Science.gov

Sample records for key distribution protocols

  1. Quantum key distribution protocol using random bases

    NASA Astrophysics Data System (ADS)

    Meslouhi, A.; Amellal, H.; Hassouni, Y.; El Baz, M.; El Allati, A.

    2016-04-01

    In order to enhance the quantum key distribution (QKD) security, a new protocol, “QKDPRB” based on random bases is proposed. It consists of using standard encoding bases moving circularly with a variable rotational angle α which depends on angular velocity ω(t); thus, the traditional bases turn into relative ones. To prove the security and the efficiency of the protocol, we present a universal demonstration which proves a high level security of the proposed protocol, even in the presence of the intercept and resend attack. Finally, the QKDPRB may improve the security of QKD.

  2. Spherical-code key-distribution protocols for qubits

    SciTech Connect

    Renes, Joseph M.

    2004-11-01

    Recently spherical codes were introduced as potentially more capable ensembles for quantum key distribution. Here we develop specific key-creation protocols for the two qubit-based spherical codes, the trine and tetrahedron, and analyze them in the context of a suitably tailored intercept/resend attack, both in standard form, and in a 'gentler' version whose back action on the quantum state is weaker. When compared to the standard unbiased basis protocols, Bennett-Brassard 1984 (BB84) and six-state, two distinct advantages are found. First, they offer improved tolerance of eavesdropping, the trine besting its counterpart BB84 and the tetrahedron the six-state protocol. Second, the key error rate may be computed from the sift rate of the protocol itself, removing the need to sacrifice key bits for this purpose. This simplifies the protocol and improves the overall key rate.0.

  3. Discrete rotational symmetry and quantum-key-distribution protocols

    SciTech Connect

    Shirokoff, David; Fung, Chi-Hang Fred; Lo, Hoi-Kwong

    2007-03-15

    We study the role of discrete rotational symmetry in the quantum key distribution by generalizing the well-known Bennett-Brassard 1984 and Scarani-Acin-Ribordy-Gisin 2004 protocols. We observe that discrete rotational symmetry results in the protocol's invariance to continuous rotations, thus leading to a simplified relation between bit and phase error rates and consequently a straightforward security proof.

  4. Multiparty quantum-key-distribution protocol without use of entanglement

    SciTech Connect

    Matsumoto, Ryutaroh

    2007-12-15

    We propose a quantum-key-distribution protocol that enables three parties to agree at once on a shared common random bit string in the presence of an eavesdropper without use of entanglement. We prove its unconditional security and analyze the key rate.

  5. Self-referenced continuous-variable quantum key distribution protocol

    SciTech Connect

    Soh, Daniel B. S.; Brif, Constantin; Coles, Patrick J.; Lutkenhaus, Norbert; Camacho, Ryan M.; Urayama, Junji; Sarovar, Mohan

    2015-10-21

    Here, we introduce a new continuous-variable quantum key distribution (CV-QKD) protocol, self-referenced CV-QKD, that eliminates the need for transmission of a high-power local oscillator between the communicating parties. In this protocol, each signal pulse is accompanied by a reference pulse (or a pair of twin reference pulses), used to align Alice’s and Bob’s measurement bases. The method of phase estimation and compensation based on the reference pulse measurement can be viewed as a quantum analog of intradyne detection used in classical coherent communication, which extracts the phase information from the modulated signal. We present a proof-of-principle, fiber-based experimental demonstration of the protocol and quantify the expected secret key rates by expressing them in terms of experimental parameters. Our analysis of the secret key rate fully takes into account the inherent uncertainty associated with the quantum nature of the reference pulse(s) and quantifies the limit at which the theoretical key rate approaches that of the respective conventional protocol that requires local oscillator transmission. The self-referenced protocol greatly simplifies the hardware required for CV-QKD, especially for potential integrated photonics implementations of transmitters and receivers, with minimum sacrifice of performance. As such, it provides a pathway towards scalable integrated CV-QKD transceivers, a vital step towards large-scale QKD networks.

  6. Self-referenced continuous-variable quantum key distribution protocol

    DOE PAGESBeta

    Soh, Daniel B. S.; Brif, Constantin; Coles, Patrick J.; Lutkenhaus, Norbert; Camacho, Ryan M.; Urayama, Junji; Sarovar, Mohan

    2015-10-21

    Here, we introduce a new continuous-variable quantum key distribution (CV-QKD) protocol, self-referenced CV-QKD, that eliminates the need for transmission of a high-power local oscillator between the communicating parties. In this protocol, each signal pulse is accompanied by a reference pulse (or a pair of twin reference pulses), used to align Alice’s and Bob’s measurement bases. The method of phase estimation and compensation based on the reference pulse measurement can be viewed as a quantum analog of intradyne detection used in classical coherent communication, which extracts the phase information from the modulated signal. We present a proof-of-principle, fiber-based experimental demonstration ofmore » the protocol and quantify the expected secret key rates by expressing them in terms of experimental parameters. Our analysis of the secret key rate fully takes into account the inherent uncertainty associated with the quantum nature of the reference pulse(s) and quantifies the limit at which the theoretical key rate approaches that of the respective conventional protocol that requires local oscillator transmission. The self-referenced protocol greatly simplifies the hardware required for CV-QKD, especially for potential integrated photonics implementations of transmitters and receivers, with minimum sacrifice of performance. As such, it provides a pathway towards scalable integrated CV-QKD transceivers, a vital step towards large-scale QKD networks.« less

  7. Numerical analysis of decoy state quantum key distribution protocols

    SciTech Connect

    Harrington, Jim W; Rice, Patrick R

    2008-01-01

    Decoy state protocols are a useful tool for many quantum key distribution systems implemented with weak coherent pulses, allowing significantly better secret bit rates and longer maximum distances. In this paper we present a method to numerically find optimal three-level protocols, and we examine how the secret bit rate and the optimized parameters are dependent on various system properties, such as session length, transmission loss, and visibility. Additionally, we show how to modify the decoy state analysis to handle partially distinguishable decoy states as well as uncertainty in the prepared intensities.

  8. Practical quantum key distribution protocol without monitoring signal disturbance.

    PubMed

    Sasaki, Toshihiko; Yamamoto, Yoshihisa; Koashi, Masato

    2014-05-22

    Quantum cryptography exploits the fundamental laws of quantum mechanics to provide a secure way to exchange private information. Such an exchange requires a common random bit sequence, called a key, to be shared secretly between the sender and the receiver. The basic idea behind quantum key distribution (QKD) has widely been understood as the property that any attempt to distinguish encoded quantum states causes a disturbance in the signal. As a result, implementation of a QKD protocol involves an estimation of the experimental parameters influenced by the eavesdropper's intervention, which is achieved by randomly sampling the signal. If the estimation of many parameters with high precision is required, the portion of the signal that is sacrificed increases, thus decreasing the efficiency of the protocol. Here we propose a QKD protocol based on an entirely different principle. The sender encodes a bit sequence onto non-orthogonal quantum states and the receiver randomly dictates how a single bit should be calculated from the sequence. The eavesdropper, who is unable to learn the whole of the sequence, cannot guess the bit value correctly. An achievable rate of secure key distribution is calculated by considering complementary choices between quantum measurements of two conjugate observables. We found that a practical implementation using a laser pulse train achieves a key rate comparable to a decoy-state QKD protocol, an often-used technique for lasers. It also has a better tolerance of bit errors and of finite-sized-key effects. We anticipate that this finding will give new insight into how the probabilistic nature of quantum mechanics can be related to secure communication, and will facilitate the simple and efficient use of conventional lasers for QKD.

  9. Practical quantum key distribution protocol without monitoring signal disturbance.

    PubMed

    Sasaki, Toshihiko; Yamamoto, Yoshihisa; Koashi, Masato

    2014-05-22

    Quantum cryptography exploits the fundamental laws of quantum mechanics to provide a secure way to exchange private information. Such an exchange requires a common random bit sequence, called a key, to be shared secretly between the sender and the receiver. The basic idea behind quantum key distribution (QKD) has widely been understood as the property that any attempt to distinguish encoded quantum states causes a disturbance in the signal. As a result, implementation of a QKD protocol involves an estimation of the experimental parameters influenced by the eavesdropper's intervention, which is achieved by randomly sampling the signal. If the estimation of many parameters with high precision is required, the portion of the signal that is sacrificed increases, thus decreasing the efficiency of the protocol. Here we propose a QKD protocol based on an entirely different principle. The sender encodes a bit sequence onto non-orthogonal quantum states and the receiver randomly dictates how a single bit should be calculated from the sequence. The eavesdropper, who is unable to learn the whole of the sequence, cannot guess the bit value correctly. An achievable rate of secure key distribution is calculated by considering complementary choices between quantum measurements of two conjugate observables. We found that a practical implementation using a laser pulse train achieves a key rate comparable to a decoy-state QKD protocol, an often-used technique for lasers. It also has a better tolerance of bit errors and of finite-sized-key effects. We anticipate that this finding will give new insight into how the probabilistic nature of quantum mechanics can be related to secure communication, and will facilitate the simple and efficient use of conventional lasers for QKD. PMID:24848060

  10. Key rate for calibration robust entanglement based BB84 quantum key distribution protocol

    SciTech Connect

    Gittsovich, O.; Moroder, T.

    2014-12-04

    We apply the approach of verifying entanglement, which is based on the sole knowledge of the dimension of the underlying physical system to the entanglement based version of the BB84 quantum key distribution protocol. We show that the familiar one-way key rate formula holds already if one assumes the assumption that one of the parties is measuring a qubit and no further assumptions about the measurement are needed.

  11. Performance of two quantum-key-distribution protocols

    SciTech Connect

    Fung, C.-H. Fred; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2006-01-15

    We compare the performance of Bennett-Brassard 1984 (BB84) and Scarani-Acin-Ribordy-Gisin 2004 (SARG04) protocols, the latter of which was proposed by V. Scarani et al. [Phys. Rev. Lett. 92, 057901 (2004)]. Specifically, in this paper, we investigate the SARG04 protocol with two-way classical communications and the SARG04 protocol with decoy states. In the first part of the paper, we show that the SARG04 scheme with two-way communications can tolerate a higher bit error rate (19.4% for a one-photon source and 6.56% for a two-photon source) than the SARG04 one with one-way communications (10.95% for a one-photon source and 2.71% for a two-photon source). Also, the upper bounds on the bit error rate for the SARG04 protocol with two-way communications are computed in a closed form by considering an individual attack based on a general measurement. In the second part of the paper, we propose employing the idea of decoy states in the SARG04 scheme to obtain unconditional security even when realistic devices are used. We compare the performance of the SARG04 protocol with decoy states and the BB84 one with decoy states. We find that the optimal mean-photon number for the SARG04 scheme is higher than that of the BB84 one when the bit error rate is small. Also, we observe that the SARG04 protocol does not achieve a longer secure distance and a higher key generation rate than the BB84 one, assuming a typical experimental parameter set.

  12. Simple Proof of Security of the BB84 Quantum Key Distribution Protocol

    SciTech Connect

    Shor, Peter W.; Preskill, John

    2000-07-10

    We prove that the 1984 protocol of Bennett and Brassard (BB84) for quantum key distribution is secure. We first give a key distribution protocol based on entanglement purification, which can be proven secure using methods from Lo and Chau's proof of security for a similar protocol. We then show that the security of this protocol implies the security of BB84. The entanglement purification based protocol uses Calderbank-Shor-Steane codes, and properties of these codes are used to remove the use of quantum computation from the Lo-Chau protocol. (c) 2000 The American Physical Society.

  13. Simple proof of security of the BB84 quantum key distribution protocol

    PubMed

    Shor; Preskill

    2000-07-10

    We prove that the 1984 protocol of Bennett and Brassard (BB84) for quantum key distribution is secure. We first give a key distribution protocol based on entanglement purification, which can be proven secure using methods from Lo and Chau's proof of security for a similar protocol. We then show that the security of this protocol implies the security of BB84. The entanglement purification based protocol uses Calderbank-Shor-Steane codes, and properties of these codes are used to remove the use of quantum computation from the Lo-Chau protocol. PMID:10991303

  14. On the vulnerability of basic quantum key distribution protocols and three protocols stable to attack with 'blinding' of avalanche photodetectors

    SciTech Connect

    Molotkov, S. N.

    2012-05-15

    The fundamental quantum mechanics prohibitions on the measurability of quantum states allow secure key distribution between spatially remote users to be performed. Experimental and commercial implementations of quantum cryptography systems, however, use components that exist at the current technology level, in particular, one-photon avalanche photodetectors. These detectors are subject to the blinding effect. It was shown that all the known basic quantum key distribution protocols and systems based on them are vulnerable to attacks with blinding of photodetectors. In such attacks, an eavesdropper knows all the key transferred, does not produce errors at the reception side, and remains undetected. Three protocols of quantum key distribution stable toward such attacks are suggested. The security of keys and detection of eavesdropping attempts are guaranteed by the internal structure of protocols themselves rather than additional technical improvements.

  15. Continuous-variable quantum-key-distribution protocols with a non-Gaussian modulation

    SciTech Connect

    Leverrier, Anthony; Grangier, Philippe

    2011-04-15

    In this paper, we consider continuous-variable quantum-key-distribution (QKD) protocols which use non-Gaussian modulations. These specific modulation schemes are compatible with very efficient error-correction procedures, hence allowing the protocols to outperform previous protocols in terms of achievable range. In their simplest implementation, these protocols are secure for any linear quantum channels (hence against Gaussian attacks). We also show how the use of decoy states makes the protocols secure against arbitrary collective attacks, which implies their unconditional security in the asymptotic limit.

  16. Security of six-state quantum key distribution protocol with threshold detectors

    NASA Astrophysics Data System (ADS)

    Kato, Go; Tamaki, Kiyoshi

    2016-07-01

    The security of quantum key distribution (QKD) is established by a security proof, and the security proof puts some assumptions on the devices consisting of a QKD system. Among such assumptions, security proofs of the six-state protocol assume the use of photon number resolving (PNR) detector, and as a result the bit error rate threshold for secure key generation for the six-state protocol is higher than that for the BB84 protocol. Unfortunately, however, this type of detector is demanding in terms of technological level compared to the standard threshold detector, and removing the necessity of such a detector enhances the feasibility of the implementation of the six-state protocol. Here, we develop the security proof for the six-state protocol and show that we can use the threshold detector for the six-state protocol. Importantly, the bit error rate threshold for the key generation for the six-state protocol (12.611%) remains almost the same as the one (12.619%) that is derived from the existing security proofs assuming the use of PNR detectors. This clearly demonstrates feasibility of the six-state protocol with practical devices.

  17. Security of six-state quantum key distribution protocol with threshold detectors.

    PubMed

    Kato, Go; Tamaki, Kiyoshi

    2016-01-01

    The security of quantum key distribution (QKD) is established by a security proof, and the security proof puts some assumptions on the devices consisting of a QKD system. Among such assumptions, security proofs of the six-state protocol assume the use of photon number resolving (PNR) detector, and as a result the bit error rate threshold for secure key generation for the six-state protocol is higher than that for the BB84 protocol. Unfortunately, however, this type of detector is demanding in terms of technological level compared to the standard threshold detector, and removing the necessity of such a detector enhances the feasibility of the implementation of the six-state protocol. Here, we develop the security proof for the six-state protocol and show that we can use the threshold detector for the six-state protocol. Importantly, the bit error rate threshold for the key generation for the six-state protocol (12.611%) remains almost the same as the one (12.619%) that is derived from the existing security proofs assuming the use of PNR detectors. This clearly demonstrates feasibility of the six-state protocol with practical devices. PMID:27443610

  18. Security of six-state quantum key distribution protocol with threshold detectors

    PubMed Central

    Kato, Go; Tamaki, Kiyoshi

    2016-01-01

    The security of quantum key distribution (QKD) is established by a security proof, and the security proof puts some assumptions on the devices consisting of a QKD system. Among such assumptions, security proofs of the six-state protocol assume the use of photon number resolving (PNR) detector, and as a result the bit error rate threshold for secure key generation for the six-state protocol is higher than that for the BB84 protocol. Unfortunately, however, this type of detector is demanding in terms of technological level compared to the standard threshold detector, and removing the necessity of such a detector enhances the feasibility of the implementation of the six-state protocol. Here, we develop the security proof for the six-state protocol and show that we can use the threshold detector for the six-state protocol. Importantly, the bit error rate threshold for the key generation for the six-state protocol (12.611%) remains almost the same as the one (12.619%) that is derived from the existing security proofs assuming the use of PNR detectors. This clearly demonstrates feasibility of the six-state protocol with practical devices. PMID:27443610

  19. Security of six-state quantum key distribution protocol with threshold detectors.

    PubMed

    Kato, Go; Tamaki, Kiyoshi

    2016-07-22

    The security of quantum key distribution (QKD) is established by a security proof, and the security proof puts some assumptions on the devices consisting of a QKD system. Among such assumptions, security proofs of the six-state protocol assume the use of photon number resolving (PNR) detector, and as a result the bit error rate threshold for secure key generation for the six-state protocol is higher than that for the BB84 protocol. Unfortunately, however, this type of detector is demanding in terms of technological level compared to the standard threshold detector, and removing the necessity of such a detector enhances the feasibility of the implementation of the six-state protocol. Here, we develop the security proof for the six-state protocol and show that we can use the threshold detector for the six-state protocol. Importantly, the bit error rate threshold for the key generation for the six-state protocol (12.611%) remains almost the same as the one (12.619%) that is derived from the existing security proofs assuming the use of PNR detectors. This clearly demonstrates feasibility of the six-state protocol with practical devices.

  20. Shor-Preskill-type security proof for concatenated Bennett-Brassard 1984 quantum-key-distribution protocol

    SciTech Connect

    Hwang, Won-Young; Matsumoto, Keiji; Imai, Hiroshi; Kim, Jaewan; Lee, Hai-Woong

    2003-02-01

    We discuss a long code problem in the Bennett-Brassard 1984 (BB84) quantum-key-distribution protocol and describe how it can be overcome by concatenation of the protocol. Observing that concatenated modified Lo-Chau protocol finally reduces to the concatenated BB84 protocol, we give the unconditional security of the concatenated BB84 protocol.

  1. Security proof of a three-state quantum-key-distribution protocol without rotational symmetry

    SciTech Connect

    Fung, C.-H.F.; Lo, H.-K.

    2006-10-15

    Standard security proofs of quantum-key-distribution (QKD) protocols often rely on symmetry arguments. In this paper, we prove the security of a three-state protocol that does not possess rotational symmetry. The three-state QKD protocol we consider involves three qubit states, where the first two states |0{sub z}> and |1{sub z}> can contribute to key generation, and the third state |+>=(|0{sub z}>+|1{sub z}>)/{radical}(2) is for channel estimation. This protocol has been proposed and implemented experimentally in some frequency-based QKD systems where the three states can be prepared easily. Thus, by founding on the security of this three-state protocol, we prove that these QKD schemes are, in fact, unconditionally secure against any attacks allowed by quantum mechanics. The main task in our proof is to upper bound the phase error rate of the qubits given the bit error rates observed. Unconditional security can then be proved not only for the ideal case of a single-photon source and perfect detectors, but also for the realistic case of a phase-randomized weak coherent light source and imperfect threshold detectors. Our result in the phase error rate upper bound is independent of the loss in the channel. Also, we compare the three-state protocol with the Bennett-Brassard 1984 (BB84) protocol. For the single-photon source case, our result proves that the BB84 protocol strictly tolerates a higher quantum bit error rate than the three-state protocol, while for the coherent-source case, the BB84 protocol achieves a higher key generation rate and secure distance than the three-state protocol when a decoy-state method is used.

  2. Attacks on quantum key distribution protocols that employ non-ITS authentication

    NASA Astrophysics Data System (ADS)

    Pacher, C.; Abidin, A.; Lorünser, T.; Peev, M.; Ursin, R.; Zeilinger, A.; Larsson, J.-Å.

    2016-01-01

    We demonstrate how adversaries with large computing resources can break quantum key distribution (QKD) protocols which employ a particular message authentication code suggested previously. This authentication code, featuring low key consumption, is not information-theoretically secure (ITS) since for each message the eavesdropper has intercepted she is able to send a different message from a set of messages that she can calculate by finding collisions of a cryptographic hash function. However, when this authentication code was introduced, it was shown to prevent straightforward man-in-the-middle (MITM) attacks against QKD protocols. In this paper, we prove that the set of messages that collide with any given message under this authentication code contains with high probability a message that has small Hamming distance to any other given message. Based on this fact, we present extended MITM attacks against different versions of BB84 QKD protocols using the addressed authentication code; for three protocols, we describe every single action taken by the adversary. For all protocols, the adversary can obtain complete knowledge of the key, and for most protocols her success probability in doing so approaches unity. Since the attacks work against all authentication methods which allow to calculate colliding messages, the underlying building blocks of the presented attacks expose the potential pitfalls arising as a consequence of non-ITS authentication in QKD post-processing. We propose countermeasures, increasing the eavesdroppers demand for computational power, and also prove necessary and sufficient conditions for upgrading the discussed authentication code to the ITS level.

  3. Measurement-device-independent quantum key distribution for Scarani-Acin-Ribordy-Gisin 04 protocol.

    PubMed

    Mizutani, Akihiro; Tamaki, Kiyoshi; Ikuta, Rikizo; Yamamoto, Takashi; Imoto, Nobuyuki

    2014-01-01

    The measurement-device-independent quantum key distribution (MDI QKD) was proposed to make BB84 completely free from any side-channel in detectors. Like in prepare & measure QKD, the use of other protocols in MDI setting would be advantageous in some practical situations. In this paper, we consider SARG04 protocol in MDI setting. The prepare & measure SARG04 is proven to be able to generate a key up to two-photon emission events. In MDI setting we show that the key generation is possible from the event with single or two-photon emission by a party and single-photon emission by the other party, but the two-photon emission event by both parties cannot contribute to the key generation. On the contrary to prepare & measure SARG04 protocol where the experimental setup is exactly the same as BB84, the measurement setup for SARG04 in MDI setting cannot be the same as that for BB84 since the measurement setup for BB84 in MDI setting induces too many bit errors. To overcome this problem, we propose two alternative experimental setups, and we simulate the resulting key rate. Our study highlights the requirements that MDI QKD poses on us regarding with the implementation of a variety of QKD protocols. PMID:24913431

  4. Measurement-device-independent quantum key distribution for Scarani-Acin-Ribordy-Gisin 04 protocol

    PubMed Central

    Mizutani, Akihiro; Tamaki, Kiyoshi; Ikuta, Rikizo; Yamamoto, Takashi; Imoto, Nobuyuki

    2014-01-01

    The measurement-device-independent quantum key distribution (MDI QKD) was proposed to make BB84 completely free from any side-channel in detectors. Like in prepare & measure QKD, the use of other protocols in MDI setting would be advantageous in some practical situations. In this paper, we consider SARG04 protocol in MDI setting. The prepare & measure SARG04 is proven to be able to generate a key up to two-photon emission events. In MDI setting we show that the key generation is possible from the event with single or two-photon emission by a party and single-photon emission by the other party, but the two-photon emission event by both parties cannot contribute to the key generation. On the contrary to prepare & measure SARG04 protocol where the experimental setup is exactly the same as BB84, the measurement setup for SARG04 in MDI setting cannot be the same as that for BB84 since the measurement setup for BB84 in MDI setting induces too many bit errors. To overcome this problem, we propose two alternative experimental setups, and we simulate the resulting key rate. Our study highlights the requirements that MDI QKD poses on us regarding with the implementation of a variety of QKD protocols. PMID:24913431

  5. Simple proof of the unconditional security of the Bennett 1992 quantum key distribution protocol

    NASA Astrophysics Data System (ADS)

    Quan, Zhang; Chaojing, Tang

    2002-06-01

    It is generally accepted that quantum key distribution (QKD) could supply legitimate users with unconditional security during their communication. Quite a lot of satisfactory efforts have been achieved on experimentations with quantum cryptography. However, when the eavesdropper has extra-powerful computational ability, has access to a quantum computer, for example, and can carry into execution any eavesdropping measurement that is allowed by the laws of physics, the security against such attacks has not been widely studied and rigorously proved for most QKD protocols. Quite recently, Shor and Preskill proved concisely the unconditional security of the Bennett-Brassard 1984 (BB84) protocol. Their method is highly valued for its clarity of concept and concision of form. In order to take advantage of the Shor-Preskill technique in their proof of the unconditional security of the BB84 QKD protocol, we introduced in this paper a transformation that can translate the Bennett 1992 (B92) protocol into the BB84 protocol. By proving that the transformation leaks no more information to the eavesdropper, we proved the unconditional security of the B92 protocol. We also settled the problem proposed by Lo about how to prove the unconditional security of the B92 protocol with the Shor-Preskill method.

  6. Towards secure quantum key distribution protocol for wireless LANs: a hybrid approach

    NASA Astrophysics Data System (ADS)

    Naik, R. Lalu; Reddy, P. Chenna

    2015-12-01

    The primary goals of security such as authentication, confidentiality, integrity and non-repudiation in communication networks can be achieved with secure key distribution. Quantum mechanisms are highly secure means of distributing secret keys as they are unconditionally secure. Quantum key distribution protocols can effectively prevent various attacks in the quantum channel, while classical cryptography is efficient in authentication and verification of secret keys. By combining both quantum cryptography and classical cryptography, security of communications over networks can be leveraged. Hwang, Lee and Li exploited the merits of both cryptographic paradigms for provably secure communications to prevent replay, man-in-the-middle, and passive attacks. In this paper, we propose a new scheme with the combination of quantum cryptography and classical cryptography for 802.11i wireless LANs. Since quantum cryptography is premature in wireless networks, our work is a significant step forward toward securing communications in wireless networks. Our scheme is known as hybrid quantum key distribution protocol. Our analytical results revealed that the proposed scheme is provably secure for wireless networks.

  7. Practical private database queries based on a quantum-key-distribution protocol

    SciTech Connect

    Jakobi, Markus; Simon, Christoph; Gisin, Nicolas; Bancal, Jean-Daniel; Branciard, Cyril; Walenta, Nino; Zbinden, Hugo

    2011-02-15

    Private queries allow a user, Alice, to learn an element of a database held by a provider, Bob, without revealing which element she is interested in, while limiting her information about the other elements. We propose to implement private queries based on a quantum-key-distribution protocol, with changes only in the classical postprocessing of the key. This approach makes our scheme both easy to implement and loss tolerant. While unconditionally secure private queries are known to be impossible, we argue that an interesting degree of security can be achieved by relying on fundamental physical principles instead of unverifiable security assumptions in order to protect both the user and the database. We think that the scope exists for such practical private queries to become another remarkable application of quantum information in the footsteps of quantum key distribution.

  8. Some physics and system issues in the security analysis of quantum key distribution protocols

    NASA Astrophysics Data System (ADS)

    Yuen, Horace P.

    2014-10-01

    In this paper, we review a number of issues on the security of quantum key distribution (QKD) protocols that bear directly on the relevant physics or mathematical representation of the QKD cryptosystem. It is shown that the cryptosystem representation itself may miss out many possible attacks, which are not accounted for in the security analysis and proofs. Hence, the final security claims drawn from such analysis are not reliable, apart from foundational issues about the security criteria that are discussed elsewhere. The cases of continuous-variable QKD and multi-photon sources are elaborated upon.

  9. Performance of a quantum key distribution protocol with dual-rail displaced photon states

    SciTech Connect

    Podoshvedov, S. A.

    2010-04-15

    We propose a scheme for a quantum key distribution (QKD) protocol with dual-rail displaced photon states. Displaced single-photon states with different amplitudes carry bit values of code that may be extracted, while coherent states carry nothing and only provide an inconclusive outcome. A real resource of single photons is used, involving imperfections associated with experimental technique that result in a photon state with an admixture of the vacuum state. The protocol is robust against the loss of a single photon and the inefficiency of the detectors. Pulses with large amplitudes, unlike the conventional QKD relying on faint laser pulses, are used that may approximate it to standard telecommunication and may show resistance to eaves-dropping even in settings with high attenuation. Information leakage to the eavesdropper is determined from comparison of the output distributions of the outcomes with ideal ones that are defined by two additional parameters accessible to only those send the pulses. Robustness to some possible eavesdropping attacks is shown.

  10. Passive sources for the Bennett-Brassard 1984 quantum-key-distribution protocol with practical signals

    SciTech Connect

    Curty, Marcos; Ma Xiongfeng; Luetkenhaus, Norbert; Lo, Hoi-Kwong

    2010-11-15

    Most experimental realizations of quantum key distribution are based on the Bennett-Brassard 1984 (the so-called BB84) protocol. In a typical optical implementation of this scheme, the sender uses an active source to produce the required BB84 signal states. While active state preparation of BB84 signals is a simple and elegant solution in principle, in practice passive state preparation might be desirable in some scenarios, for instance, in those experimental setups operating at high transmission rates. Passive schemes might also be more robust against side-channel attacks than active sources. Typical passive devices involve parametric down-conversion. In this paper, we show that both coherent light and practical single-photon sources are also suitable for passive generation of BB84 signal states. Our method does not require any externally driven element, but only linear optical components and photodetectors. In the case of coherent light, the resulting key rate is similar to the one delivered by an active source. When the sender uses practical single-photon sources, however, the distance covered by a passive transmitter might be longer than that of an active configuration.

  11. Scintillation has minimal impact on far-field Bennett-Brassard 1984 protocol quantum key distribution

    SciTech Connect

    Shapiro, Jeffrey H.

    2011-09-15

    The effect of scintillation, arising from propagation through atmospheric turbulence, on the sift and error probabilities of a quantum key distribution (QKD) system that uses the weak-laser-pulse version of the Bennett-Brassard 1984 (BB84) protocol is evaluated. Two earth-space scenarios are examined: satellite-to-ground and ground-to-satellite transmission. Both lie in the far-field power-transfer regime. This work complements previous analysis of turbulence effects in near-field terrestrial BB84 QKD [J. H. Shapiro, Phys. Rev. A 67, 022309 (2003)]. More importantly, it shows that scintillation has virtually no impact on the sift and error probabilities in earth-space BB84 QKD, something that has been implicitly assumed in prior analyses for that application. This result contrasts rather sharply with what is known for high-speed laser communications over such paths, in which deep, long-lived scintillation fades present a major challenge to high-reliability operation.

  12. A high-speed multi-protocol quantum key distribution transmitter based on a dual-drive modulator.

    PubMed

    Korzh, Boris; Walenta, Nino; Houlmann, Raphael; Zbinden, Hugo

    2013-08-26

    We propose a novel source based on a dual-drive modulator that is adaptable and allows Alice to choose between various practical quantum key distribution (QKD) protocols depending on what receiver she is communicating with. Experimental results show that the proposed transmitter is suitable for implementation of the Bennett and Brassard 1984 (BB84), coherent one-way (COW) and differential phase shift (DPS) protocols with stable and low quantum bit error rate. This could become a useful component in network QKD, where multi-protocol capability is highly desirable. PMID:24105505

  13. Two-Party secret key distribution via a modified quantum secret sharing protocol

    DOE PAGESBeta

    Grice, Warren P.; Evans, Philip G.; Lawrie, Benjamin; Legré, M.; Lougovski, P.; Ray, William R.; Williams, Brian P.; Qi, B.; Smith, A. M.

    2015-01-01

    We present and demonstrate a method of distributing secret information based on N-party single-qubit Quantum Secret Sharing (QSS) in a modied plug-and-play two-party Quantum Key Distribution (QKD) system with N 2 intermediate nodes and compare it to both standard QSS and QKD. Our setup is based on the Clavis2 QKD system built by ID Quantique but is generalizable to any implementation. We show that any two out of N parties can build a secret key based on partial information from each other and with collaboration from the remaining N 2 parties. This method signicantly reduces the number of resources (singlemore » photon detectors, lasers and dark ber connections) needed to implement QKD on the grid.« less

  14. Two-Party secret key distribution via a modified quantum secret sharing protocol

    SciTech Connect

    Grice, Warren P.; Evans, Philip G.; Lawrie, Benjamin; Legré, M.; Lougovski, P.; Ray, William R.; Williams, Brian P.; Qi, B.; Smith, A. M.

    2015-01-01

    We present and demonstrate a method of distributing secret information based on N-party single-qubit Quantum Secret Sharing (QSS) in a modied plug-and-play two-party Quantum Key Distribution (QKD) system with N 2 intermediate nodes and compare it to both standard QSS and QKD. Our setup is based on the Clavis2 QKD system built by ID Quantique but is generalizable to any implementation. We show that any two out of N parties can build a secret key based on partial information from each other and with collaboration from the remaining N 2 parties. This method signicantly reduces the number of resources (single photon detectors, lasers and dark ber connections) needed to implement QKD on the grid.

  15. Mediated semiquantum key distribution

    NASA Astrophysics Data System (ADS)

    Krawec, Walter O.

    2015-03-01

    In this work, we design a quantum key distribution protocol, allowing two limited semiquantum or "classical" users to establish a shared secret key with the help of a fully quantum server. A semiquantum user can prepare and measure qubits only in the computational basis and so must rely on this quantum server to produce qubits in alternative bases and also to perform alternative measurements. However, we assume that the server is untrusted and we prove the unconditional security of our protocol even in the worst case: when this quantum server is an all-powerful adversary. We also compute a lower bound of the key rate of our protocol, in the asymptotic scenario, as a function of the observed error rate in the channel, allowing us to compute the maximally tolerated error of our protocol. Our results show that a semiquantum protocol may hold similar security to a fully quantum one.

  16. Cryptographic robustness of practical quantum cryptography: BB84 key distribution protocol

    SciTech Connect

    Molotkov, S. N.

    2008-07-15

    In real fiber-optic quantum cryptography systems, the avalanche photodiodes are not perfect, the source of quantum states is not a single-photon one, and the communication channel is lossy. For these reasons, key distribution is impossible under certain conditions for the system parameters. A simple analysis is performed to find relations between the parameters of real cryptography systems and the length of the quantum channel that guarantee secure quantum key distribution when the eavesdropper's capabilities are limited only by fundamental laws of quantum mechanics while the devices employed by the legitimate users are based on current technologies. Critical values are determined for the rate of secure real-time key generation that can be reached under the current technology level. Calculations show that the upper bound on channel length can be as high as 300 km for imperfect photodetectors (avalanche photodiodes) with present-day quantum efficiency ({eta} {approx} 20%) and dark count probability (p{sub dark} {approx} 10{sup -7})

  17. Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Wang, Le; Zhao, Sheng-Mei; Gong, Long-Yan; Cheng, Wei-Wen

    2015-12-01

    In this paper, we propose a measurement-device-independent quantum-key-distribution (MDI-QKD) protocol using orbital angular momentum (OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol, the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie’s successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover, the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence (AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source. Project supported by the National Natural Science Foundation of China (Grant Nos. 61271238 and 61475075), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123223110003), the Natural Science Research Foundation for Universities of Jiangsu Province of China (Grant No. 11KJA510002), the Open Research Fund of Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, China (Grant No. NYKL2015011), and the

  18. Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference.

    PubMed

    Gleim, A V; Egorov, V I; Nazarov, Yu V; Smirnov, S V; Chistyakov, V V; Bannik, O I; Anisimov, A A; Kynev, S M; Ivanova, A E; Collins, R J; Kozlov, S A; Buller, G S

    2016-02-01

    A quantum key distribution system based on the subcarrier wave modulation method has been demonstrated which employs the BB84 protocol with a strong reference to generate secure bits at a rate of 16.5 kbit/s with an error of 0.5% over an optical channel of 10 dB loss, and 18 bits/s with an error of 0.75% over 25 dB of channel loss. To the best of our knowledge, these results represent the highest channel loss reported for secure quantum key distribution using the subcarrier wave approach. A passive unidirectional scheme has been used to compensate for the polarization dependence of the phase modulators in the receiver module, which resulted in a high visibility of 98.8%. The system is thus fully insensitive to polarization fluctuations and robust to environmental changes, making the approach promising for use in optical telecommunication networks. Further improvements in secure key rate and transmission distance can be achieved by implementing the decoy states protocol or by optimizing the mean photon number used in line with experimental parameters. PMID:26906834

  19. Quantum cryptography: Theoretical protocols for quantum key distribution and tests of selected commercial QKD systems in commercial fiber networks

    NASA Astrophysics Data System (ADS)

    Jacak, Monika; Jacak, Janusz; Jóźwiak, Piotr; Jóźwiak, Ireneusz

    2016-06-01

    The overview of the current status of quantum cryptography is given in regard to quantum key distribution (QKD) protocols, implemented both on nonentangled and entangled flying qubits. Two commercial R&D platforms of QKD systems are described (the Clavis II platform by idQuantique implemented on nonentangled photons and the EPR S405 Quelle platform by AIT based on entangled photons) and tested for feasibility of their usage in commercial TELECOM fiber metropolitan networks. The comparison of systems efficiency, stability and resistivity against noise and hacker attacks is given with some suggestion toward system improvement, along with assessment of two models of QKD.

  20. Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol

    PubMed Central

    Wei, Chun-Yan; Gao, Fei; Wen, Qiao-Yan; Wang, Tian-Yin

    2014-01-01

    Until now, the only kind of practical quantum private query (QPQ), quantum-key-distribution (QKD)-based QPQ, focuses on the retrieval of a single bit. In fact, meaningful message is generally composed of multiple adjacent bits (i.e., a multi-bit block). To obtain a message from database, the user Alice has to query l times to get each ai. In this condition, the server Bob could gain Alice's privacy once he obtains the address she queried in any of the l queries, since each ai contributes to the message Alice retrieves. Apparently, the longer the retrieved message is, the worse the user privacy becomes. To solve this problem, via an unbalanced-state technique and based on a variant of multi-level BB84 protocol, we present a protocol for QPQ of blocks, which allows the user to retrieve a multi-bit block from database in one query. Our protocol is somewhat like the high-dimension version of the first QKD-based QPQ protocol proposed by Jacobi et al., but some nontrivial modifications are necessary. PMID:25518810

  1. Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol.

    PubMed

    Wei, Chun-Yan; Gao, Fei; Wen, Qiao-Yan; Wang, Tian-Yin

    2014-01-01

    Until now, the only kind of practical quantum private query (QPQ), quantum-key-distribution (QKD)-based QPQ, focuses on the retrieval of a single bit. In fact, meaningful message is generally composed of multiple adjacent bits (i.e., a multi-bit block). To obtain a message a1a2···al from database, the user Alice has to query l times to get each ai. In this condition, the server Bob could gain Alice's privacy once he obtains the address she queried in any of the l queries, since each a(i) contributes to the message Alice retrieves. Apparently, the longer the retrieved message is, the worse the user privacy becomes. To solve this problem, via an unbalanced-state technique and based on a variant of multi-level BB84 protocol, we present a protocol for QPQ of blocks, which allows the user to retrieve a multi-bit block from database in one query. Our protocol is somewhat like the high-dimension version of the first QKD-based QPQ protocol proposed by Jacobi et al., but some nontrivial modifications are necessary. PMID:25518810

  2. Trojan Horse Attack Free Fault-Tolerant Quantum Key Distribution Protocols Using GHZ States

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hung; Yang, Chun-Wei; Hwang, Tzonelih

    2016-09-01

    Recently, Yang and Hwang (Quantum Inf. Process. 13(3): 781-794, 19) proposed two fault-tolerant QKD protocols based on their proposed coding functions for resisting the collective noise, and their QKD protocols are free from Trojan horse attack without employing any specific detecting devices (e.g., photon number splitter (PNS) and wavelength filter). By using four-particle Greenberger-Horne-Zeilinger (GHZ) state and four-particle GHZ-like state in their proposed coding functions, Yang and Hwang's QKD protocols can resist each kind of the collective noise-collective-dephasing noise, collective-rotation noise. However, their proposed coding function can be improved by the utilization of three-particle GHZ state (three-particle GHZ-like state) instead of four-particle GHZ state (four-particle GHZ-like state) that will eventually reduce the consumption of the qubits. As a result, this study proposed the improved version of Yang and Hwang's coding functions to enhance the qubit efficiency of their schemes from 20 % to 22 %.

  3. Limitation of decoy-state Scarani-Acin-Ribordy-Gisin quantum-key-distribution protocols with a heralded single-photon source

    SciTech Connect

    Zhang Shengli; Zou Xubo; Li Ke; Guo Guangcan; Jin Chenhui

    2007-10-15

    For the Bennett-Brassard 1984 (BB84) quantum key distribution, longer distance and higher key generating rate is shown with a heralded single-photon source (HSPS) [Phys. Rev. A. 73, 032331 (2006)]. In this paper, the performance of the Scarani-Acin-Ribordy-Gisim (SARG) protocol utilizing the HSPS sources is considered and the numerical simulation turns out that still a significant improvement in secret key generating rate can also be observed. It is shown that the security distance for HSPS+SARG is 120 km. However, compared with the HSPS+BB84 protocols, the HSPS+SARG protocol has a lower secret key rate and a shorter distance. Thus we show the HSPS+BB84 implementation is a preferable protocol for long distance transmittance.

  4. Decoy State Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Lo, Hoi-Kwong

    2005-10-01

    Quantum key distribution (QKD) allows two parties to communicate in absolute security based on the fundamental laws of physics. Up till now, it is widely believed that unconditionally secure QKD based on standard Bennett-Brassard (BB84) protocol is limited in both key generation rate and distance because of imperfect devices. Here, we solve these two problems directly by presenting new protocols that are feasible with only current technology. Surprisingly, our new protocols can make fiber-based QKD unconditionally secure at distances over 100km (for some experiments, such as GYS) and increase the key generation rate from O(η2) in prior art to O(η) where η is the overall transmittance. Our method is to develop the decoy state idea (first proposed by W.-Y. Hwang in "Quantum Key Distribution with High Loss: Toward Global Secure Communication", Phys. Rev. Lett. 91, 057901 (2003)) and consider simple extensions of the BB84 protocol. This part of work is published in "Decoy State Quantum Key Distribution", . We present a general theory of the decoy state protocol and propose a decoy method based on only one signal state and two decoy states. We perform optimization on the choice of intensities of the signal state and the two decoy states. Our result shows that a decoy state protocol with only two types of decoy states--a vacuum and a weak decoy state--asymptotically approaches the theoretical limit of the most general type of decoy state protocols (with an infinite number of decoy states). We also present a one-decoy-state protocol as a special case of Vacuum+Weak decoy method. Moreover, we provide estimations on the effects of statistical fluctuations and suggest that, even for long distance (larger than 100km) QKD, our two-decoy-state protocol can be implemented with only a few hours of experimental data. In conclusion, decoy state quantum key distribution is highly practical. This part of work is

  5. Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol

    NASA Astrophysics Data System (ADS)

    Huang, Duan; Huang, Peng; Wang, Tao; Li, Huasheng; Zhou, Yingming; Zeng, Guihua

    2016-09-01

    We propose and experimentally demonstrate a continuous-variable quantum key distribution (CV-QKD) protocol using dual-phase-modulated coherent states. We show that the modulation scheme of our protocol works equivalently to that of the Gaussian-modulated coherent-states (GMCS) protocol, but shows better experimental feasibility in the plug-and-play configuration. Besides, it waives the necessity of propagation of a local oscillator (LO) between legitimate users and generates a real local LO for quantum measurement. Our protocol is proposed independent of the one-way GMCS QKD without sending a LO [Opt. Lett. 40, 3695 (2015), 10.1364/OL.40.003695; Phys. Rev. X 5, 041009 (2015), 10.1103/PhysRevX.5.041009; Phys. Rev. X 5, 041010 (2015), 10.1103/PhysRevX.5.041010]. In those recent works, the system stability will suffer the impact of polarization drifts induced by environmental perturbations, and two independent frequency-locked laser sources are necessary to achieve reliable coherent detection. In the proposed protocol, these previous problems can be resolved. We derive the security bounds for our protocol against collective attacks, and we also perform a proof-of-principle experiment to confirm the utility of our proposal in real-life applications. Such an efficient scheme provides a way of removing the security loopholes associated with the transmitting LO, which have been a notoriously hard problem in continuous-variable quantum communication.

  6. Quantum key distribution with delayed privacy amplification and its application to the security proof of a two-way deterministic protocol

    NASA Astrophysics Data System (ADS)

    Fung, Chi-Hang Fred; Ma, Xiongfeng; Chau, H. F.; Cai, Qing-Yu

    2012-03-01

    Privacy amplification (PA) is an essential postprocessing step in quantum key distribution (QKD) for removing any information an eavesdropper may have on the final secret key. In this paper, we consider delaying PA of the final key after its use in one-time pad encryption and prove its security. We prove that the security and the key generation rate are not affected by delaying PA. Delaying PA has two applications: it serves as a tool for significantly simplifying the security proof of QKD with a two-way quantum channel, and also it is useful in QKD networks with trusted relays. To illustrate the power of the delayed PA idea, we use it to prove the security of a qubit-based two-way deterministic QKD protocol which uses four states and four encoding operations.

  7. Protocols for distributive scheduling

    NASA Technical Reports Server (NTRS)

    Richards, Stephen F.; Fox, Barry

    1993-01-01

    The increasing complexity of space operations and the inclusion of interorganizational and international groups in the planning and control of space missions lead to requirements for greater communication, coordination, and cooperation among mission schedulers. These schedulers must jointly allocate scarce shared resources among the various operational and mission oriented activities while adhering to all constraints. This scheduling environment is complicated by such factors as the presence of varying perspectives and conflicting objectives among the schedulers, the need for different schedulers to work in parallel, and limited communication among schedulers. Smooth interaction among schedulers requires the use of protocols that govern such issues as resource sharing, authority to update the schedule, and communication of updates. This paper addresses the development and characteristics of such protocols and their use in a distributed scheduling environment that incorporates computer-aided scheduling tools. An example problem is drawn from the domain of space shuttle mission planning.

  8. Numerical approach for unstructured quantum key distribution.

    PubMed

    Coles, Patrick J; Metodiev, Eric M; Lütkenhaus, Norbert

    2016-05-20

    Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study 'unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown.

  9. Numerical approach for unstructured quantum key distribution.

    PubMed

    Coles, Patrick J; Metodiev, Eric M; Lütkenhaus, Norbert

    2016-01-01

    Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study 'unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown. PMID:27198739

  10. Numerical approach for unstructured quantum key distribution

    PubMed Central

    Coles, Patrick J.; Metodiev, Eric M.; Lütkenhaus, Norbert

    2016-01-01

    Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study ‘unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown. PMID:27198739

  11. A novel protocol for multiparty quantum key management

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Chen, Xiu-Bo; Dou, Zhao; Yang, Yi-Xian; Li, Zongpeng

    2015-08-01

    Key management plays a fundamental role in the field of cryptography. In this paper, we propose a novel multiparty quantum key management (QKM) protocol. Departing from single-function quantum cryptography protocols, our protocol has a salient feature in that it accomplishes a complete QKM process. In this process, we can simultaneously realize the functions of key generation, key distribution and key backup by executing the protocol once. Meanwhile, for the first time, we propose the idea of multi-function QKM. Firstly, the secret key is randomly generated by managers via the quantum measurements in -level Bell basis. Then, through entanglement swapping, the secret key is successfully distributed to users. Under circumstances of urgent requirement, all managers can cooperate to recover the users' secret key, but neither of them can recover it unilaterally. Furthermore, this protocol is further generalized into the multi-manager and multi-user QKM scenario. It has clear advantages in the burgeoning area of quantum security group communication. In this system, all group members share the same group key, and group key management is the foundation of secure group communication and hence an important subject of study.

  12. Detector decoy quantum key distribution

    NASA Astrophysics Data System (ADS)

    Moroder, Tobias; Curty, Marcos; Lütkenhaus, Norbert

    2009-04-01

    Photon number resolving detectors can enhance the performance of many practical quantum cryptographic setups. In this paper, we employ a simple method to estimate the statistics provided by such a photon number resolving detector using only a threshold detector together with a variable attenuator. This idea is similar in spirit to that of the decoy state technique, and is especially suited to those scenarios where only a few parameters of the photon number statistics of the incoming signals have to be estimated. As an illustration of the potential applicability of the method in quantum communication protocols, we use it to prove security of an entanglement-based quantum key distribution scheme with an untrusted source without the need for a squash model and by solely using this extra idea. In this sense, this detector decoy method can be seen as a different conceptual approach to adapt a single-photon security proof to its physical, full optical implementation. We show that in this scenario, the legitimate users can now even discard the double click events from the raw key data without compromising the security of the scheme, and we present simulations on the performance of the BB84 and the 6-state quantum key distribution protocols.

  13. Two-layer quantum key distribution

    NASA Astrophysics Data System (ADS)

    Pinheiro, Paulo Vinícius Pereira; Ramos, Rubens Viana

    2015-06-01

    Recently a new quantum key distribution protocol using coherent and thermal states was proposed. In this work, this kind of two-layer QKD protocol is formalized and its security against the most common attacks, including external control and Trojan horse attacks, is discussed.

  14. Security of Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Lütkenhaus, Norbert

    2007-03-01

    Quantum Key Distribution (QKD) is the most advanced application of Quantum Information Science. It allows extending secret keys over some distances in such a way that the security of the resulting key material can be guaranteed by the laws of quantum mechanics. In contrast to presently used encryption techniques, the security of QKD can be proven in terms of information-theoretic measures. The resulting key can then be used for many tasks, including exchanging secret messages. QKD has been developed in the language of abstract two-level systems, the qubits. They cannot be easily implemented in optical signals. It took some time to bring the protocols and theory of QKD to the point where they fit to the realities of fiber-optical or free-space applications, including lossy channels. Today, QKD schemes can be implemented reliably using standard off-the-shelf components. Information theoretic security is a theoretical concept. Naturally, it is impossible to demonstrate directly that a given experimental set-up indeed creates a secret key. What one can do is to show that the experiment can give data within a certain parameters regime, such as error rate and loss rate, for which a security proof exists. I will discuss what parameter regime gives provable secure key and which parameter regime cannot lead to secret key. It is desirable to prove `unconditional security,' as it is termed in the world of classical cryptography: no assumption is made about the attacks of an eavesdropper on the quantum channel. However, one has to assume that the signal structure and the measurement device are correctly described by the adopted model and that no eavesdropper can intrude the sender or receiver unit. In this talk I will briefly introduce the concept of QKD and optical implementations. Especially I will discuss security aspects of modern approaches of QKD schemes that allow us to increase the covered distance and the achievable rate.

  15. Counterfactual attack on counterfactual quantum key distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Wnang, Jian; Tang, Chao Jing

    2012-05-01

    It is interesting that counterfactual quantum cryptography protocols allow two remotely separated parties to share a secret key without transmitting any signal particles. Generally, these protocols, expected to provide security advantages, base their security on a translated no-cloning theorem. Therefore, they potentially exhibit unconditional security in theory. In this letter, we propose a new Trojan horse attack, by which an eavesdropper Eve can gain full information about the key without being noticed, to real implementations of a counterfactual quantum cryptography system. Most importantly, the presented attack is available even if the system has negligible imperfections. Therefore, it shows that the present realization of counterfactual quantum key distribution is vulnerable.

  16. Finite-key security analysis for multilevel quantum key distribution

    NASA Astrophysics Data System (ADS)

    Brádler, Kamil; Mirhosseini, Mohammad; Fickler, Robert; Broadbent, Anne; Boyd, Robert

    2016-07-01

    We present a detailed security analysis of a d-dimensional quantum key distribution protocol based on two and three mutually unbiased bases (MUBs) both in an asymptotic and finite-key-length scenario. The finite secret key rates (in bits per detected photon) are calculated as a function of the length of the sifted key by (i) generalizing the uncertainly relation-based insight from BB84 to any d-level 2-MUB QKD protocol and (ii) by adopting recent advances in the second-order asymptotics for finite block length quantum coding (for both d-level 2- and 3-MUB QKD protocols). Since the finite and asymptotic secret key rates increase with d and the number of MUBs (together with the tolerable threshold) such QKD schemes could in principle offer an important advantage over BB84. We discuss the possibility of an experimental realization of the 3-MUB QKD protocol with the orbital angular momentum degrees of freedom of photons.

  17. One Step Quantum Key Distribution Based on EPR Entanglement.

    PubMed

    Li, Jian; Li, Na; Li, Lei-Lei; Wang, Tao

    2016-01-01

    A novel quantum key distribution protocol is presented, based on entanglement and dense coding and allowing asymptotically secure key distribution. Considering the storage time limit of quantum bits, a grouping quantum key distribution protocol is proposed, which overcomes the vulnerability of first protocol and improves the maneuverability. Moreover, a security analysis is given and a simple type of eavesdropper's attack would introduce at least an error rate of 46.875%. Compared with the "Ping-pong" protocol involving two steps, the proposed protocol does not need to store the qubit and only involves one step. PMID:27357865

  18. One Step Quantum Key Distribution Based on EPR Entanglement

    PubMed Central

    Li, Jian; Li, Na; Li, Lei-Lei; Wang, Tao

    2016-01-01

    A novel quantum key distribution protocol is presented, based on entanglement and dense coding and allowing asymptotically secure key distribution. Considering the storage time limit of quantum bits, a grouping quantum key distribution protocol is proposed, which overcomes the vulnerability of first protocol and improves the maneuverability. Moreover, a security analysis is given and a simple type of eavesdropper’s attack would introduce at least an error rate of 46.875%. Compared with the “Ping-pong” protocol involving two steps, the proposed protocol does not need to store the qubit and only involves one step. PMID:27357865

  19. Quantum key distribution based on quantum dimension and independent devices

    NASA Astrophysics Data System (ADS)

    Li, Hong-Wei; Yin, Zhen-Qiang; Chen, Wei; Wang, Shuang; Guo, Guang-Can; Han, Zheng-Fu

    2014-03-01

    In this paper, we propose a quantum key distribution (QKD) protocol based on only a two-dimensional Hilbert space encoding a quantum system and independent devices between the equipment for state preparation and measurement. Our protocol is inspired by the fully device-independent quantum key distribution (FDI-QKD) protocol and the measurement-device-independent quantum key distribution (MDI-QKD) protocol. Our protocol only requires the state to be prepared in the two-dimensional Hilbert space, which weakens the state preparation assumption in the original MDI-QKD protocol. More interestingly, our protocol can overcome the detection loophole problem in the FDI-QKD protocol, which greatly limits the application of FDI-QKD. Hence our protocol can be implemented with practical optical components.

  20. Coherent-state quantum key distribution without random basis switching

    SciTech Connect

    Weedbrook, Christian; Lance, Andrew M.; Bowen, Warwick P.; Symul, Thomas; Lam, Ping Koy; Ralph, Timothy C.

    2006-02-15

    The random switching of measurement bases is commonly assumed to be a necessary step of quantum key distribution protocols. In this paper we present a no-switching protocol and show that switching is not required for coherent-state continuous-variable quantum key distribution. Further, this protocol achieves higher information rates and a simpler experimental setup compared to previous protocols that rely on switching. We propose an optimal eavesdropping attack against this protocol, assuming individual Gaussian attacks. Finally, we investigate and compare the no-switching protocol applied to the original Bennett-Brassard 1984 scheme.

  1. The security of practical quantum key distribution

    NASA Astrophysics Data System (ADS)

    Scarani, Valerio; Bechmann-Pasquinucci, Helle; Cerf, Nicolas J.; Dušek, Miloslav; Lütkenhaus, Norbert; Peev, Momtchil

    2009-07-01

    Quantum key distribution (QKD) is the first quantum information task to reach the level of mature technology, already fit for commercialization. It aims at the creation of a secret key between authorized partners connected by a quantum channel and a classical authenticated channel. The security of the key can in principle be guaranteed without putting any restriction on an eavesdropper’s power. This article provides a concise up-to-date review of QKD, biased toward the practical side. Essential theoretical tools that have been developed to assess the security of the main experimental platforms are presented (discrete-variable, continuous-variable, and distributed-phase-reference protocols).

  2. Secret key generation via a modified quantum secret sharing protocol

    NASA Astrophysics Data System (ADS)

    Smith, A. M.; Evans, P. G.; Lawrie, B.; Legré, M.; Lougovski, P.; Ray, W.; Williams, B. P.; Qi, B.; Grice, W. P.

    2015-05-01

    We present and experimentally show a novel protocol for distributing secret information between two and only two parties in a N-party single-qubit Quantum Secret Sharing (QSS) system. We demonstrate this new algorithm with N = 3 active parties over ~6km of telecom. fiber. Our experimental device is based on the Clavis2 Quantum Key Distribution (QKD) system built by ID Quantique but is generalizable to any implementation. We show that any two out of the N parties can build secret keys based on partial information from each other and with collaboration from the remaining N - 2 parties. This algorithm allows for the creation of two-party secret keys were standard QSS does not and significantly reduces the number of resources needed to implement QKD on a highly connected network such as the electrical grid.

  3. Secret Key Generation via a Modified Quantum Secret Sharing Protocol

    SciTech Connect

    Smith IV, Amos M; Evans, Philip G; Lawrie, Benjamin J; Legre, Matthieu; Lougovski, Pavel; Ray, William R; Williams, Brian P; Qi, Bing; Grice, Warren P

    2015-01-01

    We present and experimentally show a novel protocol for distributing secret information between two and only two parties in a N-party single-qubit Quantum Secret Sharing (QSS) system. We demonstrate this new algorithm with N = 3 active parties over 6km of telecom. ber. Our experimental device is based on the Clavis2 Quantum Key Distribution (QKD) system built by ID Quantique but is generalizable to any implementation. We show that any two out of the N parties can build secret keys based on partial information from each other and with collaboration from the remaining N > 2 parties. This algorithm allows for the creation of two-party secret keys were standard QSS does not and signicantly reduces the number of resources needed to implement QKD on a highly connected network such as the electrical grid.

  4. Calculation of key reduction for B92 QKD protocol

    NASA Astrophysics Data System (ADS)

    Mehic, Miralem; Partila, Pavol; Tovarek, Jaromir; Voznak, Miroslav

    2015-05-01

    It is well known that Quantum Key Distribution (QKD) can be used with the highest level of security for distribution of the secret key, which is further used for symmetrical encryption. B92 is one of the oldest QKD protocols. It uses only two non-orthogonal states, each one coding for one bit-value. It is much faster and simpler when compared to its predecessors, but with the idealized maximum efficiencies of 25% over the quantum channel. B92 consists of several phases in which initial key is significantly reduced: secret key exchange, extraction of the raw key (sifting), error rate estimation, key reconciliation and privacy amplification. QKD communication is performed over two channels: the quantum channel and the classical public channel. In order to prevent a man-in-the-middle attack and modification of messages on the public channel, authentication of exchanged values must be performed. We used Wegman-Carter authentication because it describes an upper bound for needed symmetric authentication key. We explained the reduction of the initial key in each of QKD phases.

  5. Quantum key distribution networks layer model

    NASA Astrophysics Data System (ADS)

    Wen, Hao; Han, Zheng-fu; Hong, Pei-lin; Guo, Guang-can

    2008-03-01

    Quantum Key Distribution (QKD) networks allow multiple users to generate and share secret quantum keys with unconditional security. Although many schemes of QKD networks have been presented, they are only concentrated on the system realization and physical implementations. For the complete practical quantum network, a succinct theoretic model that systematically describes the working processes from physical schemes to key process protocols, from network topology to key management, and from quantum communication to classical communication is still absent. One would hope that research and experience have shown that there are certain succinct model in the design of communication network. With demonstration of the different QKD links and the four primary types of quantum networks including probability multiplexing, wavelength multiplexing, time multiplexing and quantum multiplexing, we suggest a layer model for QKD networks which will be compatible with different implementations and protocols. We divide it into four main layers by their functional independency while defining each layer's services and responsibilities in detail, orderly named quantum links layer, quantum networks layer, quantum key distribution protocols process layer, and keys management layer. It will be helpful for the systematic design and construction of real QKD networks.

  6. Secure key storage and distribution

    DOEpatents

    Agrawal, Punit

    2015-06-02

    This disclosure describes a distributed, fault-tolerant security system that enables the secure storage and distribution of private keys. In one implementation, the security system includes a plurality of computing resources that independently store private keys provided by publishers and encrypted using a single security system public key. To protect against malicious activity, the security system private key necessary to decrypt the publication private keys is not stored at any of the computing resources. Rather portions, or shares of the security system private key are stored at each of the computing resources within the security system and multiple security systems must communicate and share partial decryptions in order to decrypt the stored private key.

  7. A Biometric Authenticated Key Agreement Protocol for Secure Token

    NASA Astrophysics Data System (ADS)

    Yoon, Eun-Jun; Yoo, Kee-Young

    This letter proposes a robust biometric authenticated key agreement (BAKA) protocol for a secure token to provide strong security and minimize the computation cost of each participant. Compared with other related protocols, the proposed BAKA protocol not only is secure against well-known cryptographical attacks but also provides various functionality and performance requirements.

  8. No signaling and quantum key distribution.

    PubMed

    Barrett, Jonathan; Hardy, Lucien; Kent, Adrian

    2005-07-01

    Standard quantum key distribution protocols are provably secure against eavesdropping attacks, if quantum theory is correct. It is theoretically interesting to know if we need to assume the validity of quantum theory to prove the security of quantum key distribution, or whether its security can be based on other physical principles. The question would also be of practical interest if quantum mechanics were ever to fail in some regime, because a scientifically and technologically advanced eavesdropper could perhaps use postquantum physics to extract information from quantum communications without necessarily causing the quantum state disturbances on which existing security proofs rely. Here we describe a key distribution scheme provably secure against general attacks by a postquantum eavesdropper limited only by the impossibility of superluminal signaling. Its security stems from violation of a Bell inequality.

  9. Quantum key distribution with dual detectors

    SciTech Connect

    Qi, Bing; Zhao, Yi; Ma, Xiongfeng; Lo, Hoi-Kwong; Qian, Li

    2007-05-15

    To improve the performance of a quantum-key-distribution (QKD) system, high speed, low dark count single photon detectors (or low-noise homodyne detectors) are required. However, in practice, a fast detector is usually noisy. Here, we propose a dual-detector method to improve the performance of a practical QKD system with realistic detectors: the legitimate receiver randomly uses either a fast (but noisy) detector or a quiet (but slow) detector to measure the incoming quantum signals. The measurement results from the quiet detector can be used to bound the eavesdropper's information, while the measurement results from the fast detector are used to generate a secure key. We apply this idea to various QKD protocols. Simulation results demonstrate significant improvements of the secure key rate in the lower loss regime in both Bennett-Brassard 1984 (BB84) protocol with ideal single photon source and Gaussian-modulated coherent states protocol; while for decoy-state BB84 protocol with weak coherent source, the improvement is moderate. We also discuss various practical issues in implementing the dual-detector scheme.

  10. All-photonic intercity quantum key distribution

    NASA Astrophysics Data System (ADS)

    Azuma, Koji; Tamaki, Kiyoshi; Munro, William J.

    2015-12-01

    Recent field demonstrations of quantum key distribution (QKD) networks hold promise for unconditionally secure communication. However, owing to loss in optical fibres, the length of point-to-point links is limited to a hundred kilometers, restricting the QKD networks to intracity. A natural way to expand the QKD network in a secure manner is to connect it to another one in a different city with quantum repeaters. But, this solution is overengineered unless such a backbone connection is intercontinental. Here we present a QKD protocol that could supersede even quantum repeaters for connecting QKD networks in different cities below 800 km distant. Nonetheless, in contrast to quantum repeaters, this protocol uses only a single intermediate node with optical devices, requiring neither quantum memories nor quantum error correction. Our all-photonic `intercity' QKD protocol bridges large gaps between the conventional intracity QKD networks and the future intercontinental quantum repeaters, conceptually and technologically.

  11. All-photonic intercity quantum key distribution.

    PubMed

    Azuma, Koji; Tamaki, Kiyoshi; Munro, William J

    2015-01-01

    Recent field demonstrations of quantum key distribution (QKD) networks hold promise for unconditionally secure communication. However, owing to loss in optical fibres, the length of point-to-point links is limited to a hundred kilometers, restricting the QKD networks to intracity. A natural way to expand the QKD network in a secure manner is to connect it to another one in a different city with quantum repeaters. But, this solution is overengineered unless such a backbone connection is intercontinental. Here we present a QKD protocol that could supersede even quantum repeaters for connecting QKD networks in different cities below 800 km distant. Nonetheless, in contrast to quantum repeaters, this protocol uses only a single intermediate node with optical devices, requiring neither quantum memories nor quantum error correction. Our all-photonic 'intercity' QKD protocol bridges large gaps between the conventional intracity QKD networks and the future intercontinental quantum repeaters, conceptually and technologically.

  12. All-photonic intercity quantum key distribution

    PubMed Central

    Azuma, Koji; Tamaki, Kiyoshi; Munro, William J.

    2015-01-01

    Recent field demonstrations of quantum key distribution (QKD) networks hold promise for unconditionally secure communication. However, owing to loss in optical fibres, the length of point-to-point links is limited to a hundred kilometers, restricting the QKD networks to intracity. A natural way to expand the QKD network in a secure manner is to connect it to another one in a different city with quantum repeaters. But, this solution is overengineered unless such a backbone connection is intercontinental. Here we present a QKD protocol that could supersede even quantum repeaters for connecting QKD networks in different cities below 800 km distant. Nonetheless, in contrast to quantum repeaters, this protocol uses only a single intermediate node with optical devices, requiring neither quantum memories nor quantum error correction. Our all-photonic ‘intercity' QKD protocol bridges large gaps between the conventional intracity QKD networks and the future intercontinental quantum repeaters, conceptually and technologically. PMID:26671044

  13. A Public-Key Based Authentication and Key Establishment Protocol Coupled with a Client Puzzle.

    ERIC Educational Resources Information Center

    Lee, M. C.; Fung, Chun-Kan

    2003-01-01

    Discusses network denial-of-service attacks which have become a security threat to the Internet community and suggests the need for reliable authentication protocols in client-server applications. Presents a public-key based authentication and key establishment protocol coupled with a client puzzle protocol and validates it through formal logic…

  14. Authenticated semi-quantum key distributions without classical channel

    NASA Astrophysics Data System (ADS)

    Li, Chuan-Ming; Yu, Kun-Fei; Kao, Shih-Hung; Hwang, Tzonelih

    2016-07-01

    Yu et al. have proposed the first authenticated semi-quantum key distribution (ASQKD) without using an authenticated classical channel. This study further proposes two advanced ASQKD protocols. Compared to Yu et al.'s schemes, the proposed protocols ensure better qubit efficiency and require fewer pre-shared keys. Security analyses show that the proposed ASQKD protocols also can be secure against several well-known outside eavesdropper's attacks.

  15. Improvement on "Quantum Key Agreement Protocol with Maximally Entangled States"

    NASA Astrophysics Data System (ADS)

    Chong, Song-Kong; Tsai, Chia-Wei; Hwang, Tzonelih

    2011-06-01

    Recently, Hsueh and Chen [in Proceedings of the 14th Information Security Conference, National Taiwan University of Science and Technology, Taipei, pp. 236-242, 2004] proposed a quantum key agreement (QKA) protocol with maximally entangled states. Their protocol allows two users to negotiate a secret key in such a way that no one can predetermine the shared key alone. This study points out two security flaws in their protocol: (1) a legitimate but malicious user can fully control the shared key alone; (2) an eavesdropper can obtain the shared key without being detected. A possible solution is presented to avoid these attacks and also Tsai et al.'s CNOT attack [in Proceedings of the 20th Cryptology and Information Security Conference, National Chiao Tung University, Hsinchu, pp. 210-213, 2010] on Hsueh and Chen protocol to obtain the shared key without being detected.

  16. Fully device-independent quantum key distribution.

    PubMed

    Vazirani, Umesh; Vidick, Thomas

    2014-10-01

    Quantum cryptography promises levels of security that are impossible to replicate in a classical world. Can this security be guaranteed even when the quantum devices on which the protocol relies are untrusted? This central question dates back to the early 1990s when the challenge of achieving device-independent quantum key distribution was first formulated. We answer this challenge by rigorously proving the device-independent security of a slight variant of Ekert's original entanglement-based protocol against the most general (coherent) attacks. The resulting protocol is robust: While assuming only that the devices can be modeled by the laws of quantum mechanics and are spatially isolated from each other and from any adversary's laboratory, it achieves a linear key rate and tolerates a constant noise rate in the devices. In particular, the devices may have quantum memory and share arbitrary quantum correlations with the eavesdropper. The proof of security is based on a new quantitative understanding of the monogamous nature of quantum correlations in the context of a multiparty protocol.

  17. Fully device-independent quantum key distribution.

    PubMed

    Vazirani, Umesh; Vidick, Thomas

    2014-10-01

    Quantum cryptography promises levels of security that are impossible to replicate in a classical world. Can this security be guaranteed even when the quantum devices on which the protocol relies are untrusted? This central question dates back to the early 1990s when the challenge of achieving device-independent quantum key distribution was first formulated. We answer this challenge by rigorously proving the device-independent security of a slight variant of Ekert's original entanglement-based protocol against the most general (coherent) attacks. The resulting protocol is robust: While assuming only that the devices can be modeled by the laws of quantum mechanics and are spatially isolated from each other and from any adversary's laboratory, it achieves a linear key rate and tolerates a constant noise rate in the devices. In particular, the devices may have quantum memory and share arbitrary quantum correlations with the eavesdropper. The proof of security is based on a new quantitative understanding of the monogamous nature of quantum correlations in the context of a multiparty protocol. PMID:25325625

  18. Trojan horse attacks on counterfactual quantum key distribution

    NASA Astrophysics Data System (ADS)

    Yang, Xiuqing; Wei, Kejin; Ma, Haiqiang; Sun, Shihai; Du, Yungang; Wu, Lingan

    2016-04-01

    There has been much interest in "counterfactual quantum cryptography" (T.-G. Noh, 2009 [10]). It seems that the counterfactual quantum key distribution protocol without any photon carrier through the quantum channel provides practical security advantages. However, we show that it is easy to break counterfactual quantum key distribution systems in practical situations. We introduce the two types of Trojan horse attacks that are available for the two-way protocol and become possible for practical counterfactual systems with our eavesdropping schemes.

  19. On the Security of a Simple Three-Party Key Exchange Protocol without Server's Public Keys

    PubMed Central

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Park, Minkyu; Paik, Juryon; Won, Dongho

    2014-01-01

    Authenticated key exchange protocols are of fundamental importance in securing communications and are now extensively deployed for use in various real-world network applications. In this work, we reveal major previously unpublished security vulnerabilities in the password-based authenticated three-party key exchange protocol according to Lee and Hwang (2010): (1) the Lee-Hwang protocol is susceptible to a man-in-the-middle attack and thus fails to achieve implicit key authentication; (2) the protocol cannot protect clients' passwords against an offline dictionary attack; and (3) the indistinguishability-based security of the protocol can be easily broken even in the presence of a passive adversary. We also propose an improved password-based authenticated three-party key exchange protocol that addresses the security vulnerabilities identified in the Lee-Hwang protocol. PMID:25258723

  20. On the security of a simple three-party key exchange protocol without server's public keys.

    PubMed

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Park, Minkyu; Paik, Juryon; Won, Dongho

    2014-01-01

    Authenticated key exchange protocols are of fundamental importance in securing communications and are now extensively deployed for use in various real-world network applications. In this work, we reveal major previously unpublished security vulnerabilities in the password-based authenticated three-party key exchange protocol according to Lee and Hwang (2010): (1) the Lee-Hwang protocol is susceptible to a man-in-the-middle attack and thus fails to achieve implicit key authentication; (2) the protocol cannot protect clients' passwords against an offline dictionary attack; and (3) the indistinguishability-based security of the protocol can be easily broken even in the presence of a passive adversary. We also propose an improved password-based authenticated three-party key exchange protocol that addresses the security vulnerabilities identified in the Lee-Hwang protocol. PMID:25258723

  1. Security proof for quantum key distribution using qudit systems

    SciTech Connect

    Sheridan, Lana; Scarani, Valerio

    2010-09-15

    We provide security bounds against coherent attacks for two families of quantum key distribution protocols that use d-dimensional quantum systems. In the asymptotic regime, both the secret key rate for fixed noise and the robustness to noise increase with d. The finite key corrections are found to be almost insensitive to d < or approx. 20.

  2. Quantum key distribution with a reference quantum state

    SciTech Connect

    Molotkov, S. N.

    2011-11-15

    A new quantum key distribution protocol stable at arbitrary losses in a quantum communication channel has been proposed. For the stability of the protocol, it is of fundamental importance that changes in states associated with losses in the communication channel (in the absence of the eavesdropper) are included in measurements.

  3. A Secure Authenticated Key Exchange Protocol for Credential Services

    NASA Astrophysics Data System (ADS)

    Shin, Seonghan; Kobara, Kazukuni; Imai, Hideki

    In this paper, we propose a leakage-resilient and proactive authenticated key exchange (called LRP-AKE) protocol for credential services which provides not only a higher level of security against leakage of stored secrets but also secrecy of private key with respect to the involving server. And we show that the LRP-AKE protocol is provably secure in the random oracle model with the reduction to the computational Difie-Hellman problem. In addition, we discuss about some possible applications of the LRP-AKE protocol.

  4. A Signcryption based Light Weight Key Exchange Protocol

    NASA Astrophysics Data System (ADS)

    Feng, Yong; Wei, Qian; Zhang, Xing

    Traditional cryptography based authenticated Diffie-Hellman key exchange protocols expose the problems of efficiency and privacy since signature-then-encryption is heavy to wireless communication special for flexible dynamic deployment, i.e., wireless mesh networks, wireless sensor networks, mobile ad hoc networks, etc., in computational cost and communicational overhead and traditional digital signature allows anyone to verify its validity using the corresponding public key. In this paper, we propose a signcryption based light weight key exchange protocol named SLWKE which can provide resistance to traditional attacks, i.e., eavesdropping, deducing, replaying, interleaving, forging and repudiating, and unknown key-share attack and save computational cost by three modular calculations, i.e., one modular inversion, one modular addition and one modular multiplicative, included in a signature s and communicational overhead by secure length of IqI in comparison to signcryption based direct key exchange using a time-stamp protocol termed Dkeuts.

  5. Decoy state quantum key distribution with modified coherent state

    SciTech Connect

    Yin Zhenqiang; Han Zhengfu; Sun Fangwen; Guo Guangcan

    2007-07-15

    To beat photon-number splitting attack, decoy state quantum key distribution (QKD) based on the coherent state has been studied widely. We present a decoy state QKD protocol with a modified coherent state (MCS). By destructive quantum interference, a MCS with fewer multiphoton events can be obtained, which may improve the key bit rate and security distance of QKD. Through numerical simulation, we show about a 2-dB increment on the security distance for Bennett-Brassard (1984) protocol.

  6. Authenticated Quantum Key Distribution with Collective Detection using Single Photons

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Xu, Bing-Jie; Duan, Ji-Tong; Liu, Bin; Su, Qi; He, Yuan-Hang; Jia, Heng-Yue

    2016-05-01

    We present two authenticated quantum key distribution (AQKD) protocols by utilizing the idea of collective (eavesdropping) detection. One is a two-party AQKD protocol, the other is a multiparty AQKD protocol with star network topology. In these protocols, the classical channels need not be assumed to be authenticated and the single photons are used as the quantum information carriers. To achieve mutual identity authentication and establish a random key in each of the proposed protocols, only one participant should be capable of preparing and measuring single photons, and the main quantum ability that the rest of the participants should have is just performing certain unitary operations. Security analysis shows that these protocols are free from various kinds of attacks, especially the impersonation attack and the man-in-the-middle (MITM) attack.

  7. Authenticated Quantum Key Distribution with Collective Detection using Single Photons

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Xu, Bing-Jie; Duan, Ji-Tong; Liu, Bin; Su, Qi; He, Yuan-Hang; Jia, Heng-Yue

    2016-10-01

    We present two authenticated quantum key distribution (AQKD) protocols by utilizing the idea of collective (eavesdropping) detection. One is a two-party AQKD protocol, the other is a multiparty AQKD protocol with star network topology. In these protocols, the classical channels need not be assumed to be authenticated and the single photons are used as the quantum information carriers. To achieve mutual identity authentication and establish a random key in each of the proposed protocols, only one participant should be capable of preparing and measuring single photons, and the main quantum ability that the rest of the participants should have is just performing certain unitary operations. Security analysis shows that these protocols are free from various kinds of attacks, especially the impersonation attack and the man-in-the-middle (MITM) attack.

  8. Detector-decoy high-dimensional quantum key distribution.

    PubMed

    Bao, Haize; Bao, Wansu; Wang, Yang; Chen, Ruike; Zhou, Chun; Jiang, Musheng; Li, Hongwei

    2016-09-19

    The decoy-state high-dimensional quantum key distribution provides a practical secure way to share more private information with high photon-information efficiency. In this paper, based on detector-decoy method, we propose a detector-decoy high-dimensional quantum key distribution protocol. Employing threshold detectors and a variable attenuator, we can promise the security under Gsussian collective attacks with much simpler operations in practical implementation. By numerical evaluation, we show that without varying the source intensity, our protocol performs much better than one-decoy-state protocol and as well as the two-decoy-state protocol in the infinite-size regime. In the finite-size regime, our protocol can achieve better results. Specially, when the detector efficiency is lower, the advantage of the detector-decoy method becomes more prominent. PMID:27661950

  9. Completely device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Aguilar, Edgar A.; Ramanathan, Ravishankar; Kofler, Johannes; Pawłowski, Marcin

    2016-08-01

    Quantum key distribution (QKD) is a provably secure way for two distant parties to establish a common secret key, which then can be used in a classical cryptographic scheme. Using quantum entanglement, one can reduce the necessary assumptions that the parties have to make about their devices, giving rise to device-independent QKD (DIQKD). However, in all existing protocols to date the parties need to have an initial (at least partially) random seed as a resource. In this work, we show that this requirement can be dropped. Using recent advances in the fields of randomness amplification and randomness expansion, we demonstrate that it is sufficient for the message the parties want to communicate to be (partially) unknown to the adversaries—an assumption without which any type of cryptography would be pointless to begin with. One party can use her secret message to locally generate a secret sequence of bits, which can then be openly used by herself and the other party in a DIQKD protocol. Hence our work reduces the requirements needed to perform secure DIQKD and establish safe communication.

  10. Enhanced Usage of Keys Obtained by Physical, Unconditionally Secure Distributions

    NASA Astrophysics Data System (ADS)

    Kish, Laszlo B.; Granqvist, Claes-Göran

    2015-04-01

    Unconditionally secure physical key distribution schemes are very slow, and it is practically impossible to use a one-time-pad based cipher to guarantee unconditional security for the encryption of data because using the key bits more than once gives out statistical information, for example via the known-plain-text-attack or by utilizing known components of the protocol and language statistics. Here, we outline a protocol that reduces this speed problem and allows almost-one-time-pad based communication with an unconditionally secure physical key of finite length. The physical, unconditionally secure key is not used for data encryption but is employed in order to generate and share a new software-based key without any known-plain-text component. The software-only-based key distribution is then changed from computationally secure to unconditionally secure, because the communicated key-exchange data (algorithm parameters, one-way functions of random numbers, etc.) are encrypted in an unconditionally secure way with a one-time-pad. For practical applications, this combined physical/software key distribution based communication looks favorable compared to the software-only and physical-only key distribution based communication whenever the speed of the physical key distribution is much lower than that of the software-based key distribution. A mathematical security proof of this new scheme remains an open problem.

  11. Semiquantum key distribution with secure delegated quantum computation

    PubMed Central

    Li, Qin; Chan, Wai Hong; Zhang, Shengyu

    2016-01-01

    Semiquantum key distribution allows a quantum party to share a random key with a “classical” party who only can prepare and measure qubits in the computational basis or reorder some qubits when he has access to a quantum channel. In this work, we present a protocol where a secret key can be established between a quantum user and an almost classical user who only needs the quantum ability to access quantum channels, by securely delegating quantum computation to a quantum server. We show the proposed protocol is robust even when the delegated quantum server is a powerful adversary, and is experimentally feasible with current technology. As one party of our protocol is the most quantum-resource efficient, it can be more practical and significantly widen the applicability scope of quantum key distribution. PMID:26813384

  12. Semiquantum key distribution with secure delegated quantum computation.

    PubMed

    Li, Qin; Chan, Wai Hong; Zhang, Shengyu

    2016-01-01

    Semiquantum key distribution allows a quantum party to share a random key with a "classical" party who only can prepare and measure qubits in the computational basis or reorder some qubits when he has access to a quantum channel. In this work, we present a protocol where a secret key can be established between a quantum user and an almost classical user who only needs the quantum ability to access quantum channels, by securely delegating quantum computation to a quantum server. We show the proposed protocol is robust even when the delegated quantum server is a powerful adversary, and is experimentally feasible with current technology. As one party of our protocol is the most quantum-resource efficient, it can be more practical and significantly widen the applicability scope of quantum key distribution. PMID:26813384

  13. Semiquantum key distribution with secure delegated quantum computation

    NASA Astrophysics Data System (ADS)

    Li, Qin; Chan, Wai Hong; Zhang, Shengyu

    2016-01-01

    Semiquantum key distribution allows a quantum party to share a random key with a “classical” party who only can prepare and measure qubits in the computational basis or reorder some qubits when he has access to a quantum channel. In this work, we present a protocol where a secret key can be established between a quantum user and an almost classical user who only needs the quantum ability to access quantum channels, by securely delegating quantum computation to a quantum server. We show the proposed protocol is robust even when the delegated quantum server is a powerful adversary, and is experimentally feasible with current technology. As one party of our protocol is the most quantum-resource efficient, it can be more practical and significantly widen the applicability scope of quantum key distribution.

  14. New logistics protocols for distributed interactive simulation

    NASA Astrophysics Data System (ADS)

    Taylor, Darrin; Morrison, John; Katz, Warren; Felton, Erik; Herman, Deborah A.

    1995-06-01

    In today's environment, the transportation and maintenance of military forces is nearly as important as combat operations. Rapid deployment to regions of low-intensity conflict will become a very common training scenario for the U.S. military. Thus it is desirable to apply distributed simulation technology to train logistics personnel in their combat support roles. Currently, distributed interactive simulation (DIS) only contains rudimentary logistics protocols. This paper introduces new protocols designed to handle the logistics problem. The Newtonian protocol takes a physics-based approach to modeling interactions on the simulation network. This protocol consists of a family of protocol data units (PDUs) which are used to communicate forces in different circumstances. The protocol implements a small set of physical relations. This represents a flexible and general mechanism to describe battlefield interactions between network entities. The migratory object protocol (MOP) family addresses the transfer of control. General mechanisms provide the means to simulate resupply, repair, and maintenance of entities at any level of abstraction (individual soldier to division). It can also increase the fidelity of mine laying, enable handover of weapons for terminal guidance, allow for the distribution of aggregate-level simulation entities, provide capabilities for the simulation of personnel, etc.

  15. One-way quantum key distribution: Simple upper bound on the secret key rate

    SciTech Connect

    Moroder, Tobias; Luetkenhaus, Norbert; Curty, Marcos

    2006-11-15

    We present a simple method to obtain an upper bound on the achievable secret key rate in quantum key distribution (QKD) protocols that use only unidirectional classical communication during the public-discussion phase. This method is based on a necessary precondition for one-way secret key distillation; the legitimate users need to prove that there exists no quantum state having a symmetric extension that is compatible with the available measurements results. The main advantage of the obtained upper bound is that it can be formulated as a semidefinite program, which can be efficiently solved. We illustrate our results by analyzing two well-known qubit-based QKD protocols: the four-state protocol and the six-state protocol.

  16. Quantum key distribution: vulnerable if imperfectly implemented

    NASA Astrophysics Data System (ADS)

    Leuchs, G.

    2013-10-01

    We report several vulnerabilities found in Clavis2, the flagship quantum key distribution (QKD) system from ID Quantique. We show the hacking of a calibration sequence run by Clavis2 to synchronize the Alice and Bob devices before performing the secret key exchange. This hack induces a temporal detection efficiency mismatch in Bob that can allow Eve to break the security of the cryptosystem using faked states. We also experimentally investigate the superlinear behaviour in the single-photon detectors (SPDs) used by Bob. Due to this superlinearity, the SPDs feature an actual multi-photon detection probability which is generally higher than the theoretically-modelled value. We show how this increases the risk of detector control attacks on QKD systems (including Clavis2) employing such SPDs. Finally, we review the experimental feasibility of Trojan-horse attacks. In the case of Clavis2, the objective is to read Bob's phase modulator to acquire knowledge of his basis choice as this information suffices for constructing the raw key in the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) protocol. We work in close collaboration with ID Quantique and for all these loopholes, we notified them in advance. Wherever possible, we or ID Quantique proposed countermeasures and they implemented suitable patches and upgrade their systems.

  17. A universal quantum key distribution method

    NASA Astrophysics Data System (ADS)

    Zhang, He-qing; Zhou, Yuan-yuan; Zhou, Xue-jun; Tian, Pei-gen

    2013-09-01

    Combining heralded pair coherent state (HPCS) with passive decoy-state idea, a new method is presented for quantum key distribution (QKD). The weak coherent source (WCS) and heralded single photon source (HSPS) are the most common photon sources for state-of-the-art QKD. However, there is a prominent crossover between the maximum secure distance and the secure key generation rate if these two sources are applied in a practical decoy-state QKD. The method in this paper does not prepare decoy states actively. Therefore, it uses the same experimental setup as the conventional protocol, and there is no need for a hardware change, so its implementation is very easy. Furthermore, the method can obtain a longer secure transmission distance, and its key generation rate is higher than that of the passive decoy-state method with WCS or HSPS in the whole secure transmission distance. Thus, the limitation of the mentioned photo sources for QKD is broken through. So the method is universal in performance and implementation.

  18. Security of quantum key distribution with multiphoton components.

    PubMed

    Yin, Hua-Lei; Fu, Yao; Mao, Yingqiu; Chen, Zeng-Bing

    2016-01-01

    Most qubit-based quantum key distribution (QKD) protocols extract the secure key merely from single-photon component of the attenuated lasers. However, with the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) QKD protocol, the unconditionally secure key can be extracted from the two-photon component by modifying the classical post-processing procedure in the BB84 protocol. Employing the merits of SARG04 QKD protocol and six-state preparation, one can extract secure key from the components of single photon up to four photons. In this paper, we provide the exact relations between the secure key rate and the bit error rate in a six-state SARG04 protocol with single-photon, two-photon, three-photon, and four-photon sources. By restricting the mutual information between the phase error and bit error, we obtain a higher secure bit error rate threshold of the multiphoton components than previous works. Besides, we compare the performances of the six-state SARG04 with other prepare-and-measure QKD protocols using decoy states. PMID:27383014

  19. Security of quantum key distribution with multiphoton components.

    PubMed

    Yin, Hua-Lei; Fu, Yao; Mao, Yingqiu; Chen, Zeng-Bing

    2016-07-07

    Most qubit-based quantum key distribution (QKD) protocols extract the secure key merely from single-photon component of the attenuated lasers. However, with the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) QKD protocol, the unconditionally secure key can be extracted from the two-photon component by modifying the classical post-processing procedure in the BB84 protocol. Employing the merits of SARG04 QKD protocol and six-state preparation, one can extract secure key from the components of single photon up to four photons. In this paper, we provide the exact relations between the secure key rate and the bit error rate in a six-state SARG04 protocol with single-photon, two-photon, three-photon, and four-photon sources. By restricting the mutual information between the phase error and bit error, we obtain a higher secure bit error rate threshold of the multiphoton components than previous works. Besides, we compare the performances of the six-state SARG04 with other prepare-and-measure QKD protocols using decoy states.

  20. Security of quantum key distribution with multiphoton components

    PubMed Central

    Yin, Hua-Lei; Fu, Yao; Mao, Yingqiu; Chen, Zeng-Bing

    2016-01-01

    Most qubit-based quantum key distribution (QKD) protocols extract the secure key merely from single-photon component of the attenuated lasers. However, with the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) QKD protocol, the unconditionally secure key can be extracted from the two-photon component by modifying the classical post-processing procedure in the BB84 protocol. Employing the merits of SARG04 QKD protocol and six-state preparation, one can extract secure key from the components of single photon up to four photons. In this paper, we provide the exact relations between the secure key rate and the bit error rate in a six-state SARG04 protocol with single-photon, two-photon, three-photon, and four-photon sources. By restricting the mutual information between the phase error and bit error, we obtain a higher secure bit error rate threshold of the multiphoton components than previous works. Besides, we compare the performances of the six-state SARG04 with other prepare-and-measure QKD protocols using decoy states. PMID:27383014

  1. Security of quantum key distribution with multiphoton components

    NASA Astrophysics Data System (ADS)

    Yin, Hua-Lei; Fu, Yao; Mao, Yingqiu; Chen, Zeng-Bing

    2016-07-01

    Most qubit-based quantum key distribution (QKD) protocols extract the secure key merely from single-photon component of the attenuated lasers. However, with the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) QKD protocol, the unconditionally secure key can be extracted from the two-photon component by modifying the classical post-processing procedure in the BB84 protocol. Employing the merits of SARG04 QKD protocol and six-state preparation, one can extract secure key from the components of single photon up to four photons. In this paper, we provide the exact relations between the secure key rate and the bit error rate in a six-state SARG04 protocol with single-photon, two-photon, three-photon, and four-photon sources. By restricting the mutual information between the phase error and bit error, we obtain a higher secure bit error rate threshold of the multiphoton components than previous works. Besides, we compare the performances of the six-state SARG04 with other prepare-and-measure QKD protocols using decoy states.

  2. A Key Establishment Protocol for RFID User in IPTV Environment

    NASA Astrophysics Data System (ADS)

    Jeong, Yoon-Su; Kim, Yong-Tae; Sohn, Jae-Min; Park, Gil-Cheol; Lee, Sang-Ho

    In recent years, the usage of IPTV (Internet Protocol Television) has been increased. The reason is a technological convergence of broadcasting and telecommunication delivering interactive applications and multimedia content through high speed Internet connections. The main critical point of IPTV security requirements is subscriber authentication. That is, IPTV service should have the capability to identify the subscribers to prohibit illegal access. Currently, IPTV service does not provide a sound authentication mechanism to verify the identity of its wireless users (or devices). This paper focuses on a lightweight authentication and key establishment protocol based on the use of hash functions. The proposed approach provides effective authentication for a mobile user with a RFID tag whose authentication information is communicated back and forth with the IPTV authentication server via IPTV set-top box (STB). That is, the proposed protocol generates user's authentication information that is a bundle of two public keys derived from hashing user's private keys and RFID tag's session identifier, and adds 1bit to this bundled information for subscriber's information confidentiality before passing it to the authentication server.

  3. Free-Space Quantum Key Distribution using Polarization Entangled Photons

    NASA Astrophysics Data System (ADS)

    Kurtsiefer, Christian

    2007-06-01

    We report on a complete experimental implementation of a quantum key distribution protocol through a free space link using polarization-entangled photon pairs from a compact parametric down-conversion source [1]. Based on a BB84-equivalent protocol, we generated without interruption over 10 hours a secret key free-space optical link distance of 1.5 km with a rate up to 950 bits per second after error correction and privacy amplification. Our system is based on two time stamp units and relies on no specific hardware channel for coincidence identification besides an IP link. For that, initial clock synchronization with an accuracy of better than 2 ns is achieved, based on a conventional NTP protocol and a tiered cross correlation of time tags on both sides. Time tags are used to servo a local clock, allowing a streamed measurement on correctly identified photon pairs. Contrary to the majority of quantum key distribution systems, this approach does not require a trusted large-bandwidth random number generator, but integrates that into the physical key generation process. We discuss our current progress of implementing a key distribution via an atmospherical link during daylight conditions, and possible attack scenarios on a physical timing information side channel to a entanglement-based key distribution system. [1] I. Marcikic, A. Lamas-Linares, C. Kurtsiefer, Appl. Phys. Lett. 89, 101122 (2006).

  4. Two-way quantum key distribution at telecommunication wavelength

    SciTech Connect

    Kumar, Rupesh; Lucamarini, Marco; Di Giuseppe, Giovanni; Natali, Riccardo; Mancini, Giorgio; Tombesi, Paolo

    2008-02-15

    We report on a quantum key distribution effected with a two-way deterministic protocol over a standard telecommunication fiber. Despite the common belief of a prohibitive loss rate for such a scheme, our results show its feasibility on distances of few tenths of kilometers.

  5. Randomness determines practical security of BB84 quantum key distribution.

    PubMed

    Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Shuang; Qian, Yong-Jun; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu

    2015-01-01

    Unconditional security of the BB84 quantum key distribution protocol has been proved by exploiting the fundamental laws of quantum mechanics, but the practical quantum key distribution system maybe hacked by considering the imperfect state preparation and measurement respectively. Until now, different attacking schemes have been proposed by utilizing imperfect devices, but the general security analysis model against all of the practical attacking schemes has not been proposed. Here, we demonstrate that the general practical attacking schemes can be divided into the Trojan horse attack, strong randomness attack and weak randomness attack respectively. We prove security of BB84 protocol under randomness attacking models, and these results can be applied to guarantee the security of the practical quantum key distribution system. PMID:26552359

  6. Randomness determines practical security of BB84 quantum key distribution

    PubMed Central

    Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Shuang; Qian, Yong-Jun; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu

    2015-01-01

    Unconditional security of the BB84 quantum key distribution protocol has been proved by exploiting the fundamental laws of quantum mechanics, but the practical quantum key distribution system maybe hacked by considering the imperfect state preparation and measurement respectively. Until now, different attacking schemes have been proposed by utilizing imperfect devices, but the general security analysis model against all of the practical attacking schemes has not been proposed. Here, we demonstrate that the general practical attacking schemes can be divided into the Trojan horse attack, strong randomness attack and weak randomness attack respectively. We prove security of BB84 protocol under randomness attacking models, and these results can be applied to guarantee the security of the practical quantum key distribution system. PMID:26552359

  7. Randomness determines practical security of BB84 quantum key distribution

    NASA Astrophysics Data System (ADS)

    Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Shuang; Qian, Yong-Jun; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu

    2015-11-01

    Unconditional security of the BB84 quantum key distribution protocol has been proved by exploiting the fundamental laws of quantum mechanics, but the practical quantum key distribution system maybe hacked by considering the imperfect state preparation and measurement respectively. Until now, different attacking schemes have been proposed by utilizing imperfect devices, but the general security analysis model against all of the practical attacking schemes has not been proposed. Here, we demonstrate that the general practical attacking schemes can be divided into the Trojan horse attack, strong randomness attack and weak randomness attack respectively. We prove security of BB84 protocol under randomness attacking models, and these results can be applied to guarantee the security of the practical quantum key distribution system.

  8. Quantum key distribution with prepare-and-measure Bell test

    NASA Astrophysics Data System (ADS)

    Tan, Yong-Gang

    2016-10-01

    The prepare-and-measure quantum key distribution (QKD) has the merits of fast speed, high key generation rate, and easy implementation. However, the detector side channel attacks greatly undermine the security of the key bits. The eavesdropper, Eve, exploits the flaws of the detectors to obtain illegal information without violating quantum principles. It means that she can intervene in the communication without being detected. A prepare-and-measure Bell test protocol will be proposed. By randomly carrying out Bell test at the side of the information receiver, Bob, Eve’s illegal information gain within the detector side channel attack can be well bounded. This protocol does not require any improvement on the detectors used in available prepare-and-measure QKD. Though we only illustrate its application in the BB84 protocol, it is applicable for any prepare-and-measure QKD.

  9. Quantum key distribution with prepare-and-measure Bell test

    PubMed Central

    Tan, Yong-gang

    2016-01-01

    The prepare-and-measure quantum key distribution (QKD) has the merits of fast speed, high key generation rate, and easy implementation. However, the detector side channel attacks greatly undermine the security of the key bits. The eavesdropper, Eve, exploits the flaws of the detectors to obtain illegal information without violating quantum principles. It means that she can intervene in the communication without being detected. A prepare-and-measure Bell test protocol will be proposed. By randomly carrying out Bell test at the side of the information receiver, Bob, Eve’s illegal information gain within the detector side channel attack can be well bounded. This protocol does not require any improvement on the detectors used in available prepare-and-measure QKD. Though we only illustrate its application in the BB84 protocol, it is applicable for any prepare-and-measure QKD. PMID:27733771

  10. Experimental realization of equiangular three-state quantum key distribution

    NASA Astrophysics Data System (ADS)

    Schiavon, Matteo; Vallone, Giuseppe; Villoresi, Paolo

    2016-07-01

    Quantum key distribution using three states in equiangular configuration combines a security threshold comparable with the one of the Bennett-Brassard 1984 protocol and a quantum bit error rate (QBER) estimation that does not need to reveal part of the key. We implement an entanglement-based version of the Renes 2004 protocol, using only passive optic elements in a linear scheme for the positive-operator valued measure (POVM), generating an asymptotic secure key rate of more than 10 kbit/s, with a mean QBER of 1.6%. We then demonstrate its security in the case of finite key and evaluate the key rate for both collective and general attacks.

  11. Experimental realization of equiangular three-state quantum key distribution

    PubMed Central

    Schiavon, Matteo; Vallone, Giuseppe; Villoresi, Paolo

    2016-01-01

    Quantum key distribution using three states in equiangular configuration combines a security threshold comparable with the one of the Bennett-Brassard 1984 protocol and a quantum bit error rate (QBER) estimation that does not need to reveal part of the key. We implement an entanglement-based version of the Renes 2004 protocol, using only passive optic elements in a linear scheme for the positive-operator valued measure (POVM), generating an asymptotic secure key rate of more than 10 kbit/s, with a mean QBER of 1.6%. We then demonstrate its security in the case of finite key and evaluate the key rate for both collective and general attacks. PMID:27465643

  12. Experimental realization of equiangular three-state quantum key distribution.

    PubMed

    Schiavon, Matteo; Vallone, Giuseppe; Villoresi, Paolo

    2016-07-28

    Quantum key distribution using three states in equiangular configuration combines a security threshold comparable with the one of the Bennett-Brassard 1984 protocol and a quantum bit error rate (QBER) estimation that does not need to reveal part of the key. We implement an entanglement-based version of the Renes 2004 protocol, using only passive optic elements in a linear scheme for the positive-operator valued measure (POVM), generating an asymptotic secure key rate of more than 10 kbit/s, with a mean QBER of 1.6%. We then demonstrate its security in the case of finite key and evaluate the key rate for both collective and general attacks.

  13. Security of a semi-quantum protocol where reflections contribute to the secret key

    NASA Astrophysics Data System (ADS)

    Krawec, Walter O.

    2016-05-01

    In this paper, we provide a proof of unconditional security for a semi-quantum key distribution protocol introduced in a previous work. This particular protocol demonstrated the possibility of using X basis states to contribute to the raw key of the two users (as opposed to using only direct measurement results) even though a semi-quantum participant cannot directly manipulate such states. In this work, we provide a complete proof of security by deriving a lower bound of the protocol's key rate in the asymptotic scenario. Using this bound, we are able to find an error threshold value such that for all error rates less than this threshold, it is guaranteed that A and B may distill a secure secret key; for error rates larger than this threshold, A and B should abort. We demonstrate that this error threshold compares favorably to several fully quantum protocols. We also comment on some interesting observations about the behavior of this protocol under certain noise scenarios.

  14. Trustworthiness of detectors in quantum key distribution with untrusted detectors

    DOE PAGESBeta

    Qi, Bing

    2015-02-25

    Measurement-device-independent quantum key distribution (MDI-QKD) protocol has been demonstrated as a viable solution to detector side-channel attacks. One of the main advantages of MDI-QKD is that the security can be proved without making any assumptions about how the measurement device works. The price to pay is the relatively low secure key rate comparing with conventional quantum key distribution (QKD), such as the decoy-state BB84 protocol. Recently a new QKD protocol, aiming at bridging the strong security of MDI-QKD with the high e ciency of conventional QKD, has been proposed. In this protocol, the legitimate receiver employs a trusted linear opticsmore » network to encode information on photons received from an insecure quantum channel, and then performs a Bell state measurement (BSM) using untrusted detectors. One crucial assumption made in most of these studies is that the untrusted BSM located inside the receiver's laboratory cannot send any unwanted information to the outside. Here in this paper, we show that if the BSM is completely untrusted, a simple scheme would allow the BSM to send information to the outside. Combined with Trojan horse attacks, this scheme could allow Eve to gain information of the quantum key without being detected. Ultimately, to prevent the above attack, either countermeasures to Trojan horse attacks or some trustworthiness to the "untrusted" BSM device is required.« less

  15. Trustworthiness of detectors in quantum key distribution with untrusted detectors

    SciTech Connect

    Qi, Bing

    2015-02-25

    Measurement-device-independent quantum key distribution (MDI-QKD) protocol has been demonstrated as a viable solution to detector side-channel attacks. One of the main advantages of MDI-QKD is that the security can be proved without making any assumptions about how the measurement device works. The price to pay is the relatively low secure key rate comparing with conventional quantum key distribution (QKD), such as the decoy-state BB84 protocol. Recently a new QKD protocol, aiming at bridging the strong security of MDI-QKD with the high e ciency of conventional QKD, has been proposed. In this protocol, the legitimate receiver employs a trusted linear optics network to encode information on photons received from an insecure quantum channel, and then performs a Bell state measurement (BSM) using untrusted detectors. One crucial assumption made in most of these studies is that the untrusted BSM located inside the receiver's laboratory cannot send any unwanted information to the outside. Here in this paper, we show that if the BSM is completely untrusted, a simple scheme would allow the BSM to send information to the outside. Combined with Trojan horse attacks, this scheme could allow Eve to gain information of the quantum key without being detected. Ultimately, to prevent the above attack, either countermeasures to Trojan horse attacks or some trustworthiness to the "untrusted" BSM device is required.

  16. Sifting attacks in finite-size quantum key distribution

    NASA Astrophysics Data System (ADS)

    Pfister, Corsin; Lütkenhaus, Norbert; Wehner, Stephanie; Coles, Patrick J.

    2016-05-01

    A central assumption in quantum key distribution (QKD) is that Eve has no knowledge about which rounds will be used for parameter estimation or key distillation. Here we show that this assumption is violated for iterative sifting, a sifting procedure that has been employed in some (but not all) of the recently suggested QKD protocols in order to increase their efficiency. We show that iterative sifting leads to two security issues: (1) some rounds are more likely to be key rounds than others, (2) the public communication of past measurement choices changes this bias round by round. We analyze these two previously unnoticed problems, present eavesdropping strategies that exploit them, and find that the two problems are independent. We discuss some sifting protocols in the literature that are immune to these problems. While some of these would be inefficient replacements for iterative sifting, we find that the sifting subroutine of an asymptotically secure protocol suggested by Lo et al (2005 J. Cryptol. 18 133–65), which we call LCA sifting, has an efficiency on par with that of iterative sifting. One of our main results is to show that LCA sifting can be adapted to achieve secure sifting in the finite-key regime. More precisely, we combine LCA sifting with a certain parameter estimation protocol, and we prove the finite-key security of this combination. Hence we propose that LCA sifting should replace iterative sifting in future QKD implementations. More generally, we present two formal criteria for a sifting protocol that guarantee its finite-key security. Our criteria may guide the design of future protocols and inspire a more rigorous QKD analysis, which has neglected sifting-related attacks so far.

  17. Sifting attacks in finite-size quantum key distribution

    NASA Astrophysics Data System (ADS)

    Pfister, Corsin; Lütkenhaus, Norbert; Wehner, Stephanie; Coles, Patrick J.

    2016-05-01

    A central assumption in quantum key distribution (QKD) is that Eve has no knowledge about which rounds will be used for parameter estimation or key distillation. Here we show that this assumption is violated for iterative sifting, a sifting procedure that has been employed in some (but not all) of the recently suggested QKD protocols in order to increase their efficiency. We show that iterative sifting leads to two security issues: (1) some rounds are more likely to be key rounds than others, (2) the public communication of past measurement choices changes this bias round by round. We analyze these two previously unnoticed problems, present eavesdropping strategies that exploit them, and find that the two problems are independent. We discuss some sifting protocols in the literature that are immune to these problems. While some of these would be inefficient replacements for iterative sifting, we find that the sifting subroutine of an asymptotically secure protocol suggested by Lo et al (2005 J. Cryptol. 18 133-65), which we call LCA sifting, has an efficiency on par with that of iterative sifting. One of our main results is to show that LCA sifting can be adapted to achieve secure sifting in the finite-key regime. More precisely, we combine LCA sifting with a certain parameter estimation protocol, and we prove the finite-key security of this combination. Hence we propose that LCA sifting should replace iterative sifting in future QKD implementations. More generally, we present two formal criteria for a sifting protocol that guarantee its finite-key security. Our criteria may guide the design of future protocols and inspire a more rigorous QKD analysis, which has neglected sifting-related attacks so far.

  18. The Case for Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Stebila, Douglas; Mosca, Michele; Lütkenhaus, Norbert

    Quantum key distribution (QKD) promises secure key agreement by using quantum mechanical systems. We argue that QKD will be an important part of future cryptographic infrastructures. It can provide long-term confidentiality for encrypted information without reliance on computational assumptions. Although QKD still requires authentication to prevent man-in-the-middle attacks, it can make use of either information-theoretically secure symmetric key authentication or computationally secure public key authentication: even when using public key authentication, we argue that QKD still offers stronger security than classical key agreement.

  19. Security Bounds for Continuous Variables Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Navascués, Miguel; Acín, Antonio

    2005-01-01

    Security bounds for key distribution protocols using coherent and squeezed states and homodyne measurements are presented. These bounds refer to (i)general attacks and (ii)collective attacks where Eve applies the optimal individual interaction to the sent states, but delays her measurement until the end of the reconciliation process. For the case of a lossy line and coherent states, it is first proven that a secure key distribution is possible up to 1.9dB of losses. For the second scenario, the security bounds are the same as for the completely incoherent attack.

  20. Secure quantum key distribution with an uncharacterized source.

    PubMed

    Koashi, Masato; Preskill, John

    2003-02-01

    We prove the security of the Bennett-Brassard (BB84) quantum key distribution protocol for an arbitrary source whose averaged states are basis independent, a condition that is automatically satisfied if the source is suitably designed. The proof is based on the observation that, to an adversary, the key extraction process is equivalent to a measurement in the sigma(x) basis performed on a pure sigma(z)-basis eigenstate. The dependence of the achievable key length on the bit error rate is the same as that established by Shor and Preskill [Phys. Rev. Lett. 85, 441 (2000)

  1. Reference-frame-independent quantum key distribution with source flaws

    NASA Astrophysics Data System (ADS)

    Wang, Can; Sun, Shi-Hai; Ma, Xiang-Chun; Tang, Guang-Zhao; Liang, Lin-Mei

    2015-10-01

    Compared with the traditional protocols of quantum key distribution (QKD), the reference-frame-independent (RFI)-QKD protocol has been generally proved to be very useful and practical, since its experimental implementation can be simplified without the alignment of a reference frame. In most RFI-QKD systems, the encoding states are always taken to be perfect, which, however, is not practical in realizations. In this paper, we consider the security of RFI QKD with source flaws based on the loss-tolerant method proposed by Tamaki et al. [Phys. Rev. A 90, 052314 (2014), 10.1103/PhysRevA.90.052314]. As the six-state protocol can be realized with four states, we show that the RFI-QKD protocol can also be performed with only four encoding states instead of six encoding states in its standard version. Furthermore, the numerical simulation results show that the source flaws in the key-generation basis (Z basis) will reduce the key rate but are loss tolerant, while the ones in X and Y bases almost have no effect and the key rate remains almost the same even when they are very large. Hence, our method and results will have important significance in practical experiments, especially in earth-to-satellite or chip-to-chip quantum communications.

  2. A continuous-variable quantum key distribution using correlated photons

    NASA Astrophysics Data System (ADS)

    Donkor, Eric; Erdmann, Reinhard; Kumavor, Patrick D.

    2015-05-01

    We propose a quantum key distribution system based on the generation and transmission of random continuous variables in time, energy (frequency), phase, and photon number. The bounds for quantum measurement in our scheme are determined by the uncertainty principle, rather than single quadrature measurements of entangled states, or the no-cloning of (unknown) single quantum states. Correlated measurements are performed in the energy-time, and momentum-displacement frames. As a result the QKD protocols for generation of raw-keys, sifted-keys and privacy amplifications offer a higher level of security against individual or multi-attacks. The network architecture is in a plug-and-play configuration; the QKD protocol; determination of quantum bit error rate, and estimation of system performance in the presence of eavesdropping are presented.

  3. Long-distance quantum key distribution with imperfect devices

    SciTech Connect

    Lo Piparo, Nicoló; Razavi, Mohsen

    2014-12-04

    Quantum key distribution over probabilistic quantum repeaters is addressed. We compare, under practical assumptions, two such schemes in terms of their secure key generation rate per memory, R{sub QKD}. The two schemes under investigation are the one proposed by Duan et al. in [Nat. 414, 413 (2001)] and that of Sangouard et al. proposed in [Phys. Rev. A 76, 050301 (2007)]. We consider various sources of imperfections in the latter protocol, such as a nonzero double-photon probability for the source, dark count per pulse, channel loss and inefficiencies in photodetectors and memories, to find the rate for different nesting levels. We determine the maximum value of the double-photon probability beyond which it is not possible to share a secret key anymore. We find the crossover distance for up to three nesting levels. We finally compare the two protocols.

  4. Long-distance quantum key distribution with imperfect devices

    NASA Astrophysics Data System (ADS)

    Lo Piparo, Nicoló; Razavi, Mohsen

    2014-12-01

    Quantum key distribution over probabilistic quantum repeaters is addressed. We compare, under practical assumptions, two such schemes in terms of their secure key generation rate per memory, RQKD. The two schemes under investigation are the one proposed by Duan et al. in [Nat. 414, 413 (2001)] and that of Sangouard et al. proposed in [Phys. Rev. A 76, 050301 (2007)]. We consider various sources of imperfections in the latter protocol, such as a nonzero double-photon probability for the source, dark count per pulse, channel loss and inefficiencies in photodetectors and memories, to find the rate for different nesting levels. We determine the maximum value of the double-photon probability beyond which it is not possible to share a secret key anymore. We find the crossover distance for up to three nesting levels. We finally compare the two protocols.

  5. Near-field turbulence effects on quantum-key distribution

    SciTech Connect

    Shapiro, Jeffrey H.

    2003-02-01

    Bounds on average power transfer over a near-field optical path through atmospheric turbulence are used to deduce bounds on the sift and error probabilities of a free-space quantum-key distribution system that uses the Bennett-Brassard 1984 (BB84) protocol. It is shown that atmospheric turbulence imposes at most a modest decrease in the sift probability and a modest increase in the conditional probability of error given that a sift event has occurred.

  6. Optimal Device Independent Quantum Key Distribution

    PubMed Central

    Kamaruddin, S.; Shaari, J. S.

    2016-01-01

    We consider an optimal quantum key distribution setup based on minimal number of measurement bases with binary yields used by parties against an eavesdropper limited only by the no-signaling principle. We note that in general, the maximal key rate can be achieved by determining the optimal tradeoff between measurements that attain the maximal Bell violation and those that maximise the bit correlation between the parties. We show that higher correlation between shared raw keys at the expense of maximal Bell violation provide for better key rates for low channel disturbance. PMID:27485160

  7. Optimal Device Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Kamaruddin, S.; Shaari, J. S.

    2016-08-01

    We consider an optimal quantum key distribution setup based on minimal number of measurement bases with binary yields used by parties against an eavesdropper limited only by the no-signaling principle. We note that in general, the maximal key rate can be achieved by determining the optimal tradeoff between measurements that attain the maximal Bell violation and those that maximise the bit correlation between the parties. We show that higher correlation between shared raw keys at the expense of maximal Bell violation provide for better key rates for low channel disturbance.

  8. Optimal Device Independent Quantum Key Distribution.

    PubMed

    Kamaruddin, S; Shaari, J S

    2016-01-01

    We consider an optimal quantum key distribution setup based on minimal number of measurement bases with binary yields used by parties against an eavesdropper limited only by the no-signaling principle. We note that in general, the maximal key rate can be achieved by determining the optimal tradeoff between measurements that attain the maximal Bell violation and those that maximise the bit correlation between the parties. We show that higher correlation between shared raw keys at the expense of maximal Bell violation provide for better key rates for low channel disturbance. PMID:27485160

  9. Practical issues in quantum-key-distribution postprocessing

    SciTech Connect

    Fung, C.-H. Fred; Chau, H. F.; Ma Xiongfeng

    2010-01-15

    Quantum key distribution (QKD) is a secure key generation method between two distant parties by wisely exploiting properties of quantum mechanics. In QKD, experimental measurement outcomes on quantum states are transformed by the two parties to a secret key. This transformation is composed of many logical steps (as guided by security proofs), which together will ultimately determine the length of the final secret key and its security. We detail the procedure for performing such classical postprocessing taking into account practical concerns (including the finite-size effect and authentication and encryption for classical communications). This procedure is directly applicable to realistic QKD experiments and thus serves as a recipe that specifies what postprocessing operations are needed and what the security level is for certain lengths of the keys. Our result is applicable to the BB84 protocol with a single or entangled photon source.

  10. Practical issues in quantum-key-distribution postprocessing

    NASA Astrophysics Data System (ADS)

    Fung, Chi-Hang Fred; Ma, Xiongfeng; Chau, H. F.

    2010-01-01

    Quantum key distribution (QKD) is a secure key generation method between two distant parties by wisely exploiting properties of quantum mechanics. In QKD, experimental measurement outcomes on quantum states are transformed by the two parties to a secret key. This transformation is composed of many logical steps (as guided by security proofs), which together will ultimately determine the length of the final secret key and its security. We detail the procedure for performing such classical postprocessing taking into account practical concerns (including the finite-size effect and authentication and encryption for classical communications). This procedure is directly applicable to realistic QKD experiments and thus serves as a recipe that specifies what postprocessing operations are needed and what the security level is for certain lengths of the keys. Our result is applicable to the BB84 protocol with a single or entangled photon source.

  11. Free-space quantum key distribution at night

    SciTech Connect

    Buttler, W.T.; Hughes, R.J.; Kwiat, P.G.; Lamoreaux, S.K.; Luther, G.G.; Morgan, G.L.; Nordholt, J.E.; Peterson, C.G.; Simmons, C.M.

    1998-09-01

    An experimental free-space quantum key distribution (QKD) system has been tested over an outdoor optical path of {approximately} 1 km under nighttime conditions at Los Alamos National Laboratory. This system employs the Bennett 92 protocol; in this paper, the authors give a brief overview of this protocol, and describe the experimental implementation of it. An analysis of the system efficiency is presented, as well as a description of the error detection protocol which employs a two-dimensional parity check scheme. Finally, the susceptibility of this system to eavesdropping by various techniques is determined, and the effectiveness of privacy amplification procedures is discussed. The conclusions are that free-space QKD is both effective and secure; possible applications include the rekeying of satellites in low earth orbit.

  12. Key Reconciliation for High Performance Quantum Key Distribution

    PubMed Central

    Martinez-Mateo, Jesus; Elkouss, David; Martin, Vicente

    2013-01-01

    Quantum Key Distribution is carving its place among the tools used to secure communications. While a difficult technology, it enjoys benefits that set it apart from the rest, the most prominent is its provable security based on the laws of physics. QKD requires not only the mastering of signals at the quantum level, but also a classical processing to extract a secret-key from them. This postprocessing has been customarily studied in terms of the efficiency, a figure of merit that offers a biased view of the performance of real devices. Here we argue that it is the throughput the significant magnitude in practical QKD, specially in the case of high speed devices, where the differences are more marked, and give some examples contrasting the usual postprocessing schemes with new ones from modern coding theory. A good understanding of its implications is very important for the design of modern QKD devices. PMID:23546440

  13. Key Reconciliation for High Performance Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Martinez-Mateo, Jesus; Elkouss, David; Martin, Vicente

    2013-04-01

    Quantum Key Distribution is carving its place among the tools used to secure communications. While a difficult technology, it enjoys benefits that set it apart from the rest, the most prominent is its provable security based on the laws of physics. QKD requires not only the mastering of signals at the quantum level, but also a classical processing to extract a secret-key from them. This postprocessing has been customarily studied in terms of the efficiency, a figure of merit that offers a biased view of the performance of real devices. Here we argue that it is the throughput the significant magnitude in practical QKD, specially in the case of high speed devices, where the differences are more marked, and give some examples contrasting the usual postprocessing schemes with new ones from modern coding theory. A good understanding of its implications is very important for the design of modern QKD devices.

  14. Identity-based authenticated key exchange protocols from the Tate pairing

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Jin, Hong; Yang, Zhiyong; Cui, Xiang

    2011-12-01

    Key agreement protocols are designed to establish a session keys between two or multiple entities oven an insecure network and the session key is used to assure confidentiality thought encryption. With the advantages of identity-based (ID-based) cryptography, there have been many ID-based key agreement protocols proposed. However, most of them are based on Weil pairing, which is more cost of computation compared with Tate paring. In this paper, we propose a newly ID-based key agreement protocol from the Tate pairing. Compared with previous protocols, the new protocol minimizes the cost of computation with no extra message exchange time. In addition, the proposed protocol provides known key security, no key control, no key-compromise impersonation and perfect forward secrecy.

  15. GENERIC VERIFICATION PROTOCOL: DISTRIBUTED GENERATION AND COMBINED HEAT AND POWER FIELD TESTING PROTOCOL

    EPA Science Inventory

    This report is a generic verification protocol by which EPA’s Environmental Technology Verification program tests newly developed equipment for distributed generation of electric power, usually micro-turbine generators and internal combustion engine generators. The protocol will ...

  16. Establishing security of quantum key distribution without monitoring disturbance

    NASA Astrophysics Data System (ADS)

    Koashi, Masato

    2015-10-01

    In conventional quantum key distribution (QKD) protocols, the information leak to an eavesdropper is estimated through the basic principle of quantum mechanics dictated in the original version of Heisenberg's uncertainty principle. The amount of leaked information on a shared sifted key is bounded from above essentially by using information-disturbance trade-off relations, based on the amount of signal disturbance measured via randomly sampled or inserted probe signals. Here we discuss an entirely different avenue toward the private communication, which does not rely on the information disturbance trade-off relations and hence does not require a monitoring of signal disturbance. The independence of the amount of privacy amplification from that of disturbance tends to give it a high tolerance on the channel noises. The lifting of the burden of precise statistical estimation of disturbance leads to a favorable finite-key-size effect. A protocol based on the novel principle can be implemented by only using photon detectors and classical optics tools: a laser, a phase modulator, and an interferometer. The protocol resembles the differential-phase-shift QKD protocol in that both share a simple binary phase shift keying on a coherent train of weak pulses from a laser. The difference lies in the use of a variable-delay interferometer in the new protocol, which randomly changes the combination of pulse pairs to be superposed. This extra randomness has turned out to be enough to upper-bound the information extracted by the eavesdropper, regardless of how they have disturbed the quantum signal.

  17. Fundamental rate-loss tradeoff for optical quantum key distribution.

    PubMed

    Takeoka, Masahiro; Guha, Saikat; Wilde, Mark M

    2014-01-01

    Since 1984, various optical quantum key distribution (QKD) protocols have been proposed and examined. In all of them, the rate of secret key generation decays exponentially with distance. A natural and fundamental question is then whether there are yet-to-be discovered optical QKD protocols (without quantum repeaters) that could circumvent this rate-distance tradeoff. This paper provides a major step towards answering this question. Here we show that the secret key agreement capacity of a lossy and noisy optical channel assisted by unlimited two-way public classical communication is limited by an upper bound that is solely a function of the channel loss, regardless of how much optical power the protocol may use. Our result has major implications for understanding the secret key agreement capacity of optical channels-a long-standing open problem in optical quantum information theory-and strongly suggests a real need for quantum repeaters to perform QKD at high rates over long distances. PMID:25341406

  18. Experimental measurement-device-independent quantum key distribution.

    PubMed

    Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S; Fejer, M M; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

    2013-09-27

    Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices. PMID:24116758

  19. Experimental Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S.; Fejer, M. M.; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

    2013-09-01

    Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.

  20. A non-interactive and efficient key agreement protocol for ASNs

    NASA Astrophysics Data System (ADS)

    Yang, Deming; Mu, Dejun; Xu, Zhong

    2007-11-01

    Ad hoc space networks (ASNs) are implemented using flexible, distributed architecture consisting of constellations of dynamically deployed space, airborne and mobile platforms. The nodes within ASNs operate both as communication end-points as well as routers, enabling multi-hop wireless communication and dynamic network topology. Secure and efficient key agreement scheme is the crucial mechanism to construct secure ASNs. Previous ID-based cryptosystem is not feasible in ASNs because of the interaction process in key agreement. A novel non-interactive and efficient ID-based two-party key agreement protocol is proposed for ASNs. Based on the security analysis of IDNIKS proposed by Tso et al., the feasibility of adopting non-interactive key agreement for multi-party in ASNs is analyzed and a conclusion is given.

  1. Improving security in the Fiber Distributed Data Interface (FDDI) protocol

    NASA Astrophysics Data System (ADS)

    Jones, Benjamin E.

    1992-09-01

    The arrival of high speed packet switched fiber optic LAN's has allowed local area design architectures to be used for larger metropolitan area network (MAN) implementations. The current LAN security mechanisms used in larger and faster fiber optic LAN's and MAN's are often inappropriate or unacceptable for use with emerging applications. The protocol of the Fiber Distributed Data Interface (FDDI) standard provides a natural means for message integrity and availability verification. However, privacy in FDDI is facilitated at higher layers through a generic LAN standard. This thesis proposes a modification to the FDDI protocol implemented at the medium access control (MAC) sublayer, which integrates a confidentiality mechanism for data transfer. The modification provides a simple comprehensive security package to meet the high performance needs of current and emerging applications. In the proposed modification, the inherent properties of the ring are exploited using a unique Central Key Translator to distribute initial session keys. A symmetric bit stream cipher based on modulo2 addition is used for encryption/decryption by the transmitting and receiving stations. Part of the plain text from transmitted message frames is used as feedback to generate new session keys.

  2. Secure multi-party communication with quantum key distribution managed by trusted authority

    DOEpatents

    Hughes, Richard John; Nordholt, Jane Elizabeth; Peterson, Charles Glen

    2015-01-06

    Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.

  3. Secure multi-party communication with quantum key distribution managed by trusted authority

    DOEpatents

    Nordholt, Jane Elizabeth; Hughes, Richard John; Peterson, Charles Glen

    2013-07-09

    Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.

  4. Collusive attacks to "circle-type" multi-party quantum key agreement protocols

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Xiao, Di; Jia, Heng-Yue; Liu, Run-Zong

    2016-05-01

    We find that existing multi-party quantum key agreement (MQKA) protocols designed for fairness of the key are, in fact, unfair. Our analysis shows that these protocols are sensitive to collusive attacks; that is, dishonest participants can collaborate in predetermining the key without being detected. In fact, the transmission structures of the quantum particles in those unfair MQKA protocols, three of which have already been analyzed, have much in common. We call these unfair MQKA protocols circle-type MQKA protocols. Likewise, the transmission structures of the quantum particles in MQKA protocols that can resist collusive attacks are also similar. We call such protocols complete-graph-type MQKA protocols. A MQKA protocol also exists that can resist the above attacks but is still not fair, and we call it the tree-type MQKA protocol. We first point out a common, easily missed loophole that severely compromises the fairness of present circle-type MQKA protocols. Then we show that two dishonest participants at special positions can totally predetermine the key generated by circle-type MQKA protocols. We anticipate that our observations will contribute to secure and fair MQKA protocols, especially circle-type protocols.

  5. A Novel Re-keying Function Protocol (NRFP) For Wireless Sensor Network Security

    PubMed Central

    Abdullah, Maan Younis; Hua, Gui Wei; Alsharabi, Naif

    2008-01-01

    This paper describes a novel re-keying function protocol (NRFP) for wireless sensor network security. A re-keying process management system for sensor networks is designed to support in-network processing. The design of the protocol is motivated by decentralization key management for wireless sensor networks (WSNs), covering key deployment, key refreshment, and key establishment. NRFP supports the establishment of novel administrative functions for sensor nodes that derive/re-derive a session key for each communication session. The protocol proposes direct connection, in-direct connection and hybrid connection. NRFP also includes an efficient protocol for local broadcast authentication based on the use of one-way key chains. A salient feature of the authentication protocol is that it supports source authentication without precluding innetwork processing. Security and performance analysis shows that it is very efficient in computation, communication and storage and, that NRFP is also effective in defending against many sophisticated attacks.

  6. Efficient Anonymous Authentication Protocol Using Key-Insulated Signature Scheme for Secure VANET

    NASA Astrophysics Data System (ADS)

    Park, Youngho; Sur, Chul; Jung, Chae Duk; Rhee, Kyung-Hyune

    In this paper, we propose an efficient authentication protocol with conditional privacy preservation for secure vehicular communications. The proposed protocol follows the system model to issue on-the-fly anonymous public key certificates to vehicles by road-side units. In order to design an efficient message authentication protocol, we consider a key-insulated signature scheme for certifying anonymous public keys of vehicles to such a system model. We demonstrate experimental results to confirm that the proposed protocol has better performance than other protocols based on group signature schemes.

  7. Information Theoretically Secure, Enhanced Johnson Noise Based Key Distribution over the Smart Grid with Switched Filters

    PubMed Central

    2013-01-01

    We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions. PMID:23936164

  8. Information theoretically secure, enhanced Johnson noise based key distribution over the smart grid with switched filters.

    PubMed

    Gonzalez, Elias; Kish, Laszlo B; Balog, Robert S; Enjeti, Prasad

    2013-01-01

    We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions.

  9. Information theoretically secure, enhanced Johnson noise based key distribution over the smart grid with switched filters.

    PubMed

    Gonzalez, Elias; Kish, Laszlo B; Balog, Robert S; Enjeti, Prasad

    2013-01-01

    We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions. PMID:23936164

  10. Finite-key security analysis of quantum key distribution with imperfect light sources

    SciTech Connect

    Mizutani, Akihiro; Curty, Marcos; Lim, Charles Ci Wen; Imoto, Nobuyuki; Tamaki, Kiyoshi

    2015-09-09

    In recent years, the gap between theory and practice in quantum key distribution (QKD) has been significantly narrowed, particularly for QKD systems with arbitrarily flawed optical receivers. The status for QKD systems with imperfect light sources is however less satisfactory, in the sense that the resulting secure key rates are often overly dependent on the quality of state preparation. This is especially the case when the channel loss is high. Very recently, to overcome this limitation, Tamaki et al proposed a QKD protocol based on the so-called 'rejected data analysis', and showed that its security in the limit of infinitely long keys is almost independent of any encoding flaw in the qubit space, being this protocol compatible with the decoy state method. Here, as a step towards practical QKD, we show that a similar conclusion is reached in the finite-key regime, even when the intensity of the light source is unstable. More concretely, we derive security bounds for a wide class of realistic light sources and show that the bounds are also efficient in the presence of high channel loss. Our results strongly suggest the feasibility of long distance provably secure communication with imperfect light sources.

  11. Finite-key security analysis of quantum key distribution with imperfect light sources

    DOE PAGESBeta

    Mizutani, Akihiro; Curty, Marcos; Lim, Charles Ci Wen; Imoto, Nobuyuki; Tamaki, Kiyoshi

    2015-09-09

    In recent years, the gap between theory and practice in quantum key distribution (QKD) has been significantly narrowed, particularly for QKD systems with arbitrarily flawed optical receivers. The status for QKD systems with imperfect light sources is however less satisfactory, in the sense that the resulting secure key rates are often overly dependent on the quality of state preparation. This is especially the case when the channel loss is high. Very recently, to overcome this limitation, Tamaki et al proposed a QKD protocol based on the so-called 'rejected data analysis', and showed that its security in the limit of infinitelymore » long keys is almost independent of any encoding flaw in the qubit space, being this protocol compatible with the decoy state method. Here, as a step towards practical QKD, we show that a similar conclusion is reached in the finite-key regime, even when the intensity of the light source is unstable. More concretely, we derive security bounds for a wide class of realistic light sources and show that the bounds are also efficient in the presence of high channel loss. Our results strongly suggest the feasibility of long distance provably secure communication with imperfect light sources.« less

  12. Interactive identification protocol based on a quantum public-key cryptosystem

    NASA Astrophysics Data System (ADS)

    Wu, Chenmiao; Yang, Li

    2014-11-01

    We propose two interactive identification protocols based on a general construction of quantum public-key cryptosystem. Basic protocol contains set-up phase and authentication phase. Participants do operation with quantum computing of Boolean function in two-round transmission of authentication phase. Basic one only ensures completeness and soundness, but leaks information about private-key. We modify basic protocol with random string and random Boolean permutation. After modification, both transmitted states in two-round transmission can be proved to be ultimate mixed states. No participant or attacker will get useful information about private-key by measuring such states. Modified protocol achieves property of zero-knowledge.

  13. Optimal eavesdropping on quantum key distribution without quantum memory

    NASA Astrophysics Data System (ADS)

    Bocquet, Aurélien; Alléaume, Romain; Leverrier, Anthony

    2012-01-01

    We consider the security of the BB84 (Bennett and Brassard 1984 Proc. IEEE Int. Conf. on Computers, Systems, and Signal Processing pp 175-9), six-state (Bruß 1998 Phys. Rev. Lett. http://dx.doi.org/10.1103/PhysRevLett.81.3018) and SARG04 (Scarani et al 2004 Phys. Rev. Lett. http://dx.doi.org/10.1103/PhysRevLett.92.057901) quantum key distribution protocols when the eavesdropper does not have access to a quantum memory. In this case, Eve’s most general strategy is to measure her ancilla with an appropriate positive operator-valued measure designed to take advantage of the post-measurement information that will be released during the sifting phase of the protocol. After an optimization on all the parameters accessible to Eve, our method provides us with new bounds for the security of six-state and SARG04 against a memoryless adversary. In particular, for the six-state protocol we show that the maximum quantum bit error ratio for which a secure key can be extracted is increased from 12.6% (for collective attacks) to 20.4% with the memoryless assumption.

  14. Security of quantum key distribution using a simplified trusted relay

    NASA Astrophysics Data System (ADS)

    Stacey, William; Annabestani, Razieh; Ma, Xiongfeng; Lütkenhaus, Norbert

    2015-01-01

    We propose a QKD protocol for trusted node relays. Our protocol shifts the communication and computational weight of classical postprocessing to the end users by reassigning the roles of error correction and privacy amplification, while leaving the exchange of quantum signals untouched. We perform a security analysis for this protocol based on the Bennett-Brassard 1984 protocol on the level of infinite key formulas, taking into account weak coherent implementations involving decoy analysis.

  15. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources.

    PubMed

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-01-01

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation. PMID:26471947

  16. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources

    PubMed Central

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-01-01

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation. PMID:26471947

  17. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources.

    PubMed

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-10-16

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation.

  18. Unconditional security proof of a deterministic quantum key distribution with a two-way quantum channel

    SciTech Connect

    Lu Hua; Fung, Chi-Hang Fred; Ma Xiongfeng; Cai Qingyu

    2011-10-15

    In a deterministic quantum key distribution (DQKD) protocol with a two-way quantum channel, Bob sends a qubit to Alice who then encodes a key bit onto the qubit and sends it back to Bob. After measuring the returned qubit, Bob can obtain Alice's key bit immediately, without basis reconciliation. Since an eavesdropper may attack the qubits traveling on either the Bob-Alice channel or the Alice-Bob channel, the security analysis of DQKD protocol with a two-way quantum channel is complicated and its unconditional security has been controversial. This paper presents a security proof of a single-photon four-state DQKD protocol against general attacks.

  19. Detector-device-independent quantum key distribution

    SciTech Connect

    Lim, Charles Ci Wen; Korzh, Boris; Martin, Anthony; Bussières, Félix; Thew, Rob; Zbinden, Hugo

    2014-12-01

    Recently, a quantum key distribution (QKD) scheme based on entanglement swapping, called measurement-device-independent QKD (mdiQKD), was proposed to bypass all measurement side-channel attacks. While mdiQKD is conceptually elegant and offers a supreme level of security, the experimental complexity is challenging for practical systems. For instance, it requires interference between two widely separated independent single-photon sources, and the secret key rates are dependent on detecting two photons—one from each source. Here, we demonstrate a proof-of-principle experiment of a QKD scheme that removes the need for a two-photon system and instead uses the idea of a two-qubit single-photon to significantly simplify the implementation and improve the efficiency of mdiQKD in several aspects.

  20. Measurement-device-independent quantum key distribution.

    PubMed

    Lo, Hoi-Kwong; Curty, Marcos; Qi, Bing

    2012-03-30

    How to remove detector side channel attacks has been a notoriously hard problem in quantum cryptography. Here, we propose a simple solution to this problem--measurement-device-independent quantum key distribution (QKD). It not only removes all detector side channels, but also doubles the secure distance with conventional lasers. Our proposal can be implemented with standard optical components with low detection efficiency and highly lossy channels. In contrast to the previous solution of full device independent QKD, the realization of our idea does not require detectors of near unity detection efficiency in combination with a qubit amplifier (based on teleportation) or a quantum nondemolition measurement of the number of photons in a pulse. Furthermore, its key generation rate is many orders of magnitude higher than that based on full device independent QKD. The results show that long-distance quantum cryptography over say 200 km will remain secure even with seriously flawed detectors.

  1. Measurement-device-independent quantum key distribution.

    PubMed

    Lo, Hoi-Kwong; Curty, Marcos; Qi, Bing

    2012-03-30

    How to remove detector side channel attacks has been a notoriously hard problem in quantum cryptography. Here, we propose a simple solution to this problem--measurement-device-independent quantum key distribution (QKD). It not only removes all detector side channels, but also doubles the secure distance with conventional lasers. Our proposal can be implemented with standard optical components with low detection efficiency and highly lossy channels. In contrast to the previous solution of full device independent QKD, the realization of our idea does not require detectors of near unity detection efficiency in combination with a qubit amplifier (based on teleportation) or a quantum nondemolition measurement of the number of photons in a pulse. Furthermore, its key generation rate is many orders of magnitude higher than that based on full device independent QKD. The results show that long-distance quantum cryptography over say 200 km will remain secure even with seriously flawed detectors. PMID:22540686

  2. Finite-key security analysis of quantum key distribution with imperfect light sources

    NASA Astrophysics Data System (ADS)

    Mizutani, Akihiro; Curty, Marcos; Lim, Charles Ci Wen; Imoto, Nobuyuki; Tamaki, Kiyoshi

    2015-09-01

    In recent years, the gap between theory and practice in quantum key distribution (QKD) has been significantly narrowed, particularly for QKD systems with arbitrarily flawed optical receivers. The status for QKD systems with imperfect light sources is however less satisfactory, in the sense that the resulting secure key rates are often overly dependent on the quality of state preparation. This is especially the case when the channel loss is high. Very recently, to overcome this limitation, Tamaki et al proposed a QKD protocol based on the so-called ‘rejected data analysis’, and showed that its security—in the limit of infinitely long keys—is almost independent of any encoding flaw in the qubit space, being this protocol compatible with the decoy state method. Here, as a step towards practical QKD, we show that a similar conclusion is reached in the finite-key regime, even when the intensity of the light source is unstable. More concretely, we derive security bounds for a wide class of realistic light sources and show that the bounds are also efficient in the presence of high channel loss. Our results strongly suggest the feasibility of long distance provably secure communication with imperfect light sources.

  3. Statistical Quadrature Evolution for Continuous-Variable Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Gyongyosi, Laszlo; Imre, Sandor

    2016-05-01

    We propose a statistical quadrature evolution (SQE) method for multicarrier continuous-variable quantum key distribution (CVQKD). A multicarrier CVQKD protocol utilizes Gaussian subcarrier quantum continuous variables (CV) for information transmission. The SQE framework provides a minimal error estimate of the quadratures of the CV quantum states from the discrete, measured noisy subcarrier variables. We define a method for the statistical modeling and processing of noisy Gaussian subcarrier quadratures. We introduce the terms statistical secret key rate and statistical private classical information, which quantities are derived purely by the statistical functions of our method. We prove the secret key rate formulas for a multiple access multicarrier CVQKD. The framework can be established in an arbitrary CVQKD protocol and measurement setting, and are implementable by standard low-complexity statistical functions, which is particularly convenient for an experimental CVQKD scenario. This work was partially supported by the GOP-1.1.1-11-2012-0092 project sponsored by the EU and European Structural Fund, by the Hungarian Scientific Research Fund - OTKA K-112125, and by the COST Action MP1006.

  4. An XML-based protocol for distributed event services

    SciTech Connect

    Gunter, Dan K.; Smith, Warren; Quesnel, Darcy

    2001-06-25

    A recent trend in distributed computing is the construction of high-performance distributed systems called computational grids. One difficulty we have encountered is that there is no standard format for the representation of performance information and no standard protocol for transmitting this information. This limits the types of performance analysis that can be undertaken in complex distributed systems. To address this problem, we present an XML-based protocol for transmitting performance events in distributed systems and evaluate the performance of this protocol.

  5. An XML-Based Protocol for Distributed Event Services

    NASA Technical Reports Server (NTRS)

    Smith, Warren; Gunter, Dan; Quesnel, Darcy; Biegel, Bryan (Technical Monitor)

    2001-01-01

    A recent trend in distributed computing is the construction of high-performance distributed systems called computational grids. One difficulty we have encountered is that there is no standard format for the representation of performance information and no standard protocol for transmitting this information. This limits the types of performance analysis that can be undertaken in complex distributed systems. To address this problem, we present an XML-based protocol for transmitting performance events in distributed systems and evaluate the performance of this protocol.

  6. Protocols and services for distributed data-intensive science

    NASA Astrophysics Data System (ADS)

    Allcock, William; Foster, Ian; Tuecke, Steven; Chervenak, Ann; Kesselman, Carl

    2001-08-01

    We describe work being performed in the Globus project to develop enabling protocols and services for distributed data-intensive science. These services include: * High-performance, secure data transfer protocols based on FTP, plus a range of libraries and tools that use these protocols * Replica catalog services supporting the creation and location of file replicas in distributed systems These components leverage the substantial body of "Grid" services and protocols developed within the Globus project and by its collaborators, and are being used in a number of data-intensive application projects.

  7. Measurement-device-independent entanglement-based quantum key distribution

    NASA Astrophysics Data System (ADS)

    Yang, Xiuqing; Wei, Kejin; Ma, Haiqiang; Sun, Shihai; Liu, Hongwei; Yin, Zhenqiang; Li, Zuohan; Lian, Shibin; Du, Yungang; Wu, Lingan

    2016-05-01

    We present a quantum key distribution protocol in a model in which the legitimate users gather statistics as in the measurement-device-independent entanglement witness to certify the sources and the measurement devices. We show that the task of measurement-device-independent quantum communication can be accomplished based on monogamy of entanglement, and it is fairly loss tolerate including source and detector flaws. We derive a tight bound for collective attacks on the Holevo information between the authorized parties and the eavesdropper. Then with this bound, the final secret key rate with the source flaws can be obtained. The results show that long-distance quantum cryptography over 144 km can be made secure using only standard threshold detectors.

  8. Quantum key distribution session with 16-dimensional photonic states.

    PubMed

    Etcheverry, S; Cañas, G; Gómez, E S; Nogueira, W A T; Saavedra, C; Xavier, G B; Lima, G

    2013-01-01

    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD.

  9. Quantum key distribution session with 16-dimensional photonic states.

    PubMed

    Etcheverry, S; Cañas, G; Gómez, E S; Nogueira, W A T; Saavedra, C; Xavier, G B; Lima, G

    2013-01-01

    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD. PMID:23897033

  10. Quantum key distribution session with 16-dimensional photonic states

    PubMed Central

    Etcheverry, S.; Cañas, G.; Gómez, E. S.; Nogueira, W. A. T.; Saavedra, C.; Xavier, G. B.; Lima, G.

    2013-01-01

    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD. PMID:23897033

  11. Method for adding nodes to a quantum key distribution system

    DOEpatents

    Grice, Warren P

    2015-02-24

    An improved quantum key distribution (QKD) system and method are provided. The system and method introduce new clients at intermediate points along a quantum channel, where any two clients can establish a secret key without the need for a secret meeting between the clients. The new clients perform operations on photons as they pass through nodes in the quantum channel, and participate in a non-secret protocol that is amended to include the new clients. The system and method significantly increase the number of clients that can be supported by a conventional QKD system, with only a modest increase in cost. The system and method are compatible with a variety of QKD schemes, including polarization, time-bin, continuous variable and entanglement QKD.

  12. Entanglement-based quantum key distribution with biased basis choice via free space.

    PubMed

    Cao, Yuan; Liang, Hao; Yin, Juan; Yong, Hai-Lin; Zhou, Fei; Wu, Yu-Ping; Ren, Ji-Gang; Li, Yu-Huai; Pan, Ge-Sheng; Yang, Tao; Ma, Xiongfeng; Peng, Cheng-Zhi; Pan, Jian-Wei

    2013-11-01

    We report a free-space entanglement-based quantum key distribution experiment, implementing the biased basis protocol between two sites which are 15.3 km apart. Photon pairs from a polarization-entangled source are distributed through two 7.8-km free-space optical links. An optimal bias 20:80 between the X and Z basis is used. A post-processing scheme with finite-key analysis is applied to extract the final secure key. After three-hour continuous operation at night, a 4293-bit secure key is obtained, with a final key rate of 0.124 bit per raw key bit which increases the final key rate by 14.8% comparing to the standard BB84 case. Our results experimentally demonstrate that the efficient BB84 protocol, which increases key generation efficiency by biasing Alice and Bob's basis choices, is potentially useful for the ground-satellite quantum communication. PMID:24216948

  13. Entanglement-based quantum key distribution with biased basis choice via free space.

    PubMed

    Cao, Yuan; Liang, Hao; Yin, Juan; Yong, Hai-Lin; Zhou, Fei; Wu, Yu-Ping; Ren, Ji-Gang; Li, Yu-Huai; Pan, Ge-Sheng; Yang, Tao; Ma, Xiongfeng; Peng, Cheng-Zhi; Pan, Jian-Wei

    2013-11-01

    We report a free-space entanglement-based quantum key distribution experiment, implementing the biased basis protocol between two sites which are 15.3 km apart. Photon pairs from a polarization-entangled source are distributed through two 7.8-km free-space optical links. An optimal bias 20:80 between the X and Z basis is used. A post-processing scheme with finite-key analysis is applied to extract the final secure key. After three-hour continuous operation at night, a 4293-bit secure key is obtained, with a final key rate of 0.124 bit per raw key bit which increases the final key rate by 14.8% comparing to the standard BB84 case. Our results experimentally demonstrate that the efficient BB84 protocol, which increases key generation efficiency by biasing Alice and Bob's basis choices, is potentially useful for the ground-satellite quantum communication.

  14. An Identity Based Key Exchange Protocol in Cloud Computing

    NASA Astrophysics Data System (ADS)

    Molli, Venkateswara Rao; Tiwary, Omkar Nath

    2012-10-01

    Workflow systems often use delegation to enhance the flexibility of authorization; delegation transfers privileges among users across different administrative domains and facilitates information sharing. We present an independently verifiable delegation mechanism, where a delegation credential can be verified without the participation of domain administrators. This protocol, called role-based cascaded delegation (RBCD), supports simple and efficient cross-domain delegation of authority. RBCD enables a role member to create delegations based on the dynamic needs of collaboration; in the meantime, a delegation chain canbe verified by anyone without the participation of role administrators. We also propose the Measurable Risk Adaptive decentralized Role-based Delegation framework to address this problem. Describe an efficient realization of RBCD by using aggregate signatures, where the authentication information for an arbitrarily long role-based delegation chain is captured by one short signature of constant size. RBCD enables a role member to create delegations based on the need of collaboration; in the meantime anyone can verify a delegation chain without the participation of role administrators. The protocol is general and can be realized by any signature scheme. We have described a specific realization with a hierarchical certificate-based encryption scheme that gives delegation compact credentials.

  15. Multi-user quantum key distribution with collective eavesdropping detection over collective-noise channels

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Wen, Qiao-Yan; Liu, Bin; Gao, Fei

    2015-07-01

    A multi-user quantum key distribution protocol is proposed with single particles and the collective eavesdropping detection strategy on a star network. By utilizing this protocol, any two users of the network can accomplish quantum key distribution with the help of a serving center. Due to the utilization of the collective eavesdropping detection strategy, the users of the protocol just need to have the ability of performing certain unitary operations. Furthermore, we present three fault-tolerant versions of the proposed protocol, which can combat with the errors over different collective-noise channels. The security of all the proposed protocols is guaranteed by the theorems on quantum operation discrimination. Project supported by the National Natural Science Foundation of China (Grant Nos. 61272057, 61170270, and 61309029), Beijing Higher Education Young Elite Teacher Project, China (Grant Nos. YETP0475 and YETP0477), and BUPT Excellent Ph.D. Students Foundation, China (Grant No. CX201441).

  16. A Low Cost Key Agreement Protocol Based on Binary Tree for EPCglobal Class 1 Generation 2 RFID Protocol

    NASA Astrophysics Data System (ADS)

    Jeng, Albert; Chang, Li-Chung; Chen, Sheng-Hui

    There are many protocols proposed for protecting Radio Frequency Identification (RFID) system privacy and security. A number of these protocols are designed for protecting long-term security of RFID system using symmetric key or public key cryptosystem. Others are designed for protecting user anonymity and privacy. In practice, the use of RFID technology often has a short lifespan, such as commodity check out, supply chain management and so on. Furthermore, we know that designing a long-term security architecture to protect the security and privacy of RFID tags information requires a thorough consideration from many different aspects. However, any security enhancement on RFID technology will jack up its cost which may be detrimental to its widespread deployment. Due to the severe constraints of RFID tag resources (e. g., power source, computing power, communication bandwidth) and open air communication nature of RFID usage, it is a great challenge to secure a typical RFID system. For example, computational heavy public key and symmetric key cryptography algorithms (e. g., RSA and AES) may not be suitable or over-killed to protect RFID security or privacy. These factors motivate us to research an efficient and cost effective solution for RFID security and privacy protection. In this paper, we propose a new effective generic binary tree based key agreement protocol (called BKAP) and its variations, and show how it can be applied to secure the low cost and resource constraint RFID system. This BKAP is not a general purpose key agreement protocol rather it is a special purpose protocol to protect privacy, un-traceability and anonymity in a single RFID closed system domain.

  17. Collective Attacks and Unconditional Security in Continuous Variable Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Grosshans, Frédéric

    2005-01-01

    We present here an information theoretic study of Gaussian collective attacks on the continuous variable key distribution protocols based on Gaussian modulation of coherent states. These attacks, overlooked in previous security studies, give a finite advantage to the eavesdropper in the experimentally relevant lossy channel, but are not powerful enough to reduce the range of the reverse reconciliation protocols. Secret key rates are given for the ideal case where Bob performs optimal collective measurements, as well as for the realistic cases where he performs homodyne or heterodyne measurements. We also apply the generic security proof of Christiandl et al. to obtain unconditionally secure rates for these protocols.

  18. Lower bound for the security of differential phase shift quantum key distribution against a one-pulse-attack

    NASA Astrophysics Data System (ADS)

    Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Shuang; Bao, Wan-Su; Guo, Guang-Can; Han, Zheng-Fu

    2011-10-01

    Quantum key distribution is the art of sharing secret keys between two distant parties, and has attracted a lot of attention due to its unconditional security. Compared with other quantum key distribution protocols, the differential phase shift quantum key distribution protocol has higher efficiency and simpler apparatus. Unfortunately, the unconditional security of differential phase shift quantum key distribution has not been proved. Utilizing the sharp continuity of the von Neuman entropy and some basic inequalities, we estimate the upper bound for the eavesdropper Eve's information. We then prove the lower bound for the security of the differential phase shift quantum key distribution protocol against a one-pulse attack with Devatak—Winter's secret key rate formula.

  19. An Improved RSA Based User Authentication and Session Key Agreement Protocol Usable in TMIS.

    PubMed

    Amin, Ruhul; Biswas, G P

    2015-08-01

    Recently, Giri et al.'s proposed a RSA cryptosystem based remote user authentication scheme for telecare medical information system and claimed that the protocol is secure against all the relevant security attacks. However, we have scrutinized the Giri et al.'s protocol and pointed out that the protocol is not secure against off-line password guessing attack, privileged insider attack and also suffers from anonymity problem. Moreover, the extension of password guessing attack leads to more security weaknesses. Therefore, this protocol needs improvement in terms of security before implementing in real-life application. To fix the mentioned security pitfalls, this paper proposes an improved scheme over Giri et al.'s scheme, which preserves user anonymity property. We have then simulated the proposed protocol using widely-accepted AVISPA tool which ensures that the protocol is SAFE under OFMC and CL-AtSe models, that means the same protocol is secure against active and passive attacks including replay and man-in-the-middle attacks. The informal cryptanalysis has been also presented, which confirmed that the proposed protocol provides well security protection on the relevant security attacks. The performance analysis section compares the proposed protocol with other existing protocols in terms of security and it has been observed that the protocol provides more security and achieves additional functionalities such as user anonymity and session key verification.

  20. An Improved RSA Based User Authentication and Session Key Agreement Protocol Usable in TMIS.

    PubMed

    Amin, Ruhul; Biswas, G P

    2015-08-01

    Recently, Giri et al.'s proposed a RSA cryptosystem based remote user authentication scheme for telecare medical information system and claimed that the protocol is secure against all the relevant security attacks. However, we have scrutinized the Giri et al.'s protocol and pointed out that the protocol is not secure against off-line password guessing attack, privileged insider attack and also suffers from anonymity problem. Moreover, the extension of password guessing attack leads to more security weaknesses. Therefore, this protocol needs improvement in terms of security before implementing in real-life application. To fix the mentioned security pitfalls, this paper proposes an improved scheme over Giri et al.'s scheme, which preserves user anonymity property. We have then simulated the proposed protocol using widely-accepted AVISPA tool which ensures that the protocol is SAFE under OFMC and CL-AtSe models, that means the same protocol is secure against active and passive attacks including replay and man-in-the-middle attacks. The informal cryptanalysis has been also presented, which confirmed that the proposed protocol provides well security protection on the relevant security attacks. The performance analysis section compares the proposed protocol with other existing protocols in terms of security and it has been observed that the protocol provides more security and achieves additional functionalities such as user anonymity and session key verification. PMID:26123833

  1. Public/private key certification authority and key distribution. Draft

    SciTech Connect

    Long, J.P.; Christensen, M.J.; Sturtevant, A.P.; Johnston, W.E.

    1995-09-25

    Traditional encryption, which protects messages from prying eyes, has been used for many decades. The present concepts of encryption are built from that heritage. Utilization of modern software-based encryption techniques implies much more than simply converting files to an unreadable form. Ubiquitous use of computers and advances in encryption technology coupled with the use of wide-area networking completely changed the reasons for utilizing encryption technology. The technology demands a new and extensive infrastructure to support these functions. Full understanding of these functions, their utility and value, and the need for an infrastructure, takes extensive exposure to the new paradigm. This paper addresses issues surrounding the establishment and operation of a key management system (i.e., certification authority) that is essential to the successful implementation and wide-spread use of encryption.

  2. A Provably Secure Revocable ID-Based Authenticated Group Key Exchange Protocol with Identifying Malicious Participants

    PubMed Central

    Tsai, Tung-Tso

    2014-01-01

    The existence of malicious participants is a major threat for authenticated group key exchange (AGKE) protocols. Typically, there are two detecting ways (passive and active) to resist malicious participants in AGKE protocols. In 2012, the revocable identity- (ID-) based public key system (R-IDPKS) was proposed to solve the revocation problem in the ID-based public key system (IDPKS). Afterwards, based on the R-IDPKS, Wu et al. proposed a revocable ID-based AGKE (RID-AGKE) protocol, which adopted a passive detecting way to resist malicious participants. However, it needs three rounds and cannot identify malicious participants. In this paper, we fuse a noninteractive confirmed computation technique to propose the first two-round RID-AGKE protocol with identifying malicious participants, which is an active detecting way. We demonstrate that our protocol is a provably secure AGKE protocol with forward secrecy and can identify malicious participants. When compared with the recently proposed ID/RID-AGKE protocols, our protocol possesses better performance and more robust security properties. PMID:24991641

  3. Memory-assisted measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Panayi, Christiana; Razavi, Mohsen; Ma, Xiongfeng; Lütkenhaus, Norbert

    2014-04-01

    A protocol with the potential of beating the existing distance records for conventional quantum key distribution (QKD) systems is proposed. It borrows ideas from quantum repeaters by using memories in the middle of the link, and that of measurement-device-independent QKD, which only requires optical source equipment at the user's end. For certain memories with short access times, our scheme allows a higher repetition rate than that of quantum repeaters with single-mode memories, thereby requiring lower coherence times. By accounting for various sources of nonideality, such as memory decoherence, dark counts, misalignment errors, and background noise, as well as timing issues with memories, we develop a mathematical framework within which we can compare QKD systems with and without memories. In particular, we show that with the state-of-the-art technology for quantum memories, it is potentially possible to devise memory-assisted QKD systems that, at certain distances of practical interest, outperform current QKD implementations.

  4. Two-party quantum key agreement protocol with four-particle entangled states

    NASA Astrophysics Data System (ADS)

    He, Yefeng; Ma, Wenping

    2016-09-01

    Based on four-particle entangled states and the delayed measurement technique, a two-party quantum key agreement protocol is proposed in this paper. In the protocol, two participants can deduce the measurement results of each other’s initial quantum states in terms of the measurement correlation property of four-particle entangled states. According to the corresponding initial quantum states deduced by themselves, two parties can extract the secret keys of each other by using the publicly announced value or by performing the delayed measurement, respectively. This guarantees the fair establishment of a shared key. Since each particle in quantum channel is transmitted only once, the protocol is congenitally free from the Trojan horse attacks. The security analysis shows that the protocol not only can resist against both participant and outsider attacks but also has no information leakage problem. Moreover, it has high qubit efficiency.

  5. Implementation of decoy states in a subcarrier wave quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Gaidash, A.; Kozubov, A.; Egorov, V.; Gleim, A.

    2016-08-01

    Subcarrier wave quantum key distribution systems demonstrate promising capabilities for secure quantum networking. However for this class of devices no implementation of secure decoy states protocol was developed. It leaves them potentially vulnerable to photon-number splitting attacks on quantum channel and limiting the key distribution distance. We propose a practical solution to this problem by calculating the required parameters of light source and modulation indices for signal and decoy states in a subcarrier wave system and describing the corresponding experimental scheme.

  6. Security of quantum key distribution with light sources that are not independently and identically distributed

    NASA Astrophysics Data System (ADS)

    Nagamatsu, Yuichi; Mizutani, Akihiro; Ikuta, Rikizo; Yamamoto, Takashi; Imoto, Nobuyuki; Tamaki, Kiyoshi

    2016-04-01

    Although quantum key distribution (QKD) is theoretically secure, there is a gap between the theory and practice. In fact, real-life QKD may not be secure because component devices in QKD systems may deviate from the theoretical models assumed in security proofs. To solve this problem, it is necessary to construct the security proof under realistic assumptions on the source and measurement unit. In this paper, we prove the security of a QKD protocol under practical assumptions on the source that accommodate fluctuation of the phase and intensity modulations. As long as our assumptions hold, it does not matter at all how the phase and intensity distribute or whether or not their distributions over different pulses are independently and identically distributed. Our work shows that practical sources can be safely employed in QKD experiments.

  7. Adaptive spatial filtering for daytime satellite quantum key distribution

    NASA Astrophysics Data System (ADS)

    Gruneisen, Mark T.; Sickmiller, Brett A.; Flanagan, Michael B.; Black, James P.; Stoltenberg, Kurt E.; Duchane, Alexander W.

    2014-11-01

    The rate of secure key generation (SKG) in quantum key distribution (QKD) is adversely affected by optical noise and loss in the quantum channel. In a free-space atmospheric channel, the scattering of sunlight into the channel can lead to quantum bit error ratios (QBERs) sufficiently large to preclude SKG. Furthermore, atmospheric turbulence limits the degree to which spatial filtering can reduce sky noise without introducing signal losses. A system simulation quantifies the potential benefit of tracking and higher-order adaptive optics (AO) technologies to SKG rates in a daytime satellite engagement scenario. The simulations are performed assuming propagation from a low-Earth orbit (LEO) satellite to a terrestrial receiver that includes an AO system comprised of a Shack-Hartmann wave-front sensor (SHWFS) and a continuous-face-sheet deformable mirror (DM). The effects of atmospheric turbulence, tracking, and higher-order AO on the photon capture efficiency are simulated using statistical representations of turbulence and a time-domain waveoptics hardware emulator. Secure key generation rates are then calculated for the decoy state QKD protocol as a function of the receiver field of view (FOV) for various pointing angles. The results show that at FOVs smaller than previously considered, AO technologies can enhance SKG rates in daylight and even enable SKG where it would otherwise be prohibited as a consequence of either background optical noise or signal loss due to turbulence effects.

  8. A Secure Three-Factor User Authentication and Key Agreement Protocol for TMIS With User Anonymity.

    PubMed

    Amin, Ruhul; Biswas, G P

    2015-08-01

    Telecare medical information system (TMIS) makes an efficient and convenient connection between patient(s)/user(s) and doctor(s) over the insecure internet. Therefore, data security, privacy and user authentication are enormously important for accessing important medical data over insecure communication. Recently, many user authentication protocols for TMIS have been proposed in the literature and it has been observed that most of the protocols cannot achieve complete security requirements. In this paper, we have scrutinized two (Mishra et al., Xu et al.) remote user authentication protocols using smart card and explained that both the protocols are suffering against several security weaknesses. We have then presented three-factor user authentication and key agreement protocol usable for TMIS, which fix the security pitfalls of the above mentioned schemes. The informal cryptanalysis makes certain that the proposed protocol provides well security protection on the relevant security attacks. Furthermore, the simulator AVISPA tool confirms that the protocol is secure against active and passive attacks including replay and man-in-the-middle attacks. The security functionalities and performance comparison analysis confirm that our protocol not only provide strong protection on security attacks, but it also achieves better complexities along with efficient login and password change phase as well as session key verification property.

  9. A Secure Three-Factor User Authentication and Key Agreement Protocol for TMIS With User Anonymity.

    PubMed

    Amin, Ruhul; Biswas, G P

    2015-08-01

    Telecare medical information system (TMIS) makes an efficient and convenient connection between patient(s)/user(s) and doctor(s) over the insecure internet. Therefore, data security, privacy and user authentication are enormously important for accessing important medical data over insecure communication. Recently, many user authentication protocols for TMIS have been proposed in the literature and it has been observed that most of the protocols cannot achieve complete security requirements. In this paper, we have scrutinized two (Mishra et al., Xu et al.) remote user authentication protocols using smart card and explained that both the protocols are suffering against several security weaknesses. We have then presented three-factor user authentication and key agreement protocol usable for TMIS, which fix the security pitfalls of the above mentioned schemes. The informal cryptanalysis makes certain that the proposed protocol provides well security protection on the relevant security attacks. Furthermore, the simulator AVISPA tool confirms that the protocol is secure against active and passive attacks including replay and man-in-the-middle attacks. The security functionalities and performance comparison analysis confirm that our protocol not only provide strong protection on security attacks, but it also achieves better complexities along with efficient login and password change phase as well as session key verification property. PMID:26112322

  10. Distributed reservation control protocols for random access broadcasting channels

    NASA Technical Reports Server (NTRS)

    Greene, E. P.; Ephremides, A.

    1981-01-01

    Attention is given to a communication network consisting of an arbitrary number of nodes which can communicate with each other via a time-division multiple access (TDMA) broadcast channel. The reported investigation is concerned with the development of efficient distributed multiple access protocols for traffic consisting primarily of single packet messages in a datagram mode of operation. The motivation for the design of the protocols came from the consideration of efficient multiple access utilization of moderate to high bandwidth (4-40 Mbit/s capacity) communication satellite channels used for the transmission of short (1000-10,000 bits) fixed length packets. Under these circumstances, the ratio of roundtrip propagation time to packet transmission time is between 100 to 10,000. It is shown how a TDMA channel can be adaptively shared by datagram traffic and constant bandwidth users such as in digital voice applications. The distributed reservation control protocols described are a hybrid between contention and reservation protocols.

  11. Security of the differential-quadrature-phase-shift quantum key distribution

    NASA Astrophysics Data System (ADS)

    Kawakami, Shun; Sasaki, Toshihiko; Koashi, Masato

    2016-08-01

    One of the simplest methods for implementing quantum key distribution over fiber-optic communication is the Bennett-Brassard 1984 protocol with phase encoding (PE-BB84 protocol), in which the sender uses phase modulation over double pulses from a laser and the receiver uses a passive delayed interferometer. Using essentially the same setup and by regarding a train of many pulses as a single block, one can carry out the so-called differential-quadrature-phase-shift (DQPS) protocol, which is a variant of differential-phase-shift (DPS) protocols. Here we prove the security of the DQPS protocol based on an adaptation of proof techniques for the BB84 protocol, which inherits the advantages arising from the simplicity of the protocol, such as accommodating the use of threshold detectors and simple off-line calibration methods for the light source. We show that the secure key rate of the DQPS protocol in the proof is eight-thirds as high as the rate of the PE-BB84 protocol.

  12. Estimation of output-channel noise for continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Thearle, Oliver; Assad, Syed M.; Symul, Thomas

    2016-04-01

    Estimation of channel parameters is important for extending the range and increasing the key rate of continuous-variable quantum key distribution protocols. We propose an estimator for the channel noise parameter based on the method-of-moments. The method-of-moments finds an estimator from the moments of the output distribution of the protocol. This estimator has the advantage of being able to use all of the states shared between Alice and Bob. Other estimators are limited to a smaller publicly revealed subset of the states. The proposed estimator has a lower variance for the high-loss channel than what has previously been proposed. We show that the method-of-moments estimator increases the key rate by up to an order of magnitude at the maximum transmission of the protocol.

  13. Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144km

    NASA Astrophysics Data System (ADS)

    Schmitt-Manderbach, Tobias; Weier, Henning; Fürst, Martin; Ursin, Rupert; Tiefenbacher, Felix; Scheidl, Thomas; Perdigues, Josep; Sodnik, Zoran; Kurtsiefer, Christian; Rarity, John G.; Zeilinger, Anton; Weinfurter, Harald

    2007-01-01

    We report on the experimental implementation of a Bennett-Brassard 1984 (BB84) protocol type quantum key distribution over a 144 km free-space link using weak coherent laser pulses. Optimization of the link transmission was achieved with bidirectional active telescope tracking, and the security was ensured by employing decoy-state analysis. This enabled us to distribute a secure key at a rate of 12.8bit/s at an attenuation of about 35 dB. Utilizing a simple transmitter setup and an optical ground station capable of tracking a spacecraft in low earth orbit, this outdoor experiment demonstrates the feasibility of global key distribution via satellites.

  14. Design and Verification of a Distributed Communication Protocol

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.; Goodloe, Alwyn E.

    2009-01-01

    The safety of remotely operated vehicles depends on the correctness of the distributed protocol that facilitates the communication between the vehicle and the operator. A failure in this communication can result in catastrophic loss of the vehicle. To complicate matters, the communication system may be required to satisfy several, possibly conflicting, requirements. The design of protocols is typically an informal process based on successive iterations of a prototype implementation. Yet distributed protocols are notoriously difficult to get correct using such informal techniques. We present a formal specification of the design of a distributed protocol intended for use in a remotely operated vehicle, which is built from the composition of several simpler protocols. We demonstrate proof strategies that allow us to prove properties of each component protocol individually while ensuring that the property is preserved in the composition forming the entire system. Given that designs are likely to evolve as additional requirements emerge, we show how we have automated most of the repetitive proof steps to enable verification of rapidly changing designs.

  15. Comments on an ID-Based Authenticated Group Key Agreement Protocol with Withstanding Insider Attacks

    NASA Astrophysics Data System (ADS)

    Wu, Tsu-Yang; Tseng, Yuh-Min

    In PKC 2004, Choi et al. proposed an ID-based authenticated group key agreement (AGKA) protocol using bilinear pairings. Unfortunately, their protocol suffered from an impersonation attack and an insider colluding attack. In 2008, Choi et al. presented an improvement to resist insider attacks. In their modified protocol, they used an ID-based signature scheme on transcripts for binding them in a session to prevent replay of transcripts. In particular, they smartly used the batch verification technique to reduce the computational cost. In this paper, we first show that Choi et al.'s modified AGKA protocol still suffers from an insider colluding attack. Then, we prove that the batch verification of the adopted ID-based signature scheme in their modified protocol suffers from a forgery attack.

  16. A Scenario-Based Protocol Checker for Public-Key Authentication Scheme

    NASA Astrophysics Data System (ADS)

    Saito, Takamichi

    Security protocol provides communication security for the internet. One of the important features of it is authentication with key exchange. Its correctness is a requirement of the whole of the communication security. In this paper, we introduce three attack models realized as their attack scenarios, and provide an authentication-protocol checker for applying three attack-scenarios based on the models. We also utilize it to check two popular security protocols: Secure SHell (SSH) and Secure Socket Layer/Transport Layer Security (SSL/TLS).

  17. Eigenchannel decomposition for continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Gyongyosi, L.; Imre, S.

    2015-03-01

    We develop a singular layer transmission model for continuous-variable quantum key distribution (CVQKD). In CVQKD, the transmit information is carried by continuous-variable (CV) quantum states, particularly by Gaussian random distributed position and momentum quadratures. The reliable transmission of the quadrature components over a noisy link is a cornerstone of CVQKD protocols. The proposed singular layer uses the singular value decomposition of the Gaussian quantum channel, which yields an additional degree of freedom for the phase space transmission. This additional degree of freedom can further be exploited in a multiple-access scenario. The singular layer defines the eigenchannels of the Gaussian physical link, which can be used for the simultaneous reliable transmission of multiple user data streams. We demonstrate the results through the adaptive multicarrier quadrature division-multiuser quadrature allocation (AMQD-MQA) CVQKD multiple-access scheme. We define the singular model of AMQD-MQA and characterize the properties of the eigenchannel interference. The singular layer transmission provides improved simultaneous transmission rates for the users with unconditional security in a multiple-access scenario, particularly in crucial low signal-to-noise ratio regimes.

  18. Differential phase shift quantum key distribution.

    PubMed

    Inoue, Kyo; Waks, Edo; Yamamoto, Yoshihisa

    2002-07-15

    A novel quantum cryptography scheme is proposed, in which a single photon is prepared in a linear superposition state of three basis kets. A photon split to three pulses is sent from Alice to Bob, where the phase difference between sequential two pulses carries bit information. Bob measures the phase difference by passive differential phase detection. This scheme is suitable for fiber transmission systems and offers a key creation efficiency higher than conventional fiber-based BB84. PMID:12144419

  19. An XML-Based Protocol for Distributed Event Services

    NASA Technical Reports Server (NTRS)

    Smith, Warren; Gunter, Dan; Quesnel, Darcy; Biegel, Bryan (Technical Monitor)

    2001-01-01

    This viewgraph presentation provides information on the application of an XML (extensible mark-up language)-based protocol to the developing field of distributed processing by way of a computational grid which resembles an electric power grid. XML tags would be used to transmit events between the participants of a transaction, namely, the consumer and the producer of the grid scheme.

  20. Simulating of the measurement-device independent quantum key distribution with phase randomized general sources

    PubMed Central

    Wang, Qin; Wang, Xiang-Bin

    2014-01-01

    We present a model on the simulation of the measurement-device independent quantum key distribution (MDI-QKD) with phase randomized general sources. It can be used to predict experimental observations of a MDI-QKD with linear channel loss, simulating corresponding values for the gains, the error rates in different basis, and also the final key rates. Our model can be applicable to the MDI-QKDs with arbitrary probabilistic mixture of different photon states or using any coding schemes. Therefore, it is useful in characterizing and evaluating the performance of the MDI-QKD protocol, making it a valuable tool in studying the quantum key distributions. PMID:24728000

  1. Subcarrier Wave Quantum Key Distribution in Telecommunication Network with Bitrate 800 kbit/s

    NASA Astrophysics Data System (ADS)

    Gleim, A. V.; Nazarov, Yu. V.; Egorov, V. I.; Smirnov, S. V.; Bannik, O. I.; Chistyakov, V. V.; Kynev, S. M.; Anisimov, A. A.; Kozlov, S. A.; Vasiliev, V. N.

    2015-09-01

    In the course of work on creating the first quantum communication network in Russia we demonstrated quantum key distribution in metropolitan optical network infrastructure. A single-pass subcarrier wave quantum cryptography scheme was used in the experiments. BB84 protocol with strong reference was chosen for performing key distribution. The registered sifted key rate in an optical cable with 1.5 dB loss was 800 Kbit/s. Signal visibility exceeded 98%, and quantum bit error rate value was 1%. The achieved result is a record for this type of systems.

  2. Four-state quantum key distribution exploiting maximum mutual information measurement strategy

    NASA Astrophysics Data System (ADS)

    Chen, Dong-Xu; Zhang, Pei; Li, Hong-Rong; Gao, Hong; Li, Fu-Li

    2016-02-01

    We propose a four-state quantum key distribution (QKD) scheme using generalized measurement of nonorthogonal states, the maximum mutual information measurement strategy. Then, we analyze the eavesdropping process in intercept-resend and photon number splitting attack scenes. Our analysis shows that in the intercept-resend and photon number splitting attack eavesdropping scenes, our scheme is more secure than BB84 protocol and has higher key generation rate which may be applied to high-density QKD.

  3. Expeditious reconciliation for practical quantum key distribution

    NASA Astrophysics Data System (ADS)

    Nakassis, Anastase; Bienfang, Joshua C.; Williams, Carl J.

    2004-08-01

    The paper proposes algorithmic and environmental modifications to the extant reconciliation algorithms within the BB84 protocol so as to speed up reconciliation and privacy amplification. These algorithms have been known to be a performance bottleneck 1 and can process data at rates that are six times slower than the quantum channel they serve2. As improvements in single-photon sources and detectors are expected to improve the quantum channel throughput by two or three orders of magnitude, it becomes imperative to improve the performance of the classical software. We developed a Cascade-like algorithm that relies on a symmetric formulation of the problem, error estimation through the segmentation process, outright elimination of segments with many errors, Forward Error Correction, recognition of the distinct data subpopulations that emerge as the algorithm runs, ability to operate on massive amounts of data (of the order of 1 Mbit), and a few other minor improvements. The data from the experimental algorithm we developed show that by operating on massive arrays of data we can improve software performance by better than three orders of magnitude while retaining nearly as many bits (typically more than 90%) as the algorithms that were designed for optimal bit retention.

  4. Practical round-robin differential phase-shift quantum key distribution.

    PubMed

    Zhang, Ying-Ying; Bao, Wan-Su; Zhou, Chun; Li, Hong-Wei; Wang, Yang; Jiang, Mu-Sheng

    2016-09-01

    Recently, a novel protocol named round-robin differential phase-shift (RRDPS) quantum key distribution [Nature 509, 475(2014)] has been proposed. It can estimate information leakage without monitoring bit error rate. In this paper, we study the performance of RRDPS using heralded single photon source (HSPS) without and with decoy-state method, then compare it with the performance of weak coherent pulses (WCPs). From numerical simulation, we can see that HSPS performs better especially for shorter packet and higher bit error rate. Moreover, we propose a general theory of decoy-state method for RRDPS protocol based on only three decoy states and one signal state. Taking WCPs as an example, the three-intensity decoy-state protocol can distribute secret keys over a distance of 128 km when the length of pulses packet is 32, which confirms great practical interest of our method. PMID:27607679

  5. Quantum key distribution using continuous-variable non-Gaussian states

    NASA Astrophysics Data System (ADS)

    Borelli, L. F. M.; Aguiar, L. S.; Roversi, J. A.; Vidiella-Barranco, A.

    2016-02-01

    In this work, we present a quantum key distribution protocol using continuous-variable non-Gaussian states, homodyne detection and post-selection. The employed signal states are the photon added then subtracted coherent states (PASCS) in which one photon is added and subsequently one photon is subtracted from the field. We analyze the performance of our protocol, compared with a coherent state-based protocol, for two different attacks that could be carried out by the eavesdropper (Eve). We calculate the secret key rate transmission in a lossy line for a superior channel (beam-splitter) attack, and we show that we may increase the secret key generation rate by using the non-Gaussian PASCS rather than coherent states. We also consider the simultaneous quadrature measurement (intercept-resend) attack, and we show that the efficiency of Eve's attack is substantially reduced if PASCS are used as signal states.

  6. Finite-size analysis of a continuous-variable quantum key distribution

    SciTech Connect

    Leverrier, Anthony; Grangier, Philippe

    2010-06-15

    The goal of this paper is to extend the framework of finite-size analysis recently developed for quantum key distribution to continuous-variable protocols. We do not solve this problem completely here, and we mainly consider the finite-size effects on the parameter estimation procedure. Despite the fact that some questions are left open, we are able to give an estimation of the secret key rate for protocols which do not contain a postselection procedure. As expected, these results are significantly more pessimistic than those obtained in the asymptotic regime. However, we show that recent continuous-variable protocols are able to provide fully secure secret keys in the finite-size scenario, over distances larger than 50 km.

  7. Performance of device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Cao, Zhu; Zhao, Qi; Ma, Xiongfeng

    2016-07-01

    Quantum key distribution provides information-theoretically-secure communication. In practice, device imperfections may jeopardise the system security. Device-independent quantum key distribution solves this problem by providing secure keys even when the quantum devices are untrusted and uncharacterized. Following a recent security proof of the device-independent quantum key distribution, we improve the key rate by tightening the parameter choice in the security proof. In practice where the system is lossy, we further improve the key rate by taking into account the loss position information. From our numerical simulation, our method can outperform existing results. Meanwhile, we outline clear experimental requirements for implementing device-independent quantum key distribution. The maximal tolerable error rate is 1.6%, the minimal required transmittance is 97.3%, and the minimal required visibility is 96.8 % .

  8. Distributed Dynamic Host Configuration Protocol (D2HCP).

    PubMed

    Villalba, Luis Javier García; Matesanz, Julián García; Orozco, Ana Lucila Sandoval; Díaz, José Duván Márquez

    2011-01-01

    Mobile Ad Hoc Networks (MANETs) are multihop wireless networks of mobile nodes without any fixed or preexisting infrastructure. The topology of these networks can change randomly due to the unpredictable mobility of nodes and their propagation characteristics. In most networks, including MANETs, each node needs a unique identifier to communicate. This work presents a distributed protocol for dynamic node IP address assignment in MANETs. Nodes of a MANET synchronize from time to time to maintain a record of IP address assignments in the entire network and detect any IP address leaks. The proposed stateful autoconfiguration scheme uses the OLSR proactive routing protocol for synchronization and guarantees unique IP addresses under a variety of network conditions, including message losses and network partitioning. Simulation results show that the protocol incurs low latency and communication overhead for IP address assignment.

  9. Distributed Dynamic Host Configuration Protocol (D2HCP).

    PubMed

    Villalba, Luis Javier García; Matesanz, Julián García; Orozco, Ana Lucila Sandoval; Díaz, José Duván Márquez

    2011-01-01

    Mobile Ad Hoc Networks (MANETs) are multihop wireless networks of mobile nodes without any fixed or preexisting infrastructure. The topology of these networks can change randomly due to the unpredictable mobility of nodes and their propagation characteristics. In most networks, including MANETs, each node needs a unique identifier to communicate. This work presents a distributed protocol for dynamic node IP address assignment in MANETs. Nodes of a MANET synchronize from time to time to maintain a record of IP address assignments in the entire network and detect any IP address leaks. The proposed stateful autoconfiguration scheme uses the OLSR proactive routing protocol for synchronization and guarantees unique IP addresses under a variety of network conditions, including message losses and network partitioning. Simulation results show that the protocol incurs low latency and communication overhead for IP address assignment. PMID:22163856

  10. Distributed Dynamic Host Configuration Protocol (D2HCP)

    PubMed Central

    Villalba, Luis Javier García; Matesanz, Julián García; Orozco, Ana Lucila Sandoval; Díaz, José Duván Márquez

    2011-01-01

    Mobile Ad Hoc Networks (MANETs) are multihop wireless networks of mobile nodes without any fixed or preexisting infrastructure. The topology of these networks can change randomly due to the unpredictable mobility of nodes and their propagation characteristics. In most networks, including MANETs, each node needs a unique identifier to communicate. This work presents a distributed protocol for dynamic node IP address assignment in MANETs. Nodes of a MANET synchronize from time to time to maintain a record of IP address assignments in the entire network and detect any IP address leaks. The proposed stateful autoconfiguration scheme uses the OLSR proactive routing protocol for synchronization and guarantees unique IP addresses under a variety of network conditions, including message losses and network partitioning. Simulation results show that the protocol incurs low latency and communication overhead for IP address assignment. PMID:22163856

  11. High speed prototype quantum key distribution system and long term field trial.

    PubMed

    Dixon, A R; Dynes, J F; Lucamarini, M; Fröhlich, B; Sharpe, A W; Plews, A; Tam, S; Yuan, Z L; Tanizawa, Y; Sato, H; Kawamura, S; Fujiwara, M; Sasaki, M; Shields, A J

    2015-03-23

    Securing information in communication networks is an important challenge in today's world. Quantum Key Distribution (QKD) can provide unique capabilities towards achieving this security, allowing intrusions to be detected and information leakage avoided. We report here a record high bit rate prototype QKD system providing a total of 878 Gbit of secure key data over a 34 day period corresponding to a sustained key rate of around 300 kbit/s. The system was deployed over a standard 45 km link of an installed metropolitan telecommunication fibre network in central Tokyo. The prototype QKD system is compact, robust and automatically stabilised, enabling key distribution during diverse weather conditions. The security analysis includes an efficient protocol, finite key size effects and decoy states, with a quantified key failure probability of ε = 10⁻¹⁰.

  12. Cryptanalysis and improvement of authentication and key agreement protocols for telecare medicine information systems.

    PubMed

    Islam, S K Hafizul; Khan, Muhammad Khurram

    2014-10-01

    Recently, many authentication protocols have been presented using smartcard for the telecare medicine information system (TMIS). In 2014, Xu et al. put forward a two-factor mutual authentication with key agreement protocol using elliptic curve cryptography (ECC). However, the authors have proved that the protocol is not appropriate for practical use as it has many problems (1) it fails to achieve strong authentication in login and authentication phases; (2) it fails to update the password correctly in the password change phase; (3) it fails to provide the revocation of lost/stolen smartcard; and (4) it fails to protect the strong replay attack. We then devised an anonymous and provably secure two-factor authentication protocol based on ECC. Our protocol is analyzed with the random oracle model and demonstrated to be formally secured against the hardness assumption of computational Diffie-Hellman problem. The performance evaluation demonstrated that our protocol outperforms from the perspective of security, functionality and computation costs over other existing designs. PMID:25190590

  13. Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack

    NASA Astrophysics Data System (ADS)

    Huang, Jing-Zheng; Weedbrook, Christian; Yin, Zhen-Qiang; Wang, Shuang; Li, Hong-Wei; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu

    2013-06-01

    The security proofs of continuous-variable quantum key distribution are based on the assumptions that the eavesdropper can neither act on the local oscillator nor control Bob's beam splitter. These assumptions may be invalid in practice due to potential imperfections in the implementations of such protocols. In this paper, we consider the problem of transmitting the local oscillator in a public channel and propose a wavelength attack which allows the eavesdropper to control the intensity transmission of Bob's beam splitter by switching the wavelength of the input light. Specifically we target continuous-variable quantum key distribution systems that use the heterodyne detection protocol using either direct or reverse reconciliation. Our attack is proved to be feasible and renders all of the final keys shared between the legitimate parties insecure, even if they have monitored the intensity of the local oscillator. To prevent our attack on commercial systems, a simple wavelength filter should be randomly added before performing monitoring detection.

  14. Faked state attacks on realistic round robin DPS quantum key distribution systems and countermeasure

    NASA Astrophysics Data System (ADS)

    Iwakoshi, T.

    2015-05-01

    In May 2014, a new quantum key distribution protocol named "Round Robin Differential-Phase-Shift Quantum Key Distribution (RR DPS QKD)" was proposed. It has a special feature that the key consumption via privacy amplification is a small constant because RR DPS QKD guarantees its security by information causality, not by information-disturbance trade-off. Therefore, the authors claimed that RR DPS QKD systems does not need to monitor the disturbance by an attacker in the quantum channel. However, this study shows that a modified Faked-State Attack (or so-called bright illumination attack) can hack a RR DPS QKD system almost perfectly if it is implemented with realistic detectors even information-causality guarantees the security of RR DPS QKD protocol. Therefore, this study also proposes a possible Measurement-Device-Independent RR DPS QKD system to avoid the modified Faked-State Attack.

  15. Photon-monitoring attack on continuous-variable quantum key distribution with source in middle

    NASA Astrophysics Data System (ADS)

    Wang, Yijun; Huang, Peng; Guo, Ying; Huang, Dazu

    2014-12-01

    Motivated by a fact that the non-Gaussian operation may increase entanglement of an entangled system, we suggest a photon-monitoring attack strategy in the entanglement-based (EB) continuous-variable quantum key distribution (CVQKD) using the photon subtraction operations, where the entangled source originates from the center instead of one of the legal participants. It shows that an eavesdropper, Eve, can steal large information from participants after intercepting the partial beams with the photon-monitoring attach strategy. The structure of the proposed CVQKD protocol is useful in simply analyzing how quantum loss in imperfect channels can decrease the performance of the CVQKD protocol. The proposed attack strategy can be implemented under current technology, where a newly developed and versatile no-Gaussian operation can be well employed with the entangled source in middle in order to access to mass information in the EB CVQKD protocol, as well as in the prepare-and-measure (PM) CVQKD protocol.

  16. An improved authenticated key agreement protocol for telecare medicine information system.

    PubMed

    Liu, Wenhao; Xie, Qi; Wang, Shengbao; Hu, Bin

    2016-01-01

    In telecare medicine information systems (TMIS), identity authentication of patients plays an important role and has been widely studied in the research field. Generally, it is realized by an authenticated key agreement protocol, and many such protocols were proposed in the literature. Recently, Zhang et al. pointed out that Islam et al.'s protocol suffers from the following security weaknesses: (1) Any legal but malicious patient can reveal other user's identity; (2) An attacker can launch off-line password guessing attack and the impersonation attack if the patient's identity is compromised. Zhang et al. also proposed an improved authenticated key agreement scheme with privacy protection for TMIS. However, in this paper, we point out that Zhang et al.'s scheme cannot resist off-line password guessing attack, and it fails to provide the revocation of lost/stolen smartcard. In order to overcome these weaknesses, we propose an improved protocol, the security and authentication of which can be proven using applied pi calculus based formal verification tool ProVerif.

  17. An improved authenticated key agreement protocol for telecare medicine information system.

    PubMed

    Liu, Wenhao; Xie, Qi; Wang, Shengbao; Hu, Bin

    2016-01-01

    In telecare medicine information systems (TMIS), identity authentication of patients plays an important role and has been widely studied in the research field. Generally, it is realized by an authenticated key agreement protocol, and many such protocols were proposed in the literature. Recently, Zhang et al. pointed out that Islam et al.'s protocol suffers from the following security weaknesses: (1) Any legal but malicious patient can reveal other user's identity; (2) An attacker can launch off-line password guessing attack and the impersonation attack if the patient's identity is compromised. Zhang et al. also proposed an improved authenticated key agreement scheme with privacy protection for TMIS. However, in this paper, we point out that Zhang et al.'s scheme cannot resist off-line password guessing attack, and it fails to provide the revocation of lost/stolen smartcard. In order to overcome these weaknesses, we propose an improved protocol, the security and authentication of which can be proven using applied pi calculus based formal verification tool ProVerif. PMID:27218005

  18. Controlling Continuous-Variable Quantum Key Distribution with Tuned Linear Optics Cloning Machines

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Qiu, Deli; Huang, Peng; Zeng, Guihua

    2015-09-01

    We show that the tolerable excess noise can be elegantly controlled while inserting a tunable linear optics cloning machine (LOCM) for continuous-variable key distribution (CVQKD). The LOCM-tuned noise can be stabilized to an optimal value by the reference partner of reconciliation to guarantee the high secret key rate. Simulation results show that there is a considerable improvement of the performance for the LOCM-based CVQKD protocol in terms of the secret rate while making a fine balance between the secret key rate and the transmission distance with the dynamically tuned parameters in suitable ranges.

  19. Measurement device-independent quantum key distribution with heralded pair coherent state

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Shang-Hong, Zhao; Lei, Shi

    2016-10-01

    The original measurement device-independent quantum key distribution is reviewed, and a modified protocol using heralded pair coherent state (HPCS) is proposed to overcome the quantum bit error rate associated with the dark count rate of the detectors in long-distance quantum key distribution. Our simulation indicates that the secure transmission distance can be improved evidently with HPCS owing to the lower probability of vacuum events when compared with weak coherent source scenario, while the secure key rate can be increased with HPCS due to the higher probability of single-photon events when compared with heralded single-photon source scenario. Furthermore, we apply the finite key analysis to the decoy state MDI-QKD with HPCS and obtain a practical key rate.

  20. Measurement device-independent quantum key distribution with heralded pair coherent state

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Shang-Hong, Zhao; Lei, Shi

    2016-07-01

    The original measurement device-independent quantum key distribution is reviewed, and a modified protocol using heralded pair coherent state (HPCS) is proposed to overcome the quantum bit error rate associated with the dark count rate of the detectors in long-distance quantum key distribution. Our simulation indicates that the secure transmission distance can be improved evidently with HPCS owing to the lower probability of vacuum events when compared with weak coherent source scenario, while the secure key rate can be increased with HPCS due to the higher probability of single-photon events when compared with heralded single-photon source scenario. Furthermore, we apply the finite key analysis to the decoy state MDI-QKD with HPCS and obtain a practical key rate.

  1. Biometrics based novel key distribution solution for body sensor networks.

    PubMed

    Miao, Fen; Jiang, Lei; Li, Ye; Zhang, Yuan-Ting

    2009-01-01

    The security of wireless body sensor network (BSN) is very important to telemedicine and m-healthcare, and it still remains a critical challenge. This paper presents a novel key distribution solution which allows two sensors in one BSN to agree on a changeable cryptographic key. A previously published scheme, fuzzy vault, is firstly applied to secure the random cryptographic key generated from electrocardiographic (ECG) signals. Simulations based on ECG data from MIT PhysioBank database, produce a minimum half total error rate (HTER) of 0.65%, which demonstrates our key distribution solution is promising compared with previous method, with HTER of 4.26%. PMID:19964960

  2. Biometrics based novel key distribution solution for body sensor networks.

    PubMed

    Miao, Fen; Jiang, Lei; Li, Ye; Zhang, Yuan-Ting

    2009-01-01

    The security of wireless body sensor network (BSN) is very important to telemedicine and m-healthcare, and it still remains a critical challenge. This paper presents a novel key distribution solution which allows two sensors in one BSN to agree on a changeable cryptographic key. A previously published scheme, fuzzy vault, is firstly applied to secure the random cryptographic key generated from electrocardiographic (ECG) signals. Simulations based on ECG data from MIT PhysioBank database, produce a minimum half total error rate (HTER) of 0.65%, which demonstrates our key distribution solution is promising compared with previous method, with HTER of 4.26%.

  3. N-dimensional measurement-device-independent quantum key distribution with N + 1 un-characterized sources: zero quantum-bit-error-rate case.

    PubMed

    Hwang, Won-Young; Su, Hong-Yi; Bae, Joonwoo

    2016-07-25

    We study N-dimensional measurement-device-independent quantum-key-distribution protocol where one checking state is used. Only assuming that the checking state is a superposition of other N sources, we show that the protocol is secure in zero quantum-bit-error-rate case, suggesting possibility of the protocol. The method may be applied in other quantum information processing.

  4. N-dimensional measurement-device-independent quantum key distribution with N + 1 un-characterized sources: zero quantum-bit-error-rate case

    NASA Astrophysics Data System (ADS)

    Hwang, Won-Young; Su, Hong-Yi; Bae, Joonwoo

    2016-07-01

    We study N-dimensional measurement-device-independent quantum-key-distribution protocol where one checking state is used. Only assuming that the checking state is a superposition of other N sources, we show that the protocol is secure in zero quantum-bit-error-rate case, suggesting possibility of the protocol. The method may be applied in other quantum information processing.

  5. Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry.

    PubMed

    Zhang, Zheshen; Mower, Jacob; Englund, Dirk; Wong, Franco N C; Shapiro, Jeffrey H

    2014-03-28

    High-dimensional quantum key distribution (HDQKD) offers the possibility of high secure-key rate with high photon-information efficiency. We consider HDQKD based on the time-energy entanglement produced by spontaneous parametric down-conversion and show that it is secure against collective attacks. Its security rests upon visibility data-obtained from Franson and conjugate-Franson interferometers-that probe photon-pair frequency correlations and arrival-time correlations. From these measurements, an upper bound can be established on the eavesdropper's Holevo information by translating the Gaussian-state security analysis for continuous-variable quantum key distribution so that it applies to our protocol. We show that visibility data from just the Franson interferometer provides a weaker, but nonetheless useful, secure-key rate lower bound. To handle multiple-pair emissions, we incorporate the decoy-state approach into our protocol. Our results show that over a 200-km transmission distance in optical fiber, time-energy entanglement HDQKD could permit a 700-bit/sec secure-key rate and a photon information efficiency of 2 secure-key bits per photon coincidence in the key-generation phase using receivers with a 15% system efficiency.

  6. Temporal steering and security of quantum key distribution with mutually unbiased bases against individual attacks

    NASA Astrophysics Data System (ADS)

    Bartkiewicz, Karol; Černoch, Antonín; Lemr, Karel; Miranowicz, Adam; Nori, Franco

    2016-06-01

    Temporal steering, which is a temporal analog of Einstein-Podolsky-Rosen steering, refers to temporal quantum correlations between the initial and final state of a quantum system. Our analysis of temporal steering inequalities in relation to the average quantum bit error rates reveals the interplay between temporal steering and quantum cloning, which guarantees the security of quantum key distribution based on mutually unbiased bases against individual attacks. The key distributions analyzed here include the Bennett-Brassard 1984 protocol and the six-state 1998 protocol by Bruss. Moreover, we define a temporal steerable weight, which enables us to identify a kind of monogamy of temporal correlation that is essential to quantum cryptography and useful for analyzing various scenarios of quantum causality.

  7. Three-particle hyper-entanglement: teleportation and quantum key distribution

    NASA Astrophysics Data System (ADS)

    Perumangatt, Chithrabhanu; Abdul Rahim, Aadhi; Salla, Gangi Reddy; Prabhakar, Shashi; Samanta, Goutam Kumar; Paul, Goutam; Singh, Ravindra Pratap

    2015-10-01

    We present a scheme to generate three-particle hyper-entanglement utilizing polarization and orbital angular momentum (OAM) of photons. We show that the generated state can be used to teleport a two-qubit state described by the polarization and the OAM. The proposed quantum system has also been used to describe a new efficient quantum key distribution (QKD) protocol. We give a sketch of the experimental arrangement to realize the proposed teleportation and the QKD.

  8. A secure distributed logistic regression protocol for the detection of rare adverse drug events

    PubMed Central

    El Emam, Khaled; Samet, Saeed; Arbuckle, Luk; Tamblyn, Robyn; Earle, Craig; Kantarcioglu, Murat

    2013-01-01

    Background There is limited capacity to assess the comparative risks of medications after they enter the market. For rare adverse events, the pooling of data from multiple sources is necessary to have the power and sufficient population heterogeneity to detect differences in safety and effectiveness in genetic, ethnic and clinically defined subpopulations. However, combining datasets from different data custodians or jurisdictions to perform an analysis on the pooled data creates significant privacy concerns that would need to be addressed. Existing protocols for addressing these concerns can result in reduced analysis accuracy and can allow sensitive information to leak. Objective To develop a secure distributed multi-party computation protocol for logistic regression that provides strong privacy guarantees. Methods We developed a secure distributed logistic regression protocol using a single analysis center with multiple sites providing data. A theoretical security analysis demonstrates that the protocol is robust to plausible collusion attacks and does not allow the parties to gain new information from the data that are exchanged among them. The computational performance and accuracy of the protocol were evaluated on simulated datasets. Results The computational performance scales linearly as the dataset sizes increase. The addition of sites results in an exponential growth in computation time. However, for up to five sites, the time is still short and would not affect practical applications. The model parameters are the same as the results on pooled raw data analyzed in SAS, demonstrating high model accuracy. Conclusion The proposed protocol and prototype system would allow the development of logistic regression models in a secure manner without requiring the sharing of personal health information. This can alleviate one of the key barriers to the establishment of large-scale post-marketing surveillance programs. We extended the secure protocol to account for

  9. Freshness-preserving non-interactive hierarchical key agreement protocol over WHMS.

    PubMed

    Kim, Hyunsung

    2014-12-10

    The digitization of patient health information (PHI) for wireless health monitoring systems (WHMSs) has brought many benefits and challenges for both patients and physicians. However, security, privacy and robustness have remained important challenges for WHMSs. Since the patient's PHI is sensitive and the communication channel, i.e., the Internet, is insecure, it is important to protect them against unauthorized entities, i.e., attackers. Otherwise, failure to do so will not only lead to the compromise of a patient's privacy, but will also put his/her life at risk. This paper proposes a freshness-preserving non-interactive hierarchical key agreement protocol (FNKAP) for WHMSs. The FNKAP is based on the concept of the non-interactive identity-based key agreement for communication efficiency. It achieves patient anonymity between a patient and physician, session key secrecy and resistance against various security attacks, especially including replay attacks.

  10. Freshness-preserving non-interactive hierarchical key agreement protocol over WHMS.

    PubMed

    Kim, Hyunsung

    2014-01-01

    The digitization of patient health information (PHI) for wireless health monitoring systems (WHMSs) has brought many benefits and challenges for both patients and physicians. However, security, privacy and robustness have remained important challenges for WHMSs. Since the patient's PHI is sensitive and the communication channel, i.e., the Internet, is insecure, it is important to protect them against unauthorized entities, i.e., attackers. Otherwise, failure to do so will not only lead to the compromise of a patient's privacy, but will also put his/her life at risk. This paper proposes a freshness-preserving non-interactive hierarchical key agreement protocol (FNKAP) for WHMSs. The FNKAP is based on the concept of the non-interactive identity-based key agreement for communication efficiency. It achieves patient anonymity between a patient and physician, session key secrecy and resistance against various security attacks, especially including replay attacks. PMID:25513824

  11. Freshness-Preserving Non-Interactive Hierarchical Key Agreement Protocol over WHMS

    PubMed Central

    Kim, Hyunsung

    2014-01-01

    The digitization of patient health information (PHI) for wireless health monitoring systems (WHMSs) has brought many benefits and challenges for both patients and physicians. However, security, privacy and robustness have remained important challenges for WHMSs. Since the patient's PHI is sensitive and the communication channel, i.e., the Internet, is insecure, it is important to protect them against unauthorized entities, i.e., attackers. Otherwise, failure to do so will not only lead to the compromise of a patient's privacy, but will also put his/her life at risk. This paper proposes a freshness-preserving non-interactive hierarchical key agreement protocol (FNKAP) for WHMSs. The FNKAP is based on the concept of the non-interactive identity-based key agreement for communication efficiency. It achieves patient anonymity between a patient and physician, session key secrecy and resistance against various security attacks, especially including replay attacks. PMID:25513824

  12. An Enhanced Biometric Based Authentication with Key-Agreement Protocol for Multi-Server Architecture Based on Elliptic Curve Cryptography

    PubMed Central

    Reddy, Alavalapati Goutham; Das, Ashok Kumar; Odelu, Vanga; Yoo, Kee-Young

    2016-01-01

    Biometric based authentication protocols for multi-server architectures have gained momentum in recent times due to advancements in wireless technologies and associated constraints. Lu et al. recently proposed a robust biometric based authentication with key agreement protocol for a multi-server environment using smart cards. They claimed that their protocol is efficient and resistant to prominent security attacks. The careful investigation of this paper proves that Lu et al.’s protocol does not provide user anonymity, perfect forward secrecy and is susceptible to server and user impersonation attacks, man-in-middle attacks and clock synchronization problems. In addition, this paper proposes an enhanced biometric based authentication with key-agreement protocol for multi-server architecture based on elliptic curve cryptography using smartcards. We proved that the proposed protocol achieves mutual authentication using Burrows-Abadi-Needham (BAN) logic. The formal security of the proposed protocol is verified using the AVISPA (Automated Validation of Internet Security Protocols and Applications) tool to show that our protocol can withstand active and passive attacks. The formal and informal security analyses and performance analysis demonstrates that the proposed protocol is robust and efficient compared to Lu et al.’s protocol and existing similar protocols. PMID:27163786

  13. An Enhanced Biometric Based Authentication with Key-Agreement Protocol for Multi-Server Architecture Based on Elliptic Curve Cryptography.

    PubMed

    Reddy, Alavalapati Goutham; Das, Ashok Kumar; Odelu, Vanga; Yoo, Kee-Young

    2016-01-01

    Biometric based authentication protocols for multi-server architectures have gained momentum in recent times due to advancements in wireless technologies and associated constraints. Lu et al. recently proposed a robust biometric based authentication with key agreement protocol for a multi-server environment using smart cards. They claimed that their protocol is efficient and resistant to prominent security attacks. The careful investigation of this paper proves that Lu et al.'s protocol does not provide user anonymity, perfect forward secrecy and is susceptible to server and user impersonation attacks, man-in-middle attacks and clock synchronization problems. In addition, this paper proposes an enhanced biometric based authentication with key-agreement protocol for multi-server architecture based on elliptic curve cryptography using smartcards. We proved that the proposed protocol achieves mutual authentication using Burrows-Abadi-Needham (BAN) logic. The formal security of the proposed protocol is verified using the AVISPA (Automated Validation of Internet Security Protocols and Applications) tool to show that our protocol can withstand active and passive attacks. The formal and informal security analyses and performance analysis demonstrates that the proposed protocol is robust and efficient compared to Lu et al.'s protocol and existing similar protocols.

  14. An Enhanced Biometric Based Authentication with Key-Agreement Protocol for Multi-Server Architecture Based on Elliptic Curve Cryptography.

    PubMed

    Reddy, Alavalapati Goutham; Das, Ashok Kumar; Odelu, Vanga; Yoo, Kee-Young

    2016-01-01

    Biometric based authentication protocols for multi-server architectures have gained momentum in recent times due to advancements in wireless technologies and associated constraints. Lu et al. recently proposed a robust biometric based authentication with key agreement protocol for a multi-server environment using smart cards. They claimed that their protocol is efficient and resistant to prominent security attacks. The careful investigation of this paper proves that Lu et al.'s protocol does not provide user anonymity, perfect forward secrecy and is susceptible to server and user impersonation attacks, man-in-middle attacks and clock synchronization problems. In addition, this paper proposes an enhanced biometric based authentication with key-agreement protocol for multi-server architecture based on elliptic curve cryptography using smartcards. We proved that the proposed protocol achieves mutual authentication using Burrows-Abadi-Needham (BAN) logic. The formal security of the proposed protocol is verified using the AVISPA (Automated Validation of Internet Security Protocols and Applications) tool to show that our protocol can withstand active and passive attacks. The formal and informal security analyses and performance analysis demonstrates that the proposed protocol is robust and efficient compared to Lu et al.'s protocol and existing similar protocols. PMID:27163786

  15. Coherent state quantum key distribution based on entanglement sudden death

    NASA Astrophysics Data System (ADS)

    Jaeger, Gregg; Simon, David; Sergienko, Alexander V.

    2016-03-01

    A method for quantum key distribution (QKD) using entangled coherent states is discussed which is designed to provide key distribution rates and transmission distances surpassing those of traditional entangled photon pair QKD by exploiting entanglement sudden death. The method uses entangled electromagnetic signal states of `macroscopic' average photon numbers rather than single photon or entangled photon pairs, which have inherently limited rate and distance performance as bearers of quantum key data. Accordingly, rather than relying specifically on Bell inequalities as do entangled photon pair-based methods, the security of this method is based on entanglement witnesses and related functions.

  16. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km.

    PubMed

    Schmitt-Manderbach, Tobias; Weier, Henning; Fürst, Martin; Ursin, Rupert; Tiefenbacher, Felix; Scheidl, Thomas; Perdigues, Josep; Sodnik, Zoran; Kurtsiefer, Christian; Rarity, John G; Zeilinger, Anton; Weinfurter, Harald

    2007-01-01

    We report on the experimental implementation of a Bennett-Brassard 1984 (BB84) protocol type quantum key distribution over a 144 km free-space link using weak coherent laser pulses. Optimization of the link transmission was achieved with bidirectional active telescope tracking, and the security was ensured by employing decoy-state analysis. This enabled us to distribute a secure key at a rate of 12.8 bit/s at an attenuation of about 35 dB. Utilizing a simple transmitter setup and an optical ground station capable of tracking a spacecraft in low earth orbit, this outdoor experiment demonstrates the feasibility of global key distribution via satellites. PMID:17358463

  17. Continuous-variable quantum key distribution with noisy coherent states

    SciTech Connect

    Filip, Radim

    2008-02-15

    An excess noise in coherent-state preparation can prevent secure key distribution through lossy channel. The feasible single-copy and multicopy linear optical methods are proposed to purify the prepared state. The single-copy method always sufficiently reduces the excess noise to obtain the key secure against both the individual and collective attacks even through any lossy channel. To increase the secure key rate, two feasible applications of the multicopy linear optical purification are proposed. As a result, maximal secure key rate achievable through a given lossy channel can be approached.

  18. Partially Key Distribution with Public Key Cryptosystem Based on Error Control Codes

    NASA Astrophysics Data System (ADS)

    Tavallaei, Saeed Ebadi; Falahati, Abolfazl

    Due to the low level of security in public key cryptosystems based on number theory, fundamental difficulties such as "key escrow" in Public Key Infrastructure (PKI) and a secure channel in ID-based cryptography, a new key distribution cryptosystem based on Error Control Codes (ECC) is proposed . This idea is done by some modification on McEliece cryptosystem. The security of ECC cryptosystem obtains from the NP-Completeness of block codes decoding. The capability of generating public keys with variable lengths which is suitable for different applications will be provided by using ECC. It seems that usage of these cryptosystems because of decreasing in the security of cryptosystems based on number theory and increasing the lengths of their keys would be unavoidable in future.

  19. Practical Quantum Private Database Queries Based on Passive Round-Robin Differential Phase-shift Quantum Key Distribution.

    PubMed

    Li, Jian; Yang, Yu-Guang; Chen, Xiu-Bo; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    A novel quantum private database query protocol is proposed, based on passive round-robin differential phase-shift quantum key distribution. Compared with previous quantum private database query protocols, the present protocol has the following unique merits: (i) the user Alice can obtain one and only one key bit so that both the efficiency and security of the present protocol can be ensured, and (ii) it does not require to change the length difference of the two arms in a Mach-Zehnder interferometer and just chooses two pulses passively to interfere with so that it is much simpler and more practical. The present protocol is also proved to be secure in terms of the user security and database security. PMID:27539654

  20. Practical Quantum Private Database Queries Based on Passive Round-Robin Differential Phase-shift Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Li, Jian; Yang, Yu-Guang; Chen, Xiu-Bo; Zhou, Yi-Hua; Shi, Wei-Min

    2016-08-01

    A novel quantum private database query protocol is proposed, based on passive round-robin differential phase-shift quantum key distribution. Compared with previous quantum private database query protocols, the present protocol has the following unique merits: (i) the user Alice can obtain one and only one key bit so that both the efficiency and security of the present protocol can be ensured, and (ii) it does not require to change the length difference of the two arms in a Mach-Zehnder interferometer and just chooses two pulses passively to interfere with so that it is much simpler and more practical. The present protocol is also proved to be secure in terms of the user security and database security.

  1. Practical Quantum Private Database Queries Based on Passive Round-Robin Differential Phase-shift Quantum Key Distribution

    PubMed Central

    Li, Jian; Yang, Yu-Guang; Chen, Xiu-Bo; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    A novel quantum private database query protocol is proposed, based on passive round-robin differential phase-shift quantum key distribution. Compared with previous quantum private database query protocols, the present protocol has the following unique merits: (i) the user Alice can obtain one and only one key bit so that both the efficiency and security of the present protocol can be ensured, and (ii) it does not require to change the length difference of the two arms in a Mach-Zehnder interferometer and just chooses two pulses passively to interfere with so that it is much simpler and more practical. The present protocol is also proved to be secure in terms of the user security and database security. PMID:27539654

  2. Device-independent quantum key distribution with generalized two-mode Schrödinger cat states

    NASA Astrophysics Data System (ADS)

    Broadbent, Curtis J.; Marshall, Kevin; Weedbrook, Christian; Howell, John C.

    2015-11-01

    We show how weak nonlinearities can be used in a device-independent quantum key distribution (QKD) protocol using generalized two-mode Schrödinger cat states. The QKD protocol is therefore shown to be secure against collective attacks and for some coherent attacks. We derive analytical formulas for the optimal values of the Bell parameter, the quantum bit error rate, and the device-independent secret key rate in the noiseless lossy bosonic channel. Additionally, we give the filters and measurements which achieve these optimal values. We find that, over any distance in this channel, the quantum bit error rate is identically zero, in principle, and the states in the protocol are always able to violate a Bell inequality. The protocol is found to be superior in some regimes to a device-independent QKD protocol based on polarization entangled states in a depolarizing channel. Finally, we propose an implementation for the optimal filters and measurements.

  3. Experimental demonstration on the deterministic quantum key distribution based on entangled photons

    PubMed Central

    Chen, Hua; Zhou, Zhi-Yuan; Zangana, Alaa Jabbar Jumaah; Yin, Zhen-Qiang; Wu, Juan; Han, Yun-Guang; Wang, Shuang; Li, Hong-Wei; He, De-Yong; Tawfeeq, Shelan Khasro; Shi, Bao-Sen; Guo, Guang-Can; Chen, Wei; Han, Zheng-Fu

    2016-01-01

    As an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified “Ping-Pong”(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based quantum communications. PMID:26860582

  4. Quantum key distribution based on orthogonal states allows secure quantum bit commitment

    NASA Astrophysics Data System (ADS)

    He, Guang Ping

    2011-11-01

    For more than a decade, it was believed that unconditionally secure quantum bit commitment (QBC) is impossible. But based on a previously proposed quantum key distribution scheme using orthogonal states, here we build a QBC protocol in which the density matrices of the quantum states encoding the commitment do not satisfy a crucial condition on which the no-go proofs of QBC are based. Thus, the no-go proofs could be evaded. Our protocol is fault-tolerant and very feasible with currently available technology. It reopens the venue for other ‘post-cold-war’ multi-party cryptographic protocols, e.g. quantum bit string commitment and quantum strong coin tossing with an arbitrarily small bias. This result also has a strong influence on the Clifton-Bub-Halvorson theorem which suggests that quantum theory could be characterized in terms of information-theoretic constraints.

  5. Improving the maximum transmission distance of continuous-variable quantum key distribution using a noiseless amplifier

    SciTech Connect

    Blandino, Rémi; Etesse, Jean; Grangier, Philippe; Leverrier, Anthony; Barbieri, Marco; Tualle-Brouri, Rosa

    2014-12-04

    We show that the maximum transmission distance of continuous-variable quantum key distribution in presence of a Gaussian noisy lossy channel can be arbitrarily increased using a heralded noiseless linear amplifier. We explicitly consider a protocol using amplitude and phase modulated coherent states with reverse reconciliation. Assuming that the secret key rate drops to zero for a line transmittance T{sub lim}, we find that a noiseless amplifier with amplitude gain g can improve this value to T{sub lim}/g{sup 2}, corresponding to an increase in distance proportional to log g. We also show that the tolerance against noise is increased.

  6. Security of quantum key distribution using d-level systems.

    PubMed

    Cerf, Nicolas J; Bourennane, Mohamed; Karlsson, Anders; Gisin, Nicolas

    2002-03-25

    We consider two quantum cryptographic schemes relying on encoding the key into qudits, i.e., quantum states in a d-dimensional Hilbert space. The first cryptosystem uses two mutually unbiased bases (thereby extending the BB84 scheme), while the second exploits all d+1 available such bases (extending the six-state protocol for qubits). We derive the information gained by a potential eavesdropper applying a cloning-based individual attack, along with an upper bound on the error rate that ensures unconditional security against coherent attacks. PMID:11909502

  7. Quantum key distribution using card, base station and trusted authority

    DOEpatents

    Nordholt, Jane Elizabeth; Hughes, Richard John; Newell, Raymond Thorson; Peterson, Charles Glen; Rosenberg, Danna; McCabe, Kevin Peter; Tyagi, Kush T; Dallman, Nicholas

    2015-04-07

    Techniques and tools for quantum key distribution ("QKD") between a quantum communication ("QC") card, base station and trusted authority are described herein. In example implementations, a QC card contains a miniaturized QC transmitter and couples with a base station. The base station provides a network connection with the trusted authority and can also provide electric power to the QC card. When coupled to the base station, after authentication by the trusted authority, the QC card acquires keys through QKD with a trusted authority. The keys can be used to set up secure communication, for authentication, for access control, or for other purposes. The QC card can be implemented as part of a smart phone or other mobile computing device, or the QC card can be used as a fillgun for distribution of the keys.

  8. Experimental quantum key distribution with finite-key security analysis for noisy channels.

    PubMed

    Bacco, Davide; Canale, Matteo; Laurenti, Nicola; Vallone, Giuseppe; Villoresi, Paolo

    2013-01-01

    In quantum key distribution implementations, each session is typically chosen long enough so that the secret key rate approaches its asymptotic limit. However, this choice may be constrained by the physical scenario, as in the perspective use with satellites, where the passage of one terminal over the other is restricted to a few minutes. Here we demonstrate experimentally the extraction of secure keys leveraging an optimal design of the prepare-and-measure scheme, according to recent finite-key theoretical tight bounds. The experiment is performed in different channel conditions, and assuming two distinct attack models: individual attacks or general quantum attacks. The request on the number of exchanged qubits is then obtained as a function of the key size and of the ambient quantum bit error rate. The results indicate that viable conditions for effective symmetric, and even one-time-pad, cryptography are achievable.

  9. Experimental quantum key distribution with finite-key security analysis for noisy channels.

    PubMed

    Bacco, Davide; Canale, Matteo; Laurenti, Nicola; Vallone, Giuseppe; Villoresi, Paolo

    2013-01-01

    In quantum key distribution implementations, each session is typically chosen long enough so that the secret key rate approaches its asymptotic limit. However, this choice may be constrained by the physical scenario, as in the perspective use with satellites, where the passage of one terminal over the other is restricted to a few minutes. Here we demonstrate experimentally the extraction of secure keys leveraging an optimal design of the prepare-and-measure scheme, according to recent finite-key theoretical tight bounds. The experiment is performed in different channel conditions, and assuming two distinct attack models: individual attacks or general quantum attacks. The request on the number of exchanged qubits is then obtained as a function of the key size and of the ambient quantum bit error rate. The results indicate that viable conditions for effective symmetric, and even one-time-pad, cryptography are achievable. PMID:24008848

  10. Experimental quantum-key distribution with an untrusted source.

    PubMed

    Peng, Xiang; Jiang, Hao; Xu, Bingjie; Ma, Xiongfeng; Guo, Hong

    2008-09-15

    The photon statistics of a quantum-key-distribution (QKD) source are crucial for security analysis. We propose a practical method, with only a beam splitter and a photodetector, to monitor the photon statistics of a QKD source. By implementing in a plug and play QKD system, we show that the method is highly practical. The final secure key rate is 52 bit/s, compared to 78 bit/s when the source is treated as a trusted source.

  11. Heralded single-photon sources for quantum-key-distribution applications

    NASA Astrophysics Data System (ADS)

    Schiavon, Matteo; Vallone, Giuseppe; Ticozzi, Francesco; Villoresi, Paolo

    2016-01-01

    Single-photon sources (SPSs) are a fundamental building block for optical implementations of quantum information protocols. Among SPSs, multiple crystal heralded single-photon sources seem to give the best compromise between high pair production rate and low multiple photon events. In this work, we study their performance in a practical quantum-key-distribution experiment, by evaluating the achievable key rates. The analysis focuses on the two different schemes, symmetric and asymmetric, proposed for the practical implementation of heralded single-photon sources, with attention on the performance of their composing elements. The analysis is based on the protocol proposed by Bennett and Brassard in 1984 and on its improvement exploiting decoy state technique. Finally, a simple way of exploiting the postselection mechanism for a passive, one decoy state scheme is evaluated.

  12. Quantum key distribution over an installed multimode optical fiber local area network.

    PubMed

    Namekata, Naoto; Mori, Shigehiko; Inoue, Shuichiro

    2005-12-12

    We have investigated the possibility of a multimode fiber link for a quantum channel. Transmission of light in an extremely underfilled mode distribution promises a single-mode-like behavior in the multimode fiber. To demonstrate the performance of the fiber link we performed quantum key distribution, on the basis of the BB84 four-state protocol, over 550 m of an installed multimode optical fiber local area network, and the quantum-bit-error rate of 1.09 percent was achieved. PMID:19503207

  13. Min-entropy and quantum key distribution: Nonzero key rates for ''small'' numbers of signals

    SciTech Connect

    Bratzik, Sylvia; Mertz, Markus; Kampermann, Hermann; Bruss, Dagmar

    2011-02-15

    We calculate an achievable secret key rate for quantum key distribution with a finite number of signals by evaluating the quantum conditional min-entropy explicitly. The min-entropy for a classical random variable is the negative logarithm of the maximal value in its probability distribution. The quantum conditional min-entropy can be expressed in terms of the guessing probability, which we calculate for d-dimensional systems. We compare these key rates to previous approaches using the von Neumann entropy and find nonzero key rates for a smaller number of signals. Furthermore, we improve the secret key rates by modifying the parameter estimation step. Both improvements taken together lead to nonzero key rates for only 10{sup 4}-10{sup 5} signals. An interesting conclusion can also be drawn from the additivity of the min-entropy and its relation to the guessing probability: for a set of symmetric tensor product states, the optimal minimum-error discrimination (MED) measurement is the optimal MED measurement on each subsystem.

  14. A no-key-exchange secure image sharing scheme based on Shamir's three-pass cryptography protocol and the multiple-parameter fractional Fourier transform.

    PubMed

    Lang, Jun

    2012-01-30

    In this paper, we propose a novel secure image sharing scheme based on Shamir's three-pass protocol and the multiple-parameter fractional Fourier transform (MPFRFT), which can safely exchange information with no advance distribution of either secret keys or public keys between users. The image is encrypted directly by the MPFRFT spectrum without the use of phase keys, and information can be shared by transmitting the encrypted image (or message) three times between users. Numerical simulation results are given to verify the performance of the proposed algorithm.

  15. Post-processing procedure for industrial quantum key distribution systems

    NASA Astrophysics Data System (ADS)

    Kiktenko, Evgeny; Trushechkin, Anton; Kurochkin, Yury; Fedorov, Aleksey

    2016-08-01

    We present algorithmic solutions aimed on post-processing procedure for industrial quantum key distribution systems with hardware sifting. The main steps of the procedure are error correction, parameter estimation, and privacy amplification. Authentication of classical public communication channel is also considered.

  16. Achieving high visibility in subcarrier wave quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Chistyakov, V. V.; Smirnov, S. V.; Nazarov, Yu V.; Kynev, S. M.; Gleim, A. V.

    2016-08-01

    We study influence of quantum signal polarization distortions in the optical fiber on the interference pattern visibility in a subcarrier wave quantum key distribution system. An optical scheme of the polarization compensation unit is suggested, and dynamics of the QBER depending on the unit architecture is explored.

  17. Statistical-fluctuation analysis for quantum key distribution with consideration of after-pulse contributions

    NASA Astrophysics Data System (ADS)

    Li, Hongxin; Jiang, Haodong; Gao, Ming; Ma, Zhi; Ma, Chuangui; Wang, Wei

    2015-12-01

    The statistical fluctuation problem is a critical factor in all quantum key distribution (QKD) protocols under finite-key conditions. The current statistical fluctuation analysis is mainly based on independent random samples, however, the precondition cannot always be satisfied because of different choices of samples and actual parameters. As a result, proper statistical fluctuation methods are required to solve this problem. Taking the after-pulse contributions into consideration, this paper gives the expression for the secure key rate and the mathematical model for statistical fluctuations, focusing on a decoy-state QKD protocol [Z.-C. Wei et al., Sci. Rep. 3, 2453 (2013), 10.1038/srep02453] with a biased basis choice. On this basis, a classified analysis of statistical fluctuation is represented according to the mutual relationship between random samples. First, for independent identical relations, a deviation comparison is made between the law of large numbers and standard error analysis. Second, a sufficient condition is given that the Chernoff bound achieves a better result than Hoeffding's inequality based on only independent relations. Third, by constructing the proper martingale, a stringent way is proposed to deal issues based on dependent random samples through making use of Azuma's inequality. In numerical optimization, the impact on the secure key rate, the comparison of secure key rates, and the respective deviations under various kinds of statistical fluctuation analyses are depicted.

  18. Quantum circuit for the proof of the security of quantum key distribution without encryption of error syndrome and noisy processing

    SciTech Connect

    Tamaki, Kiyoshi; Kato, Go

    2010-02-15

    One of the simplest security proofs of quantum key distribution is based on the so-called complementarity scenario, which involves the complementarity control of an actual protocol and a virtual protocol [M. Koashi, e-print arXiv:0704.3661 (2007)]. The existing virtual protocol has a limitation in classical postprocessing, i.e., the syndrome for the error-correction step has to be encrypted. In this paper, we remove this limitation by constructing a quantum circuit for the virtual protocol. Moreover, our circuit with a shield system gives an intuitive proof of why adding noise to the sifted key increases the bit error rate threshold in the general case in which one of the parties does not possess a qubit. Thus, our circuit bridges the simple proof and the use of wider classes of classical postprocessing.

  19. Free-space quantum key distribution to a moving receiver.

    PubMed

    Bourgoin, Jean-Philippe; Higgins, Brendon L; Gigov, Nikolay; Holloway, Catherine; Pugh, Christopher J; Kaiser, Sarah; Cranmer, Miles; Jennewein, Thomas

    2015-12-28

    Technological realities limit terrestrial quantum key distribution (QKD) to single-link distances of a few hundred kilometers. One promising avenue for global-scale quantum communication networks is to use low-Earth-orbit satellites. Here we report the first demonstration of QKD from a stationary transmitter to a receiver platform traveling at an angular speed equivalent to a 600 km altitude satellite, located on a moving truck. We overcome the challenges of actively correcting beam pointing, photon polarization and time-of-flight. Our system generates an asymptotic secure key at 40 bits/s. PMID:26832008

  20. Experimental demonstration of post-selection-based continuous-variable quantum key distribution in the presence of Gaussian noise

    SciTech Connect

    Symul, Thomas; Alton, Daniel J.; Lance, Andrew M.; Lam, Ping Koy; Assad, Syed M.; Weedbrook, Christian; Ralph, Timothy C.

    2007-09-15

    In realistic continuous-variable quantum key distribution protocols, an eavesdropper may exploit the additional Gaussian noise generated during transmission to mask her presence. We present a theoretical framework for a post-selection-based protocol which explicitly takes into account excess Gaussian noise. We derive a quantitative expression of the secret key rates based on the Levitin and Holevo bounds. We experimentally demonstrate that the post-selection-based scheme is still secure against both individual and collective Gaussian attacks in the presence of this excess noise.

  1. Revealing of photon-number splitting attack on quantum key distribution system by photon-number resolving devices

    NASA Astrophysics Data System (ADS)

    Gaidash, A. A.; Egorov, V. I.; Gleim, A. V.

    2016-08-01

    Quantum cryptography allows distributing secure keys between two users so that any performed eavesdropping attempt would be immediately discovered. However, in practice an eavesdropper can obtain key information from multi-photon states when attenuated laser radiation is used as a source of quantum states. In order to prevent actions of an eavesdropper, it is generally suggested to implement special cryptographic protocols, like decoy states or SARG04. In this paper, we describe an alternative method based on monitoring photon number statistics after detection. We provide a useful rule of thumb to estimate approximate order of difference of expected distribution and distribution in case of attack. Formula for calculating a minimum value of total pulses or time-gaps to resolve attack is shown. Also formulas for actual fraction of raw key known to Eve were derived. This method can therefore be used with any system and even combining with mentioned special protocols.

  2. Floodlight quantum key distribution: A practical route to gigabit-per-second secret-key rates

    NASA Astrophysics Data System (ADS)

    Zhuang, Quntao; Zhang, Zheshen; Dove, Justin; Wong, Franco N. C.; Shapiro, Jeffrey H.

    2016-07-01

    The channel loss incurred in long-distance transmission places a significant burden on quantum key distribution (QKD) systems: they must defeat a passive eavesdropper who detects all the light lost in the quantum channel and does so without disturbing the light that reaches the intended destination. The current QKD implementation with the highest long-distance secret-key rate meets this challenge by transmitting no more than one photon per bit [M. Lucamarini et al., Opt. Express 21, 24550 (2013), 10.1364/OE.21.024550]. As a result, it cannot achieve the Gbps secret-key rate needed for one-time pad encryption of large data files unless an impractically large amount of multiplexing is employed. We introduce floodlight QKD (FL-QKD), which floods the quantum channel with a high number of photons per bit distributed over a much greater number of optical modes. FL-QKD offers security against the optimum frequency-domain collective attack by transmitting less than one photon per mode and using photon-coincidence channel monitoring, and it is completely immune to passive eavesdropping. More importantly, FL-QKD is capable of a 2-Gbps secret-key rate over a 50-km fiber link, without any multiplexing, using available equipment, i.e., no new technology need be developed. FL-QKD achieves this extraordinary secret-key rate by virtue of its unprecedented secret-key efficiency, in bits per channel use, which exceeds those of state-of-the-art systems by two orders of magnitude.

  3. Kochen-Specker theorem as a precondition for secure quantum key distribution

    SciTech Connect

    Nagata, Koji

    2005-07-15

    We show that (1) the violation of the Ekert 1991 inequality is a sufficient condition for certification of the Kochen-Specker (KS) theorem, and (2) the violation of the Bennett-Brassard-Mermin 1992 (BBM92) inequality is, also, a sufficient condition for certification of the KS theorem. Therefore the success in each quantum key distribution protocol reveals the nonclassical feature of quantum theory, in the sense that the KS realism is violated. Further, it turned out that the Ekert inequality and the BBM inequality are depictured by distillable entanglement witness inequalities. Here, we connect the success in these two key distribution processes into the no-hidden-variables theorem and into witness on distillable entanglement. We also discuss the explicit difference between the KS realism and Bell's local realism in the Hilbert space formalism of quantum theory.

  4. Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution.

    PubMed

    Wang, Chao; Song, Xiao-Tian; Yin, Zhen-Qiang; Wang, Shuang; Chen, Wei; Zhang, Chun-Mei; Guo, Guang-Can; Han, Zheng-Fu

    2015-10-16

    Measurement-device-independent quantum key distribution (MDI QKD) is a substantial step toward practical information-theoretic security for key sharing between remote legitimate users (Alice and Bob). As with other standard device-dependent quantum key distribution protocols, such as BB84, MDI QKD assumes that the reference frames have been shared between Alice and Bob. In practice, a nontrivial alignment procedure is often necessary, which requires system resources and may significantly reduce the secure key generation rate. Here, we propose a phase-coding reference-frame-independent MDI QKD scheme that requires no phase alignment between the interferometers of two distant legitimate parties. As a demonstration, a proof-of-principle experiment using Faraday-Michelson interferometers is presented. The experimental system worked at 1 MHz, and an average secure key rate of 8.309 bps was obtained at a fiber length of 20 km between Alice and Bob. The system can maintain a positive key generation rate without phase compensation under normal conditions. The results exhibit the feasibility of our system for use in mature MDI QKD devices and its value for network scenarios. PMID:26550855

  5. Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution.

    PubMed

    Wang, Chao; Song, Xiao-Tian; Yin, Zhen-Qiang; Wang, Shuang; Chen, Wei; Zhang, Chun-Mei; Guo, Guang-Can; Han, Zheng-Fu

    2015-10-16

    Measurement-device-independent quantum key distribution (MDI QKD) is a substantial step toward practical information-theoretic security for key sharing between remote legitimate users (Alice and Bob). As with other standard device-dependent quantum key distribution protocols, such as BB84, MDI QKD assumes that the reference frames have been shared between Alice and Bob. In practice, a nontrivial alignment procedure is often necessary, which requires system resources and may significantly reduce the secure key generation rate. Here, we propose a phase-coding reference-frame-independent MDI QKD scheme that requires no phase alignment between the interferometers of two distant legitimate parties. As a demonstration, a proof-of-principle experiment using Faraday-Michelson interferometers is presented. The experimental system worked at 1 MHz, and an average secure key rate of 8.309 bps was obtained at a fiber length of 20 km between Alice and Bob. The system can maintain a positive key generation rate without phase compensation under normal conditions. The results exhibit the feasibility of our system for use in mature MDI QKD devices and its value for network scenarios.

  6. Experimental study on discretely modulated continuous-variable quantum key distribution

    SciTech Connect

    Shen Yong; Zou Hongxin; Chen Pingxing; Yuan Jianmin; Tian Liang

    2010-08-15

    We present a discretely modulated continuous-variable quantum key distribution system in free space by using strong coherent states. The amplitude noise in the laser source is suppressed to the shot-noise limit by using a mode cleaner combined with a frequency shift technique. Also, it is proven that the phase noise in the source has no impact on the final secret key rate. In order to increase the encoding rate, we use broadband homodyne detectors and the no-switching protocol. In a realistic model, we establish a secret key rate of 46.8 kbits/s against collective attacks at an encoding rate of 10 MHz for a 90% channel loss when the modulation variance is optimal.

  7. Long-distance continuous-variable quantum key distribution with a Gaussian modulation

    SciTech Connect

    Jouguet, Paul; Kunz-Jacques, Sebastien; Leverrier, Anthony

    2011-12-15

    We designed high-efficiency error correcting codes allowing us to extract an errorless secret key in a continuous-variable quantum key distribution (CVQKD) protocol using a Gaussian modulation of coherent states and a homodyne detection. These codes are available for a wide range of signal-to-noise ratios on an additive white Gaussian noise channel with a binary modulation and can be combined with a multidimensional reconciliation method proven secure against arbitrary collective attacks. This improved reconciliation procedure considerably extends the secure range of a CVQKD with a Gaussian modulation, giving a secret key rate of about 10{sup -3} bit per pulse at a distance of 120 km for reasonable physical parameters.

  8. High-capacity quantum key distribution using Chebyshev-map values corresponding to Lucas numbers coding

    NASA Astrophysics Data System (ADS)

    Lai, Hong; Orgun, Mehmet A.; Pieprzyk, Josef; Li, Jing; Luo, Mingxing; Xiao, Jinghua; Xiao, Fuyuan

    2016-08-01

    We propose an approach that achieves high-capacity quantum key distribution using Chebyshev-map values corresponding to Lucas numbers coding. In particular, we encode a key with the Chebyshev-map values corresponding to Lucas numbers and then use k-Chebyshev maps to achieve consecutive and flexible key expansion and apply the pre-shared classical information between Alice and Bob and fountain codes for privacy amplification to solve the security of the exchange of classical information via the classical channel. Consequently, our high-capacity protocol does not have the limitations imposed by orbital angular momentum and down-conversion bandwidths, and it meets the requirements for longer distances and lower error rates simultaneously.

  9. Quantum hacking on quantum key distribution using homodyne detection

    NASA Astrophysics Data System (ADS)

    Huang, Jing-Zheng; Kunz-Jacques, Sébastien; Jouguet, Paul; Weedbrook, Christian; Yin, Zhen-Qiang; Wang, Shuang; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu

    2014-03-01

    Imperfect devices in commercial quantum key distribution systems open security loopholes that an eavesdropper may exploit. An example of one such imperfection is the wavelength-dependent coupling ratio of the fiber beam splitter. Utilizing this loophole, the eavesdropper can vary the transmittances of the fiber beam splitter at the receiver's side by inserting lights with wavelengths different from what is normally used. Here, we propose a wavelength attack on a practical continuous-variable quantum key distribution system using homodyne detection. By inserting light pulses at different wavelengths, this attack allows the eavesdropper to bias the shot-noise estimation even if it is done in real time. Based on experimental data, we discuss the feasibility of this attack and suggest a prevention scheme by improving the previously proposed countermeasures.

  10. Quantum key distribution without detector vulnerabilities using optically seeded lasers

    NASA Astrophysics Data System (ADS)

    Comandar, L. C.; Lucamarini, M.; Fröhlich, B.; Dynes, J. F.; Sharpe, A. W.; Tam, S. W.-B.; Yuan, Z. L.; Penty, R. V.; Shields, A. J.

    2016-05-01

    Security in quantum cryptography is continuously challenged by inventive attacks targeting the real components of a cryptographic set-up, and duly restored by new countermeasures to foil them. Owing to their high sensitivity and complex design, detectors are the most frequently attacked components. It was recently shown that two-photon interference from independent light sources can be used to remove any vulnerability from detectors. This new form of detection-safe quantum key distribution (QKD), termed measurement-device-independent (MDI), has been experimentally demonstrated but with modest key rates. Here, we introduce a new pulsed laser seeding technique to obtain high-visibility interference from gain-switched lasers and thereby perform MDI-QKD with unprecedented key rates in excess of 1 megabit per second in the finite-size regime. This represents a two to six orders of magnitude improvement over existing implementations and supports the new scheme as a practical resource for secure quantum communications.

  11. Orthogonal Frequency-Division Multiplexed Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Bahrani, Sima; Razavi, Mohsen; Salehi, Jawad A.

    2015-12-01

    We propose orthogonal frequency division multiplexing (OFDM), as a spectrally efficient multiplexing technique, for quantum key distribution (QKD) at the core of trustednode quantum networks. Two main schemes are proposed and analyzed in detail, considering system imperfections, specifically, time misalignment issues. It turns out that while multiple service providers can share the network infrastructure using the proposed multiplexing techniques, no gain in the total secret key generation rate is obtained if one uses conventional all-optical passive OFDM decoders. To achieve a linear increase in the key rate with the number of channels, an alternative active setup for OFDM decoding is proposed, which employs an optical switch in addition to conventional passive circuits. We show that by using our proposed decoder the bandwidth utilization is considerably improved as compared to conventional wavelength division multiplexing techniques.

  12. Quantum key distribution with an entangled light emitting diode

    SciTech Connect

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.; Dynes, J. F.; Yuan, Z. L.; Skiba-Szymanska, J.; Shields, A. J.; Farrer, I.; Ritchie, D. A.

    2015-12-28

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.

  13. Continuous-variable quantum key distribution with Gaussian source noise

    SciTech Connect

    Shen Yujie; Peng Xiang; Yang Jian; Guo Hong

    2011-05-15

    Source noise affects the security of continuous-variable quantum key distribution (CV QKD) and is difficult to analyze. We propose a model to characterize Gaussian source noise through introducing a neutral party (Fred) who induces the noise with a general unitary transformation. Without knowing Fred's exact state, we derive the security bounds for both reverse and direct reconciliations and show that the bound for reverse reconciliation is tight.

  14. Provably-Secure (Chinese Government) SM2 and Simplified SM2 Key Exchange Protocols

    PubMed Central

    Nam, Junghyun; Kim, Moonseong

    2014-01-01

    We revisit the SM2 protocol, which is widely used in Chinese commercial applications and by Chinese government agencies. Although it is by now standard practice for protocol designers to provide security proofs in widely accepted security models in order to assure protocol implementers of their security properties, the SM2 protocol does not have a proof of security. In this paper, we prove the security of the SM2 protocol in the widely accepted indistinguishability-based Bellare-Rogaway model under the elliptic curve discrete logarithm problem (ECDLP) assumption. We also present a simplified and more efficient version of the SM2 protocol with an accompanying security proof. PMID:25276863

  15. Novel classical post-processing for quantum key distribution-based quantum private query

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Guang; Liu, Zhi-Chao; Chen, Xiu-Bo; Cao, Wei-Feng; Zhou, Yi-Hua; Shi, Wei-Min

    2016-09-01

    Existing classical post-processing (CPP) schemes for quantum key distribution (QKD)-based quantum private queries (QPQs) including the kN→ N, N→ N, and rM→ N ones have been found imperfect in terms of communication efficiency and security. In this paper, we propose a novel CPP scheme for QKD-based QPQs. The proposed CPP scheme reduces the communication complexity and improves the security of QKD-based QPQ protocols largely. Furthermore, the proposed CPP scheme can provide a multi-bit query efficiently.

  16. Phase-remapping attack in practical quantum-key-distribution systems

    SciTech Connect

    Fung, Chi-Hang Fred; Qi, Bing; Lo, Hoi-Kwong; Tamaki, Kiyoshi

    2007-03-15

    Quantum key distribution (QKD) can be used to generate secret keys between two distant parties. Even though QKD has been proven unconditionally secure against eavesdroppers with unlimited computation power, practical implementations of QKD may contain loopholes that may lead to the generated secret keys being compromised. In this paper, we propose a phase-remapping attack targeting two practical bidirectional QKD systems (the 'plug-and-play' system and the Sagnac system). We showed that if the users of the systems are unaware of our attack, the final key shared between them can be compromised in some situations. Specifically, we showed that, in the case of the Bennett-Brassard 1984 (BB84) protocol with ideal single-photon sources, when the quantum bit error rate (QBER) is between 14.6% and 20%, our attack renders the final key insecure, whereas the same range of QBER values has been proved secure if the two users are unaware of our attack; also, we demonstrated three situations with realistic devices where positive key rates are obtained without the consideration of Trojan horse attacks but in fact no key can be distilled. We remark that our attack is feasible with only current technology. Therefore, it is very important to be aware of our attack in order to ensure absolute security. In finding our attack, we minimize the QBER over individual measurements described by a general POVM, which has some similarity with the standard quantum state discrimination problem.

  17. Attacks exploiting deviation of mean photon number in quantum key distribution and coin tossing

    NASA Astrophysics Data System (ADS)

    Sajeed, Shihan; Radchenko, Igor; Kaiser, Sarah; Bourgoin, Jean-Philippe; Pappa, Anna; Monat, Laurent; Legré, Matthieu; Makarov, Vadim

    2015-03-01

    The security of quantum communication using a weak coherent source requires an accurate knowledge of the source's mean photon number. Finite calibration precision or an active manipulation by an attacker may cause the actual emitted photon number to deviate from the known value. We model effects of this deviation on the security of three quantum communication protocols: the Bennett-Brassard 1984 (BB84) quantum key distribution (QKD) protocol without decoy states, Scarani-Acín-Ribordy-Gisin 2004 (SARG04) QKD protocol, and a coin-tossing protocol. For QKD we model both a strong attack using technology possible in principle and a realistic attack bounded by today's technology. To maintain the mean photon number in two-way systems, such as plug-and-play and relativistic quantum cryptography schemes, bright pulse energy incoming from the communication channel must be monitored. Implementation of a monitoring detector has largely been ignored so far, except for ID Quantique's commercial QKD system Clavis2. We scrutinize this implementation for security problems and show that designing a hack-proof pulse-energy-measuring detector is far from trivial. Indeed, the first implementation has three serious flaws confirmed experimentally, each of which may be exploited in a cleverly constructed Trojan-horse attack. We discuss requirements for a loophole-free implementation of the monitoring detector.

  18. Comparison between Two Practical Methods of Light Source Monitoring in Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Wang, Gan; Chen, Ziyang; Xu, Bingjie; Li, Zhengyu; Peng, Xiang; Guo, Hong

    2016-05-01

    The practical security of a quantum key distribution (QKD) is a critical issue due to the loopholes opened by the imperfections of practical devices. The untrusted source problem is a fundamental issue that exists in almost every protocol, including the loss-tolerant protocol and the measurement-device-independent protocol. Two practical light source monitoring methods were proposed, i.e., two-threshold detector scheme and photon-number-resolving (PNR) detector scheme. In this work, we test the fluctuation level of different gain-switched pulsed lasers, i.e., the ratio between the standard deviation and the mean of the pulse energy (noted as γ) changes from 1% to 7%. Moreover, we propose an improved practical PNR detector scheme, and discuss in what circumstances one should use which light source monitoring method, i.e., generally speaking when the fluctuation is large the PNR detector method performs better. This provides an instruction of selecting proper monitoring module for different practical systems. This work is supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 61225003), the State Key Project of National Natural Science Foundation of China (Grant No. 61531003).

  19. Chaotic maps and biometrics-based anonymous three-party authenticated key exchange protocol without using passwords

    NASA Astrophysics Data System (ADS)

    Xie, Qi; Hu, Bin; Chen, Ke-Fei; Liu, Wen-Hao; Tan, Xiao

    2015-11-01

    In three-party password authenticated key exchange (AKE) protocol, since two users use their passwords to establish a secure session key over an insecure communication channel with the help of the trusted server, such a protocol may suffer the password guessing attacks and the server has to maintain the password table. To eliminate the shortages of password-based AKE protocol, very recently, according to chaotic maps, Lee et al. [2015 Nonlinear Dyn. 79 2485] proposed a first three-party-authenticated key exchange scheme without using passwords, and claimed its security by providing a well-organized BAN logic test. Unfortunately, their protocol cannot resist impersonation attack, which is demonstrated in the present paper. To overcome their security weakness, by using chaotic maps, we propose a biometrics-based anonymous three-party AKE protocol with the same advantages. Further, we use the pi calculus-based formal verification tool ProVerif to show that our AKE protocol achieves authentication, security and anonymity, and an acceptable efficiency. Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LZ12F02005), the Major State Basic Research Development Program of China (Grant No. 2013CB834205), and the National Natural Science Foundation of China (Grant No. 61070153).

  20. N-dimensional measurement-device-independent quantum key distribution with N + 1 un-characterized sources: zero quantum-bit-error-rate case

    PubMed Central

    Hwang, Won-Young; Su, Hong-Yi; Bae, Joonwoo

    2016-01-01

    We study N-dimensional measurement-device-independent quantum-key-distribution protocol where one checking state is used. Only assuming that the checking state is a superposition of other N sources, we show that the protocol is secure in zero quantum-bit-error-rate case, suggesting possibility of the protocol. The method may be applied in other quantum information processing. PMID:27452275

  1. N-dimensional measurement-device-independent quantum key distribution with N + 1 un-characterized sources: zero quantum-bit-error-rate case.

    PubMed

    Hwang, Won-Young; Su, Hong-Yi; Bae, Joonwoo

    2016-01-01

    We study N-dimensional measurement-device-independent quantum-key-distribution protocol where one checking state is used. Only assuming that the checking state is a superposition of other N sources, we show that the protocol is secure in zero quantum-bit-error-rate case, suggesting possibility of the protocol. The method may be applied in other quantum information processing. PMID:27452275

  2. Simultaneous classical communication and quantum key distribution using continuous variables

    DOE PAGESBeta

    Qi, Bing

    2016-10-26

    Currently, classical optical communication systems employing strong laser pulses and quantum key distribution (QKD) systems working at single-photon levels are very different communication modalities. Dedicated devices are commonly required to implement QKD. In this paper, we propose a scheme which allows classical communication and QKD to be implemented simultaneously using the same communication infrastructure. More specially, we propose a coherent communication scheme where both the bits for classical communication and the Gaussian distributed random numbers for QKD are encoded on the same weak coherent pulse and decoded by the same coherent receiver. Simulation results based on practical system parameters showmore » that both deterministic classical communication with a bit error rate of 10–9 and secure key distribution could be achieved over tens of kilometers of single-mode fibers. It is conceivable that in the future coherent optical communication network, QKD will be operated in the background of classical communication at a minimal cost.« less

  3. High Speed Quantum Key Distribution Over Optical Fiber Network System.

    PubMed

    Ma, Lijun; Mink, Alan; Tang, Xiao

    2009-01-01

    The National Institute of Standards and Technology (NIST) has developed a number of complete fiber-based high-speed quantum key distribution (QKD) systems that includes an 850 nm QKD system for a local area network (LAN), a 1310 nm QKD system for a metropolitan area network (MAN), and a 3-node quantum network controlled by a network manager. This paper discusses the key techniques used to implement these systems, which include polarization recovery, noise reduction, frequency up-conversion detection based on a periodically polled lithium nitrate (PPLN) waveguide, custom high-speed data handling boards and quantum network management. Using our quantum network, a QKD secured video surveillance application has been demonstrated. Our intention is to show the feasibility and sophistication of QKD systems based on current technology. PMID:27504218

  4. Decoy-state quantum key distribution with biased basis choice

    PubMed Central

    Wei, Zhengchao; Wang, Weilong; Zhang, Zhen; Gao, Ming; Ma, Zhi; Ma, Xiongfeng

    2013-01-01

    We propose a quantum key distribution scheme that combines a biased basis choice with the decoy-state method. In this scheme, Alice sends all signal states in the Z basis and decoy states in the X and Z basis with certain probabilities, and Bob measures received pulses with optimal basis choice. This scheme simplifies the system and reduces the random number consumption. From the simulation result taking into account of statistical fluctuations, we find that in a typical experimental setup, the proposed scheme can increase the key rate by at least 45% comparing to the standard decoy-state scheme. In the postprocessing, we also apply a rigorous method to upper bound the phase error rate of the single-photon components of signal states. PMID:23948999

  5. Reduced and oxidised scytonemin: theoretical protocol for Raman spectroscopic identification of potential key biomolecules for astrobiology.

    PubMed

    Varnali, Tereza; Edwards, Howell G M

    2014-01-01

    Scytonemin is an important UV-radiation protective biomolecule synthesised by extremophilic cyanobacteria in stressed terrestrial environments. Scytonemin and its reduced form have been both isolated experimentally and the Raman spectrum for scytonemin has been assigned and characterised experimentally both in extracts and in living extremophilic cyanobacterial colonies. Scytonemin is recognised as a key biomarker molecule for terrestrial organisms in stressed environments. We propose a new, theoretically plausible structure for oxidised scytonemin which has not been mentioned in the literature hitherto. DFT calculations for scytonemin, reduced scytonemin and the new structure modelled and proposed for oxidised scytonemin are reported along with their Raman spectroscopic data and λmax UV-absorption data obtained theoretically. Comparison of the vibrational spectroscopic assignments allows the three forms of scytonemin to be detected and identified and assist not only in the clarification of the major features in the experimentally observed Raman spectral data for the parent scytonemin but also support a protocol proposed for their analytical discrimination. The results of this study provide a basis for the search for molecules of this type in future astrobiological missions of exploration and the search for extinct and extant life terrestrially.

  6. Reduced and oxidised scytonemin: Theoretical protocol for Raman spectroscopic identification of potential key biomolecules for astrobiology

    NASA Astrophysics Data System (ADS)

    Varnali, Tereza; Edwards, Howell G. M.

    2014-01-01

    Scytonemin is an important UV-radiation protective biomolecule synthesised by extremophilic cyanobacteria in stressed terrestrial environments. Scytonemin and its reduced form have been both isolated experimentally and the Raman spectrum for scytonemin has been assigned and characterised experimentally both in extracts and in living extremophilic cyanobacterial colonies. Scytonemin is recognised as a key biomarker molecule for terrestrial organisms in stressed environments. We propose a new, theoretically plausible structure for oxidised scytonemin which has not been mentioned in the literature hitherto. DFT calculations for scytonemin, reduced scytonemin and the new structure modelled and proposed for oxidised scytonemin are reported along with their Raman spectroscopic data and λmax UV-absorption data obtained theoretically. Comparison of the vibrational spectroscopic assignments allows the three forms of scytonemin to be detected and identified and assist not only in the clarification of the major features in the experimentally observed Raman spectral data for the parent scytonemin but also support a protocol proposed for their analytical discrimination. The results of this study provide a basis for the search for molecules of this type in future astrobiological missions of exploration and the search for extinct and extant life terrestrially.

  7. Quantum election scheme based on anonymous quantum key distribution

    NASA Astrophysics Data System (ADS)

    Zhou, Rui-Rui; Yang, Li

    2012-08-01

    An unconditionally secure authority-certified anonymous quantum key distribution scheme using conjugate coding is presented, based on which we construct a quantum election scheme without the help of an entanglement state. We show that this election scheme ensures the completeness, soundness, privacy, eligibility, unreusability, fairness, and verifiability of a large-scale election in which the administrator and counter are semi-honest. This election scheme can work even if there exist loss and errors in quantum channels. In addition, any irregularity in this scheme is sensible.

  8. Decoy-state quantum key distribution using homodyne detection

    NASA Astrophysics Data System (ADS)

    Shams Mousavi, S. H.; Gallion, P.

    2009-07-01

    In this paper, we propose to use the decoy-state technique to improve the security of the quantum key distribution (QKD) systems based on homodyne detection against the photon number splitting attack. The decoy-state technique is a powerful tool that can significantly boost the secure transmission range of the QKD systems. However, it has not yet been applied to the systems that use homodyne detection. After adapting this theory to the systems based on homodyne detection, we quantify the secure performance and transmission range of the resulting system.

  9. Proof-of-principle experiment of reference-frame-independent quantum key distribution with phase coding

    PubMed Central

    Liang, Wen-Ye; Wang, Shuang; Li, Hong-Wei; Yin, Zhen-Qiang; Chen, Wei; Yao, Yao; Huang, Jing-Zheng; Guo, Guang-Can; Han, Zheng-Fu

    2014-01-01

    We have demonstrated a proof-of-principle experiment of reference-frame-independent phase coding quantum key distribution (RFI-QKD) over an 80-km optical fiber. After considering the finite-key bound, we still achieve a distance of 50 km. In this scenario, the phases of the basis states are related by a slowly time-varying transformation. Furthermore, we developed and realized a new decoy state method for RFI-QKD systems with weak coherent sources to counteract the photon-number-splitting attack. With the help of a reference-frame-independent protocol and a Michelson interferometer with Faraday rotator mirrors, our system is rendered immune to the slow phase changes of the interferometer and the polarization disturbances of the channel, making the procedure very robust. PMID:24402550

  10. Communication system technology for demonstration of BB84 quantum key distribution in optical aircraft downlinks

    NASA Astrophysics Data System (ADS)

    Moll, Florian; Nauerth, Sebastian; Fuchs, Christian; Horwath, Joachim; Rau, Markus; Weinfurter, Harald

    2012-10-01

    Quantum Key Distribution (QKD), either fiber based or free-space, allows for provably secure key distribution solely based on the laws of quantum mechanics. Feasibility of QKD systems in aircraft-ground links was demonstrated with a successful key exchange. Experiment flights were undertaken during night time at the site of the German Aerospace Center (DLR) Oberpfaffenhofen, Germany. The aircraft was a Dornier 228 equipped with a laser communication terminal, originally designed for optical data downlinks with intensity modulation and direct detection. The counter terminal on ground was an optical ground station with a 40 cm Cassegrain type receiver telescope. Alice and Bob, as the transmitter and receiver systems usually are called in QKD, were integrated in the flight and ground terminals, respectively. A second laser source with 1550 nm wavelength was used to transmit a 100 MHz signal for synchronization of the two partners. The so called BB84 protocol, here implemented with faint polarization encoded pulses at 850nm wavelength, was applied as key generation scheme. Within two flights, measurements of the QKD and communication channel could be obtained with link distance of 20 km. After link acquisition, the tracking systems in the aircraft and on ground were able to keep lock of the narrow QKD beam. Emphasis of this paper is put on presentation of the link technology, i.e. link design and modifications of the communication terminals. First analysis of link attenuation, performance of the QKD system and scintillation of the sync signal is also addressed.

  11. Experimental demonstration of polarization encoding quantum key distribution system based on intrinsically stable polarization-modulated units.

    PubMed

    Wang, Jindong; Qin, Xiaojuan; Jiang, Yinzhu; Wang, Xiaojing; Chen, Liwei; Zhao, Feng; Wei, Zhengjun; Zhang, Zhiming

    2016-04-18

    A proof-of-principle demonstration of a one-way polarization encoding quantum key distribution (QKD) system is demonstrated. This approach can automatically compensate for birefringence and phase drift. This is achieved by constructing intrinsically stable polarization-modulated units (PMUs) to perform the encoding and decoding, which can be used with four-state protocol, six-state protocol, and the measurement-device-independent (MDI) scheme. A polarization extinction ratio of about 30 dB was maintained for several hours over a 50 km optical fiber without any adjustments to our setup, which evidences its potential for use in practical applications. PMID:27137268

  12. Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client.

    PubMed

    Zhang, P; Aungskunsiri, K; Martín-López, E; Wabnig, J; Lobino, M; Nock, R W; Munns, J; Bonneau, D; Jiang, P; Li, H W; Laing, A; Rarity, J G; Niskanen, A O; Thompson, M G; O'Brien, J L

    2014-04-01

    We demonstrate a client-server quantum key distribution (QKD) scheme. Large resources such as laser and detectors are situated at the server side, which is accessible via telecom fiber to a client requiring only an on-chip polarization rotator, which may be integrated into a handheld device. The detrimental effects of unstable fiber birefringence are overcome by employing the reference-frame-independent QKD protocol for polarization qubits in polarization maintaining fiber, where standard QKD protocols fail, as we show for comparison. This opens the way for quantum enhanced secure communications between companies and members of the general public equipped with handheld mobile devices, via telecom-fiber tethering.

  13. Experimental quantum key distribution with simulated ground-to-satellite photon losses and processing limitations

    NASA Astrophysics Data System (ADS)

    Bourgoin, Jean-Philippe; Gigov, Nikolay; Higgins, Brendon L.; Yan, Zhizhong; Meyer-Scott, Evan; Khandani, Amir K.; Lütkenhaus, Norbert; Jennewein, Thomas

    2015-11-01

    Quantum key distribution (QKD) has the potential to improve communications security by offering cryptographic keys whose security relies on the fundamental properties of quantum physics. The use of a trusted quantum receiver on an orbiting satellite is the most practical near-term solution to the challenge of achieving long-distance (global-scale) QKD, currently limited to a few hundred kilometers on the ground. This scenario presents unique challenges, such as high photon losses and restricted classical data transmission and processing power due to the limitations of a typical satellite platform. Here we demonstrate the feasibility of such a system by implementing a QKD protocol, with optical transmission and full post-processing, in the high-loss regime using minimized computing hardware at the receiver. Employing weak coherent pulses with decoy states, we demonstrate the production of secure key bits at up to 56.5 dB of photon loss. We further illustrate the feasibility of a satellite uplink by generating a secure key while experimentally emulating the varying losses predicted for realistic low-Earth-orbit satellite passes at 600 km altitude. With a 76 MHz source and including finite-size analysis, we extract 3374 bits of a secure key from the best pass. We also illustrate the potential benefit of combining multiple passes together: while one suboptimal "upper-quartile" pass produces no finite-sized key with our source, the combination of three such passes allows us to extract 165 bits of a secure key. Alternatively, we find that by increasing the signal rate to 300 MHz it would be possible to extract 21 570 bits of a secure finite-sized key in just a single upper-quartile pass.

  14. The SECOQC quantum key distribution network in Vienna

    NASA Astrophysics Data System (ADS)

    Peev, M.; Pacher, C.; Alléaume, R.; Barreiro, C.; Bouda, J.; Boxleitner, W.; Debuisschert, T.; Diamanti, E.; Dianati, M.; Dynes, J. F.; Fasel, S.; Fossier, S.; Fürst, M.; Gautier, J.-D.; Gay, O.; Gisin, N.; Grangier, P.; Happe, A.; Hasani, Y.; Hentschel, M.; Hübel, H.; Humer, G.; Länger, T.; Legré, M.; Lieger, R.; Lodewyck, J.; Lorünser, T.; Lütkenhaus, N.; Marhold, A.; Matyus, T.; Maurhart, O.; Monat, L.; Nauerth, S.; Page, J.-B.; Poppe, A.; Querasser, E.; Ribordy, G.; Robyr, S.; Salvail, L.; Sharpe, A. W.; Shields, A. J.; Stucki, D.; Suda, M.; Tamas, C.; Themel, T.; Thew, R. T.; Thoma, Y.; Treiber, A.; Trinkler, P.; Tualle-Brouri, R.; Vannel, F.; Walenta, N.; Weier, H.; Weinfurter, H.; Wimberger, I.; Yuan, Z. L.; Zbinden, H.; Zeilinger, A.

    2009-07-01

    In this paper, we present the quantum key distribution (QKD) network designed and implemented by the European project SEcure COmmunication based on Quantum Cryptography (SECOQC) (2004-2008), unifying the efforts of 41 research and industrial organizations. The paper summarizes the SECOQC approach to QKD networks with a focus on the trusted repeater paradigm. It discusses the architecture and functionality of the SECOQC trusted repeater prototype, which has been put into operation in Vienna in 2008 and publicly demonstrated in the framework of a SECOQC QKD conference held from October 8 to 10, 2008. The demonstration involved one-time pad encrypted telephone communication, a secure (AES encryption protected) video-conference with all deployed nodes and a number of rerouting experiments, highlighting basic mechanisms of the SECOQC network functionality. The paper gives an overview of the eight point-to-point network links in the prototype and their underlying technology: three plug and play systems by id Quantique, a one way weak pulse system from Toshiba Research in the UK, a coherent one-way system by GAP Optique with the participation of id Quantique and the AIT Austrian Institute of Technology (formerly ARCAustrian Research Centers GmbH—ARC is now operating under the new name AIT Austrian Institute of Technology GmbH following a restructuring initiative.), an entangled photons system by the University of Vienna and the AIT, a continuous-variables system by Centre National de la Recherche Scientifique (CNRS) and THALES Research and Technology with the participation of Université Libre de Bruxelles, and a free space link by the Ludwig Maximillians University in Munich connecting two nodes situated in adjacent buildings (line of sight 80 m). The average link length is between 20 and 30 km, the longest link being 83 km. The paper presents the architecture and functionality of the principal networking agent—the SECOQC node module, which enables the authentic

  15. An RSA-Based Leakage-Resilient Authenticated Key Exchange Protocol Secure against Replacement Attacks, and Its Extensions

    NASA Astrophysics Data System (ADS)

    Shin, Seonghan; Kobara, Kazukuni; Imai, Hideki

    Secure channels can be realized by an authenticated key exchange (AKE) protocol that generates authenticated session keys between the involving parties. In [32], Shin et al., proposed a new kind of AKE (RSA-AKE) protocol whose goal is to provide high efficiency and security against leakage of stored secrets as much as possible. Let us consider more powerful attacks where an adversary completely controls the communications and the stored secrets (the latter is denoted by “replacement” attacks). In this paper, we first show that the RSA-AKE protocol [32] is no longer secure against such an adversary. The main contributions of this paper are as follows: (1) we propose an RSA-based leakage-resilient AKE (RSA-AKE2) protocol that is secure against active attacks as well as replacement attacks; (2) we prove that the RSA-AKE2 protocol is secure against replacement attacks based on the number theory results; (3) we show that it is provably secure in the random oracle model, by showing the reduction to the RSA one-wayness, under an extended model that covers active attacks and replacement attacks; (4) in terms of efficiency, the RSA-AKE2 protocol is comparable to [32] in the sense that the client needs to compute only one modular multiplication with pre-computation; and (5) we also discuss about extensions of the RSA-AKE2 protocol for several security properties (i.e., synchronization of stored secrets, privacy of client and solution to server compromise-impersonation attacks).

  16. FPGA based digital phase-coding quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Lu, XiaoMing; Zhang, LiJun; Wang, YongGang; Chen, Wei; Huang, DaJun; Li, Deng; Wang, Shuang; He, DeYong; Yin, ZhenQiang; Zhou, Yu; Hui, Cong; Han, ZhengFu

    2015-12-01

    Quantum key distribution (QKD) is a technology with the potential capability to achieve information-theoretic security. Phasecoding is an important approach to develop practical QKD systems in fiber channel. In order to improve the phase-coding modulation rate, we proposed a new digital-modulation method in this paper and constructed a compact and robust prototype of QKD system using currently available components in our lab to demonstrate the effectiveness of the method. The system was deployed in laboratory environment over a 50 km fiber and continuously operated during 87 h without manual interaction. The quantum bit error rate (QBER) of the system was stable with an average value of 3.22% and the secure key generation rate is 8.91 kbps. Although the modulation rate of the photon in the demo system was only 200 MHz, which was limited by the Faraday-Michelson interferometer (FMI) structure, the proposed method and the field programmable gate array (FPGA) based electronics scheme have a great potential for high speed QKD systems with Giga-bits/second modulation rate.

  17. Quantum hacking: attacking practical quantum key distribution systems

    NASA Astrophysics Data System (ADS)

    Qi, Bing; Fung, Chi-Hang Fred; Zhao, Yi; Ma, Xiongfeng; Tamaki, Kiyoshi; Chen, Christine; Lo, Hoi-Kwong

    2007-09-01

    Quantum key distribution (QKD) can, in principle, provide unconditional security based on the fundamental laws of physics. Unfortunately, a practical QKD system may contain overlooked imperfections and violate some of the assumptions in a security proof. Here, we report two types of eavesdropping attacks against a practical QKD system. The first one is "time-shift" attack, which is applicable to QKD systems with gated single photon detectors (SPDs). In this attack, the eavesdropper, Eve, exploits the time mismatch between the open windows of the two SPDs. She can acquire a significant amount of information on the final key by simply shifting the quantum signals forwards or backwards in time domain. Our experimental results in [9] with a commercial QKD system demonstrate that, under this attack, the original QKD system is breakable. This is the first experimental demonstration of a feasible attack against a commercial QKD system. This is a surprising result. The second one is "phase-remapping" attack [10]. Here, Eve exploits the fact that a practical phase modulator has a finite response time. In principle, Eve could change the encoded phase value by time-shifting the signal pulse relative to the reference pulse.

  18. Decoy-state quantum key distribution with a leaky source

    NASA Astrophysics Data System (ADS)

    Tamaki, Kiyoshi; Curty, Marcos; Lucamarini, Marco

    2016-06-01

    In recent years, there has been a great effort to prove the security of quantum key distribution (QKD) with a minimum number of assumptions. Besides its intrinsic theoretical interest, this would allow for larger tolerance against device imperfections in the actual implementations. However, even in this device-independent scenario, one assumption seems unavoidable, that is, the presence of a protected space devoid of any unwanted information leakage in which the legitimate parties can privately generate, process and store their classical data. In this paper we relax this unrealistic and hardly feasible assumption and introduce a general formalism to tackle the information leakage problem in most of existing QKD systems. More specifically, we prove the security of optical QKD systems using phase and intensity modulators in their transmitters, which leak the setting information in an arbitrary manner. We apply our security proof to cases of practical interest and show key rates similar to those obtained in a perfectly shielded environment. Our work constitutes a fundamental step forward in guaranteeing implementation security of quantum communication systems.

  19. Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices

    NASA Astrophysics Data System (ADS)

    Liang, Lin-Mei; Sun, Shi-Hai; Jiang, Mu-Sheng; Li, Chun-Yan

    2014-10-01

    In general, quantum key distribution (QKD) has been proved unconditionally secure for perfect devices due to quantum uncertainty principle, quantum noncloning theorem and quantum nondividing principle which means that a quantum cannot be divided further. However, the practical optical and electrical devices used in the system are imperfect, which can be exploited by the eavesdropper to partially or totally spy the secret key between the legitimate parties. In this article, we first briefly review the recent work on quantum hacking on some experimental QKD systems with respect to imperfect devices carried out internationally, then we will present our recent hacking works in details, including passive faraday mirror attack, partially random phase attack, wavelength-selected photon-number-splitting attack, frequency shift attack, and single-photon-detector attack. Those quantum attack reminds people to improve the security existed in practical QKD systems due to imperfect devices by simply adding countermeasure or adopting a totally different protocol such as measurement-device independent protocol to avoid quantum hacking on the imperfection of measurement devices [Lo, et al., Phys. Rev. Lett., 2012, 108: 130503].

  20. Necessary detection efficiencies for secure quantum key distribution and bound randomness

    NASA Astrophysics Data System (ADS)

    Acín, Antonio; Cavalcanti, Daniel; Passaro, Elsa; Pironio, Stefano; Skrzypczyk, Paul

    2016-01-01

    In recent years, several hacking attacks have broken the security of quantum cryptography implementations by exploiting the presence of losses and the ability of the eavesdropper to tune detection efficiencies. We present a simple attack of this form that applies to any protocol in which the key is constructed from the results of untrusted measurements performed on particles coming from an insecure source or channel. Because of its generality, the attack applies to a large class of protocols, from standard prepare-and-measure to device-independent schemes. Our attack gives bounds on the critical detection efficiencies necessary for secure quantum key distribution, which show that the implementation of most partly device-independent solutions is, from the point of view of detection efficiency, almost as demanding as fully device-independent ones. We also show how our attack implies the existence of a form of bound randomness, namely nonlocal correlations in which a nonsignalling eavesdropper can find out a posteriori the result of any implemented measurement.

  1. Detector-device-independent quantum key distribution: Security analysis and fast implementation

    NASA Astrophysics Data System (ADS)

    Boaron, Alberto; Korzh, Boris; Houlmann, Raphael; Boso, Gianluca; Lim, Charles Ci Wen; Martin, Anthony; Zbinden, Hugo

    2016-08-01

    One of the most pressing issues in quantum key distribution (QKD) is the problem of detector side-channel attacks. To overcome this problem, researchers proposed an elegant "time-reversal" QKD protocol called measurement-device-independent QKD (MDI-QKD), which is based on time-reversed entanglement swapping. However, MDI-QKD is more challenging to implement than standard point-to-point QKD. Recently, an intermediary QKD protocol called detector-device-independent QKD (DDI-QKD) has been proposed to overcome the drawbacks of MDI-QKD, with the hope that it would eventually lead to a more efficient detector side-channel-free QKD system. Here, we analyze the security of DDI-QKD and elucidate its security assumptions. We find that DDI-QKD is not equivalent to MDI-QKD, but its security can be demonstrated with reasonable assumptions. On the more practical side, we consider the feasibility of DDI-QKD and present a fast experimental demonstration (clocked at 625 MHz), capable of secret key exchange up to more than 90 km.

  2. Real-World Two-Photon Interference and Proof-of-Principle Quantum Key Distribution Immune to Detector Attacks

    NASA Astrophysics Data System (ADS)

    Rubenok, A.; Slater, J. A.; Chan, P.; Lucio-Martinez, I.; Tittel, W.

    2013-09-01

    Several vulnerabilities of single-photon detectors have recently been exploited to compromise the security of quantum-key-distribution (QKD) systems. In this Letter, we report the first proof-of-principle implementation of a new quantum-key-distribution protocol that is immune to any such attack. More precisely, we demonstrated this new approach to QKD in the laboratory over more than 80 km of spooled fiber, as well as across different locations within the city of Calgary. The robustness of our fiber-based implementation, together with the enhanced level of security offered by the protocol, confirms QKD as a realistic technology for safeguarding secrets in transmission. Furthermore, our demonstration establishes the feasibility of controlled two-photon interference in a real-world environment and thereby removes a remaining obstacle to realizing future applications of quantum communication, such as quantum repeaters and, more generally, quantum networks.

  3. Multi-client quantum key distribution using wavelength division multiplexing

    SciTech Connect

    Grice, Warren P; Bennink, Ryan S; Earl, Dennis Duncan; Evans, Philip G; Humble, Travis S; Pooser, Raphael C; Schaake, Jason; Williams, Brian P

    2011-01-01

    Quantum Key Distribution (QKD) exploits the rules of quantum mechanics to generate and securely distribute a random sequence of bits to two spatially separated clients. Typically a QKD system can support only a single pair of clients at a time, and so a separate quantum link is required for every pair of users. We overcome this limitation with the design and characterization of a multi-client entangled-photon QKD system with the capacity for up to 100 clients simultaneously. The time-bin entangled QKD system includes a broadband down-conversion source with two unique features that enable the multi-user capability. First, the photons are emitted across a very large portion of the telecom spectrum. Second, and more importantly, the photons are strongly correlated in their energy degree of freedom. Using standard wavelength division multiplexing (WDM) hardware, the photons can be routed to different parties on a quantum communication network, while the strong spectral correlations ensure that each client is linked only to the client receiving the conjugate wavelength. In this way, a single down-conversion source can support dozens of channels simultaneously--and to the extent that the WDM hardware can send different spectral channels to different clients, the system can support multiple client pairings. We will describe the design and characterization of the down-conversion source, as well as the client stations, which must be tunable across the emission spectrum.

  4. Integrated quantum key distribution sender unit for daily-life implementations

    NASA Astrophysics Data System (ADS)

    Mélen, Gwenaelle; Vogl, Tobias; Rau, Markus; Corrielli, Giacomo; Crespi, Andrea; Osellame, Roberto; Weinfurter, Harald

    2016-03-01

    Unlike currently implemented encryption schemes, Quantum Key Distribution provides a secure way of generating and distributing a key among two parties. Although a multitude of research platforms has been developed, the integration of QKD units within classical communication systems remains a tremendous challenge. The recently achieved maturity of integrated photonic technologies could be exploited to create miniature QKD add-ons that could extend the primary function of various existing systems such as mobile devices or optical stations. In this work we report on an integrated optics module enabling secure short-distance communication for, e.g., quantum access schemes. Using BB84-like protocols, Alice's mobile low-cost device can exchange secure key and information everywhere within a trusted node network. The new optics platform (35×20×8mm) compatible with current smartphone's technology generates NIR faint polarised laser pulses with 100MHz repetition rate. Fully automated beam tracking and live basis-alignment on Bob's side ensure user-friendly operation with a quantum link efficiency as high as 50% stable over a few seconds.

  5. XTP as a transport protocol for distributed parallel processing

    SciTech Connect

    Strayer, W.T.; Lewis, M.J.; Cline, R.E. Jr.

    1994-12-31

    The Xpress Transfer Protocol (XTP) is a flexible transport layer protocol designed to provide efficient service without dictating the communication paradigm or the delivery characteristics that quality the paradigm. XTP provides the tools to build communication services appropriate to the application. Current data delivery solutions for many popular cluster computing environments use TCP and UDP. We examine TCP, UDP, and XTP with respect to the communication characteristics typical of parallel applications. We perform measurements of end-to-end latency for several paradigms important to cluster computing. An implementation of XTP is shown to be comparable to TCP in end-to-end latency on preestablished connections, and does better for paradigms where connections must be constructed on the fly.

  6. A Self-Stabilizing Distributed Clock Synchronization Protocol for Arbitrary Digraphs

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2011-01-01

    This report presents a self-stabilizing distributed clock synchronization protocol in the absence of faults in the system. It is focused on the distributed clock synchronization of an arbitrary, non-partitioned digraph ranging from fully connected to 1-connected networks of nodes while allowing for differences in the network elements. This protocol does not rely on assumptions about the initial state of the system, other than the presence of at least one node, and no central clock or a centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. There is no theoretical limit on the maximum number of participating nodes. The only constraint on the behavior of the node is that the interactions with other nodes are restricted to defined links and interfaces. We present an outline of a deductive proof of the correctness of the protocol. A model of the protocol was mechanically verified using the Symbolic Model Verifier (SMV) for a variety of topologies. Results of the mechanical proof of the correctness of the protocol are provided. The model checking results have verified the correctness of the protocol as they apply to the networks with unidirectional and bidirectional links. In addition, the results confirm the claims of determinism and linear convergence. As a result, we conjecture that the protocol solves the general case of this problem. We also present several variations of the protocol and discuss that this synchronization protocol is indeed an emergent system.

  7. Space Network Time Distribution and Synchronization Protocol Development for Mars Proximity Link

    NASA Technical Reports Server (NTRS)

    Woo, Simon S.; Gao, Jay L.; Mills, David

    2010-01-01

    Time distribution and synchronization in deep space network are challenging due to long propagation delays, spacecraft movements, and relativistic effects. Further, the Network Time Protocol (NTP) designed for terrestrial networks may not work properly in space. In this work, we consider the time distribution protocol based on time message exchanges similar to Network Time Protocol (NTP). We present the Proximity-1 Space Link Interleaved Time Synchronization (PITS) algorithm that can work with the CCSDS Proximity-1 Space Data Link Protocol. The PITS algorithm provides faster time synchronization via two-way time transfer over proximity links, improves scalability as the number of spacecraft increase, lowers storage space requirement for collecting time samples, and is robust against packet loss and duplication which underlying protocol mechanisms provide.

  8. Continuous-variable quantum key distribution in non-Markovian channels

    SciTech Connect

    Vasile, Ruggero; Olivares, Stefano; Paris, MatteoG. A.; Maniscalco, Sabrina

    2011-04-15

    We address continuous-variable quantum key distribution (QKD) in non-Markovian lossy channels and show how the non-Markovian features may be exploited to enhance security and/or to detect the presence and the position of an eavesdropper along the transmission line. In particular, we suggest a coherent-state QKD protocol which is secure against Gaussian individual attacks based on optimal 1{yields}2 asymmetric cloning machines for arbitrarily low values of the overall transmission line. The scheme relies on specific non-Markovian properties, and cannot be implemented in ordinary Markovian channels characterized by uniform losses. Our results give a clear indication of the potential impact of non-Markovian effects in QKD.

  9. Semi-device-independent security of one-way quantum key distribution

    SciTech Connect

    Pawlowski, Marcin; Brunner, Nicolas

    2011-07-15

    By testing nonlocality, the security of entanglement-based quantum key distribution (QKD) can be enhanced to being ''device-independent.'' Here we ask whether such a strong form of security could also be established for one-way (prepare and measure) QKD. While fully device-independent security is impossible, we show that security can be guaranteed against individual attacks in a semi-device-independent scenario. In the latter, the devices used by the trusted parties are noncharacterized, but the dimensionality of the quantum systems used in the protocol is assumed to be bounded. Our security proof relies on the analogies between one-way QKD, dimension witnesses, and random-access codes.

  10. W-state Analyzer and Multi-party Measurement-device-independent Quantum Key Distribution

    PubMed Central

    Zhu, Changhua; Xu, Feihu; Pei, Changxing

    2015-01-01

    W-state is an important resource for many quantum information processing tasks. In this paper, we for the first time propose a multi-party measurement-device-independent quantum key distribution (MDI-QKD) protocol based on W-state. With linear optics, we design a W-state analyzer in order to distinguish the four-qubit W-state. This analyzer constructs the measurement device for four-party MDI-QKD. Moreover, we derived a complete security proof of the four-party MDI-QKD, and performed a numerical simulation to study its performance. The results show that four-party MDI-QKD is feasible over 150 km standard telecom fiber with off-the-shelf single photon detectors. This work takes an important step towards multi-party quantum communication and a quantum network. PMID:26644289

  11. Security of continuous-variable quantum key distribution against general attacks

    NASA Astrophysics Data System (ADS)

    Leverrier, Anthony

    2013-03-01

    We prove the security of Gaussian continuous-variable quantum key distribution with coherent states against arbitrary attacks in the finite-size regime. In contrast to previously known proofs of principle (based on the de Finetti theorem), our result is applicable in the practically relevant finite-size regime. This is achieved using a novel proof approach, which exploits phase-space symmetries of the protocols as well as the postselection technique introduced by Christandl, Koenig and Renner (Phys. Rev. Lett. 102, 020504 (2009)). This work was supported by the SNF through the National Centre of Competence in Research ``Quantum Science and Technology'' and through Grant No. 200020-135048, the ERC (grant No. 258932), the Humbolt foundation and the F.R.S.-FNRS under project HIPERCOM.

  12. Principle of Quantum Key Distribution on an Optical Fiber Based on Time Shifts of TB Qubits

    NASA Astrophysics Data System (ADS)

    Zadorin, A. S.; Makhorin, D. A.

    2016-07-01

    The possibility of the physical realization of a quantum key distribution scheme in an optical-fiber communication channel based on time coding of two- and three-level single-photon quantum states is demonstrated. It is proposed to employ shifts of TB qubits (time-bin qubits) as protected code combinations, transmitted over a quantum channel, and for registering individual photons - the corresponding qutrits prepared in unbalanced Mach-Zehnder interferometers. The possibility of enhancing the level of protection of the code combinations as a result of taking into account information about qubit basis states and their statistics is indicated. A computer model of the time coding of TB qubits based on the BB84 protocol is developed, and results of calculations confirming the realizability of the indicated principle are presented.

  13. Experimental multiplexing of quantum key distribution with classical optical communication

    SciTech Connect

    Wang, Liu-Jun; Chen, Luo-Kan; Ju, Lei; Xu, Mu-Lan; Zhao, Yong; Chen, Kai; Chen, Zeng-Bing; Chen, Teng-Yun Pan, Jian-Wei

    2015-02-23

    We demonstrate the realization of quantum key distribution (QKD) when combined with classical optical communication, and synchronous signals within a single optical fiber. In the experiment, the classical communication sources use Fabry-Pérot (FP) lasers, which are implemented extensively in optical access networks. To perform QKD, multistage band-stop filtering techniques are developed, and a wavelength-division multiplexing scheme is designed for the multi-longitudinal-mode FP lasers. We have managed to maintain sufficient isolation among the quantum channel, the synchronous channel and the classical channels to guarantee good QKD performance. Finally, the quantum bit error rate remains below a level of 2% across the entire practical application range. The proposed multiplexing scheme can ensure low classical light loss, and enables QKD over fiber lengths of up to 45 km simultaneously when the fibers are populated with bidirectional FP laser communications. Our demonstration paves the way for application of QKD to current optical access networks, where FP lasers are widely used by the end users.

  14. Experimental multiplexing of quantum key distribution with classical optical communication

    NASA Astrophysics Data System (ADS)

    Wang, Liu-Jun; Chen, Luo-Kan; Ju, Lei; Xu, Mu-Lan; Zhao, Yong; Chen, Kai; Chen, Zeng-Bing; Chen, Teng-Yun; Pan, Jian-Wei

    2015-02-01

    We demonstrate the realization of quantum key distribution (QKD) when combined with classical optical communication, and synchronous signals within a single optical fiber. In the experiment, the classical communication sources use Fabry-Pérot (FP) lasers, which are implemented extensively in optical access networks. To perform QKD, multistage band-stop filtering techniques are developed, and a wavelength-division multiplexing scheme is designed for the multi-longitudinal-mode FP lasers. We have managed to maintain sufficient isolation among the quantum channel, the synchronous channel and the classical channels to guarantee good QKD performance. Finally, the quantum bit error rate remains below a level of 2% across the entire practical application range. The proposed multiplexing scheme can ensure low classical light loss, and enables QKD over fiber lengths of up to 45 km simultaneously when the fibers are populated with bidirectional FP laser communications. Our demonstration paves the way for application of QKD to current optical access networks, where FP lasers are widely used by the end users.

  15. Controlled quantum key distribution with three-photon polarization-entangled states via the collective noise channel

    SciTech Connect

    Dong Li; Xiu Xiaoming; Gao Yajun; Yi, X. X.

    2011-10-15

    Using three-photon polarization-entangled GHZ states or W states, we propose controlled quantum key distribution protocols for circumventing two main types of collective noise, collective dephasing noise, or collective rotation noise. Irrespective of the number of controllers, a three-photon state can generate a one-bit secret key. The storage technique of quantum states is dispensable for the controller and the receiver, and it therefore allows performing the process in a more convenient mode. If the photon cost in a security check is disregarded, then the efficiency theoretically approaches unity.

  16. Fast optical source for quantum key distribution based on semiconductor optical amplifiers.

    PubMed

    Jofre, M; Gardelein, A; Anzolin, G; Amaya, W; Capmany, J; Ursin, R; Peñate, L; Lopez, D; San Juan, J L; Carrasco, J A; Garcia, F; Torcal-Milla, F J; Sanchez-Brea, L M; Bernabeu, E; Perdigues, J M; Jennewein, T; Torres, J P; Mitchell, M W; Pruneri, V

    2011-02-28

    A novel integrated optical source capable of emitting faint pulses with different polarization states and with different intensity levels at 100 MHz has been developed. The source relies on a single laser diode followed by four semiconductor optical amplifiers and thin film polarizers, connected through a fiber network. The use of a single laser ensures high level of indistinguishability in time and spectrum of the pulses for the four different polarizations and three different levels of intensity. The applicability of the source is demonstrated in the lab through a free space quantum key distribution experiment which makes use of the decoy state BB84 protocol. We achieved a lower bound secure key rate of the order of 3.64 Mbps and a quantum bit error ratio as low as 1.14×10⁻² while the lower bound secure key rate became 187 bps for an equivalent attenuation of 35 dB. To our knowledge, this is the fastest polarization encoded QKD system which has been reported so far. The performance, reduced size, low power consumption and the fact that the components used can be space qualified make the source particularly suitable for secure satellite communication.

  17. Fast optical source for quantum key distribution based on semiconductor optical amplifiers.

    PubMed

    Jofre, M; Gardelein, A; Anzolin, G; Amaya, W; Capmany, J; Ursin, R; Peñate, L; Lopez, D; San Juan, J L; Carrasco, J A; Garcia, F; Torcal-Milla, F J; Sanchez-Brea, L M; Bernabeu, E; Perdigues, J M; Jennewein, T; Torres, J P; Mitchell, M W; Pruneri, V

    2011-02-28

    A novel integrated optical source capable of emitting faint pulses with different polarization states and with different intensity levels at 100 MHz has been developed. The source relies on a single laser diode followed by four semiconductor optical amplifiers and thin film polarizers, connected through a fiber network. The use of a single laser ensures high level of indistinguishability in time and spectrum of the pulses for the four different polarizations and three different levels of intensity. The applicability of the source is demonstrated in the lab through a free space quantum key distribution experiment which makes use of the decoy state BB84 protocol. We achieved a lower bound secure key rate of the order of 3.64 Mbps and a quantum bit error ratio as low as 1.14×10⁻² while the lower bound secure key rate became 187 bps for an equivalent attenuation of 35 dB. To our knowledge, this is the fastest polarization encoded QKD system which has been reported so far. The performance, reduced size, low power consumption and the fact that the components used can be space qualified make the source particularly suitable for secure satellite communication. PMID:21369207

  18. Quantum hacking: Saturation attack on practical continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Qin, Hao; Kumar, Rupesh; Alléaume, Romain

    2016-07-01

    We identify and study a security loophole in continuous-variable quantum key distribution (CVQKD) implementations, related to the imperfect linearity of the homodyne detector. By exploiting this loophole, we propose an active side-channel attack on the Gaussian-modulated coherent-state CVQKD protocol combining an intercept-resend attack with an induced saturation of the homodyne detection on the receiver side (Bob). We show that an attacker can bias the excess noise estimation by displacing the quadratures of the coherent states received by Bob. We propose a saturation model that matches experimental measurements on the homodyne detection and use this model to study the impact of the saturation attack on parameter estimation in CVQKD. We demonstrate that this attack can bias the excess noise estimation beyond the null key threshold for any system parameter, thus leading to a full security break. If we consider an additional criterion imposing that the channel transmission estimation should not be affected by the attack, then the saturation attack can only be launched if the attenuation on the quantum channel is sufficient, corresponding to attenuations larger than approximately 6 dB. We moreover discuss the possible countermeasures against the saturation attack and propose a countermeasure based on Gaussian postselection that can be implemented by classical postprocessing and may allow one to distill the secret key when the raw measurement data are partly saturated.

  19. Long-distance continuous-variable quantum key distribution with advanced reconciliation of a Gaussian modulation

    NASA Astrophysics Data System (ADS)

    Gyongyosi, L.; Imre, S.

    2014-02-01

    The two-way continuous-variable quantum key distribution (CVQKD) systems allow higher key rates and improved transmission distances over standard telecommunication networks in comparison to the one-way CVQKD protocols. To exploit the real potential of two-way CVQKD systems a robust reconciliation technique is needed. It is currently unavailable, which makes it impossible to reach the real performance of a two-way CVQKD system. The reconciliation process of correlated Gaussian variables is a complex problem that requires either tomography in the physical layer that is intractable in a practical scenario, or high-cost calculations in the multidimensional spherical space with strict dimensional limitations. To avoid these issues, we propose an efficient logical layer-based reconciliation method for two-way CVQKD to extract binary information from correlated Gaussian variables. We demonstrate that by operating on the raw-data level, the noise of the quantum channel can be corrected in the scalar space and the reconciliation can be extended to arbitrary high dimensions. We prove that the error probability of scalar reconciliation is zero in any practical CVQKD scenario, and provides unconditional security. The results allow to significantly improve the currently available key rates and transmission distances of two-way CVQKD. The proposed scalar reconciliation can also be applied in oneway systems as well, to replace the existing reconciliation schemes.

  20. Model Checking a Byzantine-Fault-Tolerant Self-Stabilizing Protocol for Distributed Clock Synchronization Systems

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2007-01-01

    This report presents the mechanical verification of a simplified model of a rapid Byzantine-fault-tolerant self-stabilizing protocol for distributed clock synchronization systems. This protocol does not rely on any assumptions about the initial state of the system. This protocol tolerates bursts of transient failures, and deterministically converges within a time bound that is a linear function of the self-stabilization period. A simplified model of the protocol is verified using the Symbolic Model Verifier (SMV) [SMV]. The system under study consists of 4 nodes, where at most one of the nodes is assumed to be Byzantine faulty. The model checking effort is focused on verifying correctness of the simplified model of the protocol in the presence of a permanent Byzantine fault as well as confirmation of claims of determinism and linear convergence with respect to the self-stabilization period. Although model checking results of the simplified model of the protocol confirm the theoretical predictions, these results do not necessarily confirm that the protocol solves the general case of this problem. Modeling challenges of the protocol and the system are addressed. A number of abstractions are utilized in order to reduce the state space. Also, additional innovative state space reduction techniques are introduced that can be used in future verification efforts applied to this and other protocols.

  1. Preventing side-channel effects in continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Derkach, Ivan; Usenko, Vladyslav C.; Filip, Radim

    2016-03-01

    The role of the side channels in the continuous-variable quantum key distribution is studied. It is shown how the information leakage through a side channel from the trusted sender station increases the vulnerability of the protocols to the eavesdropping in the main quantum communication channel. Moreover, the untrusted noise infusion by an eavesdropper on the trusted receiving side breaks the security even for a purely attenuating main quantum channel. As a method to compensate for the effect of the side-channel leakage on the sender side, we suggest several types of manipulations on the side-channel input. It is shown that by applying the modulated coherent light on the input of the side channel that is optimally correlated to the modulation on the main signal and optionally introducing additional squeezing in the case of the squeezed-state protocol, the negative influence of the lossy side channel on the sender side can be completely removed. For the trusted receiving side, the method of optimal monitoring of the residual noise from the side-channel noise infusion is suggested and shown to be able to completely eliminate the presence of the noisy side channel. We therefore prove that the side-channel effects can be completely removed using feasible operations if the trusted parties access the respective parts of the side channels.

  2. Comparison of protocols for measuring cosmetic ingredient distribution in human and pig skin.

    PubMed

    Gerstel, D; Jacques-Jamin, C; Schepky, A; Cubberley, R; Eilstein, J; Grégoire, S; Hewitt, N; Klaric, M; Rothe, H; Duplan, H

    2016-08-01

    The Cosmetics Europe Skin Bioavailability and Metabolism Task Force aims to improve the measurement and prediction of the bioavailability of topically-exposed compounds for risk assessment. Key parameters of the experimental design of the skin penetration studies were compared. Penetration studies with frozen human and pig skin were conducted in two laboratories, according to the SCCS and OECD 428 guidelines. The disposition in skin was measured 24h after finite topical doses of caffeine, resorcinol and 7-ethoxycoumarin. The bioavailability distribution in skin layers of cold and radiolabelled chemicals were comparable. Furthermore, the distribution of each chemical was comparable in human and pig skin. The protocol was reproducible across the two laboratories. There were small differences in the amount of chemical detected in the skin layers, which were attributed to differences in washing procedures and anatomical sites of the skin used. In conclusion, these studies support the use of pig skin as an alternative source of skin should the availability of human skin become a limiting factor. If radiolabelled chemicals are not available, cold chemicals can be used, provided that the influence of chemical stability, reactivity or metabolism on the experimental design and the relevance of the data obtained is considered. PMID:27039122

  3. The Use of Efficient Broadcast Protocols in Asynchronous Distributed Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Schmuck, Frank Bernhard

    1988-01-01

    Reliable broadcast protocols are important tools in distributed and fault-tolerant programming. They are useful for sharing information and for maintaining replicated data in a distributed system. However, a wide range of such protocols has been proposed. These protocols differ in their fault tolerance and delivery ordering characteristics. There is a tradeoff between the cost of a broadcast protocol and how much ordering it provides. It is, therefore, desirable to employ protocols that support only a low degree of ordering whenever possible. This dissertation presents techniques for deciding how strongly ordered a protocol is necessary to solve a given application problem. It is shown that there are two distinct classes of application problems: problems that can be solved with efficient, asynchronous protocols, and problems that require global ordering. The concept of a linearization function that maps partially ordered sets of events to totally ordered histories is introduced. How to construct an asynchronous implementation that solves a given problem if a linearization function for it can be found is shown. It is proved that in general the question of whether a problem has an asynchronous solution is undecidable. Hence there exists no general algorithm that would automatically construct a suitable linearization function for a given problem. Therefore, an important subclass of problems that have certain commutativity properties are considered. Techniques for constructing asynchronous implementations for this class are presented. These techniques are useful for constructing efficient asynchronous implementations for a broad range of practical problems.

  4. A novel user authentication and key agreement protocol for accessing multi-medical server usable in TMIS.

    PubMed

    Amin, Ruhul; Biswas, G P

    2015-03-01

    Telecare Medical Information System (TMIS) makes an efficient and convenient connection between patient(s)/user(s) at home and doctor(s) at a clinical center. To ensure secure connection between the two entities (patient(s)/user(s), doctor(s)), user authentication is enormously important for the medical server. In this regard, many authentication protocols have been proposed in the literature only for accessing single medical server. In order to fix the drawbacks of the single medical server, we have primarily developed a novel architecture for accessing several medical services of the multi-medical server, where a user can directly communicate with the doctor of the medical server securely. Thereafter, we have developed a smart card based user authentication and key agreement security protocol usable for TMIS system using cryptographic one-way hash function. We have analyzed the security of our proposed authentication scheme through both formal and informal security analysis. Furthermore, we have simulated the proposed scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool and showed that the scheme is secure against the replay and man-in-the-middle attacks. The informal security analysis is also presented which confirms that the protocol has well security protection on the relevant security attacks. The security and performance comparison analysis confirm that the proposed protocol not only provides security protection on the above mentioned attacks, but it also achieves better complexities along with efficient login and password change phase. PMID:25681100

  5. Experimental demonstration of passive-decoy-state quantum key distribution with two independent lasers

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Hai; Tang, Guang-Zhao; Li, Chun-Yan; Liang, Lin-Mei

    2016-09-01

    The decoy-state method could effectively enhance the performance of quantum key distribution (QKD) with a practical phase randomized weak coherent source. Although active modulation of the source intensity is effective and has been implemented in many experiments, passive preparation of decoy states is also an important addition to the family of decoy-state QKD protocols. In this paper, following the theory of Curty et al. [Phys. Rev. A 81, 022310 (2010), 10.1103/PhysRevA.81.022310], we experimentally demonstrate the phase-encoding passive-decoy-state QKD with only linear optical setups and threshold single-photon detectors. In our experiment, two homemade independent pulsed lasers, with visibility of Hong-Ou-Mandel interference 0.53 (±0.003 ) , have been implemented and used to passively generate the different decoy states. Finally, a secret key rate of 1.5 ×10-5 /pulse is obtained with 10-km commercial fiber between Alice and Bob.

  6. Quantum-locked key distribution at nearly the classical capacity rate.

    PubMed

    Lupo, Cosmo; Lloyd, Seth

    2014-10-17

    Quantum data locking is a protocol that allows for a small secret key to (un)lock an exponentially larger amount of information, hence yielding the strongest violation of the classical one-time pad encryption in the quantum setting. This violation mirrors a large gap existing between two security criteria for quantum cryptography quantified by two entropic quantities: the Holevo information and the accessible information. We show that the latter becomes a sensible security criterion if an upper bound on the coherence time of the eavesdropper's quantum memory is known. Under this condition, we introduce a protocol for secret key generation through a memoryless qudit channel. For channels with enough symmetry, such as the d-dimensional erasure and depolarizing channels, this protocol allows secret key generation at an asymptotic rate as high as the classical capacity minus one bit.

  7. Quantum-locked key distribution at nearly the classical capacity rate.

    PubMed

    Lupo, Cosmo; Lloyd, Seth

    2014-10-17

    Quantum data locking is a protocol that allows for a small secret key to (un)lock an exponentially larger amount of information, hence yielding the strongest violation of the classical one-time pad encryption in the quantum setting. This violation mirrors a large gap existing between two security criteria for quantum cryptography quantified by two entropic quantities: the Holevo information and the accessible information. We show that the latter becomes a sensible security criterion if an upper bound on the coherence time of the eavesdropper's quantum memory is known. Under this condition, we introduce a protocol for secret key generation through a memoryless qudit channel. For channels with enough symmetry, such as the d-dimensional erasure and depolarizing channels, this protocol allows secret key generation at an asymptotic rate as high as the classical capacity minus one bit. PMID:25361242

  8. An Efficient Two-Tier Causal Protocol for Mobile Distributed Systems

    PubMed Central

    Dominguez, Eduardo Lopez; Pomares Hernandez, Saul E.; Gomez, Gustavo Rodriguez; Medina, Maria Auxilio

    2013-01-01

    Causal ordering is a useful tool for mobile distributed systems (MDS) to reduce the non-determinism induced by three main aspects: host mobility, asynchronous execution, and unpredictable communication delays. Several causal protocols for MDS exist. Most of them, in order to reduce the overhead and the computational cost over wireless channels and mobile hosts (MH), ensure causal ordering at and according to the causal view of the Base Stations. Nevertheless, these protocols introduce certain disadvantage, such as unnecessary inhibition at the delivery of messages. In this paper, we present an efficient causal protocol for groupware that satisfies the MDS's constraints, avoiding unnecessary inhibitions and ensuring the causal delivery based on the view of the MHs. One interesting aspect of our protocol is that it dynamically adapts the causal information attached to each message based on the number of messages with immediate dependency relation, and this is not directly proportional to the number of MHs. PMID:23585828

  9. Unbreakable distributed storage with quantum key distribution network and password-authenticated secret sharing

    PubMed Central

    Fujiwara, M.; Waseda, A.; Nojima, R.; Moriai, S.; Ogata, W.; Sasaki, M.

    2016-01-01

    Distributed storage plays an essential role in realizing robust and secure data storage in a network over long periods of time. A distributed storage system consists of a data owner machine, multiple storage servers and channels to link them. In such a system, secret sharing scheme is widely adopted, in which secret data are split into multiple pieces and stored in each server. To reconstruct them, the data owner should gather plural pieces. Shamir’s (k, n)-threshold scheme, in which the data are split into n pieces (shares) for storage and at least k pieces of them must be gathered for reconstruction, furnishes information theoretic security, that is, even if attackers could collect shares of less than the threshold k, they cannot get any information about the data, even with unlimited computing power. Behind this scenario, however, assumed is that data transmission and authentication must be perfectly secure, which is not trivial in practice. Here we propose a totally information theoretically secure distributed storage system based on a user-friendly single-password-authenticated secret sharing scheme and secure transmission using quantum key distribution, and demonstrate it in the Tokyo metropolitan area (≤90 km). PMID:27363566

  10. Unbreakable distributed storage with quantum key distribution network and password-authenticated secret sharing.

    PubMed

    Fujiwara, M; Waseda, A; Nojima, R; Moriai, S; Ogata, W; Sasaki, M

    2016-01-01

    Distributed storage plays an essential role in realizing robust and secure data storage in a network over long periods of time. A distributed storage system consists of a data owner machine, multiple storage servers and channels to link them. In such a system, secret sharing scheme is widely adopted, in which secret data are split into multiple pieces and stored in each server. To reconstruct them, the data owner should gather plural pieces. Shamir's (k, n)-threshold scheme, in which the data are split into n pieces (shares) for storage and at least k pieces of them must be gathered for reconstruction, furnishes information theoretic security, that is, even if attackers could collect shares of less than the threshold k, they cannot get any information about the data, even with unlimited computing power. Behind this scenario, however, assumed is that data transmission and authentication must be perfectly secure, which is not trivial in practice. Here we propose a totally information theoretically secure distributed storage system based on a user-friendly single-password-authenticated secret sharing scheme and secure transmission using quantum key distribution, and demonstrate it in the Tokyo metropolitan area (≤90 km). PMID:27363566

  11. Unbreakable distributed storage with quantum key distribution network and password-authenticated secret sharing

    NASA Astrophysics Data System (ADS)

    Fujiwara, M.; Waseda, A.; Nojima, R.; Moriai, S.; Ogata, W.; Sasaki, M.

    2016-07-01

    Distributed storage plays an essential role in realizing robust and secure data storage in a network over long periods of time. A distributed storage system consists of a data owner machine, multiple storage servers and channels to link them. In such a system, secret sharing scheme is widely adopted, in which secret data are split into multiple pieces and stored in each server. To reconstruct them, the data owner should gather plural pieces. Shamir’s (k, n)-threshold scheme, in which the data are split into n pieces (shares) for storage and at least k pieces of them must be gathered for reconstruction, furnishes information theoretic security, that is, even if attackers could collect shares of less than the threshold k, they cannot get any information about the data, even with unlimited computing power. Behind this scenario, however, assumed is that data transmission and authentication must be perfectly secure, which is not trivial in practice. Here we propose a totally information theoretically secure distributed storage system based on a user-friendly single-password-authenticated secret sharing scheme and secure transmission using quantum key distribution, and demonstrate it in the Tokyo metropolitan area (≤90 km).

  12. Unbreakable distributed storage with quantum key distribution network and password-authenticated secret sharing.

    PubMed

    Fujiwara, M; Waseda, A; Nojima, R; Moriai, S; Ogata, W; Sasaki, M

    2016-07-01

    Distributed storage plays an essential role in realizing robust and secure data storage in a network over long periods of time. A distributed storage system consists of a data owner machine, multiple storage servers and channels to link them. In such a system, secret sharing scheme is widely adopted, in which secret data are split into multiple pieces and stored in each server. To reconstruct them, the data owner should gather plural pieces. Shamir's (k, n)-threshold scheme, in which the data are split into n pieces (shares) for storage and at least k pieces of them must be gathered for reconstruction, furnishes information theoretic security, that is, even if attackers could collect shares of less than the threshold k, they cannot get any information about the data, even with unlimited computing power. Behind this scenario, however, assumed is that data transmission and authentication must be perfectly secure, which is not trivial in practice. Here we propose a totally information theoretically secure distributed storage system based on a user-friendly single-password-authenticated secret sharing scheme and secure transmission using quantum key distribution, and demonstrate it in the Tokyo metropolitan area (≤90 km).

  13. Electronic Clinical Trial Protocol Distribution via the World-Wide Web

    PubMed Central

    Afrin, Lawrence B.; Kuppuswamy, Valarmathi; Slater, Barbara; Stuart, Robert K.

    1997-01-01

    Clinical trials today typically are inefficient, paper-based operations. Poor community physician awareness of available trials and difficult referral mechanisms also contribute to poor accrual. The Physicians Research Network (PRN) web was developed for more efficient trial protocol distribution and eligibility inquiries. The Medical University of South Carolina's Hollings Cancer Center trials program and two community oncology practices served as a testbed. In 581 man-hours over 18 months, 147 protocols were loaded into PRN. The trials program eliminated all protocol hardcopies except the masters, reduced photocopier use 59%, and saved 1.0 full-time equivalents (FTE), but 1.0 FTE was needed to manage PRN. There were no known security breaches, downtime, or content-related problems. Therefore, PRN is a paperless, user-preferred, reliable, secure method for distributing protocols and reducing distribution errors and delays because only a single copy of each protocol is maintained. Furthermore, PRN is being extended to serve other aspects of trial operations. PMID:8988471

  14. Correctness Proof of a Self-Stabilizing Distributed Clock Synchronization Protocol for Arbitrary Digraphs

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2011-01-01

    This report presents a deductive proof of a self-stabilizing distributed clock synchronization protocol. It is focused on the distributed clock synchronization of an arbitrary, non-partitioned digraph ranging from fully connected to 1-connected networks of nodes while allowing for differences in the network elements. This protocol does not rely on assumptions about the initial state of the system, and no central clock or a centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. There is no theoretical limit on the maximum number of participating nodes. The only constraint on the behavior of the node is that the interactions with other nodes are restricted to defined links and interfaces. We present a deductive proof of the correctness of the protocol as it applies to the networks with unidirectional and bidirectional links. We also confirm the claims of determinism and linear convergence.

  15. A directional wave measurement attack against the Kish key distribution system

    PubMed Central

    Gunn, Lachlan J.; Allison, Andrew; Abbott, Derek

    2014-01-01

    The Kish key distribution system has been proposed as a classical alternative to quantum key distribution. The idealized Kish scheme elegantly promises secure key distribution by exploiting thermal noise in a transmission line. However, we demonstrate that it is vulnerable to nonidealities in its components, such as the finite resistance of the transmission line connecting its endpoints. We introduce a novel attack against this nonideality using directional wave measurements, and experimentally demonstrate its efficacy. PMID:25248868

  16. Intercept-resend attack on six-state quantum key distribution over collective-rotation noise channels

    NASA Astrophysics Data System (ADS)

    Kevin, Garapo; Mhlambululi, Mafu; Francesco, Petruccione

    2016-07-01

    We investigate the effect of collective-rotation noise on the security of the six-state quantum key distribution. We study the case where the eavesdropper, Eve, performs an intercept-resend attack on the quantum communication between Alice, the sender, and Bob, the receiver. We first derive the collective-rotation noise model for the six-state protocol and then parameterize the mutual information between Alice and Eve. We then derive quantum bit error rate for three intercept-resend attack scenarios. We observe that the six-state protocol is robust against intercept-resend attacks on collective rotation noise channels when the rotation angle is kept within certain bounds. Project supported by the South African Research Chair Initiative of the Department of Science and Technology and National Research Foundation.

  17. Free-space quantum key distribution by rotation-invariant twisted photons.

    PubMed

    Vallone, Giuseppe; D'Ambrosio, Vincenzo; Sponselli, Anna; Slussarenko, Sergei; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo

    2014-08-01

    "Twisted photons" are photons carrying a well-defined nonzero value of orbital angular momentum (OAM). The associated optical wave exhibits a helical shape of the wavefront (hence the name) and an optical vortex at the beam axis. The OAM of light is attracting a growing interest for its potential in photonic applications ranging from particle manipulation, microscopy, and nanotechnologies to fundamental tests of quantum mechanics, classical data multiplexing, and quantum communication. Hitherto, however, all results obtained with optical OAM were limited to laboratory scale. Here, we report the experimental demonstration of a link for free-space quantum communication with OAM operating over a distance of 210 m. Our method exploits OAM in combination with optical polarization to encode the information in rotation-invariant photonic states, so as to guarantee full independence of the communication from the local reference frames of the transmitting and receiving units. In particular, we implement quantum key distribution, a protocol exploiting the features of quantum mechanics to guarantee unconditional security in cryptographic communication, demonstrating error-rate performances that are fully compatible with real-world application requirements. Our results extend previous achievements of OAM-based quantum communication by over 2 orders of magnitude in the link scale, providing an important step forward in achieving the vision of a worldwide quantum network.

  18. On conclusive eavesdropping and measures of mutual information in quantum key distribution

    NASA Astrophysics Data System (ADS)

    Rastegin, Alexey E.

    2016-03-01

    We address the question of quantifying eavesdropper's information gain in an individual attack on systems of quantum key distribution. It is connected with the concept of conclusive eavesdropping introduced by Brandt. Using the BB84 protocol, we examine the problem of estimating a performance of conclusive entangling probe. The question of interest depends on the choice of a quantitative measure of eavesdropper's information about the error-free sifted bits. The Fuchs-Peres-Brandt probe realizes a very powerful individual attack on the BB84 scheme. In the usual formulation, Eve utilizes the Helstrom scheme in distinguishing between the two output probe states. In conclusive eavesdropping, the unambiguous discrimination is used. Comparing these two versions allows to demonstrate serious distinctions between widely used quantifiers of mutual information. In particular, the so-called Rényi mutual information does not seem to be a completely legitimate measure of an amount of mutual information. It is brightly emphasized with the example of conclusive eavesdropping.

  19. A Robust and Anonymous Two Factor Authentication and Key Agreement Protocol for Telecare Medicine Information Systems.

    PubMed

    Xiong, Hu; Tao, Junyi; Chen, Yanan

    2016-11-01

    Nowadays people can get many services including health-care services from distributed information systems remotely via public network. By considering that these systems are built on public network, they are vulnerable to many malicious attacks. Hence it is necessary to introduce an effective mechanism to protect both users and severs. Recently many two-factor authentication schemes have been proposed to achieve this goal. In 2016, Li et al. demonstrated that Lee et al.'s scheme was not satisfactory to be deployed in practice because of its security weaknesses and then proposed a security enhanced scheme to overcome these drawbacks. In this paper, we analyze Li et al.'s scheme is still not satisfactory to be applied in telecare medicine information systems (TMIS) because it fails to withstand off-line dictionary attack and known session-specific temporary information attack. Moreover, their scheme cannot provide card revocation services for lost smart card. In order to solve these security problems, we propose an improved scheme. Then we analyze our scheme by using BAN-logic model and compare the improved scheme with related schemes to prove that our scheme is advantageous to be applied in practice.

  20. A Robust and Anonymous Two Factor Authentication and Key Agreement Protocol for Telecare Medicine Information Systems.

    PubMed

    Xiong, Hu; Tao, Junyi; Chen, Yanan

    2016-11-01

    Nowadays people can get many services including health-care services from distributed information systems remotely via public network. By considering that these systems are built on public network, they are vulnerable to many malicious attacks. Hence it is necessary to introduce an effective mechanism to protect both users and severs. Recently many two-factor authentication schemes have been proposed to achieve this goal. In 2016, Li et al. demonstrated that Lee et al.'s scheme was not satisfactory to be deployed in practice because of its security weaknesses and then proposed a security enhanced scheme to overcome these drawbacks. In this paper, we analyze Li et al.'s scheme is still not satisfactory to be applied in telecare medicine information systems (TMIS) because it fails to withstand off-line dictionary attack and known session-specific temporary information attack. Moreover, their scheme cannot provide card revocation services for lost smart card. In order to solve these security problems, we propose an improved scheme. Then we analyze our scheme by using BAN-logic model and compare the improved scheme with related schemes to prove that our scheme is advantageous to be applied in practice. PMID:27628729

  1. Model Checking a Self-Stabilizing Distributed Clock Synchronization Protocol for Arbitrary Digraphs

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2011-01-01

    This report presents the mechanical verification of a self-stabilizing distributed clock synchronization protocol for arbitrary digraphs in the absence of faults. This protocol does not rely on assumptions about the initial state of the system, other than the presence of at least one node, and no central clock or a centrally generated signal, pulse, or message is used. The system under study is an arbitrary, non-partitioned digraph ranging from fully connected to 1-connected networks of nodes while allowing for differences in the network elements. Nodes are anonymous, i.e., they do not have unique identities. There is no theoretical limit on the maximum number of participating nodes. The only constraint on the behavior of the node is that the interactions with other nodes are restricted to defined links and interfaces. This protocol deterministically converges within a time bound that is a linear function of the self-stabilization period.

  2. A Byzantine-Fault Tolerant Self-Stabilizing Protocol for Distributed Clock Synchronization Systems

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2006-01-01

    Embedded distributed systems have become an integral part of safety-critical computing applications, necessitating system designs that incorporate fault tolerant clock synchronization in order to achieve ultra-reliable assurance levels. Many efficient clock synchronization protocols do not, however, address Byzantine failures, and most protocols that do tolerate Byzantine failures do not self-stabilize. Of the Byzantine self-stabilizing clock synchronization algorithms that exist in the literature, they are based on either unjustifiably strong assumptions about initial synchrony of the nodes or on the existence of a common pulse at the nodes. The Byzantine self-stabilizing clock synchronization protocol presented here does not rely on any assumptions about the initial state of the clocks. Furthermore, there is neither a central clock nor an externally generated pulse system. The proposed protocol converges deterministically, is scalable, and self-stabilizes in a short amount of time. The convergence time is linear with respect to the self-stabilization period. Proofs of the correctness of the protocol as well as the results of formal verification efforts are reported.

  3. Design and Performance Evaluation of a Distributed OFDMA-Based MAC Protocol for MANETs

    PubMed Central

    Chung, Jiyoung; Lee, Hyungyu; Lee, Jung-Ryun

    2014-01-01

    In this paper, we propose a distributed MAC protocol for OFDMA-based wireless mobile ad hoc multihop networks, in which the resource reservation and data transmission procedures are operated in a distributed manner. A frame format is designed considering the characteristics of OFDMA that each node can transmit or receive data to or from multiple nodes simultaneously. Under this frame structure, we propose a distributed resource management method including network state estimation and resource reservation processes. We categorize five types of logical errors according to their root causes and show that two of the logical errors are inevitable while three of them are avoided under the proposed distributed MAC protocol. In addition, we provide a systematic method to determine the advertisement period of each node by presenting a clear relation between the accuracy of estimated network states and the signaling overhead. We evaluate the performance of the proposed protocol in respect of the reservation success rate and the success rate of data transmission. Since our method focuses on avoiding logical errors, it could be easily placed on top of the other resource allocation methods focusing on the physical layer issues of the resource management problem and interworked with them. PMID:25133254

  4. Design and performance evaluation of a distributed OFDMA-based MAC protocol for MANETs.

    PubMed

    Park, Jaesung; Chung, Jiyoung; Lee, Hyungyu; Lee, Jung-Ryun

    2014-01-01

    In this paper, we propose a distributed MAC protocol for OFDMA-based wireless mobile ad hoc multihop networks, in which the resource reservation and data transmission procedures are operated in a distributed manner. A frame format is designed considering the characteristics of OFDMA that each node can transmit or receive data to or from multiple nodes simultaneously. Under this frame structure, we propose a distributed resource management method including network state estimation and resource reservation processes. We categorize five types of logical errors according to their root causes and show that two of the logical errors are inevitable while three of them are avoided under the proposed distributed MAC protocol. In addition, we provide a systematic method to determine the advertisement period of each node by presenting a clear relation between the accuracy of estimated network states and the signaling overhead. We evaluate the performance of the proposed protocol in respect of the reservation success rate and the success rate of data transmission. Since our method focuses on avoiding logical errors, it could be easily placed on top of the other resource allocation methods focusing on the physical layer issues of the resource management problem and interworked with them.

  5. Ant-based distributed protocol for coordination of a swarm of robots in demining mission

    NASA Astrophysics Data System (ADS)

    De Rango, Floriano; Palmieri, Nunzia

    2016-05-01

    Coordination among multiple robots has been extensively studied, since a number of practical real problem s can be performed using an effective approach. In this paper is investigated a collective task that requires a multi-robot system to search for randomly distributed mines in an unknown environment and disarm them cooperatively. The communication among the swarm of robots influences the overall performance in terms of time to execute the task or consumed energy. To address this problem, a new distributed recruiting protocol to coordinate a swarm of robots in demining mission, is described. This problem is a multi-objective problem and two bio inspired strategies are used. The novelty of this approach lies in the combination of direct and indirect communication: on one hand an indirect communication among robots is used for the exploration of the environment, on the other hand a novel protocol is used to accomplish the recruiting and coordination of the robots for demining task. This protocol attempts to tackle the question of how autonomous robot can coordinate themselves into an unknown environment relying on simple low-level capabilities. The strategy is able to adapt the current system dynamics if the number of robots or the environment structure or both change. The proposed approach has been implemented and has been evaluated in several simulated environments. We analyzed the impact of our approach in the overall performance of a robot team. Experimental results indicated the effectiveness and efficiency of the proposed protocol to spread the robots in the environment.

  6. Test Protocol for Room-to-Room Distribution of Outside Air by Residential Ventilation Systems

    SciTech Connect

    Barley, C. D.; Anderson, R.; Hendron, B.; Hancock, E.

    2007-12-01

    This test and analysis protocol has been developed as a practical approach for measuring outside air distribution in homes. It has been used successfully in field tests and has led to significant insights on ventilation design issues. Performance advantages of more sophisticated ventilation systems over simpler, less-costly designs have been verified, and specific problems, such as airflow short-circuiting, have been identified.

  7. Optical key distribution based on aero-optical effect of boundary layer flow

    NASA Astrophysics Data System (ADS)

    Wu, Xu; Wu, Kenan; Liu, Chao

    2014-07-01

    An optical key distribution method based on aero-optical effect of boundary layer flow is proposed. The technique exploits the underlying dynamics of the turbulence boundary layer to generate secret key for both communication parties. Corresponding computer simulation and experiments are carried out. The bit error rate of key distribution is 0.05% and 0.22% in the simulation and the experiment, respectively. Further test also shows that the proposed key generation technique is valid to work with optical encryption technique.

  8. The Deployment of Routing Protocols in Distributed Control Plane of SDN

    PubMed Central

    Jingjing, Zhou; Di, Cheng; Weiming, Wang; Rong, Jin; Xiaochun, Wu

    2014-01-01

    Software defined network (SDN) provides a programmable network through decoupling the data plane, control plane, and application plane from the original closed system, thus revolutionizing the existing network architecture to improve the performance and scalability. In this paper, we learned about the distributed characteristics of Kandoo architecture and, meanwhile, improved and optimized Kandoo's two levels of controllers based on ideological inspiration of RCP (routing control platform). Finally, we analyzed the deployment strategies of BGP and OSPF protocol in a distributed control plane of SDN. The simulation results show that our deployment strategies are superior to the traditional routing strategies. PMID:25250395

  9. Comment on ''Semiquantum-key distribution using less than four quantum states''

    SciTech Connect

    Boyer, Michel; Mor, Tal

    2011-04-15

    For several decades it was believed that information-secure key distribution requires both the sender and receiver to have the ability to generate and/or manipulate quantum states. Earlier, we showed that quantum key distribution in which one party is classical is possible [Boyer, Kenigsberg, and Mor, Phys. Rev. Lett. 99, 140501 (2007)]. A surprising and very nice extension of that result was suggested by Zou, Qiu, Li, Wu, and Li [Phys. Rev. A 79, 052312 (2009)]. Their paper suggests that it is sufficient for the originator of the states (the person holding the quantum technology) to generate just one state. The resulting semiquantum key distribution, which we call here 'quantum key distribution with classical Alice' is indeed completely robust against eavesdropping. However, their proof (that no eavesdropper can get information without being possibly detected) is faulty. We provide here a fully detailed and direct proof of their very important result.

  10. Quantum circuit for optimal eavesdropping in quantum key distribution using phase-time coding

    SciTech Connect

    Kronberg, D. A.; Molotkov, S. N.

    2010-07-15

    A quantum circuit is constructed for optimal eavesdropping on quantum key distribution proto- cols using phase-time coding, and its physical implementation based on linear and nonlinear fiber-optic components is proposed.

  11. Distributed project scheduling at NASA: Requirements for manual protocols and computer-based support

    NASA Technical Reports Server (NTRS)

    Richards, Stephen F.

    1992-01-01

    The increasing complexity of space operations and the inclusion of interorganizational and international groups in the planning and control of space missions lead to requirements for greater communication, coordination, and cooperation among mission schedulers. These schedulers must jointly allocate scarce shared resources among the various operational and mission oriented activities while adhering to all constraints. This scheduling environment is complicated by such factors as the presence of varying perspectives and conflicting objectives among the schedulers, the need for different schedulers to work in parallel, and limited communication among schedulers. Smooth interaction among schedulers requires the use of protocols that govern such issues as resource sharing, authority to update the schedule, and communication of updates. This paper addresses the development and characteristics of such protocols and their use in a distributed scheduling environment that incorporates computer-aided scheduling tools. An example problem is drawn from the domain of Space Shuttle mission planning.

  12. Cactus and Visapult: A case study of ultra-high performance distributed visualization using connectionless protocols

    SciTech Connect

    Shalf, John; Bethel, E. Wes

    2002-05-07

    This past decade has seen rapid growth in the size, resolution, and complexity of Grand Challenge simulation codes. Many such problems still require interactive visualization tools to make sense of multi-terabyte data stores. Visapult is a parallel volume rendering tool that employs distributed components, latency tolerant algorithms, and high performance network I/O for effective remote visualization of massive datasets. In this paper we discuss using connectionless protocols to accelerate Visapult network I/O and interfacing Visapult to the Cactus General Relativity code to enable scalable remote monitoring and steering capabilities. With these modifications, network utilization has moved from 25 percent of line-rate using tuned multi-streamed TCP to sustaining 88 percent of line rate using the new UDP-based transport protocol.

  13. High speed and adaptable error correction for megabit/s rate quantum key distribution

    PubMed Central

    Dixon, A. R.; Sato, H.

    2014-01-01

    Quantum Key Distribution is moving from its theoretical foundation of unconditional security to rapidly approaching real world installations. A significant part of this move is the orders of magnitude increases in the rate at which secure key bits are distributed. However, these advances have mostly been confined to the physical hardware stage of QKD, with software post-processing often being unable to support the high raw bit rates. In a complete implementation this leads to a bottleneck limiting the final secure key rate of the system unnecessarily. Here we report details of equally high rate error correction which is further adaptable to maximise the secure key rate under a range of different operating conditions. The error correction is implemented both in CPU and GPU using a bi-directional LDPC approach and can provide 90–94% of the ideal secure key rate over all fibre distances from 0–80 km. PMID:25450416

  14. An Efficient Distributed Coverage Hole Detection Protocol for Wireless Sensor Networks.

    PubMed

    Sahoo, Prasan Kumar; Chiang, Ming-Jer; Wu, Shih-Lin

    2016-01-01

    In wireless sensor networks (WSNs), certain areas of the monitoring region may have coverage holes and serious coverage overlapping due to the random deployment of sensors. The failure of electronic components, software bugs and destructive agents could lead to the random death of the nodes. Sensors may be dead due to exhaustion of battery power, which may cause the network to be uncovered and disconnected. Based on the deployment nature of the nodes in remote or hostile environments, such as a battlefield or desert, it is impossible to recharge or replace the battery. However, the data gathered by the sensors are highly essential for the analysis, and therefore, the collaborative detection of coverage holes has strategic importance in WSNs. In this paper, distributed coverage hole detection algorithms are designed, where nodes can collaborate to detect the coverage holes autonomously. The performance evaluation of our protocols suggests that our protocols outperform in terms of hole detection time, limited power consumption and control packet overhead to detect holes as compared to other similar protocols. PMID:26999143

  15. An Efficient Distributed Coverage Hole Detection Protocol for Wireless Sensor Networks

    PubMed Central

    Kumar Sahoo, Prasan; Chiang, Ming-Jer; Wu, Shih-Lin

    2016-01-01

    In wireless sensor networks (WSNs), certain areas of the monitoring region may have coverage holes and serious coverage overlapping due to the random deployment of sensors. The failure of electronic components, software bugs and destructive agents could lead to the random death of the nodes. Sensors may be dead due to exhaustion of battery power, which may cause the network to be uncovered and disconnected. Based on the deployment nature of the nodes in remote or hostile environments, such as a battlefield or desert, it is impossible to recharge or replace the battery. However, the data gathered by the sensors are highly essential for the analysis, and therefore, the collaborative detection of coverage holes has strategic importance in WSNs. In this paper, distributed coverage hole detection algorithms are designed, where nodes can collaborate to detect the coverage holes autonomously. The performance evaluation of our protocols suggests that our protocols outperform in terms of hole detection time, limited power consumption and control packet overhead to detect holes as compared to other similar protocols. PMID:26999143

  16. Limitations on quantum key repeaters.

    PubMed

    Bäuml, Stefan; Christandl, Matthias; Horodecki, Karol; Winter, Andreas

    2015-04-23

    A major application of quantum communication is the distribution of entangled particles for use in quantum key distribution. Owing to noise in the communication line, quantum key distribution is, in practice, limited to a distance of a few hundred kilometres, and can only be extended to longer distances by use of a quantum repeater, a device that performs entanglement distillation and quantum teleportation. The existence of noisy entangled states that are undistillable but nevertheless useful for quantum key distribution raises the question of the feasibility of a quantum key repeater, which would work beyond the limits of entanglement distillation, hence possibly tolerating higher noise levels than existing protocols. Here we exhibit fundamental limits on such a device in the form of bounds on the rate at which it may extract secure key. As a consequence, we give examples of states suitable for quantum key distribution but unsuitable for the most general quantum key repeater protocol.

  17. Limitations on quantum key repeaters.

    PubMed

    Bäuml, Stefan; Christandl, Matthias; Horodecki, Karol; Winter, Andreas

    2015-01-01

    A major application of quantum communication is the distribution of entangled particles for use in quantum key distribution. Owing to noise in the communication line, quantum key distribution is, in practice, limited to a distance of a few hundred kilometres, and can only be extended to longer distances by use of a quantum repeater, a device that performs entanglement distillation and quantum teleportation. The existence of noisy entangled states that are undistillable but nevertheless useful for quantum key distribution raises the question of the feasibility of a quantum key repeater, which would work beyond the limits of entanglement distillation, hence possibly tolerating higher noise levels than existing protocols. Here we exhibit fundamental limits on such a device in the form of bounds on the rate at which it may extract secure key. As a consequence, we give examples of states suitable for quantum key distribution but unsuitable for the most general quantum key repeater protocol. PMID:25903096

  18. Long-Distance Continuous-Variable Quantum Key Distribution with Scalar Reconciliation and Gaussian Adaptive Multicarrier Quadrature Division

    NASA Astrophysics Data System (ADS)

    Gyongyosi, Laszlo; Imre, Sandor

    2014-03-01

    The two-way Continuous-Variable Quantum Key Distribution (CVQKD) systems allow higher key rates and improved transmission distances over standard telecommunication networks in comparison to the one-way CVQKD protocols. To exploit the real potential of two-way CVQKD systems a robust reconciliation technique is needed. It is currently unavailable, which makes it impossible to reach the real performance of a two-way CVQKD system. We propose an efficient logical layer-based reconciliation method for two-way CVQKD to extract binary information from correlated Gaussian variables. We demonstrate that by operating on the raw-data level, the noise of the quantum channel can be corrected in the scalar space and the reconciliation can be extended to arbitrary high dimensions. The results allow to significantly improve the currently available key rates and transmission distances of two-way CVQKD. We show that by exploiting the proposed adaptive multicarrier modulation scheme, two-way CVQKD can be extended to a range of 160 km over optical fiber with improved tolerable loss and excess noise. The proposed scalar reconciliation can also be applied in one-way systems as well, and can be extended for multiuser communication.

  19. Security of quantum key distribution with a laser reference coherent state, resistant to loss in the communication channel

    NASA Astrophysics Data System (ADS)

    Molotkov, S. N.; Potapova, T. A.

    2015-06-01

    The problem of quantum key distribution security in channels with large losses is still open. Quasi-single-photon sources of quantum states with losses in the quantum communication channel open up the possibility of attacking with unambiguous state discrimination (USD) measurements, resulting in a loss of privacy. In this letter, the problem is solved by counting the classic reference pulses. Conservation of the number of counts of intense coherent pulses makes it impossible to conduct USD measurements. Moreover, the losses in the communication channel are considered to be unknown in advance and are subject to change throughout the series parcels. Unlike other protocols, differential phase shift (Inoue et al 2002 Phys. Rev. Lett. 89 037902, Inoue et al 2003 Phys. Rev. A 68 022317, Takesue et al 2007 Nat. Photon. 1 343, Wen et al 2009 Phys. Rev. Lett. 103 170503) and coherent one way (Stucki et al 2005 Appl. Phys. Lett. 87 194108, Branciard et al 2005 Appl. Phys. Lett. 87 194108, Branciard et al 2008 New J. Phys. 10 013031, Stucki et al 2008 Opt. Express 17 13326), the simplicity of the protocol makes it possible to carry out a complete analysis of its security.

  20. Practical attacks on decoy-state quantum-key-distribution systems with detector efficiency mismatch

    NASA Astrophysics Data System (ADS)

    Fei, Yangyang; Gao, Ming; Wang, Weilong; Li, Chaobo; Ma, Zhi

    2015-05-01

    To the active-basis-choice decoy-state quantum-key-distribution systems with detector efficiency mismatch, we present a modified attack strategy, which is based on the faked states attack, with quantum nondemolition measurement ability to restress the threat of detector efficiency mismatch. Considering that perfect quantum nondemolition measurement ability doesn't exist in real life, we also propose a practical attack strategy using photon number resolving detectors. Theoretical analysis and numerical simulation results show that, without changing the channel, our attack strategies are serious threats to decoy-state quantum-key-distribution systems. The eavesdropper may get some information about the secret key without causing any alarms. Besides, the lower bound of detector efficiency mismatch to run our modified faked states attack successfully with perfect quantum nondemolition measurement ability is also given out, which provides the producers of quantum-key-distribution systems with a reference and can be treated as the approximate secure bound of detector efficiency mismatch in decoy-state quantum-key-distribution systems.

  1. Dark states ultra-long fiber laser for practically secure key distribution

    NASA Astrophysics Data System (ADS)

    Kotlicki, Omer; Scheuer, Jacob

    2014-10-01

    We present and demonstrate a novel ultra-long fiber laser key distribution system (UFL-KDS). The scheme quenches the lasing process when in its secure states, thus forming "dark states" which provide simple detection on one hand and increased difficulty of eavesdropping on the other. We analyze the practical aspects of previously studied UFL-KDS schemes as well as those of the one presented here and demonstrate successful key distribution across a 200 km link with bit-rates that can exceed 0.5 kbps. Spectral and temporal passive attack strategies are analyzed and discussed in details.

  2. History of study, updated checklist, distribution and key of scorpions (Arachnida: Scorpiones) from China.

    PubMed

    Di, Zhi-Yong; Yang, Zi-Zhong; Yin, Shi-Jin; Cao, Zhi-Jian; Li, Wen-Xin

    2014-01-01

    This review describes the history of taxonomic research on scorpions and provides an updated checklist and key of the scorpions currently known in China. This checklist is based on a thorough review of the extant literatures on scorpion species whose presence has been confirmed in China through field expeditions and examination of scorpion collections, excepting a few members that have no clear distribution or are currently in doubt. Totally, the scorpion fauna of China consists of 53 species and subspecies belonging to 12 genera crossing five families, with 33 species (62.3%) and one genus being recorded as endemic. Additionally, identification key and the distribution of scorpions from China are provided.

  3. Fast implementation of length-adaptive privacy amplification in quantum key distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Chun-Mei; Li, Mo; Huang, Jing-Zheng; Patcharapong, Treeviriyanupab; Li, Hong-Wei; Li, Fang-Yi; Wang, Chuan; Yin, Zhen-Qiang; Chen, Wei; Keattisak, Sripimanwat; Han, Zhen-Fu

    2014-09-01

    Post-processing is indispensable in quantum key distribution (QKD), which is aimed at sharing secret keys between two distant parties. It mainly consists of key reconciliation and privacy amplification, which is used for sharing the same keys and for distilling unconditional secret keys. In this paper, we focus on speeding up the privacy amplification process by choosing a simple multiplicative universal class of hash functions. By constructing an optimal multiplication algorithm based on four basic multiplication algorithms, we give a fast software implementation of length-adaptive privacy amplification. “Length-adaptive” indicates that the implementation of privacy amplification automatically adapts to different lengths of input blocks. When the lengths of the input blocks are 1 Mbit and 10 Mbit, the speed of privacy amplification can be as fast as 14.86 Mbps and 10.88 Mbps, respectively. Thus, it is practical for GHz or even higher repetition frequency QKD systems.

  4. Differential-phase-shift quantum key distribution with segmented pulse trains

    SciTech Connect

    Kawahara, Hiroki; Inoue, Kyo

    2011-06-15

    We present a modified scheme of differential-phase-shift (DPS) quantum key distribution (QKD) for improving its performance. A transmitter sends a weak coherent pulse train segmented with vacant pulses. Then, a receiver can find eavesdropping by monitoring the photon detection rate at particular time slots. Simulations show that the proposed scheme is robust against a sequential attack and a general individual attack.

  5. Distributed generation of shared RSA keys in mobile ad hoc networks

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Liang; Huang, Qin; Shen, Ying

    2005-12-01

    Mobile Ad Hoc Networks is a totally new concept in which mobile nodes are able to communicate together over wireless links in an independent manner, independent of fixed physical infrastructure and centralized administrative infrastructure. However, the nature of Ad Hoc Networks makes them very vulnerable to security threats. Generation and distribution of shared keys for CA (Certification Authority) is challenging for security solution based on distributed PKI(Public-Key Infrastructure)/CA. The solutions that have been proposed in the literature and some related issues are discussed in this paper. The solution of a distributed generation of shared threshold RSA keys for CA is proposed in the present paper. During the process of creating an RSA private key share, every CA node only has its own private security. Distributed arithmetic is used to create the CA's private share locally, and that the requirement of centralized management institution is eliminated. Based on fully considering the Mobile Ad Hoc network's characteristic of self-organization, it avoids the security hidden trouble that comes by holding an all private security share of CA, with which the security and robustness of system is enhanced.

  6. Calibration and data collection protocols for reliable lattice parameter values in electron pair distribution function (ePDF) studies

    DOE PAGESBeta

    Abeykoon, A. M. Milinda; Hu, Hefei; Wu, Lijun; Zhu, Yimei; Billinge, Simon J. L.

    2015-02-01

    We explore and describe different protocols for calibrating electron pair distribution function (ePDF) measurements for quantitative studies on nano-materials. We find the most accurate approach to determine the camera-length is to use a standard calibration sample of Au nanoparticles from National Institute of Standards and Technology. Different protocols for data collection are also explored, as are possible operational errors, to find the best approaches for accurate data collection for quantitative ePDF studies.

  7. An optimized encoding method for secure key distribution by swapping quantum entanglement and its extension

    NASA Astrophysics Data System (ADS)

    Gao, Gan

    2015-08-01

    Song [Song D 2004 Phys. Rev. A 69 034301] first proposed two key distribution schemes with the symmetry feature. We find that, in the schemes, the private channels which Alice and Bob publicly announce the initial Bell state or the measurement result through are not needed in discovering keys, and Song’s encoding methods do not arrive at the optimization. Here, an optimized encoding method is given so that the efficiencies of Song’s schemes are improved by 7/3 times. Interestingly, this optimized encoding method can be extended to the key distribution scheme composed of generalized Bell states. Project supported by the National Natural Science Foundation of China (Grant No. 11205115), the Program for Academic Leader Reserve Candidates in Tongling University (Grant No. 2014tlxyxs30), and the 2014-year Program for Excellent Youth Talents in University of Anhui Province, China.

  8. An improved scheme on decoy-state method for measurement-device-independent quantum key distribution

    PubMed Central

    Wang, Dong; Li, Mo; Guo, Guang-Can; Wang, Qin

    2015-01-01

    Quantum key distribution involving decoy-states is a significant application of quantum information. By using three-intensity decoy-states of single-photon-added coherent sources, we propose a practically realizable scheme on quantum key distribution which approaches very closely the ideal asymptotic case of an infinite number of decoy-states. We make a comparative study between this scheme and two other existing ones, i.e., two-intensity decoy-states with single-photon-added coherent sources, and three-intensity decoy-states with weak coherent sources. Through numerical analysis, we demonstrate the advantages of our scheme in secure transmission distance and the final key generation rate. PMID:26463580

  9. Long-distance measurement-device-independent quantum key distribution with coherent-state superpositions.

    PubMed

    Yin, H-L; Cao, W-F; Fu, Y; Tang, Y-L; Liu, Y; Chen, T-Y; Chen, Z-B

    2014-09-15

    Measurement-device-independent quantum key distribution (MDI-QKD) with decoy-state method is believed to be securely applied to defeat various hacking attacks in practical quantum key distribution systems. Recently, the coherent-state superpositions (CSS) have emerged as an alternative to single-photon qubits for quantum information processing and metrology. Here, in this Letter, CSS are exploited as the source in MDI-QKD. We present an analytical method that gives two tight formulas to estimate the lower bound of yield and the upper bound of bit error rate. We exploit the standard statistical analysis and Chernoff bound to perform the parameter estimation. Chernoff bound can provide good bounds in the long-distance MDI-QKD. Our results show that with CSS, both the security transmission distance and secure key rate are significantly improved compared with those of the weak coherent states in the finite-data case. PMID:26466295

  10. A fission matrix based validation protocol for computed power distributions in the advanced test reactor

    SciTech Connect

    Nielsen, J. W.; Nigg, D. W.; LaPorta, A. W.

    2013-07-01

    The Idaho National Laboratory (INL) has been engaged in a significant multi year effort to modernize the computational reactor physics tools and validation procedures used to support operations of the Advanced Test Reactor (ATR) and its companion critical facility (ATRC). Several new protocols for validation of computed neutron flux distributions and spectra as well as for validation of computed fission power distributions, based on new experiments and well-recognized least-squares statistical analysis techniques, have been under development. In the case of power distributions, estimates of the a priori ATR-specific fuel element-to-element fission power correlation and covariance matrices are required for validation analysis. A practical method for generating these matrices using the element-to-element fission matrix is presented, along with a high-order scheme for estimating the underlying fission matrix itself. The proposed methodology is illustrated using the MCNP5 neutron transport code for the required neutronics calculations. The general approach is readily adaptable for implementation using any multidimensional stochastic or deterministic transport code that offers the required level of spatial, angular, and energy resolution in the computed solution for the neutron flux and fission source. (authors)

  11. Syndromic deafness-prevalence, distribution and hearing management protocol in Indian scenario

    PubMed Central

    Arumugam, Senthil Vadivu; Paramasivan, Vijaya Krishnan; Murali, Sathiya; Natarajan, Kiran; Sudhamaheswari; Kameswaran, Mohan

    2015-01-01

    Background The estimated prevalence of Sensory Neural Hearing Loss (SNHL) in patients less than 18 years of age is 6 per 1000. Roughly 50% of cases of congenital SNHL can be linked to a genetic cause, with approximately 30% being syndromic and the remaining 70% being non-syndromic. The term “syndromic” implies the presence of other distinctive clinical features in addition to hearing loss. The aim of our study was to find the distribution of various Syndromic associations in patients with profound deafness, presented at Madras ENT Research foundation, Chennai and to formulate a management protocol for these patients and to discuss in detail about the clinical features of commonly encountered syndromic deafness. Materials and methods Our retrospective study was aimed at describing the various Syndromic associations seen in patients with congenital profound deafness. Information was collected from the medical records. At our centre all patients undergo a comprehensive evaluation. The distribution, etiological factors and management protocol for various syndromes are here presented. Results Out of 700 patients with congenital profound deafness all patients with Syndromic associations (n = 35) were studied. 5% of profoundly deaf candidates were found to be syndromic. Most common syndrome in our series was found to be congenital rubella syndrome followed by Jervell and Lange-Nielsen syndrome. Conclusion Congenital deafness is an associated feature of many syndromes. Detailed history taking with comprehensive evaluation is mandatory to rule out the associated syndromes. Diagnosis must be confirm by a genetic study. Multidisciplinary approach is essential for appropriate diagnosis and management. PMID:26005567

  12. Balancing continuous-variable quantum key distribution with source-tunable linear optics cloning machine

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Lv, Geli; Zeng, Guihua

    2015-11-01

    We show that the tolerable excess noise can be dynamically balanced in source preparation while inserting a tunable linear optics cloning machine (LOCM) for balancing the secret key rate and the maximal transmission distance of continuous-variable quantum key distribution (CVQKD). The intensities of source noise are sensitive to the tunable LOCM and can be stabilized to the suitable values to eliminate the impact of channel noise and defeat the potential attacks even in the case of the degenerated linear optics amplifier (LOA). The LOCM-additional noise can be elegantly employed by the reference partner of reconciliation to regulate the secret key rate and the transmission distance. Simulation results show that there is a considerable improvement in the secret key rate of the LOCM-based CVQKD while providing a tunable LOCM for source preparation with the specified parameters in suitable ranges.

  13. Hacking on decoy-state quantum key distribution system with partial phase randomization.

    PubMed

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-01-01

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states. PMID:24755767

  14. Hacking on decoy-state quantum key distribution system with partial phase randomization.

    PubMed

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-04-23

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.

  15. Hacking on decoy-state quantum key distribution system with partial phase randomization

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-04-01

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.

  16. Hacking on decoy-state quantum key distribution system with partial phase randomization

    PubMed Central

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-01-01

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states. PMID:24755767

  17. Practical security of continuous-variable quantum key distribution with finite sampling bandwidth effects

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Huang, Peng; Huang, Duan; Lin, Dakai; Zeng, Guihua

    2016-02-01

    Practical security of the continuous-variable quantum key distribution (CVQKD) system with finite sampling bandwidth of analog-to-digital converter (ADC) at the receiver's side is investigated. We find that the finite sampling bandwidth effects may decrease the lower bound of secret key rate without awareness of the legitimate communicators. This leaves security loopholes for Eve to attack the system. In addition, this effect may restrains the linear relationship of secret key bit rate with repetition rate of the system; subsequently, there is a saturation value for the secret key bit rate with the repetition rate. To resist such kind of effects, we propose a dual sampling detection approach in which two ADCs are employed so that the finite sampling bandwidth effects are removed.

  18. Experimental eavesdropping attack against Ekert's protocol based on Wigner's inequality

    SciTech Connect

    Bovino, F. A.; Colla, A. M.; Castagnoli, G.; Castelletto, S.; Degiovanni, I. P.; Rastello, M. L.

    2003-09-01

    We experimentally implemented an eavesdropping attack against the Ekert protocol for quantum key distribution based on the Wigner inequality. We demonstrate a serious lack of security of this protocol when the eavesdropper gains total control of the source. In addition we tested a modified Wigner inequality which should guarantee a secure quantum key distribution.

  19. A Secure Key Distribution System of Quantum Cryptography Based on the Coherent State

    NASA Technical Reports Server (NTRS)

    Guo, Guang-Can; Zhang, Xiao-Yu

    1996-01-01

    The cryptographic communication has a lot of important applications, particularly in the magnificent prospects of private communication. As one knows, the security of cryptographic channel depends crucially on the secrecy of the key. The Vernam cipher is the only cipher system which has guaranteed security. In that system the key must be as long as the message and most be used only once. Quantum cryptography is a method whereby key secrecy can be guaranteed by a physical law. So it is impossible, even in principle, to eavesdrop on such channels. Quantum cryptography has been developed in recent years. Up to now, many schemes of quantum cryptography have been proposed. Now one of the main problems in this field is how to increase transmission distance. In order to use quantum nature of light, up to now proposed schemes all use very dim light pulses. The average photon number is about 0.1. Because of the loss of the optical fiber, it is difficult for the quantum cryptography based on one photon level or on dim light to realize quantum key-distribution over long distance. A quantum key distribution based on coherent state is introduced in this paper. Here we discuss the feasibility and security of this scheme.

  20. An enhanced proposal on decoy-state measurement device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Zhang, Chun-Hui; Luo, Shunlong; Guo, Guang-Can

    2016-09-01

    By employing pulses involving three-intensity, we propose a scheme for the measurement device-independent quantum key distribution with heralded single-photon sources. We make a comparative study of this scheme with the standard three-intensity decoy-state scheme using weak coherent sources or heralded single-photon sources. The advantage of this scheme is illustrated through numerical simulations: It can approach very closely the asymptotic case of using an infinite number of decoy-states and exhibits excellent behavior in both the secure transmission distance and the final key generation rate.

  1. Robust shot-noise measurement for continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Kunz-Jacques, Sébastien; Jouguet, Paul

    2015-02-01

    We study a practical method to measure the shot noise in real time in continuous-variable quantum key distribution systems. The amount of secret key that can be extracted from the raw statistics depends strongly on this quantity since it affects in particular the computation of the excess noise (i.e., noise in excess of the shot noise) added by an eavesdropper on the quantum channel. Some powerful quantum hacking attacks relying on faking the estimated value of the shot noise to hide an intercept and resend strategy were proposed. Here, we provide experimental evidence that our method can defeat the saturation attack and the wavelength attack.

  2. Efficient heralding of photonic qubits with applications to device-independent quantum key distribution

    SciTech Connect

    Pitkanen, David; Ma Xiongfeng; Luetkenhaus, Norbert; Wickert, Ricardo; Loock, Peter van

    2011-08-15

    We present an efficient way of heralding photonic qubit signals using linear optics devices. First, we show that one can obtain asymptotically perfect heralding and unit success probability with growing resources. Second, we show that even using finite resources, we can improve qualitatively and quantitatively over earlier heralding results. In the latter scenario, we can obtain perfect heralded photonic qubits while maintaining a finite success probability. We demonstrate the advantage of our heralding scheme by predicting key rates for device-independent quantum key distribution, taking imperfections of sources and detectors into account.

  3. Intensity modulation and direct detection quantum key distribution based on quantum noise

    NASA Astrophysics Data System (ADS)

    Ikuta, Takuya; Inoue, Kyo

    2016-01-01

    Quantum key distribution (QKD) has been studied for achieving perfectly secure cryptography based on quantum mechanics. This paper presents a novel QKD scheme that is based on an intensity-modulation and direct-detection system. Two slightly intensity-modulated pulses are sent from a transmitter, and a receiver determines key bits from the directly detected intensity. We analyzed the system performance for two typical eavesdropping methods, a beam splitting attack and an intercept-resend attack, with an assumption that the transmitting and receiving devices are fully trusted. Our brief analysis showed that short- or middle-range QKD systems are achievable with a simple setup.

  4. Waveguide polarization decoding module for free-space quantum key distribution

    NASA Astrophysics Data System (ADS)

    Lu, Xuejun; Zhang, Xuping

    2008-01-01

    We present a promising integrated single photon receiver module based on an electro-optic waveguide polarization decoder and a TM pass polarizer. Linear and circular detection bases can be selected with a low control voltage of ~1.5V. A TM pass waveguide polarizer was fabricated with an extinction ratio of greater than 40dB. Low quantum key error rate can be expected due to the reduced optical background scattering noise using the index-matched integration approach. The proposed receiver module is promising for free space quantum key distribution.

  5. Experimental demonstration of an active phase randomization and monitor module for quantum key distribution

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Hai; Liang, Lin-Mei

    2012-08-01

    Phase randomization is a very important assumption in the BB84 quantum key distribution (QKD) system with weak coherent source; otherwise, eavesdropper may spy the final key. In this Letter, a stable and monitored active phase randomization scheme for the one-way and two-way QKD system is proposed and demonstrated in experiments. Furthermore, our scheme gives an easy way for Alice to monitor the degree of randomization in experiments. Therefore, we expect our scheme to become a standard part in future QKD systems due to its secure significance and feasibility.

  6. Long-distance continuous-variable quantum key distribution by controlling excess noise

    NASA Astrophysics Data System (ADS)

    Huang, Duan; Huang, Peng; Lin, Dakai; Zeng, Guihua

    2016-01-01

    Quantum cryptography founded on the laws of physics could revolutionize the way in which communication information is protected. Significant progresses in long-distance quantum key distribution based on discrete variables have led to the secure quantum communication in real-world conditions being available. However, the alternative approach implemented with continuous variables has not yet reached the secure distance beyond 100 km. Here, we overcome the previous range limitation by controlling system excess noise and report such a long distance continuous-variable quantum key distribution experiment. Our result paves the road to the large-scale secure quantum communication with continuous variables and serves as a stepping stone in the quest for quantum network.

  7. Long-distance continuous-variable quantum key distribution by controlling excess noise.

    PubMed

    Huang, Duan; Huang, Peng; Lin, Dakai; Zeng, Guihua

    2016-01-01

    Quantum cryptography founded on the laws of physics could revolutionize the way in which communication information is protected. Significant progresses in long-distance quantum key distribution based on discrete variables have led to the secure quantum communication in real-world conditions being available. However, the alternative approach implemented with continuous variables has not yet reached the secure distance beyond 100 km. Here, we overcome the previous range limitation by controlling system excess noise and report such a long distance continuous-variable quantum key distribution experiment. Our result paves the road to the large-scale secure quantum communication with continuous variables and serves as a stepping stone in the quest for quantum network. PMID:26758727

  8. Long-distance continuous-variable quantum key distribution by controlling excess noise

    PubMed Central

    Huang, Duan; Huang, Peng; Lin, Dakai; Zeng, Guihua

    2016-01-01

    Quantum cryptography founded on the laws of physics could revolutionize the way in which communication information is protected. Significant progresses in long-distance quantum key distribution based on discrete variables have led to the secure quantum communication in real-world conditions being available. However, the alternative approach implemented with continuous variables has not yet reached the secure distance beyond 100 km. Here, we overcome the previous range limitation by controlling system excess noise and report such a long distance continuous-variable quantum key distribution experiment. Our result paves the road to the large-scale secure quantum communication with continuous variables and serves as a stepping stone in the quest for quantum network. PMID:26758727

  9. Long-distance continuous-variable quantum key distribution by controlling excess noise.

    PubMed

    Huang, Duan; Huang, Peng; Lin, Dakai; Zeng, Guihua

    2016-01-13

    Quantum cryptography founded on the laws of physics could revolutionize the way in which communication information is protected. Significant progresses in long-distance quantum key distribution based on discrete variables have led to the secure quantum communication in real-world conditions being available. However, the alternative approach implemented with continuous variables has not yet reached the secure distance beyond 100 km. Here, we overcome the previous range limitation by controlling system excess noise and report such a long distance continuous-variable quantum key distribution experiment. Our result paves the road to the large-scale secure quantum communication with continuous variables and serves as a stepping stone in the quest for quantum network.

  10. History of study, updated checklist, distribution and key of scorpions (Arachnida: Scorpiones) from China

    PubMed Central

    DI, Zhi-Yong; YANG, Zi-Zhong; YIN, Shi-Jin; CAO, Zhi-Jian; LI, Wen-Xin

    2014-01-01

    This review describes the history of taxonomic research on scorpions and provides an updated checklist and key of the scorpions currently known in China. This checklist is based on a thorough review of the extant literatures on scorpion species whose presence has been confirmed in China through field expeditions and examination of scorpion collections, excepting a few members that have no clear distribution or are currently in doubt. Totally, the scorpion fauna of China consists of 53 species and subspecies belonging to 12 genera crossing five families, with 33 species (62.3%) and one genus being recorded as endemic. Additionally, identification key and the distribution of scorpions from China are provided. PMID:24470450

  11. Plug-and-play measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Choi, Yujun; Kwon, Osung; Woo, Minki; Oh, Kyunghwan; Han, Sang-Wook; Kim, Yong-Su; Moon, Sung

    2016-03-01

    Quantum key distribution (QKD) guarantees unconditional communication security based on the laws of quantum physics. However, practical QKD suffers from a number of quantum hackings due to the device imperfections. From the security standpoint, measurement-device-independent quantum key distribution (MDI-QKD) is in the limelight since it eliminates all the possible loopholes in detection. Due to active control units for mode matching between the photons from remote parties, however, the implementation of MDI-QKD is highly impractical. In this paper, we propose a method to resolve the mode matching problem while minimizing the use of active control units. By introducing the plug-and-play (P&P) concept into MDI-QKD, the indistinguishability in spectral and polarization modes between photons can naturally be guaranteed. We show the feasibility of P&P MDI-QKD with a proof-of-principle experiment.

  12. Heralded-qubit amplifiers for practical device-independent quantum key distribution

    SciTech Connect

    Curty, Marcos; Moroder, Tobias

    2011-07-15

    Device-independent quantum key distribution does not need a precise quantum mechanical model of employed devices to guarantee security. Despite its beauty, it is still a very challenging experimental task. We compare a recent proposal by Gisin et al.[Phys. Rev. Lett. 105, 070501 (2010)] to close the detection loophole problem with that of a simpler quantum relay based on entanglement swapping with linear optics. Our full-mode analysis for both schemes confirms that, in contrast to recent beliefs, the second scheme can indeed provide a positive key rate which is even considerably higher than that of the first alternative. The resulting key rates and required detection efficiencies of approximately 95% for both schemes, however, strongly depend on the underlying security proof.

  13. Improvement of fuzzy vault scheme for securing key distribution in body sensor network.

    PubMed

    Cao, Cun-Zhang; He, Chen-Guang; Bao, Shu-Di; Li, Ye

    2011-01-01

    The security of Body Sensor Network (BSN) has become a vital concern, as the massive development of BSN applications in healthcare. A family of biometrics based security methods has been proposed in the last several years, where the bio-information derived from physiological signals is used as entity identifiers (EIs) for multiple security purposes, including node recognition and keying material protection. Among them, a method named as Physiological Signal based Key Agreement (PSKA) was proposed to use frequency-domain information of physiological signals together with Fuzzy Vault scheme to secure key distribution in BSN. In this study, the PSKA scheme was firstly analyzed and evaluated for its practical usage in terms of fuzzy performance, the result of which indicates that the scheme is not as good as claimed. An improved scheme with the deployment of Fuzzy Vault and error correcting coding was then proposed, followed by simulation analysis. The results indicate that the improved scheme is able to improve the performance of Fuzzy Vault and thus the success rate of authentication or key distribution between genuine nodes of a BSN. PMID:22255109

  14. Experimental measurement-device-independent quantum key distribution with imperfect sources

    NASA Astrophysics Data System (ADS)

    Tang, Zhiyuan; Wei, Kejin; Bedroya, Olinka; Qian, Li; Lo, Hoi-Kwong

    2016-04-01

    Measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks, is the most promising solution to the security issues in practical quantum key distribution systems. Although several experimental demonstrations of MDI-QKD have been reported, they all make one crucial but not yet verified assumption, that is, there are no flaws in state preparation. Such an assumption is unrealistic and security loopholes remain in the source. Here we present a MDI-QKD experiment with the modulation error taken into consideration. By applying the loss-tolerant security proof by Tamaki et al. [Phys. Rev. A 90, 052314 (2014)], 10.1103/PhysRevA.90.052314, we distribute secure keys over fiber links up to 40 km with imperfect sources, which would not have been possible under previous security proofs. By simultaneously closing loopholes at the detectors and a critical loophole—modulation error in the source, our work shows the feasibility of secure QKD with practical imperfect devices.

  15. Buyer-seller watermarking protocol based on amplitude modulation and the El Gamal Public Key Crypto System

    NASA Astrophysics Data System (ADS)

    Memon, Nasir D.; Wong, Ping W.

    1999-04-01

    Digital watermarks have recently been proposed for the purposes of copy protection and copy deterrence for multimedia content. In copy deterrence, a content owner (seller) inserts a unique watermark into a copy of the content before it is sold to a buyer. If the buyer resells unauthorized copies of the watermarked content, then these copies can be traced to the unlawful reseller (original buyer) using a watermark detection algorithm. One problem with such an approach is that the original buyer whose watermark has been found on unauthorized copies can claim that the unauthorized copy was created or caused (for example, by a security breach) by the original seller. In this paper we propose an interactive buyer-seller protocol for invisible watermarking in which the seller does not get to know the exact watermarked copy that the buyer receives. Hence the seller cannot create copies of the original content containing the buyer's watermark. In cases where the seller finds an unauthorized copy, the seller can identify the buyer from a watermark in the unauthorized copy, and furthermore the seller can prove this fact to a third party using a dispute resolution protocol. This prevents the buyer from claiming that an unauthorized copy may have originated from the seller.

  16. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw

    NASA Astrophysics Data System (ADS)

    Tamaki, Kiyoshi; Lo, Hoi-Kwong; Fung, Chi-Hang Fred; Qi, Bing

    2012-04-01

    In this paper, we study the unconditional security of the so-called measurement-device-independent quantum key distribution (MDIQKD) with the basis-dependent flaw in the context of phase encoding schemes. We propose two schemes for the phase encoding: The first one employs a phase locking technique with the use of non-phase-randomized coherent pulses, and the second one uses conversion of standard Bennett-Brassard 1984 (BB84) phase encoding pulses into polarization modes. We prove the unconditional security of these schemes and we also simulate the key generation rate based on simple device models that accommodate imperfections. Our simulation results show the feasibility of these schemes with current technologies and highlight the importance of the state preparation with good fidelity between the density matrices in the two bases. Since the basis-dependent flaw is a problem not only for MDIQKD but also for standard quantum key distribution (QKD), our work highlights the importance of an accurate signal source in practical QKD systems.

  17. Quantum key distribution for security guarantees over QoS-driven 3D satellite networks

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Zhang, Xi; Chen, Genshe; Pham, Khanh; Blasch, Erik

    2014-06-01

    In recent years, quantum-based communication is emerging as a new technique for ensuring secured communications because it can guarantee absolute security between two different remote entities. Quantum communication performs the transmission and exchange of quantum information among distant nodes within a network. Quantum key distribution (QKD) is a methodology for generating and distributing random encryption keys using the principles of quantum physics. In this paper, we investigate the techniques on how to efficiently use QKD in 3D satellite networks and propose an effective method to overcome its communications-distance limitations. In order to implement secured and reliable communications over wireless satellite links, we develop a free-space quantum channel model in satellite communication networks. To enlarge the communications distances over 3D satellite networks, we propose to employ the intermediate nodes to relay the unconditional keys and guarantee the Quantum Bit Error Rate (QBER) for security requirement over 3D satellite networks. We also propose the communication model for QKD security-Quality of Service (QoS) guarantee and an adaptive cooperative routing selection scheme to optimize the throughput performance of QKD-based satellite communications networks. The obtained simulation results verify our proposed schemes.

  18. A Narrow-Linewidth Atomic Line Filter for Free Space Quantum Key Distribution under Daytime Atmospheric Conditions

    NASA Astrophysics Data System (ADS)

    Brown, Justin; Woolf, David; Hensley, Joel

    2016-05-01

    Quantum key distribution can provide secure optical data links using the established BB84 protocol, though solar backgrounds severely limit the performance through free space. Several approaches to reduce the solar background include time-gating the photon signal, limiting the field of view through geometrical design of the optical system, and spectral rejection using interference filters. Despite optimization of these parameters, the solar background continues to dominate under daytime atmospheric conditions. We demonstrate an improved spectral filter by replacing the interference filter (Δν ~ 50 GHz) with an atomic line filter (Δν ~ 1 GHz) based on optical rotation of linearly polarized light through a warm Rb vapor. By controlling the magnetic field and the optical depth of the vapor, a spectrally narrow region can be transmitted between crossed polarizers. We find that the transmission is more complex than a single peak and evaluate peak transmission as well as a ratio of peak transmission to average transmission of the local spectrum. We compare filters containing a natural abundance of Rb with those containing isotopically pure 87 Rb and 85 Rb. A filter providing > 95 % transmission and Δν ~ 1.1 GHz is achieved.

  19. Spontaneous Parametric Down-Conversion to Create a Quantum Key Distribution System

    NASA Astrophysics Data System (ADS)

    Salgado, Erik; Aragoneses, Andres, , Dr.

    Quantum Key Distribution (QKD) aims to share a secret key between two parties in a secure manner. It provides security benefits over classical communication systems. We have constructed a QKD system that uses quantum entanglement to ensure security against eavesdroppers. We use polarization to encode the binary information of an encryption key. This key is secure due to the quantum properties of light. We use the process of spontaneous parametric down-conversion (SPDC) to create entangled photon pairs. Experimentally, we fire pump (laser) photons through a nonlinear crystal, where there exists a probability of them being annihilated and spontaneously generating two entangled photons of lower energies. A coincidence measurement between two entangled photons indicates the successful transfer of one bit of information, and a coincidence measurement between two disparate photons indicates an error in data transfer. We aim to optimize data transfer rate and reduce error rate. The project is still in development and we look forward to collecting data in the near future.

  20. High-capacity quantum key distribution via hyperentangled degrees of freedom

    NASA Astrophysics Data System (ADS)

    Simon, David S.; Sergienko, Alexander V.

    2014-06-01

    Quantum key distribution (QKD) has long been a promising area for the application of quantum effects in solving real-world problems. However, two major obstacles have stood in the way of its widespread application: low secure key generation rates and short achievable operating distances. In this paper, a new physical mechanism for dealing with the first of these problems is proposed: the interplay between different degrees of freedom in a hyperentangled system (parametric down-conversion) is used to increase the Hilbert space dimension available for key generation while maintaining security. Polarization-based Bell tests provide security checking, while orbital angular momentum (OAM) and total angular momentum (TAM) provide a higher key generation rate. Whether to measure TAM or OAM is decided randomly in each trial. The concurrent noncommutativity of TAM with OAM and polarization provides the physical basis for quantum security. TAM measurements link polarization to OAM, so that if the legitimate participants measure OAM while the eavesdropper measures TAM (or vice-versa), then polarization entanglement is lost, revealing the eavesdropper. In contrast to other OAM-based QKD methods, complex active switching between OAM bases is not required; instead, passive switching by beam splitters combined with much simpler active switching between polarization bases makes implementation at high OAM more practical.

  1. High Speed Quantum Key Distribution Over Optical Fiber Network System1

    PubMed Central

    Ma, Lijun; Mink, Alan; Tang, Xiao

    2009-01-01

    The National Institute of Standards and Technology (NIST) has developed a number of complete fiber-based high-speed quantum key distribution (QKD) systems that includes an 850 nm QKD system for a local area network (LAN), a 1310 nm QKD system for a metropolitan area network (MAN), and a 3-node quantum network controlled by a network manager. This paper discusses the key techniques used to implement these systems, which include polarization recovery, noise reduction, frequency up-conversion detection based on a periodically polled lithium nitrate (PPLN) waveguide, custom high-speed data handling boards and quantum network management. Using our quantum network, a QKD secured video surveillance application has been demonstrated. Our intention is to show the feasibility and sophistication of QKD systems based on current technology. PMID:27504218

  2. Measurement-Device-Independent Quantum Key Distribution over Untrustful Metropolitan Network

    NASA Astrophysics Data System (ADS)

    Tang, Yan-Lin; Yin, Hua-Lei; Zhao, Qi; Liu, Hui; Sun, Xiang-Xiang; Huang, Ming-Qi; Zhang, Wei-Jun; Chen, Si-Jing; Zhang, Lu; You, Li-Xing; Wang, Zhen; Liu, Yang; Lu, Chao-Yang; Jiang, Xiao; Ma, Xiongfeng; Zhang, Qiang; Chen, Teng-Yun; Pan, Jian-Wei

    2016-01-01

    Quantum cryptography holds the promise to establish an information-theoretically secure global network. All field tests of metropolitan-scale quantum networks to date are based on trusted relays. The security critically relies on the accountability of the trusted relays, which will break down if the relay is dishonest or compromised. Here, we construct a measurement-device-independent quantum key distribution (MDIQKD) network in a star topology over a 200-square-kilometer metropolitan area, which is secure against untrustful relays and against all detection attacks. In the field test, our system continuously runs through one week with a secure key rate 10 times larger than previous results. Our results demonstrate that the MDIQKD network, combining the best of both worlds—security and practicality, constitutes an appealing solution to secure metropolitan communications.

  3. Multiplexing scheme for simplified entanglement-based large-alphabet quantum key distribution

    NASA Astrophysics Data System (ADS)

    Dada, Adetunmise C.

    2015-05-01

    We propose a practical quantum cryptographic scheme which combines high information capacity, such as provided by high-dimensional quantum entanglement, with the simplicity of a two-dimensional Clauser-Horne-Shimony-Holt (CHSH) Bell test for security verification. By applying a state combining entanglement in a two-dimensional degree of freedom, such as photon polarization, with high-dimensional correlations in another degree of freedom, such as photon orbital angular momentum (OAM) or path, the scheme provides a considerably simplified route towards security verification in quantum key distribution (QKD) aimed at exploiting high-dimensional quantum systems for increased secure key rates. It also benefits from security against collective attacks and is feasible using currently available technologies.

  4. Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Fung, Chi-Hang F.; Qi, Bing; Chen, Christine; Lo, Hoi-Kwong

    2009-03-01

    Quantum key distribution (QKD) systems can send signals over more than 100 km standard optical fiber and are widely believed to be secure. Here, we show experimentally for the first time a technologically feasible attack, namely the time-shift attack, against a commercial QKD system. Our result shows that, contrary to popular belief, an eavesdropper, Eve, has a non-negligible probability (˜4%) to break the security of the system. Eve's success is due to the well-known detection efficiency loophole in the experimental testing of Bell inequalities. Therefore, the detection efficiency loophole plays a key role not only in fundamental physics, but also in technological applications such as QKD. Our work is published in [1]. [4pt] [1] Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, Phys. Rev. A, 78:042333 (2008).

  5. Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Fung, Chi-Hang Fred; Qi, Bing; Chen, Christine; Lo, Hoi-Kwong

    2008-10-01

    Quantum-key-distribution (QKD) systems can send quantum signals over more than 100km standard optical fiber and are widely believed to be secure. Here, we show experimentally a technologically feasible attack—namely, the time-shift attack—against a commercial QKD system. Our result shows that, contrary to popular belief, an eavesdropper, Eve, has a non-negligible probability (˜4%) to break the security of the system. Eve’s success is due to the well-known detection efficiency loophole in the experimental testing of Bell’s inequalities. Therefore, the detection efficiency loophole plays a key role not only in fundamental physics, but also in technological applications such as QKD systems.

  6. The enhanced measurement-device-independent quantum key distribution with two-intensity decoy states

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Rong; Zhu, Feng; Zhou, Xing-Yu; Wang, Qin

    2016-09-01

    We put forward a new scheme for implementing the measurement-device-independent quantum key distribution (QKD) with weak coherent source, while using only two different intensities. In the new scheme, we insert a beam splitter and a local detector at both Alice's and Bob's side, and then all the triggering and non-triggering signals could be employed to process parameter estimations, resulting in very precise estimations for the two-single-photon contributions. Besides, we compare its behavior with two other often used methods, i.e., the conventional standard three-intensity decoy-state measurement-device-independent QKD and the passive measurement-device-independent QKD. Through numerical simulations, we demonstrate that our new approach can exhibit outstanding characteristics not only in the secure transmission distance, but also in the final key generation rate.

  7. Long distance measurement-device-independent quantum key distribution with entangled photon sources

    SciTech Connect

    Xu, Feihu; Qi, Bing; Liao, Zhongfa; Lo, Hoi-Kwong

    2013-08-05

    We present a feasible method that can make quantum key distribution (QKD), both ultra-long-distance and immune, to all attacks in the detection system. This method is called measurement-device-independent QKD (MDI-QKD) with entangled photon sources in the middle. By proposing a model and simulating a QKD experiment, we find that MDI-QKD with one entangled photon source can tolerate 77 dB loss (367 km standard fiber) in the asymptotic limit and 60 dB loss (286 km standard fiber) in the finite-key case with state-of-the-art detectors. Our general model can also be applied to other non-QKD experiments involving entanglement and Bell state measurements.

  8. The theory research of multi-user quantum access network with Measurement Device Independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Ji, Yi-Ming; Li, Yun-Xia; Shi, Lei; Meng, Wen; Cui, Shu-Min; Xu, Zhen-Yu

    2015-10-01

    Quantum access network can't guarantee the absolute security of multi-user detector and eavesdropper can get access to key information through time-shift attack and other ways. Measurement-device-independent quantum key distribution is immune from all the detection attacks, and accomplishes the safe sharing of quantum key. In this paper, that Measurement-device-independent quantum key distribution is used in the application of multi-user quantum access to the network is on the research. By adopting time-division multiplexing technology to achieve the sharing of multiuser detector, the system structure is simplified and the security of quantum key sharing is acquired.

  9. Wavelength-division-multiplexed InGaAs/InP avalanched photodiodes for quantum key distributions

    NASA Astrophysics Data System (ADS)

    Lee, Moon Hyeok; Ha, Changkyun; Jeong, Heung-Sun; Kim, Dong Wook; Lee, Seoung Hun; Lee, Min Hee; Kim, Kyong Hon

    2016-02-01

    We demonstrate improved single photon detection efficiencies of InGaAs/InP avalanche photodiodes (APDs) in a wavelength-division-multiplexed (WDM) scheme for high-capacity plug-and-play-type two-way quantum key distributions (QKDs). Single-photon detectors (SPDs) combined in the WDM APD scheme can be used to overcome the detection speed limit of a single SPD which is caused mainly by the afterpulse effect. The multiple SPDs combined in the parallel WDM scheme can increase the single photon detection capacity, although additional optical losses resulted from the WDM MUX and deMUX devices induce limited increases.

  10. Attacking quantum key distribution with single-photon two-qubit quantum logic

    SciTech Connect

    Shapiro, Jeffrey H.; Wong, Franco N. C.

    2006-01-15

    The Fuchs-Peres-Brandt (FPB) probe realizes the most powerful individual attack on Bennett-Brassard 1984 quantum key distribution (BB84 QKD) by means of a single controlled-NOT (CNOT) gate. This paper describes a complete physical simulation of the FPB-probe attack on polarization-based BB84 QKD using a deterministic CNOT constructed from single-photon two-qubit quantum logic. Adding polarization-preserving quantum nondemolition measurements of photon number to this configuration converts the physical simulation into a true deterministic realization of the FPB attack.

  11. Orthogonal frequency division multiplexed quantum key distribution in the presence of Raman noise

    NASA Astrophysics Data System (ADS)

    Bahrani, Sima; Razavi, Mohsen; Salehi, Jawad A.

    2016-04-01

    In this paper, we investigate the performance of orthogonal frequency division multiplexed quantum key distribution (OFDM-QKD) in an integrated quantum-classical wavelength-division-multiplexing system. The presence of an intense classical signal alongside the quantum one generates Raman background noise. Noise reduction techniques should, then, be carried out at the receiver to suppress this crosstalk noise. In this work, we show that OFDM-QKD enables efficient filtering, in time and frequency domains, making it an attractive solution for the high-rate links at the core of quantum-classical networks.

  12. Upconversion-based receivers for quantum hacking-resistant quantum key distribution

    NASA Astrophysics Data System (ADS)

    Jain, Nitin; Kanter, Gregory S.

    2016-07-01

    We propose a novel upconversion (sum frequency generation)-based quantum-optical system design that can be employed as a receiver (Bob) in practical quantum key distribution systems. The pump governing the upconversion process is produced and utilized inside the physical receiver, making its access or control unrealistic for an external adversary (Eve). This pump facilitates several properties which permit Bob to define and control the modes that can participate in the quantum measurement. Furthermore, by manipulating and monitoring the characteristics of the pump pulses, Bob can detect a wide range of quantum hacking attacks launched by Eve.

  13. A Note on an Improved Self-Healing Group Key Distribution Scheme

    PubMed Central

    Guo, Hua; Zheng, Yandong; Wang, Biao; Li, Zhoujun

    2015-01-01

    In 2014, Chen et al. proposed a one-way hash self-healing group key distribution scheme for resource-constrained wireless networks in the journal of Sensors (14(14):24358-24380, doi: 10.3390/s141224358). They asserted that their Scheme 2 achieves mt-revocation capability, mt-wise forward secrecy, any-wise backward secrecy and has mt-wise collusion attack resistance capability. Unfortunately, this paper pointed out that their scheme does not satisfy the forward security, mt-revocation capability and mt-wise collusion attack resistance capability. PMID:26426018

  14. Room temperature single-photon detectors for high bit rate quantum key distribution

    SciTech Connect

    Comandar, L. C.; Patel, K. A.; Fröhlich, B. Lucamarini, M.; Sharpe, A. W.; Dynes, J. F.; Yuan, Z. L.; Shields, A. J.; Penty, R. V.

    2014-01-13

    We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50 km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances.

  15. Byzantine-fault tolerant self-stabilizing protocol for distributed clock synchronization systems

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R. (Inventor)

    2010-01-01

    A rapid Byzantine self-stabilizing clock synchronization protocol that self-stabilizes from any state, tolerates bursts of transient failures, and deterministically converges within a linear convergence time with respect to the self-stabilization period. Upon self-stabilization, all good clocks proceed synchronously. The Byzantine self-stabilizing clock synchronization protocol does not rely on any assumptions about the initial state of the clocks. Furthermore, there is neither a central clock nor an externally generated pulse system. The protocol converges deterministically, is scalable, and self-stabilizes in a short amount of time. The convergence time is linear with respect to the self-stabilization period.

  16. Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations.

    PubMed

    Scarani, Valerio; Acín, Antonio; Ribordy, Grégoire; Gisin, Nicolas

    2004-02-01

    We introduce a new class of quantum key distribution protocols, tailored to be robust against photon number splitting (PNS) attacks. We study one of these protocols, which differs from the original protocol by Bennett and Brassard (BB84) only in the classical sifting procedure. This protocol is provably better than BB84 against PNS attacks at zero error. PMID:14995344

  17. Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations.

    PubMed

    Scarani, Valerio; Acín, Antonio; Ribordy, Grégoire; Gisin, Nicolas

    2004-02-01

    We introduce a new class of quantum key distribution protocols, tailored to be robust against photon number splitting (PNS) attacks. We study one of these protocols, which differs from the original protocol by Bennett and Brassard (BB84) only in the classical sifting procedure. This protocol is provably better than BB84 against PNS attacks at zero error.

  18. Cycle time properties of the FDDI Token Ring Protocol. [Fiber Distributed Data Interface

    NASA Technical Reports Server (NTRS)

    Sevcik, Kenneth C.; Johnson, Marjory J.

    1987-01-01

    The FDDI Token Ring Protocol controls communication over fiber optic rings with transmission rates in the range of 100 megabits per second. It is intended to give guaranteed response to time-critical messages by using a 'timed token' protocol, in which noncritical messages may be transmitted only if recent movement of the token among stations has been sufficiently fast relative to a 'target' token rotation line (TTRT). In this paper, two important properties of the protocol are proved. The first is that the average token cycle time is bounded above by the TTRT, and the second is that the maximum token cycle time is at most twice the TTRT. Each property is treated first under the assumption that all overheads are negligible, and second with certain sources of overhead taken into account explicitly. It is found that the proposed standard protocol can be improved for situations of practical interest by a slight modification.

  19. Design of high-encryption wireless network with distributed host management and dynamic key generation

    NASA Astrophysics Data System (ADS)

    Weber, Robert E.

    2001-11-01

    The widespread deployment of wireless networks using the 802.11(b) standard across the country presents a rebirth of age-old network security problems along with a number of new ones. The wireless network, much like a shared network using broadcast devices such as network hubs, travels across a shared medium. Because of the structure any member of the wireless network can observe and intercept data being sent or received by other members. Unlike 'wired' networks there is no means to isolate traffic from other network members. The second security issue for wireless networks is the transmission of data 'clear text' so that if it is intercepted it can be read and used. Wireless networks bring about another problem that compounds the first two concerns that all shared networks must deal with, that is, anyone within the transmission range of the wireless network can join. No longer must a person enter a building to infiltrate a business network, they need only park across the street. The first implementation of network security for wireless was the WEP (Wired Equivalent Privacy) protocol. WEP attempts to make a wireless network at least as secure as a switched 'wired' network. The WEP protocol intends to secure the traffic integrity with the use of a RC4 cipher and a CSC-32 checksum. In the passphrase used for the RC4 encryption is also used as a form of access control. There are several critical faults in the WEP implementation that allow both passive data acquisition and active data modification. At 11 Mbit, capturing approximately 5 hours of clear text data can guarantee the capture of two packets with the same initialization vector (IV). Once the packets are used to get the clear text packet, that information can be used to decrypt any packets with the same IV. Since the IV's are only 24 bits the decryption of entire network becomes only an exercise in patience, with a 24 hours of continuous monitoring the WEP encryption can be defeated completely and a simple

  20. The NanoQEY mission: ground to space quantum key and entanglement distribution using a nanosatellite

    NASA Astrophysics Data System (ADS)

    Jennewein, T.; Grant, C.; Choi, E.; Pugh, C.; Holloway, C.; Bourgoin, JP.; Hakima, H.; Higgins, B.; Zee, R.

    2014-10-01

    The NanoQEY (Nano Quantum Encryption) Satellite is a proposed nanosatellite mission concept developed by the Institute for Quantum Computing (IQC) at the University of Waterloo and the Space Flight Laboratory (SFL) at the University of Toronto Institute for Aerospace Studies (UTIAS) that would demonstrate long-distance quantum key distribution (QKD) between two distant ground stations on Earth using an optical uplink. SFL's existing and proven NEMO (Nanosatellite for Earth Monitoring and Observation) bus forms the baseline spacecraft for NanoQEY, with a QKD receiver payload designed by IQC. The primary objective of the NanoQEY mission would be to successfully distribute at least 10 kbit of secure key between two optical ground stations, where the satellite acts as a trusted node. The secondary mission objective would be to perform Bell tests for entangled photons between ground and space. We designed a compact QKD receiver payload that would be compatible with the mass, volume, power and performance constraints of a low-cost nanosatellite platform. The low-cost rapid schedule "microspace" approach of UTIAS/SFL would allow for the proposed NanoQEY mission to be developed in 2.5 years from project kick-off to launch of the spacecraft, followed by a one-year on-orbit mission.

  1. Key Factors Controlling the Growth of Biological Soil Crusts: Towards a Protocol to Produce Biocrusts in Greenhouse Facilities

    NASA Astrophysics Data System (ADS)

    Velasco Ayuso, Sergio; María Giraldo Silva, Ana; Nelson, Corey; Barger, Nichole; Antoninka, Anita; Bowker, Matthew; Garcia-Pichel, Ferran

    2016-04-01

    Biological soil crusts (= biocrusts) are topsoil communities comprise of, but not limited to, cyanobacteria, algae, lichens, and mosses that grow intimately associated with soil particles in drylands. Biocrusts have central ecological roles in these areas as sources of carbon and nutrients, and efficiently retain water and prevent soil erosion, which improves soil structure and promotes soil fertility. However, human activities, such as cattle grazing, hiking or military training, are rapidly striking biocrusts. Although it is well known that the inoculation with cyanobacteria or lichens can enhance the recovery of biocrusts in degraded soils, little is known about the factors that control their growth rates. Using soil and inocula from four different sites located in one cold desert (Utah) and in one hot desert (New Mexico), we performed a fractional factorial experiment involving seven factors (water, light, P, N, calcium carbonate, trace metals and type of inoculum) to screen their effects on the growth of biocrusts. After four months, we measured the concentration of chlorophyll a, and we discovered that water, light and P, N or P+N were the most important factors controlling the growth of biocrusts. In the experimental treatments involving these three factors we measured a similar concentration of chlorophyll a (or even higher) to this found in the field locations. Amplification of the 16S rRNA gene segment using universal bacteria primers revealed a microbial community composition in the biocrusts grown that closely corresponds to initial measurements made on inocula. In summary, based on our success in obtaining biocrust biomass from natural communities in greenhouse facilities, without significantly changing its community composition at the phylum and cyanobacterial level, we are paving the road to propose a protocol to produce a high quality-nursed inoculum aiming to assist restoration of arid and semi-arid ecosystems affected by large-scale disturbances.

  2. Weak-coherent-state-based time-frequency quantum key distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Yequn; Djordjevic, Ivan B.; Neifeld, Mark A.

    2015-11-01

    We study large-alphabet quantum key distribution (QKD) based on the use of weak-coherent states and the time-frequency uncertainty relation. The large alphabet is achieved by dividing time and spectrum into M bins resulting in a frame similar to traditional pulse-position modulation (in time domain). However, the non-uniform occurrence of a photon prepared in a time/frequency bin creates the space for eavesdropping. By analysis, we show that a new intercept-resend attack strategy exists, which is stronger than that has been reported in the literature and hence the secret key rate of time-frequency QKD (TF-QKD) can be more tightly bounded. We then analyse the secret key rates of TF-QKD under various practical issues, such as channel loss, background noise, jitter and atmospheric turbulence in order to better understand the applicability of TF-QKD. Further, we discuss the information reconciliation for TF-QKD. Specifically, we investigate the layered coding scheme for TF-QKD based on quasi-cyclic low-density parity-check codes against jitter and atmospheric turbulence. By simulation, we demonstrate that information reconciliation can be efficiently achieved.

  3. Passive decoy-state quantum key distribution with practical light sources

    SciTech Connect

    Curty, Marcos; Ma, Xiongfeng; Qi, Bing; Moroder, Tobias

    2010-02-15

    Decoy states have been proven to be a very useful method for significantly enhancing the performance of quantum key distribution systems with practical light sources. Although active modulation of the intensity of the laser pulses is an effective way of preparing decoy states in principle, in practice passive preparation might be desirable in some scenarios. Typical passive schemes involve parametric down-conversion. More recently, it has been shown that phase-randomized weak coherent pulses (WCP) can also be used for the same purpose [M. Curty et al., Opt. Lett. 34, 3238 (2009).] This proposal requires only linear optics together with a simple threshold photon detector, which shows the practical feasibility of the method. Most importantly, the resulting secret key rate is comparable to the one delivered by an active decoy-state setup with an infinite number of decoy settings. In this article we extend these results, now showing specifically the analysis for other practical scenarios with different light sources and photodetectors. In particular, we consider sources emitting thermal states, phase-randomized WCP, and strong coherent light in combination with several types of photodetectors, like, for instance, threshold photon detectors, photon number resolving detectors, and classical photodetectors. Our analysis includes as well the effect that detection inefficiencies and noise in the form of dark counts shown by current threshold detectors might have on the final secret key rate. Moreover, we provide estimations on the effects that statistical fluctuations due to a finite data size can have in practical implementations.

  4. Network structure and the role of key players in a translational cancer research network: a study protocol

    PubMed Central

    Cunningham, Frances C; Braithwaite, Jeffrey

    2012-01-01

    Introduction Translational research networks are a deliberate strategy to bridge the gulf between biomedical research and clinical practice through interdisciplinary collaboration, supportive funding and infrastructure. The social network approach examines how the structure of the network and players who hold important positions within it constrain or enable function. This information can be used to guide network management and optimise its operations. The aim of this study was to describe the structure of a translational cancer research network (TCRN) in Australia over its first year, identify the key players within the network and explore these players' opportunities and constraints in maximising important network collaborations. Methods and analysis This study deploys a mixed-method longitudinal design using social network analysis augmented by interviews and review of TCRN documents. The study will use network documents and interviews with governing body members to explore the broader context into which the network is embedded as well as the perceptions and expectations of members. Of particular interest are the attitudes and perceptions of clinicians compared with those of researchers. A co-authorship network will be constructed of TCRN members using journal and citation databases to assess the success of past pre-network collaborations. Two whole network social network surveys will be administered 12 months apart and parameters such as density, clustering, centrality and betweenness centrality computed and compared using UCINET and Netdraw. Key players will be identified and interviewed to understand the specific activities, barriers and enablers they face in that role. Ethics and dissemination Ethics approvals were obtained from the University of New South Wales, South Eastern Sydney Northern Sector Local Health Network and Calvary Health Care Sydney. Results will be discussed with members of the TCRN, submitted to relevant journals and presented as oral

  5. Vertical distribution and diel patterns of zooplankton abundance and biomass at Conch Reef, Florida Keys (USA).

    PubMed

    Heidelberg, Karla B; O'Neil, Keri L; Bythell, John C; Sebens, Kenneth P

    2010-01-01

    Zooplankton play an important role in the trophic dynamics of coral reef ecosystems. Detailed vertical and temporal distribution and biomass of zooplankton were evaluated at four heights off the bottom and at six times throughout the diel cycle over a coral reef in the Florida Keys (USA). Zooplankton abundance averaged 4396 +/- 1949 SD individuals m(-3), but temporal and spatial distributions varied for individual zooplankton taxa by time of day and by height off the bottom. Copepods comprised 93-96% of the abundance in the samples. Taxon-based zooplankton CHN values paired with abundance data were used to estimate biomass. Average daily biomass ranged from 3.1 to 21.4 mg C m(-3) and differed by both height off the bottom and by time of day. While copepods were the numerically dominant organisms, their contribution to biomass was only 35% of the total zooplankton biomass. Our findings provide important support for the new emerging paradigm of how zooplankton are distributed over reefs.

  6. Vertical distribution and diel patterns of zooplankton abundance and biomass at Conch Reef, Florida Keys (USA).

    PubMed

    Heidelberg, Karla B; O'Neil, Keri L; Bythell, John C; Sebens, Kenneth P

    2010-01-01

    Zooplankton play an important role in the trophic dynamics of coral reef ecosystems. Detailed vertical and temporal distribution and biomass of zooplankton were evaluated at four heights off the bottom and at six times throughout the diel cycle over a coral reef in the Florida Keys (USA). Zooplankton abundance averaged 4396 +/- 1949 SD individuals m(-3), but temporal and spatial distributions varied for individual zooplankton taxa by time of day and by height off the bottom. Copepods comprised 93-96% of the abundance in the samples. Taxon-based zooplankton CHN values paired with abundance data were used to estimate biomass. Average daily biomass ranged from 3.1 to 21.4 mg C m(-3) and differed by both height off the bottom and by time of day. While copepods were the numerically dominant organisms, their contribution to biomass was only 35% of the total zooplankton biomass. Our findings provide important support for the new emerging paradigm of how zooplankton are distributed over reefs. PMID:20046854

  7. Experimental demonstration of counteracting imperfect sources in a practical one-way quantum-key-distribution system

    SciTech Connect

    Xu Fangxing; Zhang Yang; Zhou Zheng; Chen Wei; Han Zhengfu; Guo Guangcan

    2009-12-15

    In a practical quantum-key-distribution system, photon source and small operational errors cause intensity fluctuations inevitably, which cannot be ignored for a precise estimation on the single-photon fraction. In this paper, we demonstrated an efficient three-intensity decoy method scheme on top of the one-way Faraday-Michelson Interferometric system, combining an active monitoring with existing commercial apparatus to inspect fluctuations instantly. With this faithful detection for the upper bound of the fluctuation, the secure quantum key distribution is unconditionally realized with whatever type of intensity errors, which declares the utility and potential of decoy theory and active monitoring for quantum key distribution in practical use.

  8. Practical continuous-variable quantum key distribution without finite sampling bandwidth effects.

    PubMed

    Li, Huasheng; Wang, Chao; Huang, Peng; Huang, Duan; Wang, Tao; Zeng, Guihua

    2016-09-01

    In a practical continuous-variable quantum key distribution system, finite sampling bandwidth of the employed analog-to-digital converter at the receiver's side may lead to inaccurate results of pulse peak sampling. Then, errors in the parameters estimation resulted. Subsequently, the system performance decreases and security loopholes are exposed to eavesdroppers. In this paper, we propose a novel data acquisition scheme which consists of two parts, i.e., a dynamic delay adjusting module and a statistical power feedback-control algorithm. The proposed scheme may improve dramatically the data acquisition precision of pulse peak sampling and remove the finite sampling bandwidth effects. Moreover, the optimal peak sampling position of a pulse signal can be dynamically calibrated through monitoring the change of the statistical power of the sampled data in the proposed scheme. This helps to resist against some practical attacks, such as the well-known local oscillator calibration attack. PMID:27607653

  9. Attacks on practical quantum key distribution systems (and how to prevent them)

    NASA Astrophysics Data System (ADS)

    Jain, Nitin; Stiller, Birgit; Khan, Imran; Elser, Dominique; Marquardt, Christoph; Leuchs, Gerd

    2016-07-01

    With the emergence of an information society, the idea of protecting sensitive data is steadily gaining importance. Conventional encryption methods may not be sufficient to guarantee data protection in the future. Quantum key distribution (QKD) is an emerging technology that exploits fundamental physical properties to guarantee perfect security in theory. However, it is not easy to ensure in practice that the implementations of QKD systems are exactly in line with the theoretical specifications. Such theory-practice deviations can open loopholes and compromise security. Several such loopholes have been discovered and investigated in the last decade. These activities have motivated the proposal and implementation of appropriate countermeasures, thereby preventing future attacks and enhancing the practical security of QKD. This article introduces the so-called field of quantum hacking by summarising a variety of attacks and their prevention mechanisms.

  10. Protura of Italy, with a key to species and their distribution

    PubMed Central

    Galli, Loris; Capurro, Matteo; Torti, Carlo

    2011-01-01

    Abstract The Italian Protura were studied basing on 5103 specimens from 198 sampling areas, along with bibliographic data from 49 collecting sites. 17 out of the 20 Italian regions are covered. As a result, 40 species have been identified (belonging to 8 genera and 4 families), 6 of which are new records for the Italian fauna. A key to the Italian species is reported, followed by a series of distribution maps and brief remarks for some of them. A preliminary biogeographical overview allowed us to delineate the chorological categories of these species, 10 of which are actually known only in Italy. The comparison with the species richness known for some best studied Central and Eastern European Countries leads us to speculate that widening our research, Italian Protura check-list will be much implemented. PMID:22207788

  11. Practical continuous-variable quantum key distribution without finite sampling bandwidth effects.

    PubMed

    Li, Huasheng; Wang, Chao; Huang, Peng; Huang, Duan; Wang, Tao; Zeng, Guihua

    2016-09-01

    In a practical continuous-variable quantum key distribution system, finite sampling bandwidth of the employed analog-to-digital converter at the receiver's side may lead to inaccurate results of pulse peak sampling. Then, errors in the parameters estimation resulted. Subsequently, the system performance decreases and security loopholes are exposed to eavesdroppers. In this paper, we propose a novel data acquisition scheme which consists of two parts, i.e., a dynamic delay adjusting module and a statistical power feedback-control algorithm. The proposed scheme may improve dramatically the data acquisition precision of pulse peak sampling and remove the finite sampling bandwidth effects. Moreover, the optimal peak sampling position of a pulse signal can be dynamically calibrated through monitoring the change of the statistical power of the sampled data in the proposed scheme. This helps to resist against some practical attacks, such as the well-known local oscillator calibration attack.

  12. Practical Security Bounds Against the Trojan-Horse Attack in Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Lucamarini, M.; Choi, I.; Ward, M. B.; Dynes, J. F.; Yuan, Z. L.; Shields, A. J.

    2015-07-01

    In the quantum version of a Trojan-horse attack, photons are injected into the optical modules of a quantum key distribution system in an attempt to read information direct from the encoding devices. To stop the Trojan photons, the use of passive optical components has been suggested. However, to date, there is no quantitative bound that specifies such components in relation to the security of the system. Here, we turn the Trojan-horse attack into an information leakage problem. This allows us to quantify the system security and relate it to the specification of the optical elements. The analysis is supported by the experimental characterization, within the operation regime, of reflectivity and transmission of the optical components most relevant to security.

  13. Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Tang, Guang-Zhao; Sun, Shi-Hai; Xu, Feihu; Chen, Huan; Li, Chun-Yan; Liang, Lin-Mei

    2016-09-01

    Measurement-device-independent quantum key distribution (MDI-QKD) is immune to all security loopholes on detection. Previous experiments on MDI-QKD required spatially separated signal lasers and complicated stabilization systems. In this paper, we perform a proof-of-principle experimental demonstration of plug-and-play MDI-QKD over an asymmetric channel setting with a single signal laser in which the whole system is automatically stabilized in spectrum, polarization, arrival time, and phase reference. Both the signal laser and the single-photon detectors are in the possession of a common server. A passive timing-calibration technique is applied to ensure the precise and stable overlap of signal pulses. The results pave the way for the realization of a quantum network in which the users only need the encoding devices.

  14. Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system

    SciTech Connect

    Sun Shihai; Jiang Musheng; Liang Linmei

    2011-06-15

    The Faraday mirror (FM) plays a very important role in maintaining the stability of two-way plug-and-play quantum key distribution (QKD) systems. However, the practical FM is imperfect, which will not only introduce an additional quantum bit error rate (QBER) but also leave a loophole for Eve to spy the secret key. In this paper we propose a passive Faraday mirror attack in two-way QKD system based on the imperfection of FM. Our analysis shows that if the FM is imperfect, the dimension of Hilbert space spanned by the four states sent by Alice is three instead of two. Thus Eve can distinguish these states with a set of Positive Operator Valued Measure (POVM) operators belonging to three-dimension space, which will reduce the QBER induced by her attack. Furthermore, a relationship between the degree of the imperfection of FM and the transmittance of the practical QKD system is obtained. The results show that the probability that Eve loads her attack successfully depends on the degree of the imperfection of FM rapidly, but the QBER induced by Eve's attack changes slightly with the degree of the FM imperfection.

  15. Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Hai; Jiang, Mu-Sheng; Liang, Lin-Mei

    2011-06-01

    The Faraday mirror (FM) plays a very important role in maintaining the stability of two-way plug-and-play quantum key distribution (QKD) systems. However, the practical FM is imperfect, which will not only introduce an additional quantum bit error rate (QBER) but also leave a loophole for Eve to spy the secret key. In this paper we propose a passive Faraday mirror attack in two-way QKD system based on the imperfection of FM. Our analysis shows that if the FM is imperfect, the dimension of Hilbert space spanned by the four states sent by Alice is three instead of two. Thus Eve can distinguish these states with a set of Positive Operator Valued Measure (POVM) operators belonging to three-dimension space, which will reduce the QBER induced by her attack. Furthermore, a relationship between the degree of the imperfection of FM and the transmittance of the practical QKD system is obtained. The results show that the probability that Eve loads her attack successfully depends on the degree of the imperfection of FM rapidly, but the QBER induced by Eve’s attack changes slightly with the degree of the FM imperfection.

  16. The Cassava Mealybug (Phenacoccus manihoti) in Asia: First Records, Potential Distribution, and an Identification Key

    PubMed Central

    Parsa, Soroush; Kondo, Takumasa; Winotai, Amporn

    2012-01-01

    Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae), one of the most serious pests of cassava worldwide, has recently reached Asia, raising significant concern over its potential spread throughout the region. To support management decisions, this article reports recent distribution records, and estimates the climatic suitability for its regional spread using a CLIMEX distribution model. The article also presents a taxonomic key that separates P. manihoti from all other mealybug species associated with the genus Manihot. Model predictions suggest P. manihoti imposes an important, yet differential, threat to cassava production in Asia. Predicted risk is most acute in the southern end of Karnataka in India, the eastern end of the Ninh Thuan province in Vietnam, and in most of West Timor in Indonesia. The model also suggests P. manihoti is likely to be limited by cold stress across Vietnam's northern regions and in the entire Guangxi province in China, and by high rainfall across the wet tropics in Indonesia and the Philippines. Predictions should be particularly important to guide management decisions for high risk areas where P. manihoti is absent (e.g., India), or where it has established but populations remain small and localized (e.g., South Vietnam). Results from this article should help decision-makers assess site-specific risk of invasion, and develop proportional prevention and surveillance programs for early detection and rapid response. PMID:23077659

  17. Energy-efficient key distribution using electrocardiograph biometric set for secure communications in wireless body healthcare networks.

    PubMed

    Shi, Jinyang; Lam, Kwok-Yan; Gu, Ming; Li, Mingze; Chung, Siu-Leung

    2011-10-01

    Wireless body sensor network (WBSN) has gained significant interests as an important infrastructure for real-time biomedical healthcare systems, while the security of the sensitive health information becomes one of the main challenges. Due to the constraints of limited power, traditional cryptographic key distribution schemes are not suitable for WBSN. This paper proposes a novel energy-efficient approach, BodyKey, which can distribute the keys using the electrocardiograph biometrics. BodyKey represents the biometric features as ordered set, and deals with the biometric variations using set reconciliation. In this way, only limited necessary information needs to be communicated for key agreement, and the total energy consumption for key distribution can thus be reduced. Experiments on the PhysioBank Database show that BodyKey can perform an energy consumption rate of 0.01 mJ/bit with an equal accuracy rate of 97.28%, allowing the system to be used as an energy-efficient key distribution scheme for secure communications in WBSN. PMID:20703727

  18. Energy-efficient key distribution using electrocardiograph biometric set for secure communications in wireless body healthcare networks.

    PubMed

    Shi, Jinyang; Lam, Kwok-Yan; Gu, Ming; Li, Mingze; Chung, Siu-Leung

    2011-10-01

    Wireless body sensor network (WBSN) has gained significant interests as an important infrastructure for real-time biomedical healthcare systems, while the security of the sensitive health information becomes one of the main challenges. Due to the constraints of limited power, traditional cryptographic key distribution schemes are not suitable for WBSN. This paper proposes a novel energy-efficient approach, BodyKey, which can distribute the keys using the electrocardiograph biometrics. BodyKey represents the biometric features as ordered set, and deals with the biometric variations using set reconciliation. In this way, only limited necessary information needs to be communicated for key agreement, and the total energy consumption for key distribution can thus be reduced. Experiments on the PhysioBank Database show that BodyKey can perform an energy consumption rate of 0.01 mJ/bit with an equal accuracy rate of 97.28%, allowing the system to be used as an energy-efficient key distribution scheme for secure communications in WBSN.

  19. Distributions of key exposure factors controlling the uptake of xenobiotic chemicals in an estuarine food web

    SciTech Connect

    Iannuzzi, T.J.; Harrington, N.W.; Shear, N.M.; Curry, C.L.; Carlson-Lynch, H.; Henning, M.H.; Su, S.H.; Rabbe, D.E.

    1996-11-01

    A critical evaluation of literature on the behavior, physiology, and ecology of common estuarine organisms was conducted in an attempt to develop probabilistic distributions for those variables that influence the uptake of xenobiotic chemicals from sediments, water, and food sources. The ranges, central tendencies, and distributions of several key parameter values were identified for dominant organisms from various trophic levels, including the polychaete Nereis virens, mummichog (Fundulus heteroclitus), blue crab (Callinectes sapidus), and striped bass (Morone saxatilis). The exposure factors of interest included ingestion rate for various food sources, growth rate, respiration rate, excretion rate, body weight, wet/dry weight ratio, lipid content, chemical assimilation efficiency, and food assimilation efficiency. These exposure factors are critical to the execution of mechanistic food web models, which, when properly calibrated, can be used to estimate tissue concentrations of nonionic chemicals in aquatic organisms based on knowledge of the bioenergetics and feeding interactions within a food web and the sediment and water concentrations of chemicals. In this article the authors describe the use of distributions for various exposure factors in the context of a mechanistic bioaccumulation model that is amenable to probabilistic analyses for multiple organisms within a food web. A case study is provided which compares the estimated versus measured concentrations of five polychlorinated biphenyl (PCB) congeners in a representative food web from the tidal portion of the Passaic River, New Jersey, USA. The results suggest that the model is accurate within an order of magnitude or less in estimating the bioaccumulation of PCBs in this food web without calibration. The results of a model sensitivity analysis suggest that the input parameters which most influence the output of the model are both chemical and organism specific.

  20. Distributed robust finite-time nonlinear consensus protocols for multi-agent systems

    NASA Astrophysics Data System (ADS)

    Zuo, Zongyu; Tie, Lin

    2016-04-01

    This paper investigates the robust finite-time consensus problem of multi-agent systems in networks with undirected topology. Global nonlinear consensus protocols augmented with a variable structure are constructed with the aid of Lyapunov functions for each single-integrator agent dynamics in the presence of external disturbances. In particular, it is shown that the finite settling time of the proposed general framework for robust consensus design is upper bounded for any initial condition. This makes it possible for network consensus problems to design and estimate the convergence time offline for a multi-agent team with a given undirected information flow. Finally, simulation results are presented to demonstrate the performance and effectiveness of our finite-time protocols.

  1. Novel distributed control protocol in dynamic wavelength-routed optical networks

    NASA Astrophysics Data System (ADS)

    Ho, Pin-Han; Mouftah, Hussein T.

    2002-07-01

    This paper solves the problem of path selection for WDM mesh networks with a special focus on the implementation in middle-sized networks, such as metropolitan-area networks (MANs). A novel routing and signaling protocol, called Asynchronous Criticality Avoidance (ACA), is proposed to improve the network performance. With the ACA protocol, a specific set of wavelength channels are defined as critical links between a node pair according to dynamic link-state. Criticality information is defined as the critical links and the associated information, which is coordinated and disseminated by each source node to every other source node as an inter-arrival planning. Routing and wavelength assignment is performed along with the criticality avoidance mechanism, in which path selection process is devised to take the criticality information into consideration. Simulation is conducted in 22- and 30-node networks to examine the proposed approach. The simulation results show that the ACA protocol significantly outperforms the Fixed-Path Least-Congested (FPLC) scheme under the Fixed Alternate Routing architecture with various patterns of alternate paths assigned to each source-destination pair in the networks.

  2. Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization.

    PubMed

    Tanaka, Akihiro; Fujiwara, Mikio; Nam, Sae W; Nambu, Yoshihiro; Takahashi, Seigo; Maeda, Wakako; Yoshino, Ken-ichiro; Miki, Shigehito; Baek, Burm; Wang, Zhen; Tajima, Akio; Sasaki, Masahide; Tomita, Akihisa

    2008-07-21

    We demonstrated ultra fast BB84 quantum key distribution (QKD) transmission at 625 MHz clock rate through a 97 km field-installed fiber using practical clock synchronization based on wavelength-division multiplexing (WDM). We succeeded in over-one-hour stable key generation at a high sifted key rate of 2.4 kbps and a low quantum bit error rate (QBER) of 2.9%. The asymptotic secure key rate was estimated to be 0.78- 0.82 kbps from the transmission data with the decoy method of average photon numbers 0, 0.15, and 0.4 photons/pulse. PMID:18648454

  3. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks.

    PubMed

    Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F; Schnabel, Roman

    2015-01-01

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components. PMID:26514280

  4. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks

    NASA Astrophysics Data System (ADS)

    Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F.; Schnabel, Roman

    2015-10-01

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.

  5. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks

    PubMed Central

    Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F.; Schnabel, Roman

    2015-01-01

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein–Podolsky–Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components. PMID:26514280

  6. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks.

    PubMed

    Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F; Schnabel, Roman

    2015-10-30

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.

  7. Standardization of quantum key distribution and the ETSI standardization initiative ISG-QKD

    NASA Astrophysics Data System (ADS)

    Länger, Thomas; Lenhart, Gaby

    2009-05-01

    In recent years, quantum key distribution (QKD) has been the object of intensive research activities and of rapid progress, and it is now developing into a competitive industry with commercial products. Once QKD systems are transferred from the controlled environment of physical laboratories into a real-world environment for practical use, a number of practical security, compatibility and connectivity issues need to be resolved. In particular, comprehensive security evaluation and watertight security proofs need to be addressed to increase trust in QKD. System interoperability with existing infrastructures and applications as well as conformance with specific user requirements have to be assured. Finding common solutions to these problems involving all actors can provide an advantage for the commercialization of QKD as well as for further technological development. The ETSI industry specification group for QKD (ISG-QKD) offers a forum for creating such universally accepted standards and will promote significant leverage effects on coordination, cooperation and convergence in research, technical development and business application of QKD.

  8. Simulated spatial distribution and seasonal variation of atmospheric methane over China: Contributions from key sources

    NASA Astrophysics Data System (ADS)

    Zhang, Dingyuan; Liao, Hong; Wang, Yuesi

    2014-03-01

    We used the global atmospheric chemical transport model, GEOS-Chem, to simulate the spatial distribution and seasonal variation of surface-layer methane (CH4) in 2004, and quantify the impacts of individual domestic sources and foreign transport on CH4 concentrations over China. Simulated surface-layer CH4 concentrations over China exhibit maximum concentrations in summer and minimum concentrations in spring. The annual mean CH4 concentrations range from 1800 ppb over western China to 2300 ppb over the more populated eastern China. Foreign emissions were found to have large impacts on CH4 concentrations over China, contributing to about 85% of the CH4 concentrations over western China and about 80% of those over eastern China. The tagged simulation results showed that coal mining, livestock, and waste are the dominant domestic contributors to CH4 concentrations over China, accounting for 36%, 18%, and 16%, respectively, of the annual and national mean increase in CH4 concentration from all domestic emissions. Emissions from rice cultivation were found to make the largest contributions to CH4 concentrations over China in the summer, which is the key factor that leads to the maximum seasonal mean CH4 concentrations in summer.

  9. From spatially variable streamflow to distributed hydrological models: Analysis of key modeling decisions

    NASA Astrophysics Data System (ADS)

    Fenicia, Fabrizio; Kavetski, Dmitri; Savenije, Hubert H. G.; Pfister, Laurent

    2016-02-01

    This paper explores the development and application of distributed hydrological models, focusing on the key decisions of how to discretize the landscape, which model structures to use in each landscape element, and how to link model parameters across multiple landscape elements. The case study considers the Attert catchment in Luxembourg—a 300 km2 mesoscale catchment with 10 nested subcatchments that exhibit clearly different streamflow dynamics. The research questions are investigated using conceptual models applied at hydrologic response unit (HRU) scales (1-4 HRUs) on 6 hourly time steps. Multiple model structures are hypothesized and implemented using the SUPERFLEX framework. Following calibration, space/time model transferability is tested using a split-sample approach, with evaluation criteria including streamflow prediction error metrics and hydrological signatures. Our results suggest that: (1) models using geology-based HRUs are more robust and capture the spatial variability of streamflow time series and signatures better than models using topography-based HRUs; this finding supports the hypothesis that, in the Attert, geology exerts a stronger control than topography on streamflow generation, (2) streamflow dynamics of different HRUs can be represented using distinct and remarkably simple model structures, which can be interpreted in terms of the perceived dominant hydrologic processes in each geology type, and (3) the same maximum root zone storage can be used across the three dominant geological units with no loss in model transferability; this finding suggests that the partitioning of water between streamflow and evaporation in the study area is largely independent of geology and can be used to improve model parsimony. The modeling methodology introduced in this study is general and can be used to advance our broader understanding and prediction of hydrological behavior, including the landscape characteristics that control hydrologic response, the

  10. Aerospace laser communications technology as enabler for worldwide quantum key distribution

    NASA Astrophysics Data System (ADS)

    Moll, Florian; Weinfurter, Harald; Rau, Markus; Schmidt, Christopher; Melén, Gwen; Vogl, Tobias; Nauerth, Sebastian; Fuchs, Christian

    2016-04-01

    A worldwide growing interest in fast and secure data communications pushes technology development along two lines. While fast communications can be realized using laser communications in fiber and free-space, inherently secure communications can be achieved using quantum key distribution (QKD). By combining both technologies in a single device, many synergies can be exploited, therefore reducing size, weight and power of future systems. In recent experiments we demonstrated quantum communications over large distances as well as between an aircraft and a ground station which proved the feasibility of QKD between moving partners. Satellites thus may be used as trusted nodes in combination with QKD receiver stations on ground, thereby enabling fast and secure communications on a global scale. We discuss the previous experiment with emphasis on necessary developments to be done and corresponding ongoing research work of German Aerospace Center (DLR) and Ludwig Maximilians University Munich (LMU). DLR is performing research on satellite and ground terminals for the high-rate laser communication component, which are enabling technologies for the QKD link. We describe the concept and hardware of three generations of OSIRIS (Optical High Speed Infrared Link System) laser communication terminals for low Earth orbiting satellites. The first type applies laser beam pointing solely based on classical satellite control, the second uses an optical feedback to the satellite bus and the third, currently being in design phase, comprises of a special coarse pointing assembly to control beam direction independent of satellite orientation. Ongoing work also targets optical terminals for CubeSats. A further increase of beam pointing accuracy can be achieved with a fine pointing assembly. Two ground stations will be available for future testing, an advanced stationary ground station and a transportable ground station. In parallel the LMU QKD source size will be reduced by more than an

  11. Delayed voluntary exercise does not enhance cognitive performance after hippocampal injury: an investigation of differentially distributed exercise protocols

    PubMed Central

    Wogensen, Elise; Gram, Marie Gajhede; Sommer, Jens Bak; Vilsen, Christina Rytter; Mogensen, Jesper; Malá, Hana

    2016-01-01

    Voluntary exercise has previously been shown to enhance cognitive recovery after acquired brain injury (ABI). The present study evaluated effects of two differentially distributed protocols of delayed, voluntary exercise on cognitive recovery using an allocentric place learning task in an 8-arm radial maze. Fifty-four Wistar rats were subjected to either bilateral transection of the fimbria-fornix (FF) or to sham surgery. Twenty-one days postinjury, the animals started exercising in running wheels either for 14 consecutive days (FF/exercise daily [ExD], sham/ExD) or every other day for 14 days (FF/exercise every second day [ExS], sham/ExS). Additional groups were given no exercise treatment (FF/not exercise [NE], sham/NE). Regardless of how exercise was distributed, we found no cognitively enhancing effects of exercise in the brain injured animals. Design and protocol factors possibly affecting the efficacy of post-ABI exercise are discussed. PMID:27807517

  12. Unconditionally secure key distillation from multiphotons

    SciTech Connect

    Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2006-01-15

    In this paper, we prove that the unconditionally secure key can be surprisingly extracted from multiphoton emission part in the photon polarization-based quantum key distribution. One example is shown by explicitly proving that one can indeed generate an unconditionally secure key from Alice's two-photon emission part proposed by Scarani [et al. Phys. Rev. Lett. 92, 057901 (2004)]. Which is called the Scarani-Acin-Ribordy-Gisin (SARG04) protocol. This protocol uses the same four states as in Bennett-Brassard 1984 (BB84) and differs only in the classical postprocessing protocol. It is, thus, interesting to see how the classical postprocessing of quantum key distribution might qualitatively change its security. We also show that one can generate an unconditionally secure key from the single to the four-photon part in a generalized SARG04 protocol that uses six states. Finally, we also compare the bit error rate threshold of these protocols with the one in the BB84 protocol and the original six-state protocol assuming a depolarizing channel.

  13. Fault-Tolerant Self-Stabilizing Distributed Clock Synchronization Protocol for Arbitrary Digraphs

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R. (Inventor)

    2014-01-01

    A self-stabilizing network in the form of an arbitrary, non-partitioned digraph includes K nodes having a synchronizer executing a protocol. K-1 monitors of each node may receive a Sync message transmitted from a directly connected node. When the Sync message is received, the logical clock value for the receiving node is set to between 0 and a communication latency value (gamma) if the clock value is less than a minimum event-response delay (D). A new Sync message is also transmitted to any directly connected nodes if the clock value is greater than or equal to both D and a graph threshold (T(sub S)). When the Sync message is not received the synchronizer increments the clock value if the clock value is less than a resynchronization period (P), and resets the clock value and transmits a new Sync message to all directly connected nodes when the clock value equals or exceeds P.

  14. Quantum cryptography: individual eavesdropping with the knowledge of the error-correcting protocol

    SciTech Connect

    Horoshko, D B

    2007-12-31

    The quantum key distribution protocol BB84 combined with the repetition protocol for error correction is analysed from the point of view of its security against individual eavesdropping relying on quantum memory. It is shown that the mere knowledge of the error-correcting protocol changes the optimal attack and provides the eavesdropper with additional information on the distributed key. (fifth seminar in memory of d.n. klyshko)

  15. BARI+: a biometric based distributed key management approach for wireless body area networks.

    PubMed

    Muhammad, Khaliq-ur-Rahman Raazi Syed; Lee, Heejo; Lee, Sungyoung; Lee, Young-Koo

    2010-01-01

    Wireless body area networks (WBAN) consist of resource constrained sensing devices just like other wireless sensor networks (WSN). However, they differ from WSN in topology, scale and security requirements. Due to these differences, key management schemes designed for WSN are inefficient and unnecessarily complex when applied to WBAN. Considering the key management issue, WBAN are also different from WPAN because WBAN can use random biometric measurements as keys. We highlight the differences between WSN and WBAN and propose an efficient key management scheme, which makes use of biometrics and is specifically designed for WBAN domain. PMID:22319333

  16. BARI+: A Biometric Based Distributed Key Management Approach for Wireless Body Area Networks

    PubMed Central

    Muhammad, Khaliq-ur-Rahman Raazi Syed; Lee, Heejo; Lee, Sungyoung; Lee, Young-Koo

    2010-01-01

    Wireless body area networks (WBAN) consist of resource constrained sensing devices just like other wireless sensor networks (WSN). However, they differ from WSN in topology, scale and security requirements. Due to these differences, key management schemes designed for WSN are inefficient and unnecessarily complex when applied to WBAN. Considering the key management issue, WBAN are also different from WPAN because WBAN can use random biometric measurements as keys. We highlight the differences between WSN and WBAN and propose an efficient key management scheme, which makes use of biometrics and is specifically designed for WBAN domain. PMID:22319333

  17. Cloning and optimal Gaussian individual attacks for a continuous-variable quantum key distribution using coherent states and reverse reconciliation

    SciTech Connect

    Namiki, Ryo; Koashi, Masato; Imoto, Nobuyuki

    2006-03-15

    We investigate the security of continuous-variable quantum key distribution using coherent states and reverse reconciliation against Gaussian individual attacks based on an optimal Gaussian 1{yields}2 cloning machine. We provide an implementation of the optimal Gaussian individual attack. We also find a Bell-measurement attack which works without delayed choice of measurements and has better performance than the cloning attack.

  18. Quantum hacking of two-way continuous-variable quantum key distribution using Trojan-horse attack

    NASA Astrophysics Data System (ADS)

    Ma, Hong-Xin; Bao, Wan-Su; Li, Hong-Wei; Chou, Chun

    2016-08-01

    We present a Trojan-horse attack on the practical two-way continuous-variable quantum key distribution system. Our attack mainly focuses on the imperfection of the practical system that the modulator has a redundancy of modulation pulse-width, which leaves a loophole for the eavesdropper inserting a Trojan-horse pulse. Utilizing the unique characteristics of two-way continuous-variable quantum key distribution that Alice only takes modulation operation on the received mode without any measurement, this attack allows the eavesdropper to render all of the final keys shared between the legitimate parties insecure without being detected. After analyzing the feasibility of the attack, the corresponding countermeasures are put forward. Project supported by the National Basic Research Program of China (Grant No. 2013CB338002) and the National Natural Science Foundation of China (Grant Nos. 11304397 and 61505261).

  19. Quantum hacking of two-way continuous-variable quantum key distribution using Trojan-horse attack

    NASA Astrophysics Data System (ADS)

    Ma, Hong-Xin; Bao, Wan-Su; Li, Hong-Wei; Chou, Chun

    2016-08-01

    We present a Trojan-horse attack on the practical two-way continuous-variable quantum key distribution system. Our attack mainly focuses on the imperfection of the practical system that the modulator has a redundancy of modulation pulse-width, which leaves a loophole for the eavesdropper inserting a Trojan-horse pulse. Utilizing the unique characteristics of two-way continuous-variable quantum key distribution that Alice only takes modulation operation on the received mode without any measurement, this attack allows the eavesdropper to render all of the final keys shared between the legitimate parties insecure without being detected. After analyzing the feasibility of the attack, the corresponding countermeasures are put forward. Project supported by the National Basic Research Program of China (Grant No. 2013CB338002) and the National Natural Science Foundation of China (Grant Nos. 11304397 and 61505261).

  20. A Weak Value Based QKD Protocol Robust Against Detector Attacks

    NASA Astrophysics Data System (ADS)

    Troupe, James

    2015-03-01

    We propose a variation of the BB84 quantum key distribution protocol that utilizes the properties of weak values to insure the validity of the quantum bit error rate estimates used to detect an eavesdropper. The protocol is shown theoretically to be secure against recently demonstrated attacks utilizing detector blinding and control and should also be robust against all detector based hacking. Importantly, the new protocol promises to achieve this additional security without negatively impacting the secure key generation rate as compared to that originally promised by the standard BB84 scheme. Implementation of the weak measurements needed by the protocol should be very feasible using standard quantum optical techniques.

  1. T Lymphocyte Density and Distribution in Human Colorectal Mucosa, and Inefficiency of Current Cell Isolation Protocols

    PubMed Central

    Preza, Gloria Cuevas; Yang, Otto O.; Elliott, Julie; Anton, Peter A.; Ochoa, Maria T.

    2015-01-01

    Mucosal tissues are critical immune effector sites containing complex populations of leukocytes in a tissue microenvironment that remains incompletely understood. We identify and quantify in human distal colorectal tissue absolute mucosal CD3+ lymphocytes, including CD4+ and CD8+ subsets, by direct visualization using immunohistochemistry (IHC), immunofluorescence (IF), and an automated counting protocol (r2=0.90). Sigmoid and rectal mucosal tissues are both densely packed with T lymphocytes in the mucosal compartment. Both compartments had similar densities of CD3+ T lymphocytes with 37,400 ± 2,801 cells/mm3 and 33,700 ± 4,324 cell/mm3, respectively. Sigmoid mucosa contained 57% CD3+CD4+ and 40% CD3+CD8+ T lymphocytes which calculates to 21,300 ± 1,476/mm3 and 15,000 ± 275/mm3 T lymphocytes, respectively. Rectal mucosa had 57% CD3+CD4+ and 42% CD3+CD8+ or 21,577 ± 332, and 17,090 ± 1,206 cells/mm3, respectively. By comparison, sigmoid mucosal biopsies subjected to conventional collagenase digestion, mononuclear cell (MMC) isolation and staining for flow cytometry yielded 4,549 ± 381/mm3 and 2,708 ± 245/mm3 CD4+ and CD8+ T lymphocytes. These data suggest only ~20.7% recovery compared to IHC results for these markers. Further studies will determine if this reflects a selective bias in only CD3+, CD4+ and CD8+ T cells or can be generalized to all flow-analyzed cells from mucosal tissues for phenotyping and functional testing. PMID:25856343

  2. A Distributed Data-Gathering Protocol Using AUV in Underwater Sensor Networks

    PubMed Central

    Khan, Jawaad Ullah; Cho, Ho-Shin

    2015-01-01

    In this paper, we propose a distributed data-gathering scheme using an autonomous underwater vehicle (AUV) working as a mobile sink to gather data from a randomly distributed underwater sensor network where sensor nodes are clustered around several cluster headers. Unlike conventional data-gathering schemes where the AUV visits either every node or every cluster header, the proposed scheme allows the AUV to visit some selected nodes named path-nodes in a way that reduces the overall transmission power of the sensor nodes. Monte Carlo simulations are performed to investigate the performance of the proposed scheme compared with several preexisting techniques employing the AUV in terms of total amount of energy consumption, standard deviation of each node’s energy consumption, latency to gather data at a sink, and controlling overhead. Simulation results show that the proposed scheme not only reduces the total energy consumption but also distributes the energy consumption more uniformly over the network, thereby increasing the lifetime of the network. PMID:26287189

  3. A Distributed Data-Gathering Protocol Using AUV in Underwater Sensor Networks.

    PubMed

    Khan, Jawaad Ullah; Cho, Ho-Shin

    2015-01-01

    In this paper, we propose a distributed data-gathering scheme using an autonomous underwater vehicle (AUV) working as a mobile sink to gather data from a randomly distributed underwater sensor network where sensor nodes are clustered around several cluster headers. Unlike conventional data-gathering schemes where the AUV visits either every node or every cluster header, the proposed scheme allows the AUV to visit some selected nodes named path-nodes in a way that reduces the overall transmission power of the sensor nodes. Monte Carlo simulations are performed to investigate the performance of the proposed scheme compared with several preexisting techniques employing the AUV in terms of total amount of energy consumption, standard deviation of each node's energy consumption, latency to gather data at a sink, and controlling overhead. Simulation results show that the proposed scheme not only reduces the total energy consumption but also distributes the energy consumption more uniformly over the network, thereby increasing the lifetime of the network. PMID:26287189

  4. A Distributed Data-Gathering Protocol Using AUV in Underwater Sensor Networks.

    PubMed

    Khan, Jawaad Ullah; Cho, Ho-Shin

    2015-08-06

    In this paper, we propose a distributed data-gathering scheme using an autonomous underwater vehicle (AUV) working as a mobile sink to gather data from a randomly distributed underwater sensor network where sensor nodes are clustered around several cluster headers. Unlike conventional data-gathering schemes where the AUV visits either every node or every cluster header, the proposed scheme allows the AUV to visit some selected nodes named path-nodes in a way that reduces the overall transmission power of the sensor nodes. Monte Carlo simulations are performed to investigate the performance of the proposed scheme compared with several preexisting techniques employing the AUV in terms of total amount of energy consumption, standard deviation of each node's energy consumption, latency to gather data at a sink, and controlling overhead. Simulation results show that the proposed scheme not only reduces the total energy consumption but also distributes the energy consumption more uniformly over the network, thereby increasing the lifetime of the network.

  5. Test procedures and protocols: Their relevance to the figure of merit for thermal distribution systems. Volume 1: Informal report

    SciTech Connect

    Andrews, J.W.

    1993-09-01

    A conceptual framework is developed that categorizes measurement protocols for forced-air thermal distribution systems in small buildings. This framework is based on the distinction between two generic approaches. The {open_quote}system-comparison{close_quote} approach seeks to determine, via a pair of whole-house energy-use measurements, the difference in energy use between the house with the as-found duct system and the same house with no energy losses attributable to the thermal distribution system. The {open_quote}component loss-factor{close_quote} approach identifies and measures the individual causes of duct losses, and then builds up a value for the net overall duct efficiency, usually with the help of computer simulation. Examples of each approach are analyzed and related to a proposed Figure of Merit for thermal distribution systems. This Figure of Merit would serve as the basis for a Standard Method of Test analogous to those already in place for furnaces, boilers, air conditioners, and heat pumps.

  6. ALFred, a protocol compiler for the automated implementation of distributed application

    SciTech Connect

    Braun, T.; Chrisment, I.; Diot, C.; Gagnon, F.; Gautier, L.

    1996-12-31

    This paper describes the design and the prototyping of a compiling tool for the automated implementation of distributed applications: ALFred. This compiler starts from the formal specification of an application written in ESTEREL, and then integrates end-to-end communication functions tailored to the application characteristics (described in the specification); it finally produces a high performance implementation. The paper describes the communication architecture associated to our automated approach. The compiler is made of two main parts: a control compiler also called ALF compiler; and a data manipulation compiler (the ILP compiler) that combines data manipulation functions in an efficient way (the ILP loop). The ALFred compiler has been designed to allow the development and the analysis of non-layered high performance communication architectures based on ALF and ILP.

  7. A three-step protocol for lead optimization: quick identification of key conformational features and functional groups in the SAR studies of non-ATP competitive MK2 (MAPKAPK2) inhibitors.

    PubMed

    Huang, Xianhai; Zhu, Xiaohong; Chen, Xiao; Zhou, Wei; Xiao, Dong; Degrado, Sylvia; Aslanian, Robert; Fossetta, James; Lundell, Daniel; Tian, Fang; Trivedi, Prashant; Palani, Anandan

    2012-01-01

    A three-step protocol for SAR development was introduced and applied to the SAR studies of the MK2 inhibitor program. Following this protocol, key conformational features and functional groups for improving MK2 inhibitor activity were quickly identified. Through this effort, the initial gap observed between in vitro binding activity and cellular activity in the lead identification stage was very much reduced. Compound 28 was identified with single digit binding activity (IC(50)=8 nM) and good cellular activity (EC(50)=310 nM). This provides further evidence that non-ATP-competitive binding MK2 inhibitors are feasible by targeting the outside ATP pocket.

  8. Using Satellite Observations of Cloud Vertical Distribution to Improve Global Model Estimates of Cloud Radiative Effect on Key Tropospheric Oxidants

    NASA Technical Reports Server (NTRS)

    Liu, Hongyu; Ham, Seung-Hee; Crawford, James; Kato, Seiji; Chen, Gao; Voulgarakis, Apostolos; Duncan, Bryan; Yantosca, Robert

    2015-01-01

    Radiative effect of clouds is one of the major factors that affect tropospheric OH. Large differences in cloud distributions among current (chemistry-climate or chemical transport) models could contribute significantly to the wide model spread of tropospheric OH, which was reported by the ACCMIP activity (Voulgarakis et al., ACP 2013). CCCM, a 3-D cloud data product developed at NASA Langley and merged from multiple A-Train satellite observations, provides unprecedentedly strong constraints on the vertical distribution of clouds and therefore simulated effects of clouds on key tropospheric oxidants.

  9. Energy-Efficiency Analysis of a Distributed Queuing Medium Access Control Protocol for Biomedical Wireless Sensor Networks in Saturation Conditions

    PubMed Central

    Otal, Begonya; Alonso, Luis; Verikoukis, Christos

    2011-01-01

    The aging population and the high quality of life expectations in our society lead to the need of more efficient and affordable healthcare solutions. For this reason, this paper aims for the optimization of Medium Access Control (MAC) protocols for biomedical wireless sensor networks or wireless Body Sensor Networks (BSNs). The hereby presented schemes always have in mind the efficient management of channel resources and the overall minimization of sensors’ energy consumption in order to prolong sensors’ battery life. The fact that the IEEE 802.15.4 MAC does not fully satisfy BSN requirements highlights the need for the design of new scalable MAC solutions, which guarantee low-power consumption to the maximum number of body sensors in high density areas (i.e., in saturation conditions). In order to emphasize IEEE 802.15.4 MAC limitations, this article presents a detailed overview of this de facto standard for Wireless Sensor Networks (WSNs), which serves as a link for the introduction and initial description of our here proposed Distributed Queuing (DQ) MAC protocol for BSN scenarios. Within this framework, an extensive DQ MAC energy-consumption analysis in saturation conditions is presented to be able to evaluate its performance in relation to IEEE 802.5.4 MAC in highly dense BSNs. The obtained results show that the proposed scheme outperforms IEEE 802.15.4 MAC in average energy consumption per information bit, thus providing a better overall performance that scales appropriately to BSNs under high traffic conditions. These benefits are obtained by eliminating back-off periods and collisions in data packet transmissions, while minimizing the control overhead. PMID:22319351

  10. Proof-of-principle experiment of a modified photon-number-splitting attack against quantum key distribution

    SciTech Connect

    Liu Weitao; Sun Shihai; Liang Linmei; Yuan Jianmin

    2011-04-15

    Any imperfections in a practical quantum key distribution (QKD) system may be exploited by an eavesdropper to collect information about the key without being discovered. We propose a modified photon-number-splitting attack scheme against QKD systems based on weak laser pulses taking advantage of possible multiphoton pulses. Proof-of-principle experiments are demonstrated. The results show that the eavesdropper can get information about the key generated between the legitimate parties without being detected. Since the equivalent attenuation introduced by the eavesdropper for pulses of different average photon numbers are different, the decoy-state method is effective in fighting against this kind of attack. This has also been proven in our experiments.

  11. 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel

    PubMed Central

    Wang, Chao; Huang, Duan; Huang, Peng; Lin, Dakai; Peng, Jinye; Zeng, Guihua

    2015-01-01

    In this paper, a practical continuous-variable quantum key distribution system is developed and it runs in the real-world conditions with 25 MHz clock rate. To reach high-rate, we have employed a homodyne detector with maximal bandwidth to 300 MHz and an optimal high-efficiency error reconciliation algorithm with processing speed up to 25 Mbps. To optimize the stability of the system, several key techniques are developed, which include a novel phase compensation algorithm, a polarization feedback algorithm, and related stability method on the modulators. Practically, our system is tested for more than 12 hours with a final secret key rate of 52 kbps over 50 km transmission distance, which is the highest rate so far in such distance. Our system may pave the road for practical broadband secure quantum communication with continuous variables in the commercial conditions. PMID:26419413

  12. 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel.

    PubMed

    Wang, Chao; Huang, Duan; Huang, Peng; Lin, Dakai; Peng, Jinye; Zeng, Guihua

    2015-01-01

    In this paper, a practical continuous-variable quantum key distribution system is developed and it runs in the real-world conditions with 25 MHz clock rate. To reach high-rate, we have employed a homodyne detector with maximal bandwidth to 300 MHz and an optimal high-efficiency error reconciliation algorithm with processing speed up to 25 Mbps. To optimize the stability of the system, several key techniques are developed, which include a novel phase compensation algorithm, a polarization feedback algorithm, and related stability method on the modulators. Practically, our system is tested for more than 12 hours with a final secret key rate of 52 kbps over 50 km transmission distance, which is the highest rate so far in such distance. Our system may pave the road for practical broadband secure quantum communication with continuous variables in the commercial conditions.

  13. 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Huang, Duan; Huang, Peng; Lin, Dakai; Peng, Jinye; Zeng, Guihua

    2015-09-01

    In this paper, a practical continuous-variable quantum key distribution system is developed and it runs in the real-world conditions with 25 MHz clock rate. To reach high-rate, we have employed a homodyne detector with maximal bandwidth to 300 MHz and an optimal high-efficiency error reconciliation algorithm with processing speed up to 25 Mbps. To optimize the stability of the system, several key techniques are developed, which include a novel phase compensation algorithm, a polarization feedback algorithm, and related stability method on the modulators. Practically, our system is tested for more than 12 hours with a final secret key rate of 52 kbps over 50 km transmission distance, which is the highest rate so far in such distance. Our system may pave the road for practical broadband secure quantum communication with continuous variables in the commercial conditions.

  14. Realizing the measure-device-independent quantum-key-distribution with passive heralded-single photon sources

    PubMed Central

    Wang, Qin; Zhou, Xing-Yu; Guo, Guang-Can

    2016-01-01

    In this paper, we put forward a new approach towards realizing measurement-device-independent quantum key distribution with passive heralded single-photon sources. In this approach, both Alice and Bob prepare the parametric down-conversion source, where the heralding photons are labeled according to different types of clicks from the local detectors, and the heralded ones can correspondingly be marked with different tags at the receiver’s side. Then one can obtain four sets of data through using only one-intensity of pump light by observing different kinds of clicks of local detectors. By employing the newest formulae to do parameter estimation, we could achieve very precise prediction for the two-single-photon pulse contribution. Furthermore, by carrying out corresponding numerical simulations, we compare the new method with other practical schemes of measurement-device-independent quantum key distribution. We demonstrate that our new proposed passive scheme can exhibit remarkable improvement over the conventional three-intensity decoy-state measurement-device-independent quantum key distribution with either heralded single-photon sources or weak coherent sources. Besides, it does not need intensity modulation and can thus diminish source-error defects existing in several other active decoy-state methods. Therefore, if taking intensity modulating errors into account, our new method will show even more brilliant performance. PMID:27759085

  15. Exponential Arithmetic Based Self-Healing Group Key Distribution Scheme with Backward Secrecy under the Resource-Constrained Wireless Networks

    PubMed Central

    Guo, Hua; Zheng, Yandong; Zhang, Xiyong; Li, Zhoujun

    2016-01-01

    In resource-constrained wireless networks, resources such as storage space and communication bandwidth are limited. To guarantee secure communication in resource-constrained wireless networks, group keys should be distributed to users. The self-healing group key distribution (SGKD) scheme is a promising cryptographic tool, which can be used to distribute and update the group key for the secure group communication over unreliable wireless networks. Among all known SGKD schemes, exponential arithmetic based SGKD (E-SGKD) schemes reduce the storage overhead to constant, thus is suitable for the the resource-constrained wireless networks. In this paper, we provide a new mechanism to achieve E-SGKD schemes with backward secrecy. We first propose a basic E-SGKD scheme based on a known polynomial-based SGKD, where it has optimal storage overhead while having no backward secrecy. To obtain the backward secrecy and reduce the communication overhead, we introduce a novel approach for message broadcasting and self-healing. Compared with other E-SGKD schemes, our new E-SGKD scheme has the optimal storage overhead, high communication efficiency and satisfactory security. The simulation results in Zigbee-based networks show that the proposed scheme is suitable for the resource-restrained wireless networks. Finally, we show the application of our proposed scheme. PMID:27136550

  16. Exponential Arithmetic Based Self-Healing Group Key Distribution Scheme with Backward Secrecy under the Resource-Constrained Wireless Networks.

    PubMed

    Guo, Hua; Zheng, Yandong; Zhang, Xiyong; Li, Zhoujun

    2016-04-28

    In resource-constrained wireless networks, resources such as storage space and communication bandwidth are limited. To guarantee secure communication in resource-constrained wireless networks, group keys should be distributed to users. The self-healing group key distribution (SGKD) scheme is a promising cryptographic tool, which can be used to distribute and update the group key for the secure group communication over unreliable wireless networks. Among all known SGKD schemes, exponential arithmetic based SGKD (E-SGKD) schemes reduce the storage overhead to constant, thus is suitable for the the resource-constrained wireless networks. In this paper, we provide a new mechanism to achieve E-SGKD schemes with backward secrecy. We first propose a basic E-SGKD scheme based on a known polynomial-based SGKD, where it has optimal storage overhead while having no backward secrecy. To obtain the backward secrecy and reduce the communication overhead, we introduce a novel approach for message broadcasting and self-healing. Compared with other E-SGKD schemes, our new E-SGKD scheme has the optimal storage overhead, high communication efficiency and satisfactory security. The simulation results in Zigbee-based networks show that the proposed scheme is suitable for the resource-restrained wireless networks. Finally, we show the application of our proposed scheme.

  17. Exponential Arithmetic Based Self-Healing Group Key Distribution Scheme with Backward Secrecy under the Resource-Constrained Wireless Networks.

    PubMed

    Guo, Hua; Zheng, Yandong; Zhang, Xiyong; Li, Zhoujun

    2016-01-01

    In resource-constrained wireless networks, resources such as storage space and communication bandwidth are limited. To guarantee secure communication in resource-constrained wireless networks, group keys should be distributed to users. The self-healing group key distribution (SGKD) scheme is a promising cryptographic tool, which can be used to distribute and update the group key for the secure group communication over unreliable wireless networks. Among all known SGKD schemes, exponential arithmetic based SGKD (E-SGKD) schemes reduce the storage overhead to constant, thus is suitable for the the resource-constrained wireless networks. In this paper, we provide a new mechanism to achieve E-SGKD schemes with backward secrecy. We first propose a basic E-SGKD scheme based on a known polynomial-based SGKD, where it has optimal storage overhead while having no backward secrecy. To obtain the backward secrecy and reduce the communication overhead, we introduce a novel approach for message broadcasting and self-healing. Compared with other E-SGKD schemes, our new E-SGKD scheme has the optimal storage overhead, high communication efficiency and satisfactory security. The simulation results in Zigbee-based networks show that the proposed scheme is suitable for the resource-restrained wireless networks. Finally, we show the application of our proposed scheme. PMID:27136550

  18. Phylogenetic Distribution of Extant Richness Suggests Metamorphosis Is a Key Innovation Driving Diversification in Insects

    PubMed Central

    Rainford, James L.; Hofreiter, Michael; Nicholson, David B.; Mayhew, Peter J.

    2014-01-01

    Insects and their six-legged relatives (Hexapoda) comprise more than half of all described species and dominate terrestrial and freshwater ecosystems. Understanding the macroevolutionary processes generating this richness requires a historical perspective, but the fossil record of hexapods is patchy and incomplete. Dated molecular phylogenies provide an alternative perspective on divergence times and have been combined with birth-death models to infer patterns of diversification across a range of taxonomic groups. Here we generate a dated phylogeny of hexapod families, based on previously published sequence data and literature derived constraints, in order to identify the broad pattern of macroevolutionary changes responsible for the composition of the extant hexapod fauna. The most prominent increase in diversification identified is associated with the origin of complete metamorphosis, confirming this as a key innovation in promoting insect diversity. Subsequent reductions are recovered for several groups previously identified as having a higher fossil diversity during the Mesozoic. In addition, a number of recently derived taxa are found to have radiated following the development of flowering plant (angiosperm) floras during the mid-Cretaceous. These results reveal that the composition of the modern hexapod fauna is a product of a key developmental innovation, combined with multiple and varied evolutionary responses to environmental changes from the mid Cretaceous floral transition onward. PMID:25275450

  19. Size frequency distributions of key epibenthic organisms in the eastern Chukchi Sea and their correlations with environmental parameters

    NASA Astrophysics Data System (ADS)

    Konar, B.; Ravelo, A.; Grebmeier, J.; Trefry, J. H.

    2014-04-01

    Epibenthic communities play a key role in ecosystem functioning in Arctic shelf Seas, such as in the Chukchi Sea in the Pacific Arctic. These communities, however, are patchily distributed and are influenced by various environmental parameters. Along with taxonomic composition, another community aspect that may vary spatially and be influenced by the environment is the distribution of organism sizes. This study presents the first size frequency distributions of nine epifaunal taxa that were determined to be dominant in the eastern Chukchi Sea in July/August 2009 and 2010, including male, female and gravid Chionoecetes opilio and Hyas coarctatus crabs, the gastropods Neptunea spp., Plicifusus spp., Colus spp., and Cryptonatica spp., and the echinoderms Gorgonocephalus spp., Leptasterias spp., and Echinarachnius parma. Some abundant taxa exhibited a wide range of sizes (i.e. C. opilio, Neptunea spp., and Leptasterias spp.), while others had a much smaller size range (i.e. Cryptonatica spp. and E. parma). We also found that size distributions of these taxa correlated with various combinations of the environmental parameters that have been shown to be important in structuring the general distribution patterns for the epibenthic invertebrate communities in the study area, including percent total sediment organic carbon, sediment chlorophyll a, temperature, latitude, sediment grain size 2 and 4 phi, pH, and dissolved oxygen. Our findings present benchmark information that is needed to detect future alterations in body-size frequency distributions that are likely to happen in response to the predicted climate and environmental changes in the Chukchi Sea region.

  20. Distribution of new HIV infections among key risk population groups in Togo

    PubMed Central

    Landoh, Dadja Essoya; Maboudou, Angèle Akouavi; Deku, Kodzo; Pitche, Palokinam Vincent

    2014-01-01

    Introduction Good data on the epidemiology of modes of transmission of HIV among population at risk are important for development of prevention strategies, and resource allocation for the implementation of the interventions. We sought to estimate new HIV infections among key risk groups in Togo. Methods We conducted a systematic review of epidemiological data on HIV and AIDS as part of the HIV control strategies in Togo from 2001 to 2012 following the PRISMA guidelines. We used the Mode of Transmission (MoT) modelling tool to estimate the incidence of new HIV infections in high risk groups. The MoT tool was developed and validated by UNAIDS and implemented by several countries using data on the HIV epidemic to estimate new HIV infections that will appear in the core groups. We used Epi-MoT tool to assess the availability and the quality of data. A score of availability of data over 50% and the quality over 1.5 were required to proceed to the MoT analysis. Uncertainty analysis to assess the reliability of the results was performed. Results Incidence of new HIV infections was estimated at 6,643 (95% CI = 5274, 9005) with an incidence rate of 203 per 1,000,000 inhabitants. The proportion of new HIV infections was 61.9% (95% CI = 46.2 to 71.7) in stable heterosexual couples compare to 14.01% (95% CI = 7.2 to 23.3) in people having casual sex. In high-risk groups new HIV infections accounted for 2.4% among sex workers (SWs) (95% CI = 1.2 - 4.1), 7.9% among clients of SWs (95% CI = 3.9-14.1) and 6.9% among men who have sex with men (MSM) (95% CI = 3.1 to 13.1). Conclusion We describe the prediction of the HIV epidemic with a large contribution of stable heterosexual couples in the occurrence of new infections. But HIV incidence remains high in key risk populations. Innovative strategies for risk reduction should be strengthened to reduce the transmission especially in stable heterosexual couples. PMID:25922630

  1. Key Factors Controlling Space- and Time-Linked Rare Earth Element Distribution in Shallow Groundwaters

    NASA Astrophysics Data System (ADS)

    Dia, A.; Gruau, G.; Olivie-Lauquet, G.; Henin, O.; Petitjean, P.; Le Coz-Bouhnik, M.

    2001-12-01

    comparison of the different catchments shows that the spatial variability of the REE signatures between the hillslope DOC-poor groundwaters and the wetland DOC-rich groundwaters has to be the same whatever may be the climatic and geologic context. These results assess the key roles played in the REE transfer to hydrosystems by (i) the occurrence of organic compounds, acting as a trace-element carrier phase and (ii) redox condition changes. Finally, we propose that topography could be the ultimate key factor, through its ability to control the water table depth and therefore the organic colloids enrichment when groundwaters are flowing into organic-rich soil horizons.

  2. Microevolutionary Distribution of Isogenicity in a Self-fertilizing Fish (Kryptolebias marmoratus) in the Florida Keys

    PubMed Central

    Tatarenkov, Andrey; Earley, Ryan L.; Taylor, D. Scott; Avise, John C.

    2012-01-01

    The mangrove rivulus Kryptolebias marmoratus and a closely related species are the world’s only vertebrates that routinely self-fertilize. Such uniqueness presents a model for understanding why this reproductive mode, common in plants and invertebrates, is so rare in vertebrates. A survey of 32 highly polymorphic loci in >200 specimens of mangrove rivulus from multiple locales in the Florida Keys, USA, revealed extensive population-genetic structure on microspatial and micro-temporal scales. Observed heterozygosities were severely constrained, as expected for a hermaphroditic species with a mixed-mating system and low rates of outcrossing. Despite the pronounced population structure and the implied restrictions on effective gene flow, isogenicity (genetic identity across individuals) within and among local inbred populations was surprisingly low even after factoring out probable de novo mutations. Results indicate that neither frequent bottlenecks nor directional genetic adaptation to local environmental conditions were the primary driving forces impacting multilocus population-genetic architecture in this self-fertilizing vertebrate species. On the other hand, a high diversity of isogenic lineages within relatively small and isolated local populations is consistent with the action of diversifying selection driven by the extreme spatio-temporal environmental variability that is characteristic of mangrove habitats. PMID:22593558

  3. Method and apparatus for free-space quantum key distribution in daylight

    DOEpatents

    Hughes, Richard J.; Buttler, William T.; Lamoreaux, Steve K.; Morgan, George L.; Nordholt, Jane E.; Peterson, C. Glen; Kwiat, Paul G.

    2004-06-08

    A quantum cryptography apparatus securely generates a key to be used for secure transmission between a sender and a receiver connected by an atmospheric transmission link. A first laser outputs a timing bright light pulse; other lasers output polarized optical data pulses after having been enabled by a random bit generator. Output optics transmit output light from the lasers that is received by receiving optics. A first beam splitter receives light from the receiving optics, where a received timing bright light pulse is directed to a delay circuit for establishing a timing window for receiving light from the lasers and where an optical data pulse from one of the lasers has a probability of being either transmitted by the beam splitter or reflected by the beam splitter. A first polarizer receives transmitted optical data pulses to output one data bit value and a second polarizer receives reflected optical data pulses to output a second data bit value. A computer receives pulses representing receipt of a timing bright timing pulse and the first and second data bit values, where receipt of the first and second data bit values is indexed by the bright timing pulse.

  4. Temporal dynamics in wheat grain zinc distribution: is sink limitation the key?

    PubMed Central

    Stomph, T. J.; Choi, E. Y.; Stangoulis, J. C. R.

    2011-01-01

    Background and Aims Enhancing the zinc (Zn) concentration in wheat (Triticum aestivum) grain is a breeding objective in order to improve human Zn nutrition. At enhanced plant Zn uptake, grain Zn levels do not increase proportionally and within the grain the endosperm Zn levels remain below grain Zn levels. This study analysed the temporal dynamics of Zn concentrations in grain tissues during grain filling to find major bottlenecks. Methods Plants of two cultivars were grown at 1 and 5 mg Zn kg−1 soil. Individual panicles were harvested 7, 14, 24 or 34 d after their flowering or at maturity and seeds were dissected into constituting tissues, which were analysed for Zn and other minerals. Key Results The Zn concentration of the crease was found to increase five- to nine-fold between 7 and 34 d after anthesis, while that of the endosperm decreased by 7 and 45 % when grown at 1 or 5 mg Zn kg−1, respectively. The Zn turnover rate (d−1) in the crease tissues was either independent of the Zn application level or higher at the lower Zn application level, and the Zn concentration increased in the crease tissues with time during grain filling while the turnover rate gradually decreased. Conclusions There is significant within-seed control over Zn entering the seed endosperm. While the seed crease Zn concentration can be raised to very high levels by increasing external Zn supply, the endosperm Zn concentrations will not increase correspondingly. The limited transfer of Zn beyond the crease requires more research to provide further insight into the rate-determining processes and their location along the pathway from crease to the deeper endosperm PMID:21385780

  5. Aroid scarabs in the genus Peltonotus Burmeister (Coleoptera, Scarabaeidae, Dynastinae): key to species and new distributional data

    PubMed Central

    Jameson, Mary Liz; Drumont, Alain

    2013-01-01

    Abstract The southeast Asian scarab beetle genus Peltonotus Burmeister (Scarabaeidae, Dynastinae, Cyclocephalini) is reviewed. New country records for Peltonotus morio Burmeister (Myanmar and Vietnam), Peltonotus nasutus Arrow (southern China and Cambodia), and Peltonotus favonius Jameson and Wada (Myanmar) are reported, including a new record in the Palearctic/Sino-Japanese biogeographic region. The first female specimen of Peltonotus favonius is described. Biological associations with aroid inflorescences are reviewed, and human consumption of Peltonotus beetles is reported. A key to all species, paralectotype designations for Peltonotus nasutus, diagnoses, and distributions using dynamic mapping tools are included. PMID:23950684

  6. A scheduling-function-based distributed access protocol that uses CDM to relay control information in a network with hidden nodes

    SciTech Connect

    Gold, Y.I.; Franta, W.R.

    1987-05-01

    The authors introduce a method for broadcasting control information (such as the information essential for correct operation of SOSAM and other scheduling-function-based access protocols) in stationary networks with ''hidden'' nodes (multihop networks). Control information is transmitted as short bit-parallel control messages on a separate control channel whose capacity is shared among the bits of a control message using code division multiplexing (CDM). The CDM method takes advantage of spread-spectrum signal properties that allow, in particular, high accuracy of time-of-arrival measurement and relatively easy separation of multipath copies of a control message. Generalized versions of SOSAM's scheduling function and the protocol algorithm are also provided. The generalized protocol, which applies the new method for broadcasting control information, provides distributed collision-free channel-access control, and allows prioritized access with high channel utilization and small expected message delay.

  7. Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors.

    PubMed

    Takemoto, Kazuya; Nambu, Yoshihiro; Miyazawa, Toshiyuki; Sakuma, Yoshiki; Yamamoto, Tsuyoshi; Yorozu, Shinichi; Arakawa, Yasuhiko

    2015-09-25

    Advances in single-photon sources (SPSs) and single-photon detectors (SPDs) promise unique applications in the field of quantum information technology. In this paper, we report long-distance quantum key distribution (QKD) by using state-of-the-art devices: a quantum-dot SPS (QD SPS) emitting a photon in the telecom band of 1.5 μm and a superconducting nanowire SPD (SNSPD). At the distance of 100 km, we obtained the maximal secure key rate of 27.6 bps without using decoy states, which is at least threefold larger than the rate obtained in the previously reported 50-km-long QKD experiment. We also succeeded in transmitting secure keys at the rate of 0.307 bps over 120 km. This is the longest QKD distance yet reported by using known true SPSs. The ultralow multiphoton emissions of our SPS and ultralow dark count of the SNSPD contributed to this result. The experimental results demonstrate the potential applicability of QD SPSs to practical telecom QKD networks.

  8. How to implement decoy-state quantum key distribution for a satellite uplink with 50-dB channel loss

    SciTech Connect

    Meyer-Scott, Evan; Yan, Zhizhong; MacDonald, Allison; Bourgoin, Jean-Philippe; Huebel, Hannes; Jennewein, Thomas

    2011-12-15

    Quantum key distribution (QKD) takes advantage of fundamental properties of quantum physics to allow two distant parties to share a secret key; however, QKD is hampered by a distance limitation of a few hundred kilometers on Earth. The most immediate solution for global coverage is to use a satellite, which can receive separate QKD transmissions from two or more ground stations and act as a trusted node to link these ground stations. In this article we report on a system capable of performing QKD in the high loss regime expected in an uplink to a satellite using weak coherent pulses and decoy states. Such a scenario profits from the simplicity of its receiver payload, but has so far been considered to be infeasible due to very high transmission losses (40-50 dB). The high loss is overcome by implementing an innovative photon source and advanced timing analysis. Our system handles up to 57 dB photon loss in the infinite key limit, confirming the viability of the satellite uplink scenario. We emphasize that while this system was designed with a satellite uplink in mind, it could just as easily overcome high losses on any free space QKD link.

  9. Within-Crop Air Temperature and Humidity Outcomes on Spatio-Temporal Distribution of the Key Rose Pest Frankliniella occidentalis

    PubMed Central

    Fatnassi, Hicham; Pizzol, Jeannine; Senoussi, Rachid; Biondi, Antonio; Desneux, Nicolas; Poncet, Christine; Boulard, Thierry

    2015-01-01

    Frankliniella occidentalis (Pergande) is a key pest of various crops worldwide. In this study, we analyse the dependence of the infestation of this pest on spatially distributed micro climatic factors in a rose greenhouse. Despite the importance of this subject, the few existing studies have been realized in laboratory rather than in greenhouse conditions. However, recent progress on greenhouse microclimate characterisation has highlighted the strong indoor climate heterogeneity that may influence the within-crop pest distribution. In this study, both microclimate (air temperature and humidity) and thrips distribution were simultaneously mapped in a rose greenhouse. The measurements were sensed in a horizontal plane situated at mid-height of the rose crop inside the greenhouse. Simultaneously, thrips population dynamics were assessed after an artificial and homogeneous infestation of the rose crop. The spatio-temporal distribution of climate and thrips within the greenhouse were compared, and links between thrips infestation and climatic conditions were investigated. A statistical model was used to define the favourable climate conditions for thrips adults and larvae. Our results showed that (i) the air temperature and air humidity were very heterogeneously distributed within the crop, (ii) pest populations aggregated in the most favourable climatic areas and (iii) the highest population density of thrips adults and larvae were recorded at 27°C and 22°C for temperature and 63% and 86% for humidity, respectively. These findings confirm, in real rose cropping conditions, previous laboratory studies on the F. occidentalis climatic optimum and provide a solid scientific support for climatic-based control methods against this pest. PMID:26011275

  10. Within-Crop Air Temperature and Humidity Outcomes on Spatio-Temporal Distribution of the Key Rose Pest Frankliniella occidentalis.

    PubMed

    Fatnassi, Hicham; Pizzol, Jeannine; Senoussi, Rachid; Biondi, Antonio; Desneux, Nicolas; Poncet, Christine; Boulard, Thierry

    2015-01-01

    Frankliniella occidentalis (Pergande) is a key pest of various crops worldwide. In this study, we analyse the dependence of the infestation of this pest on spatially distributed micro climatic factors in a rose greenhouse. Despite the importance of this subject, the few existing studies have been realized in laboratory rather than in greenhouse conditions. However, recent progress on greenhouse microclimate characterisation has highlighted the strong indoor climate heterogeneity that may influence the within-crop pest distribution. In this study, both microclimate (air temperature and humidity) and thrips distribution were simultaneously mapped in a rose greenhouse. The measurements were sensed in a horizontal plane situated at mid-height of the rose crop inside the greenhouse. Simultaneously, thrips population dynamics were assessed after an artificial and homogeneous infestation of the rose crop. The spatio-temporal distribution of climate and thrips within the greenhouse were compared, and links between thrips infestation and climatic conditions were investigated. A statistical model was used to define the favourable climate conditions for thrips adults and larvae. Our results showed that (i) the air temperature and air humidity were very heterogeneously distributed within the crop, (ii) pest populations aggregated in the most favourable climatic areas and (iii) the highest population density of thrips adults and larvae were recorded at 27°C and 22°C for temperature and 63% and 86% for humidity, respectively. These findings confirm, in real rose cropping conditions, previous laboratory studies on the F. occidentalis climatic optimum and provide a solid scientific support for climatic-based control methods against this pest.

  11. Secure quantum key distribution

    NASA Astrophysics Data System (ADS)

    Lo, Hoi-Kwong; Curty, Marcos; Tamaki, Kiyoshi

    2014-08-01

    Secure communication is crucial in the Internet Age, and quantum mechanics stands poised to revolutionize cryptography as we know it today. In this Review, we introduce the motivation and the current state of the art of research in quantum cryptography. In particular, we discuss the present security model together with its assumptions, strengths and weaknesses. After briefly introducing recent experimental progress and challenges, we survey the latest developments in quantum hacking and countermeasures against it.

  12. Group key management

    SciTech Connect

    Dunigan, T.; Cao, C.

    1997-08-01

    This report describes an architecture and implementation for doing group key management over a data communications network. The architecture describes a protocol for establishing a shared encryption key among an authenticated and authorized collection of network entities. Group access requires one or more authorization certificates. The implementation includes a simple public key and certificate infrastructure. Multicast is used for some of the key management messages. An application programming interface multiplexes key management and user application messages. An implementation using the new IP security protocols is postulated. The architecture is compared with other group key management proposals, and the performance and the limitations of the implementation are described.

  13. National Sample Assessment Protocols

    ERIC Educational Resources Information Center

    Ministerial Council on Education, Employment, Training and Youth Affairs (NJ1), 2012

    2012-01-01

    These protocols represent a working guide for planning and implementing national sample assessments in connection with the national Key Performance Measures (KPMs). The protocols are intended for agencies involved in planning or conducting national sample assessments and personnel responsible for administering associated tenders or contracts,…

  14. Patterns of Distribution and Spatial Indicators of Ecosystem Change Based on Key Species in the Southern Benguela.

    PubMed

    Watermeyer, Katherine E; Hutchings, Laurence; Jarre, Astrid; Shannon, Lynne J

    2016-01-01

    Several commercially and ecologically important species in the southern Benguela have undergone southward and eastward shifts in their distributions over previous decades, most notably the small pelagic fish sardine Sardinops sagax and anchovy Engraulis encrasicolus. Understanding these changes and their implications is essential in implementing an ecosystem approach to fisheries in the southern Benguela and attempting to appreciate the potential impacts of future environmental change. To investigate possible impacts of these shifts at an ecosystem level, distribution maps for before (1985-1991), during (1997-2000) and after (2003-2008) the shift in small pelagic fish were constructed for 14 key species from catch and survey data, and used to calculate spatial indicators including proportion east and west of Cape Agulhas, relative overlap in biomass and area, index of diversity, connectivity. Potential interactions on the south and west coasts were also compared. For several species (redeye; chub mackerel; kingklip; chokka squid; yellowtail), previously unidentified increases in the proportion of biomass east of Cape Agulhas were shown to have occurred over the same period as that of small pelagic fish, although none to the same degree. On average, overlap with small pelagic fish increased over time and overall system connectivity was lowest in the intermediate period, possibly indicating a system under transition. Connectivity declined over time on the west coast while increasing on the east coast. Distributions of other species have changed over time, with the region east of Cape Agulhas becoming increasingly important in terms of potential trophic interaction. Variations in distribution of biomass and structural complexity affect the trophic structure and hence functioning of the system, and implications should be considered when attempting to identify the possible ecosystem impacts of current and future system-level change. PMID:27441550

  15. Patterns of Distribution and Spatial Indicators of Ecosystem Change Based on Key Species in the Southern Benguela

    PubMed Central

    2016-01-01

    Several commercially and ecologically important species in the southern Benguela have undergone southward and eastward shifts in their distributions over previous decades, most notably the small pelagic fish sardine Sardinops sagax and anchovy Engraulis encrasicolus. Understanding these changes and their implications is essential in implementing an ecosystem approach to fisheries in the southern Benguela and attempting to appreciate the potential impacts of future environmental change. To investigate possible impacts of these shifts at an ecosystem level, distribution maps for before (1985–1991), during (1997–2000) and after (2003–2008) the shift in small pelagic fish were constructed for 14 key species from catch and survey data, and used to calculate spatial indicators including proportion east and west of Cape Agulhas, relative overlap in biomass and area, index of diversity, connectivity. Potential interactions on the south and west coasts were also compared. For several species (redeye; chub mackerel; kingklip; chokka squid; yellowtail), previously unidentified increases in the proportion of biomass east of Cape Agulhas were shown to have occurred over the same period as that of small pelagic fish, although none to the same degree. On average, overlap with small pelagic fish increased over time and overall system connectivity was lowest in the intermediate period, possibly indicating a system under transition. Connectivity declined over time on the west coast while increasing on the east coast. Distributions of other species have changed over time, with the region east of Cape Agulhas becoming increasingly important in terms of potential trophic interaction. Variations in distribution of biomass and structural complexity affect the trophic structure and hence functioning of the system, and implications should be considered when attempting to identify the possible ecosystem impacts of current and future system-level change. PMID:27441550

  16. Patterns of Distribution and Spatial Indicators of Ecosystem Change Based on Key Species in the Southern Benguela.

    PubMed

    Watermeyer, Katherine E; Hutchings, Laurence; Jarre, Astrid; Shannon, Lynne J

    2016-01-01

    Several commercially and ecologically important species in the southern Benguela have undergone southward and eastward shifts in their distributions over previous decades, most notably the small pelagic fish sardine Sardinops sagax and anchovy Engraulis encrasicolus. Understanding these changes and their implications is essential in implementing an ecosystem approach to fisheries in the southern Benguela and attempting to appreciate the potential impacts of future environmental change. To investigate possible impacts of these shifts at an ecosystem level, distribution maps for before (1985-1991), during (1997-2000) and after (2003-2008) the shift in small pelagic fish were constructed for 14 key species from catch and survey data, and used to calculate spatial indicators including proportion east and west of Cape Agulhas, relative overlap in biomass and area, index of diversity, connectivity. Potential interactions on the south and west coasts were also compared. For several species (redeye; chub mackerel; kingklip; chokka squid; yellowtail), previously unidentified increases in the proportion of biomass east of Cape Agulhas were shown to have occurred over the same period as that of small pelagic fish, although none to the same degree. On average, overlap with small pelagic fish increased over time and overall system connectivity was lowest in the intermediate period, possibly indicating a system under transition. Connectivity declined over time on the west coast while increasing on the east coast. Distributions of other species have changed over time, with the region east of Cape Agulhas becoming increasingly important in terms of potential trophic interaction. Variations in distribution of biomass and structural complexity affect the trophic structure and hence functioning of the system, and implications should be considered when attempting to identify the possible ecosystem impacts of current and future system-level change.

  17. A long-distance quantum key distribution scheme based on pre-detection of optical pulse with auxiliary state

    NASA Astrophysics Data System (ADS)

    Quan, Dong-Xiao; Zhu, Chang-Hua; Liu, Shi-Quan; Pei, Chang-Xing

    2015-05-01

    We construct a circuit based on PBS and CNOT gates, which can be used to determine whether the input pulse is empty or not according to the detection result of the auxiliary state, while the input state will not be changed. The circuit can be treated as a pre-detection device. Equipping the pre-detection device in the front of the receiver of the quantum key distribution (QKD) can reduce the influence of the dark count of the detector, hence increasing the secure communication distance significantly. Simulation results show that the secure communication distance can reach 516 km and 479 km for QKD with perfect single photon source and decoy-state QKD with weak coherent photon source, respectively. Project supported by the National Natural Science Foundation of China (Grant No. 61372076), the Programme of Introducing Talents of Discipline to Universities, China (Grant No. B08038), and the Fundamental Research Funds for the Central Universities, China (Grant No. K5051201021).

  18. Reliable broadcast protocols

    NASA Technical Reports Server (NTRS)

    Joseph, T. A.; Birman, Kenneth P.

    1989-01-01

    A number of broadcast protocols that are reliable subject to a variety of ordering and delivery guarantees are considered. Developing applications that are distributed over a number of sites and/or must tolerate the failures of some of them becomes a considerably simpler task when such protocols are available for communication. Without such protocols the kinds of distributed applications that can reasonably be built will have a very limited scope. As the trend towards distribution and decentralization continues, it will not be surprising if reliable broadcast protocols have the same role in distributed operating systems of the future that message passing mechanisms have in the operating systems of today. On the other hand, the problems of engineering such a system remain large. For example, deciding which protocol is the most appropriate to use in a certain situation or how to balance the latency-communication-storage costs is not an easy question.

  19. Informatic analysis for hidden pulse attack exploiting spectral characteristics of optics in plug-and-play quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Ko, Heasin; Lim, Kyongchun; Oh, Junsang; Rhee, June-Koo Kevin

    2016-07-01

    Quantum channel loopholes due to imperfect implementations of practical devices expose quantum key distribution (QKD) systems to potential eavesdropping attacks. Even though QKD systems are implemented with optical devices that are highly selective on spectral characteristics, information theory-based analysis about a pertinent attack strategy built with a reasonable framework exploiting it has never been clarified. This paper proposes a new type of trojan horse attack called hidden pulse attack that can be applied in a plug-and-play QKD system, using general and optimal attack strategies that can extract quantum information from phase-disturbed quantum states of eavesdropper's hidden pulses. It exploits spectral characteristics of a photodiode used in a plug-and-play QKD system in order to probe modulation states of photon qubits. We analyze the security performance of the decoy-state BB84 QKD system under the optimal hidden pulse attack model that shows enormous performance degradation in terms of both secret key rate and transmission distance.

  20. Ecological distribution and bioavailability of uranium series radionuclides in terrestrial food chains: Key Lake uranium operations, northern Saskatchewan

    SciTech Connect

    Thomas, P.A.

    1997-12-31

    The purpose of this study was to determine radionuclide uptake within the terrestrial ecosystem at uranium mining operations in northern Saskatchewan. The study site was the Key Lake mine, chosen because it has been an operational mine, mill, and surface tailings area for 15 years and will continue to be an active ore-milling and tailings disposal area for the next 40 years. The focus of the study was on the small mammal food chains in black spruce bogs nearest to the Key Lake facilities, since bog habitats tend to absorb and accumulate radionuclides. Three study sites were chosen on the basis of their proximity to sources of radioactive dust and the presence of bog habitats. Interconnected terrestrial ecosystem components were sampled at the same time at each site. Samples of needles, twigs, ground cover, litter, soils, small mammals, and birds were analyzed for the four radionuclides of greatest concern in the uranium decay series. Radiation doses were calculated to small mammals and birds, food chain transfer parameters were determined to enable future modelling of environmental pathways, and a variety of atmospheric dust collectors were pilot tested to examine the rates of radionuclide deposition from facility emissions to local environments. Four sets of conclusions are discussed regarding: radionuclide distribution within habitats and among sites; the radionuclides responsible for animal doses; the relative bioavailability of radionuclides among sites; and the measurement of atmospheric deposition rates.