (36.4±4.3years) underwent ART. The total KPIs-score was obtained by the analysis of age, AMH (AMH Gen II ELISA/pre-mixing modified, Beckman Coulter Inc.), number of metaphase-II oocytes, fertilization rates and morphological quality of the embryonic lot. The total KPIs-score (C-KPIs+L-KPIs) was correlated with the presence or absence of clinical pregnancy. The relationship between the C-KPIs and L-KPIs scores was analyzed to establish quality standards, to increase the performance of clinical and laboratorial processes in ART. The logistic regression model (LRM), with respect to pregnancy and total KPIs-score (280 patients/102 clinical pregnancies), yielded an odds ratio of 1.24 (95%CI = 1.16-1.32). There was also a significant difference (p<0.0001) with respect to the total KPIs-score mean value between the group of patients with clinical pregnancies (total KPIs-score=20.4±3.7) and the group without clinical pregnancies (total KPIs-score=15.9±5). Clinical pregnancy probabilities (CPP) can be obtained using the LRM (prediction key) with the total KPIs-score as a predictor variable. The mean C-KPIs and L-KPIs scores obtained in the pregnancy group were 11.9±2.9 and 8.5±1.7, respectively. Routinely, in all cases where the C-KPIs score was ≥9, after the procedure, the L-KPIs score obtained was ≤6, a revision of the laboratory procedure was performed to assess quality standards. This total KPIs-score could set up

  18. Coherent attacking continuous-variable quantum key distribution with entanglement in the middle

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoyuan; Shi, Ronghua; Zeng, Guihua; Guo, Ying

    2018-06-01

    We suggest an approach on the coherent attack of continuous-variable quantum key distribution (CVQKD) with an untrusted entangled source in the middle. The coherent attack strategy can be performed on the double links of quantum system, enabling the eavesdropper to steal more information from the proposed scheme using the entanglement correlation. Numeric simulation results show the improved performance of the attacked CVQKD system in terms of the derived secret key rate with the controllable parameters maximizing the stolen information.

  19. Estimation of Key Parameters of the Coupled Energy and Water Model by Assimilating Land Surface Data

    NASA Astrophysics Data System (ADS)

    Abdolghafoorian, A.; Farhadi, L.

    2017-12-01

    Accurate estimation of land surface heat and moisture fluxes, as well as root zone soil moisture, is crucial in various hydrological, meteorological, and agricultural applications. Field measurements of these fluxes are costly and cannot be readily scaled to large areas relevant to weather and climate studies. Therefore, there is a need for techniques to make quantitative estimates of heat and moisture fluxes using land surface state observations that are widely available from remote sensing across a range of scale. In this work, we applies the variational data assimilation approach to estimate land surface fluxes and soil moisture profile from the implicit information contained Land Surface Temperature (LST) and Soil Moisture (SM) (hereafter the VDA model). The VDA model is focused on the estimation of three key parameters: 1- neutral bulk heat transfer coefficient (CHN), 2- evaporative fraction from soil and canopy (EF), and 3- saturated hydraulic conductivity (Ksat). CHN and EF regulate the partitioning of available energy between sensible and latent heat fluxes. Ksat is one of the main parameters used in determining infiltration, runoff, groundwater recharge, and in simulating hydrological processes. In this study, a system of coupled parsimonious energy and water model will constrain the estimation of three unknown parameters in the VDA model. The profile of SM (LST) at multiple depths is estimated using moisture diffusion (heat diffusion) equation. In this study, the uncertainties of retrieved unknown parameters and fluxes are estimated from the inverse of Hesian matrix of cost function which is computed using the Lagrangian methodology. Analysis of uncertainty provides valuable information about the accuracy of estimated parameters and their correlation and guide the formulation of a well-posed estimation problem. The results of proposed algorithm are validated with a series of experiments using a synthetic data set generated by the simultaneous heat and

  20. Adaptive Control Parameters for Dispersal of Multi-Agent Mobile Ad Hoc Network (MANET) Swarms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt Derr; Milos Manic

    A mobile ad hoc network is a collection of independent nodes that communicate wirelessly with one another. This paper investigates nodes that are swarm robots with communications and sensing capabilities. Each robot in the swarm may operate in a distributed and decentralized manner to achieve some goal. This paper presents a novel approach to dynamically adapting control parameters to achieve mesh configuration stability. The presented approach to robot interaction is based on spring force laws (attraction and repulsion laws) to create near-optimal mesh like configurations. In prior work, we presented the extended virtual spring mesh (EVSM) algorithm for the dispersionmore » of robot swarms. This paper extends the EVSM framework by providing the first known study on the effects of adaptive versus static control parameters on robot swarm stability. The EVSM algorithm provides the following novelties: 1) improved performance with adaptive control parameters and 2) accelerated convergence with high formation effectiveness. Simulation results show that 120 robots reach convergence using adaptive control parameters more than twice as fast as with static control parameters in a multiple obstacle environment.« less

  1. Unbounded and revocable hierarchical identity-based encryption with adaptive security, decryption key exposure resistant, and short public parameters

    PubMed Central

    Wang, Baosheng; Tao, Jing

    2018-01-01

    Revocation functionality and hierarchy key delegation are two necessary and crucial requirements to identity-based cryptosystems. Revocable hierarchical identity-based encryption (RHIBE) has attracted a lot of attention in recent years, many RHIBE schemes have been proposed but shown to be either insecure or bounded where they have to fix the maximum hierarchical depth of RHIBE at setup. In this paper, we propose a new unbounded RHIBE scheme with decryption key exposure resilience and with short public system parameters, and prove our RHIBE scheme to be adaptively secure. Our system model is scalable inherently to accommodate more levels of user adaptively with no adding workload or restarting the system. By carefully designing the hybrid games, we overcome the subtle obstacle in applying the dual system encryption methodology for the unbounded and revocable HIBE. To the best of our knowledge, this is the first construction of adaptively secure unbounded RHIBE scheme. PMID:29649326

  2. Intelligent, Robust Control of Deteriorated Turbofan Engines via Linear Parameter Varying Quadratic Lyapunov Function Design

    NASA Technical Reports Server (NTRS)

    Turso, James A.; Litt, Jonathan S.

    2004-01-01

    A method for accommodating engine deterioration via a scheduled Linear Parameter Varying Quadratic Lyapunov Function (LPVQLF)-Based controller is presented. The LPVQLF design methodology provides a means for developing unconditionally stable, robust control of Linear Parameter Varying (LPV) systems. The controller is scheduled on the Engine Deterioration Index, a function of estimated parameters that relate to engine health, and is computed using a multilayer feedforward neural network. Acceptable thrust response and tight control of exhaust gas temperature (EGT) is accomplished by adjusting the performance weights on these parameters for different levels of engine degradation. Nonlinear simulations demonstrate that the controller achieves specified performance objectives while being robust to engine deterioration as well as engine-to-engine variations.

  3. Development of an Agent-Based Model (ABM) to Simulate the Immune System and Integration of a Regression Method to Estimate the Key ABM Parameters by Fitting the Experimental Data

    PubMed Central

    Tong, Xuming; Chen, Jinghang; Miao, Hongyu; Li, Tingting; Zhang, Le

    2015-01-01

    Agent-based models (ABM) and differential equations (DE) are two commonly used methods for immune system simulation. However, it is difficult for ABM to estimate key parameters of the model by incorporating experimental data, whereas the differential equation model is incapable of describing the complicated immune system in detail. To overcome these problems, we developed an integrated ABM regression model (IABMR). It can combine the advantages of ABM and DE by employing ABM to mimic the multi-scale immune system with various phenotypes and types of cells as well as using the input and output of ABM to build up the Loess regression for key parameter estimation. Next, we employed the greedy algorithm to estimate the key parameters of the ABM with respect to the same experimental data set and used ABM to describe a 3D immune system similar to previous studies that employed the DE model. These results indicate that IABMR not only has the potential to simulate the immune system at various scales, phenotypes and cell types, but can also accurately infer the key parameters like DE model. Therefore, this study innovatively developed a complex system development mechanism that could simulate the complicated immune system in detail like ABM and validate the reliability and efficiency of model like DE by fitting the experimental data. PMID:26535589

  4. Control of complex dynamics and chaos in distributed parameter systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarti, S.; Marek, M.; Ray, W.H.

    This paper discusses a methodology for controlling complex dynamics and chaos in distributed parameter systems. The reaction-diffusion system with Brusselator kinetics, where the torus-doubling or quasi-periodic (two characteristic incommensurate frequencies) route to chaos exists in a defined range of parameter values, is used as an example. Poincare maps are used for characterization of quasi-periodic and chaotic attractors. The dominant modes or topos, which are inherent properties of the system, are identified by means of the Singular Value Decomposition. Tested modal feedback control schemas based on identified dominant spatial modes confirm the possibility of stabilization of simple quasi-periodic trajectories in themore » complex quasi-periodic or chaotic spatiotemporal patterns.« less

  5. Finite-key analysis for measurement-device-independent quantum key distribution.

    PubMed

    Curty, Marcos; Xu, Feihu; Cui, Wei; Lim, Charles Ci Wen; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2014-04-29

    Quantum key distribution promises unconditionally secure communications. However, as practical devices tend to deviate from their specifications, the security of some practical systems is no longer valid. In particular, an adversary can exploit imperfect detectors to learn a large part of the secret key, even though the security proof claims otherwise. Recently, a practical approach--measurement-device-independent quantum key distribution--has been proposed to solve this problem. However, so far its security has only been fully proven under the assumption that the legitimate users of the system have unlimited resources. Here we fill this gap and provide a rigorous security proof against general attacks in the finite-key regime. This is obtained by applying large deviation theory, specifically the Chernoff bound, to perform parameter estimation. For the first time we demonstrate the feasibility of long-distance implementations of measurement-device-independent quantum key distribution within a reasonable time frame of signal transmission.

  6. Nonlinear control of linear parameter varying systems with applications to hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Wilcox, Zachary Donald

    The focus of this dissertation is to design a controller for linear parameter varying (LPV) systems, apply it specifically to air-breathing hypersonic vehicles, and examine the interplay between control performance and the structural dynamics design. Specifically a Lyapunov-based continuous robust controller is developed that yields exponential tracking of a reference model, despite the presence of bounded, nonvanishing disturbances. The hypersonic vehicle has time varying parameters, specifically temperature profiles, and its dynamics can be reduced to an LPV system with additive disturbances. Since the HSV can be modeled as an LPV system the proposed control design is directly applicable. The control performance is directly examined through simulations. A wide variety of applications exist that can be effectively modeled as LPV systems. In particular, flight systems have historically been modeled as LPV systems and associated control tools have been applied such as gain-scheduling, linear matrix inequalities (LMIs), linear fractional transformations (LFT), and mu-types. However, as the type of flight environments and trajectories become more demanding, the traditional LPV controllers may no longer be sufficient. In particular, hypersonic flight vehicles (HSVs) present an inherently difficult problem because of the nonlinear aerothermoelastic coupling effects in the dynamics. HSV flight conditions produce temperature variations that can alter both the structural dynamics and flight dynamics. Starting with the full nonlinear dynamics, the aerothermoelastic effects are modeled by a temperature dependent, parameter varying state-space representation with added disturbances. The model includes an uncertain parameter varying state matrix, an uncertain parameter varying non-square (column deficient) input matrix, and an additive bounded disturbance. In this dissertation, a robust dynamic controller is formulated for a uncertain and disturbed LPV system. The developed

  7. A Taguchi approach on optimal process control parameters for HDPE pipe extrusion process

    NASA Astrophysics Data System (ADS)

    Sharma, G. V. S. S.; Rao, R. Umamaheswara; Rao, P. Srinivasa

    2017-06-01

    High-density polyethylene (HDPE) pipes find versatile applicability for transportation of water, sewage and slurry from one place to another. Hence, these pipes undergo tremendous pressure by the fluid carried. The present work entails the optimization of the withstanding pressure of the HDPE pipes using Taguchi technique. The traditional heuristic methodology stresses on a trial and error approach and relies heavily upon the accumulated experience of the process engineers for determining the optimal process control parameters. This results in setting up of less-than-optimal values. Hence, there arouse a necessity to determine optimal process control parameters for the pipe extrusion process, which can ensure robust pipe quality and process reliability. In the proposed optimization strategy, the design of experiments (DoE) are conducted wherein different control parameter combinations are analyzed by considering multiple setting levels of each control parameter. The concept of signal-to-noise ratio ( S/ N ratio) is applied and ultimately optimum values of process control parameters are obtained as: pushing zone temperature of 166 °C, Dimmer speed at 08 rpm, and Die head temperature to be 192 °C. Confirmation experimental run is also conducted to verify the analysis and research result and values proved to be in synchronization with the main experimental findings and the withstanding pressure showed a significant improvement from 0.60 to 1.004 Mpa.

  8. The Use of Logistics n the Quality Parameters Control System of Material Flow

    ERIC Educational Resources Information Center

    Karpova, Natalia P.; Toymentseva, Irina A.; Shvetsova, Elena V.; Chichkina, Vera D.; Chubarkova, Elena V.

    2016-01-01

    The relevance of the research problem is conditioned on the need to justify the use of the logistics methodologies in the quality parameters control process of material flows. The goal of the article is to develop theoretical principles and practical recommendations for logistical system control in material flows quality parameters. A leading…

  9. Key Physiological Parameters Dictate Triggering of Activity-Dependent Bulk Endocytosis in Hippocampal Synapses

    PubMed Central

    Wenzel, Eva M.; Morton, Andrew; Ebert, Katrin; Welzel, Oliver; Kornhuber, Johannes; Cousin, Michael A.; Groemer, Teja W.

    2012-01-01

    To maintain neurotransmission in central neurons, several mechanisms are employed to retrieve synaptically exocytosed membrane. The two major modes of synaptic vesicle (SV) retrieval are clathrin-mediated endocytosis and activity-dependent bulk endocytosis (ADBE). ADBE is the dominant SV retrieval mode during intense stimulation, however the precise physiological conditions that trigger this mode are not resolved. To determine these parameters we manipulated rat hippocampal neurons using a wide spectrum of stimuli by varying both the pattern and duration of stimulation. Using live-cell fluorescence imaging and electron microscopy approaches, we established that stimulation frequency, rather than the stimulation load, was critical in the triggering of ADBE. Thus two hundred action potentials, when delivered at high frequency, were sufficient to induce near maximal bulk formation. Furthermore we observed a strong correlation between SV pool size and ability to perform ADBE. We also identified that inhibitory nerve terminals were more likely to utilize ADBE and had a larger SV recycling pool. Thus ADBE in hippocampal synaptic terminals is tightly coupled to stimulation frequency and is more likely to occur in terminals with large SV pools. These results implicate ADBE as a key modulator of both hippocampal neurotransmission and plasticity. PMID:22675521

  10. The logic of comparative life history studies for estimating key parameters, with a focus on natural mortality rate

    USGS Publications Warehouse

    Hoenig, John M; Then, Amy Y.-H.; Babcock, Elizabeth A.; Hall, Norman G.; Hewitt, David A.; Hesp, Sybrand A.

    2016-01-01

    There are a number of key parameters in population dynamics that are difficult to estimate, such as natural mortality rate, intrinsic rate of population growth, and stock-recruitment relationships. Often, these parameters of a stock are, or can be, estimated indirectly on the basis of comparative life history studies. That is, the relationship between a difficult to estimate parameter and life history correlates is examined over a wide variety of species in order to develop predictive equations. The form of these equations may be derived from life history theory or simply be suggested by exploratory data analysis. Similarly, population characteristics such as potential yield can be estimated by making use of a relationship between the population parameter and bio-chemico–physical characteristics of the ecosystem. Surprisingly, little work has been done to evaluate how well these indirect estimators work and, in fact, there is little guidance on how to conduct comparative life history studies and how to evaluate them. We consider five issues arising in such studies: (i) the parameters of interest may be ill-defined idealizations of the real world, (ii) true values of the parameters are not known for any species, (iii) selecting data based on the quality of the estimates can introduce a host of problems, (iv) the estimates that are available for comparison constitute a non-random sample of species from an ill-defined population of species of interest, and (v) the hierarchical nature of the data (e.g. stocks within species within genera within families, etc., with multiple observations at each level) warrants consideration. We discuss how these issues can be handled and how they shape the kinds of questions that can be asked of a database of life history studies.

  11. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.

    PubMed

    Bea, Sergio A; Wainwright, Haruko; Spycher, Nicolas; Faybishenko, Boris; Hubbard, Susan S; Denham, Miles E

    2013-08-01

    Acidic low-level waste radioactive waste solutions were discharged to three unlined seepage basins at the F-Area of the Department of Energy (DOE) Savannah River Site (SRS), South Carolina, USA, from 1955 through 1989. Despite many years of active remediation, the groundwater remains acidic and contaminated with significant levels of U(VI) and other radionuclides. Monitored Natural Attenuation (MNA) is a desired closure strategy for the site, based on the premise that regional flow of clean background groundwater will eventually neutralize the groundwater acidity, immobilizing U(VI) through adsorption. An in situ treatment system is currently in place to accelerate this in the downgradient portion of the plume and similar measures could be taken upgradient if necessary. Understanding the long-term pH and U(VI) adsorption behavior at the site is critical to assess feasibility of MNA along with the in-situ remediation treatments. This paper presents a reactive transport (RT) model and uncertainty quantification (UQ) analyses to explore key controls on the U(VI)-plume evolution and long-term mobility at this site. Two-dimensional numerical RT simulations are run including the saturated and unsaturated (vadose) zones, U(VI) and H(+) adsorption (surface complexation) onto sediments, dissolution and precipitation of Al and Fe minerals, and key hydrodynamic processes are considered. UQ techniques are applied using a new open-source tool that is part of the developing ASCEM reactive transport modeling and analysis framework to: (1) identify the complex physical and geochemical processes that control the U(VI) plume migration in the pH range where the plume is highly mobile, (2) evaluate those physical and geochemical parameters that are most controlling, and (3) predict the future plume evolution constrained by historical, chemical and hydrological data. The RT simulation results show a good agreement with the observed historical pH and concentrations of U(VI), nitrates

  12. Computational methods for the control of distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Burns, J. A.; Cliff, E. M.; Powers, R. K.

    1985-01-01

    It is shown that care must be taken to ensure that finite dimensional approximations of distributed parameter systems preserve important system properties (i.e., controllability, observability, stabilizability, detectability, etc.). It is noted that, if the particular scheme used to construct the finite dimensional model does not take into account these system properties, the model may not be suitable for control design and analysis. These ideas are illustrated by a simple example, i.e., a cable-spring-mass system.

  13. The Cyber War: Maintaining and Controlling the Key Cyber Terrain of the Cyberspace Domain

    DTIC Science & Technology

    2016-06-26

    solution strategy to assess options that will enable the commander to realize the Air Force’s cyber mission. Recommendations will be made that will...will present a solution to assist the JFC in achieving cyberspace dominance. Background In the modern world of advanced technology, control of...the solutions are: 1) timely identification of key cyber terrain, 2) accurate mapping of the cyber terrain, 3) defense of key cyber terrain, and 4

  14. Investigation on sense of control parameters for joystick interface in remote operated container crane application

    NASA Astrophysics Data System (ADS)

    Abdullah, U. N. N.; Handroos, H.

    2017-09-01

    Introduction: This paper presents the study of sense of control parameters to improve the lack of direct motion feeling through remote operated container crane station (ROCCS) joystick interface. The investigations of the parameters in this study are important to develop the engineering parameters related to the sense of control goal in the next design process. Methodology: Structured interviews and observations were conducted to obtain the user experience data from thirteen remote container crane operators from two international terminals. Then, interview analysis, task analysis, activity analysis and time line analysis were conducted to compare and contrast the results from interviews and observations. Results: Four experience parameters were identified to support the sense of control goal in the later design improvement of the ROCC joystick interface. The significance of difficulties to control, unsynchronized movements, facilitate in control and decision making in unexpected situation as parameters to the sense of control goal were validated by' feedbacks from operators as well as analysis. Contribution: This study provides feedback directly from end users towards developing a sustainable control interface for ROCCS in specific and remote operated off-road vehicles in general.

  15. Investigating parameters participating in the infant respiratory control system attractor.

    PubMed

    Terrill, Philip I; Wilson, Stephen J; Suresh, Sadasivam; Cooper, David M; Dakin, Carolyn

    2008-01-01

    Theoretically, any participating parameter in a non-linear system represents the dynamics of the whole system. Taken's time delay embedding theory provides the fundamental basis for allowing non-linear analysis to be performed on physiological, time-series data. In practice, only one measurable parameter is required to be measured to convey an accurate representation of the system dynamics. In this paper, the infant respiratory control system is represented using three variables-a digitally sampled respiratory inductive plethysmography waveform, and the derived parameters tidal volume and inter-breath interval time series data. For 14 healthy infants, these data streams were analysed using recurrence plot analysis across one night of sleep. The measured attractor size of these variables followed the same qualitative trends across the nights study. Results suggest that the attractor size measures of the derived IBI and tidal volume are representative surrogates for the raw respiratory waveform. The extent to which the relative attractor sizes of IBI and tidal volume remain constant through changing sleep state could potentially be used to quantify pathology, or maturation of breathing control.

  16. Adaptive control of Parkinson's state based on a nonlinear computational model with unknown parameters.

    PubMed

    Su, Fei; Wang, Jiang; Deng, Bin; Wei, Xi-Le; Chen, Ying-Yuan; Liu, Chen; Li, Hui-Yan

    2015-02-01

    The objective here is to explore the use of adaptive input-output feedback linearization method to achieve an improved deep brain stimulation (DBS) algorithm for closed-loop control of Parkinson's state. The control law is based on a highly nonlinear computational model of Parkinson's disease (PD) with unknown parameters. The restoration of thalamic relay reliability is formulated as the desired outcome of the adaptive control methodology, and the DBS waveform is the control input. The control input is adjusted in real time according to estimates of unknown parameters as well as the feedback signal. Simulation results show that the proposed adaptive control algorithm succeeds in restoring the relay reliability of the thalamus, and at the same time achieves accurate estimation of unknown parameters. Our findings point to the potential value of adaptive control approach that could be used to regulate DBS waveform in more effective treatment of PD.

  17. Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor.

    PubMed

    Zhang, BiTao; Pi, YouGuo; Luo, Ying

    2012-09-01

    A fractional order sliding mode control (FROSMC) scheme based on parameters auto-tuning for the velocity control of permanent magnet synchronous motor (PMSM) is proposed in this paper. The control law of the proposed F(R)OSMC scheme is designed according to Lyapunov stability theorem. Based on the property of transferring energy with adjustable type in F(R)OSMC, this paper analyzes the chattering phenomenon in classic sliding mode control (SMC) is attenuated with F(R)OSMC system. A fuzzy logic inference scheme (FLIS) is utilized to obtain the gain of switching control. Simulations and experiments demonstrate that the proposed FROSMC not only achieve better control performance with smaller chatting than that with integer order sliding mode control, but also is robust to external load disturbance and parameter variations. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Finite-key analysis for quantum key distribution with weak coherent pulses based on Bernoulli sampling

    NASA Astrophysics Data System (ADS)

    Kawakami, Shun; Sasaki, Toshihiko; Koashi, Masato

    2017-07-01

    An essential step in quantum key distribution is the estimation of parameters related to the leaked amount of information, which is usually done by sampling of the communication data. When the data size is finite, the final key rate depends on how the estimation process handles statistical fluctuations. Many of the present security analyses are based on the method with simple random sampling, where hypergeometric distribution or its known bounds are used for the estimation. Here we propose a concise method based on Bernoulli sampling, which is related to binomial distribution. Our method is suitable for the Bennett-Brassard 1984 (BB84) protocol with weak coherent pulses [C. H. Bennett and G. Brassard, Proceedings of the IEEE Conference on Computers, Systems and Signal Processing (IEEE, New York, 1984), Vol. 175], reducing the number of estimated parameters to achieve a higher key generation rate compared to the method with simple random sampling. We also apply the method to prove the security of the differential-quadrature-phase-shift (DQPS) protocol in the finite-key regime. The result indicates that the advantage of the DQPS protocol over the phase-encoding BB84 protocol in terms of the key rate, which was previously confirmed in the asymptotic regime, persists in the finite-key regime.

  19. Fuzzy – PI controller to control the velocity parameter of Induction Motor

    NASA Astrophysics Data System (ADS)

    Malathy, R.; Balaji, V.

    2018-04-01

    The major application of Induction motor includes the usage of the same in industries because of its high robustness, reliability, low cost, highefficiency and good self-starting capability. Even though it has the above mentioned advantages, it also have some limitations: (1) the standard motor is not a true constant-speed machine, itsfull-load slip varies less than 1 % (in high-horsepower motors).And (2) it is not inherently capable of providing variable-speedoperation. In order to solve the above mentioned problem smart motor controls and variable speed controllers are used. Motor applications involve non linearity features, which can be controlled by Fuzzy logic controller as it is capable of handling those features with high efficiency and it act similar to human operator. This paper presents individuality of the plant modelling. The fuzzy logic controller (FLC)trusts on a set of linguistic if-then rules, a rule-based Mamdani for closed loop Induction Motor model. Themotor model is designed and membership functions are chosenaccording to the parameters of the motor model. Simulation results contains non linearity in induction motor model. A conventional PI controller iscompared practically to fuzzy logic controller using Simulink.

  20. Adaptive control based on an on-line parameter estimation of an upper limb exoskeleton.

    PubMed

    Riani, Akram; Madani, Tarek; Hadri, Abdelhafid El; Benallegue, Abdelaziz

    2017-07-01

    This paper presents an adaptive control strategy for an upper-limb exoskeleton based on an on-line dynamic parameter estimator. The objective is to improve the control performance of this system that plays a critical role in assisting patients for shoulder, elbow and wrist joint movements. In general, the dynamic parameters of the human limb are unknown and differ from a person to another, which degrade the performances of the exoskeleton-human control system. For this reason, the proposed control scheme contains a supplementary loop based on a new efficient on-line estimator of the dynamic parameters. Indeed, the latter is acting upon the parameter adaptation of the controller to ensure the performances of the system in the presence of parameter uncertainties and perturbations. The exoskeleton used in this work is presented and a physical model of the exoskeleton interacting with a 7 Degree of Freedom (DoF) upper limb model is generated using the SimMechanics library of MatLab/Simulink. To illustrate the effectiveness of the proposed approach, an example of passive rehabilitation movements is performed using multi-body dynamic simulation. The aims is to maneuver the exoskeleton that drive the upper limb to track desired trajectories in the case of the passive arm movements.

  1. Optimal supplementary frequency controller design using the wind farm frequency model and controller parameters stability region.

    PubMed

    Toulabi, Mohammadreza; Bahrami, Shahab; Ranjbar, Ali Mohammad

    2018-03-01

    In most of the existing studies, the frequency response in the variable speed wind turbines (VSWTs) is simply realized by changing the torque set-point via appropriate inputs such as frequency deviations signal. However, effective dynamics and systematic process design have not been comprehensively discussed yet. Accordingly, this paper proposes a proportional-derivative frequency controller and investigates its performance in a wind farm consisting of several VSWTs. A band-pass filter is deployed before the proposed controller to avoid responding to either steady state frequency deviations or high rate of change of frequency. To design the controller, the frequency model of the wind farm is first characterized. The proposed controller is then designed based on the obtained open loop system. The stability region associated with the controller parameters is analytically determined by decomposing the closed-loop system's characteristic polynomial into the odd and even parts. The performance of the proposed controller is evaluated through extensive simulations in MATLAB/Simulink environment in a power system comprising a high penetration of VSWTs equipped with the proposed controller. Finally, based on the obtained feasible area and appropriate objective function, the optimal values associated with the controller parameters are determined using the genetic algorithm (GA). Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Improved key-rate bounds for practical decoy-state quantum-key-distribution systems

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Zhao, Qi; Razavi, Mohsen; Ma, Xiongfeng

    2017-01-01

    The decoy-state scheme is the most widely implemented quantum-key-distribution protocol in practice. In order to account for the finite-size key effects on the achievable secret key generation rate, a rigorous statistical fluctuation analysis is required. Originally, a heuristic Gaussian-approximation technique was used for this purpose, which, despite its analytical convenience, was not sufficiently rigorous. The fluctuation analysis has recently been made rigorous by using the Chernoff bound. There is a considerable gap, however, between the key-rate bounds obtained from these techniques and that obtained from the Gaussian assumption. Here we develop a tighter bound for the decoy-state method, which yields a smaller failure probability. This improvement results in a higher key rate and increases the maximum distance over which secure key exchange is possible. By optimizing the system parameters, our simulation results show that our method almost closes the gap between the two previously proposed techniques and achieves a performance similar to that of conventional Gaussian approximations.

  3. [Inter-and intra-operator variability in the analysis of semen parameters: results from a quality control program].

    PubMed

    Daoud, Salima; Chakroun-Feki, Nozha; Sellami, Afifa; Ammar-Keskes, Leila; Rebai, Tarek

    2016-01-01

    Semen analysis is a key part of male infertility investigation. The necessity of quality management implementation in the andrology laboratory has been recognized in order to ensure the reliability of its results. The aim of this study was to evaluate intra- and inter-individual variability in the assessment of semen parameters in our laboratory through a quality control programme. Four participants from the laboratory with different experience levels have participated in this study. Semen samples of varying quality were assessed for sperm motility, concentration and morphology and the results were used to evaluate inter-participant variability. In addition, replicates of each semen sample were analyzed to determine intra-individual variability for semen parameters analysis. The average values of inter-participant coefficients of variation for sperm motility, concentration and morphology were 12.8%, 19.8% and 48.9% respectively. The mean intra-participant coefficients of variation were, respectively, 6.9%, 12.3% and 42.7% for sperm motility, concentration and morphology. Despite some random errors of under- or overestimation, the overall results remained within the limits of acceptability for all participants. Sperm morphology assessment was particularly influenced by the participant's level of experience. The present data emphasize the need for appropriate training of the laboratory staff and for regular participation in internal quality control programmes in order to improve the reliability of laboratory results.

  4. Measurements of Parameters Controlling the Emissions of Organophosphate Flame Retardants in Indoor Environments.

    PubMed

    Liang, Yirui; Liu, Xiaoyu; Allen, Matthew R

    2018-05-15

    Emission of semivolatile organic compounds (SVOCs) from source materials usually occurs very slowly in indoor environments due to their low volatility. When the SVOC emission process is controlled by external mass transfer, the gas-phase concentration in equilibrium with the material ( y 0 ) is used as a key parameter to simplify the source models that are based on solid-phase diffusion. A material-air-material (M-A-M) configured microchamber method was developed to rapidly measure y 0 for a polyisocyanurate rigid foam material containing organophosphate flame retardants (OPRFs). The emission test was conducted in 44 mL microchambers for target OPFRs, including tris(2-chloroethyl) phosphate (CASRN: 115-96-8), tris(1-chloro-2-propyl) phosphate (CASRN: 13674-84-5), and tris(1,3-dichloro-2-propyl) phosphate (CASRN: 13674-87-8). In addition to the microchamber emission test, two other types of tests were conducted to determine y 0 for the same foam material: OPFR diffusive tube sampling tests from the OPFR source foam using stainless-steel thermal desorption tubes and sorption tests of OPFR on an OPFR-free foam in a 53 L small chamber. Comparison of parameters obtained from the three methods suggests that the discrepancy could be caused by a combination of theoretical, experimental, and computational differences. Based on the y 0 measurements, a linear relationship between the ratio of y 0 to saturated vapor pressure concentration and material-phase mass fractions has been found for phthalates and OPFRs.

  5. Surveillance and Control of Malaria Transmission Using Remotely Sensed Meteorological and Environmental Parameters

    NASA Technical Reports Server (NTRS)

    Kiang, R.; Adimi, F.; Nigro, J.

    2007-01-01

    Meteorological and environmental parameters important to malaria transmission include temperature, relative humidity, precipitation, and vegetation conditions. These parameters can most conveniently be obtained using remote sensing. Selected provinces and districts in Thailand and Indonesia are used to illustrate how remotely sensed meteorological and environmental parameters may enhance the capabilities for malaria surveillance and control. Hindcastings based on these environmental parameters have shown good agreement to epidemiological records.

  6. Understanding Price Elasticities to Inform Public Health Research and Intervention Studies: Key Issues

    PubMed Central

    Nghiem, Nhung; Genç, Murat; Blakely, Tony

    2013-01-01

    Pricing policies such as taxes and subsidies are important tools in preventing and controlling a range of threats to public health. This is particularly so in tobacco and alcohol control efforts and efforts to change dietary patterns and physical activity levels as a means of addressing increases in noncommunicable diseases. To understand the potential impact of pricing policies, it is critical to understand the nature of price elasticities for consumer products. For example, price elasticities are key parameters in models of any food tax or subsidy that aims to quantify health impacts and cost-effectiveness. We detail relevant terms and discuss key issues surrounding price elasticities to inform public health research and intervention studies. PMID:24028228

  7. Scale Control and Quality Management of Printed Image Parameters

    NASA Astrophysics Data System (ADS)

    Novoselskaya, O. A.; Kolesnikov, V. L.; Solov'eva, T. V.; Nagornova, I. V.; Babluyk, E. B.; Trapeznikova, O. V.

    2017-06-01

    The article provides a comparison of the main valuation techniques for a regulated parameter of printability of the offset paper by current standards GOST 24356 and ISO 3783: 2006. The results of development and implementation of a complex test scale for management and control the quality of printed production are represented. The estimation scale is introduced. It includes normalized parameters of print optical density, print uniformity, picking out speed, the value of dot gain, print contrast with the added criteria of minimizing microtexts, a paper slip, resolution threshold and effusing ability of paper surface. The results of analysis allow directionally form surface properties of the substrate to facilitate achieving the required quality of the printed image parameters, i. e. optical density of a print at a predetermined level not less than 1.3, the print uniformity with minimal deviation of dot gain about the order of 10 per cents.

  8. A simple attitude control of quadrotor helicopter based on Ziegler-Nichols rules for tuning PD parameters.

    PubMed

    He, ZeFang; Zhao, Long

    2014-01-01

    An attitude control strategy based on Ziegler-Nichols rules for tuning PD (proportional-derivative) parameters of quadrotor helicopters is presented to solve the problem that quadrotor tends to be instable. This problem is caused by the narrow definition domain of attitude angles of quadrotor helicopters. The proposed controller is nonlinear and consists of a linear part and a nonlinear part. The linear part is a PD controller with PD parameters tuned by Ziegler-Nichols rules and acts on the quadrotor decoupled linear system after feedback linearization; the nonlinear part is a feedback linearization item which converts a nonlinear system into a linear system. It can be seen from the simulation results that the attitude controller proposed in this paper is highly robust, and its control effect is better than the other two nonlinear controllers. The nonlinear parts of the other two nonlinear controllers are the same as the attitude controller proposed in this paper. The linear part involves a PID (proportional-integral-derivative) controller with the PID controller parameters tuned by Ziegler-Nichols rules and a PD controller with the PD controller parameters tuned by GA (genetic algorithms). Moreover, this attitude controller is simple and easy to implement.

  9. Sensitivity of Space Station alpha joint robust controller to structural modal parameter variations

    NASA Technical Reports Server (NTRS)

    Kumar, Renjith R.; Cooper, Paul A.; Lim, Tae W.

    1991-01-01

    The photovoltaic array sun tracking control system of Space Station Freedom is described. A synthesis procedure for determining optimized values of the design variables of the control system is developed using a constrained optimization technique. The synthesis is performed to provide a given level of stability margin, to achieve the most responsive tracking performance, and to meet other design requirements. Performance of the baseline design, which is synthesized using predicted structural characteristics, is discussed and the sensitivity of the stability margin is examined for variations of the frequencies, mode shapes and damping ratios of dominant structural modes. The design provides enough robustness to tolerate a sizeable error in the predicted modal parameters. A study was made of the sensitivity of performance indicators as the modal parameters of the dominant modes vary. The design variables are resynthesized for varying modal parameters in order to achieve the most responsive tracking performance while satisfying the design requirements. This procedure of reoptimization design parameters would be useful in improving the control system performance if accurate model data are provided.

  10. Modeling the dynamics of piano keys

    NASA Astrophysics Data System (ADS)

    Brenon, Celine; Boutillon, Xavier

    2003-10-01

    The models of piano keys available in the literature are crude: two degrees of freedom and a very few dynamical or geometrical parameters. Experiments on different piano mechanisms (upright, grand, one type of numerical keyboard) exhibit strong differences in the two successive phases of the key motion which are controlled by the finger. Understanding the controllability of the escapement velocity (typically a few percents for professional pianists), the differences between upright and grand pianos, the rationale for the numerous independent adjustments by technicians, and the feel by the pianist require sophisticated modeling. In addition to the inertia of the six independently moving parts of a grand piano mechanism, a careful modeling of friction at pivots and between the jack and the roll, of damping and nonlinearities in felts, and of internal springs will be presented. Simulations will be confronted to the measurements of the motions of the different parts. Currently, the first phase of the motion and the transition to the second phase are well understood while some progress must still be made in order to describe correctly this short but important phase before the escapement of the hammer. [Work done in part at the Laboratory for Musical Acoustics, Paris.

  11. Key Parameters for the Use of AbobotulinumtoxinA in Aesthetics: Onset and Duration

    PubMed Central

    Ablon, Glynis; Pickett, Andy

    2017-01-01

    Abstract Time to onset of response and duration of response are key measures of botulinum toxin efficacy that have a considerable influence on patient satisfaction with aesthetic treatment. However, there is no overall accepted definition of efficacy for aesthetic uses of botulinumtoxinA (BoNT-A). Mechanical methods of assessment do not lend themselves to clinical practice and clinicians rely instead on assessment scales such as the Frontalis Activity Measurement Standard, Frontalis Rating Scale, Wrinkle Severity Scale, and Subject Global Assessment Scale, but not all of these have been fully validated. Onset of activity is typically seen within 5 days of injection, but has also been recorded within 12 hours with abobotulinumtoxinA. Duration of effect is more variable, and is influenced by parameters such as muscle mass (including the effects of age and sex) and type of product used. Even when larger muscles are treated with higher doses of BoNT-A, the duration of effect is still shorter than that for smaller muscles. Muscle injection technique, including dilution of the toxin, the volume of solution injected, and the positioning of the injections, can also have an important influence on onset and duration of activity. Comparison of the efficacy of different forms of BoNT-A must be made with the full understanding that the dosing units are not equivalent. Range of equivalence studies for abobotulinumtoxinA (Azzalure; Ipsen Limited, Slough UK/Galderma, Lausanne CH/Dysport, Ipsen Biopharm Limited, Wrexham UK/Galderma LP, Fort Worth, TX) and onabotulinumtoxinA (Botox; Allergan, Parsippany, NJ) have been conducted, and results indicate that the number of units of abobotulinumtoxinA needs to be approximately twice as high as that of onabotulinumtoxinA to achieve the same effect. An appreciation of the potential influence of all of the parameters that influence onset and duration of activity of BoNT-A, along with a thorough understanding of the anatomy of the face and

  12. Repetitive transcranial magnetic stimulator with controllable pulse parameters.

    PubMed

    Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H

    2011-06-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.

  13. Repetitive transcranial magnetic stimulator with controllable pulse parameters

    NASA Astrophysics Data System (ADS)

    Peterchev, Angel V.; Murphy, David L.; Lisanby, Sarah H.

    2011-06-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.

  14. Repetitive Transcranial Magnetic Stimulator with Controllable Pulse Parameters

    PubMed Central

    Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H

    2013-01-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10–310 μs and positive/negative phase amplitude ratio of 1–56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation by up to 82% and 57%, and decreases coil heating by up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3,000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications, and could lead to clinical applications with potentially enhanced potency. PMID:21540487

  15. Key parameters governing the densification of cubic-Li7La3Zr2O12 Li+ conductors

    NASA Astrophysics Data System (ADS)

    Yi, Eongyu; Wang, Weimin; Kieffer, John; Laine, Richard M.

    2017-06-01

    Cubic-Li7La3Zr2O12 (LLZO) is regarded as one of the most promising solid electrolytes for the construction of inherently safe, next generation all-solid-state Li batteries. Unfortunately, sintering these materials to full density with controlled grain sizes, mechanical and electrochemical properties relies on energy and equipment intensive processes. In this work, we elucidate key parameters dictating LLZO densification by tracing the compositional and structural changes during processing calcined and ball-milled Al3+ doped LLZO powders. We find that the powders undergo ion (Li+/H+) exchange during room temperature processing, such that on heating, the protonated LLZO lattice collapses and crystallizes to its constituent oxides, leading to reaction driven densification at < 1000 °C, prior to sintering of LLZO grains at higher temperatures. It is shown that small particle sizes and protonation cannot be decoupled, and actually aid densification. We conclude that using fully decomposed nanoparticle mixtures, as obtained by liquid-feed flame spray pyrolysis, provides an ideal approach to use high surface and reaction energy to drive densification, resulting in pressureless sintering of Ga3+ doped LLZO thin films (25 μm) at 1130 °C/0.3 h to ideal microstructures (95 ± 1% density, 1.2 ± 0.2 μm average grain size) normally accessible only by pressure-assisted sintering. Such films offer both high ionic conductivity (1.3 ± 0.1 mS cm-1) and record low ionic area specific resistance (2 Ω cm2).

  16. Key Source Habitats and Potential Dispersal of Triatoma infestans Populations in Northwestern Argentina: Implications for Vector Control

    PubMed Central

    Gürtler, Ricardo E.; Cecere, María C.; Fernández, María del Pilar; Vazquez-Prokopec, Gonzalo M.; Ceballos, Leonardo A.; Gurevitz, Juan M.; Kitron, Uriel; Cohen, Joel E.

    2014-01-01

    Background Triatoma infestans —the principal vector of the infection that causes Chagas disease— defies elimination efforts in the Gran Chaco region. This study identifies the types of human-made or -used structures that are key sources of these bugs in the initial stages of house reinfestation after an insecticide spraying campaign. Methodology and Principal Findings We measured demographic and blood-feeding parameters at two geographic scales in 11 rural communities in Figueroa, northwest Argentina. Of 1,297 sites searched in spring, 279 (21.5%) were infested. Bug abundance per site and female fecundity differed significantly among habitat types (ecotopes) and were highly aggregated. Domiciles (human sleeping quarters) had maximum infestation prevalence (38.7%), human-feeding bugs and total egg production, with submaximal values for other demographic and blood-feeding attributes. Taken collectively peridomestic sites were three times more often infested than domiciles. Chicken coops had greater bug abundance, blood-feeding rates, engorgement status, and female fecundity than pig and goat corrals. The host-feeding patterns were spatially structured yet there was strong evidence of active dispersal of late-stage bugs between ecotopes. Two flight indices predicted that female fliers were more likely to originate from kitchens and domiciles, rejecting our initial hypothesis that goat and pig corrals would dominate. Conclusions and Significance Chicken coops and domiciles were key source habitats fueling rapid house reinfestation. Focusing control efforts on ecotopes with human-fed bugs (domiciles, storerooms, goat corrals) would neither eliminate the substantial contributions to bug population growth from kitchens, chicken coops, and pig corrals nor stop dispersal of adult female bugs from kitchens. Rather, comprehensive control of the linked network of ecotopes is required to prevent feeding on humans, bug population growth, and bug dispersal simultaneously. Our

  17. Surveillance and Control of Malaria Transmission in Thailand using Remotely Sensed Meteorological and Environmental Parameters

    NASA Technical Reports Server (NTRS)

    Kiang, Richard K.; Adimi, Farida; Soika, Valerii; Nigro, Joseph

    2007-01-01

    These slides address the use of remote sensing in a public health application. Specifically, this discussion focuses on the of remote sensing to detect larval habitats to predict current and future endemicity and identify key factors that sustain or promote transmission of malaria in a targeted geographic area (Thailand). In the Malaria Modeling and Surveillance Project, which is part of the NASA Applied Sciences Public Health Applications Program, we have been developing techniques to enhance public health's decision capability for malaria risk assessments and controls. The main objectives are: 1) identification of the potential breeding sites for major vector species; 2) implementation of a risk algorithm to predict the occurrence of malaria and its transmission intensity; 3) implementation of a dynamic transmission model to identify the key factors that sustain or intensify malaria transmission. The potential benefits are: 1) increased warning time for public health organizations to respond to malaria outbreaks; 2) optimized utilization of pesticide and chemoprophylaxis; 3) reduced likelihood of pesticide and drug resistance; and 4) reduced damage to environment. !> Environmental parameters important to malaria transmission include temperature, relative humidity, precipitation, and vegetation conditions. The NASA Earth science data sets that have been used for malaria surveillance and risk assessment include AVHRR Pathfinder, TRMM, MODIS, NSIPP, and SIESIP. Textural-contextual classifications are used to identify small larval habitats. Neural network methods are used to model malaria cases as a function of the remotely sensed parameters. Hindcastings based on these environmental parameters have shown good agreement to epidemiological records. Discrete event simulations are used for modeling the detailed interactions among the vector life cycle, sporogonic cycle and human infection cycle, under the explicit influences of selected extrinsic and intrinsic factors

  18. Effects of control inputs on the estimation of stability and control parameters of a light airplane

    NASA Technical Reports Server (NTRS)

    Cannaday, R. L.; Suit, W. T.

    1977-01-01

    The maximum likelihood parameter estimation technique was used to determine the values of stability and control derivatives from flight test data for a low-wing, single-engine, light airplane. Several input forms were used during the tests to investigate the consistency of parameter estimates as it relates to inputs. These consistencies were compared by using the ensemble variance and estimated Cramer-Rao lower bound. In addition, the relationship between inputs and parameter correlations was investigated. Results from the stabilator inputs are inconclusive but the sequence of rudder input followed by aileron input or aileron followed by rudder gave more consistent estimates than did rudder or ailerons individually. Also, square-wave inputs appeared to provide slightly improved consistency in the parameter estimates when compared to sine-wave inputs.

  19. Probabilistic Parameter Uncertainty Analysis of Single Input Single Output Control Systems

    NASA Technical Reports Server (NTRS)

    Smith, Brett A.; Kenny, Sean P.; Crespo, Luis G.

    2005-01-01

    The current standards for handling uncertainty in control systems use interval bounds for definition of the uncertain parameters. This approach gives no information about the likelihood of system performance, but simply gives the response bounds. When used in design, current methods of m-analysis and can lead to overly conservative controller design. With these methods, worst case conditions are weighted equally with the most likely conditions. This research explores a unique approach for probabilistic analysis of control systems. Current reliability methods are examined showing the strong areas of each in handling probability. A hybrid method is developed using these reliability tools for efficiently propagating probabilistic uncertainty through classical control analysis problems. The method developed is applied to classical response analysis as well as analysis methods that explore the effects of the uncertain parameters on stability and performance metrics. The benefits of using this hybrid approach for calculating the mean and variance of responses cumulative distribution functions are shown. Results of the probabilistic analysis of a missile pitch control system, and a non-collocated mass spring system, show the added information provided by this hybrid analysis.

  20. A Four-parameter Budyko Equation for Mean Annual Water Balance

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Wang, D.

    2016-12-01

    In this study, a four-parameter Budyko equation for long-term water balance at watershed scale is derived based on the proportionality relationships of the two-stage partitioning of precipitation. The four-parameter Budyko equation provides a practical solution to balance model simplicity and representation of dominated hydrologic processes. Under the four-parameter Budyko framework, the key hydrologic processes related to the lower bound of Budyko curve are determined, that is, the lower bound is corresponding to the situation when surface runoff and initial evaporation not competing with base flow generation are zero. The derived model is applied to 166 MOPEX watersheds in United States, and the dominant controlling factors on each parameter are determined. Then, four statistical models are proposed to predict the four model parameters based on the dominant controlling factors, e.g., saturated hydraulic conductivity, fraction of sand, time period between two storms, watershed slope, and Normalized Difference Vegetation Index. This study shows a potential application of the four-parameter Budyko equation to constrain land-surface parameterizations in ungauged watersheds or general circulation models.

  1. Adaptive control of stochastic linear systems with unknown parameters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Ku, R. T.

    1972-01-01

    The problem of optimal control of linear discrete-time stochastic dynamical system with unknown and, possibly, stochastically varying parameters is considered on the basis of noisy measurements. It is desired to minimize the expected value of a quadratic cost functional. Since the simultaneous estimation of the state and plant parameters is a nonlinear filtering problem, the extended Kalman filter algorithm is used. Several qualitative and asymptotic properties of the open loop feedback optimal control and the enforced separation scheme are discussed. Simulation results via Monte Carlo method show that, in terms of the performance measure, for stable systems the open loop feedback optimal control system is slightly better than the enforced separation scheme, while for unstable systems the latter scheme is far better.

  2. A Simple Attitude Control of Quadrotor Helicopter Based on Ziegler-Nichols Rules for Tuning PD Parameters

    PubMed Central

    He, ZeFang

    2014-01-01

    An attitude control strategy based on Ziegler-Nichols rules for tuning PD (proportional-derivative) parameters of quadrotor helicopters is presented to solve the problem that quadrotor tends to be instable. This problem is caused by the narrow definition domain of attitude angles of quadrotor helicopters. The proposed controller is nonlinear and consists of a linear part and a nonlinear part. The linear part is a PD controller with PD parameters tuned by Ziegler-Nichols rules and acts on the quadrotor decoupled linear system after feedback linearization; the nonlinear part is a feedback linearization item which converts a nonlinear system into a linear system. It can be seen from the simulation results that the attitude controller proposed in this paper is highly robust, and its control effect is better than the other two nonlinear controllers. The nonlinear parts of the other two nonlinear controllers are the same as the attitude controller proposed in this paper. The linear part involves a PID (proportional-integral-derivative) controller with the PID controller parameters tuned by Ziegler-Nichols rules and a PD controller with the PD controller parameters tuned by GA (genetic algorithms). Moreover, this attitude controller is simple and easy to implement. PMID:25614879

  3. Lead-acid batteries in micro-hybrid applications. Part I. Selected key parameters

    NASA Astrophysics Data System (ADS)

    Schaeck, S.; Stoermer, A. O.; Kaiser, F.; Koehler, L.; Albers, J.; Kabza, H.

    Micro-hybrid electric vehicles were launched by BMW in March 2007. These are equipped with brake energy regeneration (BER) and the automatic start and stop function (ASSF) of the internal combustion engine. These functions are based on common 14 V series components and lead-acid (LA) batteries. The novelty is given by the intelligent onboard energy management, which upgrades the conventional electric system to the micro-hybrid power system (MHPS). In part I of this publication the key factors for the operation of LA batteries in the MHPS are discussed. Especially for BER one is high dynamic charge acceptance (DCA) for effective boost charging. Vehicle rest time is identified as a particular negative parameter for DCA. It can be refreshed by regular fully charging at elevated charge voltage. Thus, the batteries have to be outstandingly robust against overcharge and water loss. This can be accomplished for valve-regulated lead-acid (VRLA) batteries at least if they are mounted in the trunk. ASSF goes along with frequent high-rate loads for warm cranking. The internal resistance determines the drop of the power net voltage during cranking and is preferably low for reasons of power net stability even after years of operation. Investigations have to be done with aged 90 Ah VRLA-absorbent glass mat (AGM) batteries. Battery operation at partial state-of-charge gives a higher risk of deep discharging (overdischarging). Subsequent re-charging then is likely to lead to the formation of micro-short circuits in the absorbent glass mat separator.

  4. Multi-parameter optimization of piezoelectric actuators for multi-mode active vibration control of cylindrical shells

    NASA Astrophysics Data System (ADS)

    Hu, K. M.; Li, Hua

    2018-07-01

    A novel technique for the multi-parameter optimization of distributed piezoelectric actuators is presented in this paper. The proposed method is designed to improve the performance of multi-mode vibration control in cylindrical shells. The optimization parameters of actuator patch configuration include position, size, and tilt angle. The modal control force of tilted orthotropic piezoelectric actuators is derived and the multi-parameter cylindrical shell optimization model is established. The linear quadratic energy index is employed as the optimization criterion. A geometric constraint is proposed to prevent overlap between tilted actuators, which is plugged into a genetic algorithm to search the optimal configuration parameters. A simply-supported closed cylindrical shell with two actuators serves as a case study. The vibration control efficiencies of various parameter sets are evaluated via frequency response and transient response simulations. The results show that the linear quadratic energy indexes of position and size optimization decreased by 14.0% compared to position optimization; those of position and tilt angle optimization decreased by 16.8%; and those of position, size, and tilt angle optimization decreased by 25.9%. It indicates that, adding configuration optimization parameters is an efficient approach to improving the vibration control performance of piezoelectric actuators on shells.

  5. Software Computes Tape-Casting Parameters

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III

    2003-01-01

    Tcast2 is a FORTRAN computer program that accelerates the setup of a process in which a slurry containing metal particles and a polymeric binder is cast, to a thickness regulated by a doctor blade, onto fibers wound on a rotating drum to make a green precursor of a metal-matrix/fiber composite tape. Before Tcast2, setup parameters were determined by trial and error in time-consuming multiple iterations of the process. In Tcast2, the fiber architecture in the final composite is expressed in terms of the lateral distance between fibers and the thickness-wise distance between fibers in adjacent plies. The lateral distance is controlled via the manner of winding. The interply spacing is controlled via the characteristics of the slurry and the doctor-blade height. When a new combination of fibers and slurry is first cast and dried to a green tape, the shrinkage from the wet to the green condition and a few other key parameters of the green tape are measured. These parameters are provided as input to Tcast2, which uses them to compute the doctor-blade height and fiber spacings needed to obtain the desired fiber architecture and fiber volume fraction in the final composite.

  6. Simulation of parameters of hydraulic drive with volumetric type controller

    NASA Astrophysics Data System (ADS)

    Mulyukin, V. L.; Boldyrev, A. V.; Karelin, D. L.; Belousov, A. M.

    2017-09-01

    The article presents a mathematical model of volumetric type hydraulic drive controller that allows to calculate the parameters of forward and reverse motion. According to the results of simulation static characteristics of rod’s speed and the force of the hydraulic cylinder rod were built and the influence of the angle of swash plate of the controller at the characteristics profile is shown. The results analysis showed that the proposed controller allows steplessly adjust the speed□ц of hydraulic cylinder’s rod motion and the force developed on the rod without the use of flow throttling.

  7. Systems and Methods for Parameter Dependent Riccati Equation Approaches to Adaptive Control

    NASA Technical Reports Server (NTRS)

    Kim, Kilsoo (Inventor); Yucelen, Tansel (Inventor); Calise, Anthony J. (Inventor)

    2015-01-01

    Systems and methods for adaptive control are disclosed. The systems and methods can control uncertain dynamic systems. The control system can comprise a controller that employs a parameter dependent Riccati equation. The controller can produce a response that causes the state of the system to remain bounded. The control system can control both minimum phase and non-minimum phase systems. The control system can augment an existing, non-adaptive control design without modifying the gains employed in that design. The control system can also avoid the use of high gains in both the observer design and the adaptive control law.

  8. Simulation-based Extraction of Key Material Parameters from Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Alsafi, Huseen; Peninngton, Gray

    Models for the atomic force microscopy (AFM) tip and sample interaction contain numerous material parameters that are often poorly known. This is especially true when dealing with novel material systems or when imaging samples that are exposed to complicated interactions with the local environment. In this work we use Monte Carlo methods to extract sample material parameters from the experimental AFM analysis of a test sample. The parameterized theoretical model that we use is based on the Virtual Environment for Dynamic AFM (VEDA) [1]. The extracted material parameters are then compared with the accepted values for our test sample. Using this procedure, we suggest a method that can be used to successfully determine unknown material properties in novel and complicated material systems. We acknowledge Fisher Endowment Grant support from the Jess and Mildred Fisher College of Science and Mathematics,Towson University.

  9. Evolving Systems: Adaptive Key Component Control and Inheritance of Passivity and Dissipativity

    NASA Technical Reports Server (NTRS)

    Frost, S. A.; Balas, M. J.

    2010-01-01

    We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. Autonomous assembly of large, complex flexible structures in space is a target application for Evolving Systems. A critical requirement for autonomous assembling structures is that they remain stable during and after assembly. The fundamental topic of inheritance of stability, dissipativity, and passivity in Evolving Systems is the primary focus of this research. In this paper, we develop an adaptive key component controller to restore stability in Nonlinear Evolving Systems that would otherwise fail to inherit the stability traits of their components. We provide sufficient conditions for the use of this novel control method and demonstrate its use on an illustrative example.

  10. Association of self-efficacy of parents/caregivers with childhood asthma control parameters.

    PubMed

    Gomes, Ana Lúcia Araújo; Lima, Kamila Ferreira; Mendes, Elizamar Regina da Rocha; Joventino, Emanuella Silva; Martins, Mariana Cavalcante; Almeida, Paulo César de; Ximenes, Lorena Barbosa

    2017-01-01

    Objective To verify the association between the self-efficacy of parents/caregivers and control parameters of childhood asthma. Method Cross-sectional study with parents/caregivers of asthmatic children. Data were collected through a sociodemographic questionnaire and the Self-efficacy and their child's level of asthma control scale: Brazilian version. Results Participation of 216 parents/caregivers in the study. There was a statistically significant association between self-efficacy scores and the following variables: unscheduled physician visit (p=0.001), visit to emergency department (p<0.001), hospital stays in the previous 12 months (p=0.005), physical activity limitation (p=0.003), school days missed (p<0.001), impaired sleep (p<0.001), ability to differentiate crisis medication from control medication (p=0.024), use of spacer (p=0.001), performing oral hygiene after use of inhaled corticosteroids (p=0.003), and knowledge of medication gratuity (p=0.004). Conclusion A significant relationship of the self-efficacy of parents/caregivers of asthmatic children with control parameters and training on the necessary skills to reach this control was demonstrated in the study.

  11. Universal Parameter Measurement and Sensorless Vector Control of Induction and Permanent Magnet Synchronous Motors

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shu; Ara, Takahiro

    Recently, induction motors (IMs) and permanent-magnet synchronous motors (PMSMs) have been used in various industrial drive systems. The features of the hardware device used for controlling the adjustable-speed drive in these motors are almost identical. Despite this, different techniques are generally used for parameter measurement and speed-sensorless control of these motors. If the same technique can be used for parameter measurement and sensorless control, a highly versatile adjustable-speed-drive system can be realized. In this paper, the authors describe a new universal sensorless control technique for both IMs and PMSMs (including salient pole and nonsalient pole machines). A mathematical model applicable for IMs and PMSMs is discussed. Using this model, the authors derive the proposed universal sensorless vector control algorithm on the basis of estimation of the stator flux linkage vector. All the electrical motor parameters are determined by a unified test procedure. The proposed method is implemented on three test machines. The actual driving test results demonstrate the validity of the proposed method.

  12. Self-tuning control algorithm design for vehicle adaptive cruise control system through real-time estimation of vehicle parameters and road grade

    NASA Astrophysics Data System (ADS)

    Marzbanrad, Javad; Tahbaz-zadeh Moghaddam, Iman

    2016-09-01

    The main purpose of this paper is to design a self-tuning control algorithm for an adaptive cruise control (ACC) system that can adapt its behaviour to variations of vehicle dynamics and uncertain road grade. To this aim, short-time linear quadratic form (STLQF) estimation technique is developed so as to track simultaneously the trend of the time-varying parameters of vehicle longitudinal dynamics with a small delay. These parameters are vehicle mass, road grade and aerodynamic drag-area coefficient. Next, the values of estimated parameters are used to tune the throttle and brake control inputs and to regulate the throttle/brake switching logic that governs the throttle and brake switching. The performance of the designed STLQF-based self-tuning control (STLQF-STC) algorithm for ACC system is compared with the conventional method based on fixed control structure regarding the speed/distance tracking control modes. Simulation results show that the proposed control algorithm improves the performance of throttle and brake controllers, providing more comfort while travelling, enhancing driving safety and giving a satisfactory performance in the presence of different payloads and road grade variations.

  13. Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue

    NASA Astrophysics Data System (ADS)

    Shukla, Chitra; Thapliyal, Kishore; Pathak, Anirban

    2017-12-01

    Semi-quantum protocols that allow some of the users to remain classical are proposed for a large class of problems associated with secure communication and secure multiparty computation. Specifically, first-time semi-quantum protocols are proposed for key agreement, controlled deterministic secure communication and dialogue, and it is shown that the semi-quantum protocols for controlled deterministic secure communication and dialogue can be reduced to semi-quantum protocols for e-commerce and private comparison (socialist millionaire problem), respectively. Complementing with the earlier proposed semi-quantum schemes for key distribution, secret sharing and deterministic secure communication, set of schemes proposed here and subsequent discussions have established that almost every secure communication and computation tasks that can be performed using fully quantum protocols can also be performed in semi-quantum manner. Some of the proposed schemes are completely orthogonal-state-based, and thus, fundamentally different from the existing semi-quantum schemes that are conjugate coding-based. Security, efficiency and applicability of the proposed schemes have been discussed with appropriate importance.

  14. Invariant-Based Inverse Engineering of Crane Control Parameters

    NASA Astrophysics Data System (ADS)

    González-Resines, S.; Guéry-Odelin, D.; Tobalina, A.; Lizuain, I.; Torrontegui, E.; Muga, J. G.

    2017-11-01

    By applying invariant-based inverse engineering in the small-oscillation regime, we design the time dependence of the control parameters of an overhead crane (trolley displacement and rope length) to transport a load between two positions at different heights with minimal final-energy excitation for a microcanonical ensemble of initial conditions. The analogy between ion transport in multisegmented traps or neutral-atom transport in moving optical lattices and load manipulation by cranes opens a route for a useful transfer of techniques among very different fields.

  15. Robust control of systems with real parameter uncertainty and unmodelled dynamics

    NASA Technical Reports Server (NTRS)

    Chang, Bor-Chin; Fischl, Robert

    1991-01-01

    During this research period we have made significant progress in the four proposed areas: (1) design of robust controllers via H infinity optimization; (2) design of robust controllers via mixed H2/H infinity optimization; (3) M-delta structure and robust stability analysis for structured uncertainties; and (4) a study on controllability and observability of perturbed plant. It is well known now that the two-Riccati-equation solution to the H infinity control problem can be used to characterize all possible stabilizing optimal or suboptimal H infinity controllers if the optimal H infinity norm or gamma, an upper bound of a suboptimal H infinity norm, is given. In this research, we discovered some useful properties of these H infinity Riccati solutions. Among them, the most prominent one is that the spectral radius of the product of these two Riccati solutions is a continuous, nonincreasing, convex function of gamma in the domain of interest. Based on these properties, quadratically convergent algorithms are developed to compute the optimal H infinity norm. We also set up a detailed procedure for applying the H infinity theory to robust control systems design. The desire to design controllers with H infinity robustness but H(exp 2) performance has recently resulted in mixed H(exp 2) and H infinity control problem formulation. The mixed H(exp 2)/H infinity problem have drawn the attention of many investigators. However, solution is only available for special cases of this problem. We formulated a relatively realistic control problem with H(exp 2) performance index and H infinity robustness constraint into a more general mixed H(exp 2)/H infinity problem. No optimal solution yet is available for this more general mixed H(exp 2)/H infinity problem. Although the optimal solution for this mixed H(exp 2)/H infinity control has not yet been found, we proposed a design approach which can be used through proper choice of the available design parameters to influence both

  16. An investigation of wash-off controlling parameters at urban and commercial monitoring sites.

    PubMed

    Berretta, C; Gnecco, I; Lanza, L G; La Barbera, P

    2007-01-01

    The relationship between the parameters of the wash-off function and the controlling hydrologic variables are investigated in this paper, assuming that the pollutant generation process basically depends on the watershed rainfall-runoff response characteristics. Data collected during an intense monitoring program carried out by the Department of Environmental Engineering of the University of Genova (Italy) within a residential area, an auto dismantler facility, a tourism terminal and a urban waste truck depot are used to this aim. The observed runoff events are classified into different TSS mass delivery processes and the occurrence of the first flush phenomenon is also investigated. The correlation between the mathematical parameters describing the exponential process and the hydrological parameters of the corresponding rainfall-runoff event is analysed: runoff parameters and in particular the maximum flow discharge over the time of concentration of the drainage network are proposed as the controlling factor for the total mass of pollutant that is made available for wash-off during each runoff event.

  17. Transient Oscilliations in Mechanical Systems of Automatic Control with Random Parameters

    NASA Astrophysics Data System (ADS)

    Royev, B.; Vinokur, A.; Kulikov, G.

    2018-04-01

    Transient oscillations in mechanical systems of automatic control with random parameters is a relevant but insufficiently studied issue. In this paper, a modified spectral method was applied to investigate the problem. The nature of dynamic processes and the phase portraits are analyzed depending on the amplitude and frequency of external influence. It is evident from the obtained results, that the dynamic phenomena occurring in the systems with random parameters under external influence are complex, and their study requires further investigation.

  18. Psychomotor control in a virtual laparoscopic surgery training environment: gaze control parameters differentiate novices from experts.

    PubMed

    Wilson, Mark; McGrath, John; Vine, Samuel; Brewer, James; Defriend, David; Masters, Richard

    2010-10-01

    Surgical simulation is increasingly used to facilitate the adoption of technical skills during surgical training. This study sought to determine if gaze control parameters could differentiate between the visual control of experienced and novice operators performing an eye-hand coordination task on a virtual reality laparoscopic surgical simulator (LAP Mentor™). Typically adopted hand movement metrics reflect only one half of the eye-hand coordination relationship; therefore, little is known about how hand movements are guided and controlled by vision. A total of 14 right-handed surgeons were categorised as being either experienced (having led more than 70 laparoscopic procedures) or novice (having performed fewer than 10 procedures) operators. The eight experienced and six novice surgeons completed the eye-hand coordination task from the LAP Mentor basic skills package while wearing a gaze registration system. A variety of performance, movement, and gaze parameters were recorded and compared between groups. The experienced surgeons completed the task significantly more quickly than the novices, but only the economy of movement of the left tool differentiated skill level from the LAP Mentor parameters. Gaze analyses revealed that experienced surgeons spent significantly more time fixating the target locations than novices, who split their time between focusing on the targets and tracking the tools. The findings of the study provide support for the utility of assessing strategic gaze behaviour to better understand the way in which surgeons utilise visual information to plan and control tool movements in a virtual reality laparoscopic environment. It is hoped that by better understanding the limitations of the psychomotor system, effective gaze training programs may be developed.

  19. Psychomotor control in a virtual laparoscopic surgery training environment: gaze control parameters differentiate novices from experts

    PubMed Central

    McGrath, John; Vine, Samuel; Brewer, James; Defriend, David; Masters, Richard

    2010-01-01

    Background Surgical simulation is increasingly used to facilitate the adoption of technical skills during surgical training. This study sought to determine if gaze control parameters could differentiate between the visual control of experienced and novice operators performing an eye-hand coordination task on a virtual reality laparoscopic surgical simulator (LAP Mentor™). Typically adopted hand movement metrics reflect only one half of the eye-hand coordination relationship; therefore, little is known about how hand movements are guided and controlled by vision. Methods A total of 14 right-handed surgeons were categorised as being either experienced (having led more than 70 laparoscopic procedures) or novice (having performed fewer than 10 procedures) operators. The eight experienced and six novice surgeons completed the eye-hand coordination task from the LAP Mentor basic skills package while wearing a gaze registration system. A variety of performance, movement, and gaze parameters were recorded and compared between groups. Results The experienced surgeons completed the task significantly more quickly than the novices, but only the economy of movement of the left tool differentiated skill level from the LAP Mentor parameters. Gaze analyses revealed that experienced surgeons spent significantly more time fixating the target locations than novices, who split their time between focusing on the targets and tracking the tools. Conclusion The findings of the study provide support for the utility of assessing strategic gaze behaviour to better understand the way in which surgeons utilise visual information to plan and control tool movements in a virtual reality laparoscopic environment. It is hoped that by better understanding the limitations of the psychomotor system, effective gaze training programs may be developed. PMID:20333405

  20. Excitations for Rapidly Estimating Flight-Control Parameters

    NASA Technical Reports Server (NTRS)

    Moes, Tim; Smith, Mark; Morelli, Gene

    2006-01-01

    A flight test on an F-15 airplane was performed to evaluate the utility of prescribed simultaneous independent surface excitations (PreSISE) for real-time estimation of flight-control parameters, including stability and control derivatives. The ability to extract these derivatives in nearly real time is needed to support flight demonstration of intelligent flight-control system (IFCS) concepts under development at NASA, in academia, and in industry. Traditionally, flight maneuvers have been designed and executed to obtain estimates of stability and control derivatives by use of a post-flight analysis technique. For an IFCS, it is required to be able to modify control laws in real time for an aircraft that has been damaged in flight (because of combat, weather, or a system failure). The flight test included PreSISE maneuvers, during which all desired control surfaces are excited simultaneously, but at different frequencies, resulting in aircraft motions about all coordinate axes. The objectives of the test were to obtain data for post-flight analysis and to perform the analysis to determine: 1) The accuracy of derivatives estimated by use of PreSISE, 2) The required durations of PreSISE inputs, and 3) The minimum required magnitudes of PreSISE inputs. The PreSISE inputs in the flight test consisted of stacked sine-wave excitations at various frequencies, including symmetric and differential excitations of canard and stabilator control surfaces and excitations of aileron and rudder control surfaces of a highly modified F-15 airplane. Small, medium, and large excitations were tested in 15-second maneuvers at subsonic, transonic, and supersonic speeds. Typical excitations are shown in Figure 1. Flight-test data were analyzed by use of pEst, which is an industry-standard output-error technique developed by Dryden Flight Research Center. Data were also analyzed by use of Fourier-transform regression (FTR), which was developed for onboard, real-time estimation of the

  1. Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks.

    PubMed

    Furrer, F; Franz, T; Berta, M; Leverrier, A; Scholz, V B; Tomamichel, M; Werner, R F

    2012-09-07

    We provide a security analysis for continuous variable quantum key distribution protocols based on the transmission of two-mode squeezed vacuum states measured via homodyne detection. We employ a version of the entropic uncertainty relation for smooth entropies to give a lower bound on the number of secret bits which can be extracted from a finite number of runs of the protocol. This bound is valid under general coherent attacks, and gives rise to keys which are composably secure. For comparison, we also give a lower bound valid under the assumption of collective attacks. For both scenarios, we find positive key rates using experimental parameters reachable today.

  2. Effects of sleep bruxism on functional and occlusal parameters: a prospective controlled investigation

    PubMed Central

    Alicia Ommerborn, Michelle; Giraki, Maria; Schneider, Christine; Michael Fuck, Lars; Handschel, Jörg; Franz, Matthias; Hans-Michael Raab, Wolfgang; Schäfer, Ralf

    2012-01-01

    This study was conducted to verify the results of a preceding retrospective pilot study by means of a prospective controlled investigation including a larger sample size. Therefore, the aim of this clinical investigation was to analyze the relationship between sleep bruxism and several functional and occlusal parameters. The null hypothesis of this study was that there would be no differences among sleep bruxism subjects and non-sleep bruxism controls regarding several functional and occlusal parameters. Fifty-eight sleep bruxism subjects and 31 controls participated in this study. The diagnosis sleep bruxism was based on clinical criteria of the American Academy of Sleep Medicine. Sixteen functional and occlusal parameters were recorded clinically or from dental study casts. Similar to the recently published retrospective pilot study, with a mean slide of 0.77 mm (s.d., 0.69 mm) in the sleep bruxism group and a mean slide of 0.4 mm (s.d., 0.57 mm) in the control group, the evaluation of the mean comparison between the two groups demonstrated a larger slide from centric occlusion to maximum intercuspation in sleep bruxism subjects (Mann–Whitney U-test; P=0.008). However, following Bonferroni adjustment, none of the 16 occlusal and functional variables differed significantly between the sleep bruxism subjects and the non-sleep bruxism controls. The present study shows that the occlusal and functional parameters evaluated do not differ between sleep bruxism subjects and non-sleep bruxism subjects. However, as the literature reveals a possible association between bruxism and certain subgroups of temporomandibular disorders, it appears advisable to incorporate the individual adaptive capacity of the stomatognathic system into future investigations. PMID:22935746

  3. Effects of sleep bruxism on functional and occlusal parameters: a prospective controlled investigation.

    PubMed

    Ommerborn, Michelle Alicia; Giraki, Maria; Schneider, Christine; Fuck, Lars Michael; Handschel, Jörg; Franz, Matthias; Hans-Michael Raab, Wolfgang; Schäfer, Ralf

    2012-09-01

    This study was conducted to verify the results of a preceding retrospective pilot study by means of a prospective controlled investigation including a larger sample size. Therefore, the aim of this clinical investigation was to analyze the relationship between sleep bruxism and several functional and occlusal parameters. The null hypothesis of this study was that there would be no differences among sleep bruxism subjects and non-sleep bruxism controls regarding several functional and occlusal parameters. Fifty-eight sleep bruxism subjects and 31 controls participated in this study. The diagnosis sleep bruxism was based on clinical criteria of the American Academy of Sleep Medicine. Sixteen functional and occlusal parameters were recorded clinically or from dental study casts. Similar to the recently published retrospective pilot study, with a mean slide of 0.77 mm (s.d., 0.69 mm) in the sleep bruxism group and a mean slide of 0.4 mm (s.d., 0.57 mm) in the control group, the evaluation of the mean comparison between the two groups demonstrated a larger slide from centric occlusion to maximum intercuspation in sleep bruxism subjects (Mann-Whitney U-test; P=0.008). However, following Bonferroni adjustment, none of the 16 occlusal and functional variables differed significantly between the sleep bruxism subjects and the non-sleep bruxism controls. The present study shows that the occlusal and functional parameters evaluated do not differ between sleep bruxism subjects and non-sleep bruxism subjects. However, as the literature reveals a possible association between bruxism and certain subgroups of temporomandibular disorders, it appears advisable to incorporate the individual adaptive capacity of the stomatognathic system into future investigations.

  4. An approach to design controllers for MIMO fractional-order plants based on parameter optimization algorithm.

    PubMed

    Xue, Dingyü; Li, Tingxue

    2017-04-27

    The parameter optimization method for multivariable systems is extended to the controller design problems for multiple input multiple output (MIMO) square fractional-order plants. The algorithm can be applied to search for the optimal parameters of integer-order controllers for fractional-order plants with or without time delays. Two examples are given to present the controller design procedures for MIMO fractional-order systems. Simulation studies show that the integer-order controllers designed are robust to plant gain variations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Hands-on parameter search for neural simulations by a MIDI-controller.

    PubMed

    Eichner, Hubert; Borst, Alexander

    2011-01-01

    Computational neuroscientists frequently encounter the challenge of parameter fitting--exploring a usually high dimensional variable space to find a parameter set that reproduces an experimental data set. One common approach is using automated search algorithms such as gradient descent or genetic algorithms. However, these approaches suffer several shortcomings related to their lack of understanding the underlying question, such as defining a suitable error function or getting stuck in local minima. Another widespread approach is manual parameter fitting using a keyboard or a mouse, evaluating different parameter sets following the users intuition. However, this process is often cumbersome and time-intensive. Here, we present a new method for manual parameter fitting. A MIDI controller provides input to the simulation software, where model parameters are then tuned according to the knob and slider positions on the device. The model is immediately updated on every parameter change, continuously plotting the latest results. Given reasonably short simulation times of less than one second, we find this method to be highly efficient in quickly determining good parameter sets. Our approach bears a close resemblance to tuning the sound of an analog synthesizer, giving the user a very good intuition of the problem at hand, such as immediate feedback if and how results are affected by specific parameter changes. In addition to be used in research, our approach should be an ideal teaching tool, allowing students to interactively explore complex models such as Hodgkin-Huxley or dynamical systems.

  6. Hands-On Parameter Search for Neural Simulations by a MIDI-Controller

    PubMed Central

    Eichner, Hubert; Borst, Alexander

    2011-01-01

    Computational neuroscientists frequently encounter the challenge of parameter fitting – exploring a usually high dimensional variable space to find a parameter set that reproduces an experimental data set. One common approach is using automated search algorithms such as gradient descent or genetic algorithms. However, these approaches suffer several shortcomings related to their lack of understanding the underlying question, such as defining a suitable error function or getting stuck in local minima. Another widespread approach is manual parameter fitting using a keyboard or a mouse, evaluating different parameter sets following the users intuition. However, this process is often cumbersome and time-intensive. Here, we present a new method for manual parameter fitting. A MIDI controller provides input to the simulation software, where model parameters are then tuned according to the knob and slider positions on the device. The model is immediately updated on every parameter change, continuously plotting the latest results. Given reasonably short simulation times of less than one second, we find this method to be highly efficient in quickly determining good parameter sets. Our approach bears a close resemblance to tuning the sound of an analog synthesizer, giving the user a very good intuition of the problem at hand, such as immediate feedback if and how results are affected by specific parameter changes. In addition to be used in research, our approach should be an ideal teaching tool, allowing students to interactively explore complex models such as Hodgkin-Huxley or dynamical systems. PMID:22066027

  7. Intelligent tuning method of PID parameters based on iterative learning control for atomic force microscopy.

    PubMed

    Liu, Hui; Li, Yingzi; Zhang, Yingxu; Chen, Yifu; Song, Zihang; Wang, Zhenyu; Zhang, Suoxin; Qian, Jianqiang

    2018-01-01

    Proportional-integral-derivative (PID) parameters play a vital role in the imaging process of an atomic force microscope (AFM). Traditional parameter tuning methods require a lot of manpower and it is difficult to set PID parameters in unattended working environments. In this manuscript, an intelligent tuning method of PID parameters based on iterative learning control is proposed to self-adjust PID parameters of the AFM according to the sample topography. This method gets enough information about the output signals of PID controller and tracking error, which will be used to calculate the proper PID parameters, by repeated line scanning until convergence before normal scanning to learn the topography. Subsequently, the appropriate PID parameters are obtained by fitting method and then applied to the normal scanning process. The feasibility of the method is demonstrated by the convergence analysis. Simulations and experimental results indicate that the proposed method can intelligently tune PID parameters of the AFM for imaging different topographies and thus achieve good tracking performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Extending key sharing: how to generate a key tightly coupled to a network security policy

    NASA Astrophysics Data System (ADS)

    Kazantzidis, Matheos

    2006-04-01

    Current state of the art security policy technologies, besides the small scale limitation and largely manual nature of accompanied management methods, are lacking a) in real-timeliness of policy implementation and b) vulnerabilities and inflexibility stemming from the centralized policy decision making; even if, for example, a policy description or access control database is distributed, the actual decision is often a centralized action and forms a system single point of failure. In this paper we are presenting a new fundamental concept that allows implement a security policy by a systematic and efficient key distribution procedure. Specifically, we extend the polynomial Shamir key splitting. According to this, a global key is split into n parts, any k of which can re-construct the original key. In this paper we present a method that instead of having "any k parts" be able to re-construct the original key, the latter can only be reconstructed if keys are combined as any access control policy describes. This leads into an easily deployable key generation procedure that results a single key per entity that "knows" its role in the specific access control policy from which it was derived. The system is considered efficient as it may be used to avoid expensive PKI operations or pairwise key distributions as well as provides superior security due to its distributed nature, the fact that the key is tightly coupled to the policy, and that policy change may be implemented easier and faster.

  9. Nanoparticles for Radiation Therapy Enhancement: the Key Parameters

    PubMed Central

    Retif, Paul; Pinel, Sophie; Toussaint, Magali; Frochot, Céline; Chouikrat, Rima; Bastogne, Thierry; Barberi-Heyob, Muriel

    2015-01-01

    This review focuses on the radiosensitization strategies that use high-Z nanoparticles. It does not establish an exhaustive list of the works in this field but rather propose constructive criticisms pointing out critical factors that could improve the nano-radiation therapy. Whereas most reviews show the chemists and/or biologists points of view, the present analysis is also seen through the prism of the medical physicist. In particular, we described and evaluated the influence of X-rays energy spectra using a numerical analysis. We observed a lack of standardization in preclinical studies that could partially explain the low number of translation to clinical applications for this innovative therapeutic strategy. Pointing out the critical parameters of high-Z nanoparticles radiosensitization, this review is expected to contribute to a larger preclinical and clinical development. PMID:26155318

  10. Nanoparticles for Radiation Therapy Enhancement: the Key Parameters.

    PubMed

    Retif, Paul; Pinel, Sophie; Toussaint, Magali; Frochot, Céline; Chouikrat, Rima; Bastogne, Thierry; Barberi-Heyob, Muriel

    2015-01-01

    This review focuses on the radiosensitization strategies that use high-Z nanoparticles. It does not establish an exhaustive list of the works in this field but rather propose constructive criticisms pointing out critical factors that could improve the nano-radiation therapy. Whereas most reviews show the chemists and/or biologists points of view, the present analysis is also seen through the prism of the medical physicist. In particular, we described and evaluated the influence of X-rays energy spectra using a numerical analysis. We observed a lack of standardization in preclinical studies that could partially explain the low number of translation to clinical applications for this innovative therapeutic strategy. Pointing out the critical parameters of high-Z nanoparticles radiosensitization, this review is expected to contribute to a larger preclinical and clinical development.

  11. Parameters of Technological Growth

    ERIC Educational Resources Information Center

    Starr, Chauncey; Rudman, Richard

    1973-01-01

    Examines the factors involved in technological growth and identifies the key parameters as societal resources and societal expectations. Concludes that quality of life can only be maintained by reducing population growth, since this parameter is the product of material levels, overcrowding, food, and pollution. (JR)

  12. Towards Improving our Understanding on the Retrievals of Key Parameters Characterising Land Surface Interactions from Space: Introduction & First Results from the PREMIER-EO Project

    NASA Astrophysics Data System (ADS)

    Ireland, Gareth; North, Matthew R.; Petropoulos, George P.; Srivastava, Prashant K.; Hodges, Crona

    2015-04-01

    Acquiring accurate information on the spatio-temporal variability of soil moisture content (SM) and evapotranspiration (ET) is of key importance to extend our understanding of the Earth system's physical processes, and is also required in a wide range of multi-disciplinary research studies and applications. The utility and applicability of Earth Observation (EO) technology provides an economically feasible solution to derive continuous spatio-temporal estimates of key parameters characterising land surface interactions, including ET as well as SM. Such information is of key value to practitioners, decision makers and scientists alike. The PREMIER-EO project recently funded by High Performance Computing Wales (HPCW) is a research initiative directed towards the development of a better understanding of EO technology's present ability to derive operational estimations of surface fluxes and SM. Moreover, the project aims at addressing knowledge gaps related to the operational estimation of such parameters, and thus contribute towards current ongoing global efforts towards enhancing the accuracy of those products. In this presentation we introduce the PREMIER-EO project, providing a detailed overview of the research aims and objectives for the 1 year duration of the project's implementation. Subsequently, we make available the initial results of the work carried out herein, in particular, related to an all-inclusive and robust evaluation of the accuracy of existing operational products of ET and SM from different ecosystems globally. The research outcomes of this project, once completed, will provide an important contribution towards addressing the knowledge gaps related to the operational estimation of ET and SM. This project results will also support efforts ongoing globally towards the operational development of related products using technologically advanced EO instruments which were launched recently or planned be launched in the next 1-2 years. Key Words: PREMIER

  13. Interdecadal Change of Tropical Cyclone Genesis Controlling Parameter in Western North Pacific

    NASA Astrophysics Data System (ADS)

    Li, T.

    2017-12-01

    The main environmental parameter controlling tropical cyclone (TC) genesis in the western North Pacific (WNP) changed in different interdecadal periods. The interannual variability of TC genesis frequency was primarily control by specific humidity in 1950-1976, sea surface temperature (SST) in 1977-1998, and vorticity in 1999-2014. A further diagnosis shows that the change of environmental specific humidity during 1950-1976 was attributed to anomalous advection of mean moisture during ENSO developing summer. The SST change during 1977-1998 was associated with circulation change during ENSO decaying summer. The change of environment vorticity was primarily related to CP-type El Niño during 1999-2014. The ultimate cause of the controlling parameter change is attributed to the change of ENSO behavior. Compared to the first period, a stronger EP-type ENSO variability in the second period leads to a stronger circulation/SST response during ENSO decaying phase. The occurrence of more frequent CP type El Niño in the third period was responsible for greater vorticity controlling in the WNP.

  14. Energy expenditure: a critical determinant of energy balance with key hypothalamic controls.

    PubMed

    Richard, D

    2007-09-01

    Energy stores are regulated through complex neural controls exerted on both food intake and energy expenditure. These controls are insured by interconnected neurons that produce different peptides or classic neurotransmitters, which have been regrouped into anabolic' and catabolic' systems. While the control of energy intake has been addressed in numerous investigations, that of energy expenditure has, as yet, only received a moderate interest, even though energy expenditure represents a key determinant of energy balance. In laboratory rodents, in particular, a strong regulatory control is exerted on brown adipose tissue (BAT), which represent an efficient thermogenic effector. BAT thermogenesis is governed by the sympathetic nervous system (SNS), whose activity is controlled by neurons comprised in various brain regions, which include the paraventricular hypothalamic nucleus (PVH), the arcuate nucleus (ARC) and the lateral hypothalamus (LH). Proopiomelanocortin neurons from the ARC project to the PVH and terminate in the vicinity of the melanocortin-4 receptors, which are concentrated in the descending division of the PVH, which comprise neurons controlling the SNS outflow to BAT. The LH contains neurons producing melanin-concentrating hormone or orexins, which also are important peptides in the control of energy expenditure. These neurons are not only polysynaptically connected to BAT, but also linked to brains regions controlling motivated behaviors and locomotor activity and, consequently, their role in the control of energy expenditure could go beyond BAT thermogenesis.

  15. Control of Distributed Parameter Systems

    DTIC Science & Technology

    1990-08-01

    vari- ant of the general Lotka - Volterra model for interspecific competition. The variant described the emergence of one subpopulation from another as a...distribut ion unlimited. I&. ARSTRACT (MAUMUnw2O1 A unified arioroximation framework for Parameter estimation In general linear POE models has been completed...unified approximation framework for parameter estimation in general linear PDE models. This framework has provided the theoretical basis for a number of

  16. Autonomous Parameter Adjustment for SSVEP-Based BCIs with a Novel BCI Wizard.

    PubMed

    Gembler, Felix; Stawicki, Piotr; Volosyak, Ivan

    2015-01-01

    Brain-Computer Interfaces (BCIs) transfer human brain activities into computer commands and enable a communication channel without requiring movement. Among other BCI approaches, steady-state visual evoked potential (SSVEP)-based BCIs have the potential to become accurate, assistive technologies for persons with severe disabilities. Those systems require customization of different kinds of parameters (e.g., stimulation frequencies). Calibration usually requires selecting predefined parameters by experienced/trained personnel, though in real-life scenarios an interface allowing people with no experience in programming to set up the BCI would be desirable. Another occurring problem regarding BCI performance is BCI illiteracy (also called BCI deficiency). Many articles reported that BCI control could not be achieved by a non-negligible number of users. In order to bypass those problems we developed a SSVEP-BCI wizard, a system that automatically determines user-dependent key-parameters to customize SSVEP-based BCI systems. This wizard was tested and evaluated with 61 healthy subjects. All subjects were asked to spell the phrase "RHINE WAAL UNIVERSITY" with a spelling application after key parameters were determined by the wizard. Results show that all subjects were able to control the spelling application. A mean (SD) accuracy of 97.14 (3.73)% was reached (all subjects reached an accuracy above 85% and 25 subjects even reached 100% accuracy).

  17. Technical Approach for Determining Key Parameters Needed for Modeling the Performance of Cast Stone for the Integrated Disposal Facility Performance Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yabusaki, Steven B.; Serne, R. Jeffrey; Rockhold, Mark L.

    2015-03-30

    provides the critical link between the short-term understanding from laboratory and field tests, and the prediction of repository performance over repository time frames and scales. One common recommendation is that experiments be designed to permit the appropriate scaling in the models. There is a large contrast in the physical and chemical properties between the Cast Stone waste package and the IDF backfill and surrounding sediments. Cast Stone exhibits low permeability, high tortuosity, low carbonate, high pH, and low Eh whereas the backfill and native sediments have high permeability, low tortuosity, high carbonate, circumneutral pH, and high Eh. These contrasts have important implications for flow, transport, and reactions across the Cast Stone – backfill interface. Over time with transport across the interface and subsequent reactions, the sharp geochemical contrast will blur and there will be a range of spatially-distributed conditions. In general, COC mobility and transport will be sensitive to these geochemical variations, which also include physical changes in porosity and permeability from mineral reactions. Therefore, PA modeling must address processes, properties, and conditions that alter the physical and chemical controls on COC transport in the cementitious waste forms over time. Section 2 of this document reviews past Hanford PAs and SRS Saltstone PAs, which to date have mostly relied on the lumped parameter COC release conceptual models for TSPA predictions, and provides some details on the chosen values for the lumped parameters. Section 3 provides more details on the hierarchical modeling strategy and processes and mechanisms that control COC release. Section 4 summarizes and lists the key parameters for which numerical values are needed to perform PAs. Section 5 provides brief summaries of the methods used to measure the needed parameters and references to get more details.« less

  18. 6 DOF synchronized control for spacecraft formation flying with input constraint and parameter uncertainties.

    PubMed

    Lv, Yueyong; Hu, Qinglei; Ma, Guangfu; Zhou, Jiakang

    2011-10-01

    This paper treats the problem of synchronized control of spacecraft formation flying (SFF) in the presence of input constraint and parameter uncertainties. More specifically, backstepping based robust control is first developed for the total 6 DOF dynamic model of SFF with parameter uncertainties, in which the model consists of relative translation and attitude rotation. Then this controller is redesigned to deal with the input constraint problem by incorporating a command filter such that the generated control could be implementable even under physical or operating constraints on the control input. The convergence of the proposed control algorithms is proved by the Lyapunov stability theorem. Compared with conventional methods, illustrative simulations of spacecraft formation flying are conducted to verify the effectiveness of the proposed approach to achieve the spacecraft track the desired attitude and position trajectories in a synchronized fashion even in the presence of uncertainties, external disturbances and control saturation constraint. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  19. A design methodology for nonlinear systems containing parameter uncertainty: Application to nonlinear controller design

    NASA Technical Reports Server (NTRS)

    Young, G.

    1982-01-01

    A design methodology capable of dealing with nonlinear systems, such as a controlled ecological life support system (CELSS), containing parameter uncertainty is discussed. The methodology was applied to the design of discrete time nonlinear controllers. The nonlinear controllers can be used to control either linear or nonlinear systems. Several controller strategies are presented to illustrate the design procedure.

  20. Quality control of CT systems by automated monitoring of key performance indicators: a two‐year study

    PubMed Central

    Bujila, Robert; Poludniowski, Gavin; Fransson, Annette

    2015-01-01

    The purpose of this study was to develop a method of performing routine periodical quality controls (QC) of CT systems by automatically analyzing key performance indicators (KPIs), obtainable from images of manufacturers' quality assurance (QA) phantoms. A KPI pertains to a measurable or determinable QC parameter that is influenced by other underlying fundamental QC parameters. The established KPIs are based on relationships between existing QC parameters used in the annual testing program of CT scanners at the Karolinska University Hospital in Stockholm, Sweden. The KPIs include positioning, image noise, uniformity, homogeneity, the CT number of water, and the CT number of air. An application (MonitorCT) was developed to automatically evaluate phantom images in terms of the established KPIs. The developed methodology has been used for two years in clinical routine, where CT technologists perform daily scans of the manufacturer's QA phantom and automatically send the images to MonitorCT for KPI evaluation. In the cases where results were out of tolerance, actions could be initiated in less than 10 min. 900 QC scans from two CT scanners have been collected and analyzed over the two‐year period that MonitorCT has been active. Two types of errors have been registered in this period: a ring artifact was discovered with the image noise test, and a calibration error was detected multiple times with the CT number test. In both cases, results were outside the tolerances defined for MonitorCT, as well as by the vendor. Automated monitoring of KPIs is a powerful tool that can be used to supplement established QC methodologies. Medical physicists and other professionals concerned with the performance of a CT system will, using such methods, have access to comprehensive data on the current and historical (trend) status of the system such that swift actions can be taken in order to ensure the quality of the CT examinations, patient safety, and minimal disruption of service

  1. Quality control of CT systems by automated monitoring of key performance indicators: a two-year study.

    PubMed

    Nowik, Patrik; Bujila, Robert; Poludniowski, Gavin; Fransson, Annette

    2015-07-08

    The purpose of this study was to develop a method of performing routine periodical quality controls (QC) of CT systems by automatically analyzing key performance indicators (KPIs), obtainable from images of manufacturers' quality assurance (QA) phantoms. A KPI pertains to a measurable or determinable QC parameter that is influenced by other underlying fundamental QC parameters. The established KPIs are based on relationships between existing QC parameters used in the annual testing program of CT scanners at the Karolinska University Hospital in Stockholm, Sweden. The KPIs include positioning, image noise, uniformity, homogeneity, the CT number of water, and the CT number of air. An application (MonitorCT) was developed to automatically evaluate phantom images in terms of the established KPIs. The developed methodology has been used for two years in clinical routine, where CT technologists perform daily scans of the manufacturer's QA phantom and automatically send the images to MonitorCT for KPI evaluation. In the cases where results were out of tolerance, actions could be initiated in less than 10 min. 900 QC scans from two CT scanners have been collected and analyzed over the two-year period that MonitorCT has been active. Two types of errors have been registered in this period: a ring artifact was discovered with the image noise test, and a calibration error was detected multiple times with the CT number test. In both cases, results were outside the tolerances defined for MonitorCT, as well as by the vendor. Automated monitoring of KPIs is a powerful tool that can be used to supplement established QC methodologies. Medical physicists and other professionals concerned with the performance of a CT system will, using such methods, have access to comprehensive data on the current and historical (trend) status of the system such that swift actions can be taken in order to ensure the quality of the CT examinations, patient safety, and minimal disruption of service.

  2. Fine-tuning key parameters of an integrated reactor system for the simultaneous removal of COD, sulfate and ammonium and elemental sulfur reclamation.

    PubMed

    Yuan, Ye; Chen, Chuan; Liang, Bin; Huang, Cong; Zhao, Youkang; Xu, Xijun; Tan, Wenbo; Zhou, Xu; Gao, Shuang; Sun, Dezhi; Lee, Duujong; Zhou, Jizhong; Wang, Aijie

    2014-03-30

    In this paper, we proposed an integrated reactor system for simultaneous removal of COD, sulfate and ammonium (integrated C-S-N removal system) and investigated the key parameters of the system for a high level of elemental sulfur (S(0)) production. The system consisted of 4 main units: sulfate reduction and organic carbon removal (SR-CR), autotrophic and heterotrophic denitrifying sulfide removal (A&H-DSR), sulfur reclamation (SR), and aerated filter for aerobic nitrification (AN). In the system, the effects of key operational parameters on production of elemental sulfur were investigated, including hydraulic retention time (HRT) of each unit, sulfide/nitrate (S(2-)-S/NO3(-)-N) ratios, reflux ratios between the A&H-DSR and AN units, and loading rates of chemical oxygen demand (COD), sulfate and ammonium. Physico-chemical characteristics of biosulfur were studied for acquiring efficient S(0) recovery. The experiments successfully explored the optimum parameters for each unit and demonstrated 98% COD, 98% sulfate and 78% nitrogen removal efficiency. The optimum HRTs for SR-CR, A&H-DSR and AN were 12h, 3h and 3h, respectively. The reflux ratio of 3 could provide adequate S(2-)-S/NO3(-)-N ratio (approximately 1:1) to the A&H-DSR unit for obtaining maximum sulfur production. In this system, the maximum production of S(0) reached 90%, but only 60% S(0) was reclaimed from effluent. The S(0) that adhered to the outer layer of granules was deposited in the bottom of the A&H-DSR unit. Finally, the microbial community structure of the corresponding unit at different operational stage were analyzed by 16S rRNA gene based high throughput Illumina MiSeq sequencing and the potential function of dominant species were discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Parameter estimation and statistical analysis on frequency-dependent active control forces

    NASA Astrophysics Data System (ADS)

    Lim, Tau Meng; Cheng, Shanbao

    2007-07-01

    The active control forces of an active magnetic bearing (AMB) system are known to be frequency dependent in nature. This is due to the frequency-dependent nature of the AMB system, i.e. time lags in sensors, digital signal processing, amplifiers, filters, and eddy current and hysteresis losses in the electromagnetic coils. The stiffness and damping coefficients of these control forces can be assumed to be linear for small limit of perturbations within the air gap. Numerous studies have also attempted to estimate these coefficients directly or indirectly without validating the model and verifying the results. This paper seeks to address these issues, by proposing a one-axis electromagnetic suspension system to simplify the measurement requirements and eliminate the possibility of control force cross-coupling capabilities. It also proposes an on-line frequency domain parameter estimation procedure with statistical information to provide a quantitative measure for model validation and results verification purposes. This would lead to a better understanding and a design platform for optimal vibration control scheme for suspended system. This is achieved by injecting Schroeder Phased Harmonic Sequences (SPHS), a multi-frequency test signal, to persistently excite all possible suspended system modes. By treating the system as a black box, the parameter estimation of the "actual" stiffness and damping coefficients in the frequency domain are realised experimentally. The digitally implemented PID controller also facilitated changes on the feedback gains, and this allowed numerous system response measurements with their corresponding estimated stiffness and damping coefficients.

  4. Parameters-tuning of PID controller for automatic voltage regulators using the African buffalo optimization.

    PubMed

    Odili, Julius Beneoluchi; Mohmad Kahar, Mohd Nizam; Noraziah, A

    2017-01-01

    In this paper, an attempt is made to apply the African Buffalo Optimization (ABO) to tune the parameters of a PID controller for an effective Automatic Voltage Regulator (AVR). Existing metaheuristic tuning methods have been proven to be quite successful but there were observable areas that need improvements especially in terms of the system's gain overshoot and steady steady state errors. Using the ABO algorithm where each buffalo location in the herd is a candidate solution to the Proportional-Integral-Derivative parameters was very helpful in addressing these two areas of concern. The encouraging results obtained from the simulation of the PID Controller parameters-tuning using the ABO when compared with the performance of Genetic Algorithm PID (GA-PID), Particle-Swarm Optimization PID (PSO-PID), Ant Colony Optimization PID (ACO-PID), PID, Bacteria-Foraging Optimization PID (BFO-PID) etc makes ABO-PID a good addition to solving PID Controller tuning problems using metaheuristics.

  5. Formation Flight System Extremum-Seeking-Control Using Blended Performance Parameters

    NASA Technical Reports Server (NTRS)

    Ryan, John J. (Inventor)

    2018-01-01

    An extremum-seeking control system for formation flight that uses blended performance parameters in a conglomerate performance function that better approximates drag reduction than performance functions formed from individual measurements. Generally, a variety of different measurements are taken and fed to a control system, the measurements are weighted, and are then subjected to a peak-seeking control algorithm. As measurements are continually taken, the aircraft will be guided to a relative position which optimizes the drag reduction of the formation. Two embodiments are discussed. Two approaches are shown for determining relative weightings: "a priori" by which they are qualitatively determined (by minimizing the error between the conglomerate function and the drag reduction function), and by periodically updating the weightings as the formation evolves.

  6. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved.

    PubMed

    Brassard, Patrick; Godbout, Stéphane; Raghavan, Vijaya

    2016-10-01

    Biochar, a solid porous material obtained from the carbonization of biomass under low or no oxygen conditions, has been proposed as a climate change mitigation tool because it is expected to sequester carbon (C) for centuries and to reduce greenhouse gas (GHG) emissions from soils. This review aimed to identify key biochar properties and production parameters that have an effect on these specific applications of the biochar. Moreover, mechanisms involved in interactions between biochar and soils were highlighted. Following a compilation and comparison of the characteristics of 76 biochars from 40 research studies, biochars with a lower N content, and consequently a higher C/N ratio (>30), were found to be more suitable for mitigation of N2O emissions from soils. Moreover, biochars produced at a higher pyrolysis temperature, and with O/C ratio <0.2, H/Corg ratio <0.4 and volatile matter below 80% may have high C sequestration potential. Based on these observations, biochar production and application to the field can be used as a tool to mitigate climate change. However, it is important to determine the pyrolysis conditions and feedstock needed to produce a biochar with the desired properties for a specific application. More research studies are needed to identify the exact mechanisms involved following biochar amendment to soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Theoretic aspects of the identification of the parameters in the optimal control model

    NASA Technical Reports Server (NTRS)

    Vanwijk, R. A.; Kok, J. J.

    1977-01-01

    The identification of the parameters of the optimal control model from input-output data of the human operator is considered. Accepting the basic structure of the model as a cascade of a full-order observer and a feedback law, and suppressing the inherent optimality of the human controller, the parameters to be identified are the feedback matrix, the observer gain matrix, and the intensity matrices of the observation noise and the motor noise. The identification of the parameters is a statistical problem, because the system and output are corrupted by noise, and therefore the solution must be based on the statistics (probability density function) of the input and output data of the human operator. However, based on the statistics of the input-output data of the human operator, no distinction can be made between the observation and the motor noise, which shows that the model suffers from overparameterization.

  8. Comparison of stability and control parameters for a light, single-engine, high-winged aircraft using different flight test and parameter estimation techniques

    NASA Technical Reports Server (NTRS)

    Suit, W. T.; Cannaday, R. L.

    1979-01-01

    The longitudinal and lateral stability and control parameters for a high wing, general aviation, airplane are examined. Estimations using flight data obtained at various flight conditions within the normal range of the aircraft are presented. The estimations techniques, an output error technique (maximum likelihood) and an equation error technique (linear regression), are presented. The longitudinal static parameters are estimated from climbing, descending, and quasi steady state flight data. The lateral excitations involve a combination of rudder and ailerons. The sensitivity of the aircraft modes of motion to variations in the parameter estimates are discussed.

  9. [Research and Design of a System for Detecting Automated External Defbrillator Performance Parameters].

    PubMed

    Wang, Kewu; Xiao, Shengxiang; Jiang, Lina; Hu, Jingkai

    2017-09-30

    In order to regularly detect the performance parameters of automated external defibrillator (AED), to make sure it is safe before using the instrument, research and design of a system for detecting automated external defibrillator performance parameters. According to the research of the characteristics of its performance parameters, combing the STM32's stability and high speed with PWM modulation control, the system produces a variety of ECG normal and abnormal signals through the digital sampling methods. Completed the design of the hardware and software, formed a prototype. This system can accurate detect automated external defibrillator discharge energy, synchronous defibrillation time, charging time and other key performance parameters.

  10. Irradiation control parameters for computer-assisted laser photocoagulation of the retina

    NASA Astrophysics Data System (ADS)

    Naess, Espen; Molvik, Torstein; Barrett, Steven F.; Wright, Cameron H. G.; de Graaf, Peter W.

    2001-06-01

    A system for robotically assisted retinal surgery has been developed to rapidly and safely place lesions on the retina for photocoagulation therapy. This system provides real- time, motion stabilized lesion placement for typical irradiation times of 100 ms. The system consists of three main subsystems: a global, digital-based tracking subsystem; a fast, local analog tracking subsystem; and a confocal reflectance subsystem to control lesion parameters dynamically. We have reported on these subsystems in previous SPIE presentations. This paper concentrates on the development of the second hybrid system prototype. Considerable progress has been made toward reducing the footprint of the optical system, simplifying the user interface, fully characterizing the analog tracking system and using measurable lesion reflectance growth parameters to develop a noninvasive method to infer lesion depth. This method will allow dynamic control of laser dosimetry to provide similar lesions across the non-uniform retinal surface. These system improvements and progress toward a clinically significant system are covered in detail within this paper.

  11. Perceptual control models of pursuit manual tracking demonstrate individual specificity and parameter consistency.

    PubMed

    Parker, Maximilian G; Tyson, Sarah F; Weightman, Andrew P; Abbott, Bruce; Emsley, Richard; Mansell, Warren

    2017-11-01

    Computational models that simulate individuals' movements in pursuit-tracking tasks have been used to elucidate mechanisms of human motor control. Whilst there is evidence that individuals demonstrate idiosyncratic control-tracking strategies, it remains unclear whether models can be sensitive to these idiosyncrasies. Perceptual control theory (PCT) provides a unique model architecture with an internally set reference value parameter, and can be optimized to fit an individual's tracking behavior. The current study investigated whether PCT models could show temporal stability and individual specificity over time. Twenty adults completed three blocks of 15 1-min, pursuit-tracking trials. Two blocks (training and post-training) were completed in one session and the third was completed after 1 week (follow-up). The target moved in a one-dimensional, pseudorandom pattern. PCT models were optimized to the training data using a least-mean-squares algorithm, and validated with data from post-training and follow-up. We found significant inter-individual variability (partial η 2 : .464-.697) and intra-individual consistency (Cronbach's α: .880-.976) in parameter estimates. Polynomial regression revealed that all model parameters, including the reference value parameter, contribute to simulation accuracy. Participants' tracking performances were significantly more accurately simulated by models developed from their own tracking data than by models developed from other participants' data. We conclude that PCT models can be optimized to simulate the performance of an individual and that the test-retest reliability of individual models is a necessary criterion for evaluating computational models of human performance.

  12. Classical Control System Design: A non-Graphical Method for Finding the Exact System Parameters

    NASA Astrophysics Data System (ADS)

    Hussein, Mohammed Tawfik

    2008-06-01

    The Root Locus method of control system design was developed in the 1940's. It is a set of rules that helps in sketching the path traced by the roots of the closed loop characteristic equation of the system, as a parameter such as a controller gain, k, is varied. The procedure provides approximate sketching guidelines. Designs on control systems using the method are therefore not exact. This paper aims at a non-graphical method for finding the exact system parameters to place a pair of complex conjugate poles on a specified damping ratio line. The overall procedure is based on the exact solution of complex equations on the PC using numerical methods.

  13. Insulin resistance, glycemic control and adiposity: key determinants of healthy lifespan.

    PubMed

    DiStefano, Peter S; Curtis, Rory; Geddes, Bradley J

    2007-04-01

    Identification of genes and pathways that alter lifespan has allowed for new insights into factors that control the aging process as well as disease. While strong molecular links exist between aging and metabolism, we hypothesize that targeting the mechanisms involved in aging will also give rise to therapeutics that treat other devastating age-related diseases, such as neurodegeneration, cancer, inflammation and cardiovascular disease. Insulin sensitivity, glycemic control and adiposity are not only hallmarks of the major metabolic diseases, type 2 diabetes and obesity, but they also represent significant risk factors for the development of Alzheimer's Disease and cognitive impairment. Insulin/IGF-1 signaling is an important pathway regulating aging and disease in a variety of species, including mammals. Here we describe an important role for the gut-derived peptide ghrelin in upstream signaling through the insulin/IGF-1 pathway and exemplify modulation of ghrelin signaling as an approach to mechanistic treatment of multiple age-related diseases by virtue of its ability to regulate key metabolic functions.

  14. Parameters of loop-controlled magnetic rheology drive for segmented large mirror

    NASA Astrophysics Data System (ADS)

    Deulin, Eugeni A.; Mikhailov, Valeri P.; Eliseev, Oleg N.; Sytchev, Victor V.

    2000-07-01

    The design, parameters and the amplitude-frequency analysis of the new magnetic rheology (MR) drive are presented. The combination of hydrostatic carrier, MR hydraulic loop control, elastic thin wall seal joined in a single unit ensures small positioning error nm and small time of response T

  15. Performance of device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Cao, Zhu; Zhao, Qi; Ma, Xiongfeng

    2016-07-01

    Quantum key distribution provides information-theoretically-secure communication. In practice, device imperfections may jeopardise the system security. Device-independent quantum key distribution solves this problem by providing secure keys even when the quantum devices are untrusted and uncharacterized. Following a recent security proof of the device-independent quantum key distribution, we improve the key rate by tightening the parameter choice in the security proof. In practice where the system is lossy, we further improve the key rate by taking into account the loss position information. From our numerical simulation, our method can outperform existing results. Meanwhile, we outline clear experimental requirements for implementing device-independent quantum key distribution. The maximal tolerable error rate is 1.6%, the minimal required transmittance is 97.3%, and the minimal required visibility is 96.8 % .

  16. Novel image compression-encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Zhang, Aidi; Zheng, Fen; Gong, Lihua

    2014-10-01

    The existing ways to encrypt images based on compressive sensing usually treat the whole measurement matrix as the key, which renders the key too large to distribute and memorize or store. To solve this problem, a new image compression-encryption hybrid algorithm is proposed to realize compression and encryption simultaneously, where the key is easily distributed, stored or memorized. The input image is divided into 4 blocks to compress and encrypt, then the pixels of the two adjacent blocks are exchanged randomly by random matrices. The measurement matrices in compressive sensing are constructed by utilizing the circulant matrices and controlling the original row vectors of the circulant matrices with logistic map. And the random matrices used in random pixel exchanging are bound with the measurement matrices. Simulation results verify the effectiveness, security of the proposed algorithm and the acceptable compression performance.

  17. Adaptive control of a quadrotor aerial vehicle with input constraints and uncertain parameters

    NASA Astrophysics Data System (ADS)

    Tran, Trong-Toan; Ge, Shuzhi Sam; He, Wei

    2018-05-01

    In this paper, we address the problem of adaptive bounded control for the trajectory tracking of a Quadrotor Aerial Vehicle (QAV) while the input saturations and uncertain parameters with the known bounds are simultaneously taken into account. First, to deal with the underactuated property of the QAV model, we decouple and construct the QAV model as a cascaded structure which consists of two fully actuated subsystems. Second, to handle the input constraints and uncertain parameters, we use a combination of the smooth saturation function and smooth projection operator in the control design. Third, to ensure the stability of the overall system of the QAV, we develop the technique for the cascaded system in the presence of both the input constraints and uncertain parameters. Finally, the region of stability of the closed-loop system is constructed explicitly, and our design ensures the asymptotic convergence of the tracking errors to the origin. The simulation results are provided to illustrate the effectiveness of the proposed method.

  18. Computing an operating parameter of a unified power flow controller

    DOEpatents

    Wilson, David G.; Robinett, III, Rush D.

    2017-12-26

    A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.

  19. Computing an operating parameter of a unified power flow controller

    DOEpatents

    Wilson, David G; Robinett, III, Rush D

    2015-01-06

    A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.

  20. Dynamic Key Management Schemes for Secure Group Access Control Using Hierarchical Clustering in Mobile Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Tsaur, Woei-Jiunn; Pai, Haw-Tyng

    2008-11-01

    The applications of group computing and communication motivate the requirement to provide group access control in mobile ad hoc networks (MANETs). The operation in MANETs' groups performs a decentralized manner and accommodated membership dynamically. Moreover, due to lack of centralized control, MANETs' groups are inherently insecure and vulnerable to attacks from both within and outside the groups. Such features make access control more challenging in MANETs. Recently, several researchers have proposed group access control mechanisms in MANETs based on a variety of threshold signatures. However, these mechanisms cannot actually satisfy MANETs' dynamic environments. This is because the threshold-based mechanisms cannot be achieved when the number of members is not up to the threshold value. Hence, by combining the efficient elliptic curve cryptosystem, self-certified public key cryptosystem and secure filter technique, we construct dynamic key management schemes based on hierarchical clustering for securing group access control in MANETs. Specifically, the proposed schemes can constantly accomplish secure group access control only by renewing the secure filters of few cluster heads, when a cluster head joins or leaves a cross-cluster. In such a new way, we can find that the proposed group access control scheme can be very effective for securing practical applications in MANETs.

  1. Prediction of Geomagnetic Activity and Key Parameters in High-latitude Ionosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Lyatsky, Wladislaw; Tan, Arjun; Ridley, Aaron

    2007-01-01

    Prediction of geomagnetic activity and related events in the Earth's magnetosphere and ionosphere are important tasks of US Space Weather Program. Prediction reliability is dependent on the prediction method, and elements included in the prediction scheme. Two of the main elements of such prediction scheme are: an appropriate geomagnetic activity index, and an appropriate coupling function (the combination of solar wind parameters providing the best correlation between upstream solar wind data and geomagnetic activity). We have developed a new index of geomagnetic activity, the Polar Magnetic (PM) index and an improved version of solar wind coupling function. PM index is similar to the existing polar cap PC index but it shows much better correlation with upstream solar wind/IMF data and other events in the magnetosphere and ionosphere. We investigate the correlation of PM index with upstream solar wind/IMF data for 10 years (1995-2004) that include both low and high solar activity. We also have introduced a new prediction function for the predicting of cross-polar-cap voltage and Joule heating based on using both PM index and upstream solar wind/IMF data. As we show such prediction function significantly increase the reliability of prediction of these important parameters. The correlation coefficients between the actual and predicted values of these parameters are approx. 0.9 and higher.

  2. Model Predictive Optimal Control of a Time-Delay Distributed-Parameter Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2006-01-01

    This paper presents an optimal control method for a class of distributed-parameter systems governed by first order, quasilinear hyperbolic partial differential equations that arise in many physical systems. Such systems are characterized by time delays since information is transported from one state to another by wave propagation. A general closed-loop hyperbolic transport model is controlled by a boundary control embedded in a periodic boundary condition. The boundary control is subject to a nonlinear differential equation constraint that models actuator dynamics of the system. The hyperbolic equation is thus coupled with the ordinary differential equation via the boundary condition. Optimality of this coupled system is investigated using variational principles to seek an adjoint formulation of the optimal control problem. The results are then applied to implement a model predictive control design for a wind tunnel to eliminate a transport delay effect that causes a poor Mach number regulation.

  3. Association between bibliometric parameters, reporting and methodological quality of randomised controlled trials in vascular and endovascular surgery.

    PubMed

    Hajibandeh, Shahab; Hajibandeh, Shahin; Antoniou, George A; Green, Patrick A; Maden, Michelle; Torella, Francesco

    2017-04-01

    Purpose We aimed to investigate association between bibliometric parameters, reporting and methodological quality of vascular and endovascular surgery randomised controlled trials. Methods The most recent 75 and oldest 75 randomised controlled trials published in leading journals over a 10-year period were identified. The reporting quality was analysed using the CONSORT statement, and methodological quality with the Intercollegiate Guidelines Network checklist. We used exploratory univariate and multivariable linear regression analysis to investigate associations. Findings Bibliometric parameters such as type of journal, study design reported in title, number of pages; external funding, industry sponsoring and number of citations are associated with reporting quality. Moreover, parameters such as type of journal, subject area and study design reported in title are associated with methodological quality. Conclusions The bibliometric parameters of randomised controlled trials may be independent predictors for their reporting and methodological quality. Moreover, the reporting quality of randomised controlled trials is associated with their methodological quality and vice versa.

  4. Control Parameters Optimization Based on Co-Simulation of a Mechatronic System for an UA-Based Two-Axis Inertially Stabilized Platform.

    PubMed

    Zhou, Xiangyang; Zhao, Beilei; Gong, Guohao

    2015-08-14

    This paper presents a method based on co-simulation of a mechatronic system to optimize the control parameters of a two-axis inertially stabilized platform system (ISP) applied in an unmanned airship (UA), by which high control performance and reliability of the ISP system are achieved. First, a three-dimensional structural model of the ISP is built by using the three-dimensional parametric CAD software SOLIDWORKS(®); then, to analyze the system's kinematic and dynamic characteristics under operating conditions, dynamics modeling is conducted by using the multi-body dynamics software ADAMS™, thus the main dynamic parameters such as displacement, velocity, acceleration and reaction curve are obtained, respectively, through simulation analysis. Then, those dynamic parameters were input into the established MATLAB(®) SIMULINK(®) controller to simulate and test the performance of the control system. By these means, the ISP control parameters are optimized. To verify the methods, experiments were carried out by applying the optimized parameters to the control system of a two-axis ISP. The results show that the co-simulation by using virtual prototyping (VP) is effective to obtain optimized ISP control parameters, eventually leading to high ISP control performance.

  5. Control Parameters Optimization Based on Co-Simulation of a Mechatronic System for an UA-Based Two-Axis Inertially Stabilized Platform

    PubMed Central

    Zhou, Xiangyang; Zhao, Beilei; Gong, Guohao

    2015-01-01

    This paper presents a method based on co-simulation of a mechatronic system to optimize the control parameters of a two-axis inertially stabilized platform system (ISP) applied in an unmanned airship (UA), by which high control performance and reliability of the ISP system are achieved. First, a three-dimensional structural model of the ISP is built by using the three-dimensional parametric CAD software SOLIDWORKS®; then, to analyze the system’s kinematic and dynamic characteristics under operating conditions, dynamics modeling is conducted by using the multi-body dynamics software ADAMS™, thus the main dynamic parameters such as displacement, velocity, acceleration and reaction curve are obtained, respectively, through simulation analysis. Then, those dynamic parameters were input into the established MATLAB® SIMULINK® controller to simulate and test the performance of the control system. By these means, the ISP control parameters are optimized. To verify the methods, experiments were carried out by applying the optimized parameters to the control system of a two-axis ISP. The results show that the co-simulation by using virtual prototyping (VP) is effective to obtain optimized ISP control parameters, eventually leading to high ISP control performance. PMID:26287210

  6. An algorithm for control system design via parameter optimization. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Sinha, P. K.

    1972-01-01

    An algorithm for design via parameter optimization has been developed for linear-time-invariant control systems based on the model reference adaptive control concept. A cost functional is defined to evaluate the system response relative to nominal, which involves in general the error between the system and nominal response, its derivatives and the control signals. A program for the practical implementation of this algorithm has been developed, with the computational scheme for the evaluation of the performance index based on Lyapunov's theorem for stability of linear invariant systems.

  7. Economic Model Predictive Control of Bihormonal Artificial Pancreas System Based on Switching Control and Dynamic R-parameter.

    PubMed

    Tang, Fengna; Wang, Youqing

    2017-11-01

    Blood glucose (BG) regulation is a long-term task for people with diabetes. In recent years, more and more researchers have attempted to achieve automated regulation of BG using automatic control algorithms, called the artificial pancreas (AP) system. In clinical practice, it is equally important to guarantee the treatment effect and reduce the treatment costs. The main motivation of this study is to reduce the cure burden. The dynamic R-parameter economic model predictive control (R-EMPC) is chosen to regulate the delivery rates of exogenous hormones (insulin and glucagon). It uses particle swarm optimization (PSO) to optimize the economic cost function and the switching logic between insulin delivery and glucagon delivery is designed based on switching control theory. The proposed method is first tested on the standard subject; the result is compared with the switching PID and the switching MPC. The effect of the dynamic R-parameter on improving the control performance is illustrated by comparing the results of the EMPC and the R-EMPC. Finally, the robustness tests on meal change (size and timing), hormone sensitivity (insulin and glucagon), and subject variability are performed. All results show that the proposed method can improve the control performance and reduce the economic costs. The simulation results verify the effectiveness of the proposed algorithm on improving the tracking performance, enhancing robustness, and reducing economic costs. The method proposed in this study owns great worth in practical application.

  8. Secure NFV Orchestration Over an SDN-Controlled Optical Network With Time-Shared Quantum Key Distribution Resources

    NASA Astrophysics Data System (ADS)

    Aguado, Alejandro; Hugues-Salas, Emilio; Haigh, Paul Anthony; Marhuenda, Jaume; Price, Alasdair B.; Sibson, Philip; Kennard, Jake E.; Erven, Chris; Rarity, John G.; Thompson, Mark Gerard; Lord, Andrew; Nejabati, Reza; Simeonidou, Dimitra

    2017-04-01

    We demonstrate, for the first time, a secure optical network architecture that combines NFV orchestration and SDN control with quantum key distribution (QKD) technology. A novel time-shared QKD network design is presented as a cost-effective solution for practical networks.

  9. An analysis of parameter sensitivities of preference-inspired co-evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Mansor, Maszatul M.; Purshouse, Robin C.; Fleming, Peter J.

    2015-10-01

    Many-objective optimisation problems remain challenging for many state-of-the-art multi-objective evolutionary algorithms. Preference-inspired co-evolutionary algorithms (PICEAs) which co-evolve the usual population of candidate solutions with a family of decision-maker preferences during the search have been demonstrated to be effective on such problems. However, it is unknown whether PICEAs are robust with respect to the parameter settings. This study aims to address this question. First, a global sensitivity analysis method - the Sobol' variance decomposition method - is employed to determine the relative importance of the parameters controlling the performance of PICEAs. Experimental results show that the performance of PICEAs is controlled for the most part by the number of function evaluations. Next, we investigate the effect of key parameters identified from the Sobol' test and the genetic operators employed in PICEAs. Experimental results show improved performance of the PICEAs as more preferences are co-evolved. Additionally, some suggestions for genetic operator settings are provided for non-expert users.

  10. Control of key pecan insect pests using biorational pesticides.

    PubMed

    Shapiro-Ilan, David I; Cottrell, Ted E; Jackson, Mark A; Wood, Bruce W

    2013-02-01

    Key pecan insect pests include the black pecan aphid, Melanocallis caryaefoliae (Davis), pecan weevil, Curculio caryae (Horn), and stink bugs (Hemiptera: Pentatomidae). Alternative control tactics are needed for management of these pests in organic and conventional systems. Our objective was to evaluate the potential utility of several alternative insecticides including three plant extract formulations, eucalyptus extract, citrus extract-8.92%, and citrus extract-19.4%, and two microbial insecticides, Chromobacterium subtsugae (Martin et al.) and Isaria fumosorosea (Wize). In the laboratory, eucalyptus extract, citrus extract-8.92%, citrus extract-19.4%, and C. subtsugae caused M. caryaefoliae mortality (mortality was reached approximately 78, 83, and 96%, respectively). In field tests, combined applications of I. fumosorosea with eucalyptus extract were synergistic and caused up to 82% mortality in M. caryaefoliae. In laboratory assays focusing on C. caryae suppression, C. subtsugae reduced feeding and oviposition damage, eucalyptus extract and citrus extract-19.4% were ineffective, and antagonism was observed when citrus extract-19.4% was combined with the entomopathogenic nematode, Steinernema carpocapsae (Weiser). In field tests, C. subtsugae reduced C. caryae damage by 55% within the first 3d, and caused 74.5% corrected mortality within 7 d posttreatment. In the laboratory, C. subtsugae and eucalyptus extract did not cause mortality in the brown stink bug, Euschistus servus (Say). Applications of C. subtsugae for suppression of C. caryae, and eucalyptus extract plus I. fumosorosea for control of M. caryaefoliae show promise as alternative insecticides and should be evaluated further.

  11. Two Key Parameters Controlling Particle Clumping Caused by Streaming Instability in the Dead-zone Dust Layer of a Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Sekiya, Minoru; Onishi, Isamu K.

    2018-06-01

    The streaming instability and Kelvin–Helmholtz instability are considered the two major sources causing clumping of dust particles and turbulence in the dust layer of a protoplanetary disk as long as we consider the dead zone where the magnetorotational instability does not grow. Extensive numerical simulations have been carried out in order to elucidate the condition for the development of particle clumping caused by the streaming instability. In this paper, a set of two parameters suitable for classifying the numerical results is proposed. One is the Stokes number that has been employed in previous works and the other is the dust particle column density that is nondimensionalized using the gas density in the midplane, Keplerian angular velocity, and difference between the Keplerian and gaseous orbital velocities. The magnitude of dust clumping is a measure of the behavior of the dust layer. Using three-dimensional numerical simulations of dust particles and gas based on Athena code v. 4.2, it is confirmed that the magnitude of dust clumping for two disk models are similar if the corresponding sets of values of the two parameters are identical to each other, even if the values of the metallicity (i.e., the ratio of the columns density of the dust particles to that of the gas) are different.

  12. Response of key soil parameters during compost-assisted phytostabilization in extremely acidic tailings: effect of plant species.

    PubMed

    Solís-Dominguez, Fernando A; White, Scott A; Hutter, Travis Borrillo; Amistadi, Mary Kay; Root, Robert A; Chorover, Jon; Maier, Raina M

    2012-01-17

    Phytostabilization of mine tailings acts to mitigate both eolian dispersion and water erosion events which can disseminate barren tailings over large distances. This technology uses plants to establish a vegetative cover to permanently immobilize contaminants in the rooting zone, often requiring addition of an amendment to assist plant growth. Here we report the results of a greenhouse study that evaluated the ability of six native plant species to grow in extremely acidic (pH ∼ 2.5) metalliferous (As, Pb, Zn: 2000-3000 mg kg(-1)) mine tailings from Iron King Mine Humboldt Smelter Superfund site when amended with a range of compost concentrations. Results revealed that three of the six plant species tested (buffalo grass, mesquite, and catclaw acacia) are good candidates for phytostabilization at an optimum level of 15% compost (w/w) amendment showing good growth and minimal shoot accumulation of metal(loid)s. A fourth candidate, quailbush, also met all criteria except for exceeding the domestic animal toxicity limit for shoot accumulation of zinc. A key finding of this study was that the plant species that grew most successfully on these tailings significantly influenced key tailings parameters; direct correlations between plant biomass and both increased tailings pH and neutrophilic heterotrophic bacterial counts were observed. We also observed decreased iron oxidizer counts and decreased bioavailability of metal(loid)s mainly as a result of compost amendment. Taken together, these results suggest that the phytostabilization process reduced tailings toxicity as well as the potential for metal(loid) mobilization. This study provides practical information on plant and tailings characteristics that is critically needed for successful implementation of assisted phytostabilization on acidic, metalliferous mine tailings sites.

  13. Response of Key Soil Parameters During Compost-Assisted Phytostabilization in Extremely Acidic Tailings: Effect of Plant Species

    PubMed Central

    Solís-Dominguez, Fernando A.; White, Scott A.; Hutter, Travis Borrillo; Amistadi, Mary Kay; Root, Robert A.; Chorover, Jon; Maier, Raina M.

    2012-01-01

    Phytostabilization of mine tailings acts to mitigate both eolian dispersion and water erosion events which can disseminate barren tailings over large distances. This technology uses plants to establish a vegetative cover to permanently immobilize contaminants in the rooting zone, often requiring addition of an amendment to assist plant growth. Here we report the results of a greenhouse study that evaluated the ability of six native plant species to grow in extremely acidic (pH ~ 2.5) metalliferous (As, Pb, Zn: 2000–3000 mg kg−1) mine tailings from Iron King Mine Humboldt Smelter Superfund site when amended with a range of compost concentrations. Results revealed that three of the six plant species tested (buffalo grass, mesquite, and catclaw acacia) are good candidates for phytostabilization at an optimum level of 15% compost (w/w) amendment showing good growth and minimal shoot accumulation of metal(loid)s. A fourth candidate, quailbush, also met all criteria except for exceeding the domestic animal toxicity limit for shoot accumulation of zinc. A key finding of this study was that the plant species that grew most successfully on these tailings significantly influenced key tailings parameters; direct correlations between plant biomass and both increased tailings pH and neutrophilic heterotrophic bacterial counts were observed. We also observed decreased iron oxidizer counts and decreased bioavailability of metal(loid)s mainly as a result of compost amendment. Taken together, these results suggest that the phytostabilization process reduced tailings toxicity as well as the potential for metal(loid) mobilization. This study provides practical information on plant and tailings characteristics that is critically needed for successful implementation of assisted phytostabilization on acidic, metalliferous mine tailings sites. PMID:22191663

  14. Advanced Key Technologies for Hot Control Surfaces in Space Re- Entry Vehicles

    NASA Astrophysics Data System (ADS)

    Dogigli, Michael; Pradier, Alain; Tumino, Giorgio

    2002-01-01

    (1)MAN Technologie AG, D- 86153 Augsburg, Germany (2,3) ESA, 2200 Noordwijk ZH, The Netherlands Current space re-entry vehicles (e.g. X-38 vehicle 201, the prototype of the International Space Station's Crew Return Vehicle (CRV)) require advanced control surfaces (so called body flaps). Such control surfaces allow the design of smaller and lighter vehicles as well as faster re-entries (compared to the US Shuttle). They are designed as light-weight structures that need no metallic parts, need no mass or volume consuming heat sinks to protect critical components (e.g. bearings) and that can be operated at temperatures of more than 1600 "C in air transferring high mechanical loads (dynamic 40 kN, static 70 kN) at the same time. Because there is a need for CRV and also for Reusable Launch Vehicles (RLV) in future, the European Space Agency (ESA) felt compelled to establish a "Future European Space Transportation and Investigation Program,, (FESTIP) and a "General Support for Technology Program,, (GSTP). One of the main goals of these programs was to develop and qualify key-technologies that are able to master the above mentioned challenging requirements for advanced hot control surfaces and that can be applied for different vehicles. In 1996 MAN Technologie has started the development of hot control surfaces for small lifting bodies in the national program "Heiü Strukturen,,. One of the main results of this program was that especially the following CMC (Ceramic Matrix Composite) key technologies need to be brought up to space flight standard: Complex CMC Structures, CMC Bearings, Metal-to-CMC Joining Technologies, CMC Fasteners, Oxidation Protection Systems and Static and Dynamic Seals. MAN Technologie was contracted by ESA to continue the development and qualification of these key technologies in the frame of the FESTIP and the GSTP program. Development and qualification have successfully been carried out. The key technologies have been applied for the X-38 vehicle

  15. The influence of control parameter estimation on large scale geomorphological interpretation of pointclouds

    NASA Astrophysics Data System (ADS)

    Dorninger, P.; Koma, Z.; Székely, B.

    2012-04-01

    In recent years, laser scanning, also referred to as LiDAR, has proved to be an important tool for topographic data acquisition. Basically, laser scanning acquires a more or less homogeneously distributed point cloud. These points represent all natural objects like terrain and vegetation as well as man-made objects such as buildings, streets, powerlines, or other constructions. Due to the enormous amount of data provided by current scanning systems capturing up to several hundred thousands of points per second, the immediate application of such point clouds for large scale interpretation and analysis is often prohibitive due to restrictions of the hard- and software infrastructure. To overcome this, numerous methods for the determination of derived products do exist. Commonly, Digital Terrain Models (DTM) or Digital Surface Models (DSM) are derived to represent the topography using a regular grid as datastructure. The obvious advantages are a significant reduction of the amount of data and the introduction of an implicit neighborhood topology enabling the application of efficient post processing methods. The major disadvantages are the loss of 3D information (i.e. overhangs) as well as the loss of information due to the interpolation approach used. We introduced a segmentation approach enabling the determination of planar structures within a given point cloud. It was originally developed for the purpose of building modeling but has proven to be well suited for large scale geomorphological analysis as well. The result is an assignment of the original points to a set of planes. Each plane is represented by its plane parameters. Additionally, numerous quality and quantity parameters are determined (e.g. aspect, slope, local roughness, etc.). In this contribution, we investigate the influence of the control parameters required for the plane segmentation on the geomorphological interpretation of the derived product. The respective control parameters may be determined

  16. Key on demand (KoD) for software-defined optical networks secured by quantum key distribution (QKD).

    PubMed

    Cao, Yuan; Zhao, Yongli; Colman-Meixner, Carlos; Yu, Xiaosong; Zhang, Jie

    2017-10-30

    Software-defined optical networking (SDON) will become the next generation optical network architecture. However, the optical layer and control layer of SDON are vulnerable to cyberattacks. While, data encryption is an effective method to minimize the negative effects of cyberattacks, secure key interchange is its major challenge which can be addressed by the quantum key distribution (QKD) technique. Hence, in this paper we discuss the integration of QKD with WDM optical networks to secure the SDON architecture by introducing a novel key on demand (KoD) scheme which is enabled by a novel routing, wavelength and key assignment (RWKA) algorithm. The QKD over SDON with KoD model follows two steps to provide security: i) quantum key pools (QKPs) construction for securing the control channels (CChs) and data channels (DChs); ii) the KoD scheme uses RWKA algorithm to allocate and update secret keys for different security requirements. To test our model, we define a security probability index which measures the security gain in CChs and DChs. Simulation results indicate that the security performance of CChs and DChs can be enhanced by provisioning sufficient secret keys in QKPs and performing key-updating considering potential cyberattacks. Also, KoD is beneficial to achieve a positive balance between security requirements and key resource usage.

  17. Data-Driven H∞ Control for Nonlinear Distributed Parameter Systems.

    PubMed

    Luo, Biao; Huang, Tingwen; Wu, Huai-Ning; Yang, Xiong

    2015-11-01

    The data-driven H∞ control problem of nonlinear distributed parameter systems is considered in this paper. An off-policy learning method is developed to learn the H∞ control policy from real system data rather than the mathematical model. First, Karhunen-Loève decomposition is used to compute the empirical eigenfunctions, which are then employed to derive a reduced-order model (ROM) of slow subsystem based on the singular perturbation theory. The H∞ control problem is reformulated based on the ROM, which can be transformed to solve the Hamilton-Jacobi-Isaacs (HJI) equation, theoretically. To learn the solution of the HJI equation from real system data, a data-driven off-policy learning approach is proposed based on the simultaneous policy update algorithm and its convergence is proved. For implementation purpose, a neural network (NN)- based action-critic structure is developed, where a critic NN and two action NNs are employed to approximate the value function, control, and disturbance policies, respectively. Subsequently, a least-square NN weight-tuning rule is derived with the method of weighted residuals. Finally, the developed data-driven off-policy learning approach is applied to a nonlinear diffusion-reaction process, and the obtained results demonstrate its effectiveness.

  18. An investigation of the key parameters for predicting PV soiling losses

    DOE PAGES

    Micheli, Leonardo; Muller, Matthew

    2017-01-25

    One hundred and two environmental and meteorological parameters have been investigated and compared with the performance of 20 soiling stations installed in the USA, in order to determine their ability to predict the soiling losses occurring on PV systems. The results of this investigation showed that the annual average of the daily mean particulate matter values recorded by monitoring stations deployed near the PV systems are the best soiling predictors, with coefficients of determination ( R 2) as high as 0.82. The precipitation pattern was also found to be relevant: among the different meteorological parameters, the average length of drymore » periods had the best correlation with the soiling ratio. Lastly, a preliminary investigation of two-variable regressions was attempted and resulted in an adjusted R 2 of 0.90 when a combination of PM 2.5 and a binary classification for the average length of the dry period was introduced.« less

  19. Robust shrinking ellipsoid model predictive control for linear parameter varying system

    PubMed Central

    Yan, Yan

    2017-01-01

    In this paper, a new off-line model predictive control strategy is presented for a kind of linear parameter varying system with polytopic uncertainty. A nest of shrinking ellipsoids is constructed by solving linear matrix inequality. By splitting the objective function into two parts, the proposed strategy moves most computations off-line. The on-line computation is only calculating the current control to assure the system shrinking into the smaller ellipsoid. With the proposed formulation, the stability of the closed system is proved, followed with two numerical examples to demonstrate the proposed method’s effectiveness in the end. PMID:28575028

  20. Measurement of Key Pool BOiling Parameters in nanofluids for Nuclerar Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bang, In C; Buongiorno, Jdacopo; Hu, Lin-wen

    Nanofluids, colloidal dispersions of nanoparticles in a base fluid such as water, can afford very significant Critical Heat Flux (CHF) enhancement. Such engineered fluids potentially could be employed in reactors as advanced coolants in safety systems with significant safety and economic advantages. However, a satisfactory explanation of the CHF enhancement mechanism in nanofluids is lacking. To close this gap, we have identified the important boiling parameters to be measured. These are the properties (e.g., density, viscosity, thermal conductivity, specific heat, vaporization enthalpy, surface tension), hydrodynamic parameters (i.e., bubble size, bubble velocity, departure frequency, hot/dry spot dynamics) and surface conditions (i.e.,more » contact angle, nucleation site density). We have also deployed a pool boiling facility in which many such parameters can be measured. The facility is equipped with a thin indium-tin-oxide heater deposited over a sapphire substrate. An infra-red high-speed camera and an optical probe are used to measure the temperature distribution on the heater and the hydrodynamics above the heater, respectively. The first data generated with this facility already provide some clue on the CHF enhancement mechanism in nanofluids. Specifically, the progression to burnout in a pure fluid (ethanol in this case) is characterized by a smoothly-shaped and steadily-expanding hot spot. By contrast, in the ethanol-based nanofluid the hot spot pulsates and the progression to burnout lasts longer, although the nanofluid CHF is higher than the pure fluid CHF. The presence of a nanoparticle deposition layer on the heater surface seems to enhance wettability and aid hot spot dissipation, thus delaying burnout.« less

  1. Control of optical transport parameters of 'porous medium – supercritical fluid' systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimnyakov, D A; Ushakova, O V; Yuvchenko, S A

    2015-11-30

    The possibility of controlling optical transport parameters (in particular, transport scattering coefficient) of porous systems based on polymer fibres, saturated with carbon dioxide in different phase states (gaseous, liquid and supercritical) has been experimentally studied. An increase in the pressure of the saturating medium leads to a rise of its refractive index and, correspondingly, the diffuse-transmission coefficient of the system due to the decrease in the transport scattering coefficient. It is shown that, in the case of subcritical saturating carbon dioxide, the small-angle diffuse transmission of probed porous layers at pressures close to the saturated vapour pressure is determined bymore » the effect of capillary condensation in pores. The immersion effect in 'porous medium – supercritical fluid' systems, where the fluid pressure is used as a control parameter, is considered. The results of reconstructing the values of transport scattering coefficient of probed layers for different refractive indices of a saturating fluid are presented. (radiation scattering)« less

  2. Concept design theory and model for multi-use space facilities: Analysis of key system design parameters through variance of mission requirements

    NASA Astrophysics Data System (ADS)

    Reynerson, Charles Martin

    This research has been performed to create concept design and economic feasibility data for space business parks. A space business park is a commercially run multi-use space station facility designed for use by a wide variety of customers. Both space hardware and crew are considered as revenue producing payloads. Examples of commercial markets may include biological and materials research, processing, and production, space tourism habitats, and satellite maintenance and resupply depots. This research develops a design methodology and an analytical tool to create feasible preliminary design information for space business parks. The design tool is validated against a number of real facility designs. Appropriate model variables are adjusted to ensure that statistical approximations are valid for subsequent analyses. The tool is used to analyze the effect of various payload requirements on the size, weight and power of the facility. The approach for the analytical tool was to input potential payloads as simple requirements, such as volume, weight, power, crew size, and endurance. In creating the theory, basic principles are used and combined with parametric estimation of data when necessary. Key system parameters are identified for overall system design. Typical ranges for these key parameters are identified based on real human spaceflight systems. To connect the economics to design, a life-cycle cost model is created based upon facility mass. This rough cost model estimates potential return on investments, initial investment requirements and number of years to return on the initial investment. Example cases are analyzed for both performance and cost driven requirements for space hotels, microgravity processing facilities, and multi-use facilities. In combining both engineering and economic models, a design-to-cost methodology is created for more accurately estimating the commercial viability for multiple space business park markets.

  3. Interpreting the Weibull fitting parameters for diffusion-controlled release data

    NASA Astrophysics Data System (ADS)

    Ignacio, Maxime; Chubynsky, Mykyta V.; Slater, Gary W.

    2017-11-01

    We examine the diffusion-controlled release of molecules from passive delivery systems using both analytical solutions of the diffusion equation and numerically exact Lattice Monte Carlo data. For very short times, the release process follows a √{ t } power law, typical of diffusion processes, while the long-time asymptotic behavior is exponential. The crossover time between these two regimes is determined by the boundary conditions and initial loading of the system. We show that while the widely used Weibull function provides a reasonable fit (in terms of statistical error), it has two major drawbacks: (i) it does not capture the correct limits and (ii) there is no direct connection between the fitting parameters and the properties of the system. Using a physically motivated interpolating fitting function that correctly includes both time regimes, we are able to predict the values of the Weibull parameters which allows us to propose a physical interpretation.

  4. Rotor Position Sensorless Control and Its Parameter Sensitivity of Permanent Magnet Motor Based on Model Reference Adaptive System

    NASA Astrophysics Data System (ADS)

    Ohara, Masaki; Noguchi, Toshihiko

    This paper describes a new method for a rotor position sensorless control of a surface permanent magnet synchronous motor based on a model reference adaptive system (MRAS). This method features the MRAS in a current control loop to estimate a rotor speed and position by using only current sensors. This method as well as almost all the conventional methods incorporates a mathematical model of the motor, which consists of parameters such as winding resistances, inductances, and an induced voltage constant. Hence, the important thing is to investigate how the deviation of these parameters affects the estimated rotor position. First, this paper proposes a structure of the sensorless control applied in the current control loop. Next, it proves the stability of the proposed method when motor parameters deviate from the nominal values, and derives the relationship between the estimated position and the deviation of the parameters in a steady state. Finally, some experimental results are presented to show performance and effectiveness of the proposed method.

  5. Hillslope characterization: Identifying key controls on local-scale plant communities' distribution using remote sensing and subsurface data fusion.

    NASA Astrophysics Data System (ADS)

    Falco, N.; Wainwright, H. M.; Dafflon, B.; Leger, E.; Peterson, J.; Steltzer, H.; Wilmer, C.; Williams, K. H.; Hubbard, S. S.

    2017-12-01

    Mountainous watershed systems are characterized by extreme heterogeneity in hydrological and pedological properties that influence biotic activities, plant communities and their dynamics. To gain predictive understanding of how ecosystem and watershed system evolve under climate change, it is critical to capture such heterogeneity and to quantify the effect of key environmental variables such as topography, and soil properties. In this study, we exploit advanced geophysical and remote sensing techniques - coupled with machine learning - to better characterize and quantify the interactions between plant communities' distribution and subsurface properties. First, we have developed a remote sensing data fusion framework based on the random forest (RF) classification algorithm to estimate the spatial distribution of plant communities. The framework allows the integration of both plant spectral and structural information, which are derived from multispectral satellite images and airborne LiDAR data. We then use the RF method to evaluate the estimated plant community map, exploiting the subsurface properties (such as bedrock depth, soil moisture and other properties) and geomorphological parameters (such as slope, curvature) as predictors. Datasets include high-resolution geophysical data (electrical resistivity tomography) and LiDAR digital elevation maps. We demonstrate our approach on a mountain hillslope and meadow within the East River watershed in Colorado, which is considered to be a representative headwater catchment in the Upper Colorado Basin. The obtained results show the existence of co-evolution between above and below-ground processes; in particular, dominant shrub communities in wet and flat areas. We show that successful integration of remote sensing data with geophysical measurements allows identifying and quantifying the key environmental controls on plant communities' distribution, and provides insights into their potential changes in the future

  6. Discrete Event Simulation Modeling and Analysis of Key Leader Engagements

    DTIC Science & Technology

    2012-06-01

    to offer. GreenPlayer agents require four parameters, pC, pKLK, pTK, and pRK , which give probabilities for being corrupt, having key leader...HandleMessageRequest component. The same parameter constraints apply to these four parameters. The parameter pRK is the same parameter from the CreatePlayers component...whether the local Green player has resource critical knowledge by using the parameter pRK . It schedules an EndResourceKnowledgeRequest event, passing

  7. Continuous Variable Quantum Key Distribution Using Polarized Coherent States

    NASA Astrophysics Data System (ADS)

    Vidiella-Barranco, A.; Borelli, L. F. M.

    We discuss a continuous variables method of quantum key distribution employing strongly polarized coherent states of light. The key encoding is performed using the variables known as Stokes parameters, rather than the field quadratures. Their quantum counterpart, the Stokes operators Ŝi (i=1,2,3), constitute a set of non-commuting operators, being the precision of simultaneous measurements of a pair of them limited by an uncertainty-like relation. Alice transmits a conveniently modulated two-mode coherent state, and Bob randomly measures one of the Stokes parameters of the incoming beam. After performing reconciliation and privacy amplification procedures, it is possible to distill a secret common key. We also consider a non-ideal situation, in which coherent states with thermal noise, instead of pure coherent states, are used for encoding.

  8. Modeling of influencing parameters in active noise control on an enclosure wall

    NASA Astrophysics Data System (ADS)

    Tarabini, Marco; Roure, Alain

    2008-04-01

    This paper investigates, by means of a numerical model, the possibility of using an active noise barrier to virtually reduce the acoustic transparency of a partition wall inside an enclosure. The room is modeled with the image method as a rectangular enclosure with a stationary point source; the active barrier is set up by an array of loudspeakers and error microphones and is meant to minimize the squared sound pressure on a wall with the use of a decentralized control. Simulations investigate the effects of the enclosure characteristics and of the barrier geometric parameters on the sound pressure attenuation on the controlled partition, on the whole enclosure potential energy and on the diagonal control stability. Performances are analyzed in a frequency range of 25-300 Hz at discrete 25 Hz steps. Influencing parameters and their effects on the system performances are identified with a statistical inference procedure. Simulation results have shown that it is possible to averagely reduce the sound pressure on the controlled partition. In the investigated configuration, the surface attenuation and the diagonal control stability are mainly driven by the distance between the loudspeakers and the error microphones and by the loudspeakers directivity; minor effects are due to the distance between the error microphones and the wall, by the wall reflectivity and by the active barrier grid meshing. Room dimensions and source position have negligible effects. Experimental results point out the validity of the model and the efficiency of the barrier in the reduction of the wall acoustic transparency.

  9. Influence of processing parameters on pore structure of 3D porous chitosan-alginate polyelectrolyte complex scaffolds.

    PubMed

    Florczyk, Stephen J; Kim, Dae-Joon; Wood, David L; Zhang, Miqin

    2011-09-15

    Fabrication of porous polymeric scaffolds with controlled structure can be challenging. In this study, we investigated the influence of key experimental parameters on the structures and mechanical properties of resultant porous chitosan-alginate (CA) polyelectrolyte complex (PEC) scaffolds, and on proliferation of MG-63 osteoblast-like cells, targeted at bone tissue engineering. We demonstrated that the porous structure is largely affected by the solution viscosity, which can be regulated by the acetic acid and alginate concentrations. We found that the CA PEC solutions with viscosity below 300 Pa.s yielded scaffolds of uniform pore structure and that more neutral pH promoted more complete complexation of chitosan and alginate, yielding stiffer scaffolds. CA PEC scaffolds produced from solutions with viscosities below 300 Pa.s also showed enhanced cell proliferation compared with other samples. By controlling the key experimental parameters identified in this study, CA PEC scaffolds of different structures can be made to suit various tissue engineering applications. Copyright © 2011 Wiley Periodicals, Inc.

  10. Controller design for wind turbine load reduction via multiobjective parameter synthesis

    NASA Astrophysics Data System (ADS)

    Hoffmann, A. F.; Weiβ, F. A.

    2016-09-01

    During the design process for a wind turbine load reduction controller many different, sometimes conflicting requirements must be fulfilled simultaneously. If the requirements can be expressed as mathematical criteria, such a design problem can be solved by a criterion-vector and multi-objective design optimization. The software environment MOPS (Multi-Objective Parameter Synthesis) supports the engineer for such a design optimization. In this paper MOPS is applied to design a multi-objective load reduction controller for the well-known DTU 10 MW reference wind turbine. A significant reduction in the fatigue criteria especially the blade damage can be reached by the use of an additional Individual Pitch Controller (IPC) and an additional tower damper. This reduction is reached as a trade-off with an increase of actuator load.

  11. Contributions of rapid neuromuscular transmission to the fine control of acoustic parameters of birdsong.

    PubMed

    Mencio, Caitlin; Kuberan, Balagurunathan; Goller, Franz

    2017-02-01

    Neural control of complex vocal behaviors, such as birdsong and speech, requires integration of biomechanical nonlinearities through muscular output. Although control of airflow and tension of vibrating tissues are known functions of vocal muscles, it remains unclear how specific muscle characteristics contribute to specific acoustic parameters. To address this gap, we removed heparan sulfate chains using heparitinases to perturb neuromuscular transmission subtly in the syrinx of adult male zebra finches (Taeniopygia guttata). Infusion of heparitinases into ventral syringeal muscles altered their excitation threshold and reduced neuromuscular transmission changing their ability to modulate airflow. The changes in muscle activation dynamics caused a reduction in frequency modulation rates and elimination of many high-frequency syllables but did not alter the fundamental frequency of syllables. Sound amplitude was reduced and sound onset pressure was increased, suggesting a role of muscles in the induction of self-sustained oscillations under low-airflow conditions, thus enhancing vocal efficiency. These changes were reversed to preinfusion levels by 7 days after infusion. These results illustrate complex interactions between the control of airflow and tension and further define the importance of syringeal muscle in the control of a variety of acoustic song characteristics. In summary, the findings reported here show that altering neuromuscular transmission can lead to reversible changes to the acoustic structure of song. Understanding the full extent of muscle involvement in song production is critical in decoding the motor program for the production of complex vocal behavior, including our search for parallels between birdsong and human speech motor control. It is largely unknown how fine motor control of acoustic parameters is achieved in vocal organs. Subtle manipulation of syringeal muscle function was used to test how active motor control influences acoustic

  12. Assessment of key transport parameters in a karst system under different dynamic conditions based on tracer experiments: the Jeita karst system, Lebanon

    NASA Astrophysics Data System (ADS)

    Doummar, Joanna; Margane, Armin; Geyer, Tobias; Sauter, Martin

    2018-03-01

    Artificial tracer experiments were conducted in the mature karst system of Jeita (Lebanon) under various flow conditions using surface and subsurface tracer injection points, to determine the variation of transport parameters (attenuation of peak concentration, velocity, transit times, dispersivity, and proportion of immobile and mobile regions) along fast and slow flow pathways. Tracer breakthrough curves (TBCs) observed at the karst spring were interpreted using a two-region nonequilibrium approach (2RNEM) to account for the skewness in the TBCs' long tailings. The conduit test results revealed a discharge threshold in the system dynamics, beyond which the transport parameters vary significantly. The polynomial relationship between transport velocity and discharge can be related to the variation of the conduit's cross-sectional area. Longitudinal dispersivity in the conduit system is not a constant value (α = 7-10 m) and decreases linearly with increasing flow rate because of dilution effects. Additionally, the proportion of immobile regions (arising from conduit irregularities) increases with decreasing water level in the conduit system. From tracer tests with injection at the surface, longitudinal dispersivity values are found to be large (8-27 m). The tailing observed in some TBCs is generated in the unsaturated zone before the tracer actually arrives at the major subsurface conduit draining the system. This work allows the estimation and prediction of the key transport parameters in karst aquifers. It shows that these parameters vary with time and flow dynamics, and they reflect the geometry of the flow pathway and the origin of infiltrating (potentially contaminated) recharge.

  13. Dynamics of a distributed drill string system: Characteristic parameters and stability maps

    NASA Astrophysics Data System (ADS)

    Aarsnes, Ulf Jakob F.; van de Wouw, Nathan

    2018-03-01

    This paper involves the dynamic (stability) analysis of distributed drill-string systems. A minimal set of parameters characterizing the linearized, axial-torsional dynamics of a distributed drill string coupled through the bit-rock interaction is derived. This is found to correspond to five parameters for a simple drill string and eight parameters for a two-sectioned drill-string (e.g., corresponding to the pipe and collar sections of a drilling system). These dynamic characterizations are used to plot the inverse gain margin of the system, parametrized in the non-dimensional parameters, effectively creating a stability map covering the full range of realistic physical parameters. This analysis reveals a complex spectrum of dynamics not evident in stability analysis with lumped models, thus indicating the importance of analysis using distributed models. Moreover, it reveals trends concerning stability properties depending on key system parameters useful in the context of system and control design aiming at the mitigation of vibrations.

  14. Numerical approach for unstructured quantum key distribution

    PubMed Central

    Coles, Patrick J.; Metodiev, Eric M.; Lütkenhaus, Norbert

    2016-01-01

    Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study ‘unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown. PMID:27198739

  15. Solar oxidation and removal of arsenic--Key parameters for continuous flow applications.

    PubMed

    Gill, L W; O'Farrell, C

    2015-12-01

    Solar oxidation to remove arsenic from water has previously been investigated as a batch process. This research has investigated the kinetic parameters for the design of a continuous flow solar reactor to remove arsenic from contaminated groundwater supplies. Continuous flow recirculated batch experiments were carried out under artificial UV light to investigate the effect of different parameters on arsenic removal efficiency. Inlet water arsenic concentrations of up to 1000 μg/L were reduced to below 10 μg/L requiring 12 mg/L iron after receiving 12 kJUV/L radiation. Citrate however was somewhat surprisingly found to promote a detrimental effect on the removal process in the continuous flow reactor studies which is contrary to results found in batch scale tests. The impact of other typical water groundwater quality parameters (phosphate and silica) on the process due to their competition with arsenic for photooxidation products revealed a much higher sensitivity to phosphate ions compared to silicate. Other results showed no benefit from the addition of TiO2 photocatalyst but enhanced arsenic removal at higher temperatures up to 40 °C. Overall, these results have indicated the kinetic envelope from which a continuous flow SORAS single pass system could be more confidently designed for a full-scale community groundwater application at a village level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Overcoming the winner's curse: estimating penetrance parameters from case-control data.

    PubMed

    Zollner, Sebastian; Pritchard, Jonathan K

    2007-04-01

    Genomewide association studies are now a widely used approach in the search for loci that affect complex traits. After detection of significant association, estimates of penetrance and allele-frequency parameters for the associated variant indicate the importance of that variant and facilitate the planning of replication studies. However, when these estimates are based on the original data used to detect the variant, the results are affected by an ascertainment bias known as the "winner's curse." The actual genetic effect is typically smaller than its estimate. This overestimation of the genetic effect may cause replication studies to fail because the necessary sample size is underestimated. Here, we present an approach that corrects for the ascertainment bias and generates an estimate of the frequency of a variant and its penetrance parameters. The method produces a point estimate and confidence region for the parameter estimates. We study the performance of this method using simulated data sets and show that it is possible to greatly reduce the bias in the parameter estimates, even when the original association study had low power. The uncertainty of the estimate decreases with increasing sample size, independent of the power of the original test for association. Finally, we show that application of the method to case-control data can improve the design of replication studies considerably.

  17. pypet: A Python Toolkit for Data Management of Parameter Explorations.

    PubMed

    Meyer, Robert; Obermayer, Klaus

    2016-01-01

    pypet (Python parameter exploration toolkit) is a new multi-platform Python toolkit for managing numerical simulations. Sampling the space of model parameters is a key aspect of simulations and numerical experiments. pypet is designed to allow easy and arbitrary sampling of trajectories through a parameter space beyond simple grid searches. pypet collects and stores both simulation parameters and results in a single HDF5 file. This collective storage allows fast and convenient loading of data for further analyses. pypet provides various additional features such as multiprocessing and parallelization of simulations, dynamic loading of data, integration of git version control, and supervision of experiments via the electronic lab notebook Sumatra. pypet supports a rich set of data formats, including native Python types, Numpy and Scipy data, Pandas DataFrames, and BRIAN(2) quantities. Besides these formats, users can easily extend the toolkit to allow customized data types. pypet is a flexible tool suited for both short Python scripts and large scale projects. pypet's various features, especially the tight link between parameters and results, promote reproducible research in computational neuroscience and simulation-based disciplines.

  18. Parameter space of experimental chaotic circuits with high-precision control parameters.

    PubMed

    de Sousa, Francisco F G; Rubinger, Rero M; Sartorelli, José C; Albuquerque, Holokx A; Baptista, Murilo S

    2016-08-01

    We report high-resolution measurements that experimentally confirm a spiral cascade structure and a scaling relationship of shrimps in the Chua's circuit. Circuits constructed using this component allow for a comprehensive characterization of the circuit behaviors through high resolution parameter spaces. To illustrate the power of our technological development for the creation and the study of chaotic circuits, we constructed a Chua circuit and study its high resolution parameter space. The reliability and stability of the designed component allowed us to obtain data for long periods of time (∼21 weeks), a data set from which an accurate estimation of Lyapunov exponents for the circuit characterization was possible. Moreover, this data, rigorously characterized by the Lyapunov exponents, allows us to reassure experimentally that the shrimps, stable islands embedded in a domain of chaos in the parameter spaces, can be observed in the laboratory. Finally, we confirm that their sizes decay exponentially with the period of the attractor, a result expected to be found in maps of the quadratic family.

  19. Exponential parameter and tracking error convergence guarantees for adaptive controllers without persistency of excitation

    NASA Astrophysics Data System (ADS)

    Chowdhary, Girish; Mühlegg, Maximilian; Johnson, Eric

    2014-08-01

    In model reference adaptive control (MRAC) the modelling uncertainty is often assumed to be parameterised with time-invariant unknown ideal parameters. The convergence of parameters of the adaptive element to these ideal parameters is beneficial, as it guarantees exponential stability, and makes an online learned model of the system available. Most MRAC methods, however, require persistent excitation of the states to guarantee that the adaptive parameters converge to the ideal values. Enforcing PE may be resource intensive and often infeasible in practice. This paper presents theoretical analysis and illustrative examples of an adaptive control method that leverages the increasing ability to record and process data online by using specifically selected and online recorded data concurrently with instantaneous data for adaptation. It is shown that when the system uncertainty can be modelled as a combination of known nonlinear bases, simultaneous exponential tracking and parameter error convergence can be guaranteed if the system states are exciting over finite intervals such that rich data can be recorded online; PE is not required. Furthermore, the rate of convergence is directly proportional to the minimum singular value of the matrix containing online recorded data. Consequently, an online algorithm to record and forget data is presented and its effects on the resulting switched closed-loop dynamics are analysed. It is also shown that when radial basis function neural networks (NNs) are used as adaptive elements, the method guarantees exponential convergence of the NN parameters to a compact neighbourhood of their ideal values without requiring PE. Flight test results on a fixed-wing unmanned aerial vehicle demonstrate the effectiveness of the method.

  20. The Effects of Sweeping Jet Actuator Parameters on Flow Separation Control

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti

    2015-01-01

    A parametric experimental study was performed with sweeping jet actuators (fluidic oscillators) to determine their effectiveness in controlling flow separation on an adverse pressure gradient ramp. Actuator parameters that were investigated include blowing coefficients, operation mode, pitch and spreading angles, streamwise location, aspect ratio, and scale. Surface pressure measurements and surface oil flow visualization were used to characterize the effects of these parameters on the actuator performance. 2D Particle Image Velocimetry measurements of the flow field over the ramp and hot-wire measurements of the actuator's jet flow were also obtained for selective cases. In addition, the sweeping jet actuators were compared to other well-known flow control techniques such as micro-vortex generators, steady blowing, and steady vortex-generating jets. The results confirm that the sweeping jet actuators are more effective than steady blowing and steady vortex-generating jets. The results also suggest that an actuator with a larger spreading angle placed closer to the location where the flow separates provides better performance. For the cases tested, an actuator with an aspect ratio, which is the width/depth of the actuator throat, of 2 was found to be optimal. For a fixed momentum coefficient, decreasing the aspect ratio to 1 produced weaker vortices while increasing the aspect ratio to 4 reduced coverage area. Although scaling down the actuator (based on the throat dimensions) from 0.25 inch x 0.125 inch to 0.15 inch x 0.075 inch resulted in similar flow control performance, scaling down the actuator further to 0.075 inch x 0.0375 inch reduced the actuator efficiency by reducing the coverage area and the amount of mixing in the near-wall region. The results of this study provide insight that can be used to design and select the optimal sweeping jet actuator configuration for flow control applications.

  1. Approximation techniques for parameter estimation and feedback control for distributed models of large flexible structures

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Rosen, I. G.

    1984-01-01

    Approximation ideas are discussed that can be used in parameter estimation and feedback control for Euler-Bernoulli models of elastic systems. Focusing on parameter estimation problems, ways by which one can obtain convergence results for cubic spline based schemes for hybrid models involving an elastic cantilevered beam with tip mass and base acceleration are outlined. Sample numerical findings are also presented.

  2. Development of a parameter optimization technique for the design of automatic control systems

    NASA Technical Reports Server (NTRS)

    Whitaker, P. H.

    1977-01-01

    Parameter optimization techniques for the design of linear automatic control systems that are applicable to both continuous and digital systems are described. The model performance index is used as the optimization criterion because of the physical insight that can be attached to it. The design emphasis is to start with the simplest system configuration that experience indicates would be practical. Design parameters are specified, and a digital computer program is used to select that set of parameter values which minimizes the performance index. The resulting design is examined, and complexity, through the use of more complex information processing or more feedback paths, is added only if performance fails to meet operational specifications. System performance specifications are assumed to be such that the desired step function time response of the system can be inferred.

  3. Controls on the spatial variability of key soil properties: comparing field data with a mechanistic soilscape evolution model

    NASA Astrophysics Data System (ADS)

    Vanwalleghem, T.; Román, A.; Giraldez, J. V.

    2016-12-01

    There is a need for better understanding the processes influencing soil formation and the resulting distribution of soil properties. Soil properties can exhibit strong spatial variation, even at the small catchment scale. Especially soil carbon pools in semi-arid, mountainous areas are highly uncertain because bulk density and stoniness are very heterogeneous and rarely measured explicitly. In this study, we explore the spatial variability in key soil properties (soil carbon stocks, stoniness, bulk density and soil depth) as a function of processes shaping the critical zone (weathering, erosion, soil water fluxes and vegetation patterns). We also compare the potential of a geostatistical versus a mechanistic soil formation model (MILESD) for predicting these key soil properties. Soil core samples were collected from 67 locations at 6 depths. Total soil organic carbon stocks were 4.38 kg m-2. Solar radiation proved to be the key variable controlling soil carbon distribution. Stone content was mostly controlled by slope, indicating the importance of erosion. Spatial distribution of bulk density was found to be highly random. Finally, total carbon stocks were predicted using a random forest model whose main covariates were solar radiation and NDVI. The model predicts carbon stocks that are double as high on north versus south-facing slopes. However, validation showed that these covariates only explained 25% of the variation in the dataset. Apparently, present-day landscape and vegetation properties are not sufficient to fully explain variability in the soil carbon stocks in this complex terrain under natural vegetation. This is attributed to a high spatial variability in bulk density and stoniness, key variables controlling carbon stocks. Similar results were obtained with the mechanistic soil formation model MILESD, suggesting that more complex models might be needed to further explore this high spatial variability.

  4. Combined control-structure optimization

    NASA Technical Reports Server (NTRS)

    Salama, M.; Milman, M.; Bruno, R.; Scheid, R.; Gibson, S.

    1989-01-01

    An approach for combined control-structure optimization keyed to enhancing early design trade-offs is outlined and illustrated by numerical examples. The approach employs a homotopic strategy and appears to be effective for generating families of designs that can be used in these early trade studies. Analytical results were obtained for classes of structure/control objectives with linear quadratic Gaussian (LQG) and linear quadratic regulator (LQR) costs. For these, researchers demonstrated that global optima can be computed for small values of the homotopy parameter. Conditions for local optima along the homotopy path were also given. Details of two numerical examples employing the LQR control cost were given showing variations of the optimal design variables along the homotopy path. The results of the second example suggest that introducing a second homotopy parameter relating the two parts of the control index in the LQG/LQR formulation might serve to enlarge the family of Pareto optima, but its effect on modifying the optimal structural shapes may be analogous to the original parameter lambda.

  5. Symmetric Key Services Markup Language (SKSML)

    NASA Astrophysics Data System (ADS)

    Noor, Arshad

    Symmetric Key Services Markup Language (SKSML) is the eXtensible Markup Language (XML) being standardized by the OASIS Enterprise Key Management Infrastructure Technical Committee for requesting and receiving symmetric encryption cryptographic keys within a Symmetric Key Management System (SKMS). This protocol is designed to be used between clients and servers within an Enterprise Key Management Infrastructure (EKMI) to secure data, independent of the application and platform. Building on many security standards such as XML Signature, XML Encryption, Web Services Security and PKI, SKSML provides standards-based capability to allow any application to use symmetric encryption keys, while maintaining centralized control. This article describes the SKSML protocol and its capabilities.

  6. Application of lab derived kinetic biodegradation parameters at the field scale

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Barker, J. F.; Butler, B. J.; Frind, E. O.

    2003-04-01

    Estimating the intrinsic remediation potential of an aquifer typically requires the accurate assessment of the biodegradation kinetics, the level of available electron acceptors and the flow field. Zero- and first-order degradation rates derived at the laboratory scale generally overpredict the rate of biodegradation when applied to the field scale, because limited electron acceptor availability and microbial growth are typically not considered. On the other hand, field estimated zero- and first-order rates are often not suitable to forecast plume development because they may be an oversimplification of the processes at the field scale and ignore several key processes, phenomena and characteristics of the aquifer. This study uses the numerical model BIO3D to link the laboratory and field scale by applying laboratory derived Monod kinetic degradation parameters to simulate a dissolved gasoline field experiment at Canadian Forces Base (CFB) Borden. All additional input parameters were derived from laboratory and field measurements or taken from the literature. The simulated results match the experimental results reasonably well without having to calibrate the model. An extensive sensitivity analysis was performed to estimate the influence of the most uncertain input parameters and to define the key controlling factors at the field scale. It is shown that the most uncertain input parameters have only a minor influence on the simulation results. Furthermore it is shown that the flow field, the amount of electron acceptor (oxygen) available and the Monod kinetic parameters have a significant influence on the simulated results. Under the field conditions modelled and the assumptions made for the simulations, it can be concluded that laboratory derived Monod kinetic parameters can adequately describe field scale degradation processes, if all controlling factors are incorporated in the field scale modelling that are not necessarily observed at the lab scale. In this way

  7. Reduction of low frequency vibration of truck driver and seating system through system parameter identification, sensitivity analysis and active control

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Bi, Fengrong; Du, Haiping

    2018-05-01

    This paper aims to develop an 5-degree-of-freedom driver and seating system model for optimal vibration control. A new method for identification of the driver seating system parameters from experimental vibration measurement has been developed. The parameter sensitivity analysis has been conducted considering the random excitation frequency and system parameter uncertainty. The most and least sensitive system parameters for the transmissibility ratio have been identified. The optimised PID controllers have been developed to reduce the driver's body vibration.

  8. Application of parameter estimation to aircraft stability and control: The output-error approach

    NASA Technical Reports Server (NTRS)

    Maine, Richard E.; Iliff, Kenneth W.

    1986-01-01

    The practical application of parameter estimation methodology to the problem of estimating aircraft stability and control derivatives from flight test data is examined. The primary purpose of the document is to present a comprehensive and unified picture of the entire parameter estimation process and its integration into a flight test program. The document concentrates on the output-error method to provide a focus for detailed examination and to allow us to give specific examples of situations that have arisen. The document first derives the aircraft equations of motion in a form suitable for application to estimation of stability and control derivatives. It then discusses the issues that arise in adapting the equations to the limitations of analysis programs, using a specific program for an example. The roles and issues relating to mass distribution data, preflight predictions, maneuver design, flight scheduling, instrumentation sensors, data acquisition systems, and data processing are then addressed. Finally, the document discusses evaluation and the use of the analysis results.

  9. Quality control, analysis and secure sharing of Luminex® immunoassay data using the open source LabKey Server platform

    PubMed Central

    2013-01-01

    Background Immunoassays that employ multiplexed bead arrays produce high information content per sample. Such assays are now frequently used to evaluate humoral responses in clinical trials. Integrated software is needed for the analysis, quality control, and secure sharing of the high volume of data produced by such multiplexed assays. Software that facilitates data exchange and provides flexibility to perform customized analyses (including multiple curve fits and visualizations of assay performance over time) could increase scientists’ capacity to use these immunoassays to evaluate human clinical trials. Results The HIV Vaccine Trials Network and the Statistical Center for HIV/AIDS Research and Prevention collaborated with LabKey Software to enhance the open source LabKey Server platform to facilitate workflows for multiplexed bead assays. This system now supports the management, analysis, quality control, and secure sharing of data from multiplexed immunoassays that leverage Luminex xMAP® technology. These assays may be custom or kit-based. Newly added features enable labs to: (i) import run data from spreadsheets output by Bio-Plex Manager™ software; (ii) customize data processing, curve fits, and algorithms through scripts written in common languages, such as R; (iii) select script-defined calculation options through a graphical user interface; (iv) collect custom metadata for each titration, analyte, run and batch of runs; (v) calculate dose–response curves for titrations; (vi) interpolate unknown concentrations from curves for titrated standards; (vii) flag run data for exclusion from analysis; (viii) track quality control metrics across runs using Levey-Jennings plots; and (ix) automatically flag outliers based on expected values. Existing system features allow researchers to analyze, integrate, visualize, export and securely share their data, as well as to construct custom user interfaces and workflows. Conclusions Unlike other tools tailored for

  10. Quality control, analysis and secure sharing of Luminex® immunoassay data using the open source LabKey Server platform.

    PubMed

    Eckels, Josh; Nathe, Cory; Nelson, Elizabeth K; Shoemaker, Sara G; Nostrand, Elizabeth Van; Yates, Nicole L; Ashley, Vicki C; Harris, Linda J; Bollenbeck, Mark; Fong, Youyi; Tomaras, Georgia D; Piehler, Britt

    2013-04-30

    Immunoassays that employ multiplexed bead arrays produce high information content per sample. Such assays are now frequently used to evaluate humoral responses in clinical trials. Integrated software is needed for the analysis, quality control, and secure sharing of the high volume of data produced by such multiplexed assays. Software that facilitates data exchange and provides flexibility to perform customized analyses (including multiple curve fits and visualizations of assay performance over time) could increase scientists' capacity to use these immunoassays to evaluate human clinical trials. The HIV Vaccine Trials Network and the Statistical Center for HIV/AIDS Research and Prevention collaborated with LabKey Software to enhance the open source LabKey Server platform to facilitate workflows for multiplexed bead assays. This system now supports the management, analysis, quality control, and secure sharing of data from multiplexed immunoassays that leverage Luminex xMAP® technology. These assays may be custom or kit-based. Newly added features enable labs to: (i) import run data from spreadsheets output by Bio-Plex Manager™ software; (ii) customize data processing, curve fits, and algorithms through scripts written in common languages, such as R; (iii) select script-defined calculation options through a graphical user interface; (iv) collect custom metadata for each titration, analyte, run and batch of runs; (v) calculate dose-response curves for titrations; (vi) interpolate unknown concentrations from curves for titrated standards; (vii) flag run data for exclusion from analysis; (viii) track quality control metrics across runs using Levey-Jennings plots; and (ix) automatically flag outliers based on expected values. Existing system features allow researchers to analyze, integrate, visualize, export and securely share their data, as well as to construct custom user interfaces and workflows. Unlike other tools tailored for Luminex immunoassays, LabKey Server

  11. [Key physical parameters of hawthorn leaf granules by stepwise regression analysis method].

    PubMed

    Jiang, Qie-Ying; Zeng, Rong-Gui; Li, Zhe; Luo, Juan; Zhao, Guo-Wei; Lv, Dan; Liao, Zheng-Gen

    2017-05-01

    The purpose of this study was to investigate the effect of key physical properties of hawthorn leaf granule on its dissolution behavior. Hawthorn leaves extract was utilized as a model drug. The extract was mixed with microcrystalline cellulose or starch with the same ratio by using different methods. Appropriate amount of lubricant and disintegrating agent was added into part of the mixed powder, and then the granules were prepared by using extrusion granulation and high shear granulation. The granules dissolution behavior was evaluated by using equilibrium dissolution quantity and dissolution rate constant of the hypericin as the indicators. Then the effect of physical properties on dissolution behavior was analyzed through the stepwise regression analysis method. The equilibrium dissolution quantity of hypericin and adsorption heat constant in hawthorn leaves were positively correlated with the monolayer adsorption capacity and negatively correlated with the moisture absorption rate constant. The dissolution rate constants were decreased with the increase of Hausner rate, monolayer adsorption capacity and adsorption heat constant, and were increased with the increase of Carr index and specific surface area. Adsorption heat constant, monolayer adsorption capacity, moisture absorption rate constant, Carr index and specific surface area were the key physical properties of hawthorn leaf granule to affect its dissolution behavior. Copyright© by the Chinese Pharmaceutical Association.

  12. Measuring UV Curing Parameters of Commercial Photopolymers used in Additive Manufacturing.

    PubMed

    Bennett, Joe

    2017-12-01

    A testing methodology was developed to expose photopolymer resins and measure the cured material to determine two key parameters related to the photopolymerization process: E c (critical energy to initiate polymerization) and D p (penetration depth of curing light). Five commercially available resins were evaluated under exposure from 365 nm and 405 nm light at varying power densities and energies. Three different methods for determining the thickness of the cured resin were evaluated. Caliper measurements, stylus profilometry, and confocal laser scanning microscopy showed similar results for hard materials while caliper measurement of a soft, elastomeric material proved inaccurate. Working curves for the five photopolymers showed unique behavior both within and among the resins as a function of curing light wavelength. E c and D p for the five resins showed variations as large as 10×. Variations of this magnitude, if unknown to the user and not controlled for, will clearly affect printed part quality. This points to the need for a standardized approach for determining and disseminating these, and perhaps, other key parameters.

  13. An SSH key management system: easing the pain of managing key/user/account associations

    NASA Astrophysics Data System (ADS)

    Arkhipkin, D.; Betts, W.; Lauret, J.; Shiryaev, A.

    2008-07-01

    Cyber security requirements for secure access to computing facilities often call for access controls via gatekeepers and the use of two-factor authentication. Using SSH keys to satisfy the two factor authentication requirement has introduced a potentially challenging task of managing the keys and their associations with individual users and user accounts. Approaches for a facility with the simple model of one remote user corresponding to one local user would not work at facilities that require a many-to-many mapping between users and accounts on multiple systems. We will present an SSH key management system we developed, tested and deployed to address the many-to-many dilemma in the environment of the STAR experiment. We will explain its use in an online computing context and explain how it makes possible the management and tracing of group account access spread over many sub-system components (data acquisition, slow controls, trigger, detector instrumentation, etc.) without the use of shared passwords for remote logins.

  14. The dynamical control of subduction parameters on surface topography

    NASA Astrophysics Data System (ADS)

    Crameri, F.; Lithgow-Bertelloni, C. R.; Tackley, P. J.

    2017-04-01

    The long-wavelength surface deflection of Earth's outermost rocky shell is mainly controlled by large-scale dynamic processes like isostasy or mantle flow. The largest topographic amplitudes are therefore observed at plate boundaries due to the presence of large thermal heterogeneities and strong tectonic forces. Distinct vertical surface deflections are particularly apparent at convergent plate boundaries mostly due to the convergence and asymmetric sinking of the plates. Having a mantle convection model with a free surface that is able to reproduce both realistic single-sided subduction and long-wavelength surface topography self-consistently, we are now able to better investigate this interaction. We separate the topographic signal into distinct features and quantify the individual topographic contribution of several controlling subduction parameters. Results are diagnosed by splitting the topographic signal into isostatic and residual components, and by considering various physical aspects like viscous dissipation during plate bending. Performing several systematic suites of experiments, we are then able to quantify the topographic impact of the buoyancy, rheology, and geometry of the subduction-zone system to each and every topographic feature at a subduction zone and to provide corresponding scaling laws. We identify slab dip and, slightly less importantly, slab buoyancy as the major agents controlling surface topography at subduction zones on Earth. Only the island-arc high and the back-arc depression extent are mainly controlled by plate strength. Overall, his modeling study sets the basis to better constrain deep-seated mantle structures and their physical properties via the observed surface topography on present-day Earth and back through time.

  15. Analysis of Design Parameters Effects on Vibration Characteristics of Fluidlastic Isolators

    NASA Astrophysics Data System (ADS)

    Deng, Jing-hui; Cheng, Qi-you

    2017-07-01

    The control of vibration in helicopters which consists of reducing vibration levels below the acceptable limit is one of the key problems. The fluidlastic isolators become more and more widely used because the fluids are non-toxic, non-corrosive, nonflammable, and compatible with most elastomers and adhesives. In the field of the fluidlastic isolators design, the selection of design parameters is very important to obtain efficient vibration-suppressed. Aiming at getting the effect of design parameters on the property of fluidlastic isolator, a dynamic equation is set up based on the theory of dynamics. And the dynamic analysis is carried out. The influences of design parameters on the property of fluidlastic isolator are calculated. Dynamic analysis results have shown that fluidlastic isolator can reduce the vibration effectively. Analysis results also showed that the design parameters such as the fluid density, viscosity coefficient, stiffness (K1 and K2) and loss coefficient have obvious influence on the performance of isolator. The efficient vibration-suppressed can be obtained by the design optimization of parameters.

  16. Robust control design with real parameter uncertainty using absolute stability theory. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    How, Jonathan P.; Hall, Steven R.

    1993-01-01

    The purpose of this thesis is to investigate an extension of mu theory for robust control design by considering systems with linear and nonlinear real parameter uncertainties. In the process, explicit connections are made between mixed mu and absolute stability theory. In particular, it is shown that the upper bounds for mixed mu are a generalization of results from absolute stability theory. Both state space and frequency domain criteria are developed for several nonlinearities and stability multipliers using the wealth of literature on absolute stability theory and the concepts of supply rates and storage functions. The state space conditions are expressed in terms of Riccati equations and parameter-dependent Lyapunov functions. For controller synthesis, these stability conditions are used to form an overbound of the H2 performance objective. A geometric interpretation of the equivalent frequency domain criteria in terms of off-axis circles clarifies the important role of the multiplier and shows that both the magnitude and phase of the uncertainty are considered. A numerical algorithm is developed to design robust controllers that minimize the bound on an H2 cost functional and satisfy an analysis test based on the Popov stability multiplier. The controller and multiplier coefficients are optimized simultaneously, which avoids the iteration and curve-fitting procedures required by the D-K procedure of mu synthesis. Several benchmark problems and experiments on the Middeck Active Control Experiment at M.I.T. demonstrate that these controllers achieve good robust performance and guaranteed stability bounds.

  17. Effect of Simultaneous Inoculation with Yeast and Bacteria on Fermentation Kinetics and Key Wine Parameters of Cool-Climate Chardonnay

    PubMed Central

    Jussier, Delphine; Dubé Morneau, Amélie; Mira de Orduña, Ramón

    2006-01-01

    Inoculating grape musts with wine yeast and lactic acid bacteria (LAB) concurrently in order to induce simultaneous alcoholic fermentation (AF) and malolactic fermentation (MLF) can be an efficient alternative to overcome potential inhibition of LAB in wines because of high ethanol concentrations and reduced nutrient content. In this study, the simultaneous inoculation of yeast and LAB into must was compared with a traditional vinification protocol, where MLF was induced after completion of AF. For this, two suitable commercial yeast-bacterium combinations were tested in cool-climate Chardonnay must. The time courses of glucose and fructose, acetaldehyde, several organic acids, and nitrogenous compounds were measured along with the final values of other key wine parameters. Sensory evaluation was done after 12 months of storage. The current study could not confirm a negative impact of simultaneous AF/MLF on fermentation success and kinetics or on final wine parameters. While acetic acid concentrations were slightly increased in wines after simultaneous AF/MLF, the differences were of neither practical nor legal significance. No statistically significant differences were found with regard to the final values of pH or total acidity and the concentrations of ethanol, acetaldehyde, glycerol, citric and lactic acids, and the nitrogen compounds arginine, ammonia, urea, citrulline, and ornithine. Sensory evaluation by a semiexpert panel confirmed the similarity of the wines. However, simultaneous inoculation led to considerable reductions in overall fermentation durations. Furthermore, differences of physiological and microbiological relevance were found. Specifically, we report the vinification of “super-dry” wines devoid of glucose and fructose after simultaneous inoculation of yeast and bacteria. PMID:16391046

  18. User's design handbook for a Standardized Control Module (SCM) for DC to DC Converters, volume 2

    NASA Technical Reports Server (NTRS)

    Lee, F. C.

    1980-01-01

    A unified design procedure is presented for selecting the key SCM control parameters for an arbitrarily given power stage configuration and parameter values, such that all regulator performance specifications can be met and optimized concurrently in a single design attempt. All key results and performance indices, for buck, boost, and buck/boost switching regulators which are relevant to SCM design considerations are included to facilitate frequent references.

  19. Implementation of atomic layer etching of silicon: Scaling parameters, feasibility, and profile control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranjan, Alok, E-mail: alok.ranjan@us.tel.com; Wang, Mingmei; Sherpa, Sonam D.

    2016-05-15

    Atomic or layer by layer etching of silicon exploits temporally segregated self-limiting adsorption and material removal steps to mitigate the problems associated with continuous or quasicontinuous (pulsed) plasma processes: selectivity loss, damage, and profile control. Successful implementation of atomic layer etching requires careful choice of the plasma parameters for adsorption and desorption steps. This paper illustrates how process parameters can be arrived at through basic scaling exercises, modeling and simulation, and fundamental experimental tests of their predictions. Using chlorine and argon plasma in a radial line slot antenna plasma source as a platform, the authors illustrate how cycle time, ionmore » energy, and radical to ion ratio can be manipulated to manage the deviation from ideality when cycle times are shortened or purges are incomplete. Cell based Monte Carlo feature scale modeling is used to illustrate profile outcomes. Experimental results of atomic layer etching processes are illustrated on silicon line and space structures such that iso-dense bias and aspect ratio dependent free profiles are produced. Experimental results also illustrate the profile control margin as processes move from atomic layer to multilayer by layer etching. The consequence of not controlling contamination (e.g., oxygen) is shown to result in deposition and roughness generation.« less

  20. Influence of control parameters on the joint tracking performance of a coaxial weld vision system

    NASA Technical Reports Server (NTRS)

    Gangl, K. J.; Weeks, J. L.

    1985-01-01

    The first phase of a series of evaluations of a vision-based welding control sensor for the Space Shuttle Main Engine Robotic Welding System is described. The robotic welding system is presently under development at the Marshall Space Flight Center. This evaluation determines the standard control response parameters necessary for proper trajectory of the welding torch along the joint.

  1. Adaptive control for a class of nonlinear complex dynamical systems with uncertain complex parameters and perturbations.

    PubMed

    Liu, Jian; Liu, Kexin; Liu, Shutang

    2017-01-01

    In this paper, adaptive control is extended from real space to complex space, resulting in a new control scheme for a class of n-dimensional time-dependent strict-feedback complex-variable chaotic (hyperchaotic) systems (CVCSs) in the presence of uncertain complex parameters and perturbations, which has not been previously reported in the literature. In detail, we have developed a unified framework for designing the adaptive complex scalar controller to ensure this type of CVCSs asymptotically stable and for selecting complex update laws to estimate unknown complex parameters. In particular, combining Lyapunov functions dependent on complex-valued vectors and back-stepping technique, sufficient criteria on stabilization of CVCSs are derived in the sense of Wirtinger calculus in complex space. Finally, numerical simulation is presented to validate our theoretical results.

  2. Adaptive control for a class of nonlinear complex dynamical systems with uncertain complex parameters and perturbations

    PubMed Central

    Liu, Jian; Liu, Kexin; Liu, Shutang

    2017-01-01

    In this paper, adaptive control is extended from real space to complex space, resulting in a new control scheme for a class of n-dimensional time-dependent strict-feedback complex-variable chaotic (hyperchaotic) systems (CVCSs) in the presence of uncertain complex parameters and perturbations, which has not been previously reported in the literature. In detail, we have developed a unified framework for designing the adaptive complex scalar controller to ensure this type of CVCSs asymptotically stable and for selecting complex update laws to estimate unknown complex parameters. In particular, combining Lyapunov functions dependent on complex-valued vectors and back-stepping technique, sufficient criteria on stabilization of CVCSs are derived in the sense of Wirtinger calculus in complex space. Finally, numerical simulation is presented to validate our theoretical results. PMID:28467431

  3. Validation of Essential Acoustic Parameters for Highly Urgent In-Vehicle Collision Warnings.

    PubMed

    Lewis, Bridget A; Eisert, Jesse L; Baldwin, Carryl L

    2018-03-01

    Objective The aim of this study was to validate the importance of key acoustic criteria for use as in-vehicle forward collision warning (FCW) systems. Background Despite recent advances in vehicle safety, automobile crashes remain one of the leading causes of death. As automation allows for more control of noncritical functions by the vehicle, the potential for disengagement and distraction from the driving task also increases. It is, therefore, as important as ever that in-vehicle safety-critical interfaces are intuitive and unambiguous, promoting effective collision avoidance responses upon first exposure even under divided-attention conditions. Method The current study used a driving simulator to assess the effectiveness of two warnings, one that met all essential acoustic parameters, one that met only some essential parameters, and a no-warning control in the context of a lead vehicle-following task in conjunction with a cognitive distractor task and collision event. Results Participants receiving an FCW comprising five essential acoustic components had improved collision avoidance responses relative to a no-warning condition and an FCW missing essential elements on their first exposure. Responses to a consistently good warning (GMU Prime) improved with subsequent exposures, whereas continued exposure to the less optimal FCW (GMU Sub-Prime) resulted in poorer performance even relative to receiving no warning at all. Conclusions This study provides support for previous warning design studies and for the validity of five key acoustic parameters essential for the design of effective in-vehicle FCWs. Application Results from this study have implications for the design of auditory FCWs and in-vehicle display design.

  4. Machine learning of parameter control doctrine for sensor and communication systems. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamen, R.B.; Dillard, R.A.

    Artificial-intelligence approaches to learning were reviewed for their potential contributions to the construction of a system to learn parameter-control doctrine. Separate learning tasks were isolated and several levels of related problems were distinguished. Formulas for providing the learning system with measures of its performance were derived for four kinds of targets.

  5. pypet: A Python Toolkit for Data Management of Parameter Explorations

    PubMed Central

    Meyer, Robert; Obermayer, Klaus

    2016-01-01

    pypet (Python parameter exploration toolkit) is a new multi-platform Python toolkit for managing numerical simulations. Sampling the space of model parameters is a key aspect of simulations and numerical experiments. pypet is designed to allow easy and arbitrary sampling of trajectories through a parameter space beyond simple grid searches. pypet collects and stores both simulation parameters and results in a single HDF5 file. This collective storage allows fast and convenient loading of data for further analyses. pypet provides various additional features such as multiprocessing and parallelization of simulations, dynamic loading of data, integration of git version control, and supervision of experiments via the electronic lab notebook Sumatra. pypet supports a rich set of data formats, including native Python types, Numpy and Scipy data, Pandas DataFrames, and BRIAN(2) quantities. Besides these formats, users can easily extend the toolkit to allow customized data types. pypet is a flexible tool suited for both short Python scripts and large scale projects. pypet's various features, especially the tight link between parameters and results, promote reproducible research in computational neuroscience and simulation-based disciplines. PMID:27610080

  6. A Multi-Parameter Approach for Calculating Crack Instability

    NASA Technical Reports Server (NTRS)

    Zanganeh, M.; Forman, R. G.

    2014-01-01

    An accurate fracture control analysis of spacecraft pressure systems, boosters, rocket hardware and other critical low-cycle fatigue cases where the fracture toughness highly impacts cycles to failure requires accurate knowledge of the material fracture toughness. However, applicability of the measured fracture toughness values using standard specimens and transferability of the values to crack instability analysis of the realistically complex structures is refutable. The commonly used single parameter Linear Elastic Fracture Mechanics (LEFM) approach which relies on the key assumption that the fracture toughness is a material property would result in inaccurate crack instability predictions. In the past years extensive studies have been conducted to improve the single parameter (K-controlled) LEFM by introducing parameters accounting for the geometry or in-plane constraint effects]. Despite the importance of the thickness (out-of-plane constraint) effects in fracture control problems, the literature is mainly limited to some empirical equations for scaling the fracture toughness data] and only few theoretically based developments can be found. In aerospace hardware where the structure might have only one life cycle and weight reduction is crucial, reducing the design margin of safety by decreasing the uncertainty involved in fracture toughness evaluations would result in lighter hardware. In such conditions LEFM would not suffice and an elastic-plastic analysis would be vital. Multi-parameter elastic plastic crack tip field quantifying developments combined with statistical methods] have been shown to have the potential to be used as a powerful tool for tackling such problems. However, these approaches have not been comprehensively scrutinized using experimental tests. Therefore, in this paper a multi-parameter elastic-plastic approach has been used to study the crack instability problem and the transferability issue by considering the effects of geometrical

  7. System parameters for erythropoiesis control model: Comparison of normal values in human and mouse model

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The computer model for erythropoietic control was adapted to the mouse system by altering system parameters originally given for the human to those which more realistically represent the mouse. Parameter values were obtained from a variety of literature sources. Using the mouse model, the mouse was studied as a potential experimental model for spaceflight. Simulation studies of dehydration and hypoxia were performed. A comparison of system parameters for the mouse and human models is presented. Aside from the obvious differences expected in fluid volumes, blood flows and metabolic rates, larger differences were observed in the following: erythrocyte life span, erythropoietin half-life, and normal arterial pO2.

  8. On firework blasts and qualitative parameter dependency.

    PubMed

    Zohdi, T I

    2016-01-01

    In this paper, a mathematical model is developed to qualitatively simulate the progressive time-evolution of a blast from a simple firework. Estimates are made for the blast radius that one can expect for a given amount of detonation energy and pyrotechnic display material. The model balances the released energy from the initial blast pulse with the subsequent kinetic energy and then computes the trajectory of the material under the influence of the drag from the surrounding air, gravity and possible buoyancy. Under certain simplifying assumptions, the model can be solved for analytically. The solution serves as a guide to identifying key parameters that control the evolving blast envelope. Three-dimensional examples are given.

  9. On firework blasts and qualitative parameter dependency

    PubMed Central

    Zohdi, T. I.

    2016-01-01

    In this paper, a mathematical model is developed to qualitatively simulate the progressive time-evolution of a blast from a simple firework. Estimates are made for the blast radius that one can expect for a given amount of detonation energy and pyrotechnic display material. The model balances the released energy from the initial blast pulse with the subsequent kinetic energy and then computes the trajectory of the material under the influence of the drag from the surrounding air, gravity and possible buoyancy. Under certain simplifying assumptions, the model can be solved for analytically. The solution serves as a guide to identifying key parameters that control the evolving blast envelope. Three-dimensional examples are given. PMID:26997903

  10. Comparison of standing postural control and gait parameters in people with and without chronic low back pain: a cross-sectional case-control study.

    PubMed

    MacRae, Catharine Siân; Critchley, Duncan; Lewis, Jeremy S; Shortland, Adam

    2018-01-01

    Differences in postural control and gait have been identified between people with and without chronic low back pain (CLBP); however, many previous studies present data from small samples, or have used methodologies with questionable reliability. This study, employing robust methodology, hypothesised that there would be a difference in postural control, and spatiotemporal parameters of gait in people with CLBP compared with asymptomatic individuals. This cross-sectional case-control study age-matched and gender-matched 16 CLBP and 16 asymptomatic participants. Participants were assessed barefoot (1) standing, over three 40 s trials, under four posture challenging conditions (2) during gait. Primary outcome was postural stability (assessed by root mean squared error of centre of pressure (CoP) displacement (CoP RMSEAP ) and mean CoP velocity (CoP VELAP ), both in the anteroposterior direction); gait outcomes were hip range of movement and peak moments, walking speed, cadence and stride length, assessed using force plates and a motion analysis system. There were no differences between groups in CoP RMSEAP (P=0.26), or CoP VELAP (P=0.60) for any standing condition. During gait, no differences were observed between groups for spatiotemporal parameters, maximum, minimum and total ranges of hip movement, or peak hip flexor or extensor moments in the sagittal plane. In contrast to previous research, this study suggests that people with mild to moderate CLBP present with similar standing postural control, and parameters of gait to asymptomatic individuals. Treatments directed at influencing postural stability (eg, standing on a wobble board) or specific parameters of gait may be an unnecessary addition to a treatment programme.

  11. Analysis and design of a standardized control module for switching regulators

    NASA Astrophysics Data System (ADS)

    Lee, F. C.; Mahmoud, M. F.; Yu, Y.; Kolecki, J. C.

    1982-07-01

    Three basic switching regulators: buck, boost, and buck/boost, employing a multiloop standardized control module (SCM) were characterized by a common small signal block diagram. Employing the unified model, regulator performances such as stability, audiosusceptibility, output impedance, and step load transient are analyzed and key performance indexes are expressed in simple analytical forms. More importantly, the performance characteristics of all three regulators are shown to enjoy common properties due to the unique SCM control scheme which nullifies the positive zero and provides adaptive compensation to the moving poles of the boost and buck/boost converters. This allows a simple unified design procedure to be devised for selecting the key SCM control parameters for an arbitrarily given power stage configuration and parameter values, such that all regulator performance specifications can be met and optimized concurrently in a single design attempt.

  12. Standardization and quality control parameters for Muktā Bhasma (calcined pearl)

    PubMed Central

    Joshi, Namrata; Sharma, Khemchand; Peter, Hema; Dash, Manoj Kumar

    2015-01-01

    Background: Muktā Bhasma (MB) is a traditional Ayurvedic preparation for cough, breathlessness, and eye disorders and is a powerful cardiac tonic, mood elevator, and known to promote strength, intellect, and semen production. Objectives: The present research work was conducted to generate fingerprint for raw and processed MB for quality assessment and standardization using classical and other techniques. Setting and Design: Three samples of MB were prepared by purification (śodhana) of Muktā (pearl) followed by repeated calcinations (Māraṇa). Resultant product was subjected to organoleptic tests and Ayurvedic tests for quality control such as rekhāpūrṇatā, vāritaratva, and nirdhūmatva. Materials and Methods: For quality control, physicochemical parameters such as loss on drying, total ash value, acid insoluble ash, specific gravity, pH value, and other tests using techniques such as elemental analysis with energy dispersive X-ray analysis (EDAX), Structural study with powder X-ray diffraction, particle size with scanning electron microscopy (SEM) were carried out on raw Muktā, Śodhita Muktā, and triplicate batches of MB. Results: The study showed that the raw material Muktā was calcium carbonate in aragonite form, which on repeated calcinations was converted into a more stable calcite form. SEM studies revealed that in raw and purified materials the particles were found scattered and unevenly arranged in the range of 718.7–214.7 nm while in final product, uniformly arranged, stable, rod-shaped, and rounded particles with more agglomerates were observed in the range of 279.2–79.93 nm. EDAX analysis revealed calcium as a major ingredient in MB (average 46.32%) which increased gradually in the stages of processing (raw 34.11%, Śodhita 37.5%). Conclusion: Quality control parameters have been quantified for fingerprinting of MB prepared using a particular method. PMID:26600667

  13. On synchronisation of a class of complex chaotic systems with complex unknown parameters via integral sliding mode control

    NASA Astrophysics Data System (ADS)

    Tirandaz, Hamed; Karami-Mollaee, Ali

    2018-06-01

    Chaotic systems demonstrate complex behaviour in their state variables and their parameters, which generate some challenges and consequences. This paper presents a new synchronisation scheme based on integral sliding mode control (ISMC) method on a class of complex chaotic systems with complex unknown parameters. Synchronisation between corresponding states of a class of complex chaotic systems and also convergence of the errors of the system parameters to zero point are studied. The designed feedback control vector and complex unknown parameter vector are analytically achieved based on the Lyapunov stability theory. Moreover, the effectiveness of the proposed methodology is verified by synchronisation of the Chen complex system and the Lorenz complex systems as the leader and the follower chaotic systems, respectively. In conclusion, some numerical simulations related to the synchronisation methodology is given to illustrate the effectiveness of the theoretical discussions.

  14. Optimal control problems of epidemic systems with parameter uncertainties: application to a malaria two-age-classes transmission model with asymptomatic carriers.

    PubMed

    Mwanga, Gasper G; Haario, Heikki; Capasso, Vicenzo

    2015-03-01

    The main scope of this paper is to study the optimal control practices of malaria, by discussing the implementation of a catalog of optimal control strategies in presence of parameter uncertainties, which is typical of infectious diseases data. In this study we focus on a deterministic mathematical model for the transmission of malaria, including in particular asymptomatic carriers and two age classes in the human population. A partial qualitative analysis of the relevant ODE system has been carried out, leading to a realistic threshold parameter. For the deterministic model under consideration, four possible control strategies have been analyzed: the use of Long-lasting treated mosquito nets, indoor residual spraying, screening and treatment of symptomatic and asymptomatic individuals. The numerical results show that using optimal control the disease can be brought to a stable disease free equilibrium when all four controls are used. The Incremental Cost-Effectiveness Ratio (ICER) for all possible combinations of the disease-control measures is determined. The numerical simulations of the optimal control in the presence of parameter uncertainty demonstrate the robustness of the optimal control: the main conclusions of the optimal control remain unchanged, even if inevitable variability remains in the control profiles. The results provide a promising framework for the designing of cost-effective strategies for disease controls with multiple interventions, even under considerable uncertainty of model parameters. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Continuous-variable quantum key distribution with 1 Mbps secure key rate.

    PubMed

    Huang, Duan; Lin, Dakai; Wang, Chao; Liu, Weiqi; Fang, Shuanghong; Peng, Jinye; Huang, Peng; Zeng, Guihua

    2015-06-29

    We report the first continuous-variable quantum key distribution (CVQKD) experiment to enable the creation of 1 Mbps secure key rate over 25 km standard telecom fiber in a coarse wavelength division multiplexers (CWDM) environment. The result is achieved with two major technological advances: the use of a 1 GHz shot-noise-limited homodyne detector and the implementation of a 50 MHz clock system. The excess noise due to noise photons from local oscillator and classical data channels in CWDM is controlled effectively. We note that the experimental verification of high-bit-rate CVQKD in the multiplexing environment is a significant step closer toward large-scale deployment in fiber networks.

  16. Investigation of critical parameters controlling the efficiency of associative ionization

    NASA Astrophysics Data System (ADS)

    Le Padellec, A.; Launoy, T.; Dochain, A.; Urbain, X.

    2017-05-01

    This paper compiles our merged-beam experimental findings for the associative ionization (AI) process from charged reactants, with the aim of guiding future investigations with e.g. the double electrostatic ion storage ring DESIREE in Stockholm. A reinvestigation of the isotopic effect in H-(D-) + He+ collisions is presented, along with a review of {{{H}}}3+ and NO+ production by AI involving ion pairs or excited neutrals, and put in perspective with the mutual neutralization and radiative association reactions. Critical parameters are identified and evaluated for their systematic role in controlling the magnitude of the cross section: isotopic substitution, exothermicity, electronic state density, and spin statistics.

  17. Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system.

    PubMed

    Lodewyck, Jérôme; Debuisschert, Thierry; García-Patrón, Raúl; Tualle-Brouri, Rosa; Cerf, Nicolas J; Grangier, Philippe

    2007-01-19

    An intercept-resend attack on a continuous-variable quantum-key-distribution protocol is investigated experimentally. By varying the interception fraction, one can implement a family of attacks where the eavesdropper totally controls the channel parameters. In general, such attacks add excess noise in the channel, and may also result in non-Gaussian output distributions. We implement and characterize the measurements needed to detect these attacks, and evaluate experimentally the information rates available to the legitimate users and the eavesdropper. The results are consistent with the optimality of Gaussian attacks resulting from the security proofs.

  18. Finding optimal vaccination strategies under parameter uncertainty using stochastic programming.

    PubMed

    Tanner, Matthew W; Sattenspiel, Lisa; Ntaimo, Lewis

    2008-10-01

    We present a stochastic programming framework for finding the optimal vaccination policy for controlling infectious disease epidemics under parameter uncertainty. Stochastic programming is a popular framework for including the effects of parameter uncertainty in a mathematical optimization model. The problem is initially formulated to find the minimum cost vaccination policy under a chance-constraint. The chance-constraint requires that the probability that R(*) parameter alpha, where R(*) is the post-vaccination reproduction number. We also show how to formulate the problem in two additional cases: (a) finding the optimal vaccination policy when vaccine supply is limited and (b) a cost-benefit scenario. The class of epidemic models for which this method can be used is described and we present an example formulation for which the resulting problem is a mixed-integer program. A short numerical example based on plausible parameter values and distributions is given to illustrate how including parameter uncertainty improves the robustness of the optimal strategy at the cost of higher coverage of the population. Results derived from a stochastic programming analysis can also help to guide decisions about how much effort and resources to focus on collecting data needed to provide better estimates of key parameters.

  19. Automated secured cost effective key refreshing technique to enhance WiMAX privacy key management

    NASA Astrophysics Data System (ADS)

    Sridevi, B.; Sivaranjani, S.; Rajaram, S.

    2013-01-01

    In all walks of life the way of communication is transformed by the rapid growth of wireless communication and its pervasive use. A wireless network which is fixed and richer in bandwidth is specified as IEEE 802.16, promoted and launched by an industrial forum is termed as Worldwide Interoperability for Microwave Access (WiMAX). This technology enables seamless delivery of wireless broadband service for fixed and/or mobile users. The obscurity is the long delay which occurs during the handoff management in every network. Mobile WiMAX employs an authenticated key management protocol as a part of handoff management in which the Base Station (BS) controls the distribution of keying material to the Mobile Station (MS). The protocol employed is Privacy Key Management Version 2- Extensible Authentication Protocol (PKMV2-EAP) which is responsible for the normal and periodical authorization of MSs, reauthorization as well as key refreshing. Authorization key (AK) and Traffic Encryption key (TEK) plays a vital role in key exchange. When the lifetime of key expires, MS has to request for a new key to BS which in turn leads to repetition of authorization, authentication as well as key exchange. To avoid service interruption during reauthorization , two active keys are transmitted at the same time by BS to MS. The consequences of existing work are hefty amount of bandwidth utilization, time consumption and large storage. It is also endured by Man in the Middle attack and Impersonation due to lack of security in key exchange. This paper designs an automatic mutual refreshing of keys to minimize bandwidth utilization, key storage and time consumption by proposing Previous key and Iteration based Key Refreshing Function (PKIBKRF). By integrating PKIBKRF in key generation, the simulation results indicate that 21.8% of the bandwidth and storage of keys are reduced and PKMV2 mutual authentication time is reduced by 66.67%. The proposed work is simulated with Qualnet model and

  20. Identifying dominant controls on hydrologic parameter transfer from gauged to ungauged catchments: a comparative hydrology approach

    USGS Publications Warehouse

    Singh, R.; Archfield, S.A.; Wagener, T.

    2014-01-01

    Daily streamflow information is critical for solving various hydrologic problems, though observations of continuous streamflow for model calibration are available at only a small fraction of the world’s rivers. One approach to estimate daily streamflow at an ungauged location is to transfer rainfall–runoff model parameters calibrated at a gauged (donor) catchment to an ungauged (receiver) catchment of interest. Central to this approach is the selection of a hydrologically similar donor. No single metric or set of metrics of hydrologic similarity have been demonstrated to consistently select a suitable donor catchment. We design an experiment to diagnose the dominant controls on successful hydrologic model parameter transfer. We calibrate a lumped rainfall–runoff model to 83 stream gauges across the United States. All locations are USGS reference gauges with minimal human influence. Parameter sets from the calibrated models are then transferred to each of the other catchments and the performance of the transferred parameters is assessed. This transfer experiment is carried out both at the scale of the entire US and then for six geographic regions. We use classification and regression tree (CART) analysis to determine the relationship between catchment similarity and performance of transferred parameters. Similarity is defined using physical/climatic catchment characteristics, as well as streamflow response characteristics (signatures such as baseflow index and runoff ratio). Across the entire US, successful parameter transfer is governed by similarity in elevation and climate, and high similarity in streamflow signatures. Controls vary for different geographic regions though. Geology followed by drainage, topography and climate constitute the dominant similarity metrics in forested eastern mountains and plateaus, whereas agricultural land use relates most strongly with successful parameter transfer in the humid plains.

  1. General principles of control method of passenger car bodies bending vibration parameters

    NASA Astrophysics Data System (ADS)

    Skachkov, A. N.; Samoshkin, S. L.; Korshunov, S. D.; Kobishchanov, V. V.; Antipin, D. Ya

    2018-03-01

    Weight reduction of passenger cars is a promising direction of reducing the cost of their production and increasing transportation profitability. One way to reduce the weight of passenger cars is the lightweight metal body design by means of using of high-strength aluminum alloys, low-alloy and stainless steels. However, it has been found that the limit of the lightweight metal body design is not determined by the total mode of deformation, but its flexural rigidity, as the latter influences natural frequencies of body bending vibrations. With the introduction of mandatory certification for compliance with the Customs Union technical regulations, the following index was confirmed: “first natural frequency of body bending vibrations in the vertical plane”. This is due to the fact that vibration, noise and car motion depend on this index. To define the required indexes, the principles of the control method of bending vibration parameters of passenger car bodies are proposed in this paper. This method covers all stages of car design – development of design documentation, manufacturing and testing experimental and pilot models, launching the production. The authors also developed evaluation criteria and the procedure of using the results for introduction of control method of bending vibration parameters of passenger car bodies.

  2. The key quality control technology of main cable erection in long-span suspension bridge construction

    NASA Astrophysics Data System (ADS)

    Chen, Yongrui; Wei, Wei; Dai, Jie

    2017-04-01

    Main cable is one of the most important structure of suspension Bridges, which bear all the dead and live load from upper structure. Cable erection is one of the most critical process in suspension bridge construction. Key points about strand erection are studied in this paper, including strand traction, lateral movement, section adjustment, placing into saddle, anchoring, line shape adjustment and keeping, and tension control. The technology has helped a long-span suspension bridge in Yunnan Province, China get a ideal finished state.

  3. The influence of the pressure force control signal on selected parameters of the vehicle continuously variable transmission

    NASA Astrophysics Data System (ADS)

    Bieniek, A.; Graba, M.; Prażnowski, K.

    2016-09-01

    The paper presents results of research on the effect of frequency control signal on the course selected operating parameters of the continuously variable transmission CVT. The study used a gear Fuji Hyper M6 with electro-hydraulic control system and proprietary software for control and data acquisition developed in LabView environment.

  4. Anomaly Monitoring Method for Key Components of Satellite

    PubMed Central

    Fan, Linjun; Xiao, Weidong; Tang, Jun

    2014-01-01

    This paper presented a fault diagnosis method for key components of satellite, called Anomaly Monitoring Method (AMM), which is made up of state estimation based on Multivariate State Estimation Techniques (MSET) and anomaly detection based on Sequential Probability Ratio Test (SPRT). On the basis of analysis failure of lithium-ion batteries (LIBs), we divided the failure of LIBs into internal failure, external failure, and thermal runaway and selected electrolyte resistance (R e) and the charge transfer resistance (R ct) as the key parameters of state estimation. Then, through the actual in-orbit telemetry data of the key parameters of LIBs, we obtained the actual residual value (R X) and healthy residual value (R L) of LIBs based on the state estimation of MSET, and then, through the residual values (R X and R L) of LIBs, we detected the anomaly states based on the anomaly detection of SPRT. Lastly, we conducted an example of AMM for LIBs, and, according to the results of AMM, we validated the feasibility and effectiveness of AMM by comparing it with the results of threshold detective method (TDM). PMID:24587703

  5. The design of superhydrophobic stainless steel surfaces by controlling nanostructures: A key parameter to reduce the implantation of pathogenic bacteria.

    PubMed

    Bruzaud, Jérôme; Tarrade, Jeanne; Celia, Elena; Darmanin, Thierry; Taffin de Givenchy, Elisabeth; Guittard, Frédéric; Herry, Jean-Marie; Guilbaud, Morgan; Bellon-Fontaine, Marie-Noëlle

    2017-04-01

    Reducing bacterial adhesion on substrates is fundamental for various industries. In this work, new superhydrophobic surfaces are created by electrodeposition of hydrophobic polymers (PEDOT-F 4 or PEDOT-H 8 ) on stainless steel with controlled topographical features, especially at a nano-scale. Results show that anti-bioadhesive and anti-biofilm properties require the control of the surface topographical features, and should be associated with a low adhesion of water onto the surface (Cassie-Baxter state) with limited crevice features at the scale of bacterial cells (nano-scale structures). Copyright © 2016. Published by Elsevier B.V.

  6. Study of the kinetic parameters for synthesis and hydrolysis of pharmacologically active salicin isomer catalyzed by baker's yeast maltase

    NASA Astrophysics Data System (ADS)

    Veličković, D. V.; Dimitrijević, A. S.; Bihelović, F. J.; Jankov, R. M.; Milosavić, N.

    2011-12-01

    One of the key elements for understanding enzyme reactions is determination of its kinetic parameters. Since transglucosylation is kinetically controlled reaction, besides the reaction of synthesis, very important is the reaction of enzymatic hydrolysis of created product. Therefore, in this study, kinetic parameters for synthesis and secondary hydrolysis of pharmacologically active α isosalicin by baker's yeast maltase were calculated, and it was shown that specifity of maltase for hydrolysis is approximately 150 times higher then for synthesis.

  7. A linear parameter-varying multiobjective control law design based on youla parametrization for a flexible blended wing body aircraft

    NASA Astrophysics Data System (ADS)

    Demourant, F.; Ferreres, G.

    2013-12-01

    This article presents a methodology for a linear parameter-varying (LPV) multiobjective flight control law design for a blended wing body (BWB) aircraft and results. So, the method is a direct design of a parametrized control law (with respect to some measured flight parameters) through a multimodel convex design to optimize a set of specifications on the full-flight domain and different mass cases. The methodology is based on the Youla parameterization which is very useful since closed loop specifications are affine with respect to Youla parameter. The LPV multiobjective design method is detailed and applied to the BWB flexible aircraft example.

  8. Exponential synchronization of chaotic systems with time-varying delays and parameter mismatches via intermittent control.

    PubMed

    Cai, Shuiming; Hao, Junjun; Liu, Zengrong

    2011-06-01

    This paper studies the synchronization of coupled chaotic systems with time-varying delays in the presence of parameter mismatches by means of periodically intermittent control. Some novel and useful quasisynchronization criteria are obtained by using the methods which are different from the techniques employed in the existing works, and the derived results are less conservative. Especially, a strong constraint on the control width that the control width should be larger than the time delay imposed by the current references is released in this paper. Moreover, our results show that the synchronization criteria depend on the ratio of control width to control period, but not the control width or the control period. Finally, some numerical simulations are given to show the effectiveness of the theoretical results.

  9. Diagnostics, Control and Performance Parameters for the BELLA High Repetition Rate Petawatt Class Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Kei; Mao, Hann-Shin; Gonsalves, Anthony J.

    A laser system producing controllable and stable pulses with high power and ultrashort duration at high repetition rate is a key component of a high energy laser-plasma accelerator (LPA). Precise characterization and control of laser properties are essential to understanding laser-plasma interactions required to build a 10-GeV class LPA. This study discusses the diagnostics, control and performance parameters of a 1 Hz, 1 petawatt (PW) class laser at the Berkeley Lab Laser Accelerator (BELLA) facility. The BELLA PW laser provided up to 46 J on target with a 1% level energy fluctuation and 1.3-μrad pointing stability. The spatial profile wasmore » measured and optimized by using a camera, wavefront sensor, and deformable mirror (ILAO system). The focus waist was measured to be r 0 = 53 μm and the fraction of energy within the circular area defined by the first minimum of the diffraction pattern (r = 67 μm) was 0.75. The temporal profile was controlled via the angle of incidence on a stretcher and a compressor, as well as an acousto-optic programmable dispersive. The temporal pulse shape was measured to be about 33 fs in full width at half maximum (WIZZLER and GRENOUILLE diagnostics). In order to accurately evaluate peak intensity, the energy-normalized peak fluence, and energy-normalized peak power were analyzed for the measured spatial and temporal mode profiles, and were found to be 15 kJ/(cm 2 J) with 6% fluctuation (standard deviation) and 25 TW/J with 5% fluctuation for 46-J on-target energy, respectively. This yielded a peak power of 1.2 PW and a peak intensity of 17×10 18 W/cm 2 with 8% fluctuation. A method to model the pulse shape for arbitrary compressor grating distance with high accuracy was developed. The pulse contrast above the amplified spontaneous emission pedestal was measured by SEQUOIA and found to be better than 10 9. The first order spatiotemporal couplings (STCs) were measured with GRENOUILLE, and a simulation of the pulse's evolution at

  10. Diagnostics, Control and Performance Parameters for the BELLA High Repetition Rate Petawatt Class Laser

    DOE PAGES

    Nakamura, Kei; Mao, Hann-Shin; Gonsalves, Anthony J.; ...

    2017-05-25

    A laser system producing controllable and stable pulses with high power and ultrashort duration at high repetition rate is a key component of a high energy laser-plasma accelerator (LPA). Precise characterization and control of laser properties are essential to understanding laser-plasma interactions required to build a 10-GeV class LPA. This study discusses the diagnostics, control and performance parameters of a 1 Hz, 1 petawatt (PW) class laser at the Berkeley Lab Laser Accelerator (BELLA) facility. The BELLA PW laser provided up to 46 J on target with a 1% level energy fluctuation and 1.3-μrad pointing stability. The spatial profile wasmore » measured and optimized by using a camera, wavefront sensor, and deformable mirror (ILAO system). The focus waist was measured to be r 0 = 53 μm and the fraction of energy within the circular area defined by the first minimum of the diffraction pattern (r = 67 μm) was 0.75. The temporal profile was controlled via the angle of incidence on a stretcher and a compressor, as well as an acousto-optic programmable dispersive. The temporal pulse shape was measured to be about 33 fs in full width at half maximum (WIZZLER and GRENOUILLE diagnostics). In order to accurately evaluate peak intensity, the energy-normalized peak fluence, and energy-normalized peak power were analyzed for the measured spatial and temporal mode profiles, and were found to be 15 kJ/(cm 2 J) with 6% fluctuation (standard deviation) and 25 TW/J with 5% fluctuation for 46-J on-target energy, respectively. This yielded a peak power of 1.2 PW and a peak intensity of 17×10 18 W/cm 2 with 8% fluctuation. A method to model the pulse shape for arbitrary compressor grating distance with high accuracy was developed. The pulse contrast above the amplified spontaneous emission pedestal was measured by SEQUOIA and found to be better than 10 9. The first order spatiotemporal couplings (STCs) were measured with GRENOUILLE, and a simulation of the pulse's evolution at

  11. Diagnostics, Control and Performance Parameters for the BELLA High Repetition Rate Petawatt Class Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, K; Mao, HS; Gonsalves, AJ

    2017-08-01

    © 2017 IEEE. A laser system producing controllable and stable pulses with high power and ultrashort duration at high repetition rate is a key component of a high energy laser-plasma accelerator (LPA). Precise characterization and control of laser properties are essential to understanding laser-plasma interactions required to build a 10-GeV class LPA. This paper discusses the diagnostics, control and performance parameters of a 1 Hz, 1 petawatt (PW) class laser at the Berkeley Lab Laser Accelerator (BELLA) facility. The BELLA PW laser provided up to 46 J on target with a 1% level energy fluctuation and 1.3-μrad pointing stability. Themore » spatial profile was measured and optimized by using a camera, wavefront sensor, and deformable mirror (ILAO system). The focus waist was measured to be r 0 = 53 μm and the fraction of energy within the circular area defined by the first minimum of the diffraction pattern (r = 67 μm) was 0.75. The temporal profile was controlled via the angle of incidence on a stretcher and a compressor, as well as an acousto-optic programmable dispersive. The temporal pulse shape was measured to be about 33 fs in full width at half maximum (WIZZLER and GRENOUILLE diagnostics). In order to accurately evaluate peak intensity, the energy-normalized peak fluence, and energy-normalized peak power were analyzed for the measured spatial and temporal mode profiles, and were found to be 15 kJ/(cm 2 J) with 6% fluctuation (standard deviation) and 25 TW/J with 5% fluctuation for 46-J on-target energy, respectively. This yielded a peak power of 1.2 PW and a peak intensity of 17×10 18 W/cm 2 with 8% fluctuation. A method to model the pulse shape for arbitrary compressor grating distance with high accuracy was developed. The pulse contrast above the amplified spontaneous emission pedestal was measured by SEQUOIA and found to be better than 10 9 . The first order spatiotemporal couplings (STCs) were measured with GRENOUILLE, and a simulation of the pulse

  12. Applications of wind generation for power system frequency control, inter-area oscillations damping and parameter identification

    NASA Astrophysics Data System (ADS)

    Wilches-Bernal, Felipe

    Power systems around the world are experiencing a continued increase in wind generation as part of their energy mix. Because of its power electronics interface, wind energy conversion systems interact differently with the grid than conventional generation. These facts are changing the traditional dynamics that regulate power system behavior and call for a re-examination of traditional problems encountered in power systems like frequency response, inter-area oscillations and parameter identification. To address this need, realistic models for wind generation are necessary. The dissertation implements such models in a MATLAB-based flexible environment suited for power system research. The dissertation continues with an analysis of the frequency response of a test power system dependent mainly on a mode referred to as the frequency regulation mode. Using this test system it is shown that its frequency regulation capability is reduced with wind penetration levels of 25% and above. A controller for wind generation to restore the frequency response of the system is then presented. The proposed controller requires the WTG to operate in a deloaded mode, a condition that is obtained through pitching the wind turbine blades. Time simulations at wind penetration levels of 25% and 50% are performed to demonstrate the effectiveness of the proposed controller. Next, the dissertation evaluates how the inter-area oscillation of a two-machine power system is affected by wind integration. The assessment is performed based on the positioning of the WTG, the level of wind penetration, and the loading condition of the system. It is determined that integrating wind reduces the damping of the inter-area mode of the system when performed in an area that imports power. For this worst-case scenario, the dissertation proposes two controllers for wind generation to improve the damping of the inter-area mode. The first controller uses frequency as feedback signal for the active power control

  13. Robust automatic control system of vessel descent-rise device for plant with distributed parameters “cable – towed underwater vehicle”

    NASA Astrophysics Data System (ADS)

    Chupina, K. V.; Kataev, E. V.; Khannanov, A. M.; Korshunov, V. N.; Sennikov, I. A.

    2018-05-01

    The paper is devoted to a problem of synthesis of the robust control system for a distributed parameters plant. The vessel descent-rise device has a heave compensation function for stabilization of the towed underwater vehicle on a set depth. A sea state code, parameters of the underwater vehicle and cable vary during underwater operations, the vessel heave is a stochastic process. It means that the plant and external disturbances have uncertainty. That is why it is necessary to use the robust theory for synthesis of an automatic control system, but without use of traditional methods of optimization, because this cable has distributed parameters. The offered technique has allowed one to design an effective control system for stabilization of immersion depth of the towed underwater vehicle for various degrees of sea roughness and to provide its robustness to deviations of parameters of the vehicle and cable’s length.

  14. Novel secret key generation techniques using memristor devices

    NASA Astrophysics Data System (ADS)

    Abunahla, Heba; Shehada, Dina; Yeun, Chan Yeob; Mohammad, Baker; Jaoude, Maguy Abi

    2016-02-01

    This paper proposes novel secret key generation techniques using memristor devices. The approach depends on using the initial profile of a memristor as a master key. In addition, session keys are generated using the master key and other specified parameters. In contrast to existing memristor-based security approaches, the proposed development is cost effective and power efficient since the operation can be achieved with a single device rather than a crossbar structure. An algorithm is suggested and demonstrated using physics based Matlab model. It is shown that the generated keys can have dynamic size which provides perfect security. Moreover, the proposed encryption and decryption technique using the memristor based generated keys outperforms Triple Data Encryption Standard (3DES) and Advanced Encryption Standard (AES) in terms of processing time. This paper is enriched by providing characterization results of a fabricated microscale Al/TiO2/Al memristor prototype in order to prove the concept of the proposed approach and study the impacts of process variations. The work proposed in this paper is a milestone towards System On Chip (SOC) memristor based security.

  15. Encryption for Remote Control via Internet or Intranet

    NASA Technical Reports Server (NTRS)

    Lineberger, Lewis

    2005-01-01

    A data-communication protocol has been devised to enable secure, reliable remote control of processes and equipment via a collision-based network, while using minimal bandwidth and computation. The network could be the Internet or an intranet. Control is made secure by use of both a password and a dynamic key, which is sent transparently to a remote user by the controlled computer (that is, the computer, located at the site of the equipment or process to be controlled, that exerts direct control over the process). The protocol functions in the presence of network latency, overcomes errors caused by missed dynamic keys, and defeats attempts by unauthorized remote users to gain control. The protocol is not suitable for real-time control, but is well suited for applications in which control latencies up to about 0.5 second are acceptable. The encryption scheme involves the use of both a dynamic and a private key, without any additional overhead that would degrade performance. The dynamic key is embedded in the equipment- or process-monitor data packets sent out by the controlled computer: in other words, the dynamic key is a subset of the data in each such data packet. The controlled computer maintains a history of the last 3 to 5 data packets for use in decrypting incoming control commands. In addition, the controlled computer records a private key (password) that is given to the remote computer. The encrypted incoming command is permuted by both the dynamic and private key. A person who records the command data in a given packet for hostile purposes cannot use that packet after the public key expires (typically within 3 seconds). Even a person in possession of an unauthorized copy of the command/remote-display software cannot use that software in the absence of the password. The use of a dynamic key embedded in the outgoing data makes the central-processing unit overhead very small. The use of a National Instruments DataSocket(TradeMark) (or equivalent) protocol or

  16. Parameter screening: the use of a dummy parameter to identify non-influential parameters in a global sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Khorashadi Zadeh, Farkhondeh; Nossent, Jiri; van Griensven, Ann; Bauwens, Willy

    2017-04-01

    ' method. A formal statistical test validates these parameter screening results. Based on the dummy parameter screening, 11 model parameters are identified as influential. Therefore, it can be denoted that the "dummy parameter approach" can facilitate the parameter screening process and provide guidance for GSA users to define a screening-threshold, with only limited additional resources. Key words: Parameter screening, Global sensitivity analysis, Dummy parameter, Variance-based method, Moment-independent method

  17. Results From F-18B Stability and Control Parameter Estimation Flight Tests at High Dynamic Pressures

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Noffz, Gregory K.; Iliff, Kenneth W.

    2000-01-01

    A maximum-likelihood output-error parameter estimation technique has been used to obtain stability and control derivatives for the NASA F-18B Systems Research Aircraft. This work has been performed to support flight testing of the active aeroelastic wing (AAW) F-18A project. The goal of this research is to obtain baseline F-18 stability and control derivatives that will form the foundation of the aerodynamic model for the AAW aircraft configuration. Flight data have been obtained at Mach numbers between 0.85 and 1.30 and at dynamic pressures ranging between 600 and 1500 lbf/sq ft. At each test condition, longitudinal and lateral-directional doublets have been performed using an automated onboard excitation system. The doublet maneuver consists of a series of single-surface inputs so that individual control-surface motions cannot be correlated with other control-surface motions. Flight test results have shown that several stability and control derivatives are significantly different than prescribed by the F-18B aerodynamic model. This report defines the parameter estimation technique used, presents stability and control derivative results, compares the results with predictions based on the current F-18B aerodynamic model, and shows improvements to the nonlinear simulation using updated derivatives from this research.

  18. Influence of Time-Pickoff Circuit Parameters on LiDAR Range Precision

    PubMed Central

    Wang, Hongming; Yang, Bingwei; Huyan, Jiayue; Xu, Lijun

    2017-01-01

    A pulsed time-of-flight (TOF) measurement-based Light Detection and Ranging (LiDAR) system is more effective for medium-long range distances. As a key ranging unit, a time-pickoff circuit based on automatic gain control (AGC) and constant fraction discriminator (CFD) is designed to reduce the walk error and the timing jitter for obtaining the accurate time interval. Compared with Cramer–Rao lower bound (CRLB) and the estimation of the timing jitter, four parameters-based Monte Carlo simulations are established to show how the range precision is influenced by the parameters, including pulse amplitude, pulse width, attenuation fraction and delay time of the CFD. Experiments were carried out to verify the relationship between the range precision and three of the parameters, exclusing pulse width. It can be concluded that two parameters of the ranging circuit (attenuation fraction and delay time) were selected according to the ranging performance of the minimum pulse amplitude. The attenuation fraction should be selected in the range from 0.2 to 0.6 to achieve high range precision. The selection criterion of the time-pickoff circuit parameters is helpful for the ranging circuit design of TOF LiDAR system. PMID:29039772

  19. Comparison between different sets of suspension parameters and introduction of new modified skyhook control strategy incorporating varying road condition

    NASA Astrophysics Data System (ADS)

    Abul Kashem, Saad Bin; Ektesabi, Mehran; Nagarajah, Romesh

    2012-07-01

    This study examines the uncertainties in modelling a quarter car suspension system caused by the effect of different sets of suspension parameters of a corresponding mathematical model. To overcome this problem, 11 sets of identified parameters of a suspension system have been compared, taken from the most recent published work. From this investigation, a set of parameters were chosen which showed a better performance than others in respect of peak amplitude and settling time. These chosen parameters were then used to investigate the performance of a new modified continuous skyhook control strategy with adaptive gain that dictates the vehicle's semi-active suspension system. The proposed system first captures the road profile input over a certain period. Then it calculates the best possible value of the skyhook gain (SG) for the subsequent process. Meanwhile the system is controlled according to the new modified skyhook control law using an initial or previous value of the SG. In this study, the proposed suspension system is compared with passive and other recently reported skyhook controlled semi-active suspension systems. Its performances have been evaluated in terms of ride comfort and road handling performance. The model has been validated in accordance with the international standards of admissible acceleration levels ISO2631 and human vibration perception.

  20. Aromatherapy for reducing colonoscopy related procedural anxiety and physiological parameters: a randomized controlled study.

    PubMed

    Hu, Pei-Hsin; Peng, Yen-Chun; Lin, Yu-Ting; Chang, Chi-Sen; Ou, Ming-Chiu

    2010-01-01

    Colonoscopy is generally tolerated, some patients regarding the procedure as unpleasant and painful and generally performed with the patient sedated and receiving analgesics. The effect of sedation and analgesia for colonoscopy is limited. Aromatherapy is also applied to gastrointestinal endoscopy to reduce procedural anxiety. There is lack of information about aromatherapy specific for colonoscopy. In this study, we aimed to performed a randomized controlled study to investigate the effect of aromatherapy on relieve anxiety, stress and physiological parameters of colonoscopy. A randomized controlled trail was carried out and collected in 2009 and 2010. The participants were randomized in two groups. Aromatherapy was then carried out by inhalation of Sunflower oil (control group) and Neroli oil (Experimental group). The anxiety index was evaluated by State Trait Anxiety Inventory-state (STAI-S) score before aromatherapy and after colonoscopy as well as the pain index for post-procedural by visual analogue scale (VAS). Physiological indicators, such as blood pressure (systolic and diastolic blood pressure), heart rate and respiratory rate were evaluated before and after aromatherapy. Participates in this study were 27 subjects, 13 in control group and 14 in Neroli group with average age 52.26 +/- 17.79 years. There was no significance of procedural anxiety by STAI-S score and procedural pain by VAS. The physiological parameters showed a significant lower pre- and post-procedural systolic blood pressure in Neroli group than control group. Aromatic care for colonoscopy, although with no significant effect on procedural anxiety, is an inexpensive, effective and safe pre-procedural technique that could decrease systolic blood pressure.

  1. Middle Term Achievements of Project 5322: Retrieval Of Key Eco-Hydrological Parameters From Remote Sensing In The Watershed Allied Telemetry Experimental Research (Water)

    NASA Astrophysics Data System (ADS)

    Li, Xin; Menenti, Massimo

    2010-10-01

    The general objective of project 5322 in the Dragon 2 programme is to quantitatively retrieve some key eco- hydrological parameters by using remote sensed data, especially from ESA, Chinese, and the Third Party Mission (TPM). To achieve this goal, a comprehensive observation experiment, Watershed Allied Telemetry Experimental Research (WATER) was carried out. WARER is a simultaneously airborne, satellite-borne, and ground-based remote sensing experiment took place in the Heihe River Basin, a typical inland river basin in the northwest of China. This paper introduces the background and implementation of WATER. Data have been obtained so far are described in details. After a period of data analysis for two years, numerous results have also been achieved. This paper presents some early results of WATER as well.

  2. Estimation of Gravitation Parameters of Saturnian Moons Using Cassini Attitude Control Flight Data

    NASA Technical Reports Server (NTRS)

    Krening, Samantha C.

    2013-01-01

    A major science objective of the Cassini mission is to study Saturnian satellites. The gravitational properties of each Saturnian moon is of interest not only to scientists but also to attitude control engineers. When the Cassini spacecraft flies close to a moon, a gravity gradient torque is exerted on the spacecraft due to the mass of the moon. The gravity gradient torque will alter the spin rates of the reaction wheels (RWA). The change of each reaction wheel's spin rate might lead to overspeed issues or operating the wheel bearings in an undesirable boundary lubrication condition. Hence, it is imperative to understand how the gravity gradient torque caused by a moon will affect the reaction wheels in order to protect the health of the hardware. The attitude control telemetry from low-altitude flybys of Saturn's moons can be used to estimate the gravitational parameter of the moon or the distance between the centers of mass of Cassini and the moon. Flight data from several low altitude flybys of three Saturnian moons, Dione, Rhea, and Enceladus, were used to estimate the gravitational parameters of these moons. Results are compared with values given in the literature.

  3. Application of Novel Lateral Tire Force Sensors to Vehicle Parameter Estimation of Electric Vehicles.

    PubMed

    Nam, Kanghyun

    2015-11-11

    This article presents methods for estimating lateral vehicle velocity and tire cornering stiffness, which are key parameters in vehicle dynamics control, using lateral tire force measurements. Lateral tire forces acting on each tire are directly measured by load-sensing hub bearings that were invented and further developed by NSK Ltd. For estimating the lateral vehicle velocity, tire force models considering lateral load transfer effects are used, and a recursive least square algorithm is adapted to identify the lateral vehicle velocity as an unknown parameter. Using the estimated lateral vehicle velocity, tire cornering stiffness, which is an important tire parameter dominating the vehicle's cornering responses, is estimated. For the practical implementation, the cornering stiffness estimation algorithm based on a simple bicycle model is developed and discussed. Finally, proposed estimation algorithms were evaluated using experimental test data.

  4. Method for extracting relevant electrical parameters from graphene field-effect transistors using a physical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boscá, A., E-mail: alberto.bosca@upm.es; Dpto. de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Madrid 28040; Pedrós, J.

    2015-01-28

    Due to its intrinsic high mobility, graphene has proved to be a suitable material for high-speed electronics, where graphene field-effect transistor (GFET) has shown excellent properties. In this work, we present a method for extracting relevant electrical parameters from GFET devices using a simple electrical characterization and a model fitting. With experimental data from the device output characteristics, the method allows to calculate parameters such as the mobility, the contact resistance, and the fixed charge. Differentiated electron and hole mobilities and direct connection with intrinsic material properties are some of the key aspects of this method. Moreover, the method outputmore » values can be correlated with several issues during key fabrication steps such as the graphene growth and transfer, the lithographic steps, or the metalization processes, providing a flexible tool for quality control in GFET fabrication, as well as a valuable feedback for improving the material-growth process.« less

  5. Combinatorial influence of environmental parameters on transcription factor activity.

    PubMed

    Knijnenburg, T A; Wessels, L F A; Reinders, M J T

    2008-07-01

    Cells receive a wide variety of environmental signals, which are often processed combinatorially to generate specific genetic responses. Changes in transcript levels, as observed across different environmental conditions, can, to a large extent, be attributed to changes in the activity of transcription factors (TFs). However, in unraveling these transcription regulation networks, the actual environmental signals are often not incorporated into the model, simply because they have not been measured. The unquantified heterogeneity of the environmental parameters across microarray experiments frustrates regulatory network inference. We propose an inference algorithm that models the influence of environmental parameters on gene expression. The approach is based on a yeast microarray compendium of chemostat steady-state experiments. Chemostat cultivation enables the accurate control and measurement of many of the key cultivation parameters, such as nutrient concentrations, growth rate and temperature. The observed transcript levels are explained by inferring the activity of TFs in response to combinations of cultivation parameters. The interplay between activated enhancers and repressors that bind a gene promoter determine the possible up- or downregulation of the gene. The model is translated into a linear integer optimization problem. The resulting regulatory network identifies the combinatorial effects of environmental parameters on TF activity and gene expression. The Matlab code is available from the authors upon request. Supplementary data are available at Bioinformatics online.

  6. Digital robust active control law synthesis for large order flexible structure using parameter optimization

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.

    1988-01-01

    A generic procedure for the parameter optimization of a digital control law for a large-order flexible flight vehicle or large space structure modeled as a sampled data system is presented. A linear quadratic Guassian type cost function was minimized, while satisfying a set of constraints on the steady-state rms values of selected design responses, using a constrained optimization technique to meet multiple design requirements. Analytical expressions for the gradients of the cost function and the design constraints on mean square responses with respect to the control law design variables are presented.

  7. Ferromagnetically filled carbon nano-onions: the key role of sulfur in dimensional, structural and electric control

    PubMed Central

    Medranda, D.; Borowiec, J.; Zhang, Xiao; Wang, S.; Yan, K.; Zhang, J.; He, Y.; Ivaturi, S.

    2018-01-01

    A key challenge in the fabrication of ferromagnetically filled carbon nano-onions (CNOs) is the control of their thickness, dimensions and electric properties. Up to now literature works have mainly focused on the encapsulation of different types of ferromagnetic materials including α-Fe, Fe3C, Co, FeCo, FePd3 and others within CNOs. However, no report has yet shown a suitable method for controlling both the number of shells, diameter and electric properties of the produced CNOs. Here, we demonstrate an advanced chemical vapour deposition approach in which the use of small quantities of sulfur during the pyrolysis of ferrocene allows for the control of (i) the diameter of the CNOs, (ii) the number of shells and (iii) the electric properties. We demonstrate the morphological, structural, electric and magnetic properties of these new types of CNOs by using SEM, XRD, TEM, HRTEM, EIS and VSM techniques. PMID:29410810

  8. Parameter Design and Optimal Control of an Open Core Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Pang, D.; Anand, D. K.; Kirk, J. A.

    1996-01-01

    In low earth orbit (LEO) satellite applications spacecraft power is provided by photovoltaic cells and batteries. To overcome battery shortcomings the University of Maryland, working in cooperation with NASA/GSFC and NASA/LeRC, has developed a magnetically suspended flywheel for energy storage applications. The system is referred to as an Open Core Composite Flywheel (OCCF) energy storage system. Successful application of flywheel energy storage requires integration of several technologies, viz. bearings, rotor design, motor/generator, power conditioning, and system control. In this paper we present a parameter design method which has been developed for analyzing the linear SISO model of the magnetic bearing controller for the OCCF. The objective of this continued research is to principally analyze the magnetic bearing system for nonlinear effects in order to increase the region of stability, as determined by high speed and large air gap control. This is achieved by four tasks: (1) physical modeling, design, prototyping, and testing of an improved magnetically suspended flywheel energy storage system, (2) identification of problems that limit performance and their corresponding solutions, (3) development of a design methodology for magnetic bearings, and (4) design of an optimal controller for future high speed applications. Both nonlinear SISO and MIMO models of the magnetic system were built to study limit cycle oscillations and power amplifier saturation phenomenon observed in experiments. The nonlinear models include the inductance of EM coils, the power amplifier saturation, and the physical limitation of the flywheel movement as discussed earlier. The control program EASY5 is used to study the nonlinear SISO and MIMO models. Our results have shown that the characteristics and frequency responses of the magnetic bearing system obtained from modeling are comparable to those obtained experimentally. Although magnetic saturation is shown in the bearings, there

  9. Temporal parameter change of human postural control ability during upright swing using recursive least square method

    NASA Astrophysics Data System (ADS)

    Goto, Akifumi; Ishida, Mizuri; Sagawa, Koichi

    2010-01-01

    The purpose of this study is to derive quantitative assessment indicators of the human postural control ability. An inverted pendulum is applied to standing human body and is controlled by ankle joint torque according to PD control method in sagittal plane. Torque control parameters (KP: proportional gain, KD: derivative gain) and pole placements of postural control system are estimated with time from inclination angle variation using fixed trace method as recursive least square method. Eight young healthy volunteers are participated in the experiment, in which volunteers are asked to incline forward as far as and as fast as possible 10 times over 10 [s] stationary intervals with their neck joint, hip joint and knee joint fixed, and then return to initial upright posture. The inclination angle is measured by an optical motion capture system. Three conditions are introduced to simulate unstable standing posture; 1) eyes-opened posture for healthy condition, 2) eyes-closed posture for visual impaired and 3) one-legged posture for lower-extremity muscle weakness. The estimated parameters Kp, KD and pole placements are applied to multiple comparison test among all stability conditions. The test results indicate that Kp, KD and real pole reflect effect of lower-extremity muscle weakness and KD also represents effect of visual impairment. It is suggested that the proposed method is valid for quantitative assessment of standing postural control ability.

  10. Performance verification and system parameter identification of spacecraft tape recorder control servo

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, A. K.

    1979-01-01

    Design adequacy of the lead-lag compensator of the frequency loop, accuracy checking of the analytical expression for the electrical motor transfer function, and performance evaluation of the speed control servo of the digital tape recorder used on-board the 1976 Viking Mars Orbiters and Voyager 1977 Jupiter-Saturn flyby spacecraft are analyzed. The transfer functions of the most important parts of a simplified frequency loop used for test simulation are described and ten simulation cases are reported. The first four of these cases illustrate the method of selecting the most suitable transfer function for the hysteresis synchronous motor, while the rest verify and determine the servo performance parameters and alternative servo compensation schemes. It is concluded that the linear methods provide a starting point for the final verification/refinement of servo design by nonlinear time response simulation and that the variation of the parameters of the static/dynamic Coulomb friction is as expected in a long-life space mission environment.

  11. Biometrics based key management of double random phase encoding scheme using error control codes

    NASA Astrophysics Data System (ADS)

    Saini, Nirmala; Sinha, Aloka

    2013-08-01

    In this paper, an optical security system has been proposed in which key of the double random phase encoding technique is linked to the biometrics of the user to make it user specific. The error in recognition due to the biometric variation is corrected by encoding the key using the BCH code. A user specific shuffling key is used to increase the separation between genuine and impostor Hamming distance distribution. This shuffling key is then further secured using the RSA public key encryption to enhance the security of the system. XOR operation is performed between the encoded key and the feature vector obtained from the biometrics. The RSA encoded shuffling key and the data obtained from the XOR operation are stored into a token. The main advantage of the present technique is that the key retrieval is possible only in the simultaneous presence of the token and the biometrics of the user which not only authenticates the presence of the original input but also secures the key of the system. Computational experiments showed the effectiveness of the proposed technique for key retrieval in the decryption process by using the live biometrics of the user.

  12. Performance analysis of SS7 congestion controls under sustained overload

    NASA Astrophysics Data System (ADS)

    Manfield, David R.; Millsteed, Gregory K.; Zukerman, Moshe

    1994-04-01

    Congestion controls are a key factor in achieving the robust performance required of common channel signaling (CCS) networks in the face of partial network failures and extreme traffic loads, especially as networks become large and carry high traffic volume. The CCITT recommendations define a number of types of congestion control, and the parameters of the controls must be well set in order to ensure their efficacy under transient and sustained signalling network overload. The objective of this paper is to present a modeling approach to the determination of the network parameters that govern the performance of the SS7 congestion controls under sustained overload. Results of the investigation by simulation are presented and discussed.

  13. Possibility of controlling nonregulated prices in the electricity market by means of varying the parameters of a power system

    NASA Astrophysics Data System (ADS)

    Vaskovskaya, T. A.

    2014-12-01

    This paper offers a new approach to the analysis of price signals from the wholesale electricity and capacity market that is based on the analysis of the influence exerted by input data used in the problem of optimization of the power system operating conditions, namely: parameters of a power grid and power-receiving equipment that might vary under the effect of control devices. It is shown that it would be possible to control nonregulated prices for electricity in the wholesale electricity market by varying the parameters of control devices and energy-receiving equipment. An increase in the effectiveness of power transmission and the cost-effective use of fuel-and-energy resources (energy saving) can become an additional effect of controlling the nonregulated prices.

  14. Post-processing procedure for industrial quantum key distribution systems

    NASA Astrophysics Data System (ADS)

    Kiktenko, Evgeny; Trushechkin, Anton; Kurochkin, Yury; Fedorov, Aleksey

    2016-08-01

    We present algorithmic solutions aimed on post-processing procedure for industrial quantum key distribution systems with hardware sifting. The main steps of the procedure are error correction, parameter estimation, and privacy amplification. Authentication of classical public communication channel is also considered.

  15. River Sensitivity and Catchment Connectivity: Key Controls on Geomorphic Response and Effectiveness

    NASA Astrophysics Data System (ADS)

    Lisenby, P.; Fryirs, K.; Croke, J.

    2016-12-01

    The sensitivity of river channels to adjustment and the dynamics of sediment connectivity along a channel network are key controls on the capacity (ability) for a river system to adjust, i.e. the severity, distribution, and type of geomorphic response to disturbance events. In turn, the cumulative impact of geomorphic responses compared with event magnitude will determine the geomorphic effectiveness of a single disturbance event. River sensitivity and sediment connectivity can change significantly over space and time, and vary with changes in internal factors such as channel type and geomorphic landform and external factors such as event sequencing and lithological controls. Correspondingly, the capacity for a geomorphic system to respond to disturbance events will also vary, so that geomorphic effectiveness is not definitively characterized by a static relationship between event magnitude and geomorphic response, but rather is a dynamic comparison between geomorphic response and an actively changing capacity for geomorphic adjustment. Herein, we use the Lockyer Valley, Queensland as a case study to illustrate the variability of river sensitivity and sediment connectivity. We relate this variability to the potential and capacity for geomorphic channel response. We find that the sensitivity to and capacity for geomorphic adjustment varies significantly with channel morphometry and valley position. Additionally, the nature of bedload sediment connectivity changes with the distribution of geomorphic landforms and channel weirs that can impede sediment transference through the system. This variability of river sensitivity and sediment connectivity will control the nature of geomorphic response to disturbance events within the Lockyer Valley. Ultimately, determinations of geomorphic effectiveness for disturbance events will depend on comparisons of their geomorphic impacts with the capacity of the Lockyer geomorphic system to respond.

  16. Estimating unknown parameters in haemophilia using expert judgement elicitation.

    PubMed

    Fischer, K; Lewandowski, D; Janssen, M P

    2013-09-01

    The increasing attention to healthcare costs and treatment efficiency has led to an increasing demand for quantitative data concerning patient and treatment characteristics in haemophilia. However, most of these data are difficult to obtain. The aim of this study was to use expert judgement elicitation (EJE) to estimate currently unavailable key parameters for treatment models in severe haemophilia A. Using a formal expert elicitation procedure, 19 international experts provided information on (i) natural bleeding frequency according to age and onset of bleeding, (ii) treatment of bleeds, (iii) time needed to control bleeding after starting secondary prophylaxis, (iv) dose requirements for secondary prophylaxis according to onset of bleeding, and (v) life-expectancy. For each parameter experts provided their quantitative estimates (median, P10, P90), which were combined using a graphical method. In addition, information was obtained concerning key decision parameters of haemophilia treatment. There was most agreement between experts regarding bleeding frequencies for patients treated on demand with an average onset of joint bleeding (1.7 years): median 12 joint bleeds per year (95% confidence interval 0.9-36) for patients ≤ 18, and 11 (0.8-61) for adult patients. Less agreement was observed concerning estimated effective dose for secondary prophylaxis in adults: median 2000 IU every other day The majority (63%) of experts expected that a single minor joint bleed could cause irreversible damage, and would accept up to three minor joint bleeds or one trauma related joint bleed annually on prophylaxis. Expert judgement elicitation allowed structured capturing of quantitative expert estimates. It generated novel data to be used in computer modelling, clinical care, and trial design. © 2013 John Wiley & Sons Ltd.

  17. Effect of process parameters on greenhouse gas generation by wastewater treatment plants.

    PubMed

    Yerushalmi, L; Shahabadi, M Bani; Haghighat, F

    2011-05-01

    The effect of key process parameters on greenhouse gas (GHG) emission by wastewater treatment plants was evaluated, and the governing parameters that exhibited major effects on the overall on- and off-site GHG emissions were identified. This evaluation used aerobic, anaerobic, and hybrid anaerobic/aerobic treatment systems with food processing industry wastewater. The operating temperature of anaerobic sludge digester was identified to have the highest effect on GHG generation in the aerobic treatment system. The total GHG emissions of 2694 kg CO2e/d were increased by 72.5% with the increase of anaerobic sludge digester temperature from 20 to 40 degrees C. The operating temperature of the anaerobic reactor was the dominant controlling parameter in the anaerobic and hybrid treatment systems. Raising the anaerobic reactor's temperature from 25 to 40 degrees C increased the total GHG emissions from 5822 and 6617 kg CO2e/d by 105.6 and 96.5% in the anaerobic and hybrid treatment systems, respectively.

  18. Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping

    PubMed Central

    D’Ostilio, Kevin; Rothwell, John C; Murphy, David L

    2014-01-01

    Objective This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with lower voltage rating than prior cTMS devices. Main results cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (<10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in 10 healthy volunteers. Significance The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool. PMID:25242286

  19. Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping

    NASA Astrophysics Data System (ADS)

    Peterchev, Angel V.; DʼOstilio, Kevin; Rothwell, John C.; Murphy, David L.

    2014-10-01

    Objective. This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach. We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with a lower voltage rating than prior cTMS devices. Main results. cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (\\lt 10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in ten healthy volunteers. Significance. The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool.

  20. Cryptographic robustness of practical quantum cryptography: BB84 key distribution protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotkov, S. N.

    2008-07-15

    In real fiber-optic quantum cryptography systems, the avalanche photodiodes are not perfect, the source of quantum states is not a single-photon one, and the communication channel is lossy. For these reasons, key distribution is impossible under certain conditions for the system parameters. A simple analysis is performed to find relations between the parameters of real cryptography systems and the length of the quantum channel that guarantee secure quantum key distribution when the eavesdropper's capabilities are limited only by fundamental laws of quantum mechanics while the devices employed by the legitimate users are based on current technologies. Critical values are determinedmore » for the rate of secure real-time key generation that can be reached under the current technology level. Calculations show that the upper bound on channel length can be as high as 300 km for imperfect photodetectors (avalanche photodiodes) with present-day quantum efficiency ({eta} {approx} 20%) and dark count probability (p{sub dark} {approx} 10{sup -7})« less

  1. Cryptographic robustness of practical quantum cryptography: BB84 key distribution protocol

    NASA Astrophysics Data System (ADS)

    Molotkov, S. N.

    2008-07-01

    In real fiber-optic quantum cryptography systems, the avalanche photodiodes are not perfect, the source of quantum states is not a single-photon one, and the communication channel is lossy. For these reasons, key distribution is impossible under certain conditions for the system parameters. A simple analysis is performed to find relations between the parameters of real cryptography systems and the length of the quantum channel that guarantee secure quantum key distribution when the eavesdropper’s capabilities are limited only by fundamental laws of quantum mechanics while the devices employed by the legitimate users are based on current technologies. Critical values are determined for the rate of secure real-time key generation that can be reached under the current technology level. Calculations show that the upper bound on channel length can be as high as 300 km for imperfect photodetectors (avalanche photodiodes) with present-day quantum efficiency (η ≈ 20%) and dark count probability ( p dark ˜ 10-7).

  2. RSA-Based Password-Authenticated Key Exchange, Revisited

    NASA Astrophysics Data System (ADS)

    Shin, Seonghan; Kobara, Kazukuni; Imai, Hideki

    The RSA-based Password-Authenticated Key Exchange (PAKE) protocols have been proposed to realize both mutual authentication and generation of secure session keys where a client is sharing his/her password only with a server and the latter should generate its RSA public/private key pair (e, n), (d, n) every time due to the lack of PKI (Public-Key Infrastructures). One of the ways to avoid a special kind of off-line (so called e-residue) attacks in the RSA-based PAKE protocols is to deploy a challenge/response method by which a client verifies the relative primality of e and φ(n) interactively with a server. However, this kind of RSA-based PAKE protocols did not give any proof of the underlying challenge/response method and therefore could not specify the exact complexity of their protocols since there exists another security parameter, needed in the challenge/response method. In this paper, we first present an RSA-based PAKE (RSA-PAKE) protocol that can deploy two different challenge/response methods (denoted by Challenge/Response Method1 and Challenge/Response Method2). The main contributions of this work include: (1) Based on the number theory, we prove that the Challenge/Response Method1 and the Challenge/Response Method2 are secure against e-residue attacks for any odd prime e (2) With the security parameter for the on-line attacks, we show that the RSA-PAKE protocol is provably secure in the random oracle model where all of the off-line attacks are not more efficient than on-line dictionary attacks; and (3) By considering the Hamming weight of e and its complexity in the. RSA-PAKE protocol, we search for primes to be recommended for a practical use. We also compare the RSA-PAKE protocol with the previous ones mainly in terms of computation and communication complexities.

  3. Investigation into the influence of build parameters on failure of 3D printed parts

    NASA Astrophysics Data System (ADS)

    Fornasini, Giacomo

    Additive manufacturing, including fused deposition modeling (FDM), is transforming the built world and engineering education. Deep understanding of parts created through FDM technology has lagged behind its adoption in home, work, and academic environments. Properties of parts created from bulk materials through traditional manufacturing are understood well enough to accurately predict their behavior through analytical models. Unfortunately, Additive Manufacturing (AM) process parameters create anisotropy on a scale that fundamentally affects the part properties. Understanding AM process parameters (implemented by program algorithms called slicers) is necessary to predict part behavior. Investigating algorithms controlling print parameters (slicers) revealed stark differences between the generation of part layers. In this work, tensile testing experiments, including a full factorial design, determined that three key factors, width, thickness, infill density, and their interactions, significantly affect the tensile properties of 3D printed test samples.

  4. Application of Novel Lateral Tire Force Sensors to Vehicle Parameter Estimation of Electric Vehicles

    PubMed Central

    Nam, Kanghyun

    2015-01-01

    This article presents methods for estimating lateral vehicle velocity and tire cornering stiffness, which are key parameters in vehicle dynamics control, using lateral tire force measurements. Lateral tire forces acting on each tire are directly measured by load-sensing hub bearings that were invented and further developed by NSK Ltd. For estimating the lateral vehicle velocity, tire force models considering lateral load transfer effects are used, and a recursive least square algorithm is adapted to identify the lateral vehicle velocity as an unknown parameter. Using the estimated lateral vehicle velocity, tire cornering stiffness, which is an important tire parameter dominating the vehicle’s cornering responses, is estimated. For the practical implementation, the cornering stiffness estimation algorithm based on a simple bicycle model is developed and discussed. Finally, proposed estimation algorithms were evaluated using experimental test data. PMID:26569246

  5. Adaptive Control Model Reveals Systematic Feedback and Key Molecules in Metabolic Pathway Regulation

    PubMed Central

    Moffitt, Richard A.; Merrill, Alfred H.; Wang, May D.

    2011-01-01

    Abstract Robust behavior in metabolic pathways resembles stabilized performance in systems under autonomous control. This suggests we can apply control theory to study existing regulation in these cellular networks. Here, we use model-reference adaptive control (MRAC) to investigate the dynamics of de novo sphingolipid synthesis regulation in a combined theoretical and experimental case study. The effects of serine palmitoyltransferase over-expression on this pathway are studied in vitro using human embryonic kidney cells. We report two key results from comparing numerical simulations with observed data. First, MRAC simulations of pathway dynamics are comparable to simulations from a standard model using mass action kinetics. The root-sum-square (RSS) between data and simulations in both cases differ by less than 5%. Second, MRAC simulations suggest systematic pathway regulation in terms of adaptive feedback from individual molecules. In response to increased metabolite levels available for de novo sphingolipid synthesis, feedback from molecules along the main artery of the pathway is regulated more frequently and with greater amplitude than from other molecules along the branches. These biological insights are consistent with current knowledge while being new that they may guide future research in sphingolipid biology. In summary, we report a novel approach to study regulation in cellular networks by applying control theory in the context of robust metabolic pathways. We do this to uncover potential insight into the dynamics of regulation and the reverse engineering of cellular networks for systems biology. This new modeling approach and the implementation routines designed for this case study may be extended to other systems. Supplementary Material is available at www.liebertonline.com/cmb. PMID:21314456

  6. Evaluation of the MyWellness Key accelerometer.

    PubMed

    Herrmann, S D; Hart, T L; Lee, C D; Ainsworth, B E

    2011-02-01

    to examine the concurrent validity of the Technogym MyWellness Key accelerometer against objective and subjective physical activity (PA) measures. randomised, cross-sectional design with two phases. The laboratory phase compared the MyWellness Key with the ActiGraph GT1M and the Yamax SW200 Digiwalker pedometer during graded treadmill walking, increasing speed each minute. The free-living phase compared the MyWellness Key with the ActiGraph, Digiwalker, Bouchard Activity cord (BAR) and Global Physical Activity Questionnaire (GPAQ) for seven continuous days. Data were analysed using Spearman rank-order correlation coefficients for all comparisons. laboratory and free-living phases. sixteen participants randomly stratified from 41 eligible respondents by sex (n=8 men; n=8 women) and PA levels (n=4 low, n=8 middle and n=4 high active). there was a strong association between the MyWellness Key and the ActiGraph accelerometer during controlled graded treadmill walking (r=0.91, p<0.01) and in free-living settings (r=0.73-0.76 for light to vigorous PA, respectively, p<0.01). No associations were observed between the MyWellness Key and the BAR and GPAQ (p>0.05). the MyWellness Key has a high concurrent validity with the ActiGraph accelerometer to detect PA in both controlled laboratory and free-living settings.

  7. Quantum key distribution with an entangled light emitting diode

    NASA Astrophysics Data System (ADS)

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.; Dynes, J. F.; Yuan, Z. L.; Skiba-Szymanska, J.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2015-12-01

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.

  8. Present and future free-space quantum key distribution

    NASA Astrophysics Data System (ADS)

    Nordholt, Jane E.; Hughes, Richard J.; Morgan, George L.; Peterson, C. Glen; Wipf, Christopher C.

    2002-04-01

    Free-space quantum key distribution (QKD), more popularly know as quantum cryptography, uses single-photon free-space optical communications to distribute the secret keys required for secure communications. At Los Alamos National Laboratory we have demonstrated a fully automated system that is capable of operations at any time of day over a horizontal range of several kilometers. This has proven the technology is capable of operation from a spacecraft to the ground, opening up the possibility of QKD between any group of users anywhere on Earth. This system, the prototyping of a new system for use on a spacecraft, and the techniques required for world-wide quantum key distribution will be described. The operational parameters and performance of a system designed to operate between low earth orbit (LEO) and the ground will also be discussed.

  9. Determination of the key parameters affecting historic communications satellite trends

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1984-01-01

    Data representing 13 series of commercial communications satellites procured between 1968 and 1982 were analyzed to determine the factors that have contributed to the general reduction over time of the per circuit cost of communications satellites. The model by which the data were analyzed was derived from a general telecommunications application and modified to be more directly applicable for communications satellites. In this model satellite mass, bandwidth-years, and technological change were the variable parameters. A linear, least squares, multiple regression routine was used to obtain the measure of significance of the model. Correlation was measured by coefficient of determination (R super 2) and t-statistic. The results showed that no correlation could be established with satellite mass. Bandwidth-year however, did show a significant correlation. Technological change in the bandwidth-year case was a significant factor in the model. This analysis and the conclusions derived are based on mature technologies, i.e., satellite designs that are evolutions of earlier designs rather than the first of a new generation. The findings, therefore, are appropriate to future satellites only if they are a continuation of design evolution.

  10. Analysis of the Parameters Required for Performance Monitoring and Assessment of Military Communications Systems by Military Technical Controller

    DTIC Science & Technology

    1975-12-01

    139 APPENDIX A* BASIC CONCEPT OF MILITARY TECHNICAL CONTROL.142 6 APIENDIX Es TEST EQUIPMENI REQUIRED FOR lEASURF.4ENr OF 1AF’AMETE RS...Control ( SATEC ) Automatic Facilities heport Army Automated Quality Monitoring Reporting System (AQMPS) Army Autcmated Technical Control-Semi (ATC-Semi...technical control then beco.. es equipment status monitoring. All the major equipment in a system wculd have internal sensors with properly selected parameters

  11. Key parameters for behaviour related to source separation of household organic waste: A case study in Hanoi, Vietnam.

    PubMed

    Kawai, Kosuke; Huong, Luong Thi Mai

    2017-03-01

    Proper management of food waste, a major component of municipal solid waste (MSW), is needed, especially in developing Asian countries where most MSW is disposed of in landfill sites without any pretreatment. Source separation can contribute to solving problems derived from the disposal of food waste. An organic waste source separation and collection programme has been operated in model areas in Hanoi, Vietnam, since 2007. This study proposed three key parameters (participation rate, proper separation rate and proper discharge rate) for behaviour related to source separation of household organic waste, and monitored the progress of the programme based on the physical composition of household waste sampled from 558 households in model programme areas of Hanoi. The results showed that 13.8% of 558 households separated organic waste, and 33.0% discharged mixed (unseparated) waste improperly. About 41.5% (by weight) of the waste collected as organic waste was contaminated by inorganic waste, and one-third of the waste disposed of as organic waste by separators was inorganic waste. We proposed six hypothetical future household behaviour scenarios to help local officials identify a final or midterm goal for the programme. We also suggested that the city government take further actions to increase the number of people participating in separating organic waste, improve the accuracy of separation and prevent non-separators from discharging mixed waste improperly.

  12. Influence of scanning parameters on the estimation accuracy of control points of B-spline surfaces

    NASA Astrophysics Data System (ADS)

    Aichinger, Julia; Schwieger, Volker

    2018-04-01

    This contribution deals with the influence of scanning parameters like scanning distance, incidence angle, surface quality and sampling width on the average estimated standard deviations of the position of control points from B-spline surfaces which are used to model surfaces from terrestrial laser scanning data. The influence of the scanning parameters is analyzed by the Monte Carlo based variance analysis. The samples were generated for non-correlated and correlated data, leading to the samples generated by Latin hypercube and replicated Latin hypercube sampling algorithms. Finally, the investigations show that the most influential scanning parameter is the distance from the laser scanner to the object. The angle of incidence shows a significant effect for distances of 50 m and longer, while the surface quality contributes only negligible effects. The sampling width has no influence. Optimal scanning parameters can be found in the smallest possible object distance at an angle of incidence close to 0° in the highest surface quality. The consideration of correlations improves the estimation accuracy and underlines the importance of complete stochastic models for TLS measurements.

  13. Neural networks for simultaneous classification and parameter estimation in musical instrument control

    NASA Astrophysics Data System (ADS)

    Lee, Michael; Freed, Adrian; Wessel, David

    1992-08-01

    In this report we present our tools for prototyping adaptive user interfaces in the context of real-time musical instrument control. Characteristic of most human communication is the simultaneous use of classified events and estimated parameters. We have integrated a neural network object into the MAX language to explore adaptive user interfaces that considers these facets of human communication. By placing the neural processing in the context of a flexible real-time musical programming environment, we can rapidly prototype experiments on applications of adaptive interfaces and learning systems to musical problems. We have trained networks to recognize gestures from a Mathews radio baton, Nintendo Power GloveTM, and MIDI keyboard gestural input devices. In one experiment, a network successfully extracted classification and attribute data from gestural contours transduced by a continuous space controller, suggesting their application in the interpretation of conducting gestures and musical instrument control. We discuss network architectures, low-level features extracted for the networks to operate on, training methods, and musical applications of adaptive techniques.

  14. Mineralogical controls on aluminum and magnesium in uranium mill tailings: Key Lake, Saskatchewan, Canada.

    PubMed

    Gomez, M A; Hendry, M J; Koshinsky, J; Essilfie-Dughan, J; Paikaray, S; Chen, J

    2013-07-16

    The mineralogy and evolution of Al and Mg in U mill tailings are poorly understood. Elemental analyses (ICP-MS) of both solid and aqueous phases show that precipitation of large masses of secondary Al and Mg mineral phases occurs throughout the raffinate neutralization process (pH 1-11) at the Key Lake U mill, Saskatchewan, Canada. Data from a suite of analytical methods (ICP-MS, EMPA, laboratory- and synchrotron-based XRD, ATR-IR, Raman, TEM, EDX, ED) and equilibrium thermodynamic modeling showed that nanoparticle-sized, spongy, porous, Mg-Al hydrotalcite is the dominant mineralogical control on Al and Mg in the neutralized raffinate (pH ≥ 6.7). The presence of this secondary Mg-Al hydrotalcite in mineral samples of both fresh and 15-year-old tailings indicates that the Mg-Al hydrotalcite is geochemically stable, even after >16 years in the oxic tailings body. Data shows an association between the Mg-Al hydrotalcite and both As and Ni and point to this Mg-Al hydrotalcite exerting a mineralogical control on the solubility of these contaminants.

  15. Novel image encryption algorithm based on multiple-parameter discrete fractional random transform

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Dong, Taiji; Wu, Jianhua

    2010-08-01

    A new method of digital image encryption is presented by utilizing a new multiple-parameter discrete fractional random transform. Image encryption and decryption are performed based on the index additivity and multiple parameters of the multiple-parameter fractional random transform. The plaintext and ciphertext are respectively in the spatial domain and in the fractional domain determined by the encryption keys. The proposed algorithm can resist statistic analyses effectively. The computer simulation results show that the proposed encryption algorithm is sensitive to the multiple keys, and that it has considerable robustness, noise immunity and security.

  16. Model reference adaptive control (MRAC)-based parameter identification applied to surface-mounted permanent magnet synchronous motor

    NASA Astrophysics Data System (ADS)

    Zhong, Chongquan; Lin, Yaoyao

    2017-11-01

    In this work, a model reference adaptive control-based estimated algorithm is proposed for online multi-parameter identification of surface-mounted permanent magnet synchronous machines. By taking the dq-axis equations of a practical motor as the reference model and the dq-axis estimation equations as the adjustable model, a standard model-reference-adaptive-system-based estimator was established. Additionally, the Popov hyperstability principle was used in the design of the adaptive law to guarantee accurate convergence. In order to reduce the oscillation of identification result, this work introduces a first-order low-pass digital filter to improve precision regarding the parameter estimation. The proposed scheme was then applied to an SPM synchronous motor control system without any additional circuits and implemented using a DSP TMS320LF2812. For analysis, the experimental results reveal the effectiveness of the proposed method.

  17. Adjusting the specificity of an engine map based on the sensitivity of an engine control parameter relative to a performance variable

    DOEpatents

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-10-28

    Methods and systems for engine control optimization are provided. A first and a second operating condition of a vehicle engine are detected. An initial value is identified for a first and a second engine control parameter corresponding to a combination of the detected operating conditions according to a first and a second engine map look-up table. The initial values for the engine control parameters are adjusted based on a detected engine performance variable to cause the engine performance variable to approach a target value. A first and a second sensitivity of the engine performance variable are determined in response to changes in the engine control parameters. The first engine map look-up table is adjusted when the first sensitivity is greater than a threshold, and the second engine map look-up table is adjusted when the second sensitivity is greater than a threshold.

  18. Optical components damage parameters database system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Jin, Yuquan; Xie, Dongmei; Tang, Dingyong

    2012-10-01

    Optical component is the key to large-scale laser device developed by one of its load capacity is directly related to the device output capacity indicators, load capacity depends on many factors. Through the optical components will damage parameters database load capacity factors of various digital, information technology, for the load capacity of optical components to provide a scientific basis for data support; use of business processes and model-driven approach, the establishment of component damage parameter information model and database systems, system application results that meet the injury test optical components business processes and data management requirements of damage parameters, component parameters of flexible, configurable system is simple, easy to use, improve the efficiency of the optical component damage test.

  19. Practical quantum key distribution protocol without monitoring signal disturbance.

    PubMed

    Sasaki, Toshihiko; Yamamoto, Yoshihisa; Koashi, Masato

    2014-05-22

    Quantum cryptography exploits the fundamental laws of quantum mechanics to provide a secure way to exchange private information. Such an exchange requires a common random bit sequence, called a key, to be shared secretly between the sender and the receiver. The basic idea behind quantum key distribution (QKD) has widely been understood as the property that any attempt to distinguish encoded quantum states causes a disturbance in the signal. As a result, implementation of a QKD protocol involves an estimation of the experimental parameters influenced by the eavesdropper's intervention, which is achieved by randomly sampling the signal. If the estimation of many parameters with high precision is required, the portion of the signal that is sacrificed increases, thus decreasing the efficiency of the protocol. Here we propose a QKD protocol based on an entirely different principle. The sender encodes a bit sequence onto non-orthogonal quantum states and the receiver randomly dictates how a single bit should be calculated from the sequence. The eavesdropper, who is unable to learn the whole of the sequence, cannot guess the bit value correctly. An achievable rate of secure key distribution is calculated by considering complementary choices between quantum measurements of two conjugate observables. We found that a practical implementation using a laser pulse train achieves a key rate comparable to a decoy-state QKD protocol, an often-used technique for lasers. It also has a better tolerance of bit errors and of finite-sized-key effects. We anticipate that this finding will give new insight into how the probabilistic nature of quantum mechanics can be related to secure communication, and will facilitate the simple and efficient use of conventional lasers for QKD.

  20. Controlling Microbial Byproducts using Model-Based Substrate Monitoring and Control Strategies

    NASA Technical Reports Server (NTRS)

    Smernoff, David T.; Blackwell, Charles; Mancinelli, Rocco L.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    We have developed a computer-controlled bioreactor system to study various aspects of microbially-mediated nitrogen cycling. The system has been used to investigate methods for controlling microbial denitrification (the dissimilatory reduction of nitrate to N2O and N2) in hydroponic plant growth chambers. Such chambers are key elements of advanced life support systems being designed for use on long duration space missions, but nitrogen use efficiency in them is reduced by denitrification. Control software architecture was designed which permits the heterogeneous control of system hardware using traditional feedback control, and quantitative and qualitative models of various system features. Model-based feed forward control entails prediction of future systems in states and automated regulation of system parameters to achieve desired and avoid undesirable system states. A bacterial growth rate model based on the classic Monod model of saturation kinetics was used to evaluate the response of several individual denitrifying species to varying environmental conditions. The system and models are now being applied to mixed microbial communities harvested from the root zone of a hydroponic growth chamber. The use of a modified Monod organism interaction model was evaluated as a means of achieving more accurate description of the dynamic behavior of the communities. A minimum variance parameter estimation routine was also' used to calibrate the constant parameters in the model by iterative evaluation of substrate (nitrate) uptake and growth kinetics. This representation of processes and interactions aids in the formulation of control laws. The feed forward control strategy being developed will increase system autonomy, reduce crew intervention and limit the accumulation of undesirable waste products (NOx).

  1. Integration of Online Parameter Identification and Neural Network for In-Flight Adaptive Control

    NASA Technical Reports Server (NTRS)

    Hageman, Jacob J.; Smith, Mark S.; Stachowiak, Susan

    2003-01-01

    An indirect adaptive system has been constructed for robust control of an aircraft with uncertain aerodynamic characteristics. This system consists of a multilayer perceptron pre-trained neural network, online stability and control derivative identification, a dynamic cell structure online learning neural network, and a model following control system based on the stochastic optimal feedforward and feedback technique. The pre-trained neural network and model following control system have been flight-tested, but the online parameter identification and online learning neural network are new additions used for in-flight adaptation of the control system model. A description of the modification and integration of these two stand-alone software packages into the complete system in preparation for initial flight tests is presented. Open-loop results using both simulation and flight data, as well as closed-loop performance of the complete system in a nonlinear, six-degree-of-freedom, flight validated simulation, are analyzed. Results show that this online learning system, in contrast to the nonlearning system, has the ability to adapt to changes in aerodynamic characteristics in a real-time, closed-loop, piloted simulation, resulting in improved flying qualities.

  2. Combinatorial influence of environmental parameters on transcription factor activity

    PubMed Central

    Knijnenburg, T.A.; Wessels, L.F.A.; Reinders, M.J.T.

    2008-01-01

    Motivation: Cells receive a wide variety of environmental signals, which are often processed combinatorially to generate specific genetic responses. Changes in transcript levels, as observed across different environmental conditions, can, to a large extent, be attributed to changes in the activity of transcription factors (TFs). However, in unraveling these transcription regulation networks, the actual environmental signals are often not incorporated into the model, simply because they have not been measured. The unquantified heterogeneity of the environmental parameters across microarray experiments frustrates regulatory network inference. Results: We propose an inference algorithm that models the influence of environmental parameters on gene expression. The approach is based on a yeast microarray compendium of chemostat steady-state experiments. Chemostat cultivation enables the accurate control and measurement of many of the key cultivation parameters, such as nutrient concentrations, growth rate and temperature. The observed transcript levels are explained by inferring the activity of TFs in response to combinations of cultivation parameters. The interplay between activated enhancers and repressors that bind a gene promoter determine the possible up- or downregulation of the gene. The model is translated into a linear integer optimization problem. The resulting regulatory network identifies the combinatorial effects of environmental parameters on TF activity and gene expression. Availability: The Matlab code is available from the authors upon request. Contact: t.a.knijnenburg@tudelft.nl Supplementary information: Supplementary data are available at Bioinformatics online. PMID:18586711

  3. The study of optimization on process parameters of high-accuracy computerized numerical control polishing

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Ren; Huang, Shih-Pu; Tsai, Tsung-Yueh; Lin, Yi-Jyun; Yu, Zong-Ru; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Young, Hong-Tsu

    2017-09-01

    Spherical lenses lead to forming spherical aberration and reduced optical performance. Consequently, in practice optical system shall apply a combination of spherical lenses for aberration correction. Thus, the volume of the optical system increased. In modern optical systems, aspherical lenses have been widely used because of their high optical performance with less optical components. However, aspherical surfaces cannot be fabricated by traditional full aperture polishing process due to their varying curvature. Sub-aperture computer numerical control (CNC) polishing is adopted for aspherical surface fabrication in recent years. By using CNC polishing process, mid-spatial frequency (MSF) error is normally accompanied during this process. And the MSF surface texture of optics decreases the optical performance for high precision optical system, especially for short-wavelength applications. Based on a bonnet polishing CNC machine, this study focuses on the relationship between MSF surface texture and CNC polishing parameters, which include feed rate, head speed, track spacing and path direction. The power spectral density (PSD) analysis is used to judge the MSF level caused by those polishing parameters. The test results show that controlling the removal depth of single polishing path, through the feed rate, and without same direction polishing path for higher total removal depth can efficiently reduce the MSF error. To verify the optical polishing parameters, we divided a correction polishing process to several polishing runs with different direction polishing paths. Compare to one shot polishing run, multi-direction path polishing plan could produce better surface quality on the optics.

  4. Evaluation of Control Parameters for the Activated Sludge Process

    ERIC Educational Resources Information Center

    Stall, T. Ray; Sherrard, Josephy H.

    1978-01-01

    An evaluation of the use of the parameters currently being used to design and operate the activated sludge process is presented. The advantages and disadvantages for the use of each parameter are discussed. (MR)

  5. [Metabolic parameters in patients with steatosis non alcoholic liver and controlled diabetes type 2 versus uncontrolled diabetes type 2].

    PubMed

    Miranda Manrique, Gonzalo

    2016-01-01

    Non-alcoholic fatty liver (NASH) is widely distributed around the world and is more common in subjects with dyslipidemia, metabolic syndrome obese and DM2 (34-74%). However, the prevalence of cirrhosis by NASH in general population is unknown which is still subject of research. To determine if there are significant differences between metabolic parameters of non-alcoholic fatty liver in controlled versus uncontrolled diabetes type 2 of recent diagnosis. retrospective case-control study, performed in the Hospital Guillermo Almenara Irigoyen, Lima, Peru from November 2014 to February 2015.This study included 231 patients: 147 patients (NASH with DM2 of recent diagnosis and poor control) and 84 patients (NASH with DM2 ofrecent diagnosis and adequate control). Levene test for evaluating homogeneity of variances intra groups and parametric test for independent samples. After applying Levene test of homogeneity and student test, significant metabolic parameters were the triglycerides, HbA1C level, metformin dose and gender. It is important in diabetic patients to diagnose NASH early for a tighter control, not only of glucose but other metabolic parameters mainly triglycerides which strongly supports existing concept of "multiple hits" which considers NASH affects glucose homeostasis, and it could be the starting point of new research to improve interventions for decreasing progression from to cirrhosis in diabetic patients and also to delay progression of diabetes mellitus in patients with non alcoholic steatohepatitis.

  6. Quantum key distribution with an entangled light emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurementsmore » also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.« less

  7. Effect of Music Therapy on Patients' Anxiety and Hemodynamic Parameters During Coronary Angioplasty: A Randomized Controlled Trial.

    PubMed

    Forooghy, Masoumeh; Mottahedian Tabrizi, Elaheh; Hajizadeh, Ebrahim; Pishgoo, Bahram

    2015-06-01

    A cardiac catheterization laboratory can be a frightening environment and music can be a supportive source of environmental sound that stimulates and maintains relaxation. However, the results of studies are conflicting in this regard. The aim of this study was to investigate the effect of music therapy on patients' anxiety and hemodynamic parameters during percutaneous transluminal coronary angioplasty. This was a randomized controlled trial, conducted in the Catheterization Laboratory Unit of Baqiyatallah Hospital, in Tehran, Iran. A sample of 64 patients, who were planned to undergo coronary angioplasty, was recruited. Patients were randomly allocated to either the control or the experimental groups. In the experimental group, patients received a 20 to 40-minute music therapy intervention, consisting of light instrumental music albums by Johann Sebastian Bach and Mariko Makino. Patients in the control group received the routine care of the study setting, which consisted of no music therapy intervention. Study data were collected by a demographic questionnaire, the Spielberger's State Anxiety Inventory, and a data sheet for documenting hemodynamic parameters. Chi-square, independent-samples t tests, paired-samples t-test and repeated measures analysis of variance were used to analyze the data. Before the intervention, the study groups did not differ significantly in terms of anxiety level and hemodynamic parameters. Moreover, the differences between the two groups, regarding hemodynamic parameters, were not significant after the intervention (P > 0.05). However, the level of post-intervention anxiety in the experimental group was significantly lower than the control group (32.06 ± 8.57 and 38.97 ± 12.77, respectively; P = 0.014). Compared with the baseline readings, the level of anxiety in the control group did not change significantly after the study (41.91 ± 9.88 vs. 38.97 ± 12.77; P = 0.101); however, in the experimental group, the level of post

  8. Distributed System Optimal Control and Parameter Estimation: Computational Techniques Using Spline Approximations.

    DTIC Science & Technology

    1982-04-01

    orthogonal proJec- differential equations (PDE) of hyperbolic or tion of Z onto ZN and N -pN’/PN. This parabolic type. Roughly speaking, in each results in...to choose a parameter from an sipative inequality in Z (such asə(q)ZZ> admissible set Q so as to yield a best fit < W < z,z> for z E Dom (.&(q))and .W...semigroup T(t;q). The approxi- sumed fixed and known and F in (1) is a N control input term , say F(t) = Bu(t). Then mating operators. S1(q) are defined

  9. Dynamical investigation and parameter stability region analysis of a flywheel energy storage system in charging mode

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Ya; Li, Yong-Li; Chang, Xiao-Yong; Wang, Nan

    2013-09-01

    In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM) is studied. The Hopf bifurcation theory and nonlinear methods are used to investigate the generation process and mechanism of the coupled dynamic behavior for the average current controlled FESS in the charging mode. First, the universal nonlinear dynamic model of the FESS based on the BLDCM is derived. Then, for a 0.01 kWh/1.6 kW FESS platform in the Key Laboratory of the Smart Grid at Tianjin University, the phase trajectory of the FESS from a stable state towards chaos is presented using numerical and stroboscopic methods, and all dynamic behaviors of the system in this process are captured. The characteristics of the low-frequency oscillation and the mechanism of the Hopf bifurcation are investigated based on the Routh stability criterion and nonlinear dynamic theory. It is shown that the Hopf bifurcation is directly due to the loss of control over the inductor current, which is caused by the system control parameters exceeding certain ranges. This coupling nonlinear process of the FESS affects the stability of the motor running and the efficiency of energy transfer. In this paper, we investigate into the effects of control parameter change on the stability and the stability regions of these parameters based on the averaged-model approach. Furthermore, the effect of the quantization error in the digital control system is considered to modify the stability regions of the control parameters. Finally, these theoretical results are verified through platform experiments.

  10. Study of the Influence of Key Process Parameters on Furfural Production.

    PubMed

    Fele Žilnik, Ljudmila; Grilc, Viktor; Mirt, Ivan; Cerovečki, Željko

    2016-01-01

    The present work reports the influence of key process variables on the furfural formation from leached chestnut-wood chips in a pressurized reactor. Effect of temperature, pressure, type and concentration of the catalyst solution, the steam flow rate or stripping module, the moisture content of the wood particles and geometric characteristics such as size and type of the reactor, particle size and bed height were considered systematically. One stage process was only taken into consideration. Lab-scale and pilot-scale studies were performed. The results of the non-catalysed laboratory experiments were compared with an actual non-catalysed (auto-catalysed) industrial process and with experiments on the pilot scale, the latter with 28% higher furfural yield compared to the others. Application of sulphuric acid as catalyst, in an amount of 0.03-0.05 g (H2SO4 100%)/g d.m. (dry material), enables a higher production of furfural at lower temperature and pressure of steam in a shorter reaction time. Pilot scale catalysed experiments have revealed very good performance for furfural formation under less severe operating conditions, with a maximum furfural yield as much as 88% of the theoretical value.

  11. Counterfactual Quantum Deterministic Key Distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Wang, Jian; Tang, Chao-Jing

    2013-01-01

    We propose a new counterfactual quantum cryptography protocol concerning about distributing a deterministic key. By adding a controlled blocking operation module to the original protocol [T.G. Noh, Phys. Rev. Lett. 103 (2009) 230501], the correlation between the polarizations of the two parties, Alice and Bob, is extended, therefore, one can distribute both deterministic keys and random ones using our protocol. We have also given a simple proof of the security of our protocol using the technique we ever applied to the original protocol. Most importantly, our analysis produces a bound tighter than the existing ones.

  12. Transmission Parameters of the 2001 Foot and Mouth Epidemic in Great Britain

    PubMed Central

    Chis Ster, Irina; Ferguson, Neil M.

    2007-01-01

    Despite intensive ongoing research, key aspects of the spatial-temporal evolution of the 2001 foot and mouth disease (FMD) epidemic in Great Britain (GB) remain unexplained. Here we develop a Markov Chain Monte Carlo (MCMC) method for estimating epidemiological parameters of the 2001 outbreak for a range of simple transmission models. We make the simplifying assumption that infectious farms were completely observed in 2001, equivalent to assuming that farms that were proactively culled but not diagnosed with FMD were not infectious, even if some were infected. We estimate how transmission parameters varied through time, highlighting the impact of the control measures on the progression of the epidemic. We demonstrate statistically significant evidence for assortative contact patterns between animals of the same species. Predictive risk maps of the transmission potential in different geographic areas of GB are presented for the fitted models. PMID:17551582

  13. The Thermal Conductivity of Earth's Core: A Key Geophysical Parameter's Constraints and Uncertainties

    NASA Astrophysics Data System (ADS)

    Williams, Q.

    2018-05-01

    The thermal conductivity of iron alloys at high pressures and temperatures is a critical parameter in governing ( a) the present-day heat flow out of Earth's core, ( b) the inferred age of Earth's inner core, and ( c) the thermal evolution of Earth's core and lowermost mantle. It is, however, one of the least well-constrained important geophysical parameters, with current estimates for end-member iron under core-mantle boundary conditions varying by about a factor of 6. Here, the current state of calculations, measurements, and inferences that constrain thermal conductivity at core conditions are reviewed. The applicability of the Wiedemann-Franz law, commonly used to convert electrical resistivity data to thermal conductivity data, is probed: Here, whether the constant of proportionality, the Lorenz number, is constant at extreme conditions is of vital importance. Electron-electron inelastic scattering and increases in Fermi-liquid-like behavior may cause uncertainties in thermal conductivities derived from both first-principles-associated calculations and electrical conductivity measurements. Additional uncertainties include the role of alloying constituents and local magnetic moments of iron in modulating the thermal conductivity. Thus, uncertainties in thermal conductivity remain pervasive, and hence a broad range of core heat flows and inner core ages appear to remain plausible.

  14. Influence of occlusal loading on peri-implant clinical parameters. A pilot study

    PubMed Central

    Pellicer-Chover, Hilario; Viña-Almunia, José; Romero-Millán, Javier; Peñarrocha-Oltra, David; Peñarrocha-Diago, María

    2014-01-01

    Objectives: To investigate the relation between occlusal loading and peri-implant clinical parameters (probing depth, bleeding on probing, gingival retraction, width of keratinized mucosa, and crevicular fluid volume) in patients with implant-supported complete fixed prostheses in both arches. Material and Methods: This clinical study took place at the University of Valencia (Spain) dental clinic. It included patients attending the clinic for regular check-ups during at least 12 months after rehabilitation of both arches with implant-supported complete fixed ceramo-metallic prostheses. One study implant and one control implant were established for each patient using the T-Scan®III computerized system (Tesco, South Boston, USA). The maxillary implant closest to the point of maximum occlusal loading was taken as the study implant and the farthest (with least loading) as the control. Occlusal forces were registered with the T-Scan® III and then occlusal adjustment was performed to distribute occlusal forces correctly. Peri-implant clinical parameters were analyzed in both implants before and two and twelve months after occlusal adjustment. Results: Before occlusal adjustment, study group implants presented a higher mean volume of crevicular fluid (51.3±7.4 UP) than the control group (25.8±5.5 UP), with statistically significant difference. Two months after occlusal adjustment, there were no significant differences between groups (24.6±3.8 UP and 26±4.5 UP respectively) (p=0.977). After twelve months, no significant differences were found between groups (24.4±11.1 UP and 22.5±8.9 UP respectively) (p=0.323). For the other clinical parameters, no significant differences were identified between study and control implants at any of the study times (p>0.05). Conclusions: Study group implants receiving higher occlusal loading presented significantly higher volumes of crevicular fluid than control implants. Crevicular fluid volumes were similar in both groups two and

  15. Controlled Attenuation Parameter and Liver Stiffness Measurements for Steatosis Assessment in the Liver Transplant of Brain Dead Donors.

    PubMed

    Mancia, Claire; Loustaud-Ratti, Véronique; Carrier, Paul; Naudet, Florian; Bellissant, Eric; Labrousse, François; Pichon, Nicolas

    2015-08-01

    One of the main selection criteria of the quality of a liver graft is the degree of steatosis, which will determine the success of the transplantation. The aim of this study was to evaluate the ability of FibroScan and its related methods Controlled Attenuation Parameter and Liver Stiffness to assess objectively steatosis and fibrosis in livers from brain-dead donors to be potentially used for transplantation. Over a period of 10 months, 23 consecutive brain dead donors screened for liver procurement underwent a FibroScan and a liver biopsy. The different predictive models of liver retrievability using liver biopsy as the gold standard have led to the following area under receiver operating characteristic curve: 76.6% (95% confidence intervals [95% CIs], 48.2%-100%) when based solely on controlled attenuation parameter, 75.0% (95% CIs, 34.3%-100%) when based solely on liver stiffness, and 96.7% (95% CIs, 88.7%-100%) when based on combined indices. Our study suggests that a preoperative selection of brain-dead donors based on a combination of both Controlled Attenuation Parameter and Liver Stiffness obtained with FibroScan could result in a good preoperative prediction of the histological status and degree of steatosis of a potential liver graft.

  16. Formal Analysis of Key Integrity in PKCS#11

    NASA Astrophysics Data System (ADS)

    Falcone, Andrea; Focardi, Riccardo

    PKCS#11 is a standard API to cryptographic devices such as smarcards, hardware security modules and usb crypto-tokens. Though widely adopted, this API has been shown to be prone to attacks in which a malicious user gains access to the sensitive keys stored in the devices. In 2008, Delaune, Kremer and Steel proposed a model to formally reason on this kind of attacks. We extend this model to also describe flaws that are based on integrity violations of the stored keys. In particular, we consider scenarios in which a malicious overwriting of keys might fool honest users into using attacker's own keys, while performing sensitive operations. We further enrich the model with a trusted key mechanism ensuring that only controlled, non-tampered keys are used in cryptographic operations, and we show how this modified API prevents the above mentioned key-replacement attacks.

  17. Project 5322 Mid-Term Report: Key Eco-Hydrological Parameters Retrieval And Land Data Assimilation System Development In A Typical Inland River Basin Of Chinas Arid Region

    NASA Astrophysics Data System (ADS)

    Faivre, R.; Colin, J.; Menenti, M.; Lindenbergh, R.; Van Den Bergh, L.; Yu, H.; Jia, L.; Xin, L.

    2010-10-01

    Improving the understanding and the monitoring of high elevation regions hydrology is of major relevance from both societal and environmental points of view for many Asian countries, in particular in terms of flood and drought, but also in terms of food security in a chang- ing environment. Satellite and airborne remote sensing technologies are of utmost for such a challenge. Exist- ing imaging spectro-radiometers, radars, microwave ra- diometers and backscatter LIDAR provide a very com- prehensive suite of measurements over a wide rage of wavelengths, time frequencies and spatial resolu- tions. It is however needed to devise new algorithms to convert these radiometric measurements into useful eco-hydrological quantitative parameters for hydrologi- cal modeling and water management. The DRAGON II project entitled Key Eco-Hydrological Parameters Re- trieval and Land Data Assimilation System Development in a Typical Inland River Basin of Chinas Arid Region (ID 5322) aims at improving the monitoring, understand- ing, and predictability of hydrological and ecological pro- cesses at catchment scale, and promote the applicability of quantitative remote sensing in watershed science. Ex- isting Earth Observation platforms provided by the Euro- pean Space Agency as well as prototype airborne systems developed in China - ENVISAT/AATSR, ALOS/PRISM and PALSAR, Airborne LIDAR - are used and combined to retrieve advanced land surface physical properties over high elevation arid regions of China. The existing syn- ergies between this project, the CEOP-AEGIS project (FP7) and the WATER project (CAS) provide incentives for innovative studies. The investigations presented in the following report focus on the development of advanced and innovative methodologies and algorithms to monitor both the state and the trend of key eco-hydrological vari- ables: 3D vegetation properties, land surface evaporation, glacier mass balance and drought indicators.

  18. Identification of two key genes controlling chill haze stability of beer in barley (Hordeum vulgare L).

    PubMed

    Ye, Lingzhen; Huang, Yuqing; Dai, Fei; Ning, Huajiang; Li, Chengdao; Zhou, Meixue; Zhang, Guoping

    2015-06-11

    In bright beer, haze formation is a serious quality problem, degrading beer quality and reducing its shelf life. The quality of barley (Hordeum vulgare L) malt, as the main raw material for beer brewing, largely affects the colloidal stability of beer. In this study, the genetic mechanism of the factors affecting beer haze stability in barley was studied. Quantitative trait loci (QTL) analysis of alcohol chill haze (ACH) in beer was carried out using a Franklin/Yerong double haploid (DH) population. One QTL, named as qACH, was detected for ACH, and it was located on the position of about 108 cM in chromosome 4H and can explain about 20 % of the phenotypic variation. Two key haze active proteins, BATI-CMb and BATI-CMd were identified by proteomics analysis. Bioinformatics analysis showed that BATI-CMb and BATI-CMd had the same position as qACH in the chromosome. It may be deduced that BATI-CMb and BATI-CMd are candidate genes for qACH, controlling colloidal stability of beer. Polymorphism comparison between Yerong and Franklin in the nucleotide and amino acid sequence of BATI-CMb and BATI-CMd detected the corresponding gene specific markers, which could be used in marker-assisted selection for malt barley breeding. We identified a novel QTL, qACH controlling chill haze of beer, and two key haze active proteins, BATI-CMb and BATI-CMd. And further analysis showed that BATI-CMb and BATI-CMd might be the candidate genes associated with beer chill haze.

  19. Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Li, Tianshuang; Li, Jie; Yang, Shuai; Zou, Zhong

    2017-02-01

    The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and highly corrosive conditions. However, these conditions have restricted the measurement of key control parameters, making the control of aluminum reduction cells a difficult problem in the industry. Because aluminum electrolysis control systems have a significant economic influence, substantial research has been conducted on control algorithms, control systems and information systems for aluminum reduction cells. This article first summarizes the development of control systems and then focuses on the progress made since 2000, including alumina concentration control, temperature control and electrolyte molecular ratio control, fault diagnosis, cell condition prediction and control system expansion. Based on these studies, the concept of a smart aluminum electrolysis plant is proposed. The frame construction, key problems and current progress are introduced. Finally, several future directions are discussed.

  20. Development and Application of the Key Technologies for the Quality Control and Inspection of National Geographical Conditions Survey Products

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhang, L.; Ma, W.; Zhang, P.; Zhao, T.

    2018-04-01

    The First National Geographical Condition Survey is a predecessor task to dynamically master basic situations of the nature, ecology and human activities on the earth's surface and it is the brand-new mapping geographic information engineering. In order to ensure comprehensive, real and accurate survey results and achieve the quality management target which the qualified rate is 100 % and the yield is more than 80 %, it is necessary to carry out the quality control and result inspection for national geographical conditions survey on a national scale. To ensure that achievement quality meets quality target requirements, this paper develops the key technology method of "five-in-one" quality control that is constituted by "quality control system of national geographical condition survey, quality inspection technology system, quality evaluation system, quality inspection information management system and national linked quality control institutions" by aiming at large scale, wide coverage range, more undertaking units, more management levels, technical updating, more production process and obvious regional differences in the national geographical condition survey and combining with novel achievement manifestation, complicated dependency, more special reference data, and large data size. This project fully considering the domestic and foreign related research results and production practice experience, combined with the technology development and the needs of the production, it stipulates the inspection methods and technical requirements of each stage in the quality inspection of the geographical condition survey results, and extends the traditional inspection and acceptance technology, and solves the key technologies that are badly needed in the first national geographic survey.

  1. Does Nordic walking improves the postural control and gait parameters of women between the age 65 and 74: a randomized trial

    PubMed Central

    Kocur, Piotr; Wiernicka, Marzena; Wilski, Maciej; Kaminska, Ewa; Furmaniuk, Lech; Maslowska, Marta Flis; Lewandowski, Jacek

    2015-01-01

    [Purpose] To assess the effect of 12-weeks Nordic walking training on gait parameters and some elements of postural control. [Subjects and Methods] Sixty-seven women aged 65 to 74 years were enrolled in this study. The subjects were divided into a Nordic Walking group (12 weeks of Nordic walking training, 3 times a week for 75 minutes) and a control group. In both study groups, a set of functional tests were conducted at the beginning and at the end of the study: the Forward Reach Test (FRT) and the Upward Reach Test (URT) on a stabilometric platform, and the analysis of gait parameters on a treadmill. [Results] The NW group showed improvements in: the range of reach in the FRT test and the URT test in compared to the control group. The length of the gait cycle and gait cycle frequency also showed changes in the NW group compared to the control group. [Conclusion] A 12-week NW training program had a positive impact on selected gait parameters and may improve the postural control of women aged over 65 according to the results selected functional tests. PMID:26834341

  2. Does Nordic walking improves the postural control and gait parameters of women between the age 65 and 74: a randomized trial.

    PubMed

    Kocur, Piotr; Wiernicka, Marzena; Wilski, Maciej; Kaminska, Ewa; Furmaniuk, Lech; Maslowska, Marta Flis; Lewandowski, Jacek

    2015-12-01

    [Purpose] To assess the effect of 12-weeks Nordic walking training on gait parameters and some elements of postural control. [Subjects and Methods] Sixty-seven women aged 65 to 74 years were enrolled in this study. The subjects were divided into a Nordic Walking group (12 weeks of Nordic walking training, 3 times a week for 75 minutes) and a control group. In both study groups, a set of functional tests were conducted at the beginning and at the end of the study: the Forward Reach Test (FRT) and the Upward Reach Test (URT) on a stabilometric platform, and the analysis of gait parameters on a treadmill. [Results] The NW group showed improvements in: the range of reach in the FRT test and the URT test in compared to the control group. The length of the gait cycle and gait cycle frequency also showed changes in the NW group compared to the control group. [Conclusion] A 12-week NW training program had a positive impact on selected gait parameters and may improve the postural control of women aged over 65 according to the results selected functional tests.

  3. Secure Cryptographic Key Management System (CKMS) Considerations for Smart Grid Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, Robert K; Sheldon, Frederick T; Aldridge, Hal

    2011-01-01

    In this paper, we examine some unique challenges associated with key management in the Smart Grid and concomitant research initiatives: 1) effectively model security requirements and their implementations, and 2) manage keys and key distribution for very large scale deployments such as Smart Meters over a long period of performance. This will set the stage to: 3) develop innovative, low cost methods to protect keying material, and 4) provide high assurance authentication services. We will present our perspective on key management and will discuss some key issues within the life cycle of a cryptographic key designed to achieve the following:more » 1) control systems designed, installed, operated, and maintained to survive an intentional cyber assault with no loss of critical function, and 2) widespread implementation of methods for secure communication between remote access devices and control centers that are scalable and cost-effective to deploy.« less

  4. Active vibration mitigation of distributed parameter, smart-type structures using Pseudo-Feedback Optimal Control (PFOC)

    NASA Technical Reports Server (NTRS)

    Patten, W. N.; Robertshaw, H. H.; Pierpont, D.; Wynn, R. H.

    1989-01-01

    A new, near-optimal feedback control technique is introduced that is shown to provide excellent vibration attenuation for those distributed parameter systems that are often encountered in the areas of aeroservoelasticity and large space systems. The technique relies on a novel solution methodology for the classical optimal control problem. Specifically, the quadratic regulator control problem for a flexible vibrating structure is first cast in a weak functional form that admits an approximate solution. The necessary conditions (first-order) are then solved via a time finite-element method. The procedure produces a low dimensional, algebraic parameterization of the optimal control problem that provides a rigorous basis for a discrete controller with a first-order like hold output. Simulation has shown that the algorithm can successfully control a wide variety of plant forms including multi-input/multi-output systems and systems exhibiting significant nonlinearities. In order to firmly establish the efficacy of the algorithm, a laboratory control experiment was implemented to provide planar (bending) vibration attenuation of a highly flexible beam (with a first clamped-free mode of approximately 0.5 Hz).

  5. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40k (CMAPSS40k) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  6. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2015-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40,000) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  7. Synchronization error estimation and controller design for delayed Lur'e systems with parameter mismatches.

    PubMed

    He, Wangli; Qian, Feng; Han, Qing-Long; Cao, Jinde

    2012-10-01

    This paper investigates the problem of master-slave synchronization of two delayed Lur'e systems in the presence of parameter mismatches. First, by analyzing the corresponding synchronization error system, synchronization with an error level, which is referred to as quasi-synchronization, is established. Some delay-dependent quasi-synchronization criteria are derived. An estimation of the synchronization error bound is given, and an explicit expression of error levels is obtained. Second, sufficient conditions on the existence of feedback controllers under a predetermined error level are provided. The controller gains are obtained by solving a set of linear matrix inequalities. Finally, a delayed Chua's circuit is chosen to illustrate the effectiveness of the derived results.

  8. Influence of pre-injection control parameters on main-injection fuel quantity for an electronically controlled double-valve fuel injection system of diesel engine

    NASA Astrophysics Data System (ADS)

    Song, Enzhe; Fan, Liyun; Chen, Chao; Dong, Quan; Ma, Xiuzhen; Bai, Yun

    2013-09-01

    A simulation model of an electronically controlled two solenoid valve fuel injection system for a diesel engine is established in the AMESim environment. The accuracy of the model is validated through comparison with experimental data. The influence of pre-injection control parameters on main-injection quantity under different control modes is analyzed. In the spill control valve mode, main-injection fuel quantity decreases gradually and then reaches a stable level because of the increase in multi-injection dwell time. In the needle control valve mode, main-injection fuel quantity increases with rising multi-injection dwell time; this effect becomes more obvious at high-speed revolutions and large main-injection pulse widths. Pre-injection pulse width has no obvious influence on main-injection quantity under the two control modes; the variation in main-injection quantity is in the range of 1 mm3.

  9. Key Skills and Competencies. Symposium.

    ERIC Educational Resources Information Center

    2002

    This document contains three papers on key skills and competencies and human resource development (HRD). "Career Related Competencies" (Marinka A.C.T. Kuijpers) reports findings from surveys completed by Dutch employees who identified these issues: self-reflection is more important than career control; age and gender influence attitude…

  10. Parameter Estimation of Actuators for Benchmark Active Control Technology (BACT) Wind Tunnel Model with Analysis of Wear and Aerodynamic Loading Effects

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Fung, Jimmy

    1998-01-01

    This report describes the development of transfer function models for the trailing-edge and upper and lower spoiler actuators of the Benchmark Active Control Technology (BACT) wind tunnel model for application to control system analysis and design. A simple nonlinear least-squares parameter estimation approach is applied to determine transfer function parameters from frequency response data. Unconstrained quasi-Newton minimization of weighted frequency response error was employed to estimate the transfer function parameters. An analysis of the behavior of the actuators over time to assess the effects of wear and aerodynamic load by using the transfer function models is also presented. The frequency responses indicate consistent actuator behavior throughout the wind tunnel test and only slight degradation in effectiveness due to aerodynamic hinge loading. The resulting actuator models have been used in design, analysis, and simulation of controllers for the BACT to successfully suppress flutter over a wide range of conditions.

  11. Key-value store with internal key-value storage interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, John M.; Faibish, Sorin; Ting, Dennis P. J.

    A key-value store is provided having one or more key-value storage interfaces. A key-value store on at least one compute node comprises a memory for storing a plurality of key-value pairs; and an abstract storage interface comprising a software interface module that communicates with at least one persistent storage device providing a key-value interface for persistent storage of one or more of the plurality of key-value pairs, wherein the software interface module provides the one or more key-value pairs to the at least one persistent storage device in a key-value format. The abstract storage interface optionally processes one or moremore » batch operations on the plurality of key-value pairs. A distributed embodiment for a partitioned key-value store is also provided.« less

  12. Chaos control in solar fed DC-DC boost converter by optimal parameters using nelder-mead algorithm powered enhanced BFOA

    NASA Astrophysics Data System (ADS)

    Sudhakar, N.; Rajasekar, N.; Akhil, Saya; Jyotheeswara Reddy, K.

    2017-11-01

    The boost converter is the most desirable DC-DC power converter for renewable energy applications for its favorable continuous input current characteristics. In other hand, these DC-DC converters known as practical nonlinear systems are prone to several types of nonlinear phenomena including bifurcation, quasiperiodicity, intermittency and chaos. These undesirable effects has to be controlled for maintaining normal periodic operation of the converter and to ensure the stability. This paper presents an effective solution to control the chaos in solar fed DC-DC boost converter since the converter experiences wide range of input power variation which leads to chaotic phenomena. Controlling of chaos is significantly achieved using optimal circuit parameters obtained through Nelder-Mead Enhanced Bacterial Foraging Optimization Algorithm. The optimization renders the suitable parameters in minimum computational time. The results are compared with the traditional methods. The obtained results of the proposed system ensures the operation of the converter within the controllable region.

  13. Global parameter estimation for thermodynamic models of transcriptional regulation.

    PubMed

    Suleimenov, Yerzhan; Ay, Ahmet; Samee, Md Abul Hassan; Dresch, Jacqueline M; Sinha, Saurabh; Arnosti, David N

    2013-07-15

    Deciphering the mechanisms involved in gene regulation holds the key to understanding the control of central biological processes, including human disease, population variation, and the evolution of morphological innovations. New experimental techniques including whole genome sequencing and transcriptome analysis have enabled comprehensive modeling approaches to study gene regulation. In many cases, it is useful to be able to assign biological significance to the inferred model parameters, but such interpretation should take into account features that affect these parameters, including model construction and sensitivity, the type of fitness calculation, and the effectiveness of parameter estimation. This last point is often neglected, as estimation methods are often selected for historical reasons or for computational ease. Here, we compare the performance of two parameter estimation techniques broadly representative of local and global approaches, namely, a quasi-Newton/Nelder-Mead simplex (QN/NMS) method and a covariance matrix adaptation-evolutionary strategy (CMA-ES) method. The estimation methods were applied to a set of thermodynamic models of gene transcription applied to regulatory elements active in the Drosophila embryo. Measuring overall fit, the global CMA-ES method performed significantly better than the local QN/NMS method on high quality data sets, but this difference was negligible on lower quality data sets with increased noise or on data sets simplified by stringent thresholding. Our results suggest that the choice of parameter estimation technique for evaluation of gene expression models depends both on quality of data, the nature of the models [again, remains to be established] and the aims of the modeling effort. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. [Control parameters for high-intensity focused ultrasound (HIFU) for tissue ablation in the ex-vivo kidney].

    PubMed

    Köhrmann, K U; Michel, M S; Steidler, A; Marlinghaus, E H; Kraut, O; Alken, P

    2002-01-01

    Therapeutic application of contactless thermoablation by high-intensity focused ultrasound (HIFU) demands precise physical definition of focal size and determination of control parameters. Our objective was to define the focal expansion of a new ultrasound generator and to evaluate the extent of tissue ablation under variable generator parameters in an ex vivo model. Axial and transversal distribution of ultrasound intensity in the area of the focal point was calculated by needle hydrophone. The extent of tissue necrosis after focused ultrasound was assessed in an ex vivo porcine kidney model applying generator power up to 400 Watt and pulse duration up to 8 s. The measurement of field distribution revealed a physical focal size of 32 x 4 mm. Sharp demarcation between coagulation necrosis and intact tissue was observed in our tissue model. Lesion size was kept under control by variation of both generator power and impulse duration. At a constant impulse duration of 2 s, generator power of 100 W remained below the threshold doses for induction of a reproducible lesion. An increase in power up to 200 W and 400 W, respectively, induced lesions with diameters up to 11.2 x 3 mm. Constant total energy (generator power x impulse duration) led to a larger lesion size under higher generator power. It is possible to induce sharply demarcated, reproducible thermonecrosis, which can be regulated by generator power and impulse duration, by means of a cylindrical piezo element with a paraboloid reflector at a focal distance of 10 cm. The variation of generator power was an especially suitable control parameter for the inducement of a defined lesion size.

  15. Inhibition of VEGF: a novel mechanism to control angiogenesis by Withania somnifera's key metabolite Withaferin A.

    PubMed

    Saha, Sanjib; Islam, Md Khirul; Shilpi, Jamil A; Hasan, Shihab

    2013-01-01

    Angiogenesis, or new blood vessel formation from existing one, plays both beneficial and detrimental roles in living organisms in different aspects. Vascular endothelial growth factor (VEGF), a signal protein, well established as key regulator of vasculogenesis and angiogenesis. VEGF ensures oxygen supply to the tissues when blood supply is not adequate, or tissue environment is in hypoxic condition. Limited expression of VEGF is necessary, but if it is over expressed, then it can lead to serious disease like cancer. Cancers that have ability to express VEGF are more efficient to grow and metastasize because solid cancers cannot grow larger than a limited size without adequate blood and oxygen supply. Anti-VEGF drugs are already available in the market to control angiogenesis, but they are often associated with severe side-effects like fetal bleeding and proteinuria in the large number of patients. To avoid such side-effects, new insight is required to find potential compounds as anti-VEGF from natural sources. In the present investigation, molecular docking studies were carried out to find the potentiality of Withaferin A, a key metabolite of Withania somnifera, as an inhibitor of VEGF. Molecular Docking studies were performed in DockingServer and SwissDock. Bevacizumab, a commercial anti-VEGF drug, was used as reference to compare the activity of Withaferin A. X-ray crystallographic structure of VEGF, was retrieved from Protein Data Bank (PDB), and used as drug target protein. Structure of Withaferin A and Bevacizumab was obtained from PubChem and ZINC databases. Molecular visualization was performed using UCSF Chimera. Withaferin A showed favorable binding with VEGF with low binding energy in comparison to Bevacizumab. Molecular Docking studies also revealed potential protein-ligand interactions for both Withaferin A and Bevacizumab. Conclusively our results strongly suggest that Withaferin A is a potent anti-VEGF agent as ascertained by its potential

  16. Rules of parameter variation in homotype series of birdsong can indicate a 'sollwert' significance.

    PubMed

    Hultsch, H; Todt, D

    1996-11-01

    Various bird species produce songs which include homotype pattern series, i.e. segments composed of a number of repeated vocal units. We compared such units and analyzed the variation of their parameters, especially in the time and the frequency domain. In addition, we examined whether and how serial changes of both the range and the trend of variation were related to song constituents following the repetitions. Data evaluation showed that variation of specific serial parameters (e.g., unit pitch or unit duration) occurring in the whistle song-types of nightingales (Luscinia megarhynchos) were converging towards a distinct terminal value. Although song-types differed in this terminal value, it was found to play the role of a key cue ('sollwert'). The continuation of a song depended on a preceding attainment of its specific 'sollwert'. Our results suggest that the study of signal parameters and rules of their variations make a useful tool for the behavioral access to the properties of the control systems mediating serial signal performances.

  17. Parameter Estimations of Dynamic Energy Budget (DEB) Model over the Life History of a Key Antarctic Species: The Antarctic Sea Star Odontaster validus Koehler, 1906.

    PubMed

    Agüera, Antonio; Collard, Marie; Jossart, Quentin; Moreau, Camille; Danis, Bruno

    2015-01-01

    Marine organisms in Antarctica are adapted to an extreme ecosystem including extremely stable temperatures and strong seasonality due to changes in day length. It is now largely accepted that Southern Ocean organisms are particularly vulnerable to global warming with some regions already being challenged by a rapid increase of temperature. Climate change affects both the physical and biotic components of marine ecosystems and will have an impact on the distribution and population dynamics of Antarctic marine organisms. To predict and assess the effect of climate change on marine ecosystems a more comprehensive knowledge of the life history and physiology of key species is urgently needed. In this study we estimate the Dynamic Energy Budget (DEB) model parameters for key benthic Antarctic species the sea star Odontaster validus using available information from literature and experiments. The DEB theory is unique in capturing the metabolic processes of an organism through its entire life cycle as a function of temperature and food availability. The DEB model allows for the inclusion of the different life history stages, and thus, becomes a tool that can be used to model lifetime feeding, growth, reproduction, and their responses to changes in biotic and abiotic conditions. The DEB model presented here includes the estimation of reproduction handling rules for the development of simultaneous oocyte cohorts within the gonad. Additionally it links the DEB model reserves to the pyloric caeca an organ whose function has long been ascribed to energy storage. Model parameters described a slowed down metabolism of long living animals that mature slowly. O. validus has a large reserve that-matching low maintenance costs- allow withstanding long periods of starvation. Gonad development is continuous and individual cohorts developed within the gonads grow in biomass following a power function of the age of the cohort. The DEB model developed here for O. validus allowed us to

  18. Nutrient control of phytoplankton photosynthesis in the western North Atlantic

    NASA Technical Reports Server (NTRS)

    Platt, Trevor; Sathyendranath, Shubha; Ulloa, Osvaldo; Harrison, William G.; Hoepffner, Nicolas; Goes, Joaquim

    1992-01-01

    Results from several years of oceanographic cruises are reported which show that the parameters of the photosynthesis-light curve of the flora of the North Sargasso Sea are remarkably constant in magnitude, except during the spring phytoplankton bloom when their magnitudes are noticeably higher. These results are interpreted as providing direct evidence for nutrient control of photosynthesis in the open ocean. The findings also reinforce the plausibility of using biogeochemical provinces to partition the ocean into manageable units for basin- or global-scale analysis. They show that seasonal changes in critical parameter should not be overlooked if robust carbon budgets are to be constructed, and illustrate the value of attacking the parameters that control the key fluxes, rather than the fluxes themselves, when investigating the ocean carbon cycle.

  19. Parameter learning for performance adaptation

    NASA Technical Reports Server (NTRS)

    Peek, Mark D.; Antsaklis, Panos J.

    1990-01-01

    A parameter learning method is introduced and used to broaden the region of operability of the adaptive control system of a flexible space antenna. The learning system guides the selection of control parameters in a process leading to optimal system performance. A grid search procedure is used to estimate an initial set of parameter values. The optimization search procedure uses a variation of the Hooke and Jeeves multidimensional search algorithm. The method is applicable to any system where performance depends on a number of adjustable parameters. A mathematical model is not necessary, as the learning system can be used whenever the performance can be measured via simulation or experiment. The results of two experiments, the transient regulation and the command following experiment, are presented.

  20. Suction prevention and physiologic control of continuous flow left ventricular assist devices using intrinsic pump parameters.

    PubMed

    Wang, Yu; Koenig, Steven C; Slaughter, Mark S; Giridharan, Guruprasad A

    2015-01-01

    The risk for left ventricular (LV) suction during left ventricular assist devices (LVAD) support has been a clinical concern. Current development efforts suggest LVAD suction prevention and physiologic control algorithms may require chronic implantation of pressure or flow sensors, which can be unreliable because of baseline drift and short lifespan. To overcome this limitation, we designed a sensorless suction prevention and physiologic control (eSPPC) algorithm that only requires LVAD intrinsic parameters (pump speed and power). Two gain-scheduled, proportional-integral controllers maintain a differential pump speed (ΔRPM) above a user-defined threshold to prevent LV suction while maintaining an average reference differential pressure (ΔP) between the LV and aorta. ΔRPM is calculated from noisy pump speed measurements that are low-pass filtered, and ΔP is estimated using an extended Kalman filter. Efficacy and robustness of the eSPPC algorithm were evaluated in silico during simulated rest and exercise test conditions for 1) excessive ΔP setpoint (ES); 2) rapid eightfold increase in pulmonary vascular resistance (PVR); and 3) ES and PVR. Simulated hemodynamic waveforms (LV pressure and volume; aortic pressure and flow) using only intrinsic pump parameters showed the feasibility of our proposed eSPPC algorithm in preventing LV suction for all test conditions.

  1. ClinicalKey: a point-of-care search engine.

    PubMed

    Vardell, Emily

    2013-01-01

    ClinicalKey is a new point-of-care resource for health care professionals. Through controlled vocabulary, ClinicalKey offers a cross section of resources on diseases and procedures, from journals to e-books and practice guidelines to patient education. A sample search was conducted to demonstrate the features of the database, and a comparison with similar tools is presented.

  2. Sensitivity of DIVWAG to Variations in Weather Parameters

    DTIC Science & Technology

    1976-04-01

    1 18. SUPPLEMENTARY NOTES 1 19. KEY WORDS (Continue on reverse aide if necessary and Identify by block number) DIVWAG WAR GAME SIMULATION...simulation of a Division Level War Game , to determine the signif- icance of varying battlefield parameters; i.e., artillery parameters, troop and...The only Red artillery weapons doing better in bad weather are the 130MM guns , but this statistic is tempered by the few casualties occuring in

  3. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS On control of kinematic parameters of ultracold neutrons in waveguides

    NASA Astrophysics Data System (ADS)

    Rivlin, Lev A.

    2010-10-01

    The possibility of controlling the kinematic parameters of ultracold neutrons (UCNs) is analysed by the example of a waveguide transfer and transformation of 2D images in ultracold neutrons and by the example of an increase in the concentration and deceleration/acceleration of ultracold neutrons during their transport in the waveguide with a variable cross section. The critical parameters of the problem are estimated, which indicates both consistency of the proposed approach and the emerging experimental limitations.

  4. Florida Keys

    NASA Image and Video Library

    2002-12-13

    The Florida Keys are a chain of islands, islets and reefs extending from Virginia Key to the Dry Tortugas for about 309 kilometers (192 miles). The keys are chiefly limestone and coral formations. The larger islands of the group are Key West (with its airport), Key Largo, Sugarloaf Key, and Boca Chica Key. A causeway extends from the mainland to Key West. This image was acquired on October 28, 2001, by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03890

  5. A game theoretic controller for a linear time-invariant system with parameter uncertainty and its application to the Space Station

    NASA Technical Reports Server (NTRS)

    Rhee, Ihnseok; Speyer, Jason L.

    1990-01-01

    A game theoretic controller is developed for a linear time-invariant system with parameter uncertainties in system and input matrices. The input-output decomposition modeling for the plant uncertainty is adopted. The uncertain dynamic system is represented as an internal feedback loop in which the system is assumed forced by fictitious disturbance caused by the parameter uncertainty. By considering the input and the fictitious disturbance as two noncooperative players, a differential game problem is constructed. It is shown that the resulting time invariant controller stabilizes the uncertain system for a prescribed uncertainty bound. This game theoretic controller is applied to the momentum management and attitude control of the Space Station in the presence of uncertainties in the moments of inertia. Inclusion of the external disturbance torque to the design procedure results in a dynamical feedback controller which consists of conventional PID control and cyclic disturbance rejection filter. It is shown that the game theoretic design, comparing to the LQR design or pole placement design, improves the stability robustness with respect to inertia variations.

  6. High key rate continuous-variable quantum key distribution with a real local oscillator.

    PubMed

    Wang, Tao; Huang, Peng; Zhou, Yingming; Liu, Weiqi; Ma, Hongxin; Wang, Shiyu; Zeng, Guihua

    2018-02-05

    Continuous-variable quantum key distribution (CVQKD) with a real local oscillator (LO) has been extensively studied recently due to its security and simplicity. In this paper, we propose a novel implementation of a high-key-rate CVQKD with a real LO. Particularly, with the help of the simultaneously generated reference pulse, the phase drift of the signal is tracked in real time and then compensated. By utilizing the time and polarization multiplexing techniques to isolate the reference pulse and controlling the intensity of it, not only the contamination from it is suppressed, but also a high accuracy of the phase compensation can be guaranteed. Besides, we employ homodyne detection on the signal to ensure the high quantum efficiency and heterodyne detection on the reference pulse to acquire the complete phase information of it. In order to suppress the excess noise, a theoretical noise model for our scheme is established. According to this model, the impact of the modulation variance and the intensity of the reference pulse are both analysed theoretically and then optimized according to the experimental data. By measuring the excess noise in the 25km optical fiber transmission system, a 3.14Mbps key rate in the asymptotic regime proves to be achievable. This work verifies the feasibility of the high-key-rate CVQKD with a real LO within the metropolitan area.

  7. Is midsole thickness a key parameter for the running pattern?

    PubMed

    Chambon, Nicolas; Delattre, Nicolas; Guéguen, Nils; Berton, Eric; Rao, Guillaume

    2014-01-01

    Many studies have highlighted differences in foot strike pattern comparing habitually shod runners who ran barefoot and with running shoes. Barefoot running results in a flatter foot landing and in a decreased vertical ground reaction force compared to shod running. The aim of this study was to investigate one possible parameter influencing running pattern: the midsole thickness. Fifteen participants ran overground at 3.3 ms(-1) barefoot and with five shoes of different midsole thickness (0 mm, 2 mm, 4 mm, 8 mm, 16 mm) with no difference of height between rearfoot and forefoot. Impact magnitude was evaluated using transient peak of vertical ground reaction force, loading rate, tibial acceleration peak and rate. Hip, knee and ankle flexion angles were computed at touch-down and during stance phase (range of motion and maximum values). External net joint moments and stiffness for hip, knee and ankle joints were also observed as well as global leg stiffness. No significant effect of midsole thickness was observed on ground reaction force and tibial acceleration. However, the contact time increased with midsole thickness. Barefoot running compared to shod running induced ankle in plantar flexion at touch-down, higher ankle dorsiflexion and lower knee flexion during stance phase. These adjustments are suspected to explain the absence of difference on ground reaction force and tibial acceleration. This study showed that the presence of very thin footwear upper and sole was sufficient to significantly influence the running pattern. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Finite-size analysis of a continuous-variable quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leverrier, Anthony; Grosshans, Frederic; Grangier, Philippe

    2010-06-15

    The goal of this paper is to extend the framework of finite-size analysis recently developed for quantum key distribution to continuous-variable protocols. We do not solve this problem completely here, and we mainly consider the finite-size effects on the parameter estimation procedure. Despite the fact that some questions are left open, we are able to give an estimation of the secret key rate for protocols which do not contain a postselection procedure. As expected, these results are significantly more pessimistic than those obtained in the asymptotic regime. However, we show that recent continuous-variable protocols are able to provide fully securemore » secret keys in the finite-size scenario, over distances larger than 50 km.« less

  9. An Expressive, Lightweight and Secure Construction of Key Policy Attribute-Based Cloud Data Sharing Access Control

    NASA Astrophysics Data System (ADS)

    Lin, Guofen; Hong, Hanshu; Xia, Yunhao; Sun, Zhixin

    2017-10-01

    Attribute-based encryption (ABE) is an interesting cryptographic technique for flexible cloud data sharing access control. However, some open challenges hinder its practical application. In previous schemes, all attributes are considered as in the same status while they are not in most of practical scenarios. Meanwhile, the size of access policy increases dramatically with the raise of its expressiveness complexity. In addition, current research hardly notices that mobile front-end devices, such as smartphones, are poor in computational performance while too much bilinear pairing computation is needed for ABE. In this paper, we propose a key-policy weighted attribute-based encryption without bilinear pairing computation (KP-WABE-WB) for secure cloud data sharing access control. A simple weighted mechanism is presented to describe different importance of each attribute. We introduce a novel construction of ABE without executing any bilinear pairing computation. Compared to previous schemes, our scheme has a better performance in expressiveness of access policy and computational efficiency.

  10. A Novel Approach for Constructing One-Way Hash Function Based on a Message Block Controlled 8D Hyperchaotic Map

    NASA Astrophysics Data System (ADS)

    Lin, Zhuosheng; Yu, Simin; Lü, Jinhu

    2017-06-01

    In this paper, a novel approach for constructing one-way hash function based on 8D hyperchaotic map is presented. First, two nominal matrices both with constant and variable parameters are adopted for designing 8D discrete-time hyperchaotic systems, respectively. Then each input plaintext message block is transformed into 8 × 8 matrix following the order of left to right and top to bottom, which is used as a control matrix for the switch of the nominal matrix elements both with the constant parameters and with the variable parameters. Through this switching control, a new nominal matrix mixed with the constant and variable parameters is obtained for the 8D hyperchaotic map. Finally, the hash function is constructed with the multiple low 8-bit hyperchaotic system iterative outputs after being rounded down, and its secure analysis results are also given, validating the feasibility and reliability of the proposed approach. Compared with the existing schemes, the main feature of the proposed method is that it has a large number of key parameters with avalanche effect, resulting in the difficulty for estimating or predicting key parameters via various attacks.

  11. GGOS and the EOP - the key role of SLR for a stable estimation of highly accurate Earth orientation parameters

    NASA Astrophysics Data System (ADS)

    Bloßfeld, Mathis; Panzetta, Francesca; Müller, Horst; Gerstl, Michael

    2016-04-01

    The GGOS vision is to integrate geometric and gravimetric observation techniques to estimate consistent geodetic-geophysical parameters. In order to reach this goal, the common estimation of station coordinates, Stokes coefficients and Earth Orientation Parameters (EOP) is necessary. Satellite Laser Ranging (SLR) provides the ability to study correlations between the different parameter groups since the observed satellite orbit dynamics are sensitive to the above mentioned geodetic parameters. To decrease the correlations, SLR observations to multiple satellites have to be combined. In this paper, we compare the estimated EOP of (i) single satellite SLR solutions and (ii) multi-satellite SLR solutions. Therefore, we jointly estimate station coordinates, EOP, Stokes coefficients and orbit parameters using different satellite constellations. A special focus in this investigation is put on the de-correlation of different geodetic parameter groups due to the combination of SLR observations. Besides SLR observations to spherical satellites (commonly used), we discuss the impact of SLR observations to non-spherical satellites such as, e.g., the JASON-2 satellite. The goal of this study is to discuss the existing parameter interactions and to present a strategy how to obtain reliable estimates of station coordinates, EOP, orbit parameter and Stokes coefficients in one common adjustment. Thereby, the benefits of a multi-satellite SLR solution are evaluated.

  12. Security of Color Image Data Designed by Public-Key Cryptosystem Associated with 2D-DWT

    NASA Astrophysics Data System (ADS)

    Mishra, D. C.; Sharma, R. K.; Kumar, Manish; Kumar, Kuldeep

    2014-08-01

    In present times the security of image data is a major issue. So, we have proposed a novel technique for security of color image data by public-key cryptosystem or asymmetric cryptosystem. In this technique, we have developed security of color image data using RSA (Rivest-Shamir-Adleman) cryptosystem with two-dimensional discrete wavelet transform (2D-DWT). Earlier proposed schemes for security of color images designed on the basis of keys, but this approach provides security of color images with the help of keys and correct arrangement of RSA parameters. If the attacker knows about exact keys, but has no information of exact arrangement of RSA parameters, then the original information cannot be recovered from the encrypted data. Computer simulation based on standard example is critically examining the behavior of the proposed technique. Security analysis and a detailed comparison between earlier developed schemes for security of color images and proposed technique are also mentioned for the robustness of the cryptosystem.

  13. Exploring Measures to Control Road Traffic Injuries in Iran: Key Informants Points of View.

    PubMed

    Salari, Hedayat; Motevalian, Seyed Abbas; Arab, Mohammad; Esfandiari, Atefeh; Akbari Sari, Ali

    2017-05-01

    Injuries and fatalities from road traffic Injuries are global public health concerns, and a major problem in the Iran. This study aimed to explore strategies to control road traffic Injuries (RTI) in Iran. We conducted a qualitative study to explore possible ways to reduce the occurrence of road traffic Injuries in Iran in 2016. Interviewees were purposively sampled from various sectors due to multidisciplinary nature of RTIs. Participants were mainly representatives from the police, Ministry of Road, Municipal, emergency services and Ministry of Health. Besides, public health authorities, researchers, and university professors were interviewed. We conducted in-depth interviews using generic guides. Data was analyzed using MAXQDA 10 software. Through content analysis, we interpreted core themes relevant to the accomplishment of our study objectives. Themes that emerged from our study include; road traffic management, governance, education, improving accident database, enforcement, driving license restrictions, and construction of pedestrian overpass. This study revealed key informants' views regarding available and affordable solutions to reduce RTIs in Iran. Many applicable strategies are identified in the control of RTIs in Iran. Although some solutions such as highway construction and/or expanding rail transportation have been suggested as effective measures for reducing accident, but they are costly and may not be fully applied in developing countries like Iran.

  14. Influence of hip and knee osteoarthritis on dynamic postural control parameters among older fallers.

    PubMed

    Mat, Sumaiyah; Ng, Chin Teck; Tan, Maw Pin

    2017-03-06

    To compare the relationship between postural control and knee and hip osteoarthritis in older adults with and without a history of falls. Fallers were those with ≥ 2 falls or 1 injurious fall over 12 months. Non-fallers were volunteers with no falls in the past year. Radiological evidence of osteoarthritis with no reported symptoms was considered "asymptomatic osteoarthritis", while "symptomatic osteoarthritis" was defined as radiographic osteoarthritis with pain or stiffness. Dynamic postural control was quantified with the limits of stability test measured on a balance platform (Neurocom® Balancemaster, California, USA). Parameters assessed were end-point excursion, maximal excursion, and directional control. A total of 102 older individuals, mean age 73 years (standard deviation 5.7) years were included. The association between falls and poor performance in maximal excursion and directional control was confounded by age and comorbidities. In the same linear equation model with falls, symptomatic osteoarthritis remained independently associated with poor end-point excursion (β-coefficient (95% confidence interval) -6.80 (-12.14 to -1.42)). Poor performance in dynamic postural control (maximal excursion and directional control) among fallers was not accounted for by hip/knee osteoarthritis, but was confounded by old age and comorbidities. Loss of postural control due to hip/knee osteoarthritis is not a risk factor for falls among community-dwelling older adults.

  15. GARP: a key receptor controlling FOXP3 in human regulatory T cells.

    PubMed

    Probst-Kepper, M; Geffers, R; Kröger, A; Viegas, N; Erck, C; Hecht, H-J; Lünsdorf, H; Roubin, R; Moharregh-Khiabani, D; Wagner, K; Ocklenburg, F; Jeron, A; Garritsen, H; Arstila, T P; Kekäläinen, E; Balling, R; Hauser, H; Buer, J; Weiss, S

    2009-09-01

    Recent evidence suggests that regulatory pathways might control sustained high levels of FOXP3 in regulatory CD4(+)CD25(hi) T (T(reg)) cells. Based on transcriptional profiling of ex vivo activated T(reg) and helper CD4(+)CD25(-) T (T(h)) cells we have identified GARP (glycoprotein-A repetitions predominant), LGALS3 (lectin, galactoside-binding, soluble, 3) and LGMN (legumain) as novel genes implicated in human T(reg) cell function, which are induced upon T-cell receptor stimulation. Retroviral overexpression of GARP in antigen-specific T(h) cells leads to an efficient and stable re-programming of an effector T cell towards a regulatory T cell, which involves up-regulation of FOXP3, LGALS3, LGMN and other T(reg)-associated markers. In contrast, overexpression of LGALS3 and LGMN enhance FOXP3 and GARP expression, but only partially induced a regulatory phenotype. Lentiviral down-regulation of GARP in T(reg) cells significantly impaired the suppressor function and was associated with down-regulation of FOXP3. Moreover, down-regulation of FOXP3 resulted in similar phenotypic changes and down-regulation of GARP. This provides compelling evidence for a GARP-FOXP3 positive feedback loop and provides a rational molecular basis for the known difference between natural and transforming growth factor-beta induced T(reg) cells as we show here that the latter do not up-regulate GARP. In summary, we have identified GARP as a key receptor controlling FOXP3 in T(reg) cells following T-cell activation in a positive feedback loop assisted by LGALS3 and LGMN, which represents a promising new system for the therapeutic manipulation of T cells in human disease.

  16. Sewage in ground water in the Florida Keys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinn, E.A.

    1995-12-31

    More than 24,000 septic tanks, 5,000 cesspools, and greater than 600 shallow disposal wells introduce sewage effluents into porous and permeable limestone underlying the Florida Keys. To porous and permeable limestone underlying the Florida Keys. To assess the fate of sewage nutrients, 21 2- to 20-m-deep wells were core drilled and completed as water-monitoring wells. The wells were sampled quarterly and analyzed for 17 parameters. including nutrients and bacteria. Nutrients (mainly NH4, - which is 30 to 40 times higher than in surface sea water) were detected in ground water beneath the Keys and offshore coral reefs. Highest levels weremore » beneath reefs 5 to 8 km offshore. Ground waters were generally hypersaline and fecal bacteria (fecal coliform and streptococci) were detected in ground water beneath living coral reefs. Higher sea level on the Florida Bay side of the Keys is proposed as the mechanism for forcing ground water toward offshore coral reefs. Tidal pumping, which is more pronounced near the Keys, causes leakage of ground water where the sediment is thin. Areas lacking sediment cover consist of bare limestone bedrock or permeable coral reefs. These are the areas where coral diseases and algal growth have increased in recent years. Pollutants entering the ground water beneath the Florida Keys are likely to be transported seaward beneath impermeable Holocene sediments and may be upwelling through coral reefs and other hardbottom communities.« less

  17. [Atmospheric parameter estimation for LAMOST/GUOSHOUJING spectra].

    PubMed

    Lu, Yu; Li, Xiang-Ru; Yang, Tan

    2014-11-01

    It is a key task to estimate the atmospheric parameters from the observed stellar spectra in exploring the nature of stars and universe. With our Large Sky Area Multi-Object Fiber Spectroscopy Telescope (LAMOST) which begun its formal Sky Survey in September 2012, we are obtaining a mass of stellar spectra in an unprecedented speed. It has brought a new opportunity and a challenge for the research of galaxies. Due to the complexity of the observing system, the noise in the spectrum is relatively large. At the same time, the preprocessing procedures of spectrum are also not ideal, such as the wavelength calibration and the flow calibration. Therefore, there is a slight distortion of the spectrum. They result in the high difficulty of estimating the atmospheric parameters for the measured stellar spectra. It is one of the important issues to estimate the atmospheric parameters for the massive stellar spectra of LAMOST. The key of this study is how to eliminate noise and improve the accuracy and robustness of estimating the atmospheric parameters for the measured stellar spectra. We propose a regression model for estimating the atmospheric parameters of LAMOST stellar(SVM(lasso)). The basic idea of this model is: First, we use the Haar wavelet to filter spectrum, suppress the adverse effects of the spectral noise and retain the most discrimination information of spectrum. Secondly, We use the lasso algorithm for feature selection and extract the features of strongly correlating with the atmospheric parameters. Finally, the features are input to the support vector regression model for estimating the parameters. Because the model has better tolerance to the slight distortion and the noise of the spectrum, the accuracy of the measurement is improved. To evaluate the feasibility of the above scheme, we conduct experiments extensively on the 33 963 pilot surveys spectrums by LAMOST. The accuracy of three atmospheric parameters is log Teff: 0.006 8 dex, log g: 0.155 1 dex

  18. Position calibration of a 3-DOF hand-controller with hybrid structure

    NASA Astrophysics Data System (ADS)

    Zhu, Chengcheng; Song, Aiguo

    2017-09-01

    A hand-controller is a human-robot interactive device, which measures the 3-DOF (Degree of Freedom) position of the human hand and sends it as a command to control robot movement. The device also receives 3-DOF force feedback from the robot and applies it to the human hand. Thus, the precision of 3-DOF position measurements is a key performance factor for hand-controllers. However, when using a hybrid type 3-DOF hand controller, various errors occur and are considered originating from machining and assembly variations within the device. This paper presents a calibration method to improve the position tracking accuracy of hybrid type hand-controllers by determining the actual size of the hand-controller parts. By re-measuring and re-calibrating this kind of hand-controller, the actual size of the key parts that cause errors is determined. Modifying the formula parameters with the actual sizes, which are obtained in the calibrating process, improves the end position tracking accuracy of the device.

  19. Research on Intelligent Control System of DC SQUID Magnetometer Parameters for Multi-channel System

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Yang, Kang; Lu, Li; Kong, Xiangyan; Wang, Hai; Wu, Jun; Wang, Yongliang

    2018-07-01

    In a multi-channel SQUID measurement system, adjusting device parameters to optimal condition for all channels is time-consuming. In this paper, an intelligent control system is presented to determine the optimal working point of devices which is automatic and more efficient comparing to the manual one. An optimal working point searching algorithm is introduced as the core component of the control system. In this algorithm, the bias voltage V_bias is step scanned to obtain the maximal value of the peak-to-peak current value I_pp of the SQUID magnetometer modulation curve. We choose this point as the optimal one. Using the above control system, more than 30 weakly damped SQUID magnetometers with area of 5 × 5 mm^2 or 10 × 10 mm^2 are adjusted and a 36-channel magnetocardiography system perfectly worked in a magnetically shielded room. The average white flux noise is 15 {μ Φ }_0/Hz^{1/2}.

  20. Research on Intelligent Control System of DC SQUID Magnetometer Parameters for Multi-channel System

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Yang, Kang; Lu, Li; Kong, Xiangyan; Wang, Hai; Wu, Jun; Wang, Yongliang

    2018-03-01

    In a multi-channel SQUID measurement system, adjusting device parameters to optimal condition for all channels is time-consuming. In this paper, an intelligent control system is presented to determine the optimal working point of devices which is automatic and more efficient comparing to the manual one. An optimal working point searching algorithm is introduced as the core component of the control system. In this algorithm, the bias voltage V_bias is step scanned to obtain the maximal value of the peak-to-peak current value I_pp of the SQUID magnetometer modulation curve. We choose this point as the optimal one. Using the above control system, more than 30 weakly damped SQUID magnetometers with area of 5 × 5 mm^2 or 10 × 10 mm^2 are adjusted and a 36-channel magnetocardiography system perfectly worked in a magnetically shielded room. The average white flux noise is 15 μΦ_0/Hz^{1/2}.

  1. A correlate of HIV-1 control consisting of both innate and adaptive immune parameters best predicts viral load by multivariable analysis in HIV-1 infected viremic controllers and chronically-infected non-controllers.

    PubMed

    Tomescu, Costin; Liu, Qin; Ross, Brian N; Yin, Xiangfan; Lynn, Kenneth; Mounzer, Karam C; Kostman, Jay R; Montaner, Luis J

    2014-01-01

    HIV-1 infected viremic controllers maintain durable viral suppression below 2000 copies viral RNA/ml without anti-retroviral therapy (ART), and the immunological factor(s) associated with host control in presence of low but detectable viral replication are of considerable interest. Here, we utilized a multivariable analysis to identify which innate and adaptive immune parameters best correlated with viral control utilizing a cohort of viremic controllers (median 704 viral RNA/ml) and non-controllers (median 21,932 viral RNA/ml) that were matched for similar CD4+ T cell counts in the absence of ART. We observed that HIV-1 Gag-specific CD8+ T cell responses were preferentially targeted over Pol-specific responses in viremic controllers (p = 0.0137), while Pol-specific responses were positively associated with viral load (rho = 0.7753, p = 0.0001, n = 23). Viremic controllers exhibited significantly higher NK and plasmacytoid dendritic cells (pDC) frequency as well as retained expression of the NK CD16 receptor and strong target cell-induced NK cell IFN-gamma production compared to non-controllers (p<0.05). Despite differences in innate and adaptive immune function however, both viremic controllers (p<0.05) and non-controller subjects (p<0.001) exhibited significantly increased CD8+ T cell activation and spontaneous NK cell degranulation compared to uninfected donors. Overall, we identified that a combination of innate (pDC frequency) and adaptive (Pol-specific CD8+ T cell responses) immune parameters best predicted viral load (R2 = 0.5864, p = 0.0021, n = 17) by a multivariable analysis. Together, this data indicates that preferential Gag-specific over Pol-specific CD8+ T cell responses along with a retention of functional innate subsets best predict host control over viral replication in HIV-1 infected viremic controllers compared to chronically-infected non-controllers.

  2. A Comprehensive Analysis of Multiscale Field-Aligned Currents: Characteristics, Controlling Parameters, and Relationships

    NASA Astrophysics Data System (ADS)

    McGranaghan, Ryan M.; Mannucci, Anthony J.; Forsyth, Colin

    2017-12-01

    We explore the characteristics, controlling parameters, and relationships of multiscale field-aligned currents (FACs) using a rigorous, comprehensive, and cross-platform analysis. Our unique approach combines FAC data from the Swarm satellites and the Advanced Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) to create a database of small-scale (˜10-150 km, <1° latitudinal width), mesoscale (˜150-250 km, 1-2° latitudinal width), and large-scale (>250 km) FACs. We examine these data for the repeatable behavior of FACs across scales (i.e., the characteristics), the dependence on the interplanetary magnetic field orientation, and the degree to which each scale "departs" from nominal large-scale specification. We retrieve new information by utilizing magnetic latitude and local time dependence, correlation analyses, and quantification of the departure of smaller from larger scales. We find that (1) FACs characteristics and dependence on controlling parameters do not map between scales in a straight forward manner, (2) relationships between FAC scales exhibit local time dependence, and (3) the dayside high-latitude region is characterized by remarkably distinct FAC behavior when analyzed at different scales, and the locations of distinction correspond to "anomalous" ionosphere-thermosphere behavior. Comparing with nominal large-scale FACs, we find that differences are characterized by a horseshoe shape, maximizing across dayside local times, and that difference magnitudes increase when smaller-scale observed FACs are considered. We suggest that both new physics and increased resolution of models are required to address the multiscale complexities. We include a summary table of our findings to provide a quick reference for differences between multiscale FACs.

  3. Key aspects of cost effective collector and solar field design

    NASA Astrophysics Data System (ADS)

    von Reeken, Finn; Nicodemo, Dario; Keck, Thomas; Weinrebe, Gerhard; Balz, Markus

    2016-05-01

    A study has been performed where different key parameters influencing solar field cost are varied. By using levelised cost of energy as figure of merit it is shown that parameters like GoToStow wind speed, heliostat stiffness or tower height should be adapted to respective site conditions from an economical point of view. The benchmark site Redstone (Northern Cape Province, South Africa) has been compared to an alternate site close to Phoenix (AZ, USA) regarding site conditions and their effect on cost-effective collector and solar field design.

  4. Summary of longitudinal stability and control parameters as determined from Space Shuttle Challenger flight test data

    NASA Technical Reports Server (NTRS)

    Suit, William T.

    1989-01-01

    Estimates of longitudinal stability and control parameters for the space shuttle were determined by applying a maximum likelihood parameter estimation technique to Challenger flight test data. The parameters for pitching moment coefficient, C(m sub alpha), (at different angles of attack), pitching moment coefficient, C(m sub delta e), (at different elevator deflections) and the normal force coefficient, C(z sub alpha), (at different angles of attack) describe 90 percent of the response to longitudinal inputs during Space Shuttle Challenger flights with C(m sub delta e) being the dominant parameter. The values of C(z sub alpha) were found to be input dependent for these tests. However, when C(z sub alpha) was set at preflight predictions, the values determined for C(m sub delta e) changed less than 10 percent from the values obtained when C(z sub alpha) was estimated as well. The preflight predictions for C(z sub alpha) and C(m sub alpha) are acceptable values, while the values of C(z sub delta e) should be about 30 percent less negative than the preflight predictions near Mach 1, and 10 percent less negative, otherwise.

  5. Bacteriological Aspects of Hand Washing: A Key for Health Promotion and Infections Control

    PubMed Central

    Ataee, Ramezan Ali; Ataee, Mohammad Hosein; Mehrabi Tavana, Ali; Salesi, Mahmud

    2017-01-01

    The aim of this review is to show the historical aspects of hands washing for healthy life and explains how can reduce the transmission of community-acquired infectious agents by healthcare workers and patients. This review article is prepared based on available database. The key words used were hands washing, risk assessment, hands hygiene, bacterial flora, contamination, infection, nosocomial, tap water, sanitizer, bacterial resistance, hands bacterial flora, washing methods, antiseptics, healthcare workers, healthcare personnel, from PubMed, ScienceDirect, Embase, Scopus, Web of Sciences, and Google Scholar. Data were descriptively analyzed. The insistence on hand washing has a history of 1400 years. The research results indicate that the bacteria released from the female washed hands in wet and dry condition was lower than from the male's hands with a significance level (3 CFU vs. 8 CFU; confidence interval 95%, P ≤ 0.001). The valuable results of the study indicated that released amount of bacterial flora from wet hands is more than 10 times in compared to dry hands. In addition, established monitoring systems for washing hands before and after patient's manipulation as well as after toilet were dominant indices to prevent the transfer of infectious agents to the patients. Increasing awareness and belief of the healthcare workers have shown an important role by about 30% reduction in the transfection. Hand washing could reduce the episodes of transmission of infectious agents in both community and healthcare settings. However, hand washing is an important key factor to prevent transmission of infectious agents to patients. There is no standard method for measuring compliance. Thus, permanent monitoring of hand washing to reduce the transmission of infections is crucial. Finally, the personnel must believe that hand washing is an inevitable approach to infection control. PMID:28382192

  6. A PDE-based methodology for modeling, parameter estimation and feedback control in structural and structural acoustic systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Brown, D. E.; Metcalf, Vern L.; Silcox, R. J.; Smith, Ralph C.; Wang, Yun

    1994-01-01

    A problem of continued interest concerns the control of vibrations in a flexible structure and the related problem of reducing structure-borne noise in structural acoustic systems. In both cases, piezoceramic patches bonded to the structures have been successfully used as control actuators. Through the application of a controlling voltage, the patches can be used to reduce structural vibrations which in turn lead to methods for reducing structure-borne noise. A PDE-based methodology for modeling, estimating physical parameters, and implementing a feedback control scheme for problems of this type is discussed. While the illustrating example is a circular plate, the methodology is sufficiently general so as to be applicable in a variety of structural and structural acoustic systems.

  7. Keys to success for a school-based malaria control program in primary schools in Thailand.

    PubMed

    Okabayashi, Hironori; Thongthien, Pimpimon; Singhasvanon, Pratap; Waikagul, Jitra; Looareesuwan, Sornchai; Jimba, Masamine; Kano, Shigeyuki; Kojima, Somei; Takeuchi, Tsutomu; Kobayashi, Jun; Tateno, Seiki

    2006-06-01

    School-based malaria control has been recognized as a new approach for the control of this disease in the Greater Mekong Subregion since 2000. We evaluated a school-based malaria control program near the western border of Thailand using a before-after intervention study. The major intervention activities included teacher training with specialized malaria teaching materials and participatory learning methods. The target population was 17 school principals, 111 teachers and 852 schoolchildren of grade 3, 4, and 5 in 17 schools. After the intervention, the teachers taught about malaria more actively than before. The teachers who could design a lesson plan on malaria increased from 30.7% to 47.7% (p=0.015) and the teachers who had taught about malaria increased from 71.9% to 84.3% (p=0.035). As a result of the program, the schoolchildren changed their behavior positively towards malaria prevention with significant difference in 6 of 7 questions. For example, the schoolchildren 'who always took care of mosquito bites' increased from 42.7% to 62.1% (p<0.001) and the schoolchildren 'who always reported their parents or teachers when they had fever' increased from 36.0% to 56.0% (p<0.001). In conclusion, the keys to a successful intervention lie in good teaching materials and a participatory approach utilizing the well-established Thailand's school health system. Beyond Thailand, school-based malaria control could be applied to other Greater Mekong Subregion countries with careful analysis of school health context in each country.

  8. Function key and shortcut key use in airway facilities.

    DOT National Transportation Integrated Search

    2003-02-01

    This document provides information on the function keys and shortcut keys used by systems in the Federal Aviation Administration : Airway Facilities (AF) work environment. It includes a catalog of the function keys and shortcut keys used by each syst...

  9. KEY COMPARISON: Final report on CCQM-K69 key comparison: Testosterone glucuronide in human urine

    NASA Astrophysics Data System (ADS)

    Liu, Fong-Ha; Mackay, Lindsey; Murby, John

    2010-01-01

    The CCQM-K69 key comparison of testosterone glucuronide in human urine was organized under the auspices of the CCQM Organic Analysis Working Group (OAWG). The National Measurement Institute Australia (NMIA) acted as the coordinating laboratory for the comparison. The samples distributed for the key comparison were prepared at NMIA with funding from the World Anti-Doping Agency (WADA). WADA granted the approval for this material to be used for the intercomparison provided the distribution and handling of the material were strictly controlled. Three national metrology institutes (NMIs)/designated institutes (DIs) developed reference methods and submitted data for the key comparison along with two other laboratories who participated in the parallel pilot study. A good selection of analytical methods and sample workup procedures was displayed in the results submitted considering the complexities of the matrix involved. The comparability of measurement results was successfully demonstrated by the participating NMIs. Only the key comparison data were used to estimate the key comparison reference value (KCRV), using the arithmetic mean approach. The reported expanded uncertainties for results ranged from 3.7% to 6.7% at the 95% level of confidence and all results agreed within the expanded uncertainty of the KCRV. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  10. Discrete-time switching periodic adaptive control for time-varying parameters with unknown periodicity

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Huang, Deqing; Yang, Wanqiu

    2018-06-01

    In this paper, we address the problem of unknown periodicity for a class of discrete-time nonlinear parametric systems without assuming any growth conditions on the nonlinearities. The unknown periodicity hides in the parametric uncertainties, which is difficult to estimate with existing techniques. By incorporating a logic-based switching mechanism, we identify the period and bound of unknown parameter simultaneously. Lyapunov-based analysis is given to demonstrate that a finite number of switchings can guarantee the asymptotic tracking for the nonlinear parametric systems. The simulation result also shows the efficacy of the proposed switching periodic adaptive control approach.

  11. Control of operating parameters of laser ceilometers with the application of fiber optic delay line imitation

    NASA Astrophysics Data System (ADS)

    Kim, A. A.; Klochkov, D. V.; Konyaev, M. A.; Mihaylenko, A. S.

    2017-11-01

    The article considers the problem of control and verification of the laser ceilometers basic performance parameters and describes an alternative method based on the use of multi-length fiber optic delay line, simulating atmospheric track. The results of the described experiment demonstrate the great potential of this method for inspection and verification procedures of laser ceilometers.

  12. Failure probability under parameter uncertainty.

    PubMed

    Gerrard, R; Tsanakas, A

    2011-05-01

    In many problems of risk analysis, failure is equivalent to the event of a random risk factor exceeding a given threshold. Failure probabilities can be controlled if a decisionmaker is able to set the threshold at an appropriate level. This abstract situation applies, for example, to environmental risks with infrastructure controls; to supply chain risks with inventory controls; and to insurance solvency risks with capital controls. However, uncertainty around the distribution of the risk factor implies that parameter error will be present and the measures taken to control failure probabilities may not be effective. We show that parameter uncertainty increases the probability (understood as expected frequency) of failures. For a large class of loss distributions, arising from increasing transformations of location-scale families (including the log-normal, Weibull, and Pareto distributions), the article shows that failure probabilities can be exactly calculated, as they are independent of the true (but unknown) parameters. Hence it is possible to obtain an explicit measure of the effect of parameter uncertainty on failure probability. Failure probability can be controlled in two different ways: (1) by reducing the nominal required failure probability, depending on the size of the available data set, and (2) by modifying of the distribution itself that is used to calculate the risk control. Approach (1) corresponds to a frequentist/regulatory view of probability, while approach (2) is consistent with a Bayesian/personalistic view. We furthermore show that the two approaches are consistent in achieving the required failure probability. Finally, we briefly discuss the effects of data pooling and its systemic risk implications. © 2010 Society for Risk Analysis.

  13. Long-distance continuous-variable quantum key distribution with a Gaussian modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouguet, Paul; SeQureNet, 23 avenue d'Italie, F-75013 Paris; Kunz-Jacques, Sebastien

    2011-12-15

    We designed high-efficiency error correcting codes allowing us to extract an errorless secret key in a continuous-variable quantum key distribution (CVQKD) protocol using a Gaussian modulation of coherent states and a homodyne detection. These codes are available for a wide range of signal-to-noise ratios on an additive white Gaussian noise channel with a binary modulation and can be combined with a multidimensional reconciliation method proven secure against arbitrary collective attacks. This improved reconciliation procedure considerably extends the secure range of a CVQKD with a Gaussian modulation, giving a secret key rate of about 10{sup -3} bit per pulse at amore » distance of 120 km for reasonable physical parameters.« less

  14. Secure SCADA communication by using a modified key management scheme.

    PubMed

    Rezai, Abdalhossein; Keshavarzi, Parviz; Moravej, Zahra

    2013-07-01

    This paper presents and evaluates a new cryptographic key management scheme which increases the efficiency and security of the Supervisory Control And Data Acquisition (SCADA) communication. In the proposed key management scheme, two key update phases are used: session key update and master key update. In the session key update phase, session keys are generated in the master station. In the master key update phase, the Elliptic Curve Diffie-Hellman (ECDH) protocol is used. The Poisson process is also used to model the Security Index (SI) and Quality of Service (QoS). Our analysis shows that the proposed key management not only supports the required speed in the MODBUS implementation but also has several advantages compared to other key management schemes for secure communication in SCADA networks. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Notification: FY 2017 Update of Proposed Key Management Challenges and Internal Control Weaknesses Confronting the U.S. Chemical Safety and Hazard Investigation Board

    EPA Pesticide Factsheets

    Jan 5, 2017. The EPA OIG is beginning work to update for fiscal year 2017 its list of proposed key management challenges and internal control weaknesses confronting the U.S. Chemical Safety and Hazard Investigation Board (CSB).

  16. Estimation of Time-Varying Pilot Model Parameters

    NASA Technical Reports Server (NTRS)

    Zaal, Peter M. T.; Sweet, Barbara T.

    2011-01-01

    Human control behavior is rarely completely stationary over time due to fatigue or loss of attention. In addition, there are many control tasks for which human operators need to adapt their control strategy to vehicle dynamics that vary in time. In previous studies on the identification of time-varying pilot control behavior wavelets were used to estimate the time-varying frequency response functions. However, the estimation of time-varying pilot model parameters was not considered. Estimating these parameters can be a valuable tool for the quantification of different aspects of human time-varying manual control. This paper presents two methods for the estimation of time-varying pilot model parameters, a two-step method using wavelets and a windowed maximum likelihood estimation method. The methods are evaluated using simulations of a closed-loop control task with time-varying pilot equalization and vehicle dynamics. Simulations are performed with and without remnant. Both methods give accurate results when no pilot remnant is present. The wavelet transform is very sensitive to measurement noise, resulting in inaccurate parameter estimates when considerable pilot remnant is present. Maximum likelihood estimation is less sensitive to pilot remnant, but cannot detect fast changes in pilot control behavior.

  17. A Discussion of Oxygen Recovery Definitions and Key Performance Parameters for Closed-Loop Atmosphere Revitalization Life Support Technology Development

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Perry, Jay L.

    2016-01-01

    Over the last 55 years, NASA has evolved life support for crewed space exploration vehicles from simple resupply during Project Mercury to the complex and highly integrated system of systems aboard the International Space Station. As NASA targets exploration destinations farther from low Earth orbit and mission durations of 500 to 1000 days, life support systems must evolve to meet new requirements. In addition to having more robust, reliable, and maintainable hardware, limiting resupply becomes critical for managing mission logistics and cost. Supplying a crew with the basics of food, water, and oxygen become more challenging as the destination ventures further from Earth. Aboard ISS the Atmosphere Revitalization Subsystem (ARS) supplies the crew's oxygen demand by electrolyzing water. This approach makes water a primary logistics commodity that must be managed carefully. Chemical reduction of metabolic carbon dioxide (CO2) provides a method of recycling oxygen thereby reducing the net ARS water demand and therefore minimizing logistics needs. Multiple methods have been proposed to achieve this recovery and have been reported in the literature. However, depending on the architecture and the technology approach, "oxygen recovery" can be defined in various ways. This discontinuity makes it difficult to compare technologies directly. In an effort to clarify community discussions of Oxygen Recovery, we propose specific definitions and describe the methodology used to arrive at those definitions. Additionally, we discuss key performance parameters for Oxygen Recovery technology development including challenges with comparisons to state-of-the-art.

  18. Seasonal microbial and environmental parameters at Crocker Reef, Florida Keys, 2014–2015

    USGS Publications Warehouse

    Kellogg, Christina A.; Yates, Kimberly K.; Lawler, Stephanie N.; Moore, Christopher S.; Smiley, Nathan A.

    2015-11-04

    Microbial measurements included enumeration of total bacteria, enumeration of virus-like particles, and plate counts of Vibrio spp. colony-forming units (CFU). These measurements were intended to give a sense of any seasonal changes in the total microbial load and to provide an indication of water quality. Additional environmental parameters measured included water temperature, salinity, dissolved oxygen, and pH. Four sites (table 1) were intensively sampled for periods of approximately 48 hours during summer (July 2014) and winter (January–February 2015), during which water samples were collected every 4 hours for analysis, except when prevented by weather conditions.

  19. Natural variation in the parameters of innate immune cells is preferentially driven by genetic factors.

    PubMed

    Patin, Etienne; Hasan, Milena; Bergstedt, Jacob; Rouilly, Vincent; Libri, Valentina; Urrutia, Alejandra; Alanio, Cécile; Scepanovic, Petar; Hammer, Christian; Jönsson, Friederike; Beitz, Benoît; Quach, Hélène; Lim, Yoong Wearn; Hunkapiller, Julie; Zepeda, Magge; Green, Cherie; Piasecka, Barbara; Leloup, Claire; Rogge, Lars; Huetz, François; Peguillet, Isabelle; Lantz, Olivier; Fontes, Magnus; Di Santo, James P; Thomas, Stéphanie; Fellay, Jacques; Duffy, Darragh; Quintana-Murci, Lluís; Albert, Matthew L

    2018-03-01

    The quantification and characterization of circulating immune cells provide key indicators of human health and disease. To identify the relative effects of environmental and genetic factors on variation in the parameters of innate and adaptive immune cells in homeostatic conditions, we combined standardized flow cytometry of blood leukocytes and genome-wide DNA genotyping of 1,000 healthy, unrelated people of Western European ancestry. We found that smoking, together with age, sex and latent infection with cytomegalovirus, were the main non-genetic factors that affected variation in parameters of human immune cells. Genome-wide association studies of 166 immunophenotypes identified 15 loci that showed enrichment for disease-associated variants. Finally, we demonstrated that the parameters of innate cells were more strongly controlled by genetic variation than were those of adaptive cells, which were driven by mainly environmental exposure. Our data establish a resource that will generate new hypotheses in immunology and highlight the role of innate immunity in susceptibility to common autoimmune diseases.

  20. High-speed wavelength-division multiplexing quantum key distribution system.

    PubMed

    Yoshino, Ken-ichiro; Fujiwara, Mikio; Tanaka, Akihiro; Takahashi, Seigo; Nambu, Yoshihiro; Tomita, Akihisa; Miki, Shigehito; Yamashita, Taro; Wang, Zhen; Sasaki, Masahide; Tajima, Akio

    2012-01-15

    A high-speed quantum key distribution system was developed with the wavelength-division multiplexing (WDM) technique and dedicated key distillation hardware engines. Two interferometers for encoding and decoding are shared over eight wavelengths to reduce the system's size, cost, and control complexity. The key distillation engines can process a huge amount of data from the WDM channels by using a 1 Mbit block in real time. We demonstrated a three-channel WDM system that simultaneously uses avalanche photodiodes and superconducting single-photon detectors. We achieved 12 h continuous key generation with a secure key rate of 208 kilobits per second through a 45 km field fiber with 14.5 dB loss.

  1. [Efficacy on hemiplegic spasticity treated with plum blossom needle tapping therapy at the key points and Bobath therapy: a randomized controlled trial].

    PubMed

    Wang, Fei; Zhang, Lijuan; Wang, Jianhua; Shi, Yan; Zheng, Liya

    2015-08-01

    To evaluate the efficacy on hemiplegic spasticity after cerebral infarction treated with plum blossom needle tapping therapy at the key points and Bobath therapy. Eighty patients were collected, in compliance with the inclusive criteria of hemiplegic spasticity after cerebral infarction, and randomized into an observation group and a control group, 40 cases in each one. In the control group, Bobath manipulation therapy was adopted to relieve spasticity and the treatment of 8 weeks was required. In the observation group, on the basis of the treatment as the control group, the tapping therapy with plum blossom needle was applied to the key points, named Jianyu (LI 15), Jianliao (LI 14), Jianzhen (SI 9), Hegu (LI 4), Chengfu (BL 36), Zusanli (ST 36), Xiyangguan (GB 33), etc. The treatment was given for 15 min each time, once a day. Before treatment, after 4 and 8 weeks of treatment, the Fugl-Meyer assessment (FMA) and Barthel index (BI) were adopted to evaluate the motor function of the extremity and the activity of daily life in the patients of the two groups separately. The modified Ashworth scale was used to evaluate the effect of anti-spasticity. In 4 and 8 weeks of treatment, FMA: scores and BI scores were all significantly increased as compared with those before treatment in the two groups: (both P<0. 05). The results in 8 weeks of treatment in the observation group were significantly better than those in the control group (all P<0. 05). In 4 and 8 weeks of treatment, the scores of spasticity state were improved as compared with those before treatment in the patients of the two groups (all P<0. 05). The result in 8 weeks of treatment in the observation group was significantly better than that in the control group (P<0. 05). In 8 weeks of treatment, the total effective rate of anti-spasticity was 90. 0% (36/40) in the observation group, better than 75. 0% (30/40) in the control group (P<0. 05). The tapping therapy with plum blossom needle at the key points

  2. In vivo quantitative evaluation of vascular parameters for angiogenesis based on sparse principal component analysis and aggregated boosted trees

    NASA Astrophysics Data System (ADS)

    Zhao, Fengjun; Liu, Junting; Qu, Xiaochao; Xu, Xianhui; Chen, Xueli; Yang, Xiang; Cao, Feng; Liang, Jimin; Tian, Jie

    2014-12-01

    To solve the multicollinearity issue and unequal contribution of vascular parameters for the quantification of angiogenesis, we developed a quantification evaluation method of vascular parameters for angiogenesis based on in vivo micro-CT imaging of hindlimb ischemic model mice. Taking vascular volume as the ground truth parameter, nine vascular parameters were first assembled into sparse principal components (PCs) to reduce the multicolinearity issue. Aggregated boosted trees (ABTs) were then employed to analyze the importance of vascular parameters for the quantification of angiogenesis via the loadings of sparse PCs. The results demonstrated that vascular volume was mainly characterized by vascular area, vascular junction, connectivity density, segment number and vascular length, which indicated they were the key vascular parameters for the quantification of angiogenesis. The proposed quantitative evaluation method was compared with both the ABTs directly using the nine vascular parameters and Pearson correlation, which were consistent. In contrast to the ABTs directly using the vascular parameters, the proposed method can select all the key vascular parameters simultaneously, because all the key vascular parameters were assembled into the sparse PCs with the highest relative importance.

  3. Practical continuous-variable quantum key distribution without finite sampling bandwidth effects.

    PubMed

    Li, Huasheng; Wang, Chao; Huang, Peng; Huang, Duan; Wang, Tao; Zeng, Guihua

    2016-09-05

    In a practical continuous-variable quantum key distribution system, finite sampling bandwidth of the employed analog-to-digital converter at the receiver's side may lead to inaccurate results of pulse peak sampling. Then, errors in the parameters estimation resulted. Subsequently, the system performance decreases and security loopholes are exposed to eavesdroppers. In this paper, we propose a novel data acquisition scheme which consists of two parts, i.e., a dynamic delay adjusting module and a statistical power feedback-control algorithm. The proposed scheme may improve dramatically the data acquisition precision of pulse peak sampling and remove the finite sampling bandwidth effects. Moreover, the optimal peak sampling position of a pulse signal can be dynamically calibrated through monitoring the change of the statistical power of the sampled data in the proposed scheme. This helps to resist against some practical attacks, such as the well-known local oscillator calibration attack.

  4. Investigation of parameters affecting treatment time in MRI-guided transurethral ultrasound therapy

    NASA Astrophysics Data System (ADS)

    N'Djin, W. A.; Burtnyk, M.; Chopra, R.; Bronskill, M. J.

    2010-03-01

    MRI-guided transurethral ultrasound therapy shows promise for minimally invasive treatment of localized prostate cancer. Real-time MR temperature feedback enables the 3D control of thermal therapy to define an accurate region within the prostate. Previous in-vivo canine studies showed the feasibility of this method using transurethral planar transducers. The aim of this simulation study was to reduce the procedure time, while maintaining treatment accuracy by investigating new combinations of treatment parameters. A numerical model was used to simulate a multi-element heating applicator rotating inside the urethra in 10 human prostates. Acoustic power and rotation rate were varied based on the feedback of the temperature in the prostate. Several parameters were investigated for improving the treatment time. Maximum acoustic power and rotation rate were optimized interdependently as a function of prostate radius and transducer operating frequency, while avoiding temperatures >90° C in the prostate. Other trials were performed on each parameter separately, with the other parameter fixed. The concept of using dual-frequency transducers was studied, using the fundamental frequency or the 3rd harmonic component depending on the prostate radius. The maximum acoustic power which could be used decreased as a function of the prostate radius and the frequency. Decreasing the frequency (9.7-3.0 MHz) or increasing the power (10-20 W.cm-2) led to treatment times shorter by up to 50% under appropriate conditions. Dual-frequency configurations, while helpful, tended to have less impact on treatment times. Treatment accuracy was maintained and critical adjacent tissues like the rectal wall remained protected. The interdependence between power and frequency may require integrating multi-parametric functions inside the controller for future optimizations. As a first approach, however, even slight modifications of key parameters can be sufficient to reduce treatment time.

  5. Comparison of periodontal and peri-implant inflammatory parameters among patients with prediabetes, type 2 diabetes mellitus and non-diabetic controls.

    PubMed

    Abduljabbar, Tariq; Al-Sahaly, Faisal; Al-Kathami, Mohammed; Afzal, Sibtain; Vohra, Fahim

    2017-07-01

    The aim was to compare periodontal and periimplant inflammatory parameters (plaque index [PI], bleeding on probing [BOP], probing depth [PD] and marginal bone loss [MBL]) among patients with prediabetes, type-2 diabetes mellitus (T2DM) and non-diabetic controls. Forty-five patients with prediabetes (Group-1), 43 patients with T2DM (Group-2) and 42 controls (Group-3) were included. Demographic data was recorded using a questionnaire. Full mouth and periimplant clinical (PI, BOP and PD) were assessed and the radiographic MBL were measured on digital radiographs. In all groups, haemoglobin A1c (HbA1c) levels were also measured. p values less than .05 were considered statistically significant. The mean HbA1c levels of participants in groups 1, 2 and 3 were 6.1%, 8.4% and 4.8%, respectively. The mean duration of prediabetes and T2DM among patients in groups 1 and 2 were 1.9 ± 0.3 and 3.1 ± 0.5 years, respectively. Periodontal and periimplant PI, BOP, PD and MBL were higher in groups 1 (p < .05) and 2 (p < .05) than group 3. There was no difference in these parameters in groups 1 and 2. Periodontal and periimplant inflammatory parameters were worse among patients with prediabetes and T2DM compared with controls; however, these parameters were comparable among patients with prediabetes and T2DM.

  6. Assessment of chronic kidney disease using skin texture as a key parameter: for South Indian population.

    PubMed

    Udhayarasu, Madhanlal; Ramakrishnan, Kalpana; Periasamy, Soundararajan

    2017-12-01

    Periodical monitoring of renal function, specifically for subjects with history of diabetic or hypertension would prevent them from entering into chronic kidney disease (CKD) condition. The recent increase in numbers may be due to food habits or lack of physical exercise, necessitates a rapid kidney function monitoring system. Presently, it is determined by evaluating glomerular filtration rate (GFR) that is mainly dependent on serum creatinine value and demographic parameters and ethnic value. Attempted here is to develop ethnic parameter based on skin texture for every individual. This value when used in GFR computation, the results are much agreeable with GFR obtained through standard modification of diet in renal disease and CKD epidemiology collaboration equations. Once correlation between CKD and skin texture is established, classification tool using artificial neural network is built to categorise CKD level based on demographic values and parameter obtained through skin texture (without using creatinine). This network when tested gives almost at par results with the network that is trained with demographic and creatinine values. The results of this Letter demonstrate the possibility of non-invasively determining kidney function and hence for making a device that would readily assess the kidney function even at home.

  7. Identification and determination of trapping parameters as key site parameters for CO2 storage for the active CO2 storage site in Ketzin (Germany) - Comparison of different experimental approaches and analysis of field data

    NASA Astrophysics Data System (ADS)

    Zemke, Kornelia; Liebscher, Axel

    2015-04-01

    Petrophysical properties like porosity and permeability are key parameters for a safe long-term storage of CO2 but also for the injection operation itself. The accurate quantification of residual trapping is difficult, but very important for both storage containment security and storage capacity; it is also an important parameter for dynamic simulation. The German CO2 pilot storage in Ketzin is a Triassic saline aquifer with initial conditions of the target sandstone horizon of 33.5 ° C/6.1 MPa at 630 m. One injection and two observation wells were drilled in 2007 and nearly 200 m of core material was recovered for site characterization. From June 2008 to September 2013, slightly more than 67 kt food-grade CO2 has been injected and continuously monitored. A fourth observation well has been drilled after 61 kt injected CO2 in summer 2012 at only 25 m distance to the injection well and new core material was recovered that allow study CO2 induced changes in petrophysical properties. The observed only minor differences between pre-injection and post-injection petrophysical parameters of the heterogeneous formation have no severe consequences on reservoir and cap rock integrity or on the injection behavior. Residual brine saturation for the Ketzin reservoir core material was estimated by different methods. Brine-CO2 flooding experiments for two reservoir samples resulted in 36% and 55% residual brine saturation (Kiessling, 2011). Centrifuge capillary pressure measurements (pc = 0.22 MPa) yielded the smallest residual brine saturation values with ~20% for the lower part of the reservoir sandstone and ~28% for the upper part (Fleury, 2010). The method by Cerepi (2002), which calculates the residual mercury saturation after pressure release on the imbibition path as trapped porosity and the retracted mercury volume as free porosity, yielded unrealistic low free porosity values of only a few percent, because over 80% of the penetrated mercury remained in the samples after

  8. A real-time digital program for estimating aircraft stability and control parameters from flight test data by using the maximum likelihood method

    NASA Technical Reports Server (NTRS)

    Grove, R. D.; Mayhew, S. C.

    1973-01-01

    A computer program (Langley program C1123) has been developed for estimating aircraft stability and control parameters from flight test data. These parameters are estimated by the maximum likelihood estimation procedure implemented on a real-time digital simulation system, which uses the Control Data 6600 computer. This system allows the investigator to interact with the program in order to obtain satisfactory results. Part of this system, the control and display capabilities, is described for this program. This report also describes the computer program by presenting the program variables, subroutines, flow charts, listings, and operational features. Program usage is demonstrated with a test case using pseudo or simulated flight data.

  9. Multi-objective optimization in quantum parameter estimation

    NASA Astrophysics Data System (ADS)

    Gong, BeiLi; Cui, Wei

    2018-04-01

    We investigate quantum parameter estimation based on linear and Kerr-type nonlinear controls in an open quantum system, and consider the dissipation rate as an unknown parameter. We show that while the precision of parameter estimation is improved, it usually introduces a significant deformation to the system state. Moreover, we propose a multi-objective model to optimize the two conflicting objectives: (1) maximizing the Fisher information, improving the parameter estimation precision, and (2) minimizing the deformation of the system state, which maintains its fidelity. Finally, simulations of a simplified ɛ-constrained model demonstrate the feasibility of the Hamiltonian control in improving the precision of the quantum parameter estimation.

  10. Differential-Evolution Control Parameter Optimization for Unmanned Aerial Vehicle Path Planning

    PubMed Central

    Kok, Kai Yit; Rajendran, Parvathy

    2016-01-01

    The differential evolution algorithm has been widely applied on unmanned aerial vehicle (UAV) path planning. At present, four random tuning parameters exist for differential evolution algorithm, namely, population size, differential weight, crossover, and generation number. These tuning parameters are required, together with user setting on path and computational cost weightage. However, the optimum settings of these tuning parameters vary according to application. Instead of trial and error, this paper presents an optimization method of differential evolution algorithm for tuning the parameters of UAV path planning. The parameters that this research focuses on are population size, differential weight, crossover, and generation number. The developed algorithm enables the user to simply define the weightage desired between the path and computational cost to converge with the minimum generation required based on user requirement. In conclusion, the proposed optimization of tuning parameters in differential evolution algorithm for UAV path planning expedites and improves the final output path and computational cost. PMID:26943630

  11. Measurement-device-independent quantum key distribution with source state errors and statistical fluctuation

    NASA Astrophysics Data System (ADS)

    Jiang, Cong; Yu, Zong-Wen; Wang, Xiang-Bin

    2017-03-01

    We show how to calculate the secure final key rate in the four-intensity decoy-state measurement-device-independent quantum key distribution protocol with both source errors and statistical fluctuations with a certain failure probability. Our results rely only on the range of only a few parameters in the source state. All imperfections in this protocol have been taken into consideration without assuming any specific error patterns of the source.

  12. Flow Control and Measurement in Electric Propulsion Systems: Towards an AIAA Reference Standard

    DTIC Science & Technology

    2013-10-01

    the spacecraft sensors, although some improvement can be made by averaging several measurements together. 3. Thermal Mass Gauging Thermal Mass...flow controllers (MFCs) to measure and control propellant into EP devices. To determine several key thruster performance parameters with a low level...the specified time interval may not be known. A first recourse is to perform several measurements and examine the linearity. In cases where the

  13. Simple Web-based interactive key development software (WEBiKEY) and an example key for Kuruna (Poaceae: Bambusoideae).

    PubMed

    Attigala, Lakshmi; De Silva, Nuwan I; Clark, Lynn G

    2016-04-01

    Programs that are user-friendly and freely available for developing Web-based interactive keys are scarce and most of the well-structured applications are relatively expensive. WEBiKEY was developed to enable researchers to easily develop their own Web-based interactive keys with fewer resources. A Web-based multiaccess identification tool (WEBiKEY) was developed that uses freely available Microsoft ASP.NET technologies and an SQL Server database for Windows-based hosting environments. WEBiKEY was tested for its usability with a sample data set, the temperate woody bamboo genus Kuruna (Poaceae). WEBiKEY is freely available to the public and can be used to develop Web-based interactive keys for any group of species. The interactive key we developed for Kuruna using WEBiKEY enables users to visually inspect characteristics of Kuruna and identify an unknown specimen as one of seven possible species in the genus.

  14. [Key factors in the control of electroosmosis with external radial electric field in CE].

    PubMed

    Zhu, Y; Chen, Y

    1999-11-01

    Direct control of electroosmosis flow (EOF) by external radial electric field was performed at room temperature using a home-made field-modulated capillary electrophoresis (CE) system. The EOF was monitored at 206 nm by using DMSO as a probe. To apply a radial electric field across the CE capillary wall, the capillary was cased with a wide column. Both of the concentric space and the capillary bore were then filled with an identical running buffer and applied with an axial electric field of 150 V/cm but starting from different levels. All of the tubes used were made of fused silica with polyimide over-coating (from the Yongnian Optical Fiber Work, Hebei, P. R. China). The size of the CE capillaries adopted was 25-100 microns i.d. (375 microns o.d.) x 28.5/45 cm (effective/total length), and that of the casing column 400 microns i.d. x 32 cm. To investigate the fundamentals of the external EOF control when using the flexible fused silica capillaries, various parameters have been inspected such as pH, buffer composition, additives and capillary wall feature etc.. As expected, to well control both of the magnitude and direction of the electroosmosis, the buffer pH should be kept below 4 and the buffer concentration below 50 mmol/L. However, buffers below 1 mmol/L should be avoided because such a diluted running buffer may result in poor CE separation. Weak electrolytes like citric acid, tartaric acid and acetic acid were found to be capable of generating better EOF control than the strong electrolytes such as phosphate and chlorides. This is possibly due to the formation of looser electric double layer with the weak rather than the strong electrolytes. Some wall coatings like calix arene and its derivatives can evidently improve the EOF control even at pH 5. This reveals an exciting way to expend the controllable pH range. In addition, narrow-bore capillaries were demonstrated to be better than wide-bore tubes. Other conditions such as buffer additives and capillary

  15. The Power Supply And Control Unit For The HEMP Thruster

    NASA Astrophysics Data System (ADS)

    Brag, Rafael; Lenz, Werner; Huther, Andreas; Herty, Frank

    2011-10-01

    In the recent years, Astrium GmbH started to develop electronics to control and supply Electric Propulsion systems or corresponding components. One of the developments is a Power Supply and Control Unit (PSCU) for the Thales Electron Devices development "High Efficiency Multistage Plasma Thruster" (HEMP- T). The PSCU is developed, manufactured and tested on the Astrium southern Germany site in Friedrichshafen. The first application is the SGEO Satellite (HISPASAT- 1), where the In-Orbit Demonstration (IOD) of the HEMP Thruster system will prove the success of the product. Astrium conducted several coupling tests during the PSCU development especially concentrated on *Thruster electrical I/F parameters *Neutralizer electrical I/F parameters *Flow Control I/F parameters Results of these tests were used to refine the specification and adapt the PSCU drivers and control algorithms. Furthermore, the tests results gave Thales and Astrium the possibility for a deep understanding of the interaction between the physics and the electronics. The paper presents an overview of the PSCU topology, key features, technical and development logic details as well as a view into the control capabilities of the PSCU.

  16. Control valves and cascades for the first stages of turbines with ultrasupercritical steam parameters

    NASA Astrophysics Data System (ADS)

    Zaryankin, A. E.; Rogalev, N. D.; Rogalev, A. N.; Garanin, I. V.; Osipov, S. K.; Grigoriev, E. Yu.

    2016-06-01

    This paper considers the problems that will unavoidably be encountered in the creation of new-generation turbines operated at ultrasupercritical initial steam parameters, namely, the development of new control and shutoff valves, the reduction of end energy losses in blade cascades and steam leaks in high-pressure cylinders (HPCs), the elimination of effect produced by regenerative steam bleedoffs on the afterextraction stage, the cooling of a blade cascade, etc. Some possible solutions are given for the two first of the listed problems. The conclusion about the need for the transition to new-generation control valves in the development of new advanced steam turbines with ultrasupercritical initial steam parameters has been made. From the viewpoint of their design, the considered new-generation valves differ from the known contemporary constructions by a shaped axially symmetric confusor channel and perforated zones on the streamlined spool surface and the inlet diffuser saddle part. The analysis of the vibration behavior of new-generation valves has demonstrated a decrease in the dynamic loads acting on their stems. To reduce the end energy losses in nozzle or blade cascades with small aspect ratios, it is proposed to use finned shrouds in the interblade channels. The cross section of fins has a triangular profile, and their height must be comparable with the thickness of the boundary layer in the outlet cross section of a cascade and, provisionally, be smaller than 8% of the cascade chord.

  17. Towards a Pedagogy of Science Teaching: An Exploration of the Impact of Students-Led Questioning and Feedback on the Attainment of Key Stage 3 Science Students in a UK School

    ERIC Educational Resources Information Center

    Magaji, A.; Ade-Ojo, G.; Betteney, M.

    2018-01-01

    This mixed method study investigated the extent to which the use of a model built around student-led questioning and feedback improved the learner engagement and attainment of a cohort of students. It compared outcomes from an experimental with a control group of students in Key-Stage 3 using a set of parameters. It found that the experimental…

  18. Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Xueying; Zhang, Yichen; Zhao, Yijia; Wang, Xiangyu; Yu, Song; Guo, Hong

    2017-10-01

    We study the impact of the finite-size effect on the continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocol, mainly considering the finite-size effect on the parameter estimation procedure. The central-limit theorem and maximum likelihood estimation theorem are used to estimate the parameters. We also analyze the relationship between the number of exchanged signals and the optimal modulation variance in the protocol. It is proved that when Charlie's position is close to Bob, the CV-MDI QKD protocol has the farthest transmission distance in the finite-size scenario. Finally, we discuss the impact of finite-size effects related to the practical detection in the CV-MDI QKD protocol. The overall results indicate that the finite-size effect has a great influence on the secret-key rate of the CV-MDI QKD protocol and should not be ignored.

  19. Control Code for Bearingless Switched-Reluctance Motor

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.

    2007-01-01

    A computer program has been devised for controlling a machine that is an integral combination of magnetic bearings and a switched-reluctance motor. The motor contains an eight-pole stator and a hybrid rotor, which has both (1) a circular lamination stack for levitation and (2) a six-pole lamination stack for rotation. The program computes drive and levitation currents for the stator windings with real-time feedback control. During normal operation, two of the four pairs of opposing stator poles (each pair at right angles to the other pair) levitate the rotor. The remaining two pairs of stator poles exert torque on the six-pole rotor lamination stack to produce rotation. This version is executable in a control-loop time of 40 s on a Pentium (or equivalent) processor that operates at a clock speed of 400 MHz. The program can be expanded, by addition of logic blocks, to enable control of position along additional axes. The code enables adjustment of operational parameters (e.g., motor speed and stiffness, and damping parameters of magnetic bearings) through computer keyboard key presses.

  20. Exploring Measures to Control Road Traffic Injuries in Iran: Key Informants Points of View

    PubMed Central

    SALARI, Hedayat; MOTEVALIAN, Seyed Abbas; ARAB, Mohammad; ESFANDIARI, Atefeh; AKBARI SARI, Ali

    2017-01-01

    Background: Injuries and fatalities from road traffic Injuries are global public health concerns, and a major problem in the Iran. This study aimed to explore strategies to control road traffic Injuries (RTI) in Iran. Methods: We conducted a qualitative study to explore possible ways to reduce the occurrence of road traffic Injuries in Iran in 2016. Interviewees were purposively sampled from various sectors due to multidisciplinary nature of RTIs. Participants were mainly representatives from the police, Ministry of Road, Municipal, emergency services and Ministry of Health. Besides, public health authorities, researchers, and university professors were interviewed. We conducted in-depth interviews using generic guides. Data was analyzed using MAXQDA 10 software. Through content analysis, we interpreted core themes relevant to the accomplishment of our study objectives. Results: Themes that emerged from our study include; road traffic management, governance, education, improving accident database, enforcement, driving license restrictions, and construction of pedestrian overpass. Conclusion: This study revealed key informants’ views regarding available and affordable solutions to reduce RTIs in Iran. Many applicable strategies are identified in the control of RTIs in Iran. Although some solutions such as highway construction and/or expanding rail transportation have been suggested as effective measures for reducing accident, but they are costly and may not be fully applied in developing countries like Iran. PMID:28560198

  1. Discovering Hidden Controlling Parameters using Data Analytics and Dimensional Analysis

    NASA Astrophysics Data System (ADS)

    Del Rosario, Zachary; Lee, Minyong; Iaccarino, Gianluca

    2017-11-01

    Dimensional Analysis is a powerful tool, one which takes a priori information and produces important simplifications. However, if this a priori information - the list of relevant parameters - is missing a relevant quantity, then the conclusions from Dimensional Analysis will be incorrect. In this work, we present novel conclusions in Dimensional Analysis, which provide a means to detect this failure mode of missing or hidden parameters. These results are based on a restated form of the Buckingham Pi theorem that reveals a ridge function structure underlying all dimensionless physical laws. We leverage this structure by constructing a hypothesis test based on sufficient dimension reduction, allowing for an experimental data-driven detection of hidden parameters. Both theory and examples will be presented, using classical turbulent pipe flow as the working example. Keywords: experimental techniques, dimensional analysis, lurking variables, hidden parameters, buckingham pi, data analysis. First author supported by the NSF GRFP under Grant Number DGE-114747.

  2. Maximum likelihood method for estimating airplane stability and control parameters from flight data in frequency domain

    NASA Technical Reports Server (NTRS)

    Klein, V.

    1980-01-01

    A frequency domain maximum likelihood method is developed for the estimation of airplane stability and control parameters from measured data. The model of an airplane is represented by a discrete-type steady state Kalman filter with time variables replaced by their Fourier series expansions. The likelihood function of innovations is formulated, and by its maximization with respect to unknown parameters the estimation algorithm is obtained. This algorithm is then simplified to the output error estimation method with the data in the form of transformed time histories, frequency response curves, or spectral and cross-spectral densities. The development is followed by a discussion on the equivalence of the cost function in the time and frequency domains, and on advantages and disadvantages of the frequency domain approach. The algorithm developed is applied in four examples to the estimation of longitudinal parameters of a general aviation airplane using computer generated and measured data in turbulent and still air. The cost functions in the time and frequency domains are shown to be equivalent; therefore, both approaches are complementary and not contradictory. Despite some computational advantages of parameter estimation in the frequency domain, this approach is limited to linear equations of motion with constant coefficients.

  3. Parameter Estimation for Viscoplastic Material Modeling

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Gendy, Atef S.; Wilt, Thomas E.

    1997-01-01

    A key ingredient in the design of engineering components and structures under general thermomechanical loading is the use of mathematical constitutive models (e.g. in finite element analysis) capable of accurate representation of short and long term stress/deformation responses. In addition to the ever-increasing complexity of recent viscoplastic models of this type, they often also require a large number of material constants to describe a host of (anticipated) physical phenomena and complicated deformation mechanisms. In turn, the experimental characterization of these material parameters constitutes the major factor in the successful and effective utilization of any given constitutive model; i.e., the problem of constitutive parameter estimation from experimental measurements.

  4. Multi-party Measurement-Device-Independent Quantum Key Distribution Based on Cluster States

    NASA Astrophysics Data System (ADS)

    Liu, Chuanqi; Zhu, Changhua; Ma, Shuquan; Pei, Changxing

    2018-03-01

    We propose a novel multi-party measurement-device-independent quantum key distribution (MDI-QKD) protocol based on cluster states. A four-photon analyzer which can distinguish all the 16 cluster states serves as the measurement device for four-party MDI-QKD. Any two out of four participants can build secure keys after the analyzers obtains successful outputs and the two participants perform post-processing. We derive a security analysis for the protocol, and analyze the key rates under different values of polarization misalignment. The results show that four-party MDI-QKD is feasible over 280 km in the optical fiber channel when the key rate is about 10- 6 with the polarization misalignment parameter 0.015. Moreover, our work takes an important step toward a quantum communication network.

  5. Experimental Demonstration of Polarization Encoding Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Tang, Zhiyuan; Liao, Zhongfa; Xu, Feihu; Qi, Bing; Qian, Li; Lo, Hoi-Kwong

    2014-05-01

    We demonstrate the first implementation of polarization encoding measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks. Active phase randomization of each individual pulse is implemented to protect against attacks on imperfect sources. By optimizing the parameters in the decoy state protocol, we show that it is feasible to implement polarization encoding MDI-QKD with commercial off-the-shelf devices. A rigorous finite key analysis is applied to estimate the secure key rate. Our work paves the way for the realization of a MDI-QKD network, in which the users only need compact and low-cost state-preparation devices and can share complicated and expensive detectors provided by an untrusted network server.

  6. Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution.

    PubMed

    Tang, Zhiyuan; Liao, Zhongfa; Xu, Feihu; Qi, Bing; Qian, Li; Lo, Hoi-Kwong

    2014-05-16

    We demonstrate the first implementation of polarization encoding measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks. Active phase randomization of each individual pulse is implemented to protect against attacks on imperfect sources. By optimizing the parameters in the decoy state protocol, we show that it is feasible to implement polarization encoding MDI-QKD with commercial off-the-shelf devices. A rigorous finite key analysis is applied to estimate the secure key rate. Our work paves the way for the realization of a MDI-QKD network, in which the users only need compact and low-cost state-preparation devices and can share complicated and expensive detectors provided by an untrusted network server.

  7. 40 CFR 63.3556 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... capture system and add-on control device operating limits during the performance test? 63.3556 Section 63... system and add-on control device operating limits during the performance test? During the performance... of key parameters of the valve operating system (e.g., solenoid valve operation, air pressure...

  8. 40 CFR 63.3556 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... capture system and add-on control device operating limits during the performance test? 63.3556 Section 63... system and add-on control device operating limits during the performance test? During the performance... of key parameters of the valve operating system (e.g., solenoid valve operation, air pressure...

  9. Nondimensional parameter for conformal grinding: combining machine and process parameters

    NASA Astrophysics Data System (ADS)

    Funkenbusch, Paul D.; Takahashi, Toshio; Gracewski, Sheryl M.; Ruckman, Jeffrey L.

    1999-11-01

    Conformal grinding of optical materials with CNC (Computer Numerical Control) machining equipment can be used to achieve precise control over complex part configurations. However complications can arise due to the need to fabricate complex geometrical shapes at reasonable production rates. For example high machine stiffness is essential, but the need to grind 'inside' small or highly concave surfaces may require use of tooling with less than ideal stiffness characteristics. If grinding generates loads sufficient for significant tool deflection, the programmed removal depth will not be achieved. Moreover since grinding load is a function of the volumetric removal rate the amount of load deflection can vary with location on the part, potentially producing complex figure errors. In addition to machine/tool stiffness and removal rate, load generation is a function of the process parameters. For example by reducing the feed rate of the tool into the part, both the load and resultant deflection/removal error can be decreased. However this must be balanced against the need for part through put. In this paper a simple model which permits combination of machine stiffness and process parameters into a single non-dimensional parameter is adapted for a conformal grinding geometry. Errors in removal can be minimized by maintaining this parameter above a critical value. Moreover, since the value of this parameter depends on the local part geometry, it can be used to optimize process settings during grinding. For example it may be used to guide adjustment of the feed rate as a function of location on the part to eliminate figure errors while minimizing the total grinding time required.

  10. Architectural setup for online monitoring and control of process parameters in robot-based ISF

    NASA Astrophysics Data System (ADS)

    Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd

    2017-10-01

    This article describes new developments in an incremental, robot-based sheet metal forming process (Roboforming) for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet forming (ISF) machines, this system offers high geometrical design flexibility without the need of any part-dependent tools. However, the industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors introduce a new architectural setup extending the current one by a superordinate process control. This sophisticated control consists of two modules, i.e. the compensation of the two industrial robots' low structural stiffness as well as a combined force/torque control. It is assumed that this contribution will lead to future research and development projects in which the authors will thoroughly investigate ISF process parameters influencing the geometric accuracy of the forming results.

  11. Evaluation of hydrogen embrittlement and temper embrittlement by key curve method in instrumented Charpy test

    NASA Astrophysics Data System (ADS)

    Ohtsuka, N.; Shindo, Y.; Makita, A.

    2010-06-01

    Instrumented Charpy test was conducted on small sized specimen of 21/4Cr-1Mo steel. In the test the single specimen key curve method was applied to determine the value of fracture toughness for the initiation of crack extension with hydrogen free, KIC, and for hydrogen embrittlement cracking, KIH. Also the tearing modulus as a parameter for resistance to crack extension was determined. The role of these parameters was discussed at an upper shelf temperature and at a transition temperature. Then the key curve method combined with instrumented Charpy test was proven to be used to evaluate not only temper embrittlement but also hydrogen embrittlement.

  12. Effects of a capacitive-resistive electric transfer therapy on physiological and biomechanical parameters in recreational runners: A randomized controlled crossover trial.

    PubMed

    Duñabeitia, Iratxe; Arrieta, Haritz; Torres-Unda, Jon; Gil, Javier; Santos-Concejero, Jordan; Gil, Susana M; Irazusta, Jon; Bidaurrazaga-Letona, Iraia

    2018-05-26

    This study compared the effects of a capacitive-resistive electric transfer therapy (Tecar) and passive rest on physiological and biomechanical parameters in recreational runners when performed shortly after an exhausting training session. Randomized controlled crossover trial. University biomechanical research laboratory. Fourteen trained male runners MAIN OUTCOME MEASURES: Physiological (running economy, oxygen uptake, respiratory exchange ratio, ventilation, heart rate, blood lactate concentration) and biomechanical (step length; stride angle, height, frequency, and contact time; swing time; contact phase; support phase; push-off phase) parameters were measured during two incremental treadmill running tests performed two days apart after an exhaustive training session. When running at 14 km/h and 16 km/h, the Tecar treatment group presented greater increases in stride length (p < 0.001), angle (p < 0.05) and height (p < 0.001) between the first and second tests than the control group and, accordingly, greater decreases in stride frequency (p < 0.05). Physiological parameters were similar between groups. The present study suggests that a Tecar therapy intervention enhances biomechanical parameters in recreational runners after an exhaustive training session more than passive rest, generating a more efficient running pattern without affecting selected physiological parameters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Evaluating the Controls on Magma Ascent Rates Through Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Thomas, M. E.; Neuberg, J. W.

    2015-12-01

    The estimation of the magma ascent rate is a key factor in predicting styles of volcanic activity and relies on the understanding of how strongly the ascent rate is controlled by different magmatic parameters. The ability to link potential changes in such parameters to monitoring data is an essential step to be able to use these data as a predictive tool. We present the results of a suite of conduit flow models that assess the influence of individual model parameters such as the magmatic water content, temperature or bulk magma composition on the magma flow in the conduit during an extrusive dome eruption. By systematically varying these parameters we assess their relative importance to changes in ascent rate. The results indicate that potential changes to conduit geometry and excess pressure in the magma chamber are amongst the dominant controlling variables that effect ascent rate, but the single most important parameter is the volatile content (assumed in this case as only water). Modelling this parameter across a range of reported values causes changes in the calculated ascent velocities of up to 800%, triggering fluctuations in ascent rates that span the potential threshold between effusive and explosive eruptions.

  14. Fast Simulation of the Impact Parameter Calculation of Electrons through Pair Production

    NASA Astrophysics Data System (ADS)

    Bang, Hyesun; Kweon, MinJung; Huh, Kyoung Bum; Pachmayer, Yvonne

    2018-05-01

    A fast simulation method is introduced that reduces tremendously the time required for the impact parameter calculation, a key observable in physics analyses of high energy physics experiments and detector optimisation studies. The impact parameter of electrons produced through pair production was calculated considering key related processes using the Bethe-Heitler formula, the Tsai formula and a simple geometric model. The calculations were performed at various conditions and the results were compared with those from full GEANT4 simulations. The computation time using this fast simulation method is 104 times shorter than that of the full GEANT4 simulation.

  15. Emergency medical services key performance measurement in Asian cities.

    PubMed

    Rahman, Nik Hisamuddin; Tanaka, Hideharu; Shin, Sang Do; Ng, Yih Yng; Piyasuwankul, Thammapad; Lin, Chih-Hao; Ong, Marcus Eng Hock

    2015-01-01

    One of the key principles in the recommended standards is that emergency medical service (EMS) providers should continuously monitor the quality and safety of their services. This requires service providers to implement performance monitoring using appropriate and relevant measures including key performance indicators. In Asia, EMS systems are at different developmental phases and maturity. This will create difficultly in benchmarking or assessing the quality of EMS performance across the region. An attempt was made to compare the EMS performance index based on the structure, process, and outcome analysis. The data was collected from the Pan-Asian Resuscitation Outcome Study (PAROS) data among few Asian cities, namely, Tokyo, Osaka, Singapore, Bangkok, Kuala Lumpur, Taipei, and Seoul. The parameters of inclusions were broadly divided into structure, process, and outcome measurements. The data was collected by the site investigators from each city and keyed into the electronic web-based data form which is secured strictly by username and passwords. Generally, there seems to be a more uniformity for EMS performance parameters among the more developed EMS systems. The major problem with the EMS agencies in the cities of developing countries like Bangkok and Kuala Lumpur is inadequate or unavailable data pertaining to EMS performance. There is non-uniformity in the EMS performance measurement across the Asian cities. This creates difficulty for EMS performance index comparison and benchmarking. Hopefully, in the future, collaborative efforts such as the PAROS networking group will further enhance the standardization in EMS performance reporting across the region.

  16. 40 CFR 63.3556 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... system and add-on control device operating limits during the performance test? 63.3556 Section 63.3556... of key parameters of the valve operating system (e.g., solenoid valve operation, air pressure... Control Efficiency/outlet Concentration Option § 63.3556 How do I establish the emission capture system...

  17. GN/C translation and rotation control parameters for AR/C (category 2)

    NASA Technical Reports Server (NTRS)

    Henderson, David M.

    1991-01-01

    Detailed analysis of the Automatic Rendezvous and Capture problem indicate a need for three different regions of mathematical description for the GN&C algorithms: (1) multi-vehicle orbital mechanics to the rendezvous interface point, i.e., within 100 n.; (2) relative motion solutions (such as Clohessy-Wiltshire type) from the far-field to the near-field interface, i.e., within 1 nm; and (3) close proximity motion, the nearfield motion where the relative differences in the gravitational and orbit inertial accelerations can be neglected from the equations of motion. This paper defines the reference coordinate frames and control parameters necessary to model the relative motion and attitude of spacecraft in the close proximity of another space system (Region 2 and 3) during the Automatic Rendezvous and Capture phase of an orbit operation.

  18. Force control compensation method with variable load stiffness and damping of the hydraulic drive unit force control system

    NASA Astrophysics Data System (ADS)

    Kong, Xiangdong; Ba, Kaixian; Yu, Bin; Cao, Yuan; Zhu, Qixin; Zhao, Hualong

    2016-05-01

    Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit (HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this

  19. Information Extraction of High Resolution Remote Sensing Images Based on the Calculation of Optimal Segmentation Parameters

    PubMed Central

    Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei

    2016-01-01

    Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762

  20. Information Extraction of High Resolution Remote Sensing Images Based on the Calculation of Optimal Segmentation Parameters.

    PubMed

    Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei

    2016-01-01

    Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme.

  1. UV254 absorbance as real-time monitoring and control parameter for micropollutant removal in advanced wastewater treatment with powdered activated carbon.

    PubMed

    Altmann, Johannes; Massa, Lukas; Sperlich, Alexander; Gnirss, Regina; Jekel, Martin

    2016-05-01

    This study investigates the applicability of UV absorbance measurements at 254 nm (UVA254) to serve as a simple and reliable surrogate parameter to monitor and control the removal of organic micropollutants (OMPs) in advanced wastewater treatment applying powdered activated carbon (PAC). Correlations between OMP removal and corresponding UVA254 reduction were determined in lab-scale adsorption batch tests and successfully applied to a pilot-scale PAC treatment stage to predict OMP removals in aggregate samples with good accuracy. Real-time UVA254 measurements were utilized to evaluate adapted PAC dosing strategies and proved to be effective for online monitoring of OMP removal. Furthermore, active PAC dosing control according to differential UVA254 measurements was implemented and tested. While precise removal predictions based on real-time measurements were not accurate for all OMPs, UVA254-controlled dynamic PAC dosing was capable of achieving stable OMP removals. UVA254 can serve as an effective surrogate parameter for OMP removal in technical PAC applications. Even though the applicability as control parameter to adjust PAC dosing to water quality changes might be limited to applications with fast response between PAC adjustment and adsorptive removal (e.g. direct filtration), UVA254 measurements can also be used to monitor the adsorption efficiency in more complex PAC applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effectiveness of functional training on cardiorespiratory parameters: a systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Rezende Barbosa, Marianne Penachini da Costa de; Oliveira, Vinicius Cunha; Silva, Anne Kastelianne França da; Pérez-Riera, Andrés Ricardo; Vanderlei, Luiz Carlos

    2017-07-28

    Functional training is a new training vision that was prepared from the gesture imitation of daily activities. Although your use has become popular in clinical practice, the influence of the several cardiorespiratory adjustments performed during the functional training in different populations and conditions is unknown. So, the aim of this systematic review was to gather information in the literature regarding the influence of functional training on cardiorespiratory parameters. We conducted search strategies on MEDLINE, PEDro, EMBASE, SportDiscus and Cochrane to identify randomized controlled trials investigating the effects of functional training on cardiorespiratory parameters. Methodological quality of the included studies was assessed using the PEDro scale. Grading of Recommendations Assessment, Development and Evaluation (GRADE) summarized the evidence. Five original studies were included. Effects favoured functional training on oxygen consumption (VO 2 ) at intermediate-term follow-up: weighted mean difference -1·0 (95% CI: 5·4-3·3), P = 0·642, and a small and not clinically important effect observed on VO 2 favouring control at intermediate-term follow-up (i.e. mean difference of 1·30 (95% CI 1·07-1·53), P<0·001). According to the GRADE system, there is very low quality evidence that functional training is better than other interventions to improve cardiovascular parameters. This result encourages new searches about the theme. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  3. Hacking on decoy-state quantum key distribution system with partial phase randomization

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-04-01

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.

  4. Hacking on decoy-state quantum key distribution system with partial phase randomization.

    PubMed

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-04-23

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.

  5. Estimation of Filling and Afterload Conditions by Pump Intrinsic Parameters in a Pulsatile Total Artificial Heart.

    PubMed

    Cuenca-Navalon, Elena; Laumen, Marco; Finocchiaro, Thomas; Steinseifer, Ulrich

    2016-07-01

    A physiological control algorithm is being developed to ensure an optimal physiological interaction between the ReinHeart total artificial heart (TAH) and the circulatory system. A key factor for that is the long-term, accurate determination of the hemodynamic state of the cardiovascular system. This study presents a method to determine estimation models for predicting hemodynamic parameters (pump chamber filling and afterload) from both left and right cardiovascular circulations. The estimation models are based on linear regression models that correlate filling and afterload values with pump intrinsic parameters derived from measured values of motor current and piston position. Predictions for filling lie in average within 5% from actual values, predictions for systemic afterload (AoPmean , AoPsys ) and mean pulmonary afterload (PAPmean ) lie in average within 9% from actual values. Predictions for systolic pulmonary afterload (PAPsys ) present an average deviation of 14%. The estimation models show satisfactory prediction and confidence intervals and are thus suitable to estimate hemodynamic parameters. This method and derived estimation models are a valuable alternative to implanted sensors and are an essential step for the development of a physiological control algorithm for a fully implantable TAH. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  6. Simple Web-based interactive key development software (WEBiKEY) and an example key for Kuruna (Poaceae: Bambusoideae)1

    PubMed Central

    Attigala, Lakshmi; De Silva, Nuwan I.; Clark, Lynn G.

    2016-01-01

    Premise of the study: Programs that are user-friendly and freely available for developing Web-based interactive keys are scarce and most of the well-structured applications are relatively expensive. WEBiKEY was developed to enable researchers to easily develop their own Web-based interactive keys with fewer resources. Methods and Results: A Web-based multiaccess identification tool (WEBiKEY) was developed that uses freely available Microsoft ASP.NET technologies and an SQL Server database for Windows-based hosting environments. WEBiKEY was tested for its usability with a sample data set, the temperate woody bamboo genus Kuruna (Poaceae). Conclusions: WEBiKEY is freely available to the public and can be used to develop Web-based interactive keys for any group of species. The interactive key we developed for Kuruna using WEBiKEY enables users to visually inspect characteristics of Kuruna and identify an unknown specimen as one of seven possible species in the genus. PMID:27144109

  7. Manipulation of Molecular Weight Distribution Shape as a New Strategy to Control Processing Parameters.

    PubMed

    Nadgorny, Milena; Gentekos, Dillon T; Xiao, Zeyun; Singleton, S Parker; Fors, Brett P; Connal, Luke A

    2017-10-01

    Molecular weight and dispersity (Ð) influence physical and rheological properties of polymers, which are of significant importance in polymer processing technologies. However, these parameters provide only partial information about the precise composition of polymers, which is reflected by the shape and symmetry of molecular weight distribution (MWD). In this work, the effect of MWD symmetry on thermal and rheological properties of polymers with identical molecular weights and Ð is demonstrated. Remarkably, when the MWD is skewed to higher molecular weight, a higher glass transition temperature (T g ), increased stiffness, increased thermal stability, and higher apparent viscosities are observed. These observed differences are attributed to the chain length composition of the polymers, easily controlled by the synthetic strategy. This work demonstrates a versatile approach to engineer the properties of polymers using controlled synthesis to skew the shape of MWD. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling

    NASA Astrophysics Data System (ADS)

    Sutton, Jonathan E.; Guo, Wei; Katsoulakis, Markos A.; Vlachos, Dionisios G.

    2016-04-01

    Kinetic models based on first principles are becoming common place in heterogeneous catalysis because of their ability to interpret experimental data, identify the rate-controlling step, guide experiments and predict novel materials. To overcome the tremendous computational cost of estimating parameters of complex networks on metal catalysts, approximate quantum mechanical calculations are employed that render models potentially inaccurate. Here, by introducing correlative global sensitivity analysis and uncertainty quantification, we show that neglecting correlations in the energies of species and reactions can lead to an incorrect identification of influential parameters and key reaction intermediates and reactions. We rationalize why models often underpredict reaction rates and show that, despite the uncertainty being large, the method can, in conjunction with experimental data, identify influential missing reaction pathways and provide insights into the catalyst active site and the kinetic reliability of a model. The method is demonstrated in ethanol steam reforming for hydrogen production for fuel cells.

  9. The modern instrumentation used for monitoring and controlling the main parameters of the regenerative electro-mechano-hydraulic drive systems

    NASA Astrophysics Data System (ADS)

    Cristescu, Corneliu; Drumea, Petrin; Krevey, Petrica

    2009-01-01

    In this work is presented the modern instrumentation used for monitoring and controlling the main parameters for one regenerative drive system, used to recovering the kinetic energy of motor vehicles, lost in the braking phase, storing and using this energy in the starting or accelerating phases. Is presented a Romanian technical solution for a regenerative driving system, based on a hybrid solution containing a hydro-mechanic module and an existing thermal motor drive, all conceived as a mechatronics system. In order to monitoring and controlling the evolution of the main parameters, the system contains a series of sensors and transducers that provide the moment, rotation, temperature, flow and pressure values. The main sensors and transducers of the regenerative drive system, their principal features and tehnical conecting solutions are presented in this paper, both with the menaging electronic and informational subsystems.

  10. Advanced control of dissolved oxygen concentration in fed batch cultures during recombinant protein production.

    PubMed

    Kuprijanov, A; Gnoth, S; Simutis, R; Lübbert, A

    2009-02-01

    Design and experimental validation of advanced pO(2) controllers for fermentation processes operated in the fed-batch mode are described. In most situations, the presented controllers are able to keep the pO(2) in fermentations for recombinant protein productions exactly on the desired value. The controllers are based on the gain-scheduling approach to parameter-adaptive proportional-integral controllers. In order to cope with the most often appearing distortions, the basic gain-scheduling feedback controller was complemented with a feedforward control component. This feedforward/feedback controller significantly improved pO(2) control. By means of numerical simulations, the controller behavior was tested and its parameters were determined. Validation runs were performed with three Escherichia coli strains producing different recombinant proteins. It is finally shown that the new controller leads to significant improvements in the signal-to-noise ratio of other key process variables and, thus, to a higher process quality.

  11. Looping tracks associated with tropical cyclones approaching an isolated mountain. Part I: Essential parameters

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Chih; Lin, Yuh-Lang

    2018-06-01

    Essential parameters for making a looping track when a westward-moving tropical cyclone (TC) approaches a mesoscale mountain are investigated by examining several key nondimensional control parameters with a series of systematic, idealized numerical experiments, such as U/ Nh, V max/ Nh, U/ fL x , V max/ fR, h/ L x , and R/ L y . Here U is the uniform zonal wind velocity, N the Brunt-Vaisala frequency, h the mountain height, f the Coriolis parameter, V max the maximum tangential velocity at a radius of R from the cyclone center and L x is the halfwidth of the mountain in the east-west direction. It is found that looping tracks (a) tend to occur under small U/ Nh and U/ fL x , moderate h/ L x , and large V max/ Nh, which correspond to slow movement (leading to subgeostrophic flow associated with strong orographic blocking), moderate steepness, and strong tangential wind associated with TC vortex; (b) are often accompanied by an area of perturbation high pressure to the northeast of the mountain, which lasts for only a short period; and (c) do not require the existence of a northerly jet. The nondimensional control parameters are consolidated into a TC looping index (LI), {U2 R2 }/{V_{max 2 hLy }} , which is tested by several historical looping and non-looping typhoons approaching Taiwan's Central Mountain Range (CMR) from east or southeast. It is found that LI < 0.0125 may serve as a criterion for looping track to occur.

  12. Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems.

    PubMed

    Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan

    2015-01-01

    Based on the neural network (NN) approximator, an online reinforcement learning algorithm is proposed for a class of affine multiple input and multiple output (MIMO) nonlinear discrete-time systems with unknown functions and disturbances. In the design procedure, two networks are provided where one is an action network to generate an optimal control signal and the other is a critic network to approximate the cost function. An optimal control signal and adaptation laws can be generated based on two NNs. In the previous approaches, the weights of critic and action networks are updated based on the gradient descent rule and the estimations of optimal weight vectors are directly adjusted in the design. Consequently, compared with the existing results, the main contributions of this paper are: 1) only two parameters are needed to be adjusted, and thus the number of the adaptation laws is smaller than the previous results and 2) the updating parameters do not depend on the number of the subsystems for MIMO systems and the tuning rules are replaced by adjusting the norms on optimal weight vectors in both action and critic networks. It is proven that the tracking errors, the adaptation laws, and the control inputs are uniformly bounded using Lyapunov analysis method. The simulation examples are employed to illustrate the effectiveness of the proposed algorithm.

  13. Postoperative Changes in Metabolic Parameters of Patients with Surgically Controlled Acromegaly: Assessment of New Stringent Cure Criteria.

    PubMed

    Yonenaga, Masanori; Fujio, Shingo; Habu, Mika; Arimura, Hiroshi; Hiwatari, Takaaki; Tanaka, Shunichi; Kinoshita, Yasuyuki; Hosoyama, Hiroshi; Hirano, Hirofumi; Arita, Kazunori

    2018-04-15

    The criteria for surgical cure of acromegaly have become more stringent during the past decades and a change from Cortina to new consensus criteria has recently been proposed. However, the superiority of the new consensus over Cortina criteria with respect to postoperative metabolic parameters remains to be ascertained. We retrospectively assessed metabolic parameters, the body habitus, and other health-related parameters of 48 patients with surgically controlled acromegaly who met the Cortina criteria [normalized insulin-like growth factor-1 (IGF-1) level and nadir growth hormone (GH) level <1.0 ng/ml during postoperative oral glucose tolerance test]. The 48 patients were divided into two groups. Group A (n = 33) met the new consensus criteria (normalized IGF-1 and nadir GH level <0.4 ng/ml). Group B (n = 15) met Cortina criteria, but their nadir GH ranged from 0.4 to 1.0 ng/ml. In both groups, the level of triglyceride and homeostasis model assessment-insulin resistance (HOMA-IR) was significantly decreased 1 year after the operation (P < 0.05). High-density lipoprotein cholesterol showed a significant increase only in group B (P = 0.02). However, the two groups did not differ with respect to the postoperative improvement rate of these parameters and the other health-related parameters including body mass index, blood pressure, anterior pituitary function, and self-estimated quality of life scale. In conclusion, our findings show that with respect to changes in metabolic parameters and the body habitus assessed 1 year after surgery, the stricter consensus criteria seemed not to be superior to Cortina criteria.

  14. Key aromatic/hydrophobic amino acids controlling a cross-amyloid peptide interaction versus amyloid self-assembly.

    PubMed

    Bakou, Maria; Hille, Kathleen; Kracklauer, Michael; Spanopoulou, Anna; Frost, Christina V; Malideli, Eleni; Yan, Li-Mei; Caporale, Andrea; Zacharias, Martin; Kapurniotu, Aphrodite

    2017-09-01

    The interaction of the intrinsically disordered polypeptide islet amyloid polypeptide (IAPP), which is associated with type 2 diabetes (T2D), with the Alzheimer's disease amyloid-β (Aβ) peptide modulates their self-assembly into amyloid fibrils and may link the pathogeneses of these two cell-degenerative diseases. However, the molecular determinants of this interaction remain elusive. Using a systematic alanine scan approach, fluorescence spectroscopy, and other biophysical methods, including heterocomplex pulldown assays, far-UV CD spectroscopy, the thioflavin T binding assay, transmission EM, and molecular dynamics simulations, here we identified single aromatic/hydrophobic residues within the amyloid core IAPP region as hot spots or key residues of its cross-interaction with Aβ40(42) peptide. Importantly, we also find that none of these residues in isolation plays a key role in IAPP self-assembly, whereas simultaneous substitution of four aromatic/hydrophobic residues with Ala dramatically impairs both IAPP self-assembly and hetero-assembly with Aβ40(42). Furthermore, our experiments yielded several novel IAPP analogs, whose sequences are highly similar to that of IAPP but have distinct amyloid self- or cross-interaction potentials. The identified similarities and major differences controlling IAPP cross-peptide interaction with Aβ40(42) versus its amyloid self-assembly offer a molecular basis for understanding the underlying mechanisms. We propose that these insights will aid in designing intervention strategies and novel IAPP analogs for the management of type 2 diabetes, Alzheimer's disease, or other diseases related to IAPP dysfunction or cross-amyloid interactions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Knowledge and attitude of key community members towards tuberculosis: mixed method study from BRAC TB control areas in Bangladesh.

    PubMed

    Paul, Sukanta; Akter, Rahima; Aftab, Afzal; Khan, Antora M; Barua, Mrittika; Islam, Shayla; Islam, Akramul; Husain, Ashaque; Sarker, Malabika

    2015-01-31

    Bangladesh National Tuberculosis (TB) Control Programme adopted a number of strategies to facilitate TB diagnosis and treatment. 'Advocacy, Communication and Social Mobilization' (ACSM) was one of the key strategies implemented by BRAC (Bangladesh Rural Advancement Committee, a non-governmental development organization) TB control program. The purpose of this study is to assess the knowledge and attitudes of the key community members (KCMs) participated in ACSM in BRAC TB control areas. This study combined quantitative and qualitative methods using a mixed method approach. KCMs in three districts with low TB case detection rates were targeted to assess the ACSM program. The quantitative survey using a multi-stage random-sampling strategy was conducted among 432 participants. The qualitative study included in-depth interviews (IDIs) of a sub sample of 48 respondents. For quantitative analysis, descriptive statistics were reported using frequencies, percentages, and Chi square tests, while thematic analysis was used for qualitative part. Most (99%) of the participants had heard about TB, and almost all knew that TB is a contagious yet curable disease. More than half (53%) of the KCMs had good knowledge regarding TB, but BRAC workers were found to be more knowledgeable compared to other KCMs. However, considerable knowledge gaps were observed among BRAC community health workers. Qualitative results revealed that the majority of the KCMs were aware about the signs, symptoms and transmission pathways of TB and believed that smoking and addiction were the prime causes of transmission of TB. The knowledge about child TB was poor even among BRAC health workers. Stigma associated with TB was not uncommon. Almost all respondents expressed that young girls diagnosed with TB. This study finding has revealed varying levels of knowledge and mixed attitudes about TB among the KCMs. It also provides insight on the poor knowledge regarding child TB and indicate that despite the

  16. 40 CFR 63.3556 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... system and add-on control device operating limits during the performance test? 63.3556 Section 63.3556... of key parameters of the valve operating system (e.g., solenoid valve operation, air pressure.../outlet Concentration Option § 63.3556 How do I establish the emission capture system and add-on control...

  17. 40 CFR 63.3556 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system and add-on control device operating limits during the performance test? 63.3556 Section 63.3556... of key parameters of the valve operating system (e.g., solenoid valve operation, air pressure.../outlet Concentration Option § 63.3556 How do I establish the emission capture system and add-on control...

  18. MST radar transmitter control and monitor system

    NASA Technical Reports Server (NTRS)

    Brosnahan, J. W.

    1983-01-01

    A generalized transmitter control and monitor card was developed using the Intel 8031 (8051 family) microprocessor. The design was generalized so that this card can be utilized for virtually any control application with only firmware changes. The block diagram appears in Figure 2. The card provides for local control using a 16 key keypad (up to 64 keys are supported). The local display is four digits of 7 segment LEDs. The display can indicate the status of all major system parameters and provide voltage readout for the analog signal inputs. The card can be populated with only the chips required for a given application. Fully populated, the card has two RS-232 serial ports for computer communications. It has a total of 48 TTL parallel lines that can define as either inputs or outputs in groups of four. A total of 32 analog inputs with a 0-5 volt range are supported. In addition, a real-time clock/calendar is available if required. A total of 16 k bytes of ROM and 16 k bytes of RAM is available for programming. This card can be the basis of virtually any monitor or control system with appropriate software.

  19. Quantum key management

    DOEpatents

    Hughes, Richard John; Thrasher, James Thomas; Nordholt, Jane Elizabeth

    2016-11-29

    Innovations for quantum key management harness quantum communications to form a cryptography system within a public key infrastructure framework. In example implementations, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a Merkle signature scheme (using Winternitz one-time digital signatures or other one-time digital signatures, and Merkle hash trees) to constitute a cryptography system. More generally, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a hash-based signature scheme. This provides a secure way to identify, authenticate, verify, and exchange secret cryptographic keys. Features of the quantum key management innovations further include secure enrollment of users with a registration authority, as well as credential checking and revocation with a certificate authority, where the registration authority and/or certificate authority can be part of the same system as a trusted authority for quantum key distribution.

  20. State and Parameter Estimation for a Coupled Ocean--Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Ghil, M.; Kondrashov, D.; Sun, C.

    2006-12-01

    The El-Nino/Southern-Oscillation (ENSO) dominates interannual climate variability and plays, therefore, a key role in seasonal-to-interannual prediction. Much is known by now about the main physical mechanisms that give rise to and modulate ENSO, but the values of several parameters that enter these mechanisms are an important unknown. We apply Extended Kalman Filtering (EKF) for both model state and parameter estimation in an intermediate, nonlinear, coupled ocean--atmosphere model of ENSO. The coupled model consists of an upper-ocean, reduced-gravity model of the Tropical Pacific and a steady-state atmospheric response to the sea surface temperature (SST). The model errors are assumed to be mainly in the atmospheric wind stress, and assimilated data are equatorial Pacific SSTs. Model behavior is very sensitive to two key parameters: (i) μ, the ocean-atmosphere coupling coefficient between SST and wind stress anomalies; and (ii) δs, the surface-layer coefficient. Previous work has shown that δs determines the period of the model's self-sustained oscillation, while μ measures the degree of nonlinearity. Depending on the values of these parameters, the spatio-temporal pattern of model solutions is either that of a delayed oscillator or of a westward propagating mode. Estimation of these parameters is tested first on synthetic data and allows us to recover the delayed-oscillator mode starting from model parameter values that correspond to the westward-propagating case. Assimilation of SST data from the NCEP-NCAR Reanalysis-2 shows that the parameters can vary on fairly short time scales and switch between values that approximate the two distinct modes of ENSO behavior. Rapid adjustments of these parameters occur, in particular, during strong ENSO events. Ways to apply EKF parameter estimation efficiently to state-of-the-art coupled ocean--atmosphere GCMs will be discussed.