Sample records for key distribution prototype

  1. Coherent one-way quantum key distribution

    NASA Astrophysics Data System (ADS)

    Stucki, Damien; Fasel, Sylvain; Gisin, Nicolas; Thoma, Yann; Zbinden, Hugo

    2007-05-01

    Quantum Key Distribution (QKD) consists in the exchange of a secrete key between two distant points [1]. Even if quantum key distribution systems exist and commercial systems are reaching the market [2], there are still improvements to be made: simplify the construction of the system; increase the secret key rate. To this end, we present a new protocol for QKD tailored to work with weak coherent pulses and at high bit rates [3]. The advantages of this system are that the setup is experimentally simple and it is tolerant to reduced interference visibility and to photon number splitting attacks, thus resulting in a high efficiency in terms of distilled secret bits per qubit. After having successfully tested the feasibility of the system [3], we are currently developing a fully integrated and automated prototype within the SECOQC project [4]. We present the latest results using the prototype. We also discuss the issue of the photon detection, which still remains the bottleneck for QKD.

  2. Building a generalized distributed system model

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.

    1992-01-01

    The key elements in the second year (1991-92) of our project are: (1) implementation of the distributed system prototype; (2) successful passing of the candidacy examination and a PhD proposal acceptance by the funded student; (3) design of storage efficient schemes for replicated distributed systems; and (4) modeling of gracefully degrading reliable computing systems. In the third year of the project (1992-93), we propose to: (1) complete the testing of the prototype; (2) enhance the functionality of the modules by enabling the experimentation with more complex protocols; (3) use the prototype to verify the theoretically predicted performance of locking protocols, etc.; and (4) work on issues related to real-time distributed systems. This should result in efficient protocols for these systems.

  3. Present and future free-space quantum key distribution

    NASA Astrophysics Data System (ADS)

    Nordholt, Jane E.; Hughes, Richard J.; Morgan, George L.; Peterson, C. Glen; Wipf, Christopher C.

    2002-04-01

    Free-space quantum key distribution (QKD), more popularly know as quantum cryptography, uses single-photon free-space optical communications to distribute the secret keys required for secure communications. At Los Alamos National Laboratory we have demonstrated a fully automated system that is capable of operations at any time of day over a horizontal range of several kilometers. This has proven the technology is capable of operation from a spacecraft to the ground, opening up the possibility of QKD between any group of users anywhere on Earth. This system, the prototyping of a new system for use on a spacecraft, and the techniques required for world-wide quantum key distribution will be described. The operational parameters and performance of a system designed to operate between low earth orbit (LEO) and the ground will also be discussed.

  4. Chapter 5 - Development of biophysical gradient layers for the LANDFIRE Prototype Project

    Treesearch

    Lisa Holsinger; Robert E. Keane; Russell Parsons; Eva Karau

    2006-01-01

    Distributions of plant species are generally continuous, gradually changing across landscapes and blending into each other due to the influence of, and interactions between, a complex array of biophysical gradients (Whittaker 1967; 1975). Key biophysical gradients for understanding vegetation distributions include moisture, temperature, evaporative demand, nutrient...

  5. Securing Sensitive Flight and Engine Simulation Data Using Smart Card Technology

    NASA Technical Reports Server (NTRS)

    Blaser, Tammy M.

    2003-01-01

    NASA Glenn Research Center has developed a smart card prototype capable of encrypting and decrypting disk files required to run a distributed aerospace propulsion simulation. Triple Data Encryption Standard (3DES) encryption is used to secure the sensitive intellectual property on disk pre, during, and post simulation execution. The prototype operates as a secure system and maintains its authorized state by safely storing and permanently retaining the encryption keys only on the smart card. The prototype is capable of authenticating a single smart card user and includes pre simulation and post simulation tools for analysis and training purposes. The prototype's design is highly generic and can be used to protect any sensitive disk files with growth capability to urn multiple simulations. The NASA computer engineer developed the prototype on an interoperable programming environment to enable porting to other Numerical Propulsion System Simulation (NPSS) capable operating system environments.

  6. The SURA Coastal Ocean Observing and Prediction (SCOOP) Program: Adapting Web 2.0 technologies to power next generation science

    NASA Astrophysics Data System (ADS)

    Bogden, P.; Partners, S.

    2008-12-01

    The Web 2.0 has helped globalize the economy and change social interactions, but the full impact on coastal sciences has yet to be realized. The SCOOP program (www.OpenIOOS.org/about/sura.html), an initiative of the Coastal Research Committee of the Southeastern Universities Research Association (SURA), has been using Web 2.0 technologies to create infrastructure for a multi-disciplinary Distributed Coastal Laboratory (DCL). In the spirit of the Web 2.0, SCOOP strives to provide an open-access virtual facility where "virtual visiting" scientists can log in, perform experiments (e.g., evaluate new wetting/drying algorithms in several different inundation models), potentially contribute to the assembly of resources (e.g., leave their algorithms for others), and then move on. The SCOOP prototype has focused on storm surge and waves (the initial science focus), and integrates a real-time data network to evaluate the predictions. The multi-purpose SCOOP components support a sensor-web initiative (www.OOSTethys.org) that is co-led by SURA. SCOOP also includes portals with real-time visualization, workflow configuration and decision-tool prototypes (www.OpenIOOS.org), powered by distributed computing resources from multiple universities across the nation (www.sura.org/SURAgrid). Based on our experience, we propose three key ingredients for initiatives to have the biggest impact on coastal science: (1) standards, (2) working prototypes and (3) communities of interest. We strongly endorse the Open Geospatial Consortium - a geospatial analog of the World Wide Web consortium - and other international consensus-standards bodies that engage government, private sector and academic involvement. But these standards are often highly complex, which can be an impediment to their use. We have overcome such hurdles with the second key ingredient: a focused working prototype. The prototype should include guides and resources that make it easy for others to apply, test, and revise the prototype, all without need to understand the standards in their overwhelming complexity. In addition, the prototype should support direct involvement of the third key ingredient: communities of interest that assess functional relevance. We expect that any two of these ingredients alone, without the third, will severely limit applicability and impact of any initiative.

  7. Protecting Cryptographic Keys and Functions from Malware Attacks

    DTIC Science & Technology

    2010-12-01

    registers. modifies RSA private key signing in OpenSSL to use the technique. The resulting system has the following features: 1. No special hardware is...the above method based on OpenSSL , by exploiting the Streaming SIMD Extension (SSE) XMM registers of modern Intel and AMD x86-compatible CPU’s [22...one can store a 2048-bit exponent.1 Our prototype is based on OpenSSL 0.9.8e, the Ubuntu 6.06 Linux distribution with a 2.6.15 kernel, and SSE2 which

  8. Office worker response to an automated venetian blind and electric lighting system: A pilot study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vine, E.; Lee, E.; Clear, R.

    1998-03-01

    A prototype integrated, dynamic building envelope and lighting system designed to optimize daylight admission and solar heat gain rejection on a real-time basis in a commercial office building is evaluated. Office worker response to the system and occupant-based modifications to the control system are investigated to determine if the design and operation of the prototype system can be improved. Key findings from the study are: (1) the prototype integrated envelope and lighting system is ready for field testing, (2) most office workers (N=14) were satisfied with the system, and (3) there were few complaints. Additional studies are needed to explainmore » how illuminance distribution, lighting quality, and room design can affect workplans illuminance preferences.« less

  9. Development of an Opto-Acoustic Recanalization System Final Report CRADA No. 1314-96

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, L. D.; Adam, H. R.

    The objective of the project was to develop an ischemic stroke treatient system that restores blood flow to the brain by removing occlusions using acoustic energy created by fiber optic delivery of laser light, a process called Opto Acoustic Recanalization (OAR). The key tasks of the project were to select a laser system, quantify temperature, pressure and particle size distribution, and develop a prototype device incorporating a feedback mechanism. System parameters were developed to cause emulsification while attempting to minimize particle size and collateral damage. The prototype system was tested in animal models and resulted in no visible collateral damage.

  10. Network Computing Infrastructure to Share Tools and Data in Global Nuclear Energy Partnership

    NASA Astrophysics Data System (ADS)

    Kim, Guehee; Suzuki, Yoshio; Teshima, Naoya

    CCSE/JAEA (Center for Computational Science and e-Systems/Japan Atomic Energy Agency) integrated a prototype system of a network computing infrastructure for sharing tools and data to support the U.S. and Japan collaboration in GNEP (Global Nuclear Energy Partnership). We focused on three technical issues to apply our information process infrastructure, which are accessibility, security, and usability. In designing the prototype system, we integrated and improved both network and Web technologies. For the accessibility issue, we adopted SSL-VPN (Security Socket Layer-Virtual Private Network) technology for the access beyond firewalls. For the security issue, we developed an authentication gateway based on the PKI (Public Key Infrastructure) authentication mechanism to strengthen the security. Also, we set fine access control policy to shared tools and data and used shared key based encryption method to protect tools and data against leakage to third parties. For the usability issue, we chose Web browsers as user interface and developed Web application to provide functions to support sharing tools and data. By using WebDAV (Web-based Distributed Authoring and Versioning) function, users can manipulate shared tools and data through the Windows-like folder environment. We implemented the prototype system in Grid infrastructure for atomic energy research: AEGIS (Atomic Energy Grid Infrastructure) developed by CCSE/JAEA. The prototype system was applied for the trial use in the first period of GNEP.

  11. Self-organizing maps: a versatile tool for the automatic analysis of untargeted imaging datasets.

    PubMed

    Franceschi, Pietro; Wehrens, Ron

    2014-04-01

    MS-based imaging approaches allow for location-specific identification of chemical components in biological samples, opening up possibilities of much more detailed understanding of biological processes and mechanisms. Data analysis, however, is challenging, mainly because of the sheer size of such datasets. This article presents a novel approach based on self-organizing maps, extending previous work in order to be able to handle the large number of variables present in high-resolution mass spectra. The key idea is to generate prototype images, representing spatial distributions of ions, rather than prototypical mass spectra. This allows for a two-stage approach, first generating typical spatial distributions and associated m/z bins, and later analyzing the interesting bins in more detail using accurate masses. The possibilities and advantages of the new approach are illustrated on an in-house dataset of apple slices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Electronic health record - public health (EHR-PH) system prototype for interoperability in 21st century healthcare systems.

    PubMed

    Orlova, Anna O; Dunnagan, Mark; Finitzo, Terese; Higgins, Michael; Watkins, Todd; Tien, Allen; Beales, Steven

    2005-01-01

    Information exchange, enabled by computable interoperability, is the key to many of the initiatives underway including the development of Regional Health Information Exchanges, Regional Health Information Organizations, and the National Health Information Network. These initiatives must include public health as a full partner in the emerging transformation of our nation's healthcare system through the adoption and use of information technology. An electronic health record - public health (EHR-PH)system prototype was developed to demonstrate the feasibility of electronic data transfer from a health care provider, i.e. hospital or ambulatory care settings, to multiple customized public health systems which include a Newborn Metabolic Screening Registry, a Newborn Hearing Screening Registry, an Immunization Registry and a Communicable Disease Registry, using HL7 messaging standards. Our EHR-PH system prototype can be considered a distributed EHR-based RHIE/RHIO model - a principal element for a potential technical architecture for a NHIN.

  13. Using Bayesian networks to support decision-focused information retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehner, P.; Elsaesser, C.; Seligman, L.

    This paper has described an approach to controlling the process of pulling data/information from distributed data bases in a way that is specific to a persons specific decision making context. Our prototype implementation of this approach uses a knowledge-based planner to generate a plan, an automatically constructed Bayesian network to evaluate the plan, specialized processing of the network to derive key information items that would substantially impact the evaluation of the plan (e.g., determine that replanning is needed), automated construction of Standing Requests for Information (SRIs) which are automated functions that monitor changes and trends in distributed data base thatmore » are relevant to the key information items. This emphasis of this paper is on how Bayesian networks are used.« less

  14. On the Biomimetic Design of Agile-Robot Legs

    PubMed Central

    Garcia, Elena; Arevalo, Juan Carlos; Muñoz, Gustavo; Gonzalez-de-Santos, Pablo

    2011-01-01

    The development of functional legged robots has encountered its limits in human-made actuation technology. This paper describes research on the biomimetic design of legs for agile quadrupeds. A biomimetic leg concept that extracts key principles from horse legs which are responsible for the agile and powerful locomotion of these animals is presented. The proposed biomimetic leg model defines the effective leg length, leg kinematics, limb mass distribution, actuator power, and elastic energy recovery as determinants of agile locomotion, and values for these five key elements are given. The transfer of the extracted principles to technological instantiations is analyzed in detail, considering the availability of current materials, structures and actuators. A real leg prototype has been developed following the biomimetic leg concept proposed. The actuation system is based on the hybrid use of series elasticity and magneto-rheological dampers which provides variable compliance for natural motion. From the experimental evaluation of this prototype, conclusions on the current technological barriers to achieve real functional legged robots to walk dynamically in agile locomotion are presented. PMID:22247667

  15. On the biomimetic design of agile-robot legs.

    PubMed

    Garcia, Elena; Arevalo, Juan Carlos; Muñoz, Gustavo; Gonzalez-de-Santos, Pablo

    2011-01-01

    The development of functional legged robots has encountered its limits in human-made actuation technology. This paper describes research on the biomimetic design of legs for agile quadrupeds. A biomimetic leg concept that extracts key principles from horse legs which are responsible for the agile and powerful locomotion of these animals is presented. The proposed biomimetic leg model defines the effective leg length, leg kinematics, limb mass distribution, actuator power, and elastic energy recovery as determinants of agile locomotion, and values for these five key elements are given. The transfer of the extracted principles to technological instantiations is analyzed in detail, considering the availability of current materials, structures and actuators. A real leg prototype has been developed following the biomimetic leg concept proposed. The actuation system is based on the hybrid use of series elasticity and magneto-rheological dampers which provides variable compliance for natural motion. From the experimental evaluation of this prototype, conclusions on the current technological barriers to achieve real functional legged robots to walk dynamically in agile locomotion are presented.

  16. Software Modules for the Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol

    NASA Technical Reports Server (NTRS)

    Woo, Simon S.; Veregge, John R.; Gao, Jay L.; Clare, Loren P.; Mills, David

    2012-01-01

    The Proximity-1 Space Link Interleaved Time Synchronization (PITS) protocol provides time distribution and synchronization services for space systems. A software prototype implementation of the PITS algorithm has been developed that also provides the test harness to evaluate the key functionalities of PITS with simulated data source and sink. PITS integrates time synchronization functionality into the link layer of the CCSDS Proximity-1 Space Link Protocol. The software prototype implements the network packet format, data structures, and transmit- and receive-timestamp function for a time server and a client. The software also simulates the transmit and receive-time stamp exchanges via UDP (User Datagram Protocol) socket between a time server and a time client, and produces relative time offsets and delay estimates.

  17. NASA's NPOESS Preparatory Project Science Data Segment: A Framework for Measurement-based Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Schwaller, Mathew R.; Schweiss, Robert J.

    2007-01-01

    The NPOESS Preparatory Project (NPP) Science Data Segment (SDS) provides a framework for the future of NASA s distributed Earth science data systems. The NPP SDS performs research and data product assessment while using a fully distributed architecture. The components of this architecture are organized around key environmental data disciplines: land, ocean, ozone, atmospheric sounding, and atmospheric composition. The SDS thus establishes a set of concepts and a working prototypes. This paper describes the framework used by the NPP Project as it enabled Measurement-Based Earth Science Data Systems for the assessment of NPP products.

  18. A Distributed Simulation Software System for Multi-Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Burns, Richard; Davis, George; Cary, Everett

    2003-01-01

    The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.

  19. A failure management prototype: DR/Rx

    NASA Technical Reports Server (NTRS)

    Hammen, David G.; Baker, Carolyn G.; Kelly, Christine M.; Marsh, Christopher A.

    1991-01-01

    This failure management prototype performs failure diagnosis and recovery management of hierarchical, distributed systems. The prototype, which evolved from a series of previous prototypes following a spiral model for development, focuses on two functions: (1) the diagnostic reasoner (DR) performs integrated failure diagnosis in distributed systems; and (2) the recovery expert (Rx) develops plans to recover from the failure. Issues related to expert system prototype design and the previous history of this prototype are discussed. The architecture of the current prototype is described in terms of the knowledge representation and functionality of its components.

  20. FPGA based digital phase-coding quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Lu, XiaoMing; Zhang, LiJun; Wang, YongGang; Chen, Wei; Huang, DaJun; Li, Deng; Wang, Shuang; He, DeYong; Yin, ZhenQiang; Zhou, Yu; Hui, Cong; Han, ZhengFu

    2015-12-01

    Quantum key distribution (QKD) is a technology with the potential capability to achieve information-theoretic security. Phasecoding is an important approach to develop practical QKD systems in fiber channel. In order to improve the phase-coding modulation rate, we proposed a new digital-modulation method in this paper and constructed a compact and robust prototype of QKD system using currently available components in our lab to demonstrate the effectiveness of the method. The system was deployed in laboratory environment over a 50 km fiber and continuously operated during 87 h without manual interaction. The quantum bit error rate (QBER) of the system was stable with an average value of 3.22% and the secure key generation rate is 8.91 kbps. Although the modulation rate of the photon in the demo system was only 200 MHz, which was limited by the Faraday-Michelson interferometer (FMI) structure, the proposed method and the field programmable gate array (FPGA) based electronics scheme have a great potential for high speed QKD systems with Giga-bits/second modulation rate.

  1. Early commercial demonstration of space solar power using ultra-lightweight arrays

    NASA Astrophysics Data System (ADS)

    Reed, Kevin; Willenberg, Harvey J.

    2009-11-01

    Space solar power shows great promise for future energy sources worldwide. Most central power stations operate with power capacity of 1000 MW or greater. Due to launch size limitations and specific power of current, rigid solar arrays, the largest solar arrays that have flown in space are around 50 kW. Thin-film arrays offer the promise of much higher specific power and deployment of array sizes up to several MW with current launch vehicles. An approach to early commercial applications for space solar power to distribute power to charge hand-held, mobile battery systems by wireless power transmission (WPT) from thin-film solar arrays in quasi-stationary orbits will be presented. Four key elements to this prototype will be discussed: (1) Space and near-space testing of prototype wireless power transmission by laser and microwave components including WPT space to space and WPT space to near-space HAA transmission demonstrations; (2) distributed power source for recharging hand-held batteries by wireless power transmission from MW space solar power systems; (3) use of quasi-geostationary satellites to generate electricity and distribute it to targeted areas; and (4) architecture and technology for ultra-lightweight thin-film solar arrays with specific energy exceeding 1 kW/kg. This approach would yield flight demonstration of space solar power and wireless power transmission of 1.2 MW. This prototype system will be described, and a roadmap will be presented that will lead to still higher power levels.

  2. An Electronic Health Record - Public Health (EHR-PH) System Prototype for Interoperability in 21st Century Healthcare Systems

    PubMed Central

    Orlova, Anna O.; Dunnagan, Mark; Finitzo, Terese; Higgins, Michael; Watkins, Todd; Tien, Allen; Beales, Steven

    2005-01-01

    Information exchange, enabled by computable interoperability, is the key to many of the initiatives underway including the development of Regional Health Information Exchanges, Regional Health Information Organizations, and the National Health Information Network. These initiatives must include public health as a full partner in the emerging transformation of our nation’s healthcare system through the adoption and use of information technology. An electronic health record - public health (EHR-PH) system prototype was developed to demonstrate the feasibility of electronic data transfer from a health care provider, i.e. hospital or ambulatory care settings, to multiple customized public health systems which include a Newborn Metabolic Screening Registry, a Newborn Hearing Screening Registry, an Immunization Registry and a Communicable Disease Registry, using HL7 messaging standards. Our EHR-PH system prototype can be considered a distributed EHR-based RHIE/RHIO model - a principal element for a potential technical architecture for a NHIN. PMID:16779105

  3. An Internet Protocol-Based Software System for Real-Time, Closed-Loop, Multi-Spacecraft Mission Simulation Applications

    NASA Technical Reports Server (NTRS)

    Davis, George; Cary, Everett; Higinbotham, John; Burns, Richard; Hogie, Keith; Hallahan, Francis

    2003-01-01

    The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.

  4. Provably secure and high-rate quantum key distribution with time-bin qudits

    DOE PAGES

    Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton; ...

    2017-11-24

    The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. Wemore » use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. In conclusion, the security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system.« less

  5. Provably secure and high-rate quantum key distribution with time-bin qudits

    PubMed Central

    Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton; Kim, Jungsang; Gauthier, Daniel J.

    2017-01-01

    The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. We use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. The security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system. PMID:29202028

  6. Provably secure and high-rate quantum key distribution with time-bin qudits.

    PubMed

    Islam, Nurul T; Lim, Charles Ci Wen; Cahall, Clinton; Kim, Jungsang; Gauthier, Daniel J

    2017-11-01

    The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. We use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. The security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system.

  7. Provably secure and high-rate quantum key distribution with time-bin qudits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton

    The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. Wemore » use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. In conclusion, the security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system.« less

  8. Final Report for File System Support for Burst Buffers on HPC Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, W.; Mohror, K.

    Distributed burst buffers are a promising storage architecture for handling I/O workloads for exascale computing. As they are being deployed on more supercomputers, a file system that efficiently manages these burst buffers for fast I/O operations carries great consequence. Over the past year, FSU team has undertaken several efforts to design, prototype and evaluate distributed file systems for burst buffers on HPC systems. These include MetaKV: a Key-Value Store for Metadata Management of Distributed Burst Buffers, a user-level file system with multiple backends, and a specialized file system for large datasets of deep neural networks. Our progress for these respectivemore » efforts are elaborated further in this report.« less

  9. Sparse distributed memory prototype: Principles of operation

    NASA Technical Reports Server (NTRS)

    Flynn, Michael J.; Kanerva, Pentti; Ahanin, Bahram; Bhadkamkar, Neal; Flaherty, Paul; Hickey, Philip

    1988-01-01

    Sparse distributed memory is a generalized random access memory (RAM) for long binary words. Such words can be written into and read from the memory, and they can be used to address the memory. The main attribute of the memory is sensitivity to similarity, meaning that a word can be read back not only by giving the original right address but also by giving one close to it as measured by the Hamming distance between addresses. Large memories of this kind are expected to have wide use in speech and scene analysis, in signal detection and verification, and in adaptive control of automated equipment. The memory can be realized as a simple, massively parallel computer. Digital technology has reached a point where building large memories is becoming practical. The research is aimed at resolving major design issues that have to be faced in building the memories. The design of a prototype memory with 256-bit addresses and from 8K to 128K locations for 256-bit words is described. A key aspect of the design is extensive use of dynamic RAM and other standard components.

  10. Prototyping a Distributed Information Retrieval System That Uses Statistical Ranking.

    ERIC Educational Resources Information Center

    Harman, Donna; And Others

    1991-01-01

    Built using a distributed architecture, this prototype distributed information retrieval system uses statistical ranking techniques to provide better service to the end user. Distributed architecture was shown to be a feasible alternative to centralized or CD-ROM information retrieval, and user testing of the ranking methodology showed both…

  11. Examining Marijuana User and Non-User Prototypes in Formative Research for Prevention Campaigns

    ERIC Educational Resources Information Center

    Comello, Maria Leonora G.; Slater, Michael D.

    2010-01-01

    We report on research--both quantitative and qualitative--conducted to explore perceptions of prototypes of marijuana users, as well as the extent to which self-prototype congruence predicted marijuana use intention. Results of a survey of undergraduates (N = 139) showed that prototypes of users and non-users differed in terms of key attributes,…

  12. Modern Grid Initiative Distribution Taxonomy Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Kevin P.; Chen, Yousu; Chassin, David P.

    2008-11-01

    This is the final report for the development of a toxonomy of prototypical electrical distribution feeders. Two of the primary goals of the Department of Energy's (DOE) Modern Grid Initiative (MGI) are 'to accelerate the modernization of our nation's electricity grid' and to 'support demonstrations of systems of key technologies that can serve as the foundation for an integrated, modern power grid'. A key component to the realization of these goals is the effective implementation of new, as well as existing, 'smart grid technologies'. Possibly the largest barrier that has been identified in the deployment of smart grid technologies ismore » the inability to evaluate how their deployment will affect the electricity infrastructure, both locally and on a regional scale. The inability to evaluate the impacts of these technologies is primarily due to the lack of detailed electrical distribution feeder information. While detailed distribution feeder information does reside with the various distribution utilities, there is no central repository of information that can be openly accessed. The role of Pacific Northwest National Laboratory (PNNL) in the MGI for FY08 was to collect distribution feeder models, in the SynerGEE{reg_sign} format, from electric utilities around the nation so that they could be analyzed to identify regional differences in feeder design and operation. Based on this analysis PNNL developed a taxonomy of 24 prototypical feeder models in the GridLAB-D simulations environment that contain the fundamental characteristics of non-urban core, radial distribution feeders from the various regions of the U.S. Weighting factors for these feeders are also presented so that they can be used to generate a representative sample for various regions within the United States. The final product presented in this report is a toolset that enables the evaluation of new smart grid technologies, with the ability to aggregate their effects to regional and national levels. The distribution feeder models presented in this report are based on actual utility models but do not contain any proprietary or system specific information. As a result, the models discussed in this report can be openly distributed to industry, academia, or any interested entity, in order to facilitate the ability to evaluate smart grid technologies.« less

  13. EOS: A project to investigate the design and construction of real-time distributed embedded operating systems

    NASA Technical Reports Server (NTRS)

    Campbell, R. H.; Essick, R. B.; Grass, J.; Johnston, G.; Kenny, K.; Russo, V.

    1986-01-01

    The EOS project is investigating the design and construction of a family of real-time distributed embedded operating systems for reliable, distributed aerospace applications. Using the real-time programming techniques developed in co-operation with NASA in earlier research, the project staff is building a kernel for a multiple processor networked system. The first six months of the grant included a study of scheduling in an object-oriented system, the design philosophy of the kernel, and the architectural overview of the operating system. In this report, the operating system and kernel concepts are described. An environment for the experiments has been built and several of the key concepts of the system have been prototyped. The kernel and operating system is intended to support future experimental studies in multiprocessing, load-balancing, routing, software fault-tolerance, distributed data base design, and real-time processing.

  14. Exploring Manycore Multinode Systems for Irregular Applications with FPGA Prototyping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceriani, Marco; Palermo, Gianluca; Secchi, Simone

    We present a prototype of a multi-core architecture implemented on FPGA, designed to enable efficient execution of irregular applications on distributed shared memory machines, while maintaining high performance on regular workloads. The architecture is composed of off-the-shelf soft-core cores, local interconnection and memory interface, integrated with custom components that optimize it for irregular applications. It relies on three key elements: a global address space, multithreading, and fine-grained synchronization. Global addresses are scrambled to reduce the formation of network hot-spots, while the latency of the transactions is covered by integrating an hardware scheduler within the custom load/store buffers to take advantagemore » from the availability of multiple executions threads, increasing the efficiency in a transparent way to the application. We evaluated a dual node system irregular kernels showing scalability in the number of cores and threads.« less

  15. Building a cloud based distributed active archive data center

    NASA Astrophysics Data System (ADS)

    Ramachandran, Rahul; Baynes, Katie; Murphy, Kevin

    2017-04-01

    NASA's Earth Science Data System (ESDS) Program serves as a central cog in facilitating the implementation of NASA's Earth Science strategic plan. Since 1994, the ESDS Program has committed to the full and open sharing of Earth science data obtained from NASA instruments to all users. One of the key responsibilities of the ESDS Program is to continuously evolve the entire data and information system to maximize returns on the collected NASA data. An independent review was conducted in 2015 to holistically review the EOSDIS in order to identify gaps. The review recommendations were to investigate two areas: one, whether commercial cloud providers offer potential for storage, processing, and operational efficiencies, and two, the potential development of new data access and analysis paradigms. In response, ESDS has initiated several prototypes investigating the advantages and risks of leveraging cloud computing. This poster will provide an overview of one such prototyping activity, "Cumulus". Cumulus is being designed and developed as a "native" cloud-based data ingest, archive and management system that can be used for all future NASA Earth science data streams. The long term vision for Cumulus, its requirements, overall architecture, and implementation details, as well as lessons learned from the completion of the first phase of this prototype will be covered. We envision Cumulus will foster design of new analysis/visualization tools to leverage collocated data from all of the distributed DAACs as well as elastic cloud computing resources to open new research opportunities.

  16. Public Key-Based Need-to-Know Authorization Engine Final Report CRADA No. TSB-1553-98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark, R.; Williams, R.

    The goals of this project were to develop a public key-based authentication service plug-in based on LLNL's requirements, integrate the public key-based authentication with the Intra Verse authorization service adn the LLNL NTK server by developing a full-featured version of the prototyped Intra Verse need-to-know plug in; and to test the authorization and need-to-know plug-in in a secured extranet prototype among selected national Labs.

  17. Chapter 7 - Mapping potential vegetation type for the LANDFIRE Prototype Project

    Treesearch

    Tracey S. Frescino; Matthew G. Rollins

    2006-01-01

    Mapped potential vegetation functioned as a key component in the Landscape Fire and Resource Management Planning Tools Prototype Project (LANDFIRE Prototype Project). Disturbance regimes, vegetation response and succession, and wildland fuel dynamics across landscapes are controlled by patterns of the environmental factors (biophysical settings) that entrain the...

  18. Research into display sharing techniques for distributed computing environments

    NASA Technical Reports Server (NTRS)

    Hugg, Steven B.; Fitzgerald, Paul F., Jr.; Rosson, Nina Y.; Johns, Stephen R.

    1990-01-01

    The X-based Display Sharing solution for distributed computing environments is described. The Display Sharing prototype includes the base functionality for telecast and display copy requirements. Since the prototype implementation is modular and the system design provided flexibility for the Mission Control Center Upgrade (MCCU) operational consideration, the prototype implementation can be the baseline for a production Display Sharing implementation. To facilitate the process the following discussions are presented: Theory of operation; System of architecture; Using the prototype; Software description; Research tools; Prototype evaluation; and Outstanding issues. The prototype is based on the concept of a dedicated central host performing the majority of the Display Sharing processing, allowing minimal impact on each individual workstation. Each workstation participating in Display Sharing hosts programs to facilitate the user's access to Display Sharing as host machine.

  19. Illuminance and luminance distributions of a prototype ambient illumination system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Mullican, R. C.; Hayes, B. C.

    1991-01-01

    Preliminary results of research conducted in the late 1970's indicate that perceptual qualities of an enclosure can be influenced by the distribution of illumination within the enclosure. Subjective impressions such as spaciousness, perceptual clarity, and relaxation or tenseness, among others, appear to be related to different combinations of surface luminance. A prototype indirect ambient illumination system was developed which will allow crew members to alter surface luminance distributions within an enclosed module, thus modifying perceptual cues to match crew preferences. A traditional lensed direct lighting system was compared to the prototype utilizing the full-scale mockup of Space Station Freedom developed by Marshall Space Flight Center. The direct lensed system was installed in the habitation module with the indirect prototype deployed in the U.S. laboratory module. Analysis centered on the illuminance and luminance distributions resultant from these systems and the implications of various luminaire spacing options. All test configurations were evaluated for compliance with NASA Standard 3000, Man-System Integration Standards.

  20. Research and Development initiative of Satellite Technology Application for Environmental Issues in Asia Region

    NASA Astrophysics Data System (ADS)

    Hamamoto, K.; Kaneko, Y.; Sobue, S.; Oyoshi, K.

    2016-12-01

    Climate change and human activities are directly or indirectly influence the acceleration of environmental problems and natural hazards such as forest fires, drought and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these hazards and related phenomenon. However, there are still gaps between science and application of space technology in practical usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of space technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of space technology. The main activity of SAFE is SAFE prototyping. SAFE prototyping is a demonstration for end users and decision makers to apply space technology applications for solving environmental issues in Asia-Pacific region. By utilizing space technology and getting technical support by experts, prototype executers can develop the application system, which could support decision making activities. SAFE holds a workshop once a year. In the workshop, new prototypes are approved and the progress of on-going prototypes are confirmed. Every prototype is limited for two years period and all activities are operated by volunteer manner. As of 2016, 20 prototypes are completed and 6 prototypes are on-going. Some of the completed prototypes, for example drought monitoring in Indonesia were applied to operational use by a local official organization.

  1. Building a generalized distributed system model

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.

    1993-01-01

    The key elements in the 1992-93 period of the project are the following: (1) extensive use of the simulator to implement and test - concurrency control algorithms, interactive user interface, and replica control algorithms; and (2) investigations into the applicability of data and process replication in real-time systems. In the 1993-94 period of the project, we intend to accomplish the following: (1) concentrate on efforts to investigate the effects of data and process replication on hard and soft real-time systems - especially we will concentrate on the impact of semantic-based consistency control schemes on a distributed real-time system in terms of improved reliability, improved availability, better resource utilization, and reduced missed task deadlines; and (2) use the prototype to verify the theoretically predicted performance of locking protocols, etc.

  2. A network architecture supporting consistent rich behavior in collaborative interactive applications.

    PubMed

    Marsh, James; Glencross, Mashhuda; Pettifer, Steve; Hubbold, Roger

    2006-01-01

    Network architectures for collaborative virtual reality have traditionally been dominated by client-server and peer-to-peer approaches, with peer-to-peer strategies typically being favored where minimizing latency is a priority, and client-server where consistency is key. With increasingly sophisticated behavior models and the demand for better support for haptics, we argue that neither approach provides sufficient support for these scenarios and, thus, a hybrid architecture is required. We discuss the relative performance of different distribution strategies in the face of real network conditions and illustrate the problems they face. Finally, we present an architecture that successfully meets many of these challenges and demonstrate its use in a distributed virtual prototyping application which supports simultaneous collaboration for assembly, maintenance, and training applications utilizing haptics.

  3. Advanced photovoltaic solar array development

    NASA Technical Reports Server (NTRS)

    Kurland, Richard M.; Stella, Paul

    1989-01-01

    Phase 2 of the Advanced Photovoltaic Solar Array (APSA) program, started in mid-1987, is currently in progress to fabricate prototype wing hardware that will lead to wing integration and testing in 1989. The design configuration and key details are reviewed. A status of prototype hardware fabricated to date is provided. Results from key component-level tests are discussed. Revised estimates of array-level performance as a function of solar cell device technology for geosynchronous missions are given.

  4. Automated phenotype pattern recognition of zebrafish for high-throughput screening.

    PubMed

    Schutera, Mark; Dickmeis, Thomas; Mione, Marina; Peravali, Ravindra; Marcato, Daniel; Reischl, Markus; Mikut, Ralf; Pylatiuk, Christian

    2016-07-03

    Over the last years, the zebrafish (Danio rerio) has become a key model organism in genetic and chemical screenings. A growing number of experiments and an expanding interest in zebrafish research makes it increasingly essential to automatize the distribution of embryos and larvae into standard microtiter plates or other sample holders for screening, often according to phenotypical features. Until now, such sorting processes have been carried out by manually handling the larvae and manual feature detection. Here, a prototype platform for image acquisition together with a classification software is presented. Zebrafish embryos and larvae and their features such as pigmentation are detected automatically from the image. Zebrafish of 4 different phenotypes can be classified through pattern recognition at 72 h post fertilization (hpf), allowing the software to classify an embryo into 2 distinct phenotypic classes: wild-type versus variant. The zebrafish phenotypes are classified with an accuracy of 79-99% without any user interaction. A description of the prototype platform and of the algorithms for image processing and pattern recognition is presented.

  5. New consumer load prototype for electricity theft monitoring

    NASA Astrophysics Data System (ADS)

    Abdullateef, A. I.; Salami, M. J. E.; Musse, M. A.; Onasanya, M. A.; Alebiosu, M. I.

    2013-12-01

    Illegal connection which is direct connection to the distribution feeder and tampering of energy meter has been identified as a major process through which nefarious consumers steal electricity on low voltage distribution system. This has contributed enormously to the revenue losses incurred by the power and energy providers. A Consumer Load Prototype (CLP) is constructed and proposed in this study in order to understand the best possible pattern through which the stealing process is effected in real life power consumption. The construction of consumer load prototype will facilitate real time simulation and data collection for the monitoring and detection of electricity theft on low voltage distribution system. The prototype involves electrical design and construction of consumer loads with application of various standard regulations from Institution of Engineering and Technology (IET), formerly known as Institution of Electrical Engineers (IEE). LABVIEW platform was used for data acquisition and the data shows a good representation of the connected loads. The prototype will assist researchers and power utilities, currently facing challenges in getting real time data for the study and monitoring of electricity theft. The simulation of electricity theft in real time is one of the contributions of this prototype. Similarly, the power and energy community including students will appreciate the practical approach which the prototype provides for real time information rather than software simulation which has hitherto been used in the study of electricity theft.

  6. A suite of diagnostics to validate and optimize the prototype ITER neutral beam injector

    NASA Astrophysics Data System (ADS)

    Pasqualotto, R.; Agostini, M.; Barbisan, M.; Brombin, M.; Cavazzana, R.; Croci, G.; Dalla Palma, M.; Delogu, R. S.; De Muri, M.; Muraro, A.; Peruzzo, S.; Pimazzoni, A.; Pomaro, N.; Rebai, M.; Rizzolo, A.; Sartori, E.; Serianni, G.; Spagnolo, S.; Spolaore, M.; Tardocchi, M.; Zaniol, B.; Zaupa, M.

    2017-10-01

    The ITER project requires additional heating provided by two neutral beam injectors using 40 A negative deuterium ions accelerated at 1 MV. As the beam requirements have never been experimentally met, a test facility is under construction at Consorzio RFX, which hosts two experiments: SPIDER, full-size 100 kV ion source prototype, and MITICA, 1 MeV full-size ITER injector prototype. Since diagnostics in ITER injectors will be mainly limited to thermocouples, due to neutron and gamma radiation and to limited access, it is crucial to thoroughly investigate and characterize in more accessible experiments the key parameters of source plasma and beam, using several complementary diagnostics assisted by modelling. In SPIDER and MITICA the ion source parameters will be measured by optical emission spectroscopy, electrostatic probes, cavity ring down spectroscopy for H^- density and laser absorption spectroscopy for cesium density. Measurements over multiple lines-of-sight will provide the spatial distribution of the parameters over the source extension. The beam profile uniformity and its divergence are studied with beam emission spectroscopy, complemented by visible tomography and neutron imaging, which are novel techniques, while an instrumented calorimeter based on custom unidirectional carbon fiber composite tiles observed by infrared cameras will measure the beam footprint on short pulses with the highest spatial resolution. All heated components will be monitored with thermocouples: as these will likely be the only measurements available in ITER injectors, their capabilities will be investigated by comparison with other techniques. SPIDER and MITICA diagnostics are described in the present paper with a focus on their rationale, key solutions and most original and effective implementations.

  7. Autostereoscopic display based on two-layer lenticular lenses.

    PubMed

    Zhao, Wu-Xiang; Wang, Qiong-Hua; Wang, Ai-Hong; Li, Da-Hai

    2010-12-15

    An autostereoscopic display based on two-layer lenticular lenses is proposed. The two-layer lenticular lenses include one-layer conventional lenticular lenses and additional one-layer concentrating-light lenticular lenses. Two prototypes of the proposed and conventional autostereoscopic displays are developed. At the optimum three-dimensional view distance, the luminance distribution of the prototypes along the horizontal direction is measured. By calculating the luminance distribution, the crosstalk of the prototypes is obtained. Compared with the conventional autostereoscopic display, the proposed autostereoscopic display has less crosstalk, a wider view angle, and higher efficiency of light utilization.

  8. The SECOQC quantum key distribution network in Vienna

    NASA Astrophysics Data System (ADS)

    Peev, M.; Pacher, C.; Alléaume, R.; Barreiro, C.; Bouda, J.; Boxleitner, W.; Debuisschert, T.; Diamanti, E.; Dianati, M.; Dynes, J. F.; Fasel, S.; Fossier, S.; Fürst, M.; Gautier, J.-D.; Gay, O.; Gisin, N.; Grangier, P.; Happe, A.; Hasani, Y.; Hentschel, M.; Hübel, H.; Humer, G.; Länger, T.; Legré, M.; Lieger, R.; Lodewyck, J.; Lorünser, T.; Lütkenhaus, N.; Marhold, A.; Matyus, T.; Maurhart, O.; Monat, L.; Nauerth, S.; Page, J.-B.; Poppe, A.; Querasser, E.; Ribordy, G.; Robyr, S.; Salvail, L.; Sharpe, A. W.; Shields, A. J.; Stucki, D.; Suda, M.; Tamas, C.; Themel, T.; Thew, R. T.; Thoma, Y.; Treiber, A.; Trinkler, P.; Tualle-Brouri, R.; Vannel, F.; Walenta, N.; Weier, H.; Weinfurter, H.; Wimberger, I.; Yuan, Z. L.; Zbinden, H.; Zeilinger, A.

    2009-07-01

    In this paper, we present the quantum key distribution (QKD) network designed and implemented by the European project SEcure COmmunication based on Quantum Cryptography (SECOQC) (2004-2008), unifying the efforts of 41 research and industrial organizations. The paper summarizes the SECOQC approach to QKD networks with a focus on the trusted repeater paradigm. It discusses the architecture and functionality of the SECOQC trusted repeater prototype, which has been put into operation in Vienna in 2008 and publicly demonstrated in the framework of a SECOQC QKD conference held from October 8 to 10, 2008. The demonstration involved one-time pad encrypted telephone communication, a secure (AES encryption protected) video-conference with all deployed nodes and a number of rerouting experiments, highlighting basic mechanisms of the SECOQC network functionality. The paper gives an overview of the eight point-to-point network links in the prototype and their underlying technology: three plug and play systems by id Quantique, a one way weak pulse system from Toshiba Research in the UK, a coherent one-way system by GAP Optique with the participation of id Quantique and the AIT Austrian Institute of Technology (formerly ARCAustrian Research Centers GmbH—ARC is now operating under the new name AIT Austrian Institute of Technology GmbH following a restructuring initiative.), an entangled photons system by the University of Vienna and the AIT, a continuous-variables system by Centre National de la Recherche Scientifique (CNRS) and THALES Research and Technology with the participation of Université Libre de Bruxelles, and a free space link by the Ludwig Maximillians University in Munich connecting two nodes situated in adjacent buildings (line of sight 80 m). The average link length is between 20 and 30 km, the longest link being 83 km. The paper presents the architecture and functionality of the principal networking agent—the SECOQC node module, which enables the authentic classical communication required for key distillation, manages the generated key material, determines a communication path between any destinations in the network, and realizes end-to-end secure transport of key material between these destinations. The paper also illustrates the operation of the network in a number of typical exploitation regimes and gives an initial estimate of the network transmission capacity, defined as the maximum amount of key that can be exchanged, or alternatively the amount of information that can be transmitted with information theoretic security, between two arbitrary nodes.

  9. Design & implementation of distributed spatial computing node based on WPS

    NASA Astrophysics Data System (ADS)

    Liu, Liping; Li, Guoqing; Xie, Jibo

    2014-03-01

    Currently, the research work of SIG (Spatial Information Grid) technology mostly emphasizes on the spatial data sharing in grid environment, while the importance of spatial computing resources is ignored. In order to implement the sharing and cooperation of spatial computing resources in grid environment, this paper does a systematical research of the key technologies to construct Spatial Computing Node based on the WPS (Web Processing Service) specification by OGC (Open Geospatial Consortium). And a framework of Spatial Computing Node is designed according to the features of spatial computing resources. Finally, a prototype of Spatial Computing Node is implemented and the relevant verification work under the environment is completed.

  10. Prototypes and particulars: geometric and experience-dependent spatial categories.

    PubMed

    Spencer, John P; Hund, Alycia M

    2002-03-01

    People use geometric cues to form spatial categories. This study investigated whether people also use the spatial distribution of exemplars. Adults pointed to remembered locations on a tabletop. In Experiment 1, a target was placed in each geometric category, and the location of targets was varied. Adults' responses were biased away from a midline category boundary toward geometric prototypes located at the centers of left and right categories. Experiment 2 showed that prototype effects were not influenced by cross-category interactions. In Experiment 3, subsets of targets were positioned at different locations within each category. When prototype effects were removed, there was a bias toward the center of the exemplar distribution, suggesting that common categorization processes operate across spatial and object domains.

  11. Concentrating Solar Power Central Receiver Panel Component Fabrication and Testing FINAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDowell, Michael W; Miner, Kris

    The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then completemore » the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to test scale prototype receiver, off sun but at temperature, at a molten salt loop at ground level adjacent to the tower also had to be abandoned. Thus, no test facility existed for a molten salt receiver test. As a result, PWR completed the prototype receiver design and then fabricated key components for testing instead of fabricating the complete prototype receiver. A number of innovative design ideas have been developed. Key features of the receiver panel have been identified. This evaluation includes input from Solar 2, personal experience of people working on these programs and meetings with Sandia. Key components of the receiver design and key processes used to fabricate a receiver have been selected for further evaluation. The Test Plan, Concentrated Solar Power Receiver In Cooperation with the Department of Energy and Sandia National Laboratory was written to define the scope of the testing to be completed as well as to provide details related to the hardware, instrumentation, and data acquisition. The document contains a list of test objectives, a test matrix, and an associated test box showing the operating points to be tested. Test Objectives: 1. Demonstrate low-cost manufacturability 2. Demonstrate robustness of two different tube base materials 3. Collect temperature data during on sun operation 4. Demonstrate long term repeated daily operation of heat shields 5. Complete pinhole tube weld repairs 6. Anchor thermal models This report discusses the tests performed, the results, and implications for design improvements and LCOE reduction.« less

  12. Genomics-Based Security Protocols: From Plaintext to Cipherprotein

    NASA Technical Reports Server (NTRS)

    Shaw, Harry; Hussein, Sayed; Helgert, Hermann

    2011-01-01

    The evolving nature of the internet will require continual advances in authentication and confidentiality protocols. Nature provides some clues as to how this can be accomplished in a distributed manner through molecular biology. Cryptography and molecular biology share certain aspects and operations that allow for a set of unified principles to be applied to problems in either venue. A concept for developing security protocols that can be instantiated at the genomics level is presented. A DNA (Deoxyribonucleic acid) inspired hash code system is presented that utilizes concepts from molecular biology. It is a keyed-Hash Message Authentication Code (HMAC) capable of being used in secure mobile Ad hoc networks. It is targeted for applications without an available public key infrastructure. Mechanics of creating the HMAC are presented as well as a prototype HMAC protocol architecture. Security concepts related to the implementation differences between electronic domain security and genomics domain security are discussed.

  13. Management of CAD/CAM information: Key to improved manufacturing productivity

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Brainin, J.

    1984-01-01

    A key element to improved industry productivity is effective management of CAD/CAM information. To stimulate advancements in this area, a joint NASA/Navy/Industry project designated Integrated Programs for Aerospace-Vehicle Design (IPAD) is underway with the goal of raising aerospace industry productivity through advancement of technology to integrate and manage information involved in the design and manufacturing process. The project complements traditional NASA/DOD research to develop aerospace design technology and the Air Force's Integrated Computer-Aided Manufacturing (ICAM) program to advance CAM technology. IPAD research is guided by an Industry Technical Advisory Board (ITAB) composed of over 100 repesentatives from aerospace and computer companies. The IPAD accomplishments to date in development of requirements and prototype software for various levels of company-wide CAD/CAM data management are summarized and plans for development of technology for management of distributed CAD/CAM data and information required to control future knowledge-based CAD/CAM systems are discussed.

  14. Airport Simulations Using Distributed Computational Resources

    NASA Technical Reports Server (NTRS)

    McDermott, William J.; Maluf, David A.; Gawdiak, Yuri; Tran, Peter; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The Virtual National Airspace Simulation (VNAS) will improve the safety of Air Transportation. In 2001, using simulation and information management software running over a distributed network of super-computers, researchers at NASA Ames, Glenn, and Langley Research Centers developed a working prototype of a virtual airspace. This VNAS prototype modeled daily operations of the Atlanta airport by integrating measured operational data and simulation data on up to 2,000 flights a day. The concepts and architecture developed by NASA for this prototype are integral to the National Airspace Simulation to support the development of strategies improving aviation safety, identifying precursors to component failure.

  15. A Trustworthy Key Generation Prototype Based on DDR3 PUF for Wireless Sensor Networks

    PubMed Central

    Liu, Wenchao; Zhang, Zhenhua; Li, Miaoxin; Liu, Zhenglin

    2014-01-01

    Secret key leakage in wireless sensor networks (WSNs) is a high security risk especially when sensor nodes are deployed in hostile environment and physically accessible to attackers. With nowadays semi/fully-invasive attack techniques attackers can directly derive the cryptographic key from non-volatile memory (NVM) storage. Physically Unclonable Function (PUF) is a promising technology to resist node capture attacks, and it also provides a low cost and tamper-resistant key provisioning solution. In this paper, we designed a PUF based on double-data-rate SDRAM Type 3 (DDR3) memory by exploring its memory decay characteristics. We also described a prototype of 128-bit key generation based on DDR3 PUF with integrated fuzzy extractor. Due to the wide adoption of DDR3 memory in WSN, our proposed DDR3 PUF technology with high security levels and no required hardware changes is suitable for a wide range of WSN applications. PMID:24984058

  16. Operation of remote mobile sensors for security of drinking water distribution systems.

    PubMed

    Perelman, By Lina; Ostfeld, Avi

    2013-09-01

    The deployment of fixed online water quality sensors in water distribution systems has been recognized as one of the key components of contamination warning systems for securing public health. This study proposes to explore how the inclusion of mobile sensors for inline monitoring of various water quality parameters (e.g., residual chlorine, pH) can enhance water distribution system security. Mobile sensors equipped with sampling, sensing, data acquisition, wireless transmission and power generation systems are being designed, fabricated, and tested, and prototypes are expected to be released in the very near future. This study initiates the development of a theoretical framework for modeling mobile sensor movement in water distribution systems and integrating the sensory data collected from stationary and non-stationary sensor nodes to increase system security. The methodology is applied and demonstrated on two benchmark networks. Performance of different sensor network designs are compared for fixed and combined fixed and mobile sensor networks. Results indicate that complementing online sensor networks with inline monitoring can increase detection likelihood and decrease mean time to detection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierson, L.G.; Witzke, E.L.

    This effort studied the integration of innovative methods of key management crypto synchronization, and key agility while scaling encryption speed. Viability of these methods for encryption of ATM cell payloads at the SONET OC- 192 data rate (10 Gb/s), and for operation at OC-48 rates (2.5 Gb/s) was shown. An SNL-Developed pipelined DES design was adapted for the encryption of ATM cells. A proof-of-principle prototype circuit board containing 11 Electronically Programmable Logic Devices (each holding the equivalent of 100,000 gates) was designed, built, and used to prototype a high speed encryptor.

  18. wHospital: a web-based application with digital signature for drugs dispensing management.

    PubMed

    Rossi, Lorenzo; Margola, Lorenzo; Manzelli, Vacia; Bandera, Alessandra

    2006-01-01

    wHospital is the result of an information technology research project, based on the utilization of a web based application for managing the hospital drugs dispensing. Part of wHospital back bone and its key distinguishing characteristic is the adoption of the digital signature system,initially deployed by the Government of Lombardia, a Northern Italy Region, throughout the distribution of smart cards to all the healthcare and hospital staffs. The developed system is a web-based application with a proposed Health Records Digital Signature (HReDS) handshake to comply with the national law and with the Joint Commission International Standards. The prototype application, for a single hospital Operative Unit (OU), has focused on data and process management, related to drug therapy. Following a multi-faceted selection process, the Infective Disease OU of the Hospital in Busto Arsizio, Lombardia, was chosen for the development and prototype implementation. The project lead time, from user requirement analysis to training and deployment was approximately 8 months. This paper highlights the applied project methodology, the system architecture, and the achieved preliminary results.

  19. Research on Service Platform of Internet of Things for Smart City

    NASA Astrophysics Data System (ADS)

    Wang, W.; He, Z.; Huang, D.; Zhang, X.

    2014-04-01

    The application of Internet of Things in surveying and mapping industry basically is at the exploration stage, has not formed a unified standard. Chongqing Institute of Surveying and Mapping (CQISM) launched the research p roject "Research on the Technology of Internet of Things for Smart City". The project focuses on the key technologies of information transmission and exchange on the Internet of Things platform. The data standards of Internet of Things are designed. The real-time acquisition, mass storage and distributed data service of mass sensors are realized. On this basis, CQISM deploys the prototype platform of Internet of Things. The simulation application in Connected Car proves that the platform design is scientific and practical.

  20. Prototypes Are Key Heuristic Information in Insight Problem Solving

    ERIC Educational Resources Information Center

    Yang, Wenjing; Dietrich, Arne; Liu, Peiduo; Ming, Dan; Jin, Yule; Nusbaum, Howard C.; Qiu, Jiang; Zhang, Qinglin

    2016-01-01

    Evidence from a range of fields indicates that inventions are often inspired by drawing a parallel to solutions found in nature. However, the cognitive mechanism of this process is not well understood. The cognitive mechanism of heuristic prototype in scientific innovation was tested with 3 experiments. First, 84 historical accounts of important…

  1. The StarLite Project Prototyping Real-Time Software

    DTIC Science & Technology

    1991-10-01

    multiversion data objects using the prototyping environment. Section 5 concludes the paper. 2. Message-Based Simulation When prototyping distributed...phase locking and priority-based synchronization algorithms, and between a multiversion database and its corresponding single-version database, through...its deadline, since the transaction is only aborted in the validation phase. 4.5. A Multiversion Database System To illustrate the effctivcness of the

  2. The application of prototype point processes for the summary and description of California wildfires

    USGS Publications Warehouse

    Nichols, K.; Schoenberg, F.P.; Keeley, J.E.; Bray, A.; Diez, D.

    2011-01-01

    A method for summarizing repeated realizations of a space-time marked point process, known as prototyping, is discussed and applied to catalogues of wildfires in California. Prototype summaries are constructed for varying time intervals using California wildfire data from 1990 to 2006. Previous work on prototypes for temporal and space-time point processes is extended here to include methods for computing prototypes with marks and the incorporation of prototype summaries into hierarchical clustering algorithms, the latter of which is used to delineate fire seasons in California. Other results include summaries of patterns in the spatial-temporal distribution of wildfires within each wildfire season. ?? 2011 Blackwell Publishing Ltd.

  3. The DADDI Project: Delivering a Working Prototype for Arctic Coastal Data

    NASA Astrophysics Data System (ADS)

    Wilson, B. E.; Parsons, M. A.; Palanisamy, G.

    2006-12-01

    A key element for the ultimate success of the International Polar Year (IPY) effort will be our ability to make the volumes of data collected in this work available and usable to researchers, both now and into the future. Ultimately, the IPY data will reside in a number of different repositories and will be accessed by users from a wide variety of disciplines and with a wide variety of needs. It is therefore important that appropriate informatics tools be developed and made available to the IPY community for indexing, searching, retrieving, and managing distributed polar data. Discovery, Access, and Delivery of Data for the IPY (DADDI) is a NASA-funded project involving multiple institutions, targeted at leveraging and evolving Earth Science informatics tools to meet the Informatics challenges of the IPY effort. To test our approaches, we have selected Arctic coastal data as a focus area for developing a working prototype of an IPY Informatics solution. Coastal areas are undergoing some of the most drastic changes within the polar regions and are also the area of most concentrated human activity at high latitudes. Coastal regions are also of interest to a broad range of disciplines and data customers, so this is an area where there is a high need for a robust Informatics infrastructure. In this presentation, I will review the requirements which we have collected for an information system to manage a dispersed collection of Arctic coastal data. I will then present the current version of the prototype which we are developing, discuss the ways in which the underlying tools can be leveraged out to other IPY- related areas, and discuss the lessons learned in developing this prototype information system.

  4. Expert system decision support for low-cost launch vehicle operations

    NASA Technical Reports Server (NTRS)

    Szatkowski, G. P.; Levin, Barry E.

    1991-01-01

    Progress in assessing the feasibility, benefits, and risks associated with AI expert systems applied to low cost expendable launch vehicle systems is described. Part one identified potential application areas in vehicle operations and on-board functions, assessed measures of cost benefit, and identified key technologies to aid in the implementation of decision support systems in this environment. Part two of the program began the development of prototypes to demonstrate real-time vehicle checkout with controller and diagnostic/analysis intelligent systems and to gather true measures of cost savings vs. conventional software, verification and validation requirements, and maintainability improvement. The main objective of the expert advanced development projects was to provide a robust intelligent system for control/analysis that must be performed within a specified real-time window in order to meet the demands of the given application. The efforts to develop the two prototypes are described. Prime emphasis was on a controller expert system to show real-time performance in a cryogenic propellant loading application and safety validation implementation of this system experimentally, using commercial-off-the-shelf software tools and object oriented programming techniques. This smart ground support equipment prototype is based in C with imbedded expert system rules written in the CLIPS protocol. The relational database, ORACLE, provides non-real-time data support. The second demonstration develops the vehicle/ground intelligent automation concept, from phase one, to show cooperation between multiple expert systems. This automated test conductor (ATC) prototype utilizes a knowledge-bus approach for intelligent information processing by use of virtual sensors and blackboards to solve complex problems. It incorporates distributed processing of real-time data and object-oriented techniques for command, configuration control, and auto-code generation.

  5. The scanning cryomacroscope - A device prototype for the study of cryopreservation

    NASA Astrophysics Data System (ADS)

    Feig, Justin S. G.; Rabin, Yoed

    2014-07-01

    A new cryomacroscope prototype-a visualization device for the in situ analysis of cryopreserved biological samples-is presented in the current study. In order to visualize samples larger than the field of view of the optical setup, a scanning mechanism is integrated into the system, which represents a key improvement over previous cryomacroscope prototypes. Another key feature of the new design is in its compatibility with available top-loading controlled-rate cooling chambers, which eliminates the need for a dedicated cooling mechanism. The objective for the current development is to create means to generate a single digital movie of an experimental investigation, with all relevant data overlaid. The visualization capabilities of the scanning cryomacroscope are demonstrated in the current study on the cryoprotective agent dimethyl sulfoxide and the cryoprotective cocktail DP6. Demonstrated effects include glass formation, various regimes of crystallization, thermal contraction, and fracture formation.

  6. Issues and approaches for electronic document approval and transmittal using digital signatures and text authentication: Prototype documentation

    NASA Astrophysics Data System (ADS)

    Boling, M. E.

    1989-09-01

    Prototypes were assembled pursuant to recommendations made in report K/DSRD-96, Issues and Approaches for Electronic Document Approval and Transmittal Using Digital Signatures and Text Authentication, and to examine and discover the possibilities for integrating available hardware and software to provide cost effective systems for digital signatures and text authentication. These prototypes show that on a LAN, a multitasking, windowed, mouse/keyboard menu-driven interface can be assembled to provide easy and quick access to bit-mapped images of documents, electronic forms and electronic mail messages with a means to sign, encrypt, deliver, receive or retrieve and authenticate text and signatures. In addition they show that some of this same software may be used in a classified environment using host to terminal transactions to accomplish these same operations. Finally, a prototype was developed demonstrating that binary files may be signed electronically and sent by point to point communication and over ARPANET to remote locations where the authenticity of the code and signature may be verified. Related studies on the subject of electronic signatures and text authentication using public key encryption were done within the Department of Energy. These studies include timing studies of public key encryption software and hardware and testing of experimental user-generated host resident software for public key encryption. This software used commercially available command-line source code. These studies are responsive to an initiative within the Office of the Secretary of Defense (OSD) for the protection of unclassified but sensitive data. It is notable that these related studies are all built around the same commercially available public key encryption products from the private sector and that the software selection was made independently by each study group.

  7. Prototypes and system test stands for the Phase 1 upgrade of the CMS pixel detector

    DOE PAGES

    Hasegawa, S.

    2016-04-23

    The CMS pixel phase-1 upgrade project replaces the current pixel detector with an upgraded system with faster readout electronics during the extended year-end technical stop of 2016/2017. New electronics prototypes for the system have been developed, and tests in a realistic environment for a comprehensive evaluation are needed. A full readout test stand with either the same hardware as used in the current CMS pixel detector or the latest prototypes of upgrade electronics has been built. The setup enables the observation and investigation of a jitter increase in the data line associated with trigger rate increases. This effect is duemore » to the way in which the clock and trigger distribution is implemented in CMS. A new prototype of the electronics with a PLL based on a voltage controlled quartz crystal oscillator (QPLL), which works as jitter filter, in the clock distribution path was produced. With the test stand, it was confirmed that the jitter increase is not seen with the prototype, and also good performance was confirmed at the expected detector operation temperature ($-$20 °C).« less

  8. Clinical data integration of distributed data sources using Health Level Seven (HL7) v3-RIM mapping

    PubMed Central

    2011-01-01

    Background Health information exchange and health information integration has become one of the top priorities for healthcare systems across institutions and hospitals. Most organizations and establishments implement health information exchange and integration in order to support meaningful information retrieval among their disparate healthcare systems. The challenges that prevent efficient health information integration for heterogeneous data sources are the lack of a common standard to support mapping across distributed data sources and the numerous and diverse healthcare domains. Health Level Seven (HL7) is a standards development organization which creates standards, but is itself not the standard. They create the Reference Information Model. RIM is developed by HL7's technical committees. It is a standardized abstract representation of HL7 data across all the domains of health care. In this article, we aim to present a design and a prototype implementation of HL7 v3-RIM mapping for information integration of distributed clinical data sources. The implementation enables the user to retrieve and search information that has been integrated using HL7 v3-RIM technology from disparate health care systems. Method and results We designed and developed a prototype implementation of HL7 v3-RIM mapping function to integrate distributed clinical data sources using R-MIM classes from HL7 v3-RIM as a global view along with a collaborative centralized web-based mapping tool to tackle the evolution of both global and local schemas. Our prototype was implemented and integrated with a Clinical Database management Systems CDMS as a plug-in module. We tested the prototype system with some use case scenarios for distributed clinical data sources across several legacy CDMS. The results have been effective in improving information delivery, completing tasks that would have been otherwise difficult to accomplish, and reducing the time required to finish tasks which are used in collaborative information retrieval and sharing with other systems. Conclusions We created a prototype implementation of HL7 v3-RIM mapping for information integration between distributed clinical data sources to promote collaborative healthcare and translational research. The prototype has effectively and efficiently ensured the accuracy of the information and knowledge extractions for systems that have been integrated PMID:22104558

  9. Staged Catalytic Partial Oxidation (SCPO) System - The State of Art Integrated Short Contact Time Hydrogen Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke Liu; Jin Ki Hong; Wei Wei

    Research and development on hydrogen and syngas production have great potential in addressing the following challenges in energy arena: (1) produce more clean fuels to meet the increasing demands for clean liquid and gaseous fuels for transportation and electricity generation, (2) increase the efficiency of energy utilization for fuels and electricity production, and (3) eliminate the pollutants and decouple the link between energy utilization and greenhouse gas emissions in end-use systems [Song, 2006, Liu, Song & Subramani 2009]. In this project, GE Global Research (GEGR) collaborated with Argonne National Laboratory (ANL) and the University of Minnesota (UoMn), developed and demonstratedmore » a low cost, compact staged catalytic partial oxidation (SCPO) technology for distributed hydrogen generation. GEGR analyzed different reforming system designs, and developed the SCPO reforming system which is a unique technology staging and integrating 3 different short contact time catalysts in a single, compact reactor: catalytic partial oxidation (CPO), steam methane reforming (SMR) and water-gas shift (WGS). This integration is demonstrated via the fabrication of a prototype scale unit of each key technology. Approaches for key technical challenges of the program includes: · Analyzed different system designs · Designed the SCPO hydrogen production system · Developed highly active and sulfur tolerant CPO catalysts · Designed and built different pilot-scale reactors to demonstrate each key technology · Evaluated different operating conditions · Quantified the efficiency and cost of the system · Developed process design package (PDP) for 1500 kg H2/day distributed H2 production unit. SCPO met the Department of Energy (DOE) and GE’s cost and efficiency targets for distributed hydrogen production.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prescott, Ryan; Marger, Bernard L.; Chiu, Ailsa

    During the second iteration of the US NDC Modernization Elaboration phase (E2), the SNL US NDC Modernization project team completed follow-on COTS surveys & exploratory prototyping related to the Object Storage & Distribution (OSD) mechanism, and the processing control software infrastructure. This report summarizes the E2 prototyping work.

  11. Cytochrome P450 ω-Hydroxylases in Inflammation and Cancer

    PubMed Central

    Johnson, Amanda L.; Edson, Katheryne Z.; Totah, Rheem A.; Rettie, Allan E.

    2015-01-01

    Cytochrome P450-dependent ω-hydroxylation is a prototypic metabolic reaction of CYP4 family members that is important for the elimination and bioactivation of not only therapeutic drugs, but also endogenous compounds, principally fatty acids. Eicosanoids, derived from arachidonic acid, are key substrates in the latter category. Human CYP4 enzymes, mainly CYP4A11, CYP4F2, and CYP4F3B, hydroxylate arachidonic acid at the omega position to form 20-HETE, which has important effects in tumor progression and on angiogenesis and blood pressure regulation in the vasculature and kidney. CYP4F3A in myeloid tissue catalyzes the ω-hydroxylation of leukotriene B4 to 20-hydroxy leukotriene B4, an inactivation process that is critical for the regulation of the inflammatory response. Here, we review the enzymology, tissue distribution, and substrate selectivity of human CYP4 ω-hydroxylases and their roles as catalysts for the formation and termination of the biological effects of key eicosanoid metabolites in inflammation and cancer progression. PMID:26233909

  12. Epitrochoid Power-Law Nozzle Rapid Prototype Build/Test Project (Briefing Charts)

    DTIC Science & Technology

    2015-02-01

    Production Approved for public release; distribution is unlimited. PA clearance # 15122. 4 Epitrochoid Power-Law Nozzle Build/Test Build on SpaceX ...Multiengine Approach SpaceX ) Approved for public release; distribution is unlimited. PA clearance # 15122. Engines: Merlin 1D on Falcon 9 v1.1 (Photo 5...to utilize features of high performance engines advances and the economies of scale of the multi-engine approach of SpaceX Falcon 9 – Rapid Prototype

  13. Differentiation and Exploration of Model MACP for HE VER 1.0 on Prototype Performance Measurement Application for Higher Education

    NASA Astrophysics Data System (ADS)

    El Akbar, R. Reza; Anshary, Muhammad Adi Khairul; Hariadi, Dennis

    2018-02-01

    Model MACP for HE ver.1. Is a model that describes how to perform measurement and monitoring performance for Higher Education. Based on a review of the research related to the model, there are several parts of the model component to develop in further research, so this research has four main objectives. The first objective is to differentiate the CSF (critical success factor) components in the previous model, the two key KPI (key performance indicators) exploration in the previous model, the three based on the previous objective, the new and more detailed model design. The final goal is the fourth designed prototype application for performance measurement in higher education, based on a new model created. The method used is explorative research method and application design using prototype method. The results of this study are first, forming a more detailed new model for measurement and monitoring of performance in higher education, differentiation and exploration of the Model MACP for HE Ver.1. The second result compiles a dictionary of college performance measurement by re-evaluating the existing indicators. The third result is the design of prototype application of performance measurement in higher education.

  14. An Architecture for Intelligent Systems Based on Smart Sensors

    NASA Technical Reports Server (NTRS)

    Schmalzel, John; Figueroa, Fernando; Morris, Jon; Mandayam, Shreekanth; Polikar, Robi

    2004-01-01

    Based on requirements for a next-generation rocket test facility, elements of a prototype Intelligent Rocket Test Facility (IRTF) have been implemented. A key component is distributed smart sensor elements integrated using a knowledgeware environment. One of the specific goals is to imbue sensors with the intelligence needed to perform self diagnosis of health and to participate in a hierarchy of health determination at sensor, process, and system levels. The preliminary results provide the basis for future advanced development and validation using rocket test stand facilities at Stennis Space Center (SSC). We have identified issues important to further development of health-enabled networks, which should be of interest to others working with smart sensors and intelligent health management systems.

  15. PHyTIR - A Prototype Thermal Infrared Radiometer

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.; Hook, Simon J.; Johnson, William R.; Foote, Marc C.; Paine, Christopher G.; Pannell, Zack W.; Smythe, Robert F.; Kuan, Gary M.; Jakoboski, Julie K.; Eng, Bjorn T.

    2013-01-01

    This paper describes the PHyTIR (Prototype HyspIRI Thermal Infrared Radiometer) instrument, which is the engineering model for the proposed HyspIRI (Hyperspectral Infrared Imager) earth observing instrument. The HyspIRI mission would be comprised of the HyspIRI TIR (Thermal Infrared Imager), and a VSWIR (Visible Short-Wave Infra-Red Imaging Spectrometer). Both instruments would be used to address key science questions related to the earth's carbon cycle, ecosystems, climate, and solid earth properties. Data gathering of volcanic activities, earthquakes, wildfires, water use and availability, urbanization, and land surface compositions and changes, would aid the predictions and evaluations of such events and the impact they create. Even though the proposed technology for the HyspIRI imager is mature, the PHyTIR prototype is needed to advance the technology levels for several of the instrument's key components, and to reduce risks, in particular to validate 1) the higher sensitivity, spatial resolution, and higher throughput required for this focal plane array, 2) the pointing accuracy, 2) the characteristics of several spectral channels, and 4) the use of ambient temperature optics. The PHyTIR telescope consists of the focal plane assembly that is housed within a cold housing located inside a vacuum enclosure; all mounted to a bulkhead, and an optical train that consists of 3 powered mirrors; extending to both sides of the bulkhead. A yoke connects the telescope to a scan mirror. The rotating mirror enables to scan- a large track on the ground. This structure is supported by kinematic mounts, linking the telescope assembly to a base plate that would also become the spacecraft interface for HyspIRI. The focal plane's cooling units are also mounted to the base plate, as is an overall enclosure that has two viewing ports with large exterior baffles, shielding the focal plane from incoming stray light. PHyTIR's electronics is distributed inside and near the vacuum enclosure, and in a nearby rack. The data acquisition technique would be to take measurements over a 51deg wide swath in the cross spacecraft velocity direction, which is brought into view through the rotating scan mirror. A landscape mosaic thus can be assembled by overlaying rows of measurements. The paper briefly outlines the proposed HyspIRI mission and its data acquisition technique; it then describes the prototype PHyTIR instrument.

  16. Ensemble Analysis of Variational Assimilation of Hydrologic and Hydrometeorological Data into Distributed Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Lee, H.; Seo, D.; Koren, V.

    2008-12-01

    A prototype 4DVAR (four-dimensional variational) data assimilator for gridded Sacramento soil-moisture accounting and kinematic-wave routing models in the Hydrology Laboratory's Research Distributed Hydrologic Model (HL-RDHM) has been developed. The prototype assimilates streamflow and in-situ soil moisture data and adjusts gridded precipitation and climatological potential evaporation data to reduce uncertainty in the model initial conditions for improved monitoring and prediction of streamflow and soil moisture at the outlet and interior locations within the catchment. Due to large degrees of freedom involved, data assimilation (DA) into distributed hydrologic models is complex. To understand and assess sensitivity of the performance of DA to uncertainties in the model initial conditions and in the data, two synthetic experiments have been carried out in an ensemble framework. Results from the synthetic experiments shed much light on the potential and limitations with DA into distributed models. For initial real-world assessment, the prototype DA has also been applied to the headwater basin at Eldon near the Oklahoma-Arkansas border. We present these results and describe the next steps.

  17. Community Needs Assessment and Portal Prototype Development for an Arctic Spatial Data Infrastructure (ASDI)

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Warnick, W. K.; Hempel, L. C.; Henk, J.; Sorensen, M.; Tweedie, C. E.; Gaylord, A. G.

    2007-12-01

    As the creation and use of geospatial data in research, management, logistics, and education applications has proliferated, there is now a tremendous potential for advancing science through a variety of cyber-infrastructure applications, including Spatial Data Infrastructure (SDI) and related technologies. SDIs provide a necessary and common framework of standards, securities, policies, procedures, and technology to support the effective acquisition, coordination, dissemination and use of geospatial data by multiple and distributed stakeholder and user groups. Despite the numerous research activities in the Arctic, there is no established SDI and, because of this lack of a coordinated infrastructure, there is inefficiency, duplication of effort, and reduced data quality and search ability of arctic geospatial data. The urgency for establishing this framework is significant considering the myriad of data that is being collected in celebration of the International Polar Year (IPY) in 2007-2008 and the current international momentum for an improved and integrated circum-arctic terrestrial-marine-atmospheric environmental observatories network. The key objective of this project is to lay the foundation for full implementation of an Arctic Spatial Data Infrastructure (ASDI) through an assessment of community needs, readiness, and resources and through the development of a prototype web-mapping portal.

  18. Automatic approach to deriving fuzzy slope positions

    NASA Astrophysics Data System (ADS)

    Zhu, Liang-Jun; Zhu, A.-Xing; Qin, Cheng-Zhi; Liu, Jun-Zhi

    2018-03-01

    Fuzzy characterization of slope positions is important for geographic modeling. Most of the existing fuzzy classification-based methods for fuzzy characterization require extensive user intervention in data preparation and parameter setting, which is tedious and time-consuming. This paper presents an automatic approach to overcoming these limitations in the prototype-based inference method for deriving fuzzy membership value (or similarity) to slope positions. The key contribution is a procedure for finding the typical locations and setting the fuzzy inference parameters for each slope position type. Instead of being determined totally by users in the prototype-based inference method, in the proposed approach the typical locations and fuzzy inference parameters for each slope position type are automatically determined by a rule set based on prior domain knowledge and the frequency distributions of topographic attributes. Furthermore, the preparation of topographic attributes (e.g., slope gradient, curvature, and relative position index) is automated, so the proposed automatic approach has only one necessary input, i.e., the gridded digital elevation model of the study area. All compute-intensive algorithms in the proposed approach were speeded up by parallel computing. Two study cases were provided to demonstrate that this approach can properly, conveniently and quickly derive the fuzzy slope positions.

  19. Lyceum: A Multi-Protocol Digital Library Gateway

    NASA Technical Reports Server (NTRS)

    Maa, Ming-Hokng; Nelson, Michael L.; Esler, Sandra L.

    1997-01-01

    Lyceum is a prototype scalable query gateway that provides a logically central interface to multi-protocol and physically distributed, digital libraries of scientific and technical information. Lyceum processes queries to multiple syntactically distinct search engines used by various distributed information servers from a single logically central interface without modification of the remote search engines. A working prototype (http://www.larc.nasa.gov/lyceum/) demonstrates the capabilities, potentials, and advantages of this type of meta-search engine by providing access to over 50 servers covering over 20 disciplines.

  20. TeCo3D: a 3D telecooperation application based on VRML and Java

    NASA Astrophysics Data System (ADS)

    Mauve, Martin

    1998-12-01

    In this paper we present a method for sharing collaboration- unaware VRML content, e.g. 3D models which were not specifically developed for use in a distributed environment. This functionality is an essential requirement for the inclusion of arbitrary VRML content, as generated by standard CAD or animation software, into teleconferencing sessions. We have developed a 3D TeleCooperation (TeCo3D) prototype to demonstrate the feasibility of our approach. The basic services provided by the prototype are the distribution of cooperation unaware VRML content, the sharing of user interactions, and the joint viewing of the content. In order to achieve maximum portability, the prototype was developed completely in Java. This paper presents general aspects of sharing VRML content as well as the concepts, the architecture and the services of the TeCo3D prototype. Our approach relies on existing VRML browsers as the VRML presentation and execution engines while reliable multicast is used as the means of communication to provide for scalability.

  1. Operations management system advanced automation: Fault detection isolation and recovery prototyping

    NASA Technical Reports Server (NTRS)

    Hanson, Matt

    1990-01-01

    The purpose of this project is to address the global fault detection, isolation and recovery (FDIR) requirements for Operation's Management System (OMS) automation within the Space Station Freedom program. This shall be accomplished by developing a selected FDIR prototype for the Space Station Freedom distributed processing systems. The prototype shall be based on advanced automation methodologies in addition to traditional software methods to meet the requirements for automation. A secondary objective is to expand the scope of the prototyping to encompass multiple aspects of station-wide fault management (SWFM) as discussed in OMS requirements documentation.

  2. Applying NISHIJIN historical textile technique for e-Textile.

    PubMed

    Kuroda, Tomohiro; Hirano, Kikuo; Sugimura, Kazushige; Adachi, Satoshi; Igarashi, Hidetsugu; Ueshima, Kazuo; Nakamura, Hideo; Nambu, Masayuki; Doi, Takahiro

    2013-01-01

    The e-Textile is the key technology for continuous ambient health monitoring to increase quality of life of patients with chronic diseases. The authors introduce techniques of Japanese historical textile, NISHIJIN, which illustrate almost any pattern from one continuous yarn within the machine weaving process, which is suitable for mixed flow production. Thus, NISHIJIN is suitable for e-Textile production, which requires rapid prototyping and mass production of very complicated patterns. The authors prototyped and evaluated a few vests to take twelve-lead electrocardiogram. The result tells that the prototypes obtains electrocardiogram, which is good enough for diagnosis.

  3. Decision aid prototype development for parents considering adenotonsillectomy for their children with sleep disordered breathing.

    PubMed

    Maguire, Erin; Hong, Paul; Ritchie, Krista; Meier, Jeremy; Archibald, Karen; Chorney, Jill

    2016-11-04

    To describe the process involved in developing a decision aid prototype for parents considering adenotonsillectomy for their children with sleep disordered breathing. A paper-based decision aid prototype was developed using the framework proposed by the International Patient Decision Aids Standards Collaborative. The decision aid focused on two main treatment options: watchful waiting and adenotonsillectomy. Usability was assessed with parents of pediatric patients and providers with qualitative content analysis of semi-structured interviews, which included open-ended user feedback. A steering committee composed of key stakeholders was assembled. A needs assessment was then performed, which confirmed the need for a decision support tool. A decision aid prototype was developed and modified based on semi-structured qualitative interviews and a scoping literature review. The prototype provided information on the condition, risk and benefits of treatments, and values clarification. The prototype underwent three cycles of accessibility, feasibility, and comprehensibility testing, incorporating feedback from all stakeholders to develop the final decision aid prototype. A standardized, iterative methodology was used to develop a decision aid prototype for parents considering adenotonsillectomy for their children with sleep disordered breathing. The decision aid prototype appeared feasible, acceptable and comprehensible, and may serve as an effective means of improving shared decision-making.

  4. Implementation and Testing of the JANUS Standard with SSC Pacific’s Software-Defined Acoustic Modem

    DTIC Science & Technology

    2017-12-01

    Communications Outpost (FDECO) Innovative Naval Prototype (INP) Program by the Advanced Photonic Technologies Branch (Code 55360), Space and Naval Warfare... Communications and Networks Division iii EXECUTIVE SUMMARY This report presents Space and Naval Warfare (SPAWAR) Systems Center Pacific’s (SSC... Frequency -Hopped Binary Frequency Shift Keying Office of Naval Research Innovative Naval Prototype Forward Deployed Energy and Communications Outpost

  5. Prototyping context-aware nursing support mobile system.

    PubMed

    Esashi, Misa; Nakano, Tomohiro; Onose, Nao; Sato, Kikue; Hikita, Tomoko; Hoya, Reiko; Okamoto, Kazuya; Ohboshi, Naoki; Kuroda, Tomohiro

    2016-08-01

    A context aware nursing support system to push right information to the right person at the right moment is the key to increase clinical safety under a computerized hospital. We prototyped a system which obtains context from positions of nurses and list of expected clinical procedures. A WoZ test showed that the proposed approach has potential to decrease incidents caused by information delivery error.

  6. Defense Acquisitions: Addressing Incentives is Key to Further Reform Efforts

    DTIC Science & Technology

    2014-04-30

    championed sound management practices, such as realistic cost estimating, prototyping, and systems engineering . While some progress has been made...other reforms have championed sound management practices, such as realistic cost estimating, prototyping, and systems engineering . DOD’s declining...principles from disciplines such as systems engineering , as well as lessons learned and past reforms. The body of work we have done on benchmarking

  7. Comparison of Fiber Optic Strain Demodulation Implementations

    NASA Technical Reports Server (NTRS)

    Quach, Cuong C.; Vazquez, Sixto L.

    2005-01-01

    NASA Langley Research Center is developing instrumentation based upon principles of Optical Frequency-Domain Reflectometry (OFDR) for the provision of large-scale, dense distribution of strain sensors using fiber optics embedded with Bragg gratings. Fiber Optic Bragg Grating technology enables the distribution of thousands of sensors immune to moisture and electromagnetic interference with negligible weight penalty. At Langley, this technology provides a key component for research and development relevant to comprehensive aerospace vehicle structural health monitoring. A prototype system is under development that includes hardware and software necessary for the acquisition of data from an optical network and conversion of the data into strain measurements. This report documents the steps taken to verify the software that implements the algorithm for calculating the fiber strain. Brief descriptions of the strain measurement system and the test article are given. The scope of this report is the verification of software implementations as compared to a reference model. The algorithm will be detailed along with comparison results.

  8. OverView of Space Applications for Environment (SAFE) initiative

    NASA Astrophysics Data System (ADS)

    Hamamoto, Ko; Fukuda, Toru; Tajima, Yoshimitsu; Takeuchi, Wataru; Sobue, Shinichi; Nukui, Tomoyuki

    2014-06-01

    Climate change and human activities have a direc or indirect influence on the acceleration of environmental problems and natural hazards such as forest fires, draughts and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these disasters and related phenomenon. However, there are still gaps between science and application of satellite technology in real-world usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of satellite technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of satellite technology. This paper describes the overview of SAFE initiative and outcomes of two selected prototypes; agricultural drought monitoring in Indonesia and coastal management in Sri Lanka, as well as the current status of on-going prototypes.

  9. PhoneSat: Ground Testing of a Phone-Based Prototype Bus

    NASA Technical Reports Server (NTRS)

    Felix, Carmen; Howard, Benjamin; Reyes, Matthew; Snarskiy, Fedor; Hickman, Ryan; Boshuizen, Christopher; Marshall, William

    2010-01-01

    Most of the key capabilities that are requisite of a satellite bus are housed in today's smart phones. PhoneSat refers to an initiative to build a ground-based prototype vehicle that could all the basic functionality of a satellite, including attitude control, using a smart Phone as its central hardware. All components used were also low cost Commercial off the Shelf (COTS). In summer 2009, an initial prototype was created using the LEGO Mindstorm toolkit demonstrating simple attitude control. Here we report on a follow up initiative to design, build and test a vehicle based on the Google s smart phone Nexus One. The report includes results from initial thermal-vacuum chamber tests and low altitude sub-orbital rocket flights which show that, at least for short durations, the Nexus One phone is able to withstand key aspects of the space environment without failure. We compare the sensor data from the Phone's accelerometers and magnetometers with that of an external microelectronic inertial measurement unit.

  10. Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates.

    PubMed

    Ke, Kevin; Hasselbrink, Ernest F; Hunt, Alan J

    2005-08-15

    Microfluidic and nanofluidic technologies have long sought a fast, reliable method to overcome the creative limitations of planar fabrication methods, the resolution limits of lithography, and the materials limitations for fast prototyping. In the present work, we demonstrate direct 3D machining of submicrometer diameter, subsurface fluidic channels in glass, via optical breakdown near critical intensity, using a femtosecond pulsed laser. No postexposure etching or bonding is required; the channel network (or almost any arbitrary-shaped cavity below the surface) is produced directly from "art-to-part". The key to this approach is to use very low energy, highly focused, pulses in the presence of liquid. Microbubbles that result from laser energy deposition gently expand and extrude machining debris from the channels. These bubbles are in a highly damped, low Reynolds number regime, implying that surface spalling due to bubble collapse is unimportant. We demonstrate rapid prototyping of three-dimensional "jumpers", mixers, and other key components of complex 3D microscale analysis systems in glass substrates.

  11. Distribution Management System Volt/VAR Evaluation | Grid Modernization |

    Science.gov Websites

    NREL Distribution Management System Volt/VAR Evaluation Distribution Management System Volt/VAR Evaluation This project involves building a prototype distribution management system testbed that links a GE Grid Solutions distribution management system to power hardware-in-the-loop testing. This setup is

  12. A Graphics Environment Supporting the Rapid Prototyping of Pictorial Cockpit Displays

    DTIC Science & Technology

    1986-12-01

    0 - niDi cO 3 FIL .OF I A GRAPHICS ENVIRONMENT SUPPORTING THE RAPID PROTOTYPING OF PICTORIAL COCKPIT DISPLAYS THESIS Alan J. Braaten Captain, USAF...COCKPIT DISPLAYS THESIS Alan J. Braaten Captain, USAF AFIT/GCS/IA/86D- 1 Appram:ed for public release; distribution unlimited AFIT/GCS/MA/80- 1 A...GRAPHICS ENVIROWNT SUPPORTING THE RAPID PROTOTYPING OF PICTORIAL COCKPIT DISPLAYS THESIS Preented to the Faculty Of the School of Engineering of the Air

  13. Distributed Adaptive Binary Quantization for Fast Nearest Neighbor Search.

    PubMed

    Xianglong Liu; Zhujin Li; Cheng Deng; Dacheng Tao

    2017-11-01

    Hashing has been proved an attractive technique for fast nearest neighbor search over big data. Compared with the projection based hashing methods, prototype-based ones own stronger power to generate discriminative binary codes for the data with complex intrinsic structure. However, existing prototype-based methods, such as spherical hashing and K-means hashing, still suffer from the ineffective coding that utilizes the complete binary codes in a hypercube. To address this problem, we propose an adaptive binary quantization (ABQ) method that learns a discriminative hash function with prototypes associated with small unique binary codes. Our alternating optimization adaptively discovers the prototype set and the code set of a varying size in an efficient way, which together robustly approximate the data relations. Our method can be naturally generalized to the product space for long hash codes, and enjoys the fast training linear to the number of the training data. We further devise a distributed framework for the large-scale learning, which can significantly speed up the training of ABQ in the distributed environment that has been widely deployed in many areas nowadays. The extensive experiments on four large-scale (up to 80 million) data sets demonstrate that our method significantly outperforms state-of-the-art hashing methods, with up to 58.84% performance gains relatively.

  14. PERTS: A Prototyping Environment for Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Liu, Jane W. S.; Lin, Kwei-Jay; Liu, C. L.

    1991-01-01

    We discuss an ongoing project to build a Prototyping Environment for Real-Time Systems, called PERTS. PERTS is a unique prototyping environment in that it has (1) tools and performance models for the analysis and evaluation of real-time prototype systems, (2) building blocks for flexible real-time programs and the support system software, (3) basic building blocks of distributed and intelligent real time applications, and (4) an execution environment. PERTS will make the recent and future theoretical advances in real-time system design and engineering readily usable to practitioners. In particular, it will provide an environment for the use and evaluation of new design approaches, for experimentation with alternative system building blocks and for the analysis and performance profiling of prototype real-time systems.

  15. Haptics using a smart material for eyes-free interaction in personal devices

    NASA Astrophysics Data System (ADS)

    Wang, Huihui; Lane, William Brian; Pappas, Devin; Duque, Bryam; Leong, John

    2014-03-01

    In this paper we present a prototype using a dry ionic polymer metal composite (IPMC) in interactive personal devices such as bracelet, necklace, pocket key chain or mobile devices for haptic interaction when audio or visual feedback is not possible or practical. This prototype interface is an electro-mechanical system that realizes a shape-changing haptic display for information communication. A dry IPMC will change its dimensions due to the electrostatic effect when an electrical potential is provided to them. The IPMC can operate at a lower voltage (less than 2.5V) which is compatible with requirements for personal electrical devices or mobile devices. The prototype consists of the addressable arrays of the IPMCs with different dimensions which are deformable to different shapes with proper handling or customization. 3D printing technology will be used to form supporting parts. Microcontrollers (about 3cm square) from DigiKey will be imbedded into this personal device. An Android based mobile APP will be developed to talk with microcontrollers to control IPMCs. When personal devices receive information signals, the original shape of the prototype will change to another shape related to the specific sender or types of information sources. This interactive prototype can simultaneously realize multiple methods for conveying haptic information such as dimension, force, and texture due to the flexible array design. We conduct several studies of user experience to explore how users' respond to shape change information.

  16. 156 Mbps Ultrahigh-Speed Wireless LAN Prototype in the 38 GHz Band

    NASA Astrophysics Data System (ADS)

    Wu, Gang; Inoue, Masugi; Murakami, Homare; Hase, Yoshihiro

    2001-12-01

    This paper describes a 156 Mbps ultrahigh-speed wireless LAN operating in the 38 GHz millimeter (mm)-wave band. The system is a third prototype developed at the Communications Research Laboratory since 1998. Compared with the previous prototypes, the system is faster (156 Mbps) and smaller (volume of radio transceiver less than 1000 cc), it has a larger service area (two overlapping basic service sets), and a longer transmission distance (the protocol can support a distance of more than two hundred meters). The development is focused on the physical layer and the data link control layer, and thus a GMSK-based mm-wave transceiver and an enhanced RS-ISMA (reservation-based slotted idle signal multiple access) protocol are key development components. This paper describes the prototype system's design, configuration, and implementation.

  17. A Framework for Seamless Interoperation of Heterogeneous Distributed Software Components

    DTIC Science & Technology

    2005-05-01

    interoperability, b) distributed resource discovery, and c) validation of quality requirements. Principles and prototypical systems were created to demonstrate the successful completion of the research.

  18. Supporting Active Patient and Health Care Collaboration: A Prototype for Future Health Care Information Systems.

    PubMed

    Åhlfeldt, Rose-Mharie; Persson, Anne; Rexhepi, Hanife; Wåhlander, Kalle

    2016-12-01

    This article presents and illustrates the main features of a proposed process-oriented approach for patient information distribution in future health care information systems, by using a prototype of a process support system. The development of the prototype was based on the Visuera method, which includes five defined steps. The results indicate that a visualized prototype is a suitable tool for illustrating both the opportunities and constraints of future ideas and solutions in e-Health. The main challenges for developing and implementing a fully functional process support system concern both technical and organizational/management aspects. © The Author(s) 2015.

  19. Real-time data flow and product generating for GNSS

    NASA Technical Reports Server (NTRS)

    Muellerschoen, Ronald J.; Caissy, Mark

    2004-01-01

    The last IGS workshop with the theme 'Towards Real-Time' resulted in the design of a prototype for real-time data and sharing within the IGS. A prototype real-time network is being established that will serve as a test bed for real-time activities within the IGS. We review the developments of the prototype and discuss some of the existing methods and related products of real-time GNSS systems. Recommendations are made concerning real-time data distribution and product generation.

  20. CCSDS Spacecraft Monitor and Control Mission Operations Interoperability Prototype

    NASA Technical Reports Server (NTRS)

    Lucord, Steve; Martinez, Lindolfo

    2009-01-01

    We are entering a new era in space exploration. Reduced operating budgets require innovative solutions to leverage existing systems to implement the capabilities of future missions. Custom solutions to fulfill mission objectives are no longer viable. Can NASA adopt international standards to reduce costs and increase interoperability with other space agencies? Can legacy systems be leveraged in a service oriented architecture (SOA) to further reduce operations costs? The Operations Technology Facility (OTF) at the Johnson Space Center (JSC) is collaborating with Deutsches Zentrum fur Luft- und Raumfahrt (DLR) to answer these very questions. The Mission Operations and Information Management Services Area (MOIMS) Spacecraft Monitor and Control (SM&C) Working Group within the Consultative Committee for Space Data Systems (CCSDS) is developing the Mission Operations standards to address this problem space. The set of proposed standards presents a service oriented architecture to increase the level of interoperability among space agencies. The OTF and DLR are developing independent implementations of the standards as part of an interoperability prototype. This prototype will address three key components: validation of the SM&C Mission Operations protocol, exploration of the Object Management Group (OMG) Data Distribution Service (DDS), and the incorporation of legacy systems in a SOA. The OTF will implement the service providers described in the SM&C Mission Operation standards to create a portal for interaction with a spacecraft simulator. DLR will implement the service consumers to perform the monitor and control of the spacecraft. The specifications insulate the applications from the underlying transport layer. We will gain experience with a DDS transport layer as we delegate responsibility to the middleware and explore transport bridges to connect disparate middleware products. A SOA facilitates the reuse of software components. The prototype will leverage the capabilities of existing legacy systems. Various custom applications and middleware solutions will be combined into one system providing the illusion of a set of homogenous services. This paper will document our journey as we implement the interoperability prototype. The team consists of software engineers with experience on the current command, telemetry and messaging systems that support the International Space Station (ISS) and Space Shuttle programs. Emphasis will be on the objectives, results and potential cost saving benefits.

  1. Global polar geospatial information service retrieval based on search engine and ontology reasoning

    USGS Publications Warehouse

    Chen, Nengcheng; E, Dongcheng; Di, Liping; Gong, Jianya; Chen, Zeqiang

    2007-01-01

    In order to improve the access precision of polar geospatial information service on web, a new methodology for retrieving global spatial information services based on geospatial service search and ontology reasoning is proposed, the geospatial service search is implemented to find the coarse service from web, the ontology reasoning is designed to find the refined service from the coarse service. The proposed framework includes standardized distributed geospatial web services, a geospatial service search engine, an extended UDDI registry, and a multi-protocol geospatial information service client. Some key technologies addressed include service discovery based on search engine and service ontology modeling and reasoning in the Antarctic geospatial context. Finally, an Antarctica multi protocol OWS portal prototype based on the proposed methodology is introduced.

  2. Initial Risk Analysis and Decision Making Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, David W.

    2012-02-01

    Commercialization of new carbon capture simulation initiative (CCSI) technology will include two key elements of risk management, namely, technical risk (will process and plant performance be effective, safe, and reliable) and enterprise risk (can project losses and costs be controlled within the constraints of market demand to maintain profitability and investor confidence). Both of these elements of risk are incorporated into the risk analysis subtask of Task 7. Thus far, this subtask has developed a prototype demonstration tool that quantifies risk based on the expected profitability of expenditures when retrofitting carbon capture technology on a stylized 650 MW pulverized coalmore » electric power generator. The prototype is based on the selection of specific technical and financial factors believed to be important determinants of the expected profitability of carbon capture, subject to uncertainty. The uncertainty surrounding the technical performance and financial variables selected thus far is propagated in a model that calculates the expected profitability of investments in carbon capture and measures risk in terms of variability in expected net returns from these investments. Given the preliminary nature of the results of this prototype, additional work is required to expand the scope of the model to include additional risk factors, additional information on extant and proposed risk factors, the results of a qualitative risk factor elicitation process, and feedback from utilities and other interested parties involved in the carbon capture project. Additional information on proposed distributions of these risk factors will be integrated into a commercial implementation framework for the purpose of a comparative technology investment analysis.« less

  3. EUROPLANET-RI modelling service for the planetary science community: European Modelling and Data Analysis Facility (EMDAF)

    NASA Astrophysics Data System (ADS)

    Khodachenko, Maxim; Miller, Steven; Stoeckler, Robert; Topf, Florian

    2010-05-01

    Computational modeling and observational data analysis are two major aspects of the modern scientific research. Both appear nowadays under extensive development and application. Many of the scientific goals of planetary space missions require robust models of planetary objects and environments as well as efficient data analysis algorithms, to predict conditions for mission planning and to interpret the experimental data. Europe has great strength in these areas, but it is insufficiently coordinated; individual groups, models, techniques and algorithms need to be coupled and integrated. Existing level of scientific cooperation and the technical capabilities for operative communication, allow considerable progress in the development of a distributed international Research Infrastructure (RI) which is based on the existing in Europe computational modelling and data analysis centers, providing the scientific community with dedicated services in the fields of their computational and data analysis expertise. These services will appear as a product of the collaborative communication and joint research efforts of the numerical and data analysis experts together with planetary scientists. The major goal of the EUROPLANET-RI / EMDAF is to make computational models and data analysis algorithms associated with particular national RIs and teams, as well as their outputs, more readily available to their potential user community and more tailored to scientific user requirements, without compromising front-line specialized research on model and data analysis algorithms development and software implementation. This objective will be met through four keys subdivisions/tasks of EMAF: 1) an Interactive Catalogue of Planetary Models; 2) a Distributed Planetary Modelling Laboratory; 3) a Distributed Data Analysis Laboratory, and 4) enabling Models and Routines for High Performance Computing Grids. Using the advantages of the coordinated operation and efficient communication between the involved computational modelling, research and data analysis expert teams and their related research infrastructures, EMDAF will provide a 1) flexible, 2) scientific user oriented, 3) continuously developing and fast upgrading computational and data analysis service to support and intensify the European planetary scientific research. At the beginning EMDAF will create a set of demonstrators and operational tests of this service in key areas of European planetary science. This work will aim at the following objectives: (a) Development and implementation of tools for distant interactive communication between the planetary scientists and computing experts (including related RIs); (b) Development of standard routine packages, and user-friendly interfaces for operation of the existing numerical codes and data analysis algorithms by the specialized planetary scientists; (c) Development of a prototype of numerical modelling services "on demand" for space missions and planetary researchers; (d) Development of a prototype of data analysis services "on demand" for space missions and planetary researchers; (e) Development of a prototype of coordinated interconnected simulations of planetary phenomena and objects (global multi-model simulators); (f) Providing the demonstrators of a coordinated use of high performance computing facilities (super-computer networks), done in cooperation with European HPC Grid DEISA.

  4. Prototype-Distortion Category Learning: A Two-Phase Learning Process across a Distributed Network

    ERIC Educational Resources Information Center

    Little, Deborah M.; Thulborn, Keith R.

    2006-01-01

    This paper reviews a body of work conducted in our laboratory that applies functional magnetic resonance imaging (fMRI) to better understand the biological response and change that occurs during prototype-distortion learning. We review results from two experiments (Little, Klein, Shobat, McClure, & Thulborn, 2004; Little & Thulborn, 2005) that…

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, S.

    The CMS pixel phase-1 upgrade project replaces the current pixel detector with an upgraded system with faster readout electronics during the extended year-end technical stop of 2016/2017. New electronics prototypes for the system have been developed, and tests in a realistic environment for a comprehensive evaluation are needed. A full readout test stand with either the same hardware as used in the current CMS pixel detector or the latest prototypes of upgrade electronics has been built. The setup enables the observation and investigation of a jitter increase in the data line associated with trigger rate increases. This effect is duemore » to the way in which the clock and trigger distribution is implemented in CMS. A new prototype of the electronics with a PLL based on a voltage controlled quartz crystal oscillator (QPLL), which works as jitter filter, in the clock distribution path was produced. With the test stand, it was confirmed that the jitter increase is not seen with the prototype, and also good performance was confirmed at the expected detector operation temperature ($-$20 °C).« less

  6. Near specular scatter analysis method with a new goniophotometer

    NASA Astrophysics Data System (ADS)

    Meyen, Stephanie; Sutter, Florian; Heller, Peter

    2014-09-01

    The challenge of improving component quality and reducing cost has focused the attention of the solar thermal power industry on reliable component characterization methods. Since the reflector plays a key role in the energy conversion chain, the analysis of its reflectance properties has become a lively discussed issue in recent years. State of the art measurement instruments for specular reflectance do not give satisfying results, because they do not resolve sufficiently the near specular scatter of possible low cost mirror material candidates. The measurement of the BRDF offers a better solution than the traditional approach of placing a detector in the specular reflected beam path. However, due to the requirement of high angular resolution in the range of 1 mrad (0.057°) or better and the challenge of measuring high dynamic differences between the specular peak and the scatter signal, typical commercial scanning goniophotometers capable of this are rare. These instruments also face the disadvantages of impractically long acquisition times and, to reach the high angular resolution, occupy a large space (several meters side length). We have taken on the appealing idea of a parallel imaging goniophotometer and designed a prototype based on this principle. A mirrored ellipsoid is used to redirect the reflected light coming from a sample towards a camera with a fisheye lens. This way the complete light distribution is captured simultaneously. A key feature allows the distinction of the high intensity specular peak and the low intensity scatter. In this article we explain the prototype design and demonstrate its functionality based on comparison measurements done with a commercial scanning goniophotometer. We identify limitations related in part to the concept and in part to the specific prototype and suggest improvements. Finally we conclude that the concept is well suitable for the analysis of near specular scatter of mirror materials, although less adequate for the analysis of rough surfaces that require a full 180° view angle. Results obtained with this instrument are useful to evaluate the performance of a reflector material for a specific concentrating solar collector design and also serve in other applications that require near specular scatter analysis like degradation and soiling research.

  7. Advanced Power Electronic Interfaces for Distributed Energy Systems, Part 2: Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, S.; Kroposki, B.; Kramer, W.

    Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report alsomore » analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.« less

  8. High-Rate Digital Receiver Board

    NASA Technical Reports Server (NTRS)

    Ghuman, Parminder; Bialas, Thomas; Brambora, Clifford; Fisher, David

    2004-01-01

    A high-rate digital receiver (HRDR) implemented as a peripheral component interface (PCI) board has been developed as a prototype of compact, general-purpose, inexpensive, potentially mass-producible data-acquisition interfaces between telemetry systems and personal computers. The installation of this board in a personal computer together with an analog preprocessor enables the computer to function as a versatile, highrate telemetry-data-acquisition and demodulator system. The prototype HRDR PCI board can handle data at rates as high as 600 megabits per second, in a variety of telemetry formats, transmitted by diverse phase-modulation schemes that include binary phase-shift keying and various forms of quadrature phaseshift keying. Costing less than $25,000 (as of year 2003), the prototype HRDR PCI board supplants multiple racks of older equipment that, when new, cost over $500,000. Just as the development of standard network-interface chips has contributed to the proliferation of networked computers, it is anticipated that the development of standard chips based on the HRDR could contribute to reductions in size and cost and increases in performance of telemetry systems.

  9. Construction of a Full-size Component of the ICRH System

    NASA Astrophysics Data System (ADS)

    Mantovani, S.; Sassi, M.; Coppi, B.

    2012-10-01

    The ICRH system is an important component of the Ignitor project and all efforts have been made to ensure that its design takes into account the construction experience gained in the most advanced laboratories. The system is designed to operate over a frequency range 80-120 MHz, which is consistent with the use of magnetic fields in the range 9-13 T. The maximum delivered power ranges from 8 MW (at 80 MHz) to 6 MW (at 120 MHz) distributed over 4 ports. Since the transition from a detailed design to the actual construction is not without surprises we have constructed a full size prototype of the VTL between the port flange and the antenna straps, with the external support and precise guiding system. The innovative quick latching system located at the end of the coaxial cable was successfully tested, providing perfect interference with the spring Be-Cu electrical contacts. Special care was given to the finishing of the inox surfaces, and to the TIG welds. Vacuum levels of 10-6, compatible with the limit of material degassing, and electrical tests up to 12 kV without discharges have been obtained. A revision of the other key components of the Ignitor machine has been undertaken, taking into account the experience gained in the fabrication of the corresponding prototypes.

  10. Conceptual design and proof-of-principle testing of the real-time multispectral imaging system MANTIS

    NASA Astrophysics Data System (ADS)

    Vijvers, W. A. J.; Mumgaard, R. T.; Andrebe, Y.; Classen, I. G. J.; Duval, B. P.; Lipschultz, B.

    2017-12-01

    The Multispectral Advanced Narrowband Tokamak Imaging System (MANTIS) is proposed to resolve the steep temperature and density gradients in the scrape-off layer of tokamaks in real-time. The initial design is to deliver two-dimensional distributions of key plasma parameters of the TCV tokamak to a real-time control system in order to enable novel control strategies, while providing new insights into power exhaust physics in the full offline analysis. This paper presents the conceptual system design, the mechanical and optical design of a prototype that was built to assess the optical performance, and the results of the first proof-of-principle tests of the prototype. These demonstrate a central resolving power of 50-46 line pairs per millimeter (CTF50) in the first four channels. For the additional channels, the sharpness is a factor two worse for the odd channels (likely affected by sub-optimal alignment), while the even channels continue the trend observed for the first four channels of 3% degradation per channel. This is explained by the self-cancellation of off-axis aberrations, which is an attractive property of the chosen optical design. The results show that at least a 10-channel real-time multispectral imaging system is feasible.

  11. Cyberinfrastructure for the digital brain: spatial standards for integrating rodent brain atlases

    PubMed Central

    Zaslavsky, Ilya; Baldock, Richard A.; Boline, Jyl

    2014-01-01

    Biomedical research entails capture and analysis of massive data volumes and new discoveries arise from data-integration and mining. This is only possible if data can be mapped onto a common framework such as the genome for genomic data. In neuroscience, the framework is intrinsically spatial and based on a number of paper atlases. This cannot meet today's data-intensive analysis and integration challenges. A scalable and extensible software infrastructure that is standards based but open for novel data and resources, is required for integrating information such as signal distributions, gene-expression, neuronal connectivity, electrophysiology, anatomy, and developmental processes. Therefore, the International Neuroinformatics Coordinating Facility (INCF) initiated the development of a spatial framework for neuroscience data integration with an associated Digital Atlasing Infrastructure (DAI). A prototype implementation of this infrastructure for the rodent brain is reported here. The infrastructure is based on a collection of reference spaces to which data is mapped at the required resolution, such as the Waxholm Space (WHS), a 3D reconstruction of the brain generated using high-resolution, multi-channel microMRI. The core standards of the digital atlasing service-oriented infrastructure include Waxholm Markup Language (WaxML): XML schema expressing a uniform information model for key elements such as coordinate systems, transformations, points of interest (POI)s, labels, and annotations; and Atlas Web Services: interfaces for querying and updating atlas data. The services return WaxML-encoded documents with information about capabilities, spatial reference systems (SRSs) and structures, and execute coordinate transformations and POI-based requests. Key elements of INCF-DAI cyberinfrastructure have been prototyped for both mouse and rat brain atlas sources, including the Allen Mouse Brain Atlas, UCSD Cell-Centered Database, and Edinburgh Mouse Atlas Project. PMID:25309417

  12. Cyberinfrastructure for the digital brain: spatial standards for integrating rodent brain atlases.

    PubMed

    Zaslavsky, Ilya; Baldock, Richard A; Boline, Jyl

    2014-01-01

    Biomedical research entails capture and analysis of massive data volumes and new discoveries arise from data-integration and mining. This is only possible if data can be mapped onto a common framework such as the genome for genomic data. In neuroscience, the framework is intrinsically spatial and based on a number of paper atlases. This cannot meet today's data-intensive analysis and integration challenges. A scalable and extensible software infrastructure that is standards based but open for novel data and resources, is required for integrating information such as signal distributions, gene-expression, neuronal connectivity, electrophysiology, anatomy, and developmental processes. Therefore, the International Neuroinformatics Coordinating Facility (INCF) initiated the development of a spatial framework for neuroscience data integration with an associated Digital Atlasing Infrastructure (DAI). A prototype implementation of this infrastructure for the rodent brain is reported here. The infrastructure is based on a collection of reference spaces to which data is mapped at the required resolution, such as the Waxholm Space (WHS), a 3D reconstruction of the brain generated using high-resolution, multi-channel microMRI. The core standards of the digital atlasing service-oriented infrastructure include Waxholm Markup Language (WaxML): XML schema expressing a uniform information model for key elements such as coordinate systems, transformations, points of interest (POI)s, labels, and annotations; and Atlas Web Services: interfaces for querying and updating atlas data. The services return WaxML-encoded documents with information about capabilities, spatial reference systems (SRSs) and structures, and execute coordinate transformations and POI-based requests. Key elements of INCF-DAI cyberinfrastructure have been prototyped for both mouse and rat brain atlas sources, including the Allen Mouse Brain Atlas, UCSD Cell-Centered Database, and Edinburgh Mouse Atlas Project.

  13. Digital Distribution of Advertising for Publications (DDAP): a graphic arts prototype of electronic intermedia publishing (EIP)

    NASA Astrophysics Data System (ADS)

    Dunn, Patrice M.

    1998-01-01

    The Digital Distribution of Advertising for Publications (DDAP) is a graphic arts industry prototype of Electronic Intermedia Publishing (EIP). EIP is a strategic, multi- industrial concept that seeks to enable the capture and input of volumes of data (i.e., both raster and object oriented data -- as well as the latter's antecedent which is vector data -- color data and black-and-white data) from a multiplicity of devices; then flowing, controlling, manipulating, modifying, storing, retrieving, transmitting, and shipping, that data through an industrial process for output to a multiplicity of output devices (e.g., ink on paper, toner on paper, bits and bytes on CD ROM, Internet, Multimedia, HDTV, etc.). As the technical requirements of the print medium are among the most rigorous in the Intermedia milieu the DDAP prototype addresses some of the most challenging issues faced in Electronic Intermedia Publishing (EIP).

  14. PANDA Muon System Prototype

    NASA Astrophysics Data System (ADS)

    Abazov, Victor; Alexeev, Gennady; Alexeev, Maxim; Frolov, Vladimir; Golovanov, Georgy; Kutuzov, Sergey; Piskun, Alexei; Samartsev, Alexander; Tokmenin, Valeri; Verkheev, Alexander; Vertogradov, Leonid; Zhuravlev, Nikolai

    2018-04-01

    The PANDA Experiment will be one of the key experiments at the Facility for Antiproton and Ion Research (FAIR) which is under construction now in the territory of the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. PANDA is aimed to study hadron spectroscopy and various topics of the weak and strong forces. Muon System is chosen as the most suitable technology for detecting the muons. The Prototype of the PANDA Muon System is installed on the test beam line T9 at the Proton Synchrotron (PS) at CERN. Status of the PANDA Muon System prototype is presented with few preliminary results.

  15. Research pressure instrumentation for NASA Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Anderson, P. J.; Nussbaum, P.; Gustafson, G.

    1984-01-01

    The development of prototype pressure transducers which are targeted to meet the Space Shuttle Main Engine SSME performance design goals is discussed. The fabrication, testing and delivery of 10 prototype units is examined. Silicon piezoresistive strain sensing technology is used to achieve the objectives of advanced state-of-the-art pressure sensors in terms of reliability, accuracy and ease of manufacture. Integration of multiple functions on a single chip is the key attribute of this technology.

  16. Construction of crystal structure prototype database: methods and applications.

    PubMed

    Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming

    2017-04-26

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

  17. Construction of crystal structure prototype database: methods and applications

    NASA Astrophysics Data System (ADS)

    Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming

    2017-04-01

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

  18. Preliminary results concerning the simulation of beam profiles from extracted ion current distributions for mini-STRIKE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agostinetti, P., E-mail: piero.agostinetti@igi.cnr.it; Serianni, G.; Veltri, P.

    The Radio Frequency (RF) negative hydrogen ion source prototype has been chosen for the ITER neutral beam injectors due to its optimal performances and easier maintenance demonstrated at Max-Planck-Institut für Plasmaphysik, Garching in hydrogen and deuterium. One of the key information to better understand the operating behavior of the RF ion sources is the extracted negative ion current density distribution. This distribution—influenced by several factors like source geometry, particle drifts inside the source, cesium distribution, and layout of cesium ovens—is not straightforward to be evaluated. The main outcome of the present contribution is the development of a minimization method tomore » estimate the extracted current distribution using the footprint of the beam recorded with mini-STRIKE (Short-Time Retractable Instrumented Kalorimeter). To accomplish this, a series of four computational models have been set up, where the output of a model is the input of the following one. These models compute the optics of the ion beam, evaluate the distribution of the heat deposited on the mini-STRIKE diagnostic calorimeter, and finally give an estimate of the temperature distribution on the back of mini-STRIKE. Several iterations with different extracted current profiles are necessary to give an estimate of the profile most compatible with the experimental data. A first test of the application of the method to the BAvarian Test Machine for Negative ions beam is given.« less

  19. Prototype Vector Machine for Large Scale Semi-Supervised Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kai; Kwok, James T.; Parvin, Bahram

    2009-04-29

    Practicaldataminingrarelyfalls exactlyinto the supervisedlearning scenario. Rather, the growing amount of unlabeled data poses a big challenge to large-scale semi-supervised learning (SSL). We note that the computationalintensivenessofgraph-based SSLarises largely from the manifold or graph regularization, which in turn lead to large models that are dificult to handle. To alleviate this, we proposed the prototype vector machine (PVM), a highlyscalable,graph-based algorithm for large-scale SSL. Our key innovation is the use of"prototypes vectors" for effcient approximation on both the graph-based regularizer and model representation. The choice of prototypes are grounded upon two important criteria: they not only perform effective low-rank approximation of themore » kernel matrix, but also span a model suffering the minimum information loss compared with the complete model. We demonstrate encouraging performance and appealing scaling properties of the PVM on a number of machine learning benchmark data sets.« less

  20. Design specifications for NALDA (Naval Aviation Logistics Data Analysis) CAI (computer aided instruction): Phase 2, Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Twitty, A.F.; Handler, B.H.; Duncan, L.D.

    Data Systems Engineering Organization (DSEO) personnel are developing a prototype computer aided instruction (CAI) system for the Naval Aviation Logistics Data Analysis (NALDA) system. The objective of this project is to provide a prototype for implementing CAI as an enhancement to existing NALDA training. The CAI prototype project is being performed in phases. The task undertaken in Phase I was to analyze the problem and the alternative solutions and to develop a set of recommendations on how best to proceed. In Phase II a structured design and specification document was completed that will provide the basis for development and implementationmore » of the desired CAI system. Phase III will consist of designing, developing, and testing a user interface which will extend the features of the Phase II prototype. The design of the CAI prototype has followed a rigorous structured analysis based on Yourdon/DeMarco methodology and Information Engineering tools. This document includes data flow diagrams, a data dictionary, process specifications, an entity-relationship diagram, a curriculum description, special function key definitions, and a set of standards developed for the NALDA CAI Prototype.« less

  1. NASA Langley Distributed Propulsion VTOL Tilt-Wing Aircraft Testing, Modeling, Simulation, Control, and Flight Test Development

    NASA Technical Reports Server (NTRS)

    Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.

    2014-01-01

    Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.

  2. Towards a Quantum Memory assisted MDI-QKD node

    NASA Astrophysics Data System (ADS)

    Namazi, Mehdi; Vallone, Giuseppe; Jordaan, Bertus; Goham, Connor; Shahrokhshahi, Reihaneh; Villoresi, Paolo; Figueroa, Eden

    2017-04-01

    The creation of large quantum network that permits the communication of quantum states and the secure distribution of cryptographic keys requires multiple operational quantum memories. In this work we present our progress towards building a prototypical quantum network that performs the memory-assisted measurement device independent QKD protocol. Currently our network combines the quantum part of the BB84 protocol with room-temperature quantum memory operation, while still maintaining relevant quantum bit error rates for single-photon level operation. We will also discuss our efforts to use a network of two room temperature quantum memories, receiving, storing and transforming randomly polarized photons in order to realize Bell state measurements. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801, the National Science Foundation, Grant Number PHY-1404398 and the Simons Foundation, Grant Number SBF241180.

  3. A database management capability for Ada

    NASA Technical Reports Server (NTRS)

    Chan, Arvola; Danberg, SY; Fox, Stephen; Landers, Terry; Nori, Anil; Smith, John M.

    1986-01-01

    The data requirements of mission critical defense systems have been increasing dramatically. Command and control, intelligence, logistics, and even weapons systems are being required to integrate, process, and share ever increasing volumes of information. To meet this need, systems are now being specified that incorporate data base management subsystems for handling storage and retrieval of information. It is expected that a large number of the next generation of mission critical systems will contain embedded data base management systems. Since the use of Ada has been mandated for most of these systems, it is important to address the issues of providing data base management capabilities that can be closely coupled with Ada. A comprehensive distributed data base management project has been investigated. The key deliverables of this project are three closely related prototype systems implemented in Ada. These three systems are discussed.

  4. Enabling NVM for Data-Intensive Scientific Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carns, Philip; Jenkins, John; Seo, Sangmin

    Specialized, transient data services are playing an increasingly prominent role in data-intensive scientific computing. These services offer flexible, on-demand pairing of applications with storage hardware using semantics that are optimized for the problem domain. Concurrent with this trend, upcoming scientific computing and big data systems will be deployed with emerging NVM technology to achieve the highest possible price/productivity ratio. Clearly, therefore, we must develop techniques to facilitate the confluence of specialized data services and NVM technology. In this work we explore how to enable the composition of NVM resources within transient distributed services while still retaining their essential performance characteristics.more » Our approach involves eschewing the conventional distributed file system model and instead projecting NVM devices as remote microservices that leverage user-level threads, RPC services, RMA-enabled network transports, and persistent memory libraries in order to maximize performance. We describe a prototype system that incorporates these concepts, evaluate its performance for key workloads on an exemplar system, and discuss how the system can be leveraged as a component of future data-intensive architectures.« less

  5. A Distributed Model for Stressors Monitoring Based on Environmental Smart Sensors.

    PubMed

    de Ramón-Fernández, Alberto; Ruiz-Fernández, Daniel; Marcos-Jorquera, Diego; Gilart-Iglesias, Virgilio

    2018-06-14

    Nowadays, in many countries, stress is becoming a problem that increasingly affects the health of people. Suffering stress continuously can lead to serious behavioral disorders such as anxiety or depression. Every person, in his daily routine, can face many factors which can contribute to increase his stress level. This paper describes a flexible and distributed model to monitor environmental variables associated with stress, which provides adaptability to any environment in an agile way. This model was designed to transform stress environmental variables in value added information (key stress indicator) and to provide it to external systems, in both proactive and reactive mode. Thus, this value-added information will assist organizations and users in a personalized way helping in the detection and prevention of acute stress cases. Our proposed model is supported by an architecture that achieves the features above mentioned, in addition to interoperability, robustness, scalability, autonomy, efficient, low cost and consumption, and information availability in real time. Finally, a prototype of the system was implemented, allowing the validation of the proposal in different environments at the University of Alicante.

  6. Development of an Active Twist Rotor for Wind: Tunnel Testing (NLPN97-310

    NASA Technical Reports Server (NTRS)

    Cesnik, Carlos E. S.; Shin, SangJoon; Hagood, Nesbitt W., IV

    1998-01-01

    The development of the Active Twist Rotor prototype blade for hub vibration and noise reduction studies is presented in this report. Details of the modeling, design, and manufacturing are explored. The rotor blade is integrally twisted by direct strain actuation. This is accomplished by distributing embedded piezoelectric fiber composites along the span of the blade. The development of the analysis framework for this type of active blade is presented. The requirements for the prototype blade, along with the final design results are also presented. A detail discussion on the manufacturing aspects of the prototype blade is described. Experimental structural characteristics of the prototype blade compare well with design goals, and preliminary bench actuation tests show lower performance than originally predicted. Electrical difficulties with the actuators are also discussed. The presented prototype blade is leading to a complete fully articulated four-blade active twist rotor system for future wind tunnel tests.

  7. Knowledge-based image data management - An expert front-end for the BROWSE facility

    NASA Technical Reports Server (NTRS)

    Stoms, David M.; Star, Jeffrey L.; Estes, John E.

    1988-01-01

    An intelligent user interface being added to the NASA-sponsored BROWSE testbed facility is described. BROWSE is a prototype system designed to explore issues involved in locating image data in distributed archives and displaying low-resolution versions of that imagery at a local terminal. For prototyping, the initial application is the remote sensing of forest and range land.

  8. Nursing acceptance of a speech-input interface: a preliminary investigation.

    PubMed

    Dillon, T W; McDowell, D; Norcio, A F; DeHaemer, M J

    1994-01-01

    Many new technologies are being developed to improve the efficiency and productivity of nursing staffs. User acceptance is a key to the success of these technologies. In this article, the authors present a discussion of nursing acceptance of computer systems, review the basic design issues for creating a speech-input interface, and report preliminary findings of a study of nursing acceptance of a prototype speech-input interface. Results of the study showed that the 19 nursing subjects expressed acceptance of the prototype speech-input interface.

  9. Prototype Equipment Student Guide for ACE (Air Intercept Controller Prototype Training System).

    DTIC Science & Technology

    1981-09-01

    as your " home base", directing you to where you should be (at the Student Station CRT or the Console) and stating what you could (or should) do once...review the transmissions made in your last Practice with- out Freezes (see Subsection IV A) a take a break * re-start the instruction * answer a...the instructor select the phrase from the menu. The new collections will replace the previous collections made for the phrase. instructor Two keys on

  10. Prototype detector development for measurement of high altitude Martian dust using a future orbiter platform

    NASA Astrophysics Data System (ADS)

    Pabari, Jayesh; Patel, Darshil; Chokhawala, Vimmi; Bogavelly, Anvesh

    2016-07-01

    Dust devils mostly occur during the mid of Southern hemisphere summer on Mars and play a key role in the background dust opacity. Due to continuous bombardment of micrometeorites, secondary ejecta come out from the Moons of the Mars and can easily escape. This phenomenon can contribute dust around the Moons and therefore, also around the Mars. Similar to the Moons of the Earth, the surfaces of the Martian Moons get charged and cause the dust levitation to occur, adding to the possible dust source. Also, interplanetary dust particles may be able to reach the Mars and contribute further. It is hypothesized that the high altitude Martian dust could be in the form of a ring or tori around the Mars. However, no such rings have been detected to the present day. Typically, width and height of the dust torus is ~5 Mars radii wide (~16950 km) in both the planes as reported in the literature. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, a langmuir probe cannot explain the source of such dust particles. It is a puzzling question to the space scientist how dust has reached to such high altitudes. A dedicated dust instrument on future Mars orbiter may be helpful to address such issues. To study origin, abundance, distribution and seasonal variation of Martian dust, a Mars Orbit Dust Experiment (MODEX) is proposed. In order to measure the Martian dust from a future orbiter, design of a prototype of an impact ionization dust detector has been initiated at PRL. This paper presents developmental aspects of the prototype dust detector and initial results. The further work is underway.

  11. Theoretical and measured electric field distributions within an annular phased array: consideration of source antennas.

    PubMed

    Zhang, Y; Joines, W T; Jirtle, R L; Samulski, T V

    1993-08-01

    The magnitude of E-field patterns generated by an annular array prototype device has been calculated and measured. Two models were used to describe the radiating sources: a simple linear dipole and a stripline antenna model. The stripline model includes detailed geometry of the actual antennas used in the prototype and an estimate of the antenna current based on microstrip transmission line theory. This more detailed model yields better agreement with the measured field patterns, reducing the rms discrepancy by a factor of about 6 (from approximately 23 to 4%) in the central region of interest where the SEM is within 25% of the maximum. We conclude that accurate modeling of source current distributions is important for determining SEM distributions associated with such heating devices.

  12. Gently does it: Humans outperform a software classifier in recognizing subtle, nonstereotypical facial expressions.

    PubMed

    Yitzhak, Neta; Giladi, Nir; Gurevich, Tanya; Messinger, Daniel S; Prince, Emily B; Martin, Katherine; Aviezer, Hillel

    2017-12-01

    According to dominant theories of affect, humans innately and universally express a set of emotions using specific configurations of prototypical facial activity. Accordingly, thousands of studies have tested emotion recognition using sets of highly intense and stereotypical facial expressions, yet their incidence in real life is virtually unknown. In fact, a commonplace experience is that emotions are expressed in subtle and nonprototypical forms. Such facial expressions are at the focus of the current study. In Experiment 1, we present the development and validation of a novel stimulus set consisting of dynamic and subtle emotional facial displays conveyed without constraining expressers to using prototypical configurations. Although these subtle expressions were more challenging to recognize than prototypical dynamic expressions, they were still well recognized by human raters, and perhaps most importantly, they were rated as more ecological and naturalistic than the prototypical expressions. In Experiment 2, we examined the characteristics of subtle versus prototypical expressions by subjecting them to a software classifier, which used prototypical basic emotion criteria. Although the software was highly successful at classifying prototypical expressions, it performed very poorly at classifying the subtle expressions. Further validation was obtained from human expert face coders: Subtle stimuli did not contain many of the key facial movements present in prototypical expressions. Together, these findings suggest that emotions may be successfully conveyed to human viewers using subtle nonprototypical expressions. Although classic prototypical facial expressions are well recognized, they appear less naturalistic and may not capture the richness of everyday emotional communication. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Longitudinal Gradient Dipole Magnet Prototype for APS at ANL

    DOE PAGES

    Kashikhin, V. S.; Borland, M.; Chlachidze, G.; ...

    2016-01-26

    We planned an upgrade of the Advanced Photon Source at Argonne National Laboratory (ANL). The main goal of the upgrade is to improve the storage ring performance based on more advanced optics. One of the key magnet system elements is bending dipole magnets having a field strength change along the electron beam path. Moreover, a prototype of one such longitudinal gradient dipole magnet has been designed, built, and measured in a collaborative effort of ANL and Fermilab. Our paper discusses various magnetic design options, the selected magnet design, and the fabrication technology. The prototype magnet has been measured by rotationalmore » coils, a stretched wire, and a Hall probe. Measurement results are discussed and compared with simulations.« less

  14. Design and Development of a Counter Swarm Prototype Air Vehicle

    DTIC Science & Technology

    2017-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release. Distribution is unlimited. DESIGN AND DEVELOPMENT OF A...INTENTIONALLY LEFT BLANK i REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 Public reporting burden for this collection of information is...number ____N/A____. 12a. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE 13

  15. Power System Information Delivering System Based on Distributed Object

    NASA Astrophysics Data System (ADS)

    Tanaka, Tatsuji; Tsuchiya, Takehiko; Tamura, Setsuo; Seki, Tomomichi; Kubota, Kenji

    In recent years, improvement in computer performance and development of computer network technology or the distributed information processing technology has a remarkable thing. Moreover, the deregulation is starting and will be spreading in the electric power industry in Japan. Consequently, power suppliers are required to supply low cost power with high quality services to customers. Corresponding to these movements the authors have been proposed SCOPE (System Configuration Of PowEr control system) architecture for distributed EMS/SCADA (Energy Management Systems / Supervisory Control and Data Acquisition) system based on distributed object technology, which offers the flexibility and expandability adapting those movements. In this paper, the authors introduce a prototype of the power system information delivering system, which was developed based on SCOPE architecture. This paper describes the architecture and the evaluation results of this prototype system. The power system information delivering system supplies useful power systems information such as electric power failures to the customers using Internet and distributed object technology. This system is new type of SCADA system which monitors failure of power transmission system and power distribution system with geographic information integrated way.

  16. Development of an Exploration-Class Cascade Distillation System: Flight Like Prototype Design Status

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam C.; Callahan, Michael R.

    2016-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. One such technology is the Cascade Distillation System (CDS) a multi-stage vacuum rotary distiller system designed to recover water in a microgravity environment. The CDS provides a similar function to the state of the art (SOA) vapor compressor distiller (VCD) currently employed on the International Space Station, but its control scheme and ancillary components are judged to be more straightforward and simpler to implement into a more reliable and efficient system. Through the Advanced Exploration Systems (AES) Life Support Systems (LSS) Project, the NASA Johnson Space Center (JSC) in collaboration with Honeywell International is developing a second generation flight forward prototype (CDS 2.0). A preliminary design fo the CDS 2.0 was presented to the project in September 2014. Following this review, detailed design of the system continued. The existing ground test prototype was used as a platform to demonstrate key 2.0 design and operational concepts to support this effort and mitigate design risk. A volumetric prototype was also developed to evaluate the packaging design for operability and maintainability. The updated system design was reviewed by the AES LSS Project and other key stakeholders in September 2015. This paper details the status of the CDS 2.0 design.

  17. Rapid prototyping, astronaut training, and experiment control and supervision: distributed virtual worlds for COLUMBUS, the European Space Laboratory module

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen

    2002-02-01

    In 2004, the European COLUMBUS Module is to be attached to the International Space Station. On the way to the successful planning, deployment and operation of the module, computer generated and animated models are being used to optimize performance. Under contract of the German Space Agency DLR, it has become IRF's task to provide a Projective Virtual Reality System to provide a virtual world built after the planned layout of the COLUMBUS module let astronauts and experimentators practice operational procedures and the handling of experiments. The key features of the system currently being realized comprise the possibility for distributed multi-user access to the virtual lab and the visualization of real-world experiment data. Through the capabilities to share the virtual world, cooperative operations can be practiced easily, but also trainers and trainees can work together more effectively sharing the virtual environment. The capability to visualize real-world data will be used to introduce measured data of experiments into the virtual world online in order to realistically interact with the science-reference model hardware: The user's actions in the virtual world are translated into corresponding changes of the inputs of the science reference model hardware; the measured data is than in turn fed back into the virtual world. During the operation of COLUMBUS, the capabilities for distributed access and the capabilities to visualize measured data through the use of metaphors and augmentations of the virtual world may be used to provide virtual access to the COLUMBUS module, e.g. via Internet. Currently, finishing touches are being put to the system. In November 2001 the virtual world shall be operational, so that besides the design and the key ideas, first experimental results can be presented.

  18. Global Software Development with Cloud Platforms

    NASA Astrophysics Data System (ADS)

    Yara, Pavan; Ramachandran, Ramaseshan; Balasubramanian, Gayathri; Muthuswamy, Karthik; Chandrasekar, Divya

    Offshore and outsourced distributed software development models and processes are facing challenges, previously unknown, with respect to computing capacity, bandwidth, storage, security, complexity, reliability, and business uncertainty. Clouds promise to address these challenges by adopting recent advances in virtualization, parallel and distributed systems, utility computing, and software services. In this paper, we envision a cloud-based platform that addresses some of these core problems. We outline a generic cloud architecture, its design and our first implementation results for three cloud forms - a compute cloud, a storage cloud and a cloud-based software service- in the context of global distributed software development (GSD). Our ”compute cloud” provides computational services such as continuous code integration and a compile server farm, ”storage cloud” offers storage (block or file-based) services with an on-line virtual storage service, whereas the on-line virtual labs represent a useful cloud service. We note some of the use cases for clouds in GSD, the lessons learned with our prototypes and identify challenges that must be conquered before realizing the full business benefits. We believe that in the future, software practitioners will focus more on these cloud computing platforms and see clouds as a means to supporting a ecosystem of clients, developers and other key stakeholders.

  19. Design and implementation of a CORBA-based genome mapping system prototype.

    PubMed

    Hu, J; Mungall, C; Nicholson, D; Archibald, A L

    1998-01-01

    CORBA (Common Object Request Broker Architecture), as an open standard, is considered to be a good solution for the development and deployment of applications in distributed heterogeneous environments. This technology can be applied in the bioinformatics area to enhance utilization, management and interoperation between biological resources. This paper investigates issues in developing CORBA applications for genome mapping information systems in the Internet environment with emphasis on database connectivity and graphical user interfaces. The design and implementation of a CORBA prototype for an animal genome mapping database are described. The prototype demonstration is available via: http://www.ri.bbsrc.ac.uk/ark_corba/. jian.hu@bbsrc.ac.uk

  20. Characterization of HIRF Susceptibility Threshold for a Prototype Implementation of an Onboard Data Network

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2012-01-01

    An experiment was conducted to characterize the effects of HIRF-induced upsets on a prototype onboard data network. The experiment was conducted at the NASA Langley Research Center s High Intensity Radiation Field Laboratory and used a generic distributed system prototyping platform to realize the data network. This report presents the results of the hardware susceptibility threshold characterization which examined the dependence of measured susceptibility on factors like the frequency and modulation of the radiation, layout of the physical nodes and position of the nodes in the test chamber. The report also includes lessons learned during the development and execution of the experiment.

  1. Automating testbed documentation and database access using World Wide Web (WWW) tools

    NASA Technical Reports Server (NTRS)

    Ames, Charles; Auernheimer, Brent; Lee, Young H.

    1994-01-01

    A method for providing uniform transparent access to disparate distributed information systems was demonstrated. A prototype testing interface was developed to access documentation and information using publicly available hypermedia tools. The prototype gives testers a uniform, platform-independent user interface to on-line documentation, user manuals, and mission-specific test and operations data. Mosaic was the common user interface, and HTML (Hypertext Markup Language) provided hypertext capability.

  2. Molecular mechanism of extreme mechanostability in a pathogen adhesin.

    PubMed

    Milles, Lukas F; Schulten, Klaus; Gaub, Hermann E; Bernardi, Rafael C

    2018-03-30

    High resilience to mechanical stress is key when pathogens adhere to their target and initiate infection. Using atomic force microscopy-based single-molecule force spectroscopy, we explored the mechanical stability of the prototypical staphylococcal adhesin SdrG, which targets a short peptide from human fibrinogen β. Steered molecular dynamics simulations revealed, and single-molecule force spectroscopy experiments confirmed, the mechanism by which this complex withstands forces of over 2 nanonewtons, a regime previously associated with the strength of a covalent bond. The target peptide, confined in a screwlike manner in the binding pocket of SdrG, distributes forces mainly toward the peptide backbone through an intricate hydrogen bond network. Thus, these adhesins can attach to their target with exceptionally resilient mechanostability, virtually independent of peptide side chains. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. The Tianlai 21cm intensity mapping experiment

    NASA Astrophysics Data System (ADS)

    Chen, Xuelei

    2015-08-01

    The Tianlai 21cm intensity mapping experiment is aimed at surveying the northern sky 21cm intensity at mid-redshifts, thus map out the neutral hydrogen distribution. The experiment is named "Tianlai" which means "heavenly sound" in classic Chinese, because its ultimate goal is to use the baryon acoustic oscillation (BAO) feature in the correlation function or power spectrum of large scale structure to constrain the cosmic expansion rate, and determine the nature of dark energy.The pathfinder experiment consists three cylinder reflectors of 15m wide x 40m long, and 16 dishes of 6 meter aperture, for testing the basic principle and key technologies. A radio-quiet site in Hongliuxia, Xinjiang of north-west China is selected, currently the facilities are under construction, and the prototype is expected to start commissioning later this year. The experiment is run by NAOC, with members from France, USA and Canada.

  4. Transverse diode-pumped neodymium-doped yttrium vanadate laser of simple design

    NASA Astrophysics Data System (ADS)

    Agüero, Mónica B.; Hnilo, Alejandro A.; Kovalsky, Marcelo G.

    2010-03-01

    The design and performance of an all-solid-state Nd:YVO4 laser, transversely pumped by a single 20-W (at 808 nm) diode with no coupling optics, are presented. The prototype, which is devised to be the source of a micro-LIDAR station, is very simple, easy to align, compact, and stable. The key element is a roof prism as the end mirror of the laser cavity, which is used to symmetrize the effects of the thermal distortion and the inhomogeneity of the population inversion distribution. Typical numbers are 4.2-W cw with a slightly astigmatic (3:2) homogeneous spot and a divergence of 0.5 mrad. The protoype is also tested in the active Q-switching mode, providing pulses 50-ns full width at half maximum (FWHM) at 14 KHz, 3.5 W average. Frequency doubling external to the cavity in a nonoptimized configuration provides 700 mW at 532 nm.

  5. AREVA Team Develops Sump Strainer Blockage Solution for PWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phan, Ray

    2006-07-01

    The purpose of this paper is to discuss the methodology, testing challenges, and results of testing that a team of experts from Areva NP, Alden Research Laboratory, Inc (ALDEN), and Performance Contracting Inc. (PCI) has developed. The team is currently implementing a comprehensive solution to the issue of Emergency Core Cooling System (ECCS) sump strainer blockage facing Pressurized Water Reactor (PWR) Nuclear Plants. The team has successfully demonstrated two key results from the testing of passive Sure-FlowTM strainers, which were designed to distribute the required flow over a large surface area resulting in extremely low approach velocities. First, the actualmore » head loss (pressure drop) as tested, across the prototype strainers, was much lower than the calculated head loss using the Nuclear Regulatory Commission (NRC) approved NUREG/CR-6224 head loss correlation. Second, the penetration fractions were much lower than those seen in the NRC sponsored debris penetration tests. (author)« less

  6. Using an integrative mock-up simulation approach for evidence-based evaluation of operating room design prototypes.

    PubMed

    Bayramzadeh, Sara; Joseph, Anjali; Allison, David; Shultz, Jonas; Abernathy, James

    2018-07-01

    This paper describes the process and tools developed as part of a multidisciplinary collaborative simulation-based approach for iterative design and evaluation of operating room (OR) prototypes. Full-scale physical mock-ups of healthcare spaces offer an opportunity to actively communicate with and to engage multidisciplinary stakeholders in the design process. While mock-ups are increasingly being used in healthcare facility design projects, they are rarely evaluated in a manner to support active user feedback and engagement. Researchers and architecture students worked closely with clinicians and architects to develop OR design prototypes and engaged clinical end-users in simulated scenarios. An evaluation toolkit was developed to compare design prototypes. The mock-up evaluation helped the team make key decisions about room size, location of OR table, intra-room zoning, and doors location. Structured simulation based mock-up evaluations conducted in the design process can help stakeholders visualize their future workspace and provide active feedback. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Packaging of silicon photonic devices: from prototypes to production

    NASA Astrophysics Data System (ADS)

    Morrissey, Padraic E.; Gradkowski, Kamil; Carroll, Lee; O'Brien, Peter

    2018-02-01

    The challenges associated with the photonic packaging of silicon devices is often underestimated and remains technically challenging. In this paper, we review some key enabling technologies that will allow us to overcome the current bottleneck in silicon photonic packaging; while also describing the recent developments in standardisation, including the establishment of PIXAPP as the worlds first open-access PIC packaging and assembly Pilot Line. These developments will allow the community to move from low volume prototype photonic packaged devices to large scale volume manufacturing, where the full commercialisation of PIC technology can be realised.

  8. Design of integrated laser initiator

    NASA Astrophysics Data System (ADS)

    Cao, Chunqiang; He, Aifeng; Jing, Bo; Ma, Yue

    2018-03-01

    This paper analyzes the design principle of integrated laser detonator, introduces the design method of integrated laser Detonators. Based on the integrated laser detonator, structure, laser energy -exchange device, circuit design and the energetic material properties and the charge parameters, developed a high level of integration Antistatic ability Small size of the integrated laser prototype Detonator. The laser detonator prototype antistatic ability of 25 kV. The research of this paper can solve the key design of laser detonator miniaturization and integration of weapons and equipment, satisfy the electromagnetic safety and micro weapons development of explosive demand.

  9. Contingency Contractor Optimization Phase 3 Sustainment Platform Requirements - Contingency Contractor Optimization Tool - Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durfee, Justin David; Frazier, Christopher Rawls; Bandlow, Alisa

    Sandia National Laboratories (Sandia) is in Phase 3 Sustainment of development of a prototype tool, currently referred to as the Contingency Contractor Optimization Tool - Prototype (CCOTP), under the direction of OSD Program Support. CCOT-P is intended to help provide senior Department of Defense (DoD) leaders with comprehensive insight into the global availability, readiness and capabilities of the Total Force Mix. The CCOT-P will allow senior decision makers to quickly and accurately assess the impacts, risks and mitigating strategies for proposed changes to force/capabilities assignments, apportionments and allocations options, focusing specifically on contingency contractor planning. During Phase 2 of themore » program, conducted during fiscal year 2012, Sandia developed an electronic storyboard prototype of the Contingency Contractor Optimization Tool that can be used for communication with senior decision makers and other Operational Contract Support (OCS) stakeholders. Phase 3 used feedback from demonstrations of the electronic storyboard prototype to develop an engineering prototype for planners to evaluate. Sandia worked with the DoD and Joint Chiefs of Staff strategic planning community to get feedback and input to ensure that the engineering prototype was developed to closely align with future planning needs. The intended deployment environment was also a key consideration as this prototype was developed. Initial release of the engineering prototype was done on servers at Sandia in the middle of Phase 3. In 2013, the tool was installed on a production pilot server managed by the OUSD(AT&L) eBusiness Center. The purpose of this document is to specify the CCOT-P engineering prototype platform requirements as of May 2016. Sandia developed the CCOT-P engineering prototype using common technologies to minimize the likelihood of deployment issues. CCOT-P engineering prototype was architected and designed to be as independent as possible of the major deployment components such as the server hardware, the server operating system, the database, and the web server. This document describes the platform requirements, the architecture, and the implementation details of the CCOT-P engineering prototype.« less

  10. The Varied Impacts of Energy Storage and Photovoltaics on Fossil Fuel Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Studarus, Karen E.; Thayer, Brandon L.; Barrett, Emily L.

    The emissions consequences of smart grid technologies can be significant but are not always intuitive. This is particularly true in the implementation of energy storage (ES) to enable the installation of solar photovoltaic (PV) systems. Using the web calculator at https://eqt.pnnl.gov and prototypical distribution feeders, this paper explores the COmore » $${_2}$$, SO$${_2}$$ and NO$${_x}$$ impacts of ES deployed with solar PV, where the energy storage system is operated to minimize load variation. Five regions of the country were explored using 15 prototypical distribution feeders and 2015 historical data. Impacts vary in direction, magnitude, and trend, and require a context-dependent screening method for faithful representation.« less

  11. SSPI - Space Service Provider Infrastructure: Image Information Mining and Management Prototype for a Distributed Environment

    NASA Astrophysics Data System (ADS)

    Candela, L.; Ruggieri, G.; Giancaspro, A.

    2004-09-01

    In the sphere of "Multi-Mission Ground Segment" Italian Space Agency project, some innovative technologies such as CORBA[1], Z39.50[2], XML[3], Java[4], Java server Pages[4] and C++ has been experimented. The SSPI system (Space Service Provider Infrastructure) is the prototype of a distributed environment aimed to facilitate the access to Earth Observation (EO) data. SSPI allows to ingests, archive, consolidate, visualize and evaluate these data. Hence, SSPI is not just a database of or a data repository, but an application that by means of a set of protocols, standards and specifications provides a unified access to multi-mission EO data.

  12. Recognition memory is modulated by visual similarity.

    PubMed

    Yago, Elena; Ishai, Alumit

    2006-06-01

    We used event-related fMRI to test whether recognition memory depends on visual similarity between familiar prototypes and novel exemplars. Subjects memorized portraits, landscapes, and abstract compositions by six painters with a unique style, and later performed a memory recognition task. The prototypes were presented with new exemplars that were either visually similar or dissimilar. Behaviorally, novel, dissimilar items were detected faster and more accurately. We found activation in a distributed cortical network that included face- and object-selective regions in the visual cortex, where familiar prototypes evoked stronger responses than new exemplars; attention-related regions in parietal cortex, where responses elicited by new exemplars were reduced with decreased similarity to the prototypes; and the hippocampus and memory-related regions in parietal and prefrontal cortices, where stronger responses were evoked by the dissimilar exemplars. Our findings suggest that recognition memory is mediated by classification of novel exemplars as a match or a mismatch, based on their visual similarity to familiar prototypes.

  13. A prototype Infrastructure for Cloud-based distributed services in High Availability over WAN

    NASA Astrophysics Data System (ADS)

    Bulfon, C.; Carlino, G.; De Salvo, A.; Doria, A.; Graziosi, C.; Pardi, S.; Sanchez, A.; Carboni, M.; Bolletta, P.; Puccio, L.; Capone, V.; Merola, L.

    2015-12-01

    In this work we present the architectural and performance studies concerning a prototype of a distributed Tier2 infrastructure for HEP, instantiated between the two Italian sites of INFN-Romal and INFN-Napoli. The network infrastructure is based on a Layer-2 geographical link, provided by the Italian NREN (GARR), directly connecting the two remote LANs of the named sites. By exploiting the possibilities offered by the new distributed file systems, a shared storage area with synchronous copy has been set up. The computing infrastructure, based on an OpenStack facility, is using a set of distributed Hypervisors installed in both sites. The main parameter to be taken into account when managing two remote sites with a single framework is the effect of the latency, due to the distance and the end-to-end service overhead. In order to understand the capabilities and limits of our setup, the impact of latency has been investigated by means of a set of stress tests, including data I/O throughput, metadata access performance evaluation and network occupancy, during the life cycle of a Virtual Machine. A set of resilience tests has also been performed, in order to verify the stability of the system on the event of hardware or software faults. The results of this work show that the reliability and robustness of the chosen architecture are effective enough to build a production system and to provide common services. This prototype can also be extended to multiple sites with small changes of the network topology, thus creating a National Network of Cloud-based distributed services, in HA over WAN.

  14. Microwave-based navigation of femtosatellites using on-off keying

    NASA Astrophysics Data System (ADS)

    Kamte, Namrata Jagdish

    The objective of this research is to validate that a custom-built microchip-scale satellite transmitting a signal modulated with a Pseudo Random Noise code using On-Off Keying, can be tracked. The weak GPS satellite signal is modulated with a Pseudo Random Noise (PRN) code that provides a mathematical gain. Our signal is modulated with the same PRN code using On-Off Keying (OOK) unlike Phase Shift Keying used in GPS satellites. Our goal is to obtain timing and positioning information from the microchip-scale satellite via a ground station using the concepts of PRN encoding and the OOK modulation technique. Decimeter scale satellites, with a mass of 2--6 kilograms, referred to as picosatellites, have been tracked successfully by ground stations. The microchip-scale satellite, called the femtosatellite is smaller with even less mass, at most 100 grams. At this size the satellite can take advantage of small-scale physics to perform maneuver, such as solar pressure, which only slightly perturb large spacecraft. Additionally, the reduced size decreases the cost of launch as compared to the picosatellites. A swarm of such femtosatellites can serve as environmental probes, interplanetary chemists or in-orbit inspectors of the parent spacecraft. In May 2011, NASA's last space shuttle mission STS-134 carried femtosatellites developed by Cornell researchers called "Sprites". The sprites were deployed from the International Space Station but ground stations on Earth failed to track them. In an effort to develop an alternative femtosatellite design, we have built our own femtosatellite prototype. Our femtosatellite prototype contains the AVR microcontroller on an Arduino board. This assembly is connected to a radio transmitter and a custom antenna transmitting a 433 Mhz radio frequency signal. The prototype transmits a PRN code modulated onto the signal using OOK. Our ground station consists of a Universal Software Radio Peripheral (USRP) with a custom antenna for reception of the 433 MHz signal. The USRP is driven by an open source software-defined radio application called GNU Radio. The required components of the signal are extracted from GNU Radio and processed in order to plot the received data. Benchtop testing of these OOK signals has yielded a reception sensitivity of upto 1 microsecond, which translates into a ranging capability similar to that of GPS satellites. We have correlated the received and replica PRN sequences and demonstrated that they match. The correlation can be used to obtain the identity and position of the femtosatellite prototype. This demonstrates the ability to track a femtosatellite signal that is lower than ambient noise, just like the signals broadcast from GPS satellites. Further, we have performed a system analysis and recognized key system behavioral problems. Thus we have determinately developed an optimum femtosatellite prototype and designed a novel positioning signal, providing a stepping- stone in the journey of successful femtosatellite communication.

  15. Impact of distributions on the archetypes and prototypes in heterogeneous nanoparticle ensembles.

    PubMed

    Fernandez, Michael; Wilson, Hugh F; Barnard, Amanda S

    2017-01-05

    The magnitude and complexity of the structural and functional data available on nanomaterials requires data analytics, statistical analysis and information technology to drive discovery. We demonstrate that multivariate statistical analysis can recognise the sets of truly significant nanostructures and their most relevant properties in heterogeneous ensembles with different probability distributions. The prototypical and archetypal nanostructures of five virtual ensembles of Si quantum dots (SiQDs) with Boltzmann, frequency, normal, Poisson and random distributions are identified using clustering and archetypal analysis, where we find that their diversity is defined by size and shape, regardless of the type of distribution. At the complex hull of the SiQD ensembles, simple configuration archetypes can efficiently describe a large number of SiQDs, whereas more complex shapes are needed to represent the average ordering of the ensembles. This approach provides a route towards the characterisation of computationally intractable virtual nanomaterial spaces, which can convert big data into smart data, and significantly reduce the workload to simulate experimentally relevant virtual samples.

  16. Advanced optical disk storage technology

    NASA Technical Reports Server (NTRS)

    Haritatos, Fred N.

    1996-01-01

    There is a growing need within the Air Force for more and better data storage solutions. Rome Laboratory, the Air Force's Center of Excellence for C3I technology, has sponsored the development of a number of operational prototypes to deal with this growing problem. This paper will briefly summarize the various prototype developments with examples of full mil-spec and best commercial practice. These prototypes have successfully operated under severe space, airborne and tactical field environments. From a technical perspective these prototypes have included rewritable optical media ranging from a 5.25-inch diameter format up to the 14-inch diameter disk format. Implementations include an airborne sensor recorder, a deployable optical jukebox and a parallel array of optical disk drives. They include stand-alone peripheral devices to centralized, hierarchical storage management systems for distributed data processing applications.

  17. Tests of a Compton imaging prototype in a monoenergetic 4.44 MeV photon field—a benchmark setup for prompt gamma-ray imaging devices

    NASA Astrophysics Data System (ADS)

    Golnik, C.; Bemmerer, D.; Enghardt, W.; Fiedler, F.; Hueso-González, F.; Pausch, G.; Römer, K.; Rohling, H.; Schöne, S.; Wagner, L.; Kormoll, T.

    2016-06-01

    The finite range of a proton beam in tissue opens new vistas for the delivery of a highly conformal dose distribution in radiotherapy. However, the actual particle range, and therefore the accurate dose deposition, is sensitive to the tissue composition in the proton path. Range uncertainties, resulting from limited knowledge of this tissue composition or positioning errors, are accounted for in the form of safety margins. Thus, the unverified particle range constrains the principle benefit of proton therapy. Detecting prompt γ-rays, a side product of proton-tissue interaction, aims at an on-line and non-invasive monitoring of the particle range, and therefore towards exploiting the potential of proton therapy. Compton imaging of the spatial prompt γ-ray emission is a promising measurement approach. Prompt γ-rays exhibit emission energies of several MeV. Hence, common radioactive sources cannot provide the energy range a prompt γ-ray imaging device must be designed for. In this work a benchmark measurement-setup for the production of a localized, monoenergetic 4.44 MeV γ-ray source is introduced. At the Tandetron accelerator at the HZDR, the proton-capture resonance reaction 15N(p,α γ4.439)12C is utilized. This reaction provides the same nuclear de-excitation (and γ-ray emission) occurrent as an intense prompt γ-ray line in proton therapy. The emission yield is quantitatively described. A two-stage Compton imaging device, dedicated for prompt γ-ray imaging, is tested at the setup exemplarily. Besides successful imaging tests, the detection efficiency of the prototype at 4.44 MeV is derived from the measured data. Combining this efficiency with the emission yield for prompt γ-rays, the number of valid Compton events, induced by γ-rays in the energy region around 4.44 MeV, is estimated for the prototype being implemented in a therapeutic treatment scenario. As a consequence, the detection efficiency turns out to be a key parameter for prompt γ-rays Compton imaging limiting the applicability of the prototype in its current realization.

  18. IBD Selection for the 288kg Prototype SoLid Module

    NASA Astrophysics Data System (ADS)

    Saunders, D.; SoLid Collaboration

    2017-09-01

    The SoLid experiment aims to make a measurement of very short baseline neutrino oscillations using reactor antineutrinos. Key to its sensitivity are the experiment’s high spatial and energy resolution, combined with a very suitable reactor source and excellent background rejection. Placed on the surface at just 5 m from the reactor core, the cosmic flux and reactor output lead to a challenging environment. The fine segmentation of the detector, 5 cm cubes, allows the topology of events to be studied to previously unseen precision. This offers new and unexplored handles for tackling these backgrounds - a key requirement for SoLid physics aims. Using the most recent SoLid prototype (288 kg, 20% scale), we present the first selection to focus on IBD signals. This includes descriptions of SoLid signals and backgrounds, and demonstration that the segmentation can lead to gains in orders of magnitude in background rejection.

  19. Application of a distributed hydrological model to the design of a road inundation warning system for flash flood prone areas

    NASA Astrophysics Data System (ADS)

    Versini, P.-A.; Gaume, E.; Andrieu, H.

    2010-04-01

    This paper presents an initial prototype of a distributed hydrological model used to map possible road inundations in a region frequently exposed to severe flash floods: the Gard region (South of France). The prototype has been tested in a pseudo real-time mode on five recent flash flood events for which actual road inundations have been inventoried. The results are promising: close to 100% probability of detection of actual inundations, inundations detected before they were reported by the road management field teams with a false alarm ratios not exceeding 30%. This specific case study differs from the standard applications of rainfall-runoff models to produce flood forecasts, focussed on a single or a limited number of gauged river cross sections. It illustrates that, despite their lack of accuracy, hydro-meteorological forecasts based on rainfall-runoff models, especially distributed models, contain valuable information for flood event management. The possible consequences of landslides, debris flows and local erosion processes, sometimes associated with flash floods, were not considered at this stage of development of the prototype. They are limited in the Gard region but should be taken into account in future developments of the approach to implement it efficiently in other areas more exposed to these phenomena such as the Alpine area.

  20. Marine realms information bank: A distributed geolibrary for the ocean

    USGS Publications Warehouse

    Marincioni, F.; Lightsom, F.; ,

    2002-01-01

    The Marine Realms Information Bank (MRIB) is a prototype web-based distributed geolibrary that organizes, indexes, and delivers online information about the oceanic and coastal environments. It implements the distributed geolibrary concept to organize, index, and deliver online information about the oceanic and coastal environments. The significance of MRIB lies both in the utility of the information bank and in the implementation of the distributed geolibraries concept.

  1. [Example of product development by industry and research solidarity].

    PubMed

    Seki, Masayoshi

    2014-01-01

    When the industrial firms develop the product, the research result from research institutions is used or to reflect the ideas from users on the developed product would be significant in order to improve the product. To state the software product which developed jointly as an example to describe the adopted development technique and its result, and to consider the modality of the industry solidarity seen from the company side and joint development. The software development methods have the merit and demerit and necessary to choose the optimal development technique by the system which develops. We have been jointly developed the dose distribution browsing software. As the software development method, we adopted the prototype model. In order to display the dose distribution information, it is necessary to load four objects which are CT-Image, Structure Set, RT-Plan, and RT-Dose, are displayed in a composite manner. The prototype model which is the development technique was adopted by this joint development was optimal especially to develop the dose distribution browsing software. In a prototype model, since the detail design was created based on the program source code after the program was finally completed, there was merit on the period shortening of document written and consist in design and implementation. This software eventually opened to the public as an open source. Based on this developed prototype software, the release version of the dose distribution browsing software was developed. Developing this type of novelty software, it normally takes two to three years, but since the joint development was adopted, it shortens the development period to one year. Shortening the development period was able to hold down to the minimum development cost for a company and thus, this will be reflected to the product price. The specialists make requests on the product from user's point of view are important, but increase in specialists as professionals for product development will increase the expectations to develop a product to meet the users demand.

  2. Wearable Wireless Sensor for Multi-Scale Physiological Monitoring

    DTIC Science & Technology

    2015-10-01

    clothes with different colors and patterns. The developed algorithm can still detect the chest movements even if single color clothes are worn...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT One of the aims of Year 2 of the project was to complete development of a prototype multi...this aim, we have developed a prototype 6-photodetector reflectance-based pulse oximeter and results to date show that good signals can be obtained in

  3. Permafrost Ecosystem Warming Prototype: Installation, Operation, and Initial Site Characterization

    DTIC Science & Technology

    2013-11-01

    report Approved for public release; distribution is unlimited. Prepared for US Army Corps of Engineers Washington , DC 20314-1000 Monitored by...in 3 m diameter plots in a temperate deciduous forest. To further develop the prototype for an arctic climate, a similar test system was installed...growth trees and shrubs. The site was chosen because of its permafrost characteristics, ease of access, and its close proximity to the CRREL Fairbanks

  4. A chronic generalized bi-directional brain-machine interface.

    PubMed

    Rouse, A G; Stanslaski, S R; Cong, P; Jensen, R M; Afshar, P; Ullestad, D; Gupta, R; Molnar, G F; Moran, D W; Denison, T J

    2011-06-01

    A bi-directional neural interface (NI) system was designed and prototyped by incorporating a novel neural recording and processing subsystem into a commercial neural stimulator architecture. The NI system prototype leverages the system infrastructure from an existing neurostimulator to ensure reliable operation in a chronic implantation environment. In addition to providing predicate therapy capabilities, the device adds key elements to facilitate chronic research, such as four channels of electrocortigram/local field potential amplification and spectral analysis, a three-axis accelerometer, algorithm processing, event-based data logging, and wireless telemetry for data uploads and algorithm/configuration updates. The custom-integrated micropower sensor and interface circuits facilitate extended operation in a power-limited device. The prototype underwent significant verification testing to ensure reliability, and meets the requirements for a class CF instrument per IEC-60601 protocols. The ability of the device system to process and aid in classifying brain states was preclinically validated using an in vivo non-human primate model for brain control of a computer cursor (i.e. brain-machine interface or BMI). The primate BMI model was chosen for its ability to quantitatively measure signal decoding performance from brain activity that is similar in both amplitude and spectral content to other biomarkers used to detect disease states (e.g. Parkinson's disease). A key goal of this research prototype is to help broaden the clinical scope and acceptance of NI techniques, particularly real-time brain state detection. These techniques have the potential to be generalized beyond motor prosthesis, and are being explored for unmet needs in other neurological conditions such as movement disorders, stroke and epilepsy.

  5. Early road location : the key to discovering historic resources?.

    DOT National Transportation Integrated Search

    1980-01-01

    The paper describes a unique methodology used in surveying and documenting architecture along eighteenth century road systems in Virginia which could be used as a prototype in other areas. In the method described the historian geographer, and archite...

  6. Portable microfluidic platform for real-time, high sensitive detection and identification of trichloroethylene and other organochloride compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Erik

    In this successful SBIR Phase II effort, HJ Science & Technology, Inc. has designed and built a novel portable instrument capable of performing automated aqueous organochloride (chlorinated solvent) speciation analysis for environmental monitoring at DoE sites. Our technique employs performing organochloride conjugation, labeling the conjugate with an efficient fluorophore, and performing on-chip capillary electrophoresis separation with laser induced fluorescence detection. The key component of the portable instrument is a novel microfluidic chip capable of complete “end-to-end” automation of sample preparation, conjugation, labeling, and μCE separation and detection. In addition, the Phase II prototype includes key supporting instrumentation such as themore » optical module, pneumatic manifold, electronics, software, etc. As such, we have achieved all of the following 4 Phase II technical objectives: 1) Further refine and optimize the “on-chip” automation of the organochloride conjugation and labeling protocol, 2) Further improve the microfluidic chip fabrication process and the pneumatic manifold design in order to address issues related to performance consistency, product yield, performance reliability, and user friendliness, 3) Design and build the supporting components of the Phase II prototype including optical module, electronics, and software, and 4) Assemble the Phase II prototype hardware.« less

  7. Expert System Detects Power-Distribution Faults

    NASA Technical Reports Server (NTRS)

    Walters, Jerry L.; Quinn, Todd M.

    1994-01-01

    Autonomous Power Expert (APEX) computer program is prototype expert-system program detecting faults in electrical-power-distribution system. Assists human operators in diagnosing faults and deciding what adjustments or repairs needed for immediate recovery from faults or for maintenance to correct initially nonthreatening conditions that could develop into faults. Written in Lisp.

  8. Sparse distributed memory: Principles and operation

    NASA Technical Reports Server (NTRS)

    Flynn, M. J.; Kanerva, P.; Bhadkamkar, N.

    1989-01-01

    Sparse distributed memory is a generalized random access memory (RAM) for long (1000 bit) binary words. Such words can be written into and read from the memory, and they can also be used to address the memory. The main attribute of the memory is sensitivity to similarity, meaning that a word can be read back not only by giving the original write address but also by giving one close to it as measured by the Hamming distance between addresses. Large memories of this kind are expected to have wide use in speech recognition and scene analysis, in signal detection and verification, and in adaptive control of automated equipment, in general, in dealing with real world information in real time. The memory can be realized as a simple, massively parallel computer. Digital technology has reached a point where building large memories is becoming practical. Major design issues were resolved which were faced in building the memories. The design is described of a prototype memory with 256 bit addresses and from 8 to 128 K locations for 256 bit words. A key aspect of the design is extensive use of dynamic RAM and other standard components.

  9. A novel functional electrical stimulation-control system for restoring motor function of post-stroke hemiplegic patients

    PubMed Central

    Huang, Zonghao; Wang, Zhigong; Lv, Xiaoying; Zhou, Yuxuan; Wang, Haipeng; Zong, Sihao

    2014-01-01

    Hemiparesis is one of the most common consequences of stroke. Advanced rehabilitation techniques are essential for restoring motor function in hemiplegic patients. Functional electrical stimulation applied to the affected limb based on myoelectric signal from the unaffected limb is a promising therapy for hemiplegia. In this study, we developed a prototype system for evaluating this novel functional electrical stimulation-control strategy. Based on surface electromyography and a vector machine model, a self-administered, multi-movement, force-modulation functional electrical stimulation-prototype system for hemiplegia was implemented. This paper discusses the hardware design, the algorithm of the system, and key points of the self-oscillation-prone system. The experimental results demonstrate the feasibility of the prototype system for further clinical trials, which is being conducted to evaluate the efficacy of the proposed rehabilitation technique. PMID:25657728

  10. A prototype heat pipe heat exchanger for the capillary pumped loop flight experiment

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Yun, Seokgeun; Kroliczek, Edward J.

    1992-01-01

    A Capillary Pumped Two-Phase Heat Transport Loop (CAPL) Flight Experiment, currently planned for 1993, will provide microgravity verification of the prototype capillary pumped loop (CPL) thermal control system for EOS. CAPL employs a heat pipe heat exchanger (HPHX) to couple the condenser section of the CPL to the radiator assembly. A prototype HPHX consisting of a heat exchanger (HX), a header heat pipe (HHP), a spreader heat pipe (SHP), and a flow regulator has been designed and tested. The HX transmits heat from the CPL condenser to the HHP, while the HHP and SHP transport heat to the radiator assembly. The flow regulator controls flow distribution among multiple parallel HPHX's. Test results indicated that the prototype HPHX could transport up to 800 watts with an overall heat transfer coefficient of more than 6000 watts/sq m-deg C. Flow regulation among parallel HPHX's was also demonstrated.

  11. Development of an interprofessional competency framework for collaborative practice in Japan.

    PubMed

    Haruta, Junji; Yoshida, Kazue; Goto, Michiko; Yoshimoto, Hisashi; Ichikawa, Shuhei; Mori, Youhei; Yoshimi, Kenji; Otsuka, Mariko

    2018-01-30

    Rapid aging of the population necessitates improved collaboration among healthcare professionals. Unfortunately, interprofessional collaboration has yet to be implemented effectively in Japan. Therefore, we aimed to develop an interprofessional competency framework for Japanese healthcare professionals. The project was conducted as a four-step process, starting with initial categorization of potential competency domains,, followed by guiding principle and prototype development, feedback on the prototype, and final consensus. First, authors (JH and MO) collected opinions about competency in interprofessional collaboration at two academic meetings of the Japan Association for Interprofessional Education (JAIPE) and then analyzed the data thematically. Second, a project team consisting of JAIPE and University representatives extracted the domains and statements as prototype 1. Third, seven representatives from professional organizations joined the project team and developed prototype 2. We then called for feedback on the revised prototype 2 at both an open symposium and via public comments. Following revision of prototype 2, a new project team including 20 university, professional organization and health practitioner representatives finally discussed prototype 3, developed the final draft and reached a consensus. In analysis after collecting the data, we extracted 11 themes. We developed four key principles which applied to six domains as prototype 1-3. Finally, our competency framework included two core domains of "Patient-/client-/family-/community-centered" and "Interprofessional communication", and four peripheral domains of "Role contribution", "Facilitation of relationships", "Reflection" and "Understanding of others". We developed an interprofessional competency framework in Japan which consists of two core and four peripheral domains. The interprofessional competency framework is likely to affect the understanding of "high-context" and "relationalism" in Japanese healthcare. We hope that our interprofessional competency framework will encourage the systematic implementation of interprofessional education and collaboration in Japan.

  12. NASAwide electronic publishing system: Prototype STI electronic document distribution, stage-4 evaluation report

    NASA Technical Reports Server (NTRS)

    Tuey, Richard C.; Collins, Mary; Caswell, Pamela; Haynes, Bob; Nelson, Michael L.; Holm, Jeanne; Buquo, Lynn; Tingle, Annette; Cooper, Bill; Stiltner, Roy

    1996-01-01

    This evaluation report contains an introduction, seven chapters, and five appendices. The Introduction describes the purpose, conceptual frame work, functional description, and technical report server of the STI Electronic Document Distribution (EDD) project. Chapter 1 documents the results of the prototype STI EDD in actual operation. Chapter 2 documents each NASA center's post processing publication processes. Chapter 3 documents each center's STI software, hardware, and communications configurations. Chapter 7 documents STI EDD policy, practices, and procedures. The appendices, which arc contained in Part 2 of this document, consist of (1) STI EDD Project Plan, (2) Team members, (3) Phasing Schedules, (4) Accessing On-line Reports, and (5) Creating an HTML File and Setting Up an xTRS. In summary, Stage 4 of the NASAwide Electronic Publishing System is the final phase of its implementation through the prototyping and gradual integration of each NASA center's electronic printing systems, desktop publishing systems, and technical report servers to be able to provide to NASA's engineers, researchers, scientists, and external users the widest practicable and appropriate dissemination of information concerning its activities and the result thereof to their work stations.

  13. NASAwide electronic publishing system-prototype STI electronic document distribution: Stage-4 evaluation report. Part 2; Appendices

    NASA Technical Reports Server (NTRS)

    Tuey, Richard C.; Collins, Mary; Caswell, Pamela; Haynes, Bob; Nelson, Michael L.; Holm, Jeanne; Buquo, Lynn; Tingle, Annette; Cooper, Bill; Stiltner, Roy

    1996-01-01

    This evaluation report contains an introduction, seven chapters, and five appendices. The Introduction describes the purpose, conceptual framework, functional description, and technical report server of the Scientific and Technical Information (STI) Electronic Document Distribution (EDD) project. Chapter 1 documents the results of the prototype STI EDD in actual operation. Chapter 2 documents each NASA center's post processing publication processes. Chapter 3 documents each center's STI software, hardware. and communications configurations. Chapter 7 documents STI EDD policy, practices, and procedures. The appendices consist of (A) the STI EDD Project Plan, (B) Team members, (C) Phasing Schedules, (D) Accessing On-line Reports, and (E) Creating an HTML File and Setting Up an xTRS. In summary, Stage 4 of the NASAwide Electronic Publishing System is the final phase of its implementation through the prototyping and gradual integration of each NASA center's electronic printing systems, desk top publishing systems, and technical report servers, to be able to provide to NASA's engineers, researchers, scientists, and external users, the widest practicable and appropriate dissemination of information concerning its activities and the result thereof to their work stations.

  14. Acceptance testing of the prototype electrometer for the SAMPIE flight experiment

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry

    1992-01-01

    The Solar Array Module Plasma Interaction Experiment (SAMPIE) has two key instruments at the heart of its data acquisition capability. One of these, the electrometer, is designed to measure both ion and electron current from most of the samples included in the experiment. The accuracy requirement, specified by the project's Principal Investigator, is for agreement within 10 percent with a calibrated laboratory instrument. Plasma chamber testing was performed to assess the capabilities of the prototype design. Agreement was determined to be within 2 percent for electron collection and within 3 percent for ion collection.

  15. Development of the prototype pneumatic transfer system for ITER neutron activation system.

    PubMed

    Cheon, M S; Seon, C R; Pak, S; Lee, H G; Bertalot, L

    2012-10-01

    The neutron activation system (NAS) measures neutron fluence at the first wall and the total neutron flux from the ITER plasma, providing evaluation of the fusion power for all operational phases. The pneumatic transfer system (PTS) is one of the key components of the NAS for the proper operation of the system, playing a role of transferring encapsulated samples between the capsule loading machine, irradiation stations, counting stations, and disposal bin. For the validation and the optimization of the design, a prototype of the PTS was developed and capsule transfer tests were performed with the developed system.

  16. A Prototype for the Support of Integrated Software Process Development and Improvement

    NASA Astrophysics Data System (ADS)

    Porrawatpreyakorn, Nalinpat; Quirchmayr, Gerald; Chutimaskul, Wichian

    An efficient software development process is one of key success factors for quality software. Not only can the appropriate establishment but also the continuous improvement of integrated project management and of the software development process result in efficiency. This paper hence proposes a software process maintenance framework which consists of two core components: an integrated PMBOK-Scrum model describing how to establish a comprehensive set of project management and software engineering processes and a software development maturity model advocating software process improvement. Besides, a prototype tool to support the framework is introduced.

  17. Advanced automation in space shuttle mission control

    NASA Technical Reports Server (NTRS)

    Heindel, Troy A.; Rasmussen, Arthur N.; Mcfarland, Robert Z.

    1991-01-01

    The Real Time Data System (RTDS) Project was undertaken in 1987 to introduce new concepts and technologies for advanced automation into the Mission Control Center environment at NASA's Johnson Space Center. The project's emphasis is on producing advanced near-operational prototype systems that are developed using a rapid, interactive method and are used by flight controllers during actual Shuttle missions. In most cases the prototype applications have been of such quality and utility that they have been converted to production status. A key ingredient has been an integrated team of software engineers and flight controllers working together to quickly evolve the demonstration systems.

  18. Front and rear projection autostereoscopic 3D displays based on lenticular sheets

    NASA Astrophysics Data System (ADS)

    Wang, Qiong-Hua; Zang, Shang-Fei; Qi, Lin

    2015-03-01

    A front projection autostereoscopic display is proposed. The display is composed of eight projectors and a 3D-imageguided screen which having a lenticular sheet and a retro-reflective diffusion screen. Based on the optical multiplexing and de-multiplexing, the optical functions of the 3D-image-guided screen are parallax image interlacing and viewseparating, which is capable of reconstructing 3D images without quality degradation from the front direction. The operating principle, optical design calculation equations and correction method of parallax images are given. A prototype of the front projection autostereoscopic display is developed, which enhances the brightness and 3D perceptions, and improves space efficiency. The performance of this prototype is evaluated by measuring the luminance and crosstalk distribution along the horizontal direction at the optimum viewing distance. We also propose a rear projection autostereoscopic display. The display consists of eight projectors, a projection screen, and two lenticular sheets. The operation principle and calculation equations are described in detail and the parallax images are corrected by means of homography. A prototype of the rear projection autostereoscopic display is developed. The normalized luminance distributions of viewing zones from the measurement are given. Results agree well with the designed values. The prototype presents high resolution and high brightness 3D images. The research has potential applications in some commercial entertainments and movies for the realistic 3D perceptions.

  19. Development of a silicone hollow fiber membrane oxygenator for ECMO application.

    PubMed

    Yamane, S; Ohashi, Y; Sueoka, A; Sato, K; Kuwana, J; Nosé, Y

    1998-01-01

    A new silicone hollow fiber membrane oxygenator for extracorporeal membrane oxygenation (ECMO) was developed using an ultrathin silicone hollow fiber, with a 300 microm outer diameter and a wall thickness of 50 microm. The hollow fibers were mechanically cross-wound on the flow distributor to achieve equal distribution of blood flow without changing the fiber shape. The housing, made of silicone coated acryl, was 236 mm long with an inner diameter of 60 mm. The surface area was 1.0 m2 for prototype 211, and 1.1 m2 for prototype 209. The silicone fiber length was 150 mm, and the silicone membrane packing density was 43% for prototype 211 and 36% for prototype 209. Prototype 211 has a priming volume of 208 ml, and prototype 209 has a priming volume of 228 ml. The prototype 211 oxygenator demonstrates a gas transfer rate of 120 +/- 5 ml/min (mean +/- SD) for O2 and 67 +/- 12 ml/min for CO2 under 2 L of blood flow and 4 L of O2 gas flow. Prototype 209 produced the same values. The blood side pressure drop was low compared with the silicone sheet oxygenator (Avecor, 1500ECMO). These results showed that this new oxygenator for ECMO had efficiency similar to the silicone sheet oxygenator that has a 50% larger surface area. These results suggest that the new generation oxygenator using an ultrathin silicone hollow fiber possesses sufficient gas transfer performance for long-term extracorporeal lung support.

  20. Developing and Testing Simulated Occupational Experiences for Distributive Education Students in Rural Communities: Volume III: Training Plans: Final Report.

    ERIC Educational Resources Information Center

    Virginia Polytechnic Inst. and State Univ., Blacksburg.

    Volume 3 of a three volume final report presents prototype job training plans developed as part of a research project which pilot tested a distributive education program for rural schools utilizing a retail store simulation plan. The plans are for 15 entry-level and 15 career-level jobs in seven categories of distributive business (department…

  1. Large strain variable stiffness composites for shear deformations with applications to morphing aircraft skins

    NASA Astrophysics Data System (ADS)

    McKnight, G. P.; Henry, C. P.

    2008-03-01

    Morphing or reconfigurable structures potentially allow for previously unattainable vehicle performance by permitting several optimized structures to be achieved using a single platform. The key to enabling this technology in applications such as aircraft wings, nozzles, and control surfaces, are new engineered materials which can achieve the necessary deformations but limit losses in parasitic actuation mass and structural efficiency (stiffness/weight). These materials should exhibit precise control of deformation properties and provide high stiffness when exercised through large deformations. In this work, we build upon previous efforts in segmented reinforcement variable stiffness composites employing shape memory polymers to create prototype hybrid composite materials that combine the benefits of cellular materials with those of discontinuous reinforcement composites. These composites help overcome two key challenges for shearing wing skins: the resistance to out of plane buckling from actuation induced shear deformation, and resistance to membrane deflections resulting from distributed aerodynamic pressure loading. We designed, fabricated, and tested composite materials intended for shear deformation and address out of plane deflections in variable area wing skins. Our designs are based on the kinematic engineering of reinforcement platelets such that desired microstructural kinematics is achieved through prescribed boundary conditions. We achieve this kinematic control by etching sheets of metallic reinforcement into regular patterns of platelets and connecting ligaments. This kinematic engineering allows optimization of materials properties for a known deformation pathway. We use mechanical analysis and full field photogrammetry to relate local scale kinematics and strains to global deformations for both axial tension loading and shear loading with a pinned-diamond type fixture. The Poisson ratio of the kinematically engineered composite is ~3x higher than prototypical orthotropic variable stiffness composites. This design allows us to create composite materials that have high stiffness in the cold state below SMP T g (4-14GPa) and yet achieve large composite shear strains (5-20%) in the hot state (above SMP T g).

  2. Regional Assessment of Storm-triggered Shall Landslide Risks using the SLIDE (SLope-Infiltration-Distributed Equilibrium) Model

    NASA Astrophysics Data System (ADS)

    Hong, Y.; Kirschbaum, D. B.; Fukuoka, H.

    2011-12-01

    The key to advancing the predictability of rainfall-triggered landslides is to use physically based slope-stability models that simulate the dynamical response of the subsurface moisture to spatiotemporal variability of rainfall in complex terrains. An early warning system applying such physical models has been developed to predict rainfall-induced shallow landslides over Java Island in Indonesia and Honduras. The prototyped early warning system integrates three major components: (1) a susceptibility mapping or hotspot identification component based on a land surface geospatial database (topographical information, maps of soil properties, and local landslide inventory etc.); (2) a satellite-based precipitation monitoring system (http://trmm.gsfc.nasa.gov) and a precipitation forecasting model (i.e. Weather Research Forecast); and (3) a physically-based, rainfall-induced landslide prediction model SLIDE (SLope-Infiltration-Distributed Equilibrium). The system utilizes the modified physical model to calculate a Factor of Safety (FS) that accounts for the contribution of rainfall infiltration and partial saturation to the shear strength of the soil in topographically complex terrains. The system's prediction performance has been evaluated using a local landslide inventory. In Java Island, Indonesia, evaluation of SLIDE modeling results by local news reports shows that the system successfully predicted landslides in correspondence to the time of occurrence of the real landslide events. Further study of SLIDE is implemented in Honduras where Hurricane Mitch triggered widespread landslides in 1998. Results shows within the approximately 1,200 square kilometers study areas, the values of hit rates reached as high as 78% and 75%, while the error indices were 35% and 49%. Despite positive model performance, the SLIDE model is limited in the early warning system by several assumptions including, using general parameter calibration rather than in situ tests and neglecting geologic information. Advantages and limitations of this model will be discussed with respect to future applications of landslide assessment and prediction over large scales. In conclusion, integration of spatially distributed remote sensing precipitation products and in-situ datasets and physical models in this prototype system enable us to further develop a regional early warning tool in the future for forecasting storm-induced landslides.

  3. New Generation Power System for Space Applications

    NASA Technical Reports Server (NTRS)

    Jones, Loren; Carr, Greg; Deligiannis, Frank; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treicler, John; Wester, Gene; Sauers, Jim; hide

    2004-01-01

    The Deep Space Avionics (DSA) Project is developing a new generation of power system building blocks. Using application specific integrated circuits (ASICs) and power switching modules a scalable power system can be constructed for use on multiple deep space missions including future missions to Mars, comets, Jupiter and its moons. The key developments of the DSA power system effort are five power ASICs and a mod ule for power switching. These components enable a modular and scalab le design approach, which can result in a wide variety of power syste m architectures to meet diverse mission requirements and environments . Each component is radiation hardened to one megarad) total dose. The power switching module can be used for power distribution to regular spacecraft loads, to propulsion valves and actuation of pyrotechnic devices. The number of switching elements per load, pyrotechnic firin gs and valve drivers can be scaled depending on mission needs. Teleme try data is available from the switch module via an I2C data bus. The DSA power system components enable power management and distribution for a variety of power buses and power system architectures employing different types of energy storage and power sources. This paper will describe each power ASIC#s key performance characteristics as well a s recent prototype test results. The power switching module test results will be discussed and will demonstrate its versatility as a multip urpose switch. Finally, the combination of these components will illu strate some of the possible power system architectures achievable fro m small single string systems to large fully redundant systems.

  4. Adaptation of Control Center Software to Commerical Real-Time Display Applications

    NASA Technical Reports Server (NTRS)

    Collier, Mark D.

    1994-01-01

    NASA-Marshall Space Flight Center (MSFC) is currently developing an enhanced Huntsville Operation Support Center (HOSC) system designed to support multiple spacecraft missions. The Enhanced HOSC is based upon a distributed computing architecture using graphic workstation hardware and industry standard software including POSIX, X Windows, Motif, TCP/IP, and ANSI C. Southwest Research Institute (SwRI) is currently developing a prototype of the Display Services application for this system. Display Services provides the capability to generate and operate real-time data-driven graphic displays. This prototype is a highly functional application designed to allow system end users to easily generate complex data-driven displays. The prototype is easy to use, flexible, highly functional, and portable. Although this prototype is being developed for NASA-MSFC, the general-purpose real-time display capability can be reused in similar mission and process control environments. This includes any environment depending heavily upon real-time data acquisition and display. Reuse of the prototype will be a straight-forward transition because the prototype is portable, is designed to add new display types easily, has a user interface which is separated from the application code, and is very independent of the specifics of NASA-MSFC's system. Reuse of this prototype in other environments is a excellent alternative to creation of a new custom application, or for environments with a large number of users, to purchasing a COTS package.

  5. Arcade: A Web-Java Based Framework for Distributed Computing

    NASA Technical Reports Server (NTRS)

    Chen, Zhikai; Maly, Kurt; Mehrotra, Piyush; Zubair, Mohammad; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    Distributed heterogeneous environments are being increasingly used to execute a variety of large size simulations and computational problems. We are developing Arcade, a web-based environment to design, execute, monitor, and control distributed applications. These targeted applications consist of independent heterogeneous modules which can be executed on a distributed heterogeneous environment. In this paper we describe the overall design of the system and discuss the prototype implementation of the core functionalities required to support such a framework.

  6. A Framework to Design the Computational Load Distribution of Wireless Sensor Networks in Power Consumption Constrained Environments

    PubMed Central

    Sánchez-Álvarez, David; Rodríguez-Pérez, Francisco-Javier

    2018-01-01

    In this paper, we present a work based on the computational load distribution among the homogeneous nodes and the Hub/Sink of Wireless Sensor Networks (WSNs). The main contribution of the paper is an early decision support framework helping WSN designers to take decisions about computational load distribution for those WSNs where power consumption is a key issue (when we refer to “framework” in this work, we are considering it as a support tool to make decisions where the executive judgment can be included along with the set of mathematical tools of the WSN designer; this work shows the need to include the load distribution as an integral component of the WSN system for making early decisions regarding energy consumption). The framework takes advantage of the idea that balancing sensors nodes and Hub/Sink computational load can lead to improved energy consumption for the whole or at least the battery-powered nodes of the WSN. The approach is not trivial and it takes into account related issues such as the required data distribution, nodes, and Hub/Sink connectivity and availability due to their connectivity features and duty-cycle. For a practical demonstration, the proposed framework is applied to an agriculture case study, a sector very relevant in our region. In this kind of rural context, distances, low costs due to vegetable selling prices and the lack of continuous power supplies may lead to viable or inviable sensing solutions for the farmers. The proposed framework systematize and facilitates WSN designers the required complex calculations taking into account the most relevant variables regarding power consumption, avoiding full/partial/prototype implementations, and measurements of different computational load distribution potential solutions for a specific WSN. PMID:29570645

  7. The Ferris Factor.

    ERIC Educational Resources Information Center

    Wenrich, J. William; Coyle, Tricia

    1986-01-01

    Examines the close relationship between Ferris State College and Michigan's community colleges and the key role this has played in a coordinated move toward economic revitalization. Describes efforts made in the areas of articulation, prototype vocational programs, admissions counseling, technical education, and the testing and training of…

  8. Compact Tactile Sensors for Robot Fingers

    NASA Technical Reports Server (NTRS)

    Martin, Toby B.; Lussy, David; Gaudiano, Frank; Hulse, Aaron; Diftler, Myron A.; Rodriguez, Dagoberto; Bielski, Paul; Butzer, Melisa

    2004-01-01

    Compact transducer arrays that measure spatial distributions of force or pressure have been demonstrated as prototypes of tactile sensors to be mounted on fingers and palms of dexterous robot hands. The pressure- or force-distribution feedback provided by these sensors is essential for the further development and implementation of robot-control capabilities for humanlike grasping and manipulation.

  9. FRIB Cryogenic Distribution System and Status

    NASA Astrophysics Data System (ADS)

    Ganni, V.; Dixon, K.; Laverdure, N.; Yang, S.; Nellis, T.; Jones, S.; Casagrande, F.

    2015-12-01

    The MSU-FRIB cryogenic distribution system supports the 2 K primary, 4 K primary, and 35 - 55 K shield operation of more than 70 loads in the accelerator and the experimental areas. It is based on JLab and SNS experience with bayonet-type disconnects between the loads and the distribution system for phased commissioning and maintenance. The linac transfer line, which features three separate transfer line segments for additional independence during phased commissioning at 4 K and 2 K, connects the folded arrangement of 49 cryomodules and 4 superconducting dipole magnets and a fourth transfer line supports the separator area cryo loads. The pressure reliefs for the transfer line process lines, located in the refrigeration room outside the tunnel/accelerator area, are piped to be vented outdoors. The transfer line designs integrate supply and return flow paths into a combined vacuum space. The main linac distribution segments are produced in a small number of standard configurations; a prototype of one such configuration has been fabricated at Jefferson Lab and has been installed at MSU to support testing of a prototype FRIB cryomodule.

  10. The evaluation of phasemeter prototype performance for the space gravitational waves detection.

    PubMed

    Liu, He-Shan; Dong, Yu-Hui; Li, Yu-Qiong; Luo, Zi-Ren; Jin, Gang

    2014-02-01

    Heterodyne laser interferometry is considered as the most promising readout scheme for future space gravitational wave detection missions, in which the gravitational wave signals disguise as small phase variances within the heterodyne beat note. This makes the phasemeter, which extracts the phase information from the beat note, the key device to this system. In this paper, a prototype of phasemeter based on digital phase-locked loop technology is developed, and the major noise sources which may contribute to the noise spectra density are analyzed in detail. Two experiments are also carried out to evaluate the performance of the phasemeter prototype. The results show that the sensitivity is achieved 2π μrad/√Hz in the frequency range of 0.04 Hz-10 Hz. Due to the effect of thermal drift, the noise obviously increases with the frequencies down to 0.1 mHz.

  11. The evaluation of phasemeter prototype performance for the space gravitational waves detection

    NASA Astrophysics Data System (ADS)

    Liu, He-Shan; Dong, Yu-Hui; Li, Yu-Qiong; Luo, Zi-Ren; Jin, Gang

    2014-02-01

    Heterodyne laser interferometry is considered as the most promising readout scheme for future space gravitational wave detection missions, in which the gravitational wave signals disguise as small phase variances within the heterodyne beat note. This makes the phasemeter, which extracts the phase information from the beat note, the key device to this system. In this paper, a prototype of phasemeter based on digital phase-locked loop technology is developed, and the major noise sources which may contribute to the noise spectra density are analyzed in detail. Two experiments are also carried out to evaluate the performance of the phasemeter prototype. The results show that the sensitivity is achieved 2π μrad/√Hz in the frequency range of 0.04 Hz-10 Hz. Due to the effect of thermal drift, the noise obviously increases with the frequencies down to 0.1 mHz.

  12. AlGaAs 55Fe X-ray radioisotope microbattery

    PubMed Central

    Butera, S.; Whitaker, M. D. C.; Lioliou, G.; Barnett, A. M.

    2016-01-01

    This paper describes the performance of a fabricated prototype Al0.2Ga0.8As 55Fe radioisotope microbattery photovoltaic cells over the temperature range −20 °C to 50 °C. Two 400 μm diameter p+-i-n+ (3 μm i-layer) Al0.2Ga0.8As mesa photodiodes were used as conversion devices in a novel X-ray microbattery prototype. The changes of the key microbattery parameters were analysed in response to temperature: the open circuit voltage, the maximum output power and the internal conversion efficiency decreased when the temperature was increased. At −20 °C, an open circuit voltage and a maximum output power of 0.2 V and 0.04 pW, respectively, were measured per photodiode. The best internal conversion efficiency achieved for the fabricated prototype was only 0.95% at −20 °C. PMID:27922093

  13. Advancing Technology for Starlight Suppression via an External Occulter

    NASA Technical Reports Server (NTRS)

    Kasdin, N. J.; Spergel, D. N.; Vanderbei, R. J.; Lisman, D.; Shaklan, S.; Thomson, M.; Walkemeyer, P.; Bach, V.; Oakes, E.; Cady, E.; hide

    2011-01-01

    External occulters provide the starlight suppression needed for detecting and characterizing exoplanets with a much simpler telescope and instrument than is required for the equivalent performing coronagraph. In this paper we describe progress on our Technology Development for Exoplanet Missions project to design, manufacture, and measure a prototype occulter petal. We focus on the key requirement of manufacturing a precision petal while controlling its shape within precise tolerances. The required tolerances are established by modeling the effect that various mechanical and thermal errors have on scatter in the telescope image plane and by suballocating the allowable contrast degradation between these error sources. We discuss the deployable starshade design, representative error budget, thermal analysis, and prototype manufacturing. We also present our meteorology system and methodology for verifying that the petal shape meets the contrast requirement. Finally, we summarize the progress to date building the prototype petal.

  14. Prototype Development of a Geostationary Synthetic Thinned Aperture Radiometer, GeoSTAR

    NASA Technical Reports Server (NTRS)

    Tanner, Alan B.; Wilson, William J.; Kangaslahti, Pekka P.; Lambrigsten, Bjorn H.; Dinardo, Steven J.; Piepmeier, Jeffrey R.; Ruf, Christopher S.; Rogacki, Steven; Gross, S. M.; Musko, Steve

    2004-01-01

    Preliminary details of a 2-D synthetic aperture radiometer prototype operating from 50 to 58 GHz will be presented. The instrument is being developed as a laboratory testbed, and the goal of this work is to demonstrate the technologies needed to do atmospheric soundings with high spatial resolution from Geostationary orbit. The concept is to deploy a large sparse aperture Y-array from a geostationary satellite, and to use aperture synthesis to obtain images of the earth without the need for a large mechanically scanned antenna. The laboratory prototype consists of a Y-array of 24 horn antennas, MMIC receivers, and a digital cross-correlation sub-system. System studies are discussed, including an error budget which has been derived from numerical simulations. The error budget defines key requirements, such as null offsets, phase calibration, and antenna pattern knowledge. Details of the instrument design are discussed in the context of these requirements.

  15. Progress on development of SPIDER diagnostics

    NASA Astrophysics Data System (ADS)

    Pasqualotto, R.; Agostini, M.; Barbisan, M.; Bernardi, M.; Brombin, M.; Cavazzana, R.; Croci, G.; Palma, M. Dalla; Delogu, R. S.; Gorini, G.; Lotto, L.; Muraro, A.; Peruzzo, S.; Pimazzoni, A.; Pomaro, N.; Rizzolo, A.; Serianni, G.; Spolaore, M.; Tardocchi, M.; Zaniol, B.; Zaupa, M.

    2017-08-01

    SPIDER experiment, the full size prototype of the beam source for the ITER heating neutral beam injector, has to demonstrate extraction and acceleration to 100 kV of a large negative ion hydrogen or deuterium beam with co-extracted electron fraction e-/D- <1 and beam uniformity within 10%, for up to one hour beam pulses. Main RF source plasma and beam parameters are measured with different complementary techniques to exploit the combination of their specific features. While SPIDER plant systems are being installed, the different diagnostic systems are in the procurement phase. Their final design is described here with a focus on some key solutions and most original and cost effective implementations. Thermocouples used to measure the power load distribution in the source and over the beam dump front surface will be efficiently fixed with proven technique and acquired through commercial and custom electronics. Spectroscopy needs to use well collimated lines of sight and will employ novel design spectrometers with higher efficiency and resolution and filtered detectors with custom built amplifiers. The electrostatic probes will be operated through electronics specifically developed to cope with the challenging environment of the RF source. The instrumented calorimeter STRIKE will use new CFC tiles, still under development. Two linear cameras, one built in house, have been tested as suitable for optical beam tomography. Some diagnostic components are off the shelf, others are custom developed: some of these are being prototyped or are under test before final production and installation, which will be completed before start of SPIDER operation.

  16. Thermophotovoltaic Energy Conversion Development Program

    NASA Technical Reports Server (NTRS)

    Shukla, Kailash; Doyle, Edward; Becker, Frederick

    1998-01-01

    Completely integrated thermophotovoltaic (TPV) power sources in the range of 100 to 500 watts are being developed. The technical approach taken in this project focuses on optimizing the integrated performance of the primary subsystems in order to yield high energy conversion efficiency and cost effectiveness. An important aspect of the approach is the use of a narrow band fibrous emitter radiating to a bandgap matched photovoltaic array to minimize thermal and optical recuperation requirements, as well as the non-recoverable heat losses. For the prototype system, fibrous ytterbia emitters radiating in a narrow band centered at 980 nm are matched with high efficiency silicon photoconverters. The integrated system includes a dielectric stack filter for optical energy recovery and a ceramic recuperator for thermal energy recovery. The prototype TPV system uses a rapid mix distributed fuel delivery system with controlled feeding of the fuel and heated air into a flame at the surface of the emitter. This makes it possible to operate at air preheat temperatures well above the auto-ignition temperature of the fuel thereby substantially increasing the system efficiency. The system has been operated with air preheat temperatures up to 1367 K and has produced a uniform narrow band radiation over the surface of the emitter with this approach. The design of the system is described and test data for the system and some of the key components are presented. The results from a system model, which show the impact of various parameters on system performance, are also discussed.

  17. Non-Intrusive, Distributed Gas Sensing Technology for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Delgado, Jesus; Phillips, Straun; Rubtsov, Vladimir; Chullen, Cinda

    2015-01-01

    Chemical sensors for monitoring gas composition, including oxygen, humidity, carbon dioxide, and trace contaminants are needed to characterize and validate spacesuit design and operating parameters. This paper reports on the first prototypes of a non-intrusive gas sensing technology based on flexible sensitive patches positioned inside spacesuit prototypes and interrogated by optical fibers routed outside the suit, taking advantage of the transparent materials of the suit prototypes. The sensitive patches are based on luminescent materials whose emission parameters vary with the partial pressure of a specific gas. Patches sensitive to carbon dioxide, humidity, oxygen, and ammonia have been developed, and their preliminary characterization in the laboratory using Mark III-like helmet parts is described. The first prototype system consists of a four-channel fiber optic luminescent detector that can be used to monitor any of the selected target gases at four locations. To switch from one gas to another we replace the (disposable) sensor patches and adjust the system settings. Repeatability among sensitive patches and of sensor performance from location to location has been confirmed, assuring that suit engineers will have flexibility in selecting multiple sensing points, fitting the sensor elements into the spacesuit, and easily repositioning the sensor elements as desired. The evaluation of the first prototype for monitoring carbon dioxide during washout studies in a space suit prototype is presented.

  18. Non-Intrusive, Distributed Gas Sensing Technology for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Delgado, Jesus; Phillips, Straun; Rubtsov, Vladimir; Chullen, Cinda

    2015-01-01

    Chemical sensors for monitoring gas composition, including oxygen, humidity, carbon dioxide, and trace contaminants, are needed to characterize and validate spacesuit design and operating parameters. This paper reports on the first prototypes of a non-intrusive gas sensing technology based on flexible sensitive patches positioned inside spacesuit prototypes and interrogated via optical fibers routed outside the suit, taking advantage of the transparent materials of the suit prototypes. The sensitive patches are based on luminescent materials whose emission parameters vary with the partial pressure of a specific gas. Patches sensitive to carbon dioxide, humidity, and temperature have been developed, and their preliminary laboratory characterization in Mark III-like helmet parts is described. The first prototype system consists of a four-channel fiber optic luminescent detector that can be used to monitor any of the selected target gases at four locations. To switch from one gas to another we replace the (disposable) sensor patches and adjust the system settings. Repeatability among sensitive patches and of sensor performance from location to location has been confirmed, assuring that suit engineers will have flexibility in selecting multiple sensing points, fitting the sensor elements into the spacesuit, and easily repositioning the sensor elements as desired. The evaluation of the first prototype for monitoring carbon dioxide during washout studies in a spacesuit prototype is presented.

  19. A prototype to automate the video subsystem routing for the video distribution subsystem of Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Betz, Jessie M. Bethly

    1993-12-01

    The Video Distribution Subsystem (VDS) for Space Station Freedom provides onboard video communications. The VDS includes three major functions: external video switching; internal video switching; and sync and control generation. The Video Subsystem Routing (VSR) is a part of the VDS Manager Computer Software Configuration Item (VSM/CSCI). The VSM/CSCI is the software which controls and monitors the VDS equipment. VSR activates, terminates, and modifies video services in response to Tier-1 commands to connect video sources to video destinations. VSR selects connection paths based on availability of resources and updates the video routing lookup tables. This project involves investigating the current methodology to automate the Video Subsystem Routing and developing and testing a prototype as 'proof of concept' for designers.

  20. Habitat Demonstration Unit Project: Leadership and Management Strategies for a Rapid Prototyping Project

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.; Toup, Larry; Gill, Tracy; Tri, Terry; Howe, Scott; Smitherman, David

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies being used by the NASA HDU team for a rapid prototyping project. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team rapid prototyping approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project management team that put in place the key multi-center leadership skills and disciplines to enable a successful tiger team approach. Advocacy was established with key stakeholders and NASA Headquarters (HQ) by defining a strategic vision, mission, goals and objectives for the project and team. As a technology-pull testbed capability the HDU project was able to collaborate and leverage the Exploration Technology Development Program (ETDP) and individual NASA center investments which capitalized on their respective center core competencies and skills. This approach enable the leveraging of over $7.5m of value to create an operational habitat demonstration unit 2010 PEM configuration.

  1. EVALUATING AND DESIGNING ULTRA-LOW-COST SOLAR WATER HEATING SYSTEMS

    EPA Science Inventory

    This project will have three key outputs:

    1. an evaluation of the thermal performance of ultra-low-cost solar components, with components being characterized by their absorbed solar energy per cost;
    2. a built demonstration prototype of...

    3. Papago Indians Light the Way.

      ERIC Educational Resources Information Center

      D'Alessandro, Bill

      1979-01-01

      Describes the world's only solar electric village power system, a photovoltaic conversion installation in a remote Papago Indian Reservation village. Notes comparative costs, electric output, and potential applications of the system, a prototype for remote rural communities and developing nations. Notes outstanding questions and key issues in…

    4. MoO3/nano-Si heterostructure based highly sensitive and acetone selective sensor prototype: a key to non-invasive detection of diabetes.

      PubMed

      Dwivedi, Priyanka; Dhanekar, Saakshi; Das, Samaresh

      2018-07-06

      This paper presents the development of an extremely sensitive and selective acetone sensor prototype which can be used as a platform for non-invasive diabetes detection through exhaled human breath. The miniaturized sensors were produced in high yield with the use of standard microfabrication processes. The sensors were based on a heterostructure composed of MoO 3 and nano-porous silicon (NPS). Features like acetone selective, enhanced sensor response and 0.5 ppm detection limit were observed upon introduction of MoO 3 on the NPS. The sensors were found to be repeatable and stable for almost 1 year, as tested under humid conditions at room temperature. It was inferred that the interface resistance of MoO 3 and NPS played a key role in the sensing mechanism. With the use of breath analysis and lab-on-chip, medical diagnosis procedures can be simplified and provide solutions for point-of-care testing.

    5. Automated Planning and Scheduling for Planetary Rover Distributed Operations

      NASA Technical Reports Server (NTRS)

      Backes, Paul G.; Rabideau, Gregg; Tso, Kam S.; Chien, Steve

      1999-01-01

      Automated planning and Scheduling, including automated path planning, has been integrated with an Internet-based distributed operations system for planetary rover operations. The resulting prototype system enables faster generation of valid rover command sequences by a distributed planetary rover operations team. The Web Interface for Telescience (WITS) provides Internet-based distributed collaboration, the Automated Scheduling and Planning Environment (ASPEN) provides automated planning and scheduling, and an automated path planner provided path planning. The system was demonstrated on the Rocky 7 research rover at JPL.

    6. Using Ada to implement the operations management system in a community of experts

      NASA Technical Reports Server (NTRS)

      Frank, M. S.

      1986-01-01

      An architecture is described for the Space Station Operations Management System (OMS), consisting of a distributed expert system framework implemented in Ada. The motivation for such a scheme is based on the desire to integrate the very diverse elements of the OMS while taking maximum advantage of knowledge based systems technology. Part of the foundation of an Ada based distributed expert system was accomplished in the form of a proof of concept prototype for the KNOMES project (Knowledge-based Maintenance Expert System). This prototype successfully used concurrently active experts to accomplish monitoring and diagnosis for the Remote Manipulator System. The basic concept of this software architecture is named ACTORS for Ada Cognitive Task ORganization Scheme. It is when one considers the overall problem of integrating all of the OMS elements into a cooperative system that the AI solution stands out. By utilizing a distributed knowledge based system as the framework for OMS, it is possible to integrate those components which need to share information in an intelligent manner.

    7. Building a generalized distributed system model

      NASA Technical Reports Server (NTRS)

      Mukkamala, Ravi; Foudriat, E. C.

      1991-01-01

      A modeling tool for both analysis and design of distributed systems is discussed. Since many research institutions have access to networks of workstations, the researchers decided to build a tool running on top of the workstations to function as a prototype as well as a distributed simulator for a computing system. The effects of system modeling on performance prediction in distributed systems and the effect of static locking and deadlocks on the performance predictions of distributed transactions are also discussed. While the probability of deadlock is considerably small, its effects on performance could be significant.

    8. Research pressure instrumentation for NASA space shuttle main engine

      NASA Technical Reports Server (NTRS)

      Anderson, P. J.; Nussbaum, P.; Gustafson, G.

      1985-01-01

      The breadboard feasibility model of a silicon piezoresistive pressure transducer suitable for space shuttle main engine (SSME) applications was demonstrated. The development of pressure instrumentation for the SSME was examined. The objective is to develop prototype pressure transducers which are targeted to meet the SSME performance design goals and to fabricate, test and deliver a total of 10 prototype units. Effective utilization of the many advantages of silicon piezoresistive strain sensing technology to achieve the objectives of advanced state-of-the-art pressure sensors for reliability, accuracy and ease of manufacture is analyzed. Integration of multiple functions on a single chip is the key attribute of the technology.

    9. Collaborative Scheduling Using JMS in a Mixed Java and .NET Environment

      NASA Technical Reports Server (NTRS)

      Wang, Yeou-Fang; Wax, Allan; Lam, Ray; Baldwin, John; Borden, Chet

      2006-01-01

      A viewgraph presentation to demonstrate collaborative scheduling using Java Message Service (JMS) in a mixed Java and .Net environment is given. The topics include: 1) NASA Deep Space Network scheduling; 2) Collaborative scheduling concept; 3) Distributed computing environment; 4) Platform concerns in a distributed environment; 5) Messaging and data synchronization; and 6) The prototype.

    10. Prototyping distributed simulation networks

      NASA Technical Reports Server (NTRS)

      Doubleday, Dennis L.

      1990-01-01

      Durra is a declarative language designed to support application-level programming. The use of Durra is illustrated to describe a simple distributed application: a simulation of a collection of networked vehicle simulators. It is shown how the language is used to describe the application, its components and structure, and how the runtime executive provides for the execution of the application.

    11. Usability evaluation of cloud-based mapping tools for the display of very large datasets

      NASA Astrophysics Data System (ADS)

      Stotz, Nicole Marie

      The elasticity and on-demand nature of cloud services have made it easier to create web maps. Users only need access to a web browser and the Internet to utilize cloud based web maps, eliminating the need for specialized software. To encourage a wide variety of users, a map must be well designed; usability is a very important concept in designing a web map. Fusion Tables, a new product from Google, is one example of newer cloud-based distributed GIS services. It allows for easy spatial data manipulation and visualization, within the Google Maps framework. ESRI has also introduced a cloud based version of their software, called ArcGIS Online, built on Amazon's EC2 cloud. Utilizing a user-centered design framework, two prototype maps were created with data from the San Diego East County Economic Development Council. One map was built on Fusion Tables, and another on ESRI's ArcGIS Online. A usability analysis was conducted and used to compare both map prototypes in term so of design and functionality. Load tests were also ran, and performance metrics gathered on both map prototypes. The usability analysis was taken by 25 geography students, and consisted of time based tasks and questions on map design and functionality. Survey participants completed the time based tasks for the Fusion Tables map prototype quicker than those of the ArcGIS Online map prototype. While response was generally positive towards the design and functionality of both prototypes, overall the Fusion Tables map prototype was preferred. For the load tests, the data set was broken into 22 groups for a total of 44 tests. While the Fusion Tables map prototype performed more efficiently than the ArcGIS Online prototype, differences are almost unnoticeable. A SWOT analysis was conducted for each prototype. The results from this research point to the Fusion Tables map prototype. A redesign of this prototype would incorporate design suggestions from the usability survey, while some functionality would need to be dropped. This is a free product and would therefore be the best option if cost is an issue, but this map may not be supported in the future.

    12. Design and fabrication of prototype 6×6 cm 2 microchannel plate photodetector with bialkali photocathode for fast timing applications

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Xie, Junqi; Byrum, Karen; Demarteau, Marcel

      Planar microchannel plate-based photodetector with bialkali photocathode is capable of fast and accurate time and position resolutions. A new 6 cm x 6 cm photodetector production facility was designed and built at Argonne National Laboratory. Small form-factor MCP-based photodetectors completely constructed of glass were designed and prototypes were successfully fabricated. Knudsen effusion cells were incorporated in the photocathode growth chamber to achieve uniform and high quantum efficiency hotocathodes. The thin film uniformity distribution was simulated and measured for an antimony film deposition, showing uniformity of better than 10%. Several prototype devices with bialkali photocathodes have been fabricated with the describedmore » system and their characteristics were evaluated in the large signal (multi-PE) limit. A typical prototype device exhibits time-of-flight resolution of ~ 27 psec and differential time resolution of ~ 9 psec, corresponding to spatial resolution of ~ 0.65 mm.« less

    13. Uranus: a rapid prototyping tool for FPGA embedded computer vision

      NASA Astrophysics Data System (ADS)

      Rosales-Hernández, Victor; Castillo-Jimenez, Liz; Viveros-Velez, Gilberto; Zuñiga-Grajeda, Virgilio; Treviño Torres, Abel; Arias-Estrada, M.

      2007-01-01

      The starting point for all successful system development is the simulation. Performing high level simulation of a system can help to identify, insolate and fix design problems. This work presents Uranus, a software tool for simulation and evaluation of image processing algorithms with support to migrate them to an FPGA environment for algorithm acceleration and embedded processes purposes. The tool includes an integrated library of previous coded operators in software and provides the necessary support to read and display image sequences as well as video files. The user can use the previous compiled soft-operators in a high level process chain, and code his own operators. Additional to the prototyping tool, Uranus offers FPGA-based hardware architecture with the same organization as the software prototyping part. The hardware architecture contains a library of FPGA IP cores for image processing that are connected with a PowerPC based system. The Uranus environment is intended for rapid prototyping of machine vision and the migration to FPGA accelerator platform, and it is distributed for academic purposes.

    14. All-sky brightness monitoring of light pollution with astronomical methods.

      PubMed

      Rabaza, O; Galadí-Enríquez, D; Estrella, A Espín; Dols, F Aznar

      2010-06-01

      This paper describes a mobile prototype and a protocol to measure light pollution based on astronomical methods. The prototype takes three all-sky images using BVR filters of the Johnson-Cousins astronomical photometric system. The stars are then identified in the images of the Hipparcos and General Catalogue of Photometric Data II astronomical catalogues, and are used as calibration sources. This method permits the measurement of night-sky brightness and facilitates an estimate of which fraction is due to the light up-scattered in the atmosphere by a wide variety of man-made sources. This is achieved by our software, which compares the sky background flux to that of many stars of known brightness. The reduced weight and dimensions of the prototype allow the user to make measurements from virtually any location. This prototype is capable of measuring the sky distribution of light pollution, and also provides an accurate estimate of the background flux at each photometric band. (c) 2010 Elsevier Ltd. All rights reserved.

    15. Integrating Distributed Homogeneous and Heterogeneous Databases: Prototypes. Volume 3.

      DTIC Science & Technology

      1987-12-01

      Integrating Distributed3 Institute of Teholg Homogeneous and -Knowledge-Based eeokn usDtb e: Integrated Information Pooye Systems Engineering Pooye (KBIISE...Transportation Systems Center, December 1987 Broadway, NIA 02142 13. NUMBER OF PAGES IT ~ *n~1~ ArFre 218 Pages 14. kW rSi dTfrn front N Gr~in Office) IS...SECURITY CLASS. (of thie report) Transportation Systems Center, Unclassified Broadway, MA 02142 I5a. DECLASSIFICATION/ DOWNGRADING SCHEDULE 16. DISTRIBUTION

    16. Empirical Analysis of Optical Attenuator Performance in Quantum Key Distribution Systems Using a Particle Model

      DTIC Science & Technology

      2012-03-01

      EMPIRICAL ANALYSIS OF OPTICAL ATTENUATOR PERFORMANCE IN QUANTUM KEY DISTRIBUTION SYSTEMS USING A...DISTRIBUTION IS UNLIMITED AFIT/GCS/ENG/12-01 EMPIRICAL ANALYSIS OF OPTICAL ATTENUATOR PERFORMANCE IN QUANTUM KEY DISTRIBUTION SYSTEMS USING ...challenging as the complexity of actual implementation specifics are considered. Two components common to most quantum key distribution

    17. 78 FR 66698 - Pesticides; Repellency Awareness Graphic; Notice of Availability

      Federal Register 2010, 2011, 2012, 2013, 2014

      2013-11-06

      ... information you consider to be Confidential Business Information (CBI) or other information whose disclosure... products for quick and easy identification by the consumer. Prototypes of this graphic were presented to... from several key stakeholder groups. Starting in May 2012, EPA presented the concept, draft guidance...

    18. A single-neuron tracing study of arkypallidal and prototypic neurons in healthy rats.

      PubMed

      Fujiyama, Fumino; Nakano, Takashi; Matsuda, Wakoto; Furuta, Takahiro; Udagawa, Jun; Kaneko, Takeshi

      2016-12-01

      The external globus pallidus (GP) is known as a relay nucleus of the indirect pathway of the basal ganglia. Recent studies in dopamine-depleted and healthy rats indicate that the GP comprises two main types of pallidofugal neurons: the so-called "prototypic" and "arkypallidal" neurons. However, the reconstruction of complete arkypallidal neurons in healthy rats has not been reported. Here we visualized the entire axonal arborization of four single arkypallidal neurons and six single prototypic neurons in rat brain using labeling with a viral vector expressing membrane-targeted green fluorescent protein and examined the distribution of axon boutons in the target nuclei. Results revealed that not only the arkypallidal neurons but nearly all of the prototypic neurons projected to the striatum with numerous axon varicosities. Thus, the striatum is a major target nucleus for pallidal neurons. Arkypallidal and prototypic GP neurons located in the calbindin-positive and calbindin-negative regions mainly projected to the corresponding positive and negative regions in the striatum. Because the GP and striatum calbindin staining patterns reflect the topographic organization of the striatopallidal projection, the striatal neurons in the sensorimotor and associative regions constitute the reciprocal connection with the GP neurons in the corresponding regions.

    19. An experimental investigation of hybrid kerosene burner configurations for TPV applications

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Schroeder, K.L.; Rose, M.F.; Burkhalter, J.E.

      1995-01-05

      A key element in thermophotovoltaic power generation is the development of a compact and efficient configuration for the thermal source and emitter. In the present work, a hybrid configuration was investigated which was composed of a liquid fueled diffusion type burner utilizing the emitting or mantle structure as the combustion chamber. The prototype burner operates on kerosene at fuel flow rates up to 1.0 kg/hr. Fuel is atomized using an 78 kHz ultrasonic nozzle with multifuel capabilities. Combustion is stabilized and heat transfer is enhanced via forced recirculation interior to the mantle structures. These structures range in size from 600more » to 1200 cm{sup 3} and are porous in nature. This paper presents an introduction to issues specific to the use of small scale liquid fueled burners for TPV applications, and burner performance data for a series of configurations, in terms of combustor surface temperature distribution, maximum mass loading and efficiency. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.« less

    20. Construction of a technological semi-digital hadronic calorimeter using GRPC

      NASA Astrophysics Data System (ADS)

      Laktineh, I.

      2011-04-01

      A high-granularity semi-digital Hadronic calorimeter using GRPC as sensitive medium is one of the two HCAL options considered by the ILD collaboration to be proposed for the detector of the future International Linear Collider project. A prototype of 1m3 has been conceived within the CALICE collaboration in order to validate this option. The prototype intends to be as close as possible to the one proposed in the ILD Letter Of Intent. Few units made of 1m2 GRPC fully equipped with semi-digital readout electronics and new gas distribution design were produced and successfully tested. In 2010 we intend to produce 40 similar units to be inserted in a self-supporting mechanical structure. The prototype will then be exposed to TestBeams at CERN for final validation.

    21. Performance evaluation of a conformal thermal monitoring sheet (TMS) sensor array for measurement of surface temperature distributions during superficial hyperthermia treatments

      PubMed Central

      Arunachalam, K.; Maccarini, P.; Juang, T.; Gaeta, C.; Stauffer, P. R.

      2009-01-01

      Purpose This paper presents a novel conformal thermal monitoring sheet sensor array with differential thermal sensitivity for measuring temperature distributions over large surface areas. Performance of the sensor array is evaluated in terms of thermal accuracy, mechanical stability and conformity to contoured surfaces, probe self heating under irradiation from microwave and ultrasound hyperthermia sources, and electromagnetic field perturbation. Materials and Methods A prototype TMS with 4×4 array of fiberoptic sensors embedded between two flexible and thermally conducting polyimide films was developed as an alternative to the standard 1-2 mm diameter plastic catheter based probes used in clinical hyperthermia. Computed tomography images and bending tests were performed to evaluate the conformability and mechanical stability respectively. Irradiation and thermal barrier tests were conducted and thermal response of the prototype was compared with round cross-sectional clinical probes. Results Bending and conformity tests demonstrated higher flexibility, dimensional stability and close conformity to human torso. Minimal perturbation of microwave fields and low probe self heating was observed when irradiated with 915MHz microwave and 3.4MHz ultrasound sources. The transient and steady state thermal responses of the TMS array were superior compared to the clinical probes. Conclusions A conformal TMS sensor array with improved thermal sensitivity and dimensional stability was investigated for real-time skin temperature monitoring. This fixed-geometry, body-conforming array of thermal sensors allows fast and accurate characterization of two-dimensional temperature distributions over large surface areas. The prototype TMS demonstrates significant advantages over clinical probes for characterizing skin temperature distributions during hyperthermia treatments of superficial tissue disease. PMID:18465416

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhiqun; Carlson, Thomas J.; Fu, Tao

    Power extracted from fast moving tidal currents has been identified as a potential commercial-scale source of renewable energy. Device developers and utilities are pursuing deployment of prototype tidal turbines to assess technology viability, site feasibility, and environmental interactions. Deployment of prototype turbines requires permits from a range of regulatory authorities. Ensuring the safety of marine animals, particularly those under protection of the Endangered Species Act of 1973 (ESA) and the Marine Mammal Protection Act of 1972 has emerged as a key regulatory challenge for initial MHK deployments. The greatest perceived risk to marine animals is from strike by the rotatingmore » blades of tidal turbines. Development of the marine mammal alert system (MAAS) was undertaken to support monitoring and mitigation requirements for tidal turbine deployments. The prototype system development focused on Southern Resident killer whales (SRKW), an endangered population of killer whales that frequents Puget Sound and is intermittently present in the part of the sound where deployment of prototype tidal turbines is being considered. Passive acoustics were selected as the primary means because of the vocal nature of these animals. The MAAS passive acoustic system consists of two-stage process involving the use of an energy detector and a spectrogram-based classifier to distinguish between SKRW’s calls and noise. A prototype consisting of two 2D symmetrical star arrays separated by 20 m center to center was built and evaluated in the waters of Sequim Bay using whale call playback.« less

  2. Biodetection grinder

    NASA Technical Reports Server (NTRS)

    Shaia, C. D.; Jones, G. H.

    1971-01-01

    Work on a biodetection grinder is summarized. It includes development of the prototype grinder, second generation grinder, and the production version of the grinder. Tests showed the particle size distribution was satisfactory and biological evaluation confirmed the tests.

  3. Hyperswitch communication network

    NASA Technical Reports Server (NTRS)

    Peterson, J.; Pniel, M.; Upchurch, E.

    1991-01-01

    The Hyperswitch Communication Network (HCN) is a large scale parallel computer prototype being developed at JPL. Commercial versions of the HCN computer are planned. The HCN computer being designed is a message passing multiple instruction multiple data (MIMD) computer, and offers many advantages in price-performance ratio, reliability and availability, and manufacturing over traditional uniprocessors and bus based multiprocessors. The design of the HCN operating system is a uniquely flexible environment that combines both parallel processing and distributed processing. This programming paradigm can achieve a balance among the following competing factors: performance in processing and communications, user friendliness, and fault tolerance. The prototype is being designed to accommodate a maximum of 64 state of the art microprocessors. The HCN is classified as a distributed supercomputer. The HCN system is described, and the performance/cost analysis and other competing factors within the system design are reviewed.

  4. Prototype space station automation system delivered and demonstrated at NASA

    NASA Technical Reports Server (NTRS)

    Block, Roger F.

    1987-01-01

    The Automated Subsystem Control for Life Support System (ASCLSS) program has successfully developed and demonstrated a generic approach to the automation and control of Space Station subsystems. The hierarchical and distributed real time controls system places the required controls authority at every level of the automation system architecture. As a demonstration of the automation technique, the ASCLSS system automated the Air Revitalization Group (ARG) of the Space Station regenerative Environmental Control and Life Support System (ECLSS) using real-time, high fidelity simulators of the ARG processess. This automation system represents an early flight prototype and an important test bed for evaluating Space Station controls technology including future application of ADA software in real-time control and the development and demonstration of embedded artificial intelligence and expert systems (AI/ES) in distributed automation and controls systems.

  5. Monte Carlo study of a new I‐125 brachytherapy prototype seed with a ceramic radionuclide carrier and radiographic marker

    PubMed Central

    Paixão, Lucas; Santos, Ana Maria M.; dos Santos, Adriano Márcio; Grynberg, Suely Epsztein

    2012-01-01

    In prostate cancer treatment, there is an increasing interest in the permanent radioactive seeds implant technique. Currently, in Brazil, the seeds are imported with high prices, which prohibit their use in public hospitals. A ceramic matrix that can be used as a radioisotope carrier and radiographic marker was developed at our institution. The ceramic matrix is distinguished by the characteristic of maintaining the radioactive material uniformly distributed in its surface. In this work, Monte Carlo simulations were performed in order to assess the dose distributions generated by this prototype seed model, with the ceramic matrix encapsulated in titanium, in the same way as the commercial 6711 seed. The obtained data was assessed, as described in the TG‐43U1 report by the American Association of Physicists in Medicine, for two seed models: (1) the most used model 6711 source — for validation and comparison, and (2) for the prototype model with the ceramic matrix. The dosimetric parameters dose rate constant, Λ, radial dose function, gL(r), and anisotropy function, F(r,θ), were derived from simulations by the Monte Carlo method using the MCNP5 code. A Λ 0.992 (±2.33%) cGyh−1U−1 was found for the prototype model. In comparison with the 6711 model, a lower dose fall‐off on transverse axis was found, as well as a lower dose anisotropy for the radius r= 0.25 cm. In general, for all distances, the prototype seed model presents a slightly larger anisotropy between 0° ≤ Θ < 50° and anisotropy similar to the 6711 model for Θ ≥ 50°. The dosimetric characteristics of the prototype model presented in this study suggest that its use is feasible. Because of the model's characteristics, seeds of lower specific activity iodine might be necessary which, on the other hand, would help to reduce costs. However, it has to be emphasized that the proposed source is a prototype, and the required (AAPM prerequisites) experimental study and tolerance manufacturer values are pending for future studies. PACS numbers: 87.53.Jw, 87.55.K PMID:22584172

  6. TASK ALLOCATION IN GEO-DISTRIBUTED CYBER-PHYSICAL SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aggarwal, Rachit; Smidts, Carol

    This paper studies the task allocation algorithm for a distributed test facility (DTF), which aims to assemble geo-distributed cyber (software) and physical (hardware in the loop components into a prototype cyber-physical system (CPS). This allows low cost testing on an early conceptual prototype (ECP) of the ultimate CPS (UCPS) to be developed. The DTF provides an instrumentation interface for carrying out reliability experiments remotely such as fault propagation analysis and in-situ testing of hardware and software components in a simulated environment. Unfortunately, the geo-distribution introduces an overhead that is not inherent to the UCPS, i.e. a significant time delay inmore » communication that threatens the stability of the ECP and is not an appropriate representation of the behavior of the UCPS. This can be mitigated by implementing a task allocation algorithm to find a suitable configuration and assign the software components to appropriate computational locations, dynamically. This would allow the ECP to operate more efficiently with less probability of being unstable due to the delays introduced by geo-distribution. The task allocation algorithm proposed in this work uses a Monte Carlo approach along with Dynamic Programming to identify the optimal network configuration to keep the time delays to a minimum.« less

  7. Integrated organotypic slice cultures and RT-QuIC (OSCAR) assay: implications for translational discovery in protein misfolding diseases

    USDA-ARS?s Scientific Manuscript database

    Protein misfolding is a key pathological event in neurodegenerative diseases like prion diseases, synucleinopathies, and tauopathies that are collectively termed protein misfolding disorders (PMD). Prions are a prototypic model to study protein aggregation biology and therapeutic development. Attemp...

  8. Project-Based Teaching-Learning Computer-Aided Engineering Tools

    ERIC Educational Resources Information Center

    Simoes, J. A.; Relvas, C.; Moreira, R.

    2004-01-01

    Computer-aided design, computer-aided manufacturing, computer-aided analysis, reverse engineering and rapid prototyping are tools that play an important key role within product design. These are areas of technical knowledge that must be part of engineering and industrial design courses' curricula. This paper describes our teaching experience of…

  9. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. George C. Vradis; Dr. Hagen Schempf

    2003-04-01

    This program is undertaken in order to construct and field-demonstrate EXPLORER, a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6-inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows formore » the live inspection of gas distribution pipes. This module, which incorporates technology developed by NASA, has already been designed, constructed and tested, having exceeded performance expectations. The full prototype system will be comprehensively tested in the laboratory followed by two field demonstrations in real applications in NGA member utilities' pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. The present report summarizes the accomplishments of the project during its third six-month period. The project has in general achieved its goals for this period as outlined in the report. The fabrication of the prototype is complete and is now been tested in the laboratory mainly focusing on the last system integration issues and on software development for the turning and launching routines. Testing of the prototype in the lab is expected to be completed by Summer 2003, to be followed by two field demonstrations in early Fall 2003.« less

  10. Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) Systems Integration Strategy

    NASA Technical Reports Server (NTRS)

    Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tri, Terry; Toups, Larry; Howe, A. Scott

    2011-01-01

    The Habitat Demonstration Unit (HDU) project team constructed an analog prototype lunar surface laboratory called the Pressurized Excursion Module (PEM). The prototype unit subsystems were integrated in a short amount of time, utilizing a rapid prototyping approach that brought together over 20 habitation-related technologies from a variety of NASA centers. This paper describes the system integration strategies and lessons learned, that allowed the PEM to be brought from paper design to working field prototype using a multi-center team. The system integration process was based on a rapid prototyping approach. Tailored design review and test and integration processes facilitated that approach. The use of collaboration tools including electronic tools as well as documentation enabled a geographically distributed team take a paper concept to an operational prototype in approximately one year. One of the major tools used in the integration strategy was a coordinated effort to accurately model all the subsystems using computer aided design (CAD), so conflicts were identified before physical components came together. A deliberate effort was made following the deployment of the HDU PEM for field operations to collect lessons learned to facilitate process improvement and inform the design of future flight or analog versions of habitat systems. Significant items within those lessons learned were limitations with the CAD integration approach and the impact of shell design on flexibility of placing systems within the HDU shell.

  11. Validation of a Piezoelectric Sensor Array-Based Device for Measurement of Carotid-Femoral Pulse Wave Velocity: The Philips Prototype.

    PubMed

    Xu, Shao-Kun; Hong, Xiang-Fei; Cheng, Yi-Bang; Liu, Chang-Yuan; Li, Yan; Yin, Bin; Wang, Ji-Guang

    2018-03-01

    Multiple piezoelectric pressure mechanotransducers topologized into an array might improve efficiency and accuracy in collecting arterial pressure waveforms for measurement of pulse wave velocity (PWV). In the present study, we validated a piezoelectric sensor array-based prototype (Philips) against the validated and clinically widely used Complior device (Alam Medical). We recruited 33 subjects with a wide distribution of PWV. For the validation, PWV was measured sequentially with the Complior device (four times) and the Philips prototype (three times). With the 99 paired PWV values, we investigated the agreement between the Philips prototype and the Complior device using Pearson correlation analysis and Bland-Altman plot. We also performed analysis on the determinants and reproducibility of PWV measured with both devices. The correlation coefficient for PWV measured with the two devices was 0.92 ( p < 0.0001). Compared with the Complior device, the Philips prototype slightly overestimated PWV by 0.24 (± 2 standard deviations, ± 1.91) m/s, especially when PWV was high. The correlation coefficient between the difference and the average of the Philips and Complior measurements was 0.21 ( p = 0.035). Nonetheless, they had similar determinants. Age, mean arterial pressure, and sex altogether explained 81.6 and 83.9% of the variance of PWV values measured with the Philips prototype and Complior device, respectively. When the two extremes of the three PWV values measured with the Philips prototype and the Complior device were investigated, the coefficients of variation were 8.26 and 3.26%, respectively. Compared with the Complior device, the Philips prototype had similar accuracy, determinants, and reproducibility in measuring PWV.

  12. Flexible digital modulation and coding synthesis for satellite communications

    NASA Technical Reports Server (NTRS)

    Vanderaar, Mark; Budinger, James; Hoerig, Craig; Tague, John

    1991-01-01

    An architecture and a hardware prototype of a flexible trellis modem/codec (FTMC) transmitter are presented. The theory of operation is built upon a pragmatic approach to trellis-coded modulation that emphasizes power and spectral efficiency. The system incorporates programmable modulation formats, variations of trellis-coding, digital baseband pulse-shaping, and digital channel precompensation. The modulation formats examined include (uncoded and coded) binary phase shift keying (BPSK), quatenary phase shift keying (QPSK), octal phase shift keying (8PSK), 16-ary quadrature amplitude modulation (16-QAM), and quadrature quadrature phase shift keying (Q squared PSK) at programmable rates up to 20 megabits per second (Mbps). The FTMC is part of the developing test bed to quantify modulation and coding concepts.

  13. Entropy, complexity, and Markov diagrams for random walk cancer models.

    PubMed

    Newton, Paul K; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-12-19

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.

  14. Entropy, complexity, and Markov diagrams for random walk cancer models

    NASA Astrophysics Data System (ADS)

    Newton, Paul K.; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-12-01

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.

  15. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G. P.; Zhang, Y.; Xiao, J.

    2014-01-29

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat loadmore » from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.« less

  16. The architecture of a distributed medical dictionary.

    PubMed

    Fowler, J; Buffone, G; Moreau, D

    1995-01-01

    Exploiting high-speed computer networks to provide a national medical information infrastructure is a goal for medical informatics. The Distributed Medical Dictionary under development at Baylor College of Medicine is a model for an architecture that supports collaborative development of a distributed online medical terminology knowledge-base. A prototype is described that illustrates the concept. Issues that must be addressed by such a system include high availability, acceptable response time, support for local idiom, and control of vocabulary.

  17. Distribution of genotype network sizes in sequence-to-structure genotype-phenotype maps.

    PubMed

    Manrubia, Susanna; Cuesta, José A

    2017-04-01

    An essential quantity to ensure evolvability of populations is the navigability of the genotype space. Navigability, understood as the ease with which alternative phenotypes are reached, relies on the existence of sufficiently large and mutually attainable genotype networks. The size of genotype networks (e.g. the number of RNA sequences folding into a particular secondary structure or the number of DNA sequences coding for the same protein structure) is astronomically large in all functional molecules investigated: an exhaustive experimental or computational study of all RNA folds or all protein structures becomes impossible even for moderately long sequences. Here, we analytically derive the distribution of genotype network sizes for a hierarchy of models which successively incorporate features of increasingly realistic sequence-to-structure genotype-phenotype maps. The main feature of these models relies on the characterization of each phenotype through a prototypical sequence whose sites admit a variable fraction of letters of the alphabet. Our models interpolate between two limit distributions: a power-law distribution, when the ordering of sites in the prototypical sequence is strongly constrained, and a lognormal distribution, as suggested for RNA, when different orderings of the same set of sites yield different phenotypes. Our main result is the qualitative and quantitative identification of those features of sequence-to-structure maps that lead to different distributions of genotype network sizes. © 2017 The Author(s).

  18. Constraint based scheduling for the Goddard Space Flight Center distributed Active Archive Center's data archive and distribution system

    NASA Technical Reports Server (NTRS)

    Short, Nick, Jr.; Bedet, Jean-Jacques; Bodden, Lee; Boddy, Mark; White, Jim; Beane, John

    1994-01-01

    The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been operational since October 1, 1993. Its mission is to support the Earth Observing System (EOS) by providing rapid access to EOS data and analysis products, and to test Earth Observing System Data and Information System (EOSDIS) design concepts. One of the challenges is to ensure quick and easy retrieval of any data archived within the DAAC's Data Archive and Distributed System (DADS). Over the 15-year life of EOS project, an estimated several Petabytes (10(exp 15)) of data will be permanently stored. Accessing that amount of information is a formidable task that will require innovative approaches. As a precursor of the full EOS system, the GSFC DAAC with a few Terabits of storage, has implemented a prototype of a constraint-based task and resource scheduler to improve the performance of the DADS. This Honeywell Task and Resource Scheduler (HTRS), developed by Honeywell Technology Center in cooperation the Information Science and Technology Branch/935, the Code X Operations Technology Program, and the GSFC DAAC, makes better use of limited resources, prevents backlog of data, provides information about resources bottlenecks and performance characteristics. The prototype which is developed concurrently with the GSFC Version 0 (V0) DADS, models DADS activities such as ingestion and distribution with priority, precedence, resource requirements (disk and network bandwidth) and temporal constraints. HTRS supports schedule updates, insertions, and retrieval of task information via an Application Program Interface (API). The prototype has demonstrated with a few examples, the substantial advantages of using HTRS over scheduling algorithms such as a First In First Out (FIFO) queue. The kernel scheduling engine for HTRS, called Kronos, has been successfully applied to several other domains such as space shuttle mission scheduling, demand flow manufacturing, and avionics communications scheduling.

  19. Coordinating complex problem-solving among distributed intelligent agents

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.

    1992-01-01

    A process-oriented control model is described for distributed problem solving. The model coordinates the transfer and manipulation of information across independent networked applications, both intelligent and conventional. The model was implemented using SOCIAL, a set of object-oriented tools for distributing computing. Complex sequences of distributed tasks are specified in terms of high level scripts. Scripts are executed by SOCIAL objects called Manager Agents, which realize an intelligent coordination model that routes individual tasks to suitable server applications across the network. These tools are illustrated in a prototype distributed system for decision support of ground operations for NASA's Space Shuttle fleet.

  20. Multicolor pyrometer for materials processing in space, phase 2

    NASA Technical Reports Server (NTRS)

    Frish, Michael; Frank, Jonathan; Beerman, Henry

    1988-01-01

    The program goals were to design, construct, and program a prototype passive imaging pyrometer capable of measuring, as accurately as possible, the temperature distribution across the surface of a moving object suspended in space.

  1. Performance of device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Cao, Zhu; Zhao, Qi; Ma, Xiongfeng

    2016-07-01

    Quantum key distribution provides information-theoretically-secure communication. In practice, device imperfections may jeopardise the system security. Device-independent quantum key distribution solves this problem by providing secure keys even when the quantum devices are untrusted and uncharacterized. Following a recent security proof of the device-independent quantum key distribution, we improve the key rate by tightening the parameter choice in the security proof. In practice where the system is lossy, we further improve the key rate by taking into account the loss position information. From our numerical simulation, our method can outperform existing results. Meanwhile, we outline clear experimental requirements for implementing device-independent quantum key distribution. The maximal tolerable error rate is 1.6%, the minimal required transmittance is 97.3%, and the minimal required visibility is 96.8 % .

  2. Security Standards and Best Practice Considerations for Quantum Key Distribution (QKD)

    DTIC Science & Technology

    2012-03-01

    SECURITY STANDARDS AND BEST PRACTICE CONSIDERATIONS FOR QUANTUM KEY DISTRIBUTION (QKD) THESIS...protection in the United States. AFIT/GSE/ENV/12-M05 SECURITY STANDARDS AND BEST PRACTICE CONSIDERATIONS FOR QUANTUM KEY DISTRIBUTION (QKD...FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT/GSE/ENV/12-M05 SECURITY STANDARDS AND BEST PRACTICE CONSIDERATIONS FOR QUANTUM KEY

  3. Kerosene-Fuel Engine Testing Under Way

    NASA Image and Video Library

    2003-11-17

    NASA Stennis Space Center engineers conducted a successful cold-flow test of an RS-84 engine component Sept. 24. The RS-84 is a reusable engine fueled by rocket propellant - a special blend of kerosene - designed to power future flight vehicles. Liquid oxygen was blown through the RS-84 subscale preburner to characterize the test facility's performance and the hardware's resistance. Engineers are now moving into the next phase, hot-fire testing, which is expected to continue into February 2004. The RS-84 engine prototype, developed by the Rocketdyne Propulsion and Power division of The Boeing Co. of Canoga Park, Calif., is one of two competing Rocket Engine Prototype technologies - a key element of NASA's Next Generation Launch Technology program.

  4. Standards for the user interface - Developing a user consensus. [for Space Station Information System

    NASA Technical Reports Server (NTRS)

    Moe, Karen L.; Perkins, Dorothy C.; Szczur, Martha R.

    1987-01-01

    The user support environment (USE) which is a set of software tools for a flexible standard interactive user interface to the Space Station systems, platforms, and payloads is described in detail. Included in the USE concept are a user interface language, a run time environment and user interface management system, support tools, and standards for human interaction methods. The goals and challenges of the USE are discussed as well as a methodology based on prototype demonstrations for involving users in the process of validating the USE concepts. By prototyping the key concepts and salient features of the proposed user interface standards, the user's ability to respond is greatly enhanced.

  5. Design, manufacturing and tests of first cryogen-free MgB2 prototype coils for offshore wind generators

    NASA Astrophysics Data System (ADS)

    Sarmiento, G.; Sanz, S.; Pujana, A.; Merino, J. M.; Iturbe, R.; Apiñaniz, S.; Nardelli, D.; Marino, I.

    2014-05-01

    Although renewable sector has started to take advantage of the offshore wind energy recently, the development is very intense. Turbines reliability, size, and cost are key aspects for the wind industry, especially in marine locations. A superconducting generator will allow a significant reduction in terms of weight and size, but cost and reliability are two aspects to deal with. MgB2 wire is presented as one promising option to be used in superconducting coils for wind generators. This work shows the experimental results in first cryogen-free MgB2 prototype coils, designed according to specific requirements of TECNALIA's wind generator concept.

  6. Kerosene-Fuel Engine Testing Under Way

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA Stennis Space Center engineers conducted a successful cold-flow test of an RS-84 engine component Sept. 24. The RS-84 is a reusable engine fueled by rocket propellant - a special blend of kerosene - designed to power future flight vehicles. Liquid oxygen was blown through the RS-84 subscale preburner to characterize the test facility's performance and the hardware's resistance. Engineers are now moving into the next phase, hot-fire testing, which is expected to continue into February 2004. The RS-84 engine prototype, developed by the Rocketdyne Propulsion and Power division of The Boeing Co. of Canoga Park, Calif., is one of two competing Rocket Engine Prototype technologies - a key element of NASA's Next Generation Launch Technology program.

  7. Development of a Low Power Gas Chromatograph-Mass Spectrometer for In-Situ Detection of Organics in Martian Soil

    NASA Technical Reports Server (NTRS)

    Pinnick, Veronica; Buch, Arnaud; VanAmerom, Friso H. W.; Danell, Ryan M.; Brinckerhoff, William; Mahaffy, Paul; Cotter, Robert J.

    2011-01-01

    The Mars Organic Molecule Analyzer (MOMA) is a joint venture by NASA and the European Space Agency (ESA) to develop a sensitive, light-weight, low-power mass spectrometer for chemical analysis on Mars. MOMA is a key analytical instrument aboard the 2018 ExoMars rover mission seeking signs of past or present life. The current prototype was built to demonstrate operation of gas chromatography (OC) and laser desorption (LD) mass spectrometry under martian ambient conditions (5-7 Torr of CO2-rich atmosphere). Recent reports have discussed the MO MA concept, design and performance. Here, we update the current prototype performance, focusing specifically on the GCMS mode.

  8. Comfort and pressure distribution in a human contour shaped aircraft seat (developed with 3D scans of the human body).

    PubMed

    Smulders, M; Berghman, K; Koenraads, M; Kane, J A; Krishna, K; Carter, T K; Schultheis, U

    2016-08-12

    The concept of comfort is one way for the growing airline market to differentiate and build customer loyalty. This work follows the idea that increasing the contact area between human and seat can have a positive effect on comfort [5, 6, 7]. To improve comfort, reduce weight and optimise space used, a human contour shaped seat shell and cushioning was developed. First the most common activities, the corresponding postures and seat inclination angles were defined. The imprints of these postures on a rescue mat were 3D scanned and an average human contour curve was defined. The outcome was transferred to a prototype seat that was used to test the effect on perceived comfort/discomfort and pressure distribution. The resulting human contour based prototype seat has comfort and discomfort scores comparable to a traditional seat. The prototype seat had a significantly lower average pressure between subjects' buttocks and the seat pan over a traditional seat. This study shows that it is possible to design a seat pan and backrest based on the different contours of study subjects using 3D scan technology. However, translating the 3D scans into a prototype seat also showed that this can only be seen as a first step; additionally biomechanical information and calculations are needed to create ergonomic seats. Furthermore, it is not possible to capture all different human shapes and postures and translate these into one human contour shape that fits all activities and all human sizes.

  9. Filmless radiology: The design, integration, implementation, and evaluation of a digital imaging network. Potential investigations to be conducted in conjunction with the Digital-Imaging Network System (DINS) evaluation project. Revision 1. Annual report, 1 March 1987-28 February 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerlin, B.D.; Cerva, J.R.; Glenn, M.E.

    This document describes evaluation studies and technical investigations proposed for the three-year Digital Imaging Network System (DINS) prototype project, sponsored by the U.S. Army Medical Research and Development Command, Ft. Detrick, Maryland. The project has three overall goals. The first is to install and operate a prototype DINS at each of two University-based hospitals for test purposes. The second is to evaluate key aspects of each prototype system once it is in full operation. The third is to develop guidelines and specifications for an operational DINS suitable for use by the military and others developing systems of the future. Thismore » document defines twelve overall evaluative questions for use in meeting the second and third objectives of the project and proposes studies that will answer these questions.« less

  10. Opening the Implicit Leadership Theories’ Black Box: An Experimental Approach with Conjoint Analysis

    PubMed Central

    Tavares, Gustavo M.; Sobral, Filipe; Goldszmidt, Rafael; Araújo, Felipe

    2018-01-01

    Although research on implicit leadership theories (ILTs) has concentrated on determining which attributes define a leadership prototype, little attention has been paid to testing the relative importance of each of these attributes for individuals’ leadership perceptions. Building on socio-cognitive theories of impression processes, we experimentally explore the formation of leadership perceptions based on the recognition of six key attributes in a series of three experimental studies comprising 566 US-based participants recruited online via Amazon Mechanical Turk. Our results show that while certain attributes play an important role in the leader categorization process, others are less relevant. We also demonstrate that some attributes’ importance is contingent on the presence of other attributes and on the leadership schema type activated in respondents’ minds. Consistent with the Leadership Categorization Theory, our findings support the premise that individuals cognitively hold a superordinate leadership prototype, which imposes constraints on their more basic level prototypes. We discuss the implications of these results for leadership theory and practice. PMID:29467706

  11. Opening the Implicit Leadership Theories' Black Box: An Experimental Approach with Conjoint Analysis.

    PubMed

    Tavares, Gustavo M; Sobral, Filipe; Goldszmidt, Rafael; Araújo, Felipe

    2018-01-01

    Although research on implicit leadership theories (ILTs) has concentrated on determining which attributes define a leadership prototype, little attention has been paid to testing the relative importance of each of these attributes for individuals' leadership perceptions. Building on socio-cognitive theories of impression processes, we experimentally explore the formation of leadership perceptions based on the recognition of six key attributes in a series of three experimental studies comprising 566 US-based participants recruited online via Amazon Mechanical Turk. Our results show that while certain attributes play an important role in the leader categorization process, others are less relevant. We also demonstrate that some attributes' importance is contingent on the presence of other attributes and on the leadership schema type activated in respondents' minds. Consistent with the Leadership Categorization Theory, our findings support the premise that individuals cognitively hold a superordinate leadership prototype, which imposes constraints on their more basic level prototypes. We discuss the implications of these results for leadership theory and practice.

  12. Prototype design of singles processing unit for the small animal PET

    NASA Astrophysics Data System (ADS)

    Deng, P.; Zhao, L.; Lu, J.; Li, B.; Dong, R.; Liu, S.; An, Q.

    2018-05-01

    Position Emission Tomography (PET) is an advanced clinical diagnostic imaging technique for nuclear medicine. Small animal PET is increasingly used for studying the animal model of disease, new drugs and new therapies. A prototype of Singles Processing Unit (SPU) for a small animal PET system was designed to obtain the time, energy, and position information. The energy and position is actually calculated through high precison charge measurement, which is based on amplification, shaping, A/D conversion and area calculation in digital signal processing domian. Analysis and simulations were also conducted to optimize the key parameters in system design. Initial tests indicate that the charge and time precision is better than 3‰ FWHM and 350 ps FWHM respectively, while the position resolution is better than 3.5‰ FWHM. Commination tests of the SPU prototype with the PET detector indicate that the system time precision is better than 2.5 ns, while the flood map and energy spectra concored well with the expected.

  13. Organizational effects of information and communication technology (ICT) in elderly homecare: a case study.

    PubMed

    Vimarlund, Vivian; Olve, Nils-Göran; Scandurra, Isabella; Koch, Sabine

    2008-09-01

    The use of information and communication technology (ICT) to support integrated healthcare services in elderly homecare is becoming more established. In particular, ICT can enable information exchange, knowledge sharing and documentation at the point-of-care (POC). The aim of this study was to explore these effects using the Old@Home prototype. Old@Home was perceived to contribute in developing horizontal links for communication between individuals who work together, independent of geographical distance or organizational affiliation, and to contribute to increased work efficiency. The prototype was further seen to reduce professional isolation by providing a holistic overview of the care process. User centred design and implementation of Old@Home was considered key to facilitating acceptance of organizational changes. Participation of care professionals not only led to a better understanding of the needs of involved organizations, but also increased end-users' involvement and commitment, stimulating them to test and improve the prototype until the final version.

  14. Freeform object design and simultaneous manufacturing

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhang, Weihan; Lin, Heng; Leu, Ming C.

    2003-04-01

    Today's product design, especially the consuming product design, focuses more and more on individuation, originality, and the time to market. One way to meet these challenges is using the interactive and creationary product design methods and rapid prototyping/rapid tooling. This paper presents a novel Freeform Object Design and Simultaneous Manufacturing (FODSM) method that combines the natural interaction feature in the design phase and simultaneous manufacturing feature in the prototyping phase. The natural interactive three-dimensional design environment is achieved by adopting virtual reality technology. The geometry of the designed object is defined through the process of "virtual sculpting" during which the designer can touch and visualize the designed object and can hear the virtual manufacturing environment noise. During the designing process, the computer records the sculpting trajectories and automatically translates them into NC codes so as to simultaneously machine the designed part. The paper introduced the principle, implementation process, and key techniques of the new method, and compared it with other popular rapid prototyping methods.

  15. Wireless optical network for a home network

    NASA Astrophysics Data System (ADS)

    Bouchet, Olivier; Porcon, Pascal; Walewski, Joachim W.; Nerreter, Stefan; Langer, Klaus-Dieter; Fernández, Luz; Vucic, Jelena; Kamalakis, Thomas; Ntogari, Georgia; Neokosmidis, Ioannis; Gueutier, Eric

    2010-08-01

    During the European collaborative project OMEGA, two optical-wireless prototypes have been developed. The first prototype operates in the near-infrared spectral region and features Giga Ethernet connectivity, a simple transceiver architecture due to the use of on-off keying, a multi-sector transceiver, and an ultra-fast switch for sector-to-sector hand over. This full-duplex system, composed by one base station and one module, transmits data on three meters. The second prototype is a visible-light-communications system based on DMT signal processing and an adapted MAC sublayer. Data rates around to 100 Mb/s at the physical layer are achieved. This broadcast system, composed also by one base station and one module, transmits data up to two meters. In this paper we present the adapted optical wireless media-access-control sublayer protocol for visible-light communications. This protocol accommodates link adaptation from 128 Mb/s to 1024 Mb/s with multi-sector coverage, and half-duplex or full-duplex transmission.

  16. Virtual environment and computer-aided technologies used for system prototyping and requirements development

    NASA Technical Reports Server (NTRS)

    Logan, Cory; Maida, James; Goldsby, Michael; Clark, Jim; Wu, Liew; Prenger, Henk

    1993-01-01

    The Space Station Freedom (SSF) Data Management System (DMS) consists of distributed hardware and software which monitor and control the many onboard systems. Virtual environment and off-the-shelf computer technologies can be used at critical points in project development to aid in objectives and requirements development. Geometric models (images) coupled with off-the-shelf hardware and software technologies were used in The Space Station Mockup and Trainer Facility (SSMTF) Crew Operational Assessment Project. Rapid prototyping is shown to be a valuable tool for operational procedure and system hardware and software requirements development. The project objectives, hardware and software technologies used, data gained, current activities, future development and training objectives shall be discussed. The importance of defining prototyping objectives and staying focused while maintaining schedules are discussed along with project pitfalls.

  17. GEMSS: grid-infrastructure for medical service provision.

    PubMed

    Benkner, S; Berti, G; Engelbrecht, G; Fingberg, J; Kohring, G; Middleton, S E; Schmidt, R

    2005-01-01

    The European GEMSS Project is concerned with the creation of medical Grid service prototypes and their evaluation in a secure service-oriented infrastructure for distributed on demand/supercomputing. Key aspects of the GEMSS Grid middleware include negotiable QoS support for time-critical service provision, flexible support for business models, and security at all levels in order to ensure privacy of patient data as well as compliance to EU law. The GEMSS Grid infrastructure is based on a service-oriented architecture and is being built on top of existing standard Grid and Web technologies. The GEMSS infrastructure offers a generic Grid service provision framework that hides the complexity of transforming existing applications into Grid services. For the development of client-side applications or portals, a pluggable component framework has been developed, providing developers with full control over business processes, service discovery, QoS negotiation, and workflow, while keeping their underlying implementation hidden from view. A first version of the GEMSS Grid infrastructure is operational and has been used for the set-up of a Grid test-bed deploying six medical Grid service prototypes including maxillo-facial surgery simulation, neuro-surgery support, radio-surgery planning, inhaled drug-delivery simulation, cardiovascular simulation and advanced image reconstruction. The GEMSS Grid infrastructure is based on standard Web Services technology with an anticipated future transition path towards the OGSA standard proposed by the Global Grid Forum. GEMSS demonstrates that the Grid can be used to provide medical practitioners and researchers with access to advanced simulation and image processing services for improved preoperative planning and near real-time surgical support.

  18. Mass dependence of spectral and angular distributions of Cherenkov radiation from relativistic isotopes in solid radiators and its possible application as mass selector

    NASA Astrophysics Data System (ADS)

    Bogdanov, O. V.; Rozhkova, E. I.; Pivovarov, Yu. L.; Kuzminchuk-Feuerstein, N.

    2018-02-01

    The first proof of principle experiment with a prototype of a Time-of-Flight (TOF) - Cherenkov detector of relativistic heavy ions (RHI) exploiting a liquid Iodine Naphthalene radiator has been performed at Cave C at GSI (Darmstadt, Germany). A conceptual design for a liquid Cherenkov detector was proposed as a prototype for the future TOF measurements at the Super-FRS by detection of total number of Cherenkov photons. The ionization energy loss of RHI in a liquid radiator decreases only slightly this number, while in a solid radiator changes sufficiently not the total number of ChR photons, but ChR angular and spectral distributions. By means of computer simulations, we showed that these distributions are very sensitive to the isotope mass, due to different stopping powers of isotopes with initial equal relativistic factors. The results of simulations for light (Li, Be) and heavy (Xe) isotopes at 500-1000 MeV/u are presented indicating the possibility to use the isotopic effect in ChR of RHI as the mass selector.

  19. Optimization of a jet-propelled particle injection system for the uniform transdermal delivery of drug/vaccine.

    PubMed

    Liu, Yi; Kendall, Mark A F

    2007-08-01

    A jet-propelled particle injection system, the biolistics, has been developed and employed to accelerate micro-particles for transdermal drug delivery. We have examined a prototype biolistic device employing a converging-diverging supersonic nozzle (CDSN), and found that the micro-particles were delivered with a wide velocity range (200-800 m/s) and spatial distribution. To provide a controllable system for transdermal drug delivery, we present a contoured shock-tube (CST) concept and its embodiment device. The CST configuration utilizes a quasi-steady, quasi-one dimensional and shock-free supersonic flow to deliver the micro-particles with an almost uniform velocity (the mean velocity and the standard deviation, 699 +/- 4.7 m/s) and spatial distribution. The transient gas and particle dynamics in both prototype devices are interrogated with the validated computational fluid dynamics (CFD) approach. The predicted results for static pressure and Mach number histories, gas flow structures, particle velocity distributions and gas-particle interactions are presented and interpreted. The implications for clinical uses are discussed. (c) 2007 Wiley Periodicals, Inc.

  20. RICIS Software Engineering 90 Symposium: Aerospace Applications and Research Directions Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers presented at RICIS Software Engineering Symposium are compiled. The following subject areas are covered: synthesis - integrating product and process; Serpent - a user interface management system; prototyping distributed simulation networks; and software reuse.

  1. Study on selective laser sintering of glass fiber reinforced polystyrene

    NASA Astrophysics Data System (ADS)

    Yang, Laixia; Wang, Bo; Zhou, Wenming

    2017-12-01

    In order to improve the bending strength of Polystyrene (PS) sintered parts by selective laser sintering, Polystyrene/glass fiber (PS/GF) composite powders were prepared by mechanical mixing method. The size distribution of PS/GF composite powders was characterized by laser particle size analyzer. The optimum ratio of GF was determined by proportioning sintering experiments. The influence of process parameters on the bending strength of PS and PS/GF sintered parts was studied by orthogonal test. The result indicates that the particle size of PS/GF composite powder is mainly distributed in 24.88 μm~139.8 μm. When the content of GF is 10%, it has better strengthen effect. Finally, the article used the optimum parameter of the two materials to sinter prototype, it is found that the PS/GF prototype has the advantages of good accuracy and high strength.

  2. The Global File System

    NASA Technical Reports Server (NTRS)

    Soltis, Steven R.; Ruwart, Thomas M.; OKeefe, Matthew T.

    1996-01-01

    The global file system (GFS) is a prototype design for a distributed file system in which cluster nodes physically share storage devices connected via a network-like fiber channel. Networks and network-attached storage devices have advanced to a level of performance and extensibility so that the previous disadvantages of shared disk architectures are no longer valid. This shared storage architecture attempts to exploit the sophistication of storage device technologies whereas a server architecture diminishes a device's role to that of a simple component. GFS distributes the file system responsibilities across processing nodes, storage across the devices, and file system resources across the entire storage pool. GFS caches data on the storage devices instead of the main memories of the machines. Consistency is established by using a locking mechanism maintained by the storage devices to facilitate atomic read-modify-write operations. The locking mechanism is being prototyped in the Silicon Graphics IRIX operating system and is accessed using standard Unix commands and modules.

  3. Hardware/software codesign for embedded RISC core

    NASA Astrophysics Data System (ADS)

    Liu, Peng

    2001-12-01

    This paper describes hardware/software codesign method of the extendible embedded RISC core VIRGO, which based on MIPS-I instruction set architecture. VIRGO is described by Verilog hardware description language that has five-stage pipeline with shared 32-bit cache/memory interface, and it is controlled by distributed control scheme. Every pipeline stage has one small controller, which controls the pipeline stage status and cooperation among the pipeline phase. Since description use high level language and structure is distributed, VIRGO core has highly extension that can meet the requirements of application. We take look at the high-definition television MPEG2 MPHL decoder chip, constructed the hardware/software codesign virtual prototyping machine that can research on VIRGO core instruction set architecture, and system on chip memory size requirements, and system on chip software, etc. We also can evaluate the system on chip design and RISC instruction set based on the virtual prototyping machine platform.

  4. Microwave Emission From Relativistic Electron Beams

    DTIC Science & Technology

    1993-04-12

    the Army position, policyX, or decision, unless so designated by other documentation. 124. DISTRIBUTION i AVAILAOILITY STATEMENT I 12b. DISTRIBUTION...klystron (inodel 343). An assembly of six focusing coils is de - signed so that their magnetic field lines lie along the zero-magnetic field electron...less than 1% is achieved. Preliminary field measurements of a 30 period prototype undulator and the design parameters of a submillimeter experiment

  5. The StarLite Project

    DTIC Science & Technology

    1988-09-01

    The current prototyping tool also provides a multiversion data object control mechanism. In a real-time database system, synchronization protocols...data in distributed real-time systems. The semantic informa- tion of read-only transactions is exploited for improved efficiency, and a multiversion ...are discussed. ." Index Terms: distributed system, replication, read-only transaction, consistency, multiversion . I’ I’ I’ 4. -9- I I I ° e% 4, 1

  6. Maximizing Modern Distribution of Complex Anatomical Spatial Information: 3D Reconstruction and Rapid Prototype Production of Anatomical Corrosion Casts of Human Specimens

    ERIC Educational Resources Information Center

    Li, Jianyi; Nie, Lanying; Li, Zeyu; Lin, Lijun; Tang, Lei; Ouyang, Jun

    2012-01-01

    Anatomical corrosion casts of human specimens are useful teaching aids. However, their use is limited due to ethical dilemmas associated with their production, their lack of perfect reproducibility, and their consumption of original specimens in the process of casting. In this study, new approaches with modern distribution of complex anatomical…

  7. U.S. Coast Guard Fleet Mix Planning: A Decision Support System Prototype

    DTIC Science & Technology

    1991-03-01

    91-16785 Al ’ 1 1 1 Unclassified SECURITY CLASSIFICATION OF ThIS PAGE REPORT DOCUMENTATION PAGE I L REPORTSECURITY CLASSIFICATION lb. RESTRICTIVE...MARKINGS Unclassified 2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABITY OF REPORT Approved for public release; distribution is inlimited...2b. DECIASSIFICATION/DOWNGRADING SCHEDULE 4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) 6a. NAME OF

  8. General specifications for the development of a USL/DBMS NASA/PC R and D distributed workstation

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Chum, Frank Y.

    1984-01-01

    The general specifications for the development of a PC-based distributed workstation (PCDWS) for an information storage and retrieval systems environment are defined. This research proposes the development of a PCDWS prototype as part of the University of Southwestern Louisiana Data Base Management System (USL/DBMS) NASA/PC R and D project in the PC-based workstation environment.

  9. Introduction to Photolithography: Preparation of Microscale Polymer Silhouettes

    ERIC Educational Resources Information Center

    Berkowski, Kimberly L.; Plunkett, Kyle N.; Moore, Jeffrey S.

    2005-01-01

    A study describes an easy procedure based on a negative photoresist process designed for junior high or high school students, which will introduce them to the key terms and concepts of photolithography. The experiment allows students to visualize the fundamental process behind microchip fabrication, observe the rapid prototyping enabled by such a…

  10. Quality improvement prototype: Johnson Space Center, National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Johnson Space Flight Center was recognized by the Office of Management and Budget as a model for its high standards of quality. Included are an executive summary of the center's activities, an organizational overview, techniques for improving quality, the status of the quality effort and a listing of key personnel.

  11. Design and Implementation of a Prototype Ontology Aided Knowledge Discovery Assistant (OAKDA) Application

    DTIC Science & Technology

    2006-12-01

    speed of search engines improves the efficiency of such methods, effectiveness is not improved. The objective of this thesis is to construct and test...interest, users are assisted in finding a relevant set of key terms that will aid the search engines in narrowing, widening, or refocusing a Web search

  12. A Grassroots Prototype for Trauma-Informed Child Welfare System Change

    ERIC Educational Resources Information Center

    Henry, James; Richardson, Margaret; Black-Pond, Connie; Sloane, Mark; Atchinson, Ben; Hyter, Yvette

    2011-01-01

    The development of trauma-informed child welfare systems (TICWSs) that advance individual agency practice to target transformation of the system as a whole has been conceptualized but not documented. A grassroots effort to build a TICWS with key participants (e.g., Department of Human Services, Community Mental Health, Family Court, schools) in…

  13. Performance of the SERI parallel-passage dehumidifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlepp, D.; Barlow, R.

    1984-09-01

    The key component in improving the performance of solar desiccant cooling systems is the dehumidifier. A parallel-passage geometry for the desiccant dehumidifier has been identified as meeting key criteria of low pressure drop, high mass transfer efficiency, and compact size. An experimental program to build and test a small-scale prototype of this design was undertaken in FY 1982, and the results are presented in this report. Computer models to predict the adsorption/desorption behavior of desiccant dehumidifiers were updated to take into account the geometry of the bed and predict potential system performance using the new component design. The parallel-passage designmore » proved to have high mass transfer effectiveness and low pressure drop over a wide range of test conditions typical of desiccant cooling system operation. The prototype dehumidifier averaged 93% effectiveness at pressure drops of less than 50 Pa at design point conditions. Predictions of system performance using models validated with the experimental data indicate that system thermal coefficients of performance (COPs) of 1.0 to 1.2 and electrical COPs above 8.5 are possible using this design.« less

  14. User interface techniques in the counseling module of TOPS (Transportation Operational Personal Property Standard)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yow, T.G.

    The Transportation Operational Personal Property Standard System (TOPS) is an automated information management system to help administer the personal property transporation program for the Department of Defense (DOD). TOPS was fielded at four prototype sites in the late summer of 1988. Prototype testing is currently underway, with system deployment scheduled for 1989. When fully deployed, TOPS will save DOD both time and money and help ensure that all shipments made by armed services personnel are handled quickly and efficiently. The success of the TOPS system depends upon several key factors. Of course, TOPS must give transportation clerks at military personalmore » property shipping offices a tool with which they can perform their jobs with greater ease, speed, and correctness. However, before TOPS can achieve success in the field, it must first find acceptance from the transportation clerks themselves. The purpose of this document is to examine the user interface techniques used in the Counseling module of TOPS to ensure user acceptance and data base integrity, both key elements in the ultimate success of TOPS. 6 refs., 12 figs.« less

  15. World Key Information Service System Designed For EPCOT Center

    NASA Astrophysics Data System (ADS)

    Kelsey, J. A.

    1984-03-01

    An advanced Bell Laboratories and Western Electric designed electronic information retrieval system utilizing the latest Information Age technologies, and a fiber optic transmission system is featured at the Walt Disney World Resort's newest theme park - The Experimental Prototype Community of Tomorrow (EPCOT Center). The project is an interactive audio, video and text information system that is deployed at key locations within the park. The touch sensitive terminals utilizing the ARIEL (Automatic Retrieval of Information Electronically) System is interconnected by a Western Electric designed and manufactured lightwave transmission system.

  16. Application of Zen sitting principles to microscopic surgery seating.

    PubMed

    Noro, Kageyu; Naruse, Tetsuya; Lueder, Rani; Nao-I, Nobuhisa; Kozawa, Maki

    2012-03-01

    This paper describes the application of an alternative seating concept for surgeons that reflects the research of Zen sitting postures, which require Zazen meditators to maintain fixed postures for long durations. The aim of this alternative approach is to provide sitters with a seat pan with sacral support(1) that provides a more even distribution of seat pressures, induces forward pelvic rotation and improves lumbar, buttock and thigh support. This approach was applied to the development of a chair for microscopic surgery. The experimental chair is a seat pan that closely matches the three-dimensional contours of the user's buttocks. Seat comfort was evaluated by comparing both changes in pelvic tilt and seat pressure distributions using Regionally-Differentiated Pressure Maps (RDPM) with subjective ratings of surgeons while operating in prototype and conventional chairs. Findings include that the sacral support of the prototype chair prevents backward pelvic rotation, as seen in zazen (Zen sitting postures). Preliminary data suggests that the prototype provided greater sitting comfort and support for constrained operating postures than did the conventional chair. These findings support the selective application of concave-shaped seat pans that conform to users' buttocks and reflect Zen sitting principles. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  17. Guasom Analysis Of The Alhambra Survey

    NASA Astrophysics Data System (ADS)

    Garabato, Daniel; Manteiga, Minia; Dafonte, Carlos; Álvarez, Marco A.

    2017-10-01

    GUASOM is a data mining tool designed for knowledge discovery in large astronomical spectrophotometric archives developed in the framework of Gaia DPAC (Data Processing and Analysis Consortium). Our tool is based on a type of unsupervised learning Artificial Neural Networks named Self-organizing maps (SOMs). SOMs permit the grouping and visualization of big amount of data for which there is no a priori knowledge and hence they are very useful for analyzing the huge amount of information present in modern spectrophotometric surveys. SOMs are used to organize the information in clusters of objects, as homogeneously as possible according to their spectral energy distributions, and to project them onto a 2D grid where the data structure can be visualized. Each cluster has a representative, called prototype which is a virtual pattern that better represents or resembles the set of input patterns belonging to such a cluster. Prototypes make easier the task of determining the physical nature and properties of the objects populating each cluster. Our algorithm has been tested on the ALHAMBRA survey spectrophotometric observations, here we present our results concerning the survey segmentation, visualization of the data structure, separation between types of objects (stars and galaxies), data homogeneity of neurons, cluster prototypes, redshift distribution and crossmatch with other databases (Simbad).

  18. Dynamic Analyses of Result Quality in Energy-Aware Approximate Programs

    NASA Astrophysics Data System (ADS)

    RIngenburg, Michael F.

    Energy efficiency is a key concern in the design of modern computer systems. One promising approach to energy-efficient computation, approximate computing, trades off output precision for energy efficiency. However, this tradeoff can have unexpected effects on computation quality. This thesis presents dynamic analysis tools to study, debug, and monitor the quality and energy efficiency of approximate computations. We propose three styles of tools: prototyping tools that allow developers to experiment with approximation in their applications, online tools that instrument code to determine the key sources of error, and online tools that monitor the quality of deployed applications in real time. Our prototyping tool is based on an extension to the functional language OCaml. We add approximation constructs to the language, an approximation simulator to the runtime, and profiling and auto-tuning tools for studying and experimenting with energy-quality tradeoffs. We also present two online debugging tools and three online monitoring tools. The first online tool identifies correlations between output quality and the total number of executions of, and errors in, individual approximate operations. The second tracks the number of approximate operations that flow into a particular value. Our online tools comprise three low-cost approaches to dynamic quality monitoring. They are designed to monitor quality in deployed applications without spending more energy than is saved by approximation. Online monitors can be used to perform real time adjustments to energy usage in order to meet specific quality goals. We present prototype implementations of all of these tools and describe their usage with several applications. Our prototyping, profiling, and autotuning tools allow us to experiment with approximation strategies and identify new strategies, our online tools succeed in providing new insights into the effects of approximation on output quality, and our monitors succeed in controlling output quality while still maintaining significant energy efficiency gains.

  19. A novel prototype 3/5 laparoscopic needle driver: A validation study with conventional laparoscopic needle driver.

    PubMed

    Ganpule, Arvind P; Deshmukh, Chaitanya S; Joshi, Tanmay

    2018-01-01

    The challenges in laparoscopic suturing include need to expertise to suture. Laparoscopic needle holder is a" key" instrument to accomplish this arduous task. The objective of this new invention was to develop a laparoscopic needle holder which would be adapted to avoid any wobble (with a shaft diameter same as a 5mm port), ensure accurate and dexterous suturing not just in adult patients but pediatric patients alike (with a short shaft diameter) and finally ensure seamless throw of knots with a narrow tip configuration. We did an initial evaluation to evaluate the validity of the prototype needle holder and its impact on laparoscopic suturing skills by experienced laparoscopic surgeons and novice laparoscopic Surgeons. Both the groups of surgeons performed two tasks. The first task was to grasp the needle and position it in an angle deemed ideal for suturing. The second task was to pass suture through two fixed points and make a single square knot. At the end of the tasks each participant was asked to complete a 5- point Likert's scale questionnaire (8 items; 4 items of handling and 4 items of suturing) rating each needle holder. In expert group, the mean time to complete task 1 was shorter with prototype 3/5 laparoscopic needle holder (11.8 sec Vs 20.8 sec). The mean time to complete task 2 was also shorter with prototype 3/5 laparoscopic needle holder (103.2 sec Vs 153.2 sec). In novice group, mean time to complete both the task was shorter with prototype 3/5 laparoscopic needle holder. The expert laparoscopic surgeons as well as novice laparoscopic surgeons performed laparoscopic suturing faster and with more ease while using the prototype 3/5 laparoscopic needle holder.

  20. SSeCloud: Using secret sharing scheme to secure keys

    NASA Astrophysics Data System (ADS)

    Hu, Liang; Huang, Yang; Yang, Disheng; Zhang, Yuzhen; Liu, Hengchang

    2017-08-01

    With the use of cloud storage services, one of the concerns is how to protect sensitive data securely and privately. While users enjoy the convenience of data storage provided by semi-trusted cloud storage providers, they are confronted with all kinds of risks at the same time. In this paper, we present SSeCloud, a secure cloud storage system that improves security and usability by applying secret sharing scheme to secure keys. The system encrypts uploading files on the client side and splits encrypted keys into three shares. Each of them is respectively stored by users, cloud storage providers and the alternative third trusted party. Any two of the parties can reconstruct keys. Evaluation results of prototype system show that SSeCloud provides high security without too much performance penalty.

  1. The development of a program analysis environment for Ada: Reverse engineering tools for Ada

    NASA Technical Reports Server (NTRS)

    Cross, James H., II

    1991-01-01

    The Graphical Representations of Algorithms, Structures, and Processes for Ada (GRASP/Ada) has successfully created and prototyped a new algorithm level graphical representation for Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and thus improve reliability and reduce costs. The emphasis was on the automatic generation of the CSD from Ada source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code. In Phase 1 of the GRASP/Ada project, the CSD graphical constructs were created and applied manually to several small Ada programs. A prototype (Version 1) was designed and implemented using FLEX and BISON running under the Virtual Memory System (VMS) on a VAX 11-780. In Phase 2, the prototype was improved and ported to the Sun 4 platform under UNIX. A user interface was designed and partially implemented. The prototype was applied successfully to numerous Ada programs ranging in size from several hundred to several thousand lines of source code. In Phase 3 of the project, the prototype was prepared for limited distribution (GRASP/Ada Version 3.0) to facilitate evaluation. The user interface was extensively reworked. The current prototype provides the capability for the user to generate CSD from Ada source code in a reverse engineering mode with a level of flexibility suitable for practical application.

  2. Limitations on quantum key repeaters.

    PubMed

    Bäuml, Stefan; Christandl, Matthias; Horodecki, Karol; Winter, Andreas

    2015-04-23

    A major application of quantum communication is the distribution of entangled particles for use in quantum key distribution. Owing to noise in the communication line, quantum key distribution is, in practice, limited to a distance of a few hundred kilometres, and can only be extended to longer distances by use of a quantum repeater, a device that performs entanglement distillation and quantum teleportation. The existence of noisy entangled states that are undistillable but nevertheless useful for quantum key distribution raises the question of the feasibility of a quantum key repeater, which would work beyond the limits of entanglement distillation, hence possibly tolerating higher noise levels than existing protocols. Here we exhibit fundamental limits on such a device in the form of bounds on the rate at which it may extract secure key. As a consequence, we give examples of states suitable for quantum key distribution but unsuitable for the most general quantum key repeater protocol.

  3. Plan for the Characterization of HIRF Effects on a Fault-Tolerant Computer Communication System

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Miner, Paul S.; Koppen, Sandra V.

    2008-01-01

    This report presents the plan for the characterization of the effects of high intensity radiated fields on a prototype implementation of a fault-tolerant data communication system. Various configurations of the communication system will be tested. The prototype system is implemented using off-the-shelf devices. The system will be tested in a closed-loop configuration with extensive real-time monitoring. This test is intended to generate data suitable for the design of avionics health management systems, as well as redundancy management mechanisms and policies for robust distributed processing architectures.

  4. AMS Prototyping Activities

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott

    2008-01-01

    This slide presentation reviews the activity around the Asynchronous Message Service (AMS) prototype. An AMS reference implementation has been available since late 2005. It is aimed at supporting message exchange both in on-board environments and over space links. The implementation incoroporates all mandatory elements of the draft recommendation from July 2007: (1) MAMS, AMS, and RAMS protocols. (2) Failover, heartbeats, resync. (3) "Hooks" for security, but no cipher suites included in the distribution. The performance is reviewed, and a Benchmark latency test over VxWorks Message Queues is shown as histograms of a count vs microseconds per 1000-byte message

  5. A Test Generation Framework for Distributed Fault-Tolerant Algorithms

    NASA Technical Reports Server (NTRS)

    Goodloe, Alwyn; Bushnell, David; Miner, Paul; Pasareanu, Corina S.

    2009-01-01

    Heavyweight formal methods such as theorem proving have been successfully applied to the analysis of safety critical fault-tolerant systems. Typically, the models and proofs performed during such analysis do not inform the testing process of actual implementations. We propose a framework for generating test vectors from specifications written in the Prototype Verification System (PVS). The methodology uses a translator to produce a Java prototype from a PVS specification. Symbolic (Java) PathFinder is then employed to generate a collection of test cases. A small example is employed to illustrate how the framework can be used in practice.

  6. First Accelerator Test of the Kinematic Lightweight Energy Meter (KLEM) Prototype

    NASA Technical Reports Server (NTRS)

    Bashindzhagyan, G.; Adams, J. H.; Bashindzhagyan, P.; Chilingarian, A.; Donnelly, J.; Drury, L.; Egorov, N.; Golubkov, S.; Grebenyuk, V.; Kalinin, A.; hide

    2002-01-01

    The essence of the KLEM (Kinematic Lightweight Energy Meter) instrument is to directly measure the elemental energy spectra of high-energy cosmic rays by determining the angular distribution of secondary particles produced in a target. The first test of the simple KLEM prototype has been performed at the CERN SPS test-beam with 180 GeV pions during 2001. The results of the first test analysis confirm that, using the KLEM method, the energy of 180 GeV pions can be measured with a relative error of about 67%, which is very close to the results of the simulation (65%).

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Charles

    In the 2nd quarter of 2012, a program was formally initiated at Delta Products to develop smart-grid-enabled Electric Vehicle Supply Equipment (EVSE) product for residential use. The project was funded in part by the U.S. Department of Energy (DOE), under award DE-OE0000590. Delta products was the prime contractor to DOE during the three year duration of the project. In addition to Delta Products, several additional supplier-partners were engaged in this research and development (R&D) program, including Detroit Edison DTE, Mercedes Benz Research and Development North America, and kVA. This report summarizes the program and describes the key research outcomes ofmore » the program. A technical history of the project activities is provided, which describes the key steps taken in the research and the findings made at successive stages in the multi-stage work. The evolution of an EVSE prototype system is described in detail, culminating in prototypes shipped to Department of Energy Laboratories for final qualification. After the program history is reviewed, the key attributes of the resulting EVSE are described in terms of functionality, performance, and cost. The results clearly demonstrate the ability of this EVSE to meet or exceed DOE's targets for this program, including: construction of a working product-intent prototype of a smart-grid-enabled EVSE, with suitable connectivity to grid management and home-energy management systems, revenue-grade metering, and related technical functions; and cost reduction of 50% or more compared to typical market priced EVSEs at the time of DOE's funding opportunity announcement (FOA), which was released in mid 2011. In addition to meeting all the program goals, the program was completed within the original budget and timeline established at the time of the award. The summary program budget and timeline, comparing plan versus actual values, is provided for reference, along with several supporting explanatory notes. Technical information relating to the product design and test results are contained in the appendices to this report.« less

  8. Virtual prototyping study shows increased ATPase activity of Hsp90 to be the key determinant of cancer phenotype.

    PubMed

    Vali, Shireen; Pallavi, Rani; Kapoor, Shweta; Tatu, Utpal

    2010-03-01

    Hsp90 is an ATP-dependent molecular chaperone that regulates key signaling proteins and thereby impacts cell growth and development. Chaperone cycle of Hsp90 is regulated by ATP binding and hydrolysis through its intrinsic ATPase activities, which is in turn modulated by interaction with its co-chaperones. Hsp90 ATPase activity varies in different organisms and is known to be increased in tumor cells. In this study we have quantitatively analyzed the impact of increasing Hsp90 ATPase activity on the activities of its clients through a virtual prototyping technology, which comprises a dynamic model of Hsp90 interaction with clients involved in proliferation pathways. Our studies highlight the importance of increased ATPase activity of Hsp90 in cancer cells as the key modulator for increased proliferation and survival. A tenfold increase in ATPase activity of Hsp90 often seen in cancer cells increases the levels of active client proteins such as Akt-1, Raf-1 and Cyclin D1 amongst others to about 12-, 8- and 186-folds respectively. Additionally we studied the effect of a competitive inhibitor of Hsp90 activity on the reduction in the client protein levels. Virtual prototyping experiments corroborate with findings that the drug has almost 10- to 100-fold higher affinity as indicated by a lower IC(50) value (30-100 nM) in tumor cells with higher ATPase activity. The results also indicate a 15- to 25-fold higher efficacy of the inhibitor in reducing client levels in tumor cells. This analysis provides mechanistic insights into the links between increased Hsp90 ATPase activity, tumor phenotype and the hypersensitivity of tumor Hsp90 to inhibition by ATP analogs. The online version of this article (doi:10.1007/s11693-009-9046-3) contains supplementary material, which is available to authorized users.

  9. Evolution of a web-based, prototype Personal Health Application for diabetes self-management.

    PubMed

    Fonda, Stephanie J; Kedziora, Richard J; Vigersky, Robert A; Bursell, Sven-Erik

    2010-10-01

    Behaviors carried out by the person with diabetes (e.g., healthy eating, physical activity, judicious use of medication, glucose monitoring, coping and problem-solving, regular clinic visits, etc.) are of central importance in diabetes management. To assist with these behaviors, we developed a prototype PHA for diabetes self-management that was based on User-Centered Design principles and congruent with the anticipatory vision of Project Health Design (PHD). This article presents aspects of the prototype PHA's functionality as conceived under PHD and describes modifications to the PHA now being undertaken under new sponsorship, in response to user feedback and timing tests we have performed. In brief, the prototype Personal Health Application (PHA) receives data on the major diabetes management domains from a Personal Health Record (PHR) and analyzes and provides feedback based on clinically vetted educational content. The information is presented within "gadgets" within a portal-based website. The PHR used for the first implementation was the Common Platform developed by PHD. Key changes include a re-conceptualization of the gadgets by topic areas originally defined by the American Association of Diabetes Educators, a refocusing on low-cost approaches to diabetes monitoring and data entry, and synchronization with a new PHR, Microsoft® HealthVault™. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Secure multi-party communication with quantum key distribution managed by trusted authority

    DOEpatents

    Nordholt, Jane Elizabeth; Hughes, Richard John; Peterson, Charles Glen

    2013-07-09

    Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.

  11. Secure multi-party communication with quantum key distribution managed by trusted authority

    DOEpatents

    Hughes, Richard John; Nordholt, Jane Elizabeth; Peterson, Charles Glen

    2015-01-06

    Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.

  12. Update of GRASP/Ada reverse engineering tools for Ada

    NASA Technical Reports Server (NTRS)

    Cross, James H., II

    1992-01-01

    The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) has successfully created and prototyped a new algorithmic level graphical representation of Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis was on the automatic generation of the CSD from Ada PDL or source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code. In Phase 1 of the GRASP/Ada project, the CSD graphical constructs were created and applied manually to several small Ada programs. A prototype (Version 1) was designed and implemented using FLEX and BISON running under VMS on a VAS 11-780. In Phase 2, the prototype was improved and ported to the Sun 4 platform under UNIX. A user interface was designed and partially implemented using the HP widget toolkit and the X Windows System. In Phase 3, the user interface was extensively reworked using the Athena widget toolkit and X Windows. The prototype was applied successfully to numerous Ada programs ranging in size from several hundred to several thousand lines of source code. Following Phase 3, the prototype was evaluated by software engineering students at Auburn University and then updated with significant enhancements to the user interface including editing capabilities. Version 3.2 of the prototype was prepared for limited distribution to facilitate further evaluation. The current prototype provides the capability for the user to generate CSD's from Ada PDL or source code in a reverse engineering as well as forward engineering mode with a level of flexibility suitable for practical application.

  13. Design and Implementation of Effective Electrical Power System for Surya Satellite-1

    NASA Astrophysics Data System (ADS)

    Sulistya, A. H.; Hasbi, W.; Muhida, R.

    2018-05-01

    Surya Satellite-1 is a nanosatellite developed by students of Surya University. The subject of this paper is the design and implementation of effective electrical power system for Surya Satellite 1. The electrical power system role is to supply other systems of the satellite with appropriate electrical power. First, the requirements of the electrical power system are defined. The architecture of the electrical power system is then designed to build the prototype. The orbit simulation is calculated to predict the power production. When prototype test and simulation data is gained, we make an operation scenario to keep the produced power and the consumed power in balance. The design of the modules of the electrical power system is carried out with triple junction solar cells, lithium ion batteries, maximum power point trackers, charging controllers, power distributions, and protection systems. Finally, the prototypes of the electrical power system are presented.

  14. Similarity Theory of Withdrawn Water Temperature Experiment

    PubMed Central

    2015-01-01

    Selective withdrawal from a thermal stratified reservoir has been widely utilized in managing reservoir water withdrawal. Besides theoretical analysis and numerical simulation, model test was also necessary in studying the temperature of withdrawn water. However, information on the similarity theory of the withdrawn water temperature model remains lacking. Considering flow features of selective withdrawal, the similarity theory of the withdrawn water temperature model was analyzed theoretically based on the modification of governing equations, the Boussinesq approximation, and some simplifications. The similarity conditions between the model and the prototype were suggested. The conversion of withdrawn water temperature between the model and the prototype was proposed. Meanwhile, the fundamental theory of temperature distribution conversion was firstly proposed, which could significantly improve the experiment efficiency when the basic temperature of the model was different from the prototype. Based on the similarity theory, an experiment was performed on the withdrawn water temperature which was verified by numerical method. PMID:26065020

  15. Designing Security-Hardened Microkernels For Field Devices

    NASA Astrophysics Data System (ADS)

    Hieb, Jeffrey; Graham, James

    Distributed control systems (DCSs) play an essential role in the operation of critical infrastructures. Perimeter field devices are important DCS components that measure physical process parameters and perform control actions. Modern field devices are vulnerable to cyber attacks due to their increased adoption of commodity technologies and that fact that control networks are no longer isolated. This paper describes an approach for creating security-hardened field devices using operating system microkernels that isolate vital field device operations from untrusted network-accessible applications. The approach, which is influenced by the MILS and Nizza architectures, is implemented in a prototype field device. Whereas, previous microkernel-based implementations have been plagued by poor inter-process communication (IPC) performance, the prototype exhibits an average IPC overhead for protected device calls of 64.59 μs. The overall performance of field devices is influenced by several factors; nevertheless, the observed IPC overhead is low enough to encourage the continued development of the prototype.

  16. High-Speed, Low-Cost Workstation for Computation-Intensive Statistics. Phase 1

    DTIC Science & Technology

    1990-06-20

    routine implementation and performance. 5 The two compiled versions given in the table were coded in an attempt to obtain an optimized compiled version...level statistics and linear algebra routines (BSAS and BLAS) that have been prototyped in this study. For each routine, both the C code ( Turbo C...OISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Unlimited distribution 13. ABSTRACT (Maximum 200 words) High-performance and low-cost

  17. Determination of neutron flux distribution in an Am-Be irradiator using the MCNP.

    PubMed

    Shtejer-Diaz, K; Zamboni, C B; Zahn, G S; Zevallos-Chávez, J Y

    2003-10-01

    A neutron irradiator has been assembled at IPEN facilities to perform qualitative-quantitative analysis of many materials using thermal and fast neutrons outside the nuclear reactor premises. To establish the prototype specifications, the neutron flux distribution and the absorbed dose rates were calculated using the MCNP computer code. These theoretical predictions then allow one to discuss the optimum irradiator design and its performance.

  18. Development of optical fiber frequency and time distribution systems

    NASA Technical Reports Server (NTRS)

    Lutes, G.

    1982-01-01

    The development of ultra stable optical fiber distribution systems for the dissemination of frequency and timing references is reported. The ultimate design goals for these systems are a frequency stability of 10 to the -17 power for tau or = 100 sec and time stability of + or - 0.1 ns for 1 year and operation over distances or = 30 km. A prototype system is reviewed and progress is discussed.

  19. Entropy, complexity, and Markov diagrams for random walk cancer models

    PubMed Central

    Newton, Paul K.; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-01-01

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential. PMID:25523357

  20. Microdot - A Four-Bit Microcontroller Designed for Distributed Low-End Computing in Satellites

    NASA Astrophysics Data System (ADS)

    2002-03-01

    Many satellites are an integrated collection of sensors and actuators that require dedicated real-time control. For single processor systems, additional sensors require an increase in computing power and speed to provide the multi-tasking capability needed to service each sensor. Faster processors cost more and consume more power, which taxes a satellite's power resources and may lead to shorter satellite lifetimes. An alternative design approach is a distributed network of small and low power microcontrollers designed for space that handle the computing requirements of each individual sensor and actuator. The design of microdot, a four-bit microcontroller for distributed low-end computing, is presented. The design is based on previous research completed at the Space Electronics Branch, Air Force Research Laboratory (AFRL/VSSE) at Kirtland AFB, NM, and the Air Force Institute of Technology at Wright-Patterson AFB, OH. The Microdot has 29 instructions and a 1K x 4 instruction memory. The distributed computing architecture is based on the Philips Semiconductor I2C Serial Bus Protocol. A prototype was implemented and tested using an Altera Field Programmable Gate Array (FPGA). The prototype was operable to 9.1 MHz. The design was targeted for fabrication in a radiation-hardened-by-design gate-array cell library for the TSMC 0.35 micrometer CMOS process.

  1. Knowledge-based requirements analysis for automating software development

    NASA Technical Reports Server (NTRS)

    Markosian, Lawrence Z.

    1988-01-01

    We present a new software development paradigm that automates the derivation of implementations from requirements. In this paradigm, informally-stated requirements are expressed in a domain-specific requirements specification language. This language is machine-understable and requirements expressed in it are captured in a knowledge base. Once the requirements are captured, more detailed specifications and eventually implementations are derived by the system using transformational synthesis. A key characteristic of the process is that the required human intervention is in the form of providing problem- and domain-specific engineering knowledge, not in writing detailed implementations. We describe a prototype system that applies the paradigm in the realm of communication engineering: the prototype automatically generates implementations of buffers following analysis of the requirements on each buffer.

  2. Advanced Propulsion and TPS for a Rapidly-Prototyped CEV

    NASA Astrophysics Data System (ADS)

    Hudson, Gary C.

    2005-02-01

    Transformational Space Corporation (t/Space) is developing for NASA the initial designs for the Crew Exploration Vehicle family, focusing on a Launch CEV for transporting NASA and civilian passengers from Earth to orbit. The t/Space methodology is rapid prototyping of major vehicle systems, and deriving detailed specifications from the resulting hardware, avoiding "written-in-advance" specs that can force the costly invention of new capabilities simply to meet such specs. A key technology shared by the CEV family is Vapor Pressurized propulsion (Vapak) for simplicity and reliability, which provides electrical power, life support gas and a heat sink in addition to propulsion. The CEV family also features active transpiration cooling of re-entry surfaces (for reusability) backed up by passive thermal protection.

  3. Modular focusing ring imaging Cherenkov detector for electron-ion collider experiments

    NASA Astrophysics Data System (ADS)

    Wong, C. P.; Alfred, M.; Allison, L.; Awadi, M.; Azmoun, B.; Barbosa, F.; Barion, L.; Bennett, J.; Brooks, W.; Butler, C.; Cao, T.; Chiu, M.; Cisbani, E.; Contalbrigo, M.; Datta, A.; Del Dotto, A.; Demarteau, M.; Durham, J. M.; Dzhygadlo, R.; Elder, T.; Fields, D.; Furletova, Y.; Gleason, C.; Grosse-Perdekamp, M.; Harris, J.; Haseler, T. O. S.; He, X.; van Hecke, H.; Horn, T.; Hruschka, A.; Huang, J.; Hyde, C.; Ilieva, Y.; Kalicy, G.; Kimball, M.; Kistenev, E.; Kulinich, Y.; Liu, M.; Majka, R.; McKisson, J.; Mendez, R.; Nadel-Turonski, P.; Park, K.; Peters, K.; Rao, T.; Pisani, R.; Qiang, Y.; Rescia, S.; Rossi, P.; Sarajlic, O.; Sarsour, M.; Schwarz, C.; Schwiening, J.; da Silva, C. L.; Smirnov, N.; Stien, H. D.; Stevens, J.; Sukhanov, A.; Syed, S.; Tate, A. C.; Toh, J.; Towell, C. L.; Towell, R. S.; Tsang, T.; Turisini, M.; Wagner, R.; Wang, J.; Woody, C.; Xi, W.; Xie, J.; Zhao, Z. W.; Zihlmann, B.; Zorn, C.

    2017-11-01

    A powerful new electron-ioncollider (EIC) has been recommended in the 2015 Long Range Plan for Nuclear Science for probing the partonic structure inside nucleons and nuclei with unprecedented precision and versatility [1]. EIC detectors are currently under development [2], all of which require hadron identification over a broad kinematic range. A prototype ring imaging Cherenkov detector has been developed for hadron identification in the momentum range from 3 GeV/c to 10 GeV/c. The key feature of this new detector is a compact and modular design, achieved by using aerogel as radiator and a Fresnel lens for ring focusing. In this paper, the results from a beam test of a prototype device at Fermilab are reported.

  4. First results of the front-end ASIC for the strip detector of the PANDA MVD

    NASA Astrophysics Data System (ADS)

    Quagli, T.; Brinkmann, K.-T.; Calvo, D.; Di Pietro, V.; Lai, A.; Riccardi, A.; Ritman, J.; Rivetti, A.; Rolo, M. D.; Stockmanns, T.; Wheadon, R.; Zambanini, A.

    2017-03-01

    PANDA is a key experiment of the future FAIR facility and the Micro Vertex Detector (MVD) is the innermost part of its tracking system. PASTA (PAnda STrip ASIC) is the readout chip for the strip part of the MVD. The chip is designed to provide high resolution timestamp and charge information with the Time over Threshold (ToT) technique. Its architecture is based on Time to Digital Converters with analog interpolators, with a time bin width of 50 ps. The chip implements Single Event Upset (SEU) protection techniques for its digital parts. A first full-size prototype with 64 channels was produced in a commercial 110 nm CMOS technology and the first characterizations of the prototype were performed.

  5. Rapid prototyping-assisted maxillofacial reconstruction.

    PubMed

    Peng, Qian; Tang, Zhangui; Liu, Ousheng; Peng, Zhiwei

    2015-05-01

    Rapid prototyping (RP) technologies have found many uses in dentistry, and especially oral and maxillofacial surgery, due to its ability to promote product development while at the same time reducing cost and depositing a part of any degree of complexity theoretically. This paper provides an overview of RP technologies for maxillofacial reconstruction covering both fundamentals and applications of the technologies. Key fundamentals of RP technologies involving the history, characteristics, and principles are reviewed. A number of RP applications to the main fields of oral and maxillofacial surgery, including restoration of maxillofacial deformities and defects, reduction of functional bone tissues, correction of dento-maxillofacial deformities, and fabrication of maxillofacial prostheses, are discussed. The most remarkable challenges for development of RP-assisted maxillofacial surgery and promising solutions are also elaborated.

  6. Design of short-range terahertz wave passive detecting system

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Lou, Guowei; Zhu, Li; Qian, Songsong; Li, Ting

    2016-09-01

    Based on the study of radiation and transmission characteristics on THz waveband, a short-range passive detecting system is designed. The scheme originated from microwave passive detecting system. A prototype was developed following the design of key components including antennas and a harmonic mixer. The system operated at 0.36 THz. A dual-beam Cassegrain antenna was adopted for receiving signals which radiated by object and background. Local oscillator signal was generated by frequency multiplication. Harmonic mixing is adopted for reducing local oscillator signal frequency required by half. Superheterodyne technology is employed for signal acquisition. The system implemented easily. Tests and measurements were taken, which showed that the scheme was feasible and the performance of the prototype system met the design requirements.

  7. Conceptual Modeling of a Quantum Key Distribution Simulation Framework Using the Discrete Event System Specification

    DTIC Science & Technology

    2014-09-18

    and full/scale experimental verifications towards ground/ satellite quantum key distribution0 Oat Qhotonics 4235>9+7,=5;9!អ \\58^ Zin K. Dao Z. Miu T...Conceptual Modeling of a Quantum Key Distribution Simulation Framework Using the Discrete Event System Specification DISSERTATION Jeffrey D. Morris... QUANTUM KEY DISTRIBUTION SIMULATION FRAMEWORK USING THE DISCRETE EVENT SYSTEM SPECIFICATION DISSERTATION Presented to the Faculty Department of Systems

  8. Quantum cryptographic system with reduced data loss

    DOEpatents

    Lo, H.K.; Chau, H.F.

    1998-03-24

    A secure method for distributing a random cryptographic key with reduced data loss is disclosed. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically. 23 figs.

  9. Quantum cryptographic system with reduced data loss

    DOEpatents

    Lo, Hoi-Kwong; Chau, Hoi Fung

    1998-01-01

    A secure method for distributing a random cryptographic key with reduced data loss. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically.

  10. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks.

    PubMed

    Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F; Schnabel, Roman

    2015-10-30

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.

  11. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks

    PubMed Central

    Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F.; Schnabel, Roman

    2015-01-01

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein–Podolsky–Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components. PMID:26514280

  12. Security of Distributed-Phase-Reference Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Moroder, Tobias; Curty, Marcos; Lim, Charles Ci Wen; Thinh, Le Phuc; Zbinden, Hugo; Gisin, Nicolas

    2012-12-01

    Distributed-phase-reference quantum key distribution stands out for its easy implementation with present day technology. For many years, a full security proof of these schemes in a realistic setting has been elusive. We solve this long-standing problem and present a generic method to prove the security of such protocols against general attacks. To illustrate our result, we provide lower bounds on the key generation rate of a variant of the coherent-one-way quantum key distribution protocol. In contrast to standard predictions, it appears to scale quadratically with the system transmittance.

  13. Today's Authoring Tools for Tomorrow's Semantic Web.

    ERIC Educational Resources Information Center

    Dingley, Andy; Shabajee, Paul

    This paper reports on the development of a prototype authoring tool developed as part of on-going research around the needs of the ARKive project. The project holds text, rich-media and descriptions of factual statements about bio-diversity and conservation information. A key user community is that of school age children, requiring the mark-up of…

  14. Rapid Prototyping a Collections-Based Mobile Wayfinding Application

    ERIC Educational Resources Information Center

    Hahn, Jim; Morales, Alaina

    2011-01-01

    This research presents the results of a project that investigated how students use a library developed mobile app to locate books in the library. The study employed a methodology of formative evaluation so that the development of the mobile app would be informed by user preferences for next generation wayfinding systems. A key finding is the…

  15. Education Leaders' Guide to Transforming Student and Learning Supports. A Center Guide

    ERIC Educational Resources Information Center

    Center for Mental Health in Schools at UCLA, 2014

    2014-01-01

    New directions for student and learning supports are key to systemically addressing barriers to learning and teaching. The aim is to unify and then develop a comprehensive and equitable system of student/learning supports at every school. This guide incorporates years of research and prototype development and a variety of examples from…

  16. Recovering Wood and McCarthy's ERP-prototypes by means of ERP-specific procrustes-rotation.

    PubMed

    Beauducel, André

    2018-02-01

    The misallocation of treatment-variance on the wrong component has been discussed in the context of temporal principal component analysis of event-related potentials. There is, until now, no rotation-method that can perfectly recover Wood and McCarthy's prototypes without making use of additional information on treatment-effects. In order to close this gap, two new methods: for component rotation were proposed. After Varimax-prerotation, the first method identifies very small slopes of successive loadings. The corresponding loadings are set to zero in a target-matrix for event-related orthogonal partial Procrustes- (EPP-) rotation. The second method generates Gaussian normal distributions around the peaks of the Varimax-loadings and performs orthogonal Procrustes-rotation towards these Gaussian distributions. Oblique versions of this Gaussian event-related Procrustes- (GEP) rotation and of EPP-rotation are based on Promax-rotation. A simulation study revealed that the new orthogonal rotations recover Wood and McCarthy's prototypes and eliminate misallocation of treatment-variance. In an additional simulation study with a more pronounced overlap of the prototypes GEP Promax-rotation reduced the variance misallocation slightly more than EPP Promax-rotation. Comparison with Existing Method(s): Varimax- and conventional Promax-rotations resulted in substantial misallocations of variance in simulation studies when components had temporal overlap. A substantially reduced misallocation of variance occurred with the EPP-, EPP Promax-, GEP-, and GEP Promax-rotations. Misallocation of variance can be minimized by means of the new rotation methods: Making use of information on the temporal order of the loadings may allow for improvements of the rotation of temporal PCA components. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Preliminary results of an in-beam PET prototype for proton therapy

    NASA Astrophysics Data System (ADS)

    Attanasi, F.; Belcari, N.; Camarda, M.; Cirrone, G. A. P.; Cuttone, G.; Del Guerra, A.; Di Rosa, F.; Lanconelli, N.; Rosso, V.; Russo, G.; Vecchio, S.

    2008-06-01

    Proton therapy can overcome the limitations of conventional radiotherapy due to the more selective energy deposition in depth and to the increased biological effectiveness. Verification of the delivered dose is desirable, but the complete stopping of the protons in patient prevents the application of electronic portal imaging methods that are used in conventional radiotherapy During proton therapy β + emitters like 11C, 15O, 10C are generated in irradiated tissues by nuclear reactions. The measurement of the spatial distribution of this activity, immediately after patient irradiation, can lead to information on the effective delivered dose. First, results of a feasibility study of an in-beam PET for proton therapy are reported. The prototype is based on two planar heads with an active area of about 5×5 cm 2. Each head is made up of a position sensitive photomultiplier coupled to a square matrix of same size of LYSO scintillating crystals (2×2×18 mm 3 pixel dimensions). Four signals from each head are acquired through a dedicated electronic board that performs signal amplification and digitization. A 3D reconstruction of the activity distribution is calculated using an expectation maximization algorithm. To characterize the PET prototype, the detection efficiency and the spatial resolution were measured using a point-like radioactive source. The validation of the prototype was performed using 62 MeV protons at the CATANA beam line of INFN LNS and PMMA phantoms. Using the full energy proton beam and various range shifters, a good correlation between the position of the activity distal edge and the thickness of the beam range shifter was found along the axial direction.

  18. EDITORIAL: Focus on Quantum Cryptography: Theory and Practice FOCUS ON QUANTUM CRYPTOGRAPHY: THEORY AND PRACTICE

    NASA Astrophysics Data System (ADS)

    Lütkenhaus, N.; Shields, A. J.

    2009-04-01

    Quantum cryptography, and especially quantum key distribution (QKD), is steadily progressing to become a viable tool for cryptographic services. In recent years we have witnessed a dramatic increase in the secure bit rate of QKD, as well as its extension to ever longer fibre- and air-based links and the emergence of metro-scale trusted networks. In the foreseeable future even global-scale communications may be possible using quantum repeaters or Earth-satellite links. A handful of start-ups and some bigger companies are already active in the field. The launch of an initiative to form industrial standards for QKD, under the auspices of the European Telecommunication Standards Institute, described in the paper by Laenger and Lenhart in this Focus Issue, can be taken as a sign of the growing commercial interest. Recent progress has seen an increase in the secure bit rate of QKD links, by orders of magnitude, to over 1 Mb s-1. This has resulted mainly from an improvement in the detection technology. Here changes in the way conventional semiconductor detectors are gated, as well as the development of novel devices based on non-linear processes and superconducting materials, are leading the way. Additional challenges for QKD at GHz clock rates include the design of high speed electronics, remote synchronization and high rate random number generation. Substantial effort is being devoted to increasing the range of individual links, which is limited by attenuation and other losses in optical fibres and air links. An important advance in the past few years has been the introduction of protocols with the same scaling as an ideal single-photon set-up. The good news is that these schemes use standard optical devices, such as weak laser pulses. Thanks to these new protocols and improvements in the detection technology, the range of a single fibre link can exceed a few hundred km. Outstanding issues include proving the unconditional security of some of the schemes. Much of the work done to date relates to point-to-point links. Another recent advance has been the development of trusted networks for QKD. This is important for further increasing the range of the technology, and for overcoming denial-of-service attacks on an individual link. It is interesting to see that the optimization of QKD devices differs for point-to-point and network applications. Network operation is essential for widespread adoption of the technology, as it can dramatically reduce the deployment costs and allow connection flexibility. Also important is the multiplexing of the quantum signals with conventional network traffic. For the future, quantum repeaters should be developed for longer range links. On the theoretical side, different approaches to security proofs have recently started to converge, offering several paradigms of the same basic idea. Our improved theoretical understanding places more stringent demands on the QKD devices. We are aware by now that finite size effects in key generation arise not only from parameter estimation. It will not be possible to generate a key from just a few hundred received signals. It is a stimulating challenge for the theory of security proofs to develop lean proof strategies that work with finite signal block sizes. As QKD advances to a real-world cryptographic solution, side channel attacks must be carefully analysed. Theoretical security proofs for QKD schemes are so far based on physical models of these devices. It is in the nature of models that any real implementation will deviate from this model, creating a potential weakness for an eavesdropper to exploit. There are two solutions to this problem: the traditional path of refining the models to reduce the deviations, or the radically different approach of device-independent security proofs, in which none or only a few well controlled assumptions about the devices are made. Clearly, it is desirable to find security proofs that require only minimal or fairly general model descriptions and are based on observable tests during the run of QKD sessions. It is now 25 years since the first proposal for QKD was published and 20 since the first experimental realization. The intervening years have brought several technological and theoretical advances, which have driven new insights into the application of quantum theory to the wider field of information technology. We are looking forward to the new twists and turns this field will take in the next 25 years! Focus on Quantum Cryptography: Theory and Practice Contents Security of continuous-variable quantum key distribution: towards a de Finetti theorem for rotation symmetry in phase space A Leverrier, E Karpov, P Grangier and N J Cerf Optical networking for quantum key distribution and quantum communications T E Chapuran, P Toliver, N A Peters, J Jackel, M S Goodman, R J Runser, S R McNown, N Dallmann, R J Hughes, K P McCabe, J E Nordholt, C G Peterson, K T Tyagi, L Mercer and H Dardy Proof-of-concept of real-world quantum key distribution with quantum frames I Lucio-Martinez, P Chan, X Mo, S Hosier and W Tittel Composability in quantum cryptography Jörn Müller-Quade and Renato Renner Distributed authentication for randomly compromised networks Travis R Beals, Kevin P Hynes and Barry C Sanders Feasibility of 300 km quantum key distribution with entangled states Thomas Scheidl, Rupert Ursin, Alessandro Fedrizzi, Sven Ramelow, Xiao-Song Ma, Thomas Herbst, Robert Prevedel, Lothar Ratschbacher, Johannes Kofler, Thomas Jennewein and Anton Zeilinger Decoy-state quantum key distribution with both source errors and statistical fluctuations Xiang-Bin Wang, Lin Yang, Cheng-Zhi Peng and Jian-Wei Pan High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres D Stucki, N Walenta, F Vannel, R T Thew, N Gisin, H Zbinden, S Gray, C R Towery and S Ten Topological optimization of quantum key distribution networks R Alléaume, F Roueff, E Diamanti and N Lütkenhaus The SECOQC quantum key distribution network in Vienna M Peev, C Pacher, R Alléaume, C Barreiro, J Bouda, W Boxleitner, T Debuisschert, E Diamanti, M Dianati, J F Dynes, S Fasel, S Fossier, M Fürst, J-D Gautier, O Gay, N Gisin, P Grangier, A Happe, Y Hasani, M Hentschel, H Hübel, G Humer, T Länger, M Legré, R Lieger, J Lodewyck, T Lorünser, N Lütkenhaus, A Marhold, T Matyus, O Maurhart, L Monat, S Nauerth, J-B Page, A Poppe, E Querasser, G Ribordy, S Robyr, L Salvail, A W Sharpe, A J Shields, D Stucki, M Suda, C Tamas, T Themel, R T Thew, Y Thoma, A Treiber, P Trinkler, R Tualle-Brouri, F Vannel, N Walenta, H Weier, H Weinfurter, I Wimberger, Z L Yuan, H Zbinden and A Zeilinger Stable quantum key distribution with active polarization control based on time-division multiplexing J Chen, G Wu, L Xu, X Gu, E Wu and H Zeng Controlling passively quenched single photon detectors by bright light Vadim Makarov Information leakage via side channels in freespace BB84 quantum cryptography Sebastian Nauerth, Martin Fürst, Tobias Schmitt-Manderbach, Henning Weier and Harald Weinfurter Standardization of quantum key distribution and the ETSI standardization initiative ISG-QKD Thomas Länger and Gaby Lenhart Entangled quantum key distribution with a biased basis choice Chris Erven, Xiongfeng Ma, Raymond Laflamme and Gregor Weihs Finite-key analysis for practical implementations of quantum key distribution Raymond Y Q Cai and Valerio Scarani Field test of a continuous-variable quantum key distribution prototype S Fossier, E Diamanti, T Debuisschert, A Villing, R Tualle-Brouri and P Grangier Physics and application of photon number resolving detectors based on superconducting parallel nanowires F Marsili, D Bitauld, A Gaggero, S Jahanmirinejad, R Leoni, F Mattioli and A Fiore Device-independent quantum key distribution secure against collective attacks Stefano Pironio, Antonio Acín, Nicolas Brunner, Nicolas Gisin, Serge Massar and Valerio Scarani 1310 nm differential-phase-shift QKD system using superconducting single-photon detectors Lijun Ma, S Nam, Hai Xu, B Baek, Tiejun Chang, O Slattery, A Mink and Xiao Tang Practical gigahertz quantum key distribution based on avalanche photodiodes Z L Yuan, A R Dixon, J F Dynes, A W Sharpe and A J Shields Simple security proof of quantum key distribution based on complementarity M Koashi Feasibility of satellite quantum key distribution C Bonato, A Tomaello, V Da Deppo, G Naletto and P Villoresi Programmable instrumentation and gigahertz signaling for single-photon quantum communication systems Alan Mink, Joshua C Bienfang, Robert Carpenter, Lijun Ma, Barry Hershman, Alessandro Restelli and Xiao Tang Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation G B Xavier, N Walenta, G Vilela de Faria, G P Temporão, N Gisin, H Zbinden and J P von der Weid Feasibility of free space quantum key distribution with coherent polarization states D Elser, T Bartley, B Heim, Ch Wittmann, D Sych and G Leuchs A fully automated entanglement-based quantum cryptography system for telecom fiber networks Alexander Treiber, Andreas Poppe, Michael Hentschel, Daniele Ferrini, Thomas Lorünser, Edwin Querasser, Thomas Matyus, Hannes Hübel and Anton Zeilinger Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments N A Peters, P Toliver, T E Chapuran, R J Runser, S R McNown, C G Peterson, D Rosenberg, N Dallmann, R J Hughes, K P McCabe, J E Nordholt and K T Tyagi Clock synchronization by remote detection of correlated photon pairs Caleb Ho, Antía Lamas-Linares and Christian Kurtsiefer Megabits secure key rate quantum key distribution Q Zhang, H Takesue, T Honjo, K Wen, T Hirohata, M Suyama, Y Takiguchi, H Kamada, Y Tokura, O Tadanaga, Y Nishida, M Asobe and Y Yamamoto Practical long-distance quantum key distribution system using decoy levels D Rosenberg, C G Peterson, J W Harrington, P R Rice, N Dallmann, K T Tyagi, K P McCabe, S Nam, B Baek, R H Hadfield, R J Hughes and J E Nordholt Detector decoy quantum key distribution Tobias Moroder, Marcos Curty and Norbert Lütkenhaus Daylight operation of a free space, entanglement-based quantum key distribution system Matthew P Peloso, Ilja Gerhardt, Caleb Ho, Antía Lamas-Linares and Christian Kurtsiefer Observation of 1.5 μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes Benjamin Miquel and Hiroki Takesue

  19. Secure multi-party communication with quantum key distribution managed by trusted authority

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Richard John; Nordholt, Jane Elizabeth; Peterson, Charles Glen

    Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD aremore » extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.« less

  20. ShakeAlert Users Transition to the Production Prototype System

    NASA Astrophysics Data System (ADS)

    Strauss, J. A.; Vinci, M.; Steele, W. P.; Hellweg, M.; Allen, R. M.; DeGroot, R. M.

    2016-12-01

    The ShakeAlert Earthquake Early Warning system transitioned from the demonstration system into the fully-fledged production prototype system this year. Users were migrated over to the new system concurrent with the release of the ShakeAlert UserDisplay Version 2.5.0. The production prototype system provides robust connectivity, fail-over mechanisms to ensure that alarms are deliverd even if one connection fails, and provides a framework to connect future stations, participants, and other sources as the project expands to the full public system. We will present an overview of key user sectors that are either testing or launching pilot projects for the system within their organizations. We will outline the implementation of certain actions, and highlight accomplishments and challenges the Beta Users encounter in fully implementing ShakeAlert within their organizations. By better studying these issues, project partners can better assist the users in incorporating early warning in their operations. Opening up the system to allow for pilot projects enables ShakeAlert users to develop hardware, software, and policy solutions for actions in response to early warning alerts in a controlled environment. This is the first step on the path toward limited rollouts. The pilot groups leverage the expertise of our stakeholders to develop the `last mile' alert distribution and responses. The transition went smoothly in February 2015, for users in California, and we expect to connect with more beta users and pilot groups in this next phase. User transition is planned for Fall 2016 for users in the Pacific Northwest. Beta Users, such as municipalities, emergency response groups, and county officials, lifelines, schools, and private industry continue to meet with ShakeAlert partners to 1) further education and training on both benefits and limitations 2) strategize on implementation actions, such as opening fire house bay doors in response to an alarm, and 3) coordinate continued engagement as the system comes online with more Users and in more areas. The newly created Joint Committee on Communication, Education, and Outreach is aiding with the education and training aspect of the rollout.

  1. Integration of Weather Data into Airspace and Traffic Operations Simulation (ATOS) for Trajectory- Based Operations Research

    NASA Technical Reports Server (NTRS)

    Peters, Mark; Boisvert, Ben; Escala, Diego

    2009-01-01

    Explicit integration of aviation weather forecasts with the National Airspace System (NAS) structure is needed to improve the development and execution of operationally effective weather impact mitigation plans and has become increasingly important due to NAS congestion and associated increases in delay. This article considers several contemporary weather-air traffic management (ATM) integration applications: the use of probabilistic forecasts of visibility at San Francisco, the Route Availability Planning Tool to facilitate departures from the New York airports during thunderstorms, the estimation of en route capacity in convective weather, and the application of mixed-integer optimization techniques to air traffic management when the en route and terminal capacities are varying with time because of convective weather impacts. Our operational experience at San Francisco and New York coupled with very promising initial results of traffic flow optimizations suggests that weather-ATM integrated systems warrant significant research and development investment. However, they will need to be refined through rapid prototyping at facilities with supportive operational users We have discussed key elements of an emerging aviation weather research area: the explicit integration of aviation weather forecasts with NAS structure to improve the effectiveness and timeliness of weather impact mitigation plans. Our insights are based on operational experiences with Lincoln Laboratory-developed integrated weather sensing and processing systems, and derivative early prototypes of explicit ATM decision support tools such as the RAPT in New York City. The technical components of this effort involve improving meteorological forecast skill, tailoring the forecast outputs to the problem of estimating airspace impacts, developing models to quantify airspace impacts, and prototyping automated tools that assist in the development of objective broad-area ATM strategies, given probabilistic weather forecasts. Lincoln Laboratory studies and prototype demonstrations in this area are helping to define the weather-assimilated decision-making system that is envisioned as a key capability for the multi-agency Next Generation Air Transportation System [1]. The Laboratory's work in this area has involved continuing, operations-based evolution of both weather forecasts and models for weather impacts on the NAS. Our experience has been that the development of usable ATM technologies that address weather impacts must proceed via rapid prototyping at facilities whose users are highly motivated to participate in system evolution.

  2. The state-of-the-art of dc power distribution systems/components for space applications

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.

    1988-01-01

    This report is a survey of the state of the art of high voltage dc systems and components. This information can be used for consideration of an alternative secondary distribution (120 Vdc) system for the Space Station. All HVdc components have been prototyped or developed for terrestrial, aircraft, and spacecraft applications, and are applicable for general space application with appropriate modification and qualification. HVdc systems offer a safe, reliable, low mass, high efficiency and low EMI alternative for Space Station secondary distribution.

  3. Assessment on the methods of measuring the tyre-road contact patch stresses

    NASA Astrophysics Data System (ADS)

    Anghelache, G.; Moisescu, A.-R.; Buretea, D.

    2017-08-01

    The paper reviews established and modern methods for investigating tri-axial stress distributions in the tyre-road contact patch. The authors used three methods of measuring stress distributions: strain gauge method; force sensing technique; acceleration measurements. Four prototypes of instrumented pins transducers involving mentioned measuring methods were developed. Data acquisitions of the contact patch stresses distributions were performed using each transducer with instrumented pin. The results are analysed and compared, underlining the advantages and drawbacks of each method. The experimental results indicate that the three methods are valuable.

  4. A Security Proof of Measurement Device Independent Quantum Key Distribution: From the View of Information Theory

    NASA Astrophysics Data System (ADS)

    Li, Fang-Yi; Yin, Zhen-Qiang; Li, Hong-Wei; Chen, Wei; Wang, Shuang; Wen, Hao; Zhao, Yi-Bo; Han, Zheng-Fu

    2014-07-01

    Although some ideal quantum key distribution protocols have been proved to be secure, there have been some demonstrations that practical quantum key distribution implementations were hacked due to some real-life imperfections. Among these attacks, detector side channel attacks may be the most serious. Recently, a measurement device independent quantum key distribution protocol [Phys. Rev. Lett. 108 (2012) 130503] was proposed and all detector side channel attacks are removed in this scheme. Here a new security proof based on quantum information theory is given. The eavesdropper's information of the sifted key bits is bounded. Then with this bound, the final secure key bit rate can be obtained.

  5. Deterministic MDI QKD with two secret bits per shared entangled pair

    NASA Astrophysics Data System (ADS)

    Zebboudj, Sofia; Omar, Mawloud

    2018-03-01

    Although quantum key distribution schemes have been proven theoretically secure, they are based on assumptions about the devices that are not yet satisfied with today's technology. The measurement-device-independent scheme has been proposed to shorten the gap between theory and practice by removing all detector side-channel attacks. On the other hand, two-way quantum key distribution schemes have been proposed to raise the secret key generation rate. In this paper, we propose a new quantum key distribution scheme able to achieve a relatively high secret key generation rate based on two-way quantum key distribution that also inherits the robustness of the measurement-device-independent scheme against detector side-channel attacks.

  6. Participatory Design of an Online Self-Management Tool for Users With Spinal Cord Injury: Qualitative Study

    PubMed Central

    Shepherd, John; Tomasone, Jennifer; Munce, Sarah; Linassi, Gary; Hossain, Saima Noreen; Jaglal, Susan

    2018-01-01

    Background Rehospitalization rates resulting from secondary conditions in persons with spinal cord injuries (SCI) are high. Self-management programs for many chronic conditions have been associated with decreases in hospital readmissions. However, in the SCI community, evidence suggests that satisfaction with traditional self-management programs is low. Users with SCI have indicated preference for programs that are online (rather than in-person), that target SCI-specific concerns, and are led by peers with SCI. There is currently no program with all of these features, which addresses self-management of secondary conditions after SCI. Objective The aim of this study was to provide details of a participatory design (PD) process for an internet-mediated self-management program for users with SCI (called SCI & U) and illustrate how it has been used to define design constraints and solutions. Methods Users were involved in development as codesigners, codevelopers, and key informants. Codesigners and codevelopers were recruited from consumer advocacy groups and worked with a core development team. Key informants were recruited from geographically distributed advocacy groups to form a product advisory council that met regularly with the core team. During meetings, codesigners and informants walked through stages of work that typify PD processes such as exploration, discovery, and prototyping. This paper details the process by analyzing 10 meetings that took place between August 2015 and May 2016. Meetings were recorded, transcribed, and subjected to an inductive thematic analysis; resulting themes were organized according to their relationship to PD stages. Results A total of 16 individuals participated in meeting discussions, including 7 researchers and 9 persons with SCI from 4 Canadian provinces. Themes of trust, expertise, and community emerged in every group discussion. The exploration stage revealed interest in online self-management resources coupled with concerns about information credibility. In general, participants indicated that they felt more confident with information received from trusted, in-person sources (eg, peers or health care professionals) than information found online. The discovery stage saw participants propose and discuss concepts to filter credible information and highlight community expertise, namely (1) a community-curated resource database, (2) online information navigators, and (3) group chats with peers. Several tools and techniques were collectively prototyped in an effort to foster trust and community; these are illustrated in the Results section. Conclusions A PD process engaging users as codesigners, codevelopers, and informants can be used to identify design concerns and prototype online solutions to promote self-management after SCI. Future work will assess the usability of the collectively designed tools among a broad population of Canadians with SCI and the tools’ impact on self-efficacy and health. PMID:29563075

  7. WE-F-16A-02: Design, Fabrication, and Validation of a 3D-Printed Proton Filter for Range Spreading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remmes, N; Courneyea, L; Corner, S

    2014-06-15

    Purpose: To design, fabricate and test a 3D-printed filter for proton range spreading in scanned proton beams. The narrow Bragg peak in lower-energy synchrotron-based scanned proton beams can result in longer treatment times for shallow targets due to energy switching time and plan quality degradation due to minimum monitor unit limitations. A filter with variable thicknesses patterned on the same scale as the beam's lateral spot size will widen the Bragg peak. Methods: The filter consists of pyramids dimensioned to have a Gaussian distribution in thickness. The pyramids are 2.5mm wide at the base, 0.6 mm wide at the peak,more » 5mm tall, and are repeated in a 2.5mm pseudo-hexagonal lattice. Monte Carlo simulations of the filter in a proton beam were run using TOPAS to assess the change in depth profiles and lateral beam profiles. The prototypes were constrained to a 2.5cm diameter disk to allow for micro-CT imaging of promising prototypes. Three different 3D printers were tested. Depth-doses with and without the prototype filter were then measured in a ~70MeV proton beam using a multilayer ion chamber. Results: The simulation results were consistent with design expectations. Prototypes printed on one printer were clearly unacceptable on visual inspection. Prototypes on a second printer looked acceptable, but the micro-CT image showed unacceptable voids within the pyramids. Prototypes from the third printer appeared acceptable visually and on micro-CT imaging. Depth dose scans using the prototype from the third printer were consistent with simulation results. Bragg peak width increased by about 3x. Conclusions: A prototype 3D printer pyramid filter for range spreading was successfully designed, fabricated and tested. The filter has greater design flexibility and lower prototyping and production costs compared to traditional ridge filters. Printer and material selection played a large role in the successful development of the filter.« less

  8. Secure key storage and distribution

    DOEpatents

    Agrawal, Punit

    2015-06-02

    This disclosure describes a distributed, fault-tolerant security system that enables the secure storage and distribution of private keys. In one implementation, the security system includes a plurality of computing resources that independently store private keys provided by publishers and encrypted using a single security system public key. To protect against malicious activity, the security system private key necessary to decrypt the publication private keys is not stored at any of the computing resources. Rather portions, or shares of the security system private key are stored at each of the computing resources within the security system and multiple security systems must communicate and share partial decryptions in order to decrypt the stored private key.

  9. Quantum key distribution network for multiple applications

    NASA Astrophysics Data System (ADS)

    Tajima, A.; Kondoh, T.; Ochi, T.; Fujiwara, M.; Yoshino, K.; Iizuka, H.; Sakamoto, T.; Tomita, A.; Shimamura, E.; Asami, S.; Sasaki, M.

    2017-09-01

    The fundamental architecture and functions of secure key management in a quantum key distribution (QKD) network with enhanced universal interfaces for smooth key sharing between arbitrary two nodes and enabling multiple secure communication applications are proposed. The proposed architecture consists of three layers: a quantum layer, key management layer and key supply layer. We explain the functions of each layer, the key formats in each layer and the key lifecycle for enabling a practical QKD network. A quantum key distribution-advanced encryption standard (QKD-AES) hybrid system and an encrypted smartphone system were developed as secure communication applications on our QKD network. The validity and usefulness of these systems were demonstrated on the Tokyo QKD Network testbed.

  10. Development of Droplet Microfluidics Enabling High-Throughput Single-Cell Analysis.

    PubMed

    Wen, Na; Zhao, Zhan; Fan, Beiyuan; Chen, Deyong; Men, Dong; Wang, Junbo; Chen, Jian

    2016-07-05

    This article reviews recent developments in droplet microfluidics enabling high-throughput single-cell analysis. Five key aspects in this field are included in this review: (1) prototype demonstration of single-cell encapsulation in microfluidic droplets; (2) technical improvements of single-cell encapsulation in microfluidic droplets; (3) microfluidic droplets enabling single-cell proteomic analysis; (4) microfluidic droplets enabling single-cell genomic analysis; and (5) integrated microfluidic droplet systems enabling single-cell screening. We examine the advantages and limitations of each technique and discuss future research opportunities by focusing on key performances of throughput, multifunctionality, and absolute quantification.

  11. Electrical actuation technology bridging, volume 1

    NASA Astrophysics Data System (ADS)

    Hammond, Monica S.; Doane, George B., III

    1993-01-01

    This document contains the proceedings from the conference. The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.

  12. An Expert System Solution for the Quantitative Condition Assessment of Electrical Distribution Systems in the United States Air Force

    DTIC Science & Technology

    1991-09-01

    Distribution system ... ......... 4 2. Architechture of an Expert system .. .............. 66 vi List of Tables Table Page 1. Prototype Component Model...expert system to properly process work requests Ln civil engineering (8:23). Electric Power Research Institute (EPRI). EPRI is a private organization ...used (51) Training Level. The level of training shop technicians receive, and the resulting proficiency, are important in all organizations . Experts 1

  13. Support for Debugging Automatically Parallelized Programs

    NASA Technical Reports Server (NTRS)

    Hood, Robert; Jost, Gabriele; Biegel, Bryan (Technical Monitor)

    2001-01-01

    This viewgraph presentation provides information on the technical aspects of debugging computer code that has been automatically converted for use in a parallel computing system. Shared memory parallelization and distributed memory parallelization entail separate and distinct challenges for a debugging program. A prototype system has been developed which integrates various tools for the debugging of automatically parallelized programs including the CAPTools Database which provides variable definition information across subroutines as well as array distribution information.

  14. A Decision-Support System for Sustainable Water Distribution System Planning.

    PubMed

    Freund, Alina; Aydin, Nazli Yonca; Zeckzer, Dirk; Hagen, Hans

    2017-01-01

    An interactive decision-support system (DSS) can help experts prepare water resource management plans for decision makers and stakeholders. The design of the proposed prototype incorporates visualization techniques such as circle views, grid layout, small multiple maps, and node simplification to improve the data readability of water distribution systems. A case study with three urban water management and sanitary engineering experts revealed that the proposed DSS is satisfactory, efficient, and effective.

  15. Quantum dense key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.

    2004-03-01

    This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.

  16. Scale-up of a Luminescent Solar Concentrator-Based Photomicroreactor via Numbering-up.

    PubMed

    Zhao, Fang; Cambié, Dario; Janse, Jeroen; Wieland, Eric W; Kuijpers, Koen P L; Hessel, Volker; Debije, Michael G; Noël, Timothy

    2018-01-02

    The use of solar energy to power chemical reactions is a long-standing dream of the chemical community. Recently, visible-light-mediated photoredox catalysis has been recognized as the ideal catalytic transformation to convert solar energy into chemical bonds. However, scaling photochemical transformations has been extremely challenging due to Bouguer-Lambert-Beer law. Recently, we have pioneered the development of luminescent solar concentrator photomicroreactors (LSC-PMs), which display an excellent energy efficiency. These devices harvest solar energy, convert the broad solar energy spectrum to a narrow-wavelength region, and subsequently waveguide the re-emitted photons to the reaction channels. Herein, we report on the scalability of such LSC-PMs via a numbering-up strategy. Paramount in our work was the use of molds that were fabricated via 3D printing. This allowed us to rapidly produce many different prototypes and to optimize experimentally key design aspects in a time-efficient fashion. Reactors up to 32 parallel channels have been fabricated that display an excellent flow distribution using a bifurcated flow distributor (standard deviations below 10%). This excellent flow distribution was crucial to scale up a model reaction efficiently, displaying yields comparable to those obtained in a single-channel device. We also found that interchannel spacing is an important and unique design parameter for numbered-up LSC-PMs, which influences greatly the photon flux experienced within the reaction channels.

  17. Scale-up of a Luminescent Solar Concentrator-Based Photomicroreactor via Numbering-up

    PubMed Central

    2017-01-01

    The use of solar energy to power chemical reactions is a long-standing dream of the chemical community. Recently, visible-light-mediated photoredox catalysis has been recognized as the ideal catalytic transformation to convert solar energy into chemical bonds. However, scaling photochemical transformations has been extremely challenging due to Bouguer–Lambert–Beer law. Recently, we have pioneered the development of luminescent solar concentrator photomicroreactors (LSC-PMs), which display an excellent energy efficiency. These devices harvest solar energy, convert the broad solar energy spectrum to a narrow-wavelength region, and subsequently waveguide the re-emitted photons to the reaction channels. Herein, we report on the scalability of such LSC-PMs via a numbering-up strategy. Paramount in our work was the use of molds that were fabricated via 3D printing. This allowed us to rapidly produce many different prototypes and to optimize experimentally key design aspects in a time-efficient fashion. Reactors up to 32 parallel channels have been fabricated that display an excellent flow distribution using a bifurcated flow distributor (standard deviations below 10%). This excellent flow distribution was crucial to scale up a model reaction efficiently, displaying yields comparable to those obtained in a single-channel device. We also found that interchannel spacing is an important and unique design parameter for numbered-up LSC-PMs, which influences greatly the photon flux experienced within the reaction channels. PMID:29333350

  18. ALMA software architecture

    NASA Astrophysics Data System (ADS)

    Schwarz, Joseph; Raffi, Gianni

    2002-12-01

    The Atacama Large Millimeter Array (ALMA) is a joint project involving astronomical organizations in Europe and North America. ALMA will consist of at least 64 12-meter antennas operating in the millimeter and sub-millimeter range. It will be located at an altitude of about 5000m in the Chilean Atacama desert. The primary challenge to the development of the software architecture is the fact that both its development and runtime environments will be distributed. Groups at different institutes will develop the key elements such as Proposal Preparation tools, Instrument operation, On-line calibration and reduction, and Archiving. The Proposal Preparation software will be used primarily at scientists' home institutions (or on their laptops), while Instrument Operations will execute on a set of networked computers at the ALMA Operations Support Facility. The ALMA Science Archive, itself to be replicated at several sites, will serve astronomers worldwide. Building upon the existing ALMA Common Software (ACS), the system architects will prepare a robust framework that will use XML-encoded entity objects to provide an effective solution to the persistence needs of this system, while remaining largely independent of any underlying DBMS technology. Independence of distributed subsystems will be facilitated by an XML- and CORBA-based pass-by-value mechanism for exchange of objects. Proof of concept (as well as a guide to subsystem developers) will come from a prototype whose details will be presented.

  19. Optimized Orthovoltage Stereotactic Radiosurgery

    NASA Astrophysics Data System (ADS)

    Fagerstrom, Jessica M.

    Because of its ability to treat intracranial targets effectively and noninvasively, stereotactic radiosurgery (SRS) is a prevalent treatment modality in modern radiation therapy. This work focused on SRS delivering rectangular function dose distributions, which are desirable for some targets such as those with functional tissue included within the target volume. In order to achieve such distributions, this work used fluence modulation and energies lower than those utilized in conventional SRS. In this work, the relationship between prescription isodose and dose gradients was examined for standard, unmodulated orthovoltage SRS dose distributions. Monte Carlo-generated energy deposition kernels were used to calculate 4pi, isocentric dose distributions for a polyenergetic orthovoltage spectrum, as well as monoenergetic orthovoltage beams. The relationship between dose gradients and prescription isodose was found to be field size and energy dependent, and values were found for prescription isodose that optimize dose gradients. Next, a pencil-beam model was used with a Genetic Algorithm search heuristic to optimize the spatial distribution of added tungsten filtration within apertures of cone collimators in a moderately filtered 250 kVp beam. Four cone sizes at three depths were examined with a Monte Carlo model to determine the effects of the optimized modulation compared to open cones, and the simulations found that the optimized cones were able to achieve both improved penumbra and flatness statistics at depth compared to the open cones. Prototypes of the filter designs calculated using mathematical optimization techniques and Monte Carlo simulations were then manufactured and inserted into custom built orthovoltage SRS cone collimators. A positioning system built in-house was used to place the collimator and filter assemblies temporarily in the 250 kVp beam line. Measurements were performed in water using radiochromic film scanned with both a standard white light flatbed scanner as well as a prototype laser densitometry system. Measured beam profiles showed that the modulated beams could more closely approach rectangular function dose profiles compared to the open cones. A methodology has been described and implemented to achieve optimized SRS delivery, including the development of working prototypes. Future work may include the construction of a full treatment platform.

  20. Young adults' social drinking as explained by an augmented theory of planned behaviour: the roles of prototypes, willingness, and gender.

    PubMed

    Zimmermann, Friederike; Sieverding, Monika

    2010-09-01

    This study focused on young adults' alcohol consumption in social contexts. A dual-process model (including reasoned action and social reaction) was applied by combining the theory of planned behaviour (TPB) and the prototype/willingness model. A key question was whether willingness and actor and abstainer prototype variables would augment the TPB by increasing explained variance. Participants completed questionnaires prior to spending an evening socializing over the weekend (Time 1). Behavioural data were obtained by telephone interviews a few days after the social drinking occasion (Time 2). N=300 people (mean age 25 years) took part in the study. The outcome measure of pure alcohol in grams was calculated based on participants' reports about their consumed drinks. Multigroup path analyses were conducted because of sex differences on behavioural and psychological variables. The TPB explained 35% of the variance in men's and 41% in women's alcohol consumption. Augmentation with prototype perception and willingness contributed significantly to the prediction of intention (DeltaR(2)=.07) and alcohol consumption for men (DeltaR(2)=.14). A significant interaction implied that willingness led to heavy drinking particularly among those men who made negative evaluations of the abstainer prototype. Women's alcohol consumption is explained by TPB variables via a more controlled reasoned-action path only, whereas additional processes (e.g., pursuing the actor image intentionally, rejecting the abstainer image more intuitively) are important for men. The moderating role of gender is discussed in light of traditional gender roles and recent trends in alcohol consumption.

  1. Fundamental finite key limits for one-way information reconciliation in quantum key distribution

    NASA Astrophysics Data System (ADS)

    Tomamichel, Marco; Martinez-Mateo, Jesus; Pacher, Christoph; Elkouss, David

    2017-11-01

    The security of quantum key distribution protocols is guaranteed by the laws of quantum mechanics. However, a precise analysis of the security properties requires tools from both classical cryptography and information theory. Here, we employ recent results in non-asymptotic classical information theory to show that one-way information reconciliation imposes fundamental limitations on the amount of secret key that can be extracted in the finite key regime. In particular, we find that an often used approximation for the information leakage during information reconciliation is not generally valid. We propose an improved approximation that takes into account finite key effects and numerically test it against codes for two probability distributions, that we call binary-binary and binary-Gaussian, that typically appear in quantum key distribution protocols.

  2. Stay Alive--Simulation for Situational Safety Awareness

    NASA Technical Reports Server (NTRS)

    Ruder, Michelle

    2008-01-01

    STAY ALIVE is an idea for a safety awareness simulation prototype, powered by gaming technology, that would make safety training enlightening, engaging and fun. Recalling initial instructions and using situational awareness principles, participants would escape a fire by choosing the appropriate door. Escape times would be measured while stressors increased. This presentation describes how STAY ALIVE utilizes first person point of view (PoV), a generic scenario, immersion- and presence-enhancing design, and ease of distribution to provide more people opportunity to realize, review, analyze and practice effective awareness behaviors. The goals for this prototype include facilitating interest in first-person PoV safety training and eliciting further suggestions on prevention technologies.

  3. KSC-2013-4226

    NASA Image and Video Library

    2013-12-04

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians prepare to load the Project Morpheus Prototype Lander with propellant at the launch platform located at the north end of the Shuttle Landing Facility. Morpheus is being prepared for a dress rehearsal of a tethered flight test. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  4. KSC-2013-4195

    NASA Image and Video Library

    2013-12-03

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a team of engineers and technicians assist as a tether is used to lower the Project Morpheus prototype lander onto a launch platform at the north end of the Shuttle Landing Facility. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  5. KSC-2013-4227

    NASA Image and Video Library

    2013-12-04

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians have loaded the Project Morpheus Prototype Lander with propellant at the launch platform located at the north end of the Shuttle Landing Facility. Morpheus is being prepared for a dress rehearsal of a tethered flight test. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  6. KSC-2013-4225

    NASA Image and Video Library

    2013-12-04

    CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander is attached to a tether at the launch platform located at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Morpheus is being prepared for a dress rehearsal of a tethered flight test. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  7. KSC-2013-4194

    NASA Image and Video Library

    2013-12-03

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a team of engineers and technicians assist as a tether is used to move the Project Morpheus prototype lander to a launch platform at the north end of the Shuttle Landing Facility. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  8. KSC-2013-4188

    NASA Image and Video Library

    2013-12-03

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, technicians prepare the Project Morpheus prototype lander to be transported from a support building to a launch platform at the north end of the Shuttle Landing Facility. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  9. KSC-2013-4192

    NASA Image and Video Library

    2013-12-03

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a team of engineers and technicians attaches a tether to the Project Morpheus prototype lander near the north end of the Shuttle Landing Facility. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for Morpheus’ tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  10. KSC-2013-4190

    NASA Image and Video Library

    2013-12-03

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a convoy of vehicles accompanies the Project Morpheus prototype lander as it is transported to a launch platform at the north end of the Shuttle Landing Facility. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  11. KSC-2013-4189

    NASA Image and Video Library

    2013-12-03

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander is prepared for its move from a support building to a launch platform at the north end of the Shuttle Landing Facility. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  12. Centrifugal slurry pump wear and hydraulic studies. Phase II report. Experimental studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mistry, D.; Cooper, P.; Biswas, C.

    1983-01-01

    This report describes the work performed by Ingersoll-Rand Research, Inc., under Phase II, Experimental Studies for the contract entitled, Centrifugal Slurry Pump Wear and Hydraulic Studies. This work was carried out for the US Department of Energy under Contract No. DE-AC-82PC50035. The basic development approach pursued this phase is presented, followed by a discussion on wear relationships. The analysis, which resulted in the development of a mathematical wear model relating pump life to some of the key design and operating parameters, is presented. The results, observations, and conclusions of the experimental investigation on small scale pumps that led to themore » selected design features for the prototype pump are discussed. The material investigation was performed at IRRI, ORNL and Battelle. The rationale for selecting the materials for testing, the test methods and apparatus used, and the results obtained are presented followed by a discussion on materials for a prototype pump. In addition, the prototype pump test facility description, as well as the related design and equipment details, are presented. 20 references, 53 figures, 13 tables.« less

  13. Initial Usability Testing of a Hand-Held Electronic Logbook Prototype for the Human Research Facility

    NASA Technical Reports Server (NTRS)

    Berman, Andrea H.; Whitmore, Mihriban

    1996-01-01

    The Apple(R) Newton(TM) MessagePad 110 was flown aboard the KC-135 reduced gravity aircraft for microgravity usability testing. The Newton served as the initial hand-held electronic logbook prototype for the International Space Station (ISS) Human Research Facility (HRF). Subjects performed three different tasks with the Newton: (1) using the stylus to tap on different sections of the screen in order to launch an application and to select options within it; (2) using the stylus to write, and; (3) correcting handwriting recognition errors in a handwriting-intensive application. Subjects rated handwriting in microgravity 'Borderline' and had great difficulties finding a way in which to adequately restrain themselves at the lower body in order to have their hands free for the Newton. Handwriting recognition was rated 'Unacceptable,' but this issue is hardware-related and not unique to the microgravity environment. It is suggested that the restraint and handwriting issues are related and require further joint research with the current Handheld Electronic Logbook prototype: the Norand Pen*key Model #6300.

  14. Evaluation of a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography of scaphoid fixation screws.

    PubMed

    Filli, Lukas; Marcon, Magda; Scholz, Bernhard; Calcagni, Maurizio; Finkenstädt, Tim; Andreisek, Gustav; Guggenberger, Roman

    2014-12-01

    The aim of this study was to evaluate a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography (FDCT) of scaphoid fixation screws. FDCT has gained interest in imaging small anatomic structures of the appendicular skeleton. Angiographic C-arm systems with flat detectors allow fluoroscopy and FDCT imaging in a one-stop procedure emphasizing their role as an ideal intraoperative imaging tool. However, FDCT imaging can be significantly impaired by artefacts induced by fixation screws. Following ethical board approval, commercially available scaphoid fixation screws were inserted into six cadaveric specimens in order to fix artificially induced scaphoid fractures. FDCT images corrected with the algorithm were compared to uncorrected images both quantitatively and qualitatively by two independent radiologists in terms of artefacts, screw contour, fracture line visibility, bone visibility, and soft tissue definition. Normal distribution of variables was evaluated using the Kolmogorov-Smirnov test. In case of normal distribution, quantitative variables were compared using paired Student's t tests. The Wilcoxon signed-rank test was used for quantitative variables without normal distribution and all qualitative variables. A p value of < 0.05 was considered to indicate statistically significant differences. Metal artefacts were significantly reduced by the correction algorithm (p < 0.001), and the fracture line was more clearly defined (p < 0.01). The inter-observer reliability was "almost perfect" (intra-class correlation coefficient 0.85, p < 0.001). The prototype correction algorithm in FDCT for metal artefacts induced by scaphoid fixation screws may facilitate intra- and postoperative follow-up imaging. Flat detector computed tomography (FDCT) is a helpful imaging tool for scaphoid fixation. The correction algorithm significantly reduces artefacts in FDCT induced by scaphoid fixation screws. This may facilitate intra- and postoperative follow-up imaging.

  15. Federated data storage system prototype for LHC experiments and data intensive science

    NASA Astrophysics Data System (ADS)

    Kiryanov, A.; Klimentov, A.; Krasnopevtsev, D.; Ryabinkin, E.; Zarochentsev, A.

    2017-10-01

    Rapid increase of data volume from the experiments running at the Large Hadron Collider (LHC) prompted physics computing community to evaluate new data handling and processing solutions. Russian grid sites and universities’ clusters scattered over a large area aim at the task of uniting their resources for future productive work, at the same time giving an opportunity to support large physics collaborations. In our project we address the fundamental problem of designing a computing architecture to integrate distributed storage resources for LHC experiments and other data-intensive science applications and to provide access to data from heterogeneous computing facilities. Studies include development and implementation of federated data storage prototype for Worldwide LHC Computing Grid (WLCG) centres of different levels and University clusters within one National Cloud. The prototype is based on computing resources located in Moscow, Dubna, Saint Petersburg, Gatchina and Geneva. This project intends to implement a federated distributed storage for all kind of operations such as read/write/transfer and access via WAN from Grid centres, university clusters, supercomputers, academic and commercial clouds. The efficiency and performance of the system are demonstrated using synthetic and experiment-specific tests including real data processing and analysis workflows from ATLAS and ALICE experiments, as well as compute-intensive bioinformatics applications (PALEOMIX) running on supercomputers. We present topology and architecture of the designed system, report performance and statistics for different access patterns and show how federated data storage can be used efficiently by physicists and biologists. We also describe how sharing data on a widely distributed storage system can lead to a new computing model and reformations of computing style, for instance how bioinformatics program running on supercomputers can read/write data from the federated storage.

  16. Towards real-time VMAT verification using a prototype, high-speed CMOS active pixel sensor.

    PubMed

    Zin, Hafiz M; Harris, Emma J; Osmond, John P F; Allinson, Nigel M; Evans, Philip M

    2013-05-21

    This work investigates the feasibility of using a prototype complementary metal oxide semiconductor active pixel sensor (CMOS APS) for real-time verification of volumetric modulated arc therapy (VMAT) treatment. The prototype CMOS APS used region of interest read out on the chip to allow fast imaging of up to 403.6 frames per second (f/s). The sensor was made larger (5.4 cm × 5.4 cm) using recent advances in photolithographic technique but retains fast imaging speed with the sensor's regional read out. There is a paradigm shift in radiotherapy treatment verification with the advent of advanced treatment techniques such as VMAT. This work has demonstrated that the APS can track multi leaf collimator (MLC) leaves moving at 18 mm s(-1) with an automatic edge tracking algorithm at accuracy better than 1.0 mm even at the fastest imaging speed. Evaluation of the measured fluence distribution for an example VMAT delivery sampled at 50.4 f/s was shown to agree well with the planned fluence distribution, with an average gamma pass rate of 96% at 3%/3 mm. The MLC leaves motion and linac pulse rate variation delivered throughout the VMAT treatment can also be measured. The results demonstrate the potential of CMOS APS technology as a real-time radiotherapy dosimeter for delivery of complex treatments such as VMAT.

  17. An overview of the EOSDIS V0 information management system: Lessons learned from the implementation of a distributed data system

    NASA Technical Reports Server (NTRS)

    Ryan, Patrick M.

    1994-01-01

    The EOSDIS Version 0 system, released in July, 1994, is a working prototype of a distributed data system. One of the purposes of the V0 project is to take several existing data systems and coordinate them into one system while maintaining the independent nature of the original systems. The project is a learning experience and the lessons are being passed on to the architects of the system which will distribute the data received from the planned EOS satellites. In the V0 system, the data resides on heterogeneous systems across the globe but users are presented with a single, integrated interface. This interface allows users to query the participating data centers based on a wide set of criteria. Because this system is a prototype, we used many novel approaches in trying to connect a diverse group of users with the huge amount of available data. Some of these methods worked and others did not. Now that V0 has been released to the public, we can look back at the design and implementation of the system and also consider some possible future directions for the next generation of EOSDIS.

  18. VISTILES: Coordinating and Combining Co-located Mobile Devices for Visual Data Exploration.

    PubMed

    Langner, Ricardo; Horak, Tom; Dachselt, Raimund

    2017-08-29

    We present VISTILES, a conceptual framework that uses a set of mobile devices to distribute and coordinate visualization views for the exploration of multivariate data. In contrast to desktop-based interfaces for information visualization, mobile devices offer the potential to provide a dynamic and user-defined interface supporting co-located collaborative data exploration with different individual workflows. As part of our framework, we contribute concepts that enable users to interact with coordinated & multiple views (CMV) that are distributed across several mobile devices. The major components of the framework are: (i) dynamic and flexible layouts for CMV focusing on the distribution of views and (ii) an interaction concept for smart adaptations and combinations of visualizations utilizing explicit side-by-side arrangements of devices. As a result, users can benefit from the possibility to combine devices and organize them in meaningful spatial layouts. Furthermore, we present a web-based prototype implementation as a specific instance of our concepts. This implementation provides a practical application case enabling users to explore a multivariate data collection. We also illustrate the design process including feedback from a preliminary user study, which informed the design of both the concepts and the final prototype.

  19. Development of Ada language control software for the NASA power management and distribution test bed

    NASA Technical Reports Server (NTRS)

    Wright, Ted; Mackin, Michael; Gantose, Dave

    1989-01-01

    The Ada language software developed to control the NASA Lewis Research Center's Power Management and Distribution testbed is described. The testbed is a reduced-scale prototype of the electric power system to be used on space station Freedom. It is designed to develop and test hardware and software for a 20-kHz power distribution system. The distributed, multiprocessor, testbed control system has an easy-to-use operator interface with an understandable English-text format. A simple interface for algorithm writers that uses the same commands as the operator interface is provided, encouraging interactive exploration of the system.

  20. Real-Time Spaceborne Synthetic Aperture Radar Float-Point Imaging System Using Optimized Mapping Methodology and a Multi-Node Parallel Accelerating Technique

    PubMed Central

    Li, Bingyi; Chen, Liang; Yu, Wenyue; Xie, Yizhuang; Bian, Mingming; Zhang, Qingjun; Pang, Long

    2018-01-01

    With the development of satellite load technology and very large-scale integrated (VLSI) circuit technology, on-board real-time synthetic aperture radar (SAR) imaging systems have facilitated rapid response to disasters. A key goal of the on-board SAR imaging system design is to achieve high real-time processing performance under severe size, weight, and power consumption constraints. This paper presents a multi-node prototype system for real-time SAR imaging processing. We decompose the commonly used chirp scaling (CS) SAR imaging algorithm into two parts according to the computing features. The linearization and logic-memory optimum allocation methods are adopted to realize the nonlinear part in a reconfigurable structure, and the two-part bandwidth balance method is used to realize the linear part. Thus, float-point SAR imaging processing can be integrated into a single Field Programmable Gate Array (FPGA) chip instead of relying on distributed technologies. A single-processing node requires 10.6 s and consumes 17 W to focus on 25-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. The design methodology of the multi-FPGA parallel accelerating system under the real-time principle is introduced. As a proof of concept, a prototype with four processing nodes and one master node is implemented using a Xilinx xc6vlx315t FPGA. The weight and volume of one single machine are 10 kg and 32 cm × 24 cm × 20 cm, respectively, and the power consumption is under 100 W. The real-time performance of the proposed design is demonstrated on Chinese Gaofen-3 stripmap continuous imaging. PMID:29495637

  1. Community Needs Assessment and Portal Prototype Development for an Arctic Spatial Data Infrastructure (ASDI): A Contribution to an IPY Data Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Warnick, W. K.; Hempel, L. C.; Henk, J.; Sorensen, M.; Tweedie, C. E.; Gaylord, A.; Behr, S.

    2006-12-01

    As the creation and use of geospatial data in research, management, logistics, and education applications has proliferated, there is now a tremendous potential for advancing the IPY initiative through a variety of cyberinfrastructure applications, including Spatial Data Infrastructure (SDI) and related technologies. SDIs provide a necessary and common framework of standards, securities, policies, procedures, and technology to support the effective acquisition, coordination, dissemination and use of geospatial data by multiple and distributed stakeholder and user groups. Despite the numerous research activities in the Arctic, there is no established SDI and, because of this lack of a coordinated infrastructure, there is inefficiency, duplication of effort, and reduced data quality and search ability of arctic geospatial data. The urgency for establishing this framework is significant considering the myriad of data that is likely to be collected in celebration of the International Polar Year (IPY) in 2007-2008 and the current international momentum for an improved and integrated circumarctic terrestrial-marine-atmospheric environmental observatories network. The key objective of this project is to lay the foundation for full implementation of an Arctic Spatial Data Infrastructure (ASDI) through two related activities: (1) an assessment - via interviews, questionnaires, a workshop, and other means - of community needs, readiness, and resources, and (2) the development of a prototype web mapping portal to demonstrate the purpose and function on an arctic geospatial one-stop portal technology and to solicit community input on design and function. The results of this project will be compiled into a comprehensive report guiding the research community and funding agencies in the design and implementation of an ASDI to contribute to a robust IPY data cyberinfrastructure.

  2. Northern Forest DroughtNet: A New Framework to Understand Impacts of Precipitation Change on the Northern Forest Ecosystem

    NASA Astrophysics Data System (ADS)

    Asbjornsen, H.; Rustad, L.; Templer, P. H.; Jennings, K.; Phillips, R.; Smith, M.

    2014-12-01

    Recent trends and projections for future change for the U.S. northern forests suggest that the region's climate is becoming warmer, wetter, and, ironically, drier, with more precipitation occurring as large events, separated by longer periods with no precipitation. However, to date, precipitation manipulation experiments conducted in forest ecosystems represent only ~5% of all such experiments worldwide, and our understanding of how the mesic-adapted northern forest will respond to greater frequency and intensity of drought in the future is especially poor. Several important challenges have hampered previous research efforts to conduct forest drought experiments and draw robust conclusions, including difficulties in reducing water uptake by deep and lateral tree roots, logistical and financial constraints to establishing and maintaining large-scale field experiments, and the lack of standardized approaches for determining the appropriate precipitation manipulation treatment (e.g., amount and timing of throughfall displacement), designing and constructing the throughfall displacement infrastructure, identifying key response variables, and collecting and analyzing the field data. The overarching goal of this project is to establish a regional research coordination network - Northern Forest DroughtNet - to investigate the impacts of changes in the amount and distribution of precipitation on the hydrology, biogeochemistry, and carbon (C) cycling dynamics of northern temperate forests. Specific objectives include the development of a standard prototype for conducting precipitation manipulation studies in forest ecosystems (in collaboration with the international DroughtNet-RCN) and the implementation of this prototype drought experiment at the Hubbard Brook Experimental Forest. Here, we present the advances made thus far towards achieving the objectives of Northern Forest DroughtNet, plans for future work, and an invitation to the larger scientific community interested in precipitation manipulation experiments in forest ecosystems to participate in the network.

  3. OVERVIEW OF THE SDSS-IV MaNGA SURVEY: MAPPING NEARBY GALAXIES AT APACHE POINT OBSERVATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bundy, Kevin; Bershady, Matthew A.; Wake, David A.

    2015-01-01

    We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary inmore » diameter from 12'' (19 fibers) to 32'' (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 Å at R ∼ 2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (Å{sup –1} per 2'' fiber) at 23 AB mag arcsec{sup –2}, which is typical for the outskirts of MaNGA galaxies. Targets are selected with M {sub *} ≳ 10{sup 9} M {sub ☉} using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr.« less

  4. Annual land cover change mapping using MODIS time series to improve emissions inventories.

    NASA Astrophysics Data System (ADS)

    López Saldaña, G.; Quaife, T. L.; Clifford, D.

    2014-12-01

    Understanding and quantifying land surface changes is necessary for estimating greenhouse gas and ammonia emissions, and for meeting air quality limits and targets. More sophisticated inventories methodologies for at least key emission source are needed due to policy-driven air quality directives. Quantifying land cover changes on an annual basis requires greater spatial and temporal disaggregation of input data. The main aim of this study is to develop a methodology for using Earth Observations (EO) to identify annual land surface changes that will improve emissions inventories from agriculture and land use/land use change and forestry (LULUCF) in the UK. First goal is to find the best sets of input features that describe accurately the surface dynamics. In order to identify annual and inter-annual land surface changes, a times series of surface reflectance was used to capture seasonal variability. Daily surface reflectance images from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 500m resolution were used to invert a Bidirectional Reflectance Distribution Function (BRDF) model to create the seamless time series. Given the limited number of cloud-free observations, a BRDF climatology was used to constrain the model inversion and where no high-scientific quality observations were available at all, as a gap filler. The Land Cover Map 2007 (LC2007) produced by the Centre for Ecology & Hydrology (CEH) was used for training and testing purposes. A prototype land cover product was created for 2006 to 2008. Several machine learning classifiers were tested as well as different sets of input features going from the BRDF parameters to spectral Albedo. We will present the results of the time series development and the first exercises when creating the prototype land cover product.

  5. 100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors

    NASA Astrophysics Data System (ADS)

    Diamanti, Eleni; Takesue, Hiroki; Langrock, Carsten; Fejer, M. M.; Yamamoto, Yoshihisa

    2006-12-01

    We present a quantum key distribution experiment in which keys that were secure against all individual eavesdropping attacks allowed by quantum mechanics were distributed over 100 km of optical fiber. We implemented the differential phase shift quantum key distribution protocol and used low timing jitter 1.55 µm single-photon detectors based on frequency up-conversion in periodically poled lithium niobate waveguides and silicon avalanche photodiodes. Based on the security analysis of the protocol against general individual attacks, we generated secure keys at a practical rate of 166 bit/s over 100 km of fiber. The use of the low jitter detectors also increased the sifted key generation rate to 2 Mbit/s over 10 km of fiber.

  6. Exploring an Activist Approach of Working with Boys from Socially Vulnerable Backgrounds in a Sport Context

    ERIC Educational Resources Information Center

    Luguetti, Carla; Oliver, Kimberly L.; Kirk, David; Dantas, Luiz

    2017-01-01

    This study explores an activist approach for co-creating a prototype pedagogical model of sport for working with boys from socially vulnerable backgrounds. This paper addresses the key features that emerged when we identified what facilitated and hindered the boys' engagement in sport. This study was an activist research project that was conducted…

  7. Cyborg Ontologies and the Lecturer's Voice: A Posthuman Reading of the "Face-to-Face"

    ERIC Educational Resources Information Center

    Gourlay, Lesley

    2012-01-01

    The lecture is often posited as the prototypical "face-to-face" educational encounter, seen as embodying key features of the pre-networked academy. These are implicitly characterised as forms of boundedness or impermeability, in terms of both the physical and temporal context, and the ontological status of the participants and the nature of the…

  8. APA Summit on Medical Student Education Task Force on Informatics and Technology: Learning about Computers and Applying Computer Technology to Education and Practice

    ERIC Educational Resources Information Center

    Hilty, Donald M.; Hales, Deborah J.; Briscoe, Greg; Benjamin, Sheldon; Boland, Robert J.; Luo, John S.; Chan, Carlyle H.; Kennedy, Robert S.; Karlinsky, Harry; Gordon, Daniel B.; Yager, Joel; Yellowlees, Peter M.

    2006-01-01

    Objective: This article provides a brief overview of important issues for educators regarding medical education and technology. Methods: The literature describes key concepts, prototypical technology tools, and model programs. A work group of psychiatric educators was convened three times by phone conference to discuss the literature. Findings…

  9. Exploring the Application of a Conceptual Framework in a Social MALL App

    ERIC Educational Resources Information Center

    Read, Timothy; Bárcena, Elena; Kukulska-Hulme, Agnes

    2016-01-01

    This article presents a prototype social Mobile Assisted Language Learning (henceforth, MALL) app based on Kukulska-Hulme's (2012) conceptual framework. This research allows the exploration of time, place and activity type as key factors in the design of MALL apps, and is the first step toward a systematic analysis of such a framework in this type…

  10. Nurturing Creativity and Innovation through FabKids: A Case Study

    ERIC Educational Resources Information Center

    Beyers, Ronald Noel

    2010-01-01

    This paper will report on a case study that was conducted involving Grade 10 learners who were exposed to a high-tech rapid-prototyping environment of a Fabrication Laboratory as part of a FabKids experience. This project must be viewed in the context of a global shortage of key skills placing a higher priority on the initiation and development of…

  11. Green Energy Options for Consumer-Owned Business

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Co-opPlus of Western Massachusetts

    2006-05-01

    The goal of this project was to define, test, and prototype a replicable business model for consumer-owned cooperatives. The result is a replicable consumer-owned cooperative business model for the generation, interconnection, and distribution of renewable energy that incorporates energy conservation and efficiency improvements.

  12. Trends and New Directions in Software Architecture

    DTIC Science & Technology

    2014-10-10

    frameworks  Open source  Cloud strategies  NoSQL  Machine Learning  MDD  Incremental approaches  Dashboards  Distributed development...complexity grows  NoSQL Models are not created equal 2014 Our Current Research  Lightweight Evaluation and Architecture Prototyping for Big Data

  13. Access to the Mars Global Surveyor Data Through the Planetary Image Atlas

    NASA Technical Reports Server (NTRS)

    Ivanov, A. B.; Duxbury, E. D.; LaVoie, S. K.; McAuley, M.; Woncik, P. J.

    2002-01-01

    We will present our latest results in providing access to the Mars Global Surveyor Data through the Planetary Image Atlas. This work is a prototype for future Internet based data distribution systems. Additional information is contained in the original extended abstract.

  14. Continuous variable quantum key distribution with modulated entangled states.

    PubMed

    Madsen, Lars S; Usenko, Vladyslav C; Lassen, Mikael; Filip, Radim; Andersen, Ulrik L

    2012-01-01

    Quantum key distribution enables two remote parties to grow a shared key, which they can use for unconditionally secure communication over a certain distance. The maximal distance depends on the loss and the excess noise of the connecting quantum channel. Several quantum key distribution schemes based on coherent states and continuous variable measurements are resilient to high loss in the channel, but are strongly affected by small amounts of channel excess noise. Here we propose and experimentally address a continuous variable quantum key distribution protocol that uses modulated fragile entangled states of light to greatly enhance the robustness to channel noise. We experimentally demonstrate that the resulting quantum key distribution protocol can tolerate more noise than the benchmark set by the ideal continuous variable coherent state protocol. Our scheme represents a very promising avenue for extending the distance for which secure communication is possible.

  15. The blackboard model - A framework for integrating multiple cooperating expert systems

    NASA Technical Reports Server (NTRS)

    Erickson, W. K.

    1985-01-01

    The use of an artificial intelligence (AI) architecture known as the blackboard model is examined as a framework for designing and building distributed systems requiring the integration of multiple cooperating expert systems (MCXS). Aerospace vehicles provide many examples of potential systems, ranging from commercial and military aircraft to spacecraft such as satellites, the Space Shuttle, and the Space Station. One such system, free-flying, spaceborne telerobots to be used in construction, servicing, inspection, and repair tasks around NASA's Space Station, is examined. The major difficulties found in designing and integrating the individual expert system components necessary to implement such a robot are outlined. The blackboard model, a general expert system architecture which seems to address many of the problems found in designing and building such a system, is discussed. A progress report on a prototype system under development called DBB (Distributed BlackBoard model) is given. The prototype will act as a testbed for investigating the feasibility, utility, and efficiency of MCXS-based designs developed under the blackboard model.

  16. DWTP: a basis for networked VR on the Internet

    NASA Astrophysics Data System (ADS)

    Broll, Wolfgang; Schick, Daniel

    1998-04-01

    Shared virtual worlds are one of today's major research topics. While limited to particular application areas and high speed networks in the past, they become more and more available to a large number of users. One reason for this development was the introduction of VRML (the Virtual Reality Modeling Language), which has been established as a standard of the exchange of 3D worlds on the Internet. Although a number of prototype systems have been developed to realize shared multi-user worlds based on VRML, no suitable network protocol to support the demands of such environments has yet been established. In this paper we will introduce our approach of a network protocol for shared virtual environments: DWTP--the Distributed Worlds Transfer and communication Protocol. We will show how DWTP meets the demands of shared virtual environments on the Internet. We will further present SmallView, our prototype of a distributed multi-user VR system, to show how DWTP can be used to realize shared worlds.

  17. Modular focusing ring imaging Cherenkov detector for electron–ion collider experiments

    DOE PAGES

    Wong, C. P.; Alfred, M.; Allison, L.; ...

    2017-07-16

    Here, a powerful new electron–ioncollider (EIC) has been recommended in the 2015 Long Range Plan for Nuclear Science for probing the partonic structure inside nucleons and nuclei with unprecedented precision and versatility. EIC detectors are currently under development, all of which require hadron identification over a broad kinematic range. A prototype ring imaging Cherenkov detector has been developed for hadron identification in the momentum range from 3 GeV/c to 10 GeV/c. The key feature of this new detector is a compact and modular design, achieved by using aerogel as radiator and a Fresnel lens for ring focusing. In this paper,more » the results from a beam test of a prototype device at Fermilab are reported.« less

  18. A Scatter-Based Prototype Framework and Multi-Class Extension of Support Vector Machines

    PubMed Central

    Jenssen, Robert; Kloft, Marius; Zien, Alexander; Sonnenburg, Sören; Müller, Klaus-Robert

    2012-01-01

    We provide a novel interpretation of the dual of support vector machines (SVMs) in terms of scatter with respect to class prototypes and their mean. As a key contribution, we extend this framework to multiple classes, providing a new joint Scatter SVM algorithm, at the level of its binary counterpart in the number of optimization variables. This enables us to implement computationally efficient solvers based on sequential minimal and chunking optimization. As a further contribution, the primal problem formulation is developed in terms of regularized risk minimization and the hinge loss, revealing the score function to be used in the actual classification of test patterns. We investigate Scatter SVM properties related to generalization ability, computational efficiency, sparsity and sensitivity maps, and report promising results. PMID:23118845

  19. Intelligent Chatter Bot for Regulation Search

    NASA Astrophysics Data System (ADS)

    De Luise, María Daniela López; Pascal, Andrés; Saad, Ben; Álvarez, Claudia; Pescio, Pablo; Carrilero, Patricio; Malgor, Rafael; Díaz, Joaquín

    2016-01-01

    This communication presents a functional prototype, named PTAH, implementing a linguistic model focused on regulations in Spanish. Its global architecture, the reasoning model and short statistics are provided for the prototype. It is mainly a conversational robot linked to an Expert System by a module with many intelligent linguistic filters, implementing the reasoning model of an expert. It is focused on bylaws, regulations, jurisprudence and customized background representing entity mission, vision and profile. This Structure and model are generic enough to self-adapt to any regulatory environment, but as a first step, it was limited to an academic field. This way it is possible to limit the slang and data numbers. The foundations of the linguistic model are also outlined and the way the architecture implements the key features of the behavior.

  20. Test of the Equivalence Principle in an Einstein Elevator

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.; Lorenzini, E. C.; Glashow, S.; Cosmo, M. L.; Cheimets, P.; Finkelstein, N.; Schneps, M.; Iafolla, V.; Nozzoli, S.

    2003-01-01

    The laboratory activity consisted in the construction of a laboratory prototype of a differential accelerometer. The laboratory prototype has been used to conduct key tests on the differential instrument. We demonstrated the ability to damp quickly transient oscillations by utilizing a resistive load in the feedback loops and then removing that load to reestablish a high quality factor of the detector. A rotating divide with tilt control was also built. This device was utilized to impart (through the Earth's gravity) common-mode perturbations to the differential accelerometer. These calibration disturbances have been used to trim the acceleration outputs of the individual proof masses in order to obtain a common-mode rejection factor better than 10(exp -4) in a sufficiently large frequency band centered at the spin frequency.

  1. Development of a Plastic Melt Waste Compactor for Space Missions Experiments and Prototype Design

    NASA Technical Reports Server (NTRS)

    Pace, Gregory; Wignarajah, Kanapathipillai; Pisharody, Suresh; Fisher, John

    2004-01-01

    This paper describes development at NASA Ames Research Center of a heat melt compactor that can be used on both near term and far term missions. Experiments have been performed to characterize the behavior of composite wastes that are representative of the types of wastes produced on current and previous space missions such as International Space Station, Space Shuttle, MIR and Skylab. Experiments were conducted to characterize the volume reduction, bonding, encapsulation and biological stability of the waste composite and also to investigate other key design issues such as plastic extrusion, noxious off-gassing and removal of the of the plastic waste product from the processor. The experiments provided the data needed to design a prototype plastic melt waste processor, a description of which is included in the paper.

  2. Low-cost Method for Obtaining Medical Rapid Prototyping Using Desktop 3D printing: A Novel Technique for Mandibular Reconstruction Planning.

    PubMed

    Velasco, Ignacio; Vahdani, Soheil; Ramos, Hector

    2017-09-01

    Three-dimensional (3D) printing is relatively a new technology with clinical applications, which enable us to create rapid accurate prototype of the selected anatomic region, making it possible to plan complex surgery and pre-bend hardware for individual surgical cases. This study aimed to express our experience with the use of medical rapid prototype (MRP) of the maxillofacial region created by desktop 3D printer and its application in maxillofacial reconstructive surgeries. Three patients with benign mandible tumors were included in this study after obtaining informed consent. All patient's maxillofacial CT scan data was processed by segmentation and isolation software and mandible MRP was printed using our desktop 3D printer. These models were used for preoperative surgical planning and prebending of the reconstruction plate. MRP created by desktop 3D printer is a cost-efficient, quick and easily produced appliance for the planning of reconstructive surgery. It can contribute in patient orientation and helping them in a better understanding of their condition and proposed surgical treatment. It helps surgeons for pre-operative planning in the resection or reconstruction cases and represent an excellent tool in academic setting for residents training. The pre-bended reconstruction plate based on MRP, resulted in decreased surgery time, cost and anesthesia risks on the patients. Key words: 3D printing, medical modeling, rapid prototype, mandibular reconstruction, ameloblastoma.

  3. Primate Drum Kit: A System for Studying Acoustic Pattern Production by Non-Human Primates Using Acceleration and Strain Sensors

    PubMed Central

    Ravignani, Andrea; Olivera, Vicente Matellán; Gingras, Bruno; Hofer, Riccardo; Hernández, Carlos Rodríguez; Sonnweber, Ruth-Sophie; Fitch, W. Tecumseh

    2013-01-01

    The possibility of achieving experimentally controlled, non-vocal acoustic production in non-human primates is a key step to enable the testing of a number of hypotheses on primate behavior and cognition. However, no device or solution is currently available, with the use of sensors in non-human animals being almost exclusively devoted to applications in food industry and animal surveillance. Specifically, no device exists which simultaneously allows: (i) spontaneous production of sound or music by non-human animals via object manipulation, (ii) systematical recording of data sensed from these movements, (iii) the possibility to alter the acoustic feedback properties of the object using remote control. We present two prototypes we developed for application with chimpanzees (Pan troglodytes) which, while fulfilling the aforementioned requirements, allow to arbitrarily associate sounds to physical object movements. The prototypes differ in sensing technology, costs, intended use and construction requirements. One prototype uses four piezoelectric elements embedded between layers of Plexiglas and foam. Strain data is sent to a computer running Python through an Arduino board. A second prototype consists in a modified Wii Remote contained in a gum toy. Acceleration data is sent via Bluetooth to a computer running Max/MSP. We successfully pilot tested the first device with a group of chimpanzees. We foresee using these devices for a range of cognitive experiments. PMID:23912427

  4. Prototype Tool and Focus Group Evaluation for an Advanced Trajectory-Based Operations Concept

    NASA Technical Reports Server (NTRS)

    Guerreiro, Nelson M.; Jones, Denise R.; Barmore, Bryan E.; Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.; Ahmad, Nash'at N.

    2017-01-01

    Trajectory-based operations (TBO) is a key concept in the Next Generation Air Transportation System transformation of the National Airspace System (NAS) that will increase the predictability and stability of traffic flows, support a common operational picture through the use of digital data sharing, facilitate more effective collaborative decision making between airspace users and air navigation service providers, and enable increased levels of integrated automation across the NAS. NASA has been developing trajectory-based systems to improve the efficiency of the NAS during specific phases of flight and is now also exploring Advanced 4-Dimensional Trajectory (4DT) operational concepts that will integrate these technologies and incorporate new technology where needed to create both automation and procedures to support gate-to-gate TBO. A TBO Prototype simulation toolkit has been developed that demonstrates initial functionality of an Advanced 4DT TBO concept. Pilot and controller subject matter experts (SMEs) were brought to the Air Traffic Operations Laboratory at NASA Langley Research Center for discussions on an Advanced 4DT operational concept and were provided an interactive demonstration of the TBO Prototype using four example scenarios. The SMEs provided feedback on potential operational, technological, and procedural opportunities and concerns. This paper describes an Advanced 4DT operational concept, the TBO Prototype, the demonstration scenarios and methods used, and the feedback obtained from the pilot and controller SMEs in this focus group activity.

  5. Primate drum kit: a system for studying acoustic pattern production by non-human primates using acceleration and strain sensors.

    PubMed

    Ravignani, Andrea; Matellán Olivera, Vicente; Gingras, Bruno; Hofer, Riccardo; Rodríguez Hernández, Carlos; Sonnweber, Ruth-Sophie; Fitch, W Tecumseh

    2013-07-31

    The possibility of achieving experimentally controlled, non-vocal acoustic production in non-human primates is a key step to enable the testing of a number of hypotheses on primate behavior and cognition. However, no device or solution is currently available, with the use of sensors in non-human animals being almost exclusively devoted to applications in food industry and animal surveillance. Specifically, no device exists which simultaneously allows: (i) spontaneous production of sound or music by non-human animals via object manipulation, (ii) systematical recording of data sensed from these movements, (iii) the possibility to alter the acoustic feedback properties of the object using remote control. We present two prototypes we developed for application with chimpanzees (Pan troglodytes) which, while fulfilling the aforementioned requirements, allow to arbitrarily associate sounds to physical object movements. The prototypes differ in sensing technology, costs, intended use and construction requirements. One prototype uses four piezoelectric elements embedded between layers of Plexiglas and foam. Strain data is sent to a computer running Python through an Arduino board. A second prototype consists in a modified Wii Remote contained in a gum toy. Acceleration data is sent via Bluetooth to a computer running Max/MSP. We successfully pilot tested the first device with a group of chimpanzees. We foresee using these devices for a range of cognitive experiments.

  6. Novel secret key generation techniques using memristor devices

    NASA Astrophysics Data System (ADS)

    Abunahla, Heba; Shehada, Dina; Yeun, Chan Yeob; Mohammad, Baker; Jaoude, Maguy Abi

    2016-02-01

    This paper proposes novel secret key generation techniques using memristor devices. The approach depends on using the initial profile of a memristor as a master key. In addition, session keys are generated using the master key and other specified parameters. In contrast to existing memristor-based security approaches, the proposed development is cost effective and power efficient since the operation can be achieved with a single device rather than a crossbar structure. An algorithm is suggested and demonstrated using physics based Matlab model. It is shown that the generated keys can have dynamic size which provides perfect security. Moreover, the proposed encryption and decryption technique using the memristor based generated keys outperforms Triple Data Encryption Standard (3DES) and Advanced Encryption Standard (AES) in terms of processing time. This paper is enriched by providing characterization results of a fabricated microscale Al/TiO2/Al memristor prototype in order to prove the concept of the proposed approach and study the impacts of process variations. The work proposed in this paper is a milestone towards System On Chip (SOC) memristor based security.

  7. One Step Quantum Key Distribution Based on EPR Entanglement.

    PubMed

    Li, Jian; Li, Na; Li, Lei-Lei; Wang, Tao

    2016-06-30

    A novel quantum key distribution protocol is presented, based on entanglement and dense coding and allowing asymptotically secure key distribution. Considering the storage time limit of quantum bits, a grouping quantum key distribution protocol is proposed, which overcomes the vulnerability of first protocol and improves the maneuverability. Moreover, a security analysis is given and a simple type of eavesdropper's attack would introduce at least an error rate of 46.875%. Compared with the "Ping-pong" protocol involving two steps, the proposed protocol does not need to store the qubit and only involves one step.

  8. Quantum cryptography and applications in the optical fiber network

    NASA Astrophysics Data System (ADS)

    Luo, Yuhui

    2005-09-01

    Quantum cryptography, as part of quantum information and communications, can provide absolute security for information transmission because it is established on the fundamental laws of quantum theory, such as the principle of uncertainty, No-cloning theorem and quantum entanglement. In this thesis research, a novel scheme to implement quantum key distribution based on multiphoton entanglement with a new protocol is proposed. Its advantages are: a larger information capacity can be obtained with a longer transmission distance and the detection of multiple photons is easier than that of a single photon. The security and attacks pertaining to such a system are also studied. Next, a quantum key distribution over wavelength division multiplexed (WDM) optical fiber networks is realized. Quantum key distribution in networks is a long-standing problem for practical applications. Here we combine quantum cryptography and WDM to solve this problem because WDM technology is universally deployed in the current and next generation fiber networks. The ultimate target is to deploy quantum key distribution over commercial networks. The problems arising from the networks are also studied in this part. Then quantum key distribution in multi-access networks using wavelength routing technology is investigated in this research. For the first time, quantum cryptography for multiple individually targeted users has been successfully implemented in sharp contrast to that using the indiscriminating broadcasting structure. It overcomes the shortcoming that every user in the network can acquire the quantum key signals intended to be exchanged between only two users. Furthermore, a more efficient scheme of quantum key distribution is adopted, hence resulting in a higher key rate. Lastly, a quantum random number generator based on quantum optics has been experimentally demonstrated. This device is a key component for quantum key distribution as it can create truly random numbers, which is an essential requirement to perform quantum key distribution. This new generator is composed of a single optical fiber coupler with fiber pigtails, which can be easily used in optical fiber communications.

  9. Patient-controlled sharing of medical imaging data across unaffiliated healthcare organizations

    PubMed Central

    Ahn, David K; Unde, Bhagyashree; Gage, H Donald; Carr, J Jeffrey

    2013-01-01

    Background Current image sharing is carried out by manual transportation of CDs by patients or organization-coordinated sharing networks. The former places a significant burden on patients and providers. The latter faces challenges to patient privacy. Objective To allow healthcare providers efficient access to medical imaging data acquired at other unaffiliated healthcare facilities while ensuring strong protection of patient privacy and minimizing burden on patients, providers, and the information technology infrastructure. Methods An image sharing framework is described that involves patients as an integral part of, and with full control of, the image sharing process. Central to this framework is the Patient Controlled Access-key REgistry (PCARE) which manages the access keys issued by image source facilities. When digitally signed by patients, the access keys are used by any requesting facility to retrieve the associated imaging data from the source facility. A centralized patient portal, called a PCARE patient control portal, allows patients to manage all the access keys in PCARE. Results A prototype of the PCARE framework has been developed by extending open-source technology. The results for feasibility, performance, and user assessments are encouraging and demonstrate the benefits of patient-controlled image sharing. Discussion The PCARE framework is effective in many important clinical cases of image sharing and can be used to integrate organization-coordinated sharing networks. The same framework can also be used to realize a longitudinal virtual electronic health record. Conclusion The PCARE framework allows prior imaging data to be shared among unaffiliated healthcare facilities while protecting patient privacy with minimal burden on patients, providers, and infrastructure. A prototype has been implemented to demonstrate the feasibility and benefits of this approach. PMID:22886546

  10. Constructing the informatics and information technology foundations of a medical device evaluation system: a report from the FDA unique device identifier demonstration.

    PubMed

    Drozda, Joseph P; Roach, James; Forsyth, Thomas; Helmering, Paul; Dummitt, Benjamin; Tcheng, James E

    2018-02-01

    The US Food and Drug Administration (FDA) has recognized the need to improve the tracking of medical device safety and performance, with implementation of Unique Device Identifiers (UDIs) in electronic health information as a key strategy. The FDA funded a demonstration by Mercy Health wherein prototype UDIs were incorporated into its electronic information systems. This report describes the demonstration's informatics architecture. Prototype UDIs for coronary stents were created and implemented across a series of information systems, resulting in UDI-associated data flow from manufacture through point of use to long-term follow-up, with barcode scanning linking clinical data with UDI-associated device attributes. A reference database containing device attributes and the UDI Research and Surveillance Database (UDIR) containing the linked clinical and device information were created, enabling longitudinal assessment of device performance. The demonstration included many stakeholders: multiple Mercy departments, manufacturers, health system partners, the FDA, professional societies, the National Cardiovascular Data Registry, and information system vendors. The resulting system of systems is described in detail, including entities, functions, linkage between the UDIR and proprietary systems using UDIs as the index key, data flow, roles and responsibilities of actors, and the UDIR data model. The demonstration provided proof of concept that UDIs can be incorporated into provider and enterprise electronic information systems and used as the index key to combine device and clinical data in a database useful for device evaluation. Keys to success and challenges to achieving this goal were identified. Fundamental informatics principles were central to accomplishing the system of systems model. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  11. Counterfactual quantum key distribution with high efficiency

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Wen, Qiao-Yan

    2010-11-01

    In a counterfactual quantum key distribution scheme, a secret key can be generated merely by transmitting the split vacuum pulses of single particles. We improve the efficiency of the first quantum key distribution scheme based on the counterfactual phenomenon. This scheme not only achieves the same security level as the original one but also has higher efficiency. We also analyze how to achieve the optimal efficiency under various conditions.

  12. Counterfactual quantum key distribution with high efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Ying; Beijing Electronic Science and Technology Institute, Beijing 100070; Wen Qiaoyan

    2010-11-15

    In a counterfactual quantum key distribution scheme, a secret key can be generated merely by transmitting the split vacuum pulses of single particles. We improve the efficiency of the first quantum key distribution scheme based on the counterfactual phenomenon. This scheme not only achieves the same security level as the original one but also has higher efficiency. We also analyze how to achieve the optimal efficiency under various conditions.

  13. An Internet Protocol-Based Software System for Real-Time, Closed-Loop, Multi-Spacecraft Mission Simulation Applications

    NASA Technical Reports Server (NTRS)

    Burns, Richard D.; Davis, George; Cary, Everett; Higinbotham, John; Hogie, Keith

    2003-01-01

    A mission simulation prototype for Distributed Space Systems has been constructed using existing developmental hardware and software testbeds at NASA s Goddard Space Flight Center. A locally distributed ensemble of testbeds, connected through the local area network, operates in real time and demonstrates the potential to assess the impact of subsystem level modifications on system level performance and, ultimately, on the quality and quantity of the end product science data.

  14. A Routing Path Construction Method for Key Dissemination Messages in Sensor Networks

    PubMed Central

    Moon, Soo Young; Cho, Tae Ho

    2014-01-01

    Authentication is an important security mechanism for detecting forged messages in a sensor network. Each cluster head (CH) in dynamic key distribution schemes forwards a key dissemination message that contains encrypted authentication keys within its cluster to next-hop nodes for the purpose of authentication. The forwarding path of the key dissemination message strongly affects the number of nodes to which the authentication keys in the message are actually distributed. We propose a routing method for the key dissemination messages to increase the number of nodes that obtain the authentication keys. In the proposed method, each node selects next-hop nodes to which the key dissemination message will be forwarded based on secret key indexes, the distance to the sink node, and the energy consumption of its neighbor nodes. The experimental results show that the proposed method can increase by 50–70% the number of nodes to which authentication keys in each cluster are distributed compared to geographic and energy-aware routing (GEAR). In addition, the proposed method can detect false reports earlier by using the distributed authentication keys, and it consumes less energy than GEAR when the false traffic ratio (FTR) is ≥10%. PMID:25136649

  15. DEVELOPMENT OF A SORBENT DISTRIBUTION AND RECOVERY SYSTEM

    EPA Science Inventory

    This report describes the design, fabrication, and test of a prototype system for the recovery of spilled oil from the surface of river, estuarine, and harbor waters. The system utilizes an open cell polyurethane foam in small cubes to absorb the floating oil. The system is highl...

  16. Present and Probable CATV/Broadband-Communication Technology.

    ERIC Educational Resources Information Center

    Ward, John E.

    The study reports on technical and cost factors affecting future growth of Cable TV (CATV) systems and the development of the "wired nation." Comparisons are made between alternatives for distributing CATV signals and alternative prototypes for subscriber home terminals. Multi-cable, augmented-channel (with converter), and switched CATV…

  17. Altitude Investigation of Gas Temperature Distribution at Turbine of Three Similar Axial-Flow Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Prince, W.R.; Schulze, F.W.

    1952-01-01

    An investigation of the effect of inlet pressure, corrected engine speed, and turbine temperature level on turbine-inlet gas temperature distributions was conducted on a J40-WE-6, interim J40-WE-6, and prototype J40-WE-8 turbojet engine in the altitude wind tunnel at the NAC.4 Lewis laboratory. The engines were investigated over a range of simulated pressure altitudes from 15,000 to 55,000 feet, flight Mach numbers from 0.12 to 0.64, and corrected engine speeds from 7198 to 8026 rpm, The gas temperature distribution at the turbine of the three engines over the range of operating conditions investigated was considered satisfactory from the standpoint of desired temperature distribution with one exception - the distribution for the J40-WE-6 engine indicated a trend with decreasing engine-inlet pressure for the temperature to exceed the desired in the region of the blade hub. Installation of a compressor-outlet mixer vane assembly remedied this undesirable temperature distribution, The experimental data have shown that turbine-inlet temperature distributions are influenced in the expected manner by changes in compressor-outlet pressure or mass-flow distribution and by changes in combustor hole-area distribution. The similarity between turbine-inlet and turbine-outlet temperature distribution indicated only a small shift in temperature distribution imposed by the turbine rotors. The attainable jet thrusts of the three engines were influenced in different degrees and directions by changes in temperature distributions with change in engine-inlet pressure. Inability to match the desired temperature distribution resulted, for the J40-WE-6 engine, in an 11-percent thrust loss based on an average turbine-inlet temperature of 1500 F at an engine-inlet pressure of 500 pounds per square foot absolute. Departure from the desired temperature distribution in the Slade tip region results, for the prototype J40-WE-8 engine, in an attainable thrust increase of 3 to 4 percent as compared with that obtained if tip-region temperature limitations were observed.

  18. Quantum key distribution without the wavefunction

    NASA Astrophysics Data System (ADS)

    Niestegge, Gerd

    A well-known feature of quantum mechanics is the secure exchange of secret bit strings which can then be used as keys to encrypt messages transmitted over any classical communication channel. It is demonstrated that this quantum key distribution allows a much more general and abstract access than commonly thought. The results include some generalizations of the Hilbert space version of quantum key distribution, but are based upon a general nonclassical extension of conditional probability. A special state-independent conditional probability is identified as origin of the superior security of quantum key distribution; this is a purely algebraic property of the quantum logic and represents the transition probability between the outcomes of two consecutive quantum measurements.

  19. Finite-key analysis for measurement-device-independent quantum key distribution.

    PubMed

    Curty, Marcos; Xu, Feihu; Cui, Wei; Lim, Charles Ci Wen; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2014-04-29

    Quantum key distribution promises unconditionally secure communications. However, as practical devices tend to deviate from their specifications, the security of some practical systems is no longer valid. In particular, an adversary can exploit imperfect detectors to learn a large part of the secret key, even though the security proof claims otherwise. Recently, a practical approach--measurement-device-independent quantum key distribution--has been proposed to solve this problem. However, so far its security has only been fully proven under the assumption that the legitimate users of the system have unlimited resources. Here we fill this gap and provide a rigorous security proof against general attacks in the finite-key regime. This is obtained by applying large deviation theory, specifically the Chernoff bound, to perform parameter estimation. For the first time we demonstrate the feasibility of long-distance implementations of measurement-device-independent quantum key distribution within a reasonable time frame of signal transmission.

  20. Mutual Authentication Scheme in Secure Internet of Things Technology for Comfortable Lifestyle.

    PubMed

    Park, Namje; Kang, Namhi

    2015-12-24

    The Internet of Things (IoT), which can be regarded as an enhanced version of machine-to-machine communication technology, was proposed to realize intelligent thing-to-thing communications by utilizing the Internet connectivity. In the IoT, "things" are generally heterogeneous and resource constrained. In addition, such things are connected to each other over low-power and lossy networks. In this paper, we propose an inter-device authentication and session-key distribution system for devices with only encryption modules. In the proposed system, unlike existing sensor-network environments where the key distribution center distributes the key, each sensor node is involved with the generation of session keys. In addition, in the proposed scheme, the performance is improved so that the authenticated device can calculate the session key in advance. The proposed mutual authentication and session-key distribution system can withstand replay attacks, man-in-the-middle attacks, and wiretapped secret-key attacks.

  1. Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation.

    PubMed

    Leverrier, Anthony; Grangier, Philippe

    2009-05-08

    We present a continuous-variable quantum key distribution protocol combining a discrete modulation and reverse reconciliation. This protocol is proven unconditionally secure and allows the distribution of secret keys over long distances, thanks to a reverse reconciliation scheme efficient at very low signal-to-noise ratio.

  2. Facial and ocular deposition of nebulized budesonide: effects of face mask design.

    PubMed

    Harris, Keith W; Smaldone, Gerald C

    2008-02-01

    In vivo case reports and in vitro studies have indicated that aerosol therapy using face masks can result in drug deposition on the face and in the eyes, and that face mask design may affect drug delivery. To test different mask/nebulizer combinations for budesonide, a nebulized steroid used to treat pediatric patients with asthma. Using high-performance liquid chromatography, drug delivery (inhaled mass), facial, and ocular deposition of budesonide aerosols were studied in vitro using a ventilated face facsimile (tidal volume, 50 mL; rate, 25 breaths/min, duty cycle 0.4), a tight-fitting test mask, a standard commercial mask, and a prototype mask designed to optimize delivery by reducing particle inertia. Nebulizer insertion into the mask (front loaded vs bottom loaded) was also tested. Particle size was measured by cascade impaction. Pari LC Plus (PARI Respiratory Equipment; Midlothian, VA) and MistyNeb (Allegiance; McGaw Park, IL) nebulizers were tested. Inhaled mass for tight-fitting and prototype masks was similar (13.2 +/- 1.85% vs 14.4 +/- 0.67% [percentage of nebulizer charge], p = 0.58) and significantly greater than for the commercial mask (3.03 +/- 0.26%, p = 0.005). Mask insertion of nebulizer was a key factor (inhaled mass: front loaded vs bottom loaded, 8.23 +/- 0.18% vs 3.03 +/- 0.26%; p = 0.005). Ocular deposition varied by an order of magnitude and was a strong function of mask design (4.77 +/- 0.24% vs 0.35 +/- 0.05%, p = 0.002, tight fitting vs prototype). Particle sizes (7.3 to 9 microm) were larger than previously reported for budesonide. For pediatric breathing patterns, mask design is a key factor defining budesonide delivery to the lungs, face, and eyes. Front-loaded nebulizer mask combinations are more efficient than bottom-loaded systems.

  3. A Prototype Publishing Registry for the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Williamson, R.; Plante, R.

    2004-07-01

    In the Virtual Observatory (VO), a registry helps users locate resources, such as data and services, in a distributed environment. A general framework for VO registries is now under development within the International Virtual Observatory Alliance (IVOA) Registry Working Group. We present a prototype of one component of this framework: the publishing registry. The publishing registry allows data providers to expose metadata descriptions of their resources to the VO environment. Searchable registries can harvest the metadata from many publishing registries and make them searchable by users. We have developed a prototype publishing registry that data providers can install at their sites to publish their resources. The descriptions are exposed using the Open Archive Initiative (OAI) Protocol for Metadata Harvesting. Automating the input of metadata into registries is critical when a provider wishes to describe many resources. We illustrate various strategies for such automation, both currently in use and planned for the future. We also describe how future versions of the registry can adapt automatically to evolving metadata schemas for describing resources.

  4. Emergence of a new human adenovirus type 4 (Ad4) genotype: identification of a novel inverted terminal repeated (ITR) sequence from majority of Ad4 isolates from US military recruits.

    PubMed

    Houng, Huo-Shu H; Clavio, Sarah; Graham, Katherine; Kuschner, Robert; Sun, Wellington; Russell, Kevin L; Binn, Leonard N

    2006-04-01

    Ad4 is the principal etiological agent of acute respiratory disease (ARD) in the US military. Discovery of the novel 208bp inverted terminal repeated (ITR) sequence from a recent Ad4 Jax78 field isolate was totally distinct from the analogous 116bp ITR of Ad4 prototype. To investigate the origin and distribution of the novel Ad4 ITR sequence from ARD infections. Direct sequencing of ligated Ad ITR termini. The new Ad4 ITR was highly homologous with the ITRs of human Ad subgroup B. The left post-ITR region of Ad4 Jax78 was found to be highly homologous to the corresponding region of subgroup B Ads: 81% for Ad11 and 98% for Ad3 and Ad7. The right post-ITR region of Ad4 Jax78 contained a truncated classic ITR of the Ad4 prototype. The Ad4 Jax78 ITR most likely evolved from Ad4 prototype by substituting the Ad4 prototype ITR with the subgroup B Ads ITR. The ITR-based PCR assays developed from this study can be used to distinguish the new Ad4 genotype from the classical Ad4 prototype. The new Ad4 genotype was first detected in 1976 from Georgia, USA, and is the main causative agent of ARD infections in US military population.

  5. The value of participatory development to support antimicrobial stewardship with a clinical decision support system.

    PubMed

    Beerlage-de Jong, Nienke; Wentzel, Jobke; Hendrix, Ron; van Gemert-Pijnen, Lisette

    2017-04-01

    Current clinical decision support systems (CDSSs) for antimicrobial stewardship programs (ASPs) are guideline- or expert-driven. They are focused on (clinical) content, not on supporting real-time workflow. Thus, CDSSs fail to optimally support prudent antimicrobial prescribing in daily practice. Our aim was to demonstrate why and how participatory development (involving end-users and other stakeholders) can contribute to the success of CDSSs in ASPs. A mixed-methods approach was applied, combining scenario-based prototype evaluations (to support verbalization of work processes and out-of-the-box thinking) among 6 medical resident physicians with an online questionnaire (to cross-reference findings of the prototype evaluations) among 54 Dutch physicians. The prototype evaluations resulted in insight into the end-users and their way of working, as well as their needs and expectations. The online questionnaire that was distributed among a larger group of medical specialists, including lung and infection experts, complemented the findings of the prototype evaluations. It revealed a say/do problem concerning the unrecognized need of support for selecting diagnostic tests. Low-fidelity prototypes of a technology allow researchers to get to know the end-users, their way of working, and their work context. Involving experts allows technology developers to continuously check the fit between technology and clinical practice. The combination enables the participatory development of technology to successfully support ASPs. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  6. Scalable and fault tolerant orthogonalization based on randomized distributed data aggregation

    PubMed Central

    Gansterer, Wilfried N.; Niederbrucker, Gerhard; Straková, Hana; Schulze Grotthoff, Stefan

    2013-01-01

    The construction of distributed algorithms for matrix computations built on top of distributed data aggregation algorithms with randomized communication schedules is investigated. For this purpose, a new aggregation algorithm for summing or averaging distributed values, the push-flow algorithm, is developed, which achieves superior resilience properties with respect to failures compared to existing aggregation methods. It is illustrated that on a hypercube topology it asymptotically requires the same number of iterations as the optimal all-to-all reduction operation and that it scales well with the number of nodes. Orthogonalization is studied as a prototypical matrix computation task. A new fault tolerant distributed orthogonalization method rdmGS, which can produce accurate results even in the presence of node failures, is built on top of distributed data aggregation algorithms. PMID:24748902

  7. One Step Quantum Key Distribution Based on EPR Entanglement

    PubMed Central

    Li, Jian; Li, Na; Li, Lei-Lei; Wang, Tao

    2016-01-01

    A novel quantum key distribution protocol is presented, based on entanglement and dense coding and allowing asymptotically secure key distribution. Considering the storage time limit of quantum bits, a grouping quantum key distribution protocol is proposed, which overcomes the vulnerability of first protocol and improves the maneuverability. Moreover, a security analysis is given and a simple type of eavesdropper’s attack would introduce at least an error rate of 46.875%. Compared with the “Ping-pong” protocol involving two steps, the proposed protocol does not need to store the qubit and only involves one step. PMID:27357865

  8. mGrid: A load-balanced distributed computing environment for the remote execution of the user-defined Matlab code

    PubMed Central

    Karpievitch, Yuliya V; Almeida, Jonas S

    2006-01-01

    Background Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel) execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. Results mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else). Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Conclusion Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web-based infrastructure of mGrid allows for it to be easily extensible over the Internet. PMID:16539707

  9. mGrid: a load-balanced distributed computing environment for the remote execution of the user-defined Matlab code.

    PubMed

    Karpievitch, Yuliya V; Almeida, Jonas S

    2006-03-15

    Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel) execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else). Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web-based infrastructure of mGrid allows for it to be easily extensible over the Internet.

  10. Impact of ISWEC sea wave energy converter on posidonia oceanica meadows assessed by satellite remote sensing in the coastal areas of Pantelleria island

    NASA Astrophysics Data System (ADS)

    Borfecchia, Flavio; Micheli, Carla; Belmonte, Alessandro; De Cecco, Luigi; Sannino, Gianmaria; Bracco, Giovanni; Mattiazzo, Giuliana; Vittoria Struglia, Maria

    2016-04-01

    Marine renewable energy extraction plays a key role both in energy security of small islands and in mitigation of climate change, but at the same time poses the important question of monitoring the effects of the interaction of such devices with the marine environment. In this work we present a new methodology, integrating satellite remote sensing techniques with in situ observations and biophysical parameters analysis, for the monitoring and mapping of Posidonia Oceanica (PO) meadows in shallow coastal waters. This methodology has been applied to the coastal area offshore Pantelleria Island (Southern Mediterranean) where the first Italian Inertial Sea Wave Energy Converter (ISWEC) prototype has been recently installed. The prototype, developed by the Polytechnic of Turin consists of a platform 8 meters wide, 15 meters long and 4.5 meters high, moored at about 800 meters from the shore and at 31 m depth. It is characterized by high conversion efficiency, resulting from its adaptability to different wave conditions, and a limited environmental impact due to its mooring innovative method with absence of fixed anchors to the seabed. The island of Pantelleria, is characterized by high transparency of coastal waters and PO meadows ecosystems with still significant levels of biodiversity and specific adaptation to accentuated hydrodynamics of these shores. Although ISWEC is a low-impact mooring inertial system able to ensure a reliable connection to the electric grid with minimal impact on seagrass growing in the seabed, the prototype installation and operation involves an interaction with local PO and seagrass meadows and possible water transparency decreasing. In this view monitoring of local PO ecosystem is mandatory in order to allow the detection of potential stress and damages due to ISWEC related activities and/or other factors. However, monitoring and collection of accurate and repetitive information over large areas of the necessary parameters by means of traditional methods (e.g. diving and plants counting), can be difficult and expensive. To overcome these limits we present an integrated methodology for effective monitoring and mapping of PO meadows using satellite/airborne EO (Earth Observation) techniques calibrated by means of sea truth measurements and laboratory genetics analyses. During last summer a sea truth campaign over the areas of interest has been performed and point measurements of several biophysical parameters (biomass, shoot density, cover) related to PO phenology has been acquired by means of original sampling method on the stations distributed along a bathymetry gradient starting from the ISWEC location, at 31 m. of depth. The Landsat 8 OLI with the Sentinel 2 MSI (recently made available within the Copernicus EU program) synchronous satellite multispectral data, including the entire coastal area of interest, were acquired and preprocessed with the objective to test their improved mapping capabilities of PO distribution and related biophysical parameters on the basis of the previously developed operative methods and near synchronous sea truth data. The processed point samples measurements were then exploited for multispectral data calibration, with the support of the statistic and bio-optical modelling approaches to obtain improved thematic maps of the local PO distributions.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stabilitymore » monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.« less

  12. IS-EPOS - a prototype of EPOS Thematic Core Service for seismic processes induced by human operations

    NASA Astrophysics Data System (ADS)

    Orlecka-Sikora, Beata; Lasocki, Stanislaw; Leptokaropoulos, Konstantinos

    2014-05-01

    The community focused on seismic processes induced by human operations has been organized within EPOS Integration Program as Working Group 10 Infrastructure for Georesources. This group has brought together representatives from the scientific community and industry from 13 European countries. WG10 aims to integrate the research infrastructure (RI) in the area of seismicity induced (IS) by human activity: tremors and rockbursts in underground mines, seismicity associated with conventional and unconventional oil and gas production, induced by geothermal energy extraction and by underground reposition and storage of liquids (e.g. water disposal associated with energy extraction) and gases (CO2 sequestration, inter alia) and triggered by filling surface water reservoirs, etc. WG10 priority is to create new research opportunities in the field responding to global challenges connected with exploitation of georesources. WG10 has prepared the model of integration fulfilling the scientific mission and raising the visibility of stakeholders. The end-state Induced Seismicity Thematic Core Service (IS TCS) has been designed together with key metrics for TCS benefits in four areas: scientific, societal, economic and capacity building. IS-EPOS project, funded by National Centre for Research and Development, Poland within the program "Innovative Economy Operational Program Priority Axis 2 - R&D Infrastructure", aims at building a prototype of IS TCS. The prototype will implement fully the designed logic of IS TCS. Research infrastructure integrated within the prototype will comprise altogether seven comprehensive data cases of seismicity linked to deep mining related, associating geothermal production and triggered by reservoir impoundment. The implemented thematic services will enable studies within the use-case "Clustering of induced earthquakes". The IS TCS prototype is expected to reach full functionality by the end of 2014.

  13. Development of a Mass Casualty Triage Performance Assessment Tool

    DTIC Science & Technology

    2015-02-01

    mass casualty triage and interviews with members of the unit, the triage assessment development involved three steps: (1) identification of key...Unlimited c. THIS PAGE Unlimited Unlimited Unclassified 35 19b. TELEPHONE NUMBER (include area code ) i Technical...in this report was initiated by ARI-FHRU to develop a prototype measure of performance for one of the three collective tasks identified in the

  14. Ultraviolet Communication for Medical Applications

    DTIC Science & Technology

    2014-05-01

    parent company Imaging Systems Technology (IST) demonstrated feasibility of several key concepts are being developed into a working prototype in the...program using multiple high-end GPUs ( NVIDIA Tesla K20). Finally, the Monte Carlo simulation task will be resumed after the Milestone 2 demonstration...is acceptable for automated printing and handling. Next, the option of having our shells electroded by an external company was investigated and DEI

  15. Regional Sediment Management Experiment Using the Visible/Infrared Imager/Radiometer Suite and the Landsat Data Continuity Mission Sensor

    NASA Technical Reports Server (NTRS)

    Estep, Leland; Spruce, Joseph P.

    2007-01-01

    The central aim of this RPC (Rapid Prototyping Capability) experiment is to demonstrate the use of VIIRS (Visible/Infrared Imager/ Radiometer Suite and LDCM (Landsat Data Continuity Mission) sensors as key input to the RSM (Regional Sediment Management) GIS (geographic information system) DSS (Decision Support System). The project affects the Coastal Management National Application.

  16. SUSTAINABLE WATER EXTRACTION AND DISTRIBUTION SYSTEM FOR AGRICULTURAL APPLICATIONS IN NAMAWANGA, KENYA

    EPA Science Inventory

    In order to ensure that the pumps are successful when installed for the community, working prototypes were tested, analyzed, and modified. The chief concerns of our functional analysis were the flow rate of the pump, the stability/durability of the system, total pumping head, ...

  17. A demonstration of expert systems applications in transportation engineering : volume III, evaluation of the prototype expert system TRANZ.

    DOT National Transportation Integrated Search

    1990-01-01

    The validation and evaluation of an expert system for traffic control in highway work zones (TRANZ) is described. The stages in the evaluation process consisted of the following: revisit the experts, selectively distribute copies of TRANZ with docume...

  18. Distributed Engine Control Empirical/Analytical Verification Tools

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan; Hettler, Eric; Yedavalli, Rama; Mitra, Sayan

    2013-01-01

    NASA's vision for an intelligent engine will be realized with the development of a truly distributed control system featuring highly reliable, modular, and dependable components capable of both surviving the harsh engine operating environment and decentralized functionality. A set of control system verification tools was developed and applied to a C-MAPSS40K engine model, and metrics were established to assess the stability and performance of these control systems on the same platform. A software tool was developed that allows designers to assemble easily a distributed control system in software and immediately assess the overall impacts of the system on the target (simulated) platform, allowing control system designers to converge rapidly on acceptable architectures with consideration to all required hardware elements. The software developed in this program will be installed on a distributed hardware-in-the-loop (DHIL) simulation tool to assist NASA and the Distributed Engine Control Working Group (DECWG) in integrating DCS (distributed engine control systems) components onto existing and next-generation engines.The distributed engine control simulator blockset for MATLAB/Simulink and hardware simulator provides the capability to simulate virtual subcomponents, as well as swap actual subcomponents for hardware-in-the-loop (HIL) analysis. Subcomponents can be the communication network, smart sensor or actuator nodes, or a centralized control system. The distributed engine control blockset for MATLAB/Simulink is a software development tool. The software includes an engine simulation, a communication network simulation, control algorithms, and analysis algorithms set up in a modular environment for rapid simulation of different network architectures; the hardware consists of an embedded device running parts of the CMAPSS engine simulator and controlled through Simulink. The distributed engine control simulation, evaluation, and analysis technology provides unique capabilities to study the effects of a given change to the control system in the context of the distributed paradigm. The simulation tool can support treatment of all components within the control system, both virtual and real; these include communication data network, smart sensor and actuator nodes, centralized control system (FADEC full authority digital engine control), and the aircraft engine itself. The DECsim tool can allow simulation-based prototyping of control laws, control architectures, and decentralization strategies before hardware is integrated into the system. With the configuration specified, the simulator allows a variety of key factors to be systematically assessed. Such factors include control system performance, reliability, weight, and bandwidth utilization.

  19. A flexible continuous-variable QKD system using off-the-shelf components

    NASA Astrophysics Data System (ADS)

    Comandar, Lucian C.; Brunner, Hans H.; Bettelli, Stefano; Fung, Fred; Karinou, Fotini; Hillerkuss, David; Mikroulis, Spiros; Wang, Dawei; Kuschnerov, Maxim; Xie, Changsong; Poppe, Andreas; Peev, Momtchil

    2017-10-01

    We present the development of a robust and versatile CV-QKD architecture based on commercially available optical and electronic components. The system uses a pilot tone for phase synchronization with a local oscillator, as well as local feedback loops to mitigate frequency and polarization drifts. Transmit and receive-side digital signal processing is performed fully in software, allowing for rapid protocol reconfiguration. The quantum link is complemented with a software stack for secure-key processing, key storage and encrypted communication. All these features allow for the system to be at the same time a prototype for a future commercial product and a research platform.

  20. A Privacy-Preserving Platform for User-Centric Quantitative Benchmarking

    NASA Astrophysics Data System (ADS)

    Herrmann, Dominik; Scheuer, Florian; Feustel, Philipp; Nowey, Thomas; Federrath, Hannes

    We propose a centralised platform for quantitative benchmarking of key performance indicators (KPI) among mutually distrustful organisations. Our platform offers users the opportunity to request an ad-hoc benchmarking for a specific KPI within a peer group of their choice. Architecture and protocol are designed to provide anonymity to its users and to hide the sensitive KPI values from other clients and the central server. To this end, we integrate user-centric peer group formation, exchangeable secure multi-party computation protocols, short-lived ephemeral key pairs as pseudonyms, and attribute certificates. We show by empirical evaluation of a prototype that the performance is acceptable for reasonably sized peer groups.

  1. Fe-rich and Si-rich ejecta distribution in the Cygnus Loop

    NASA Astrophysics Data System (ADS)

    Nakajima, Hiroshi; Tsunemi, Hiroshi; Kimura, Masashi; Uchida, Hiroyuki; Katsuda, Satoru

    2012-03-01

    We report on the results of Suzaku observations of central region of the proto-typical middle-aged Supernova remnant (SNR) Cygnus Loop. The southeastern region of the SNR with the distance from the geometric center ranging from 10' to 55' is observed using XIS. Thanks to the low and stable background of Suzaku, the distribution maps of heavy species such as Fe, S, Si, Mg, Ne and O arereliably obtained. We found that the relatively heavier four species are confined to the small centermost region while the lighter species show uniform distribution or depressed center region. These results exhibit an onion-like metallicity structure in this SNR, which reflects the metal distribution of the progenitor.

  2. Seaworthy Quantum Key Distribution Design and Validation (SEAKEY)

    DTIC Science & Technology

    2016-03-10

    Contractor Address: 10 Moulton Street, Cambridge, MA 02138 Title of the Project: Seaworthy Quantum Key Distribution Design and Validation (SEAKEY...Technologies Kathryn Carson Program Manager Quantum Information Processing 2 | P a g e Approved for public release; distribution is...we have continued work calculating the key rates achievable parametrically with receiver performance. In addition, we describe the initial designs

  3. Device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Hänggi, Esther

    2010-12-01

    In this thesis, we study two approaches to achieve device-independent quantum key distribution: in the first approach, the adversary can distribute any system to the honest parties that cannot be used to communicate between the three of them, i.e., it must be non-signalling. In the second approach, we limit the adversary to strategies which can be implemented using quantum physics. For both approaches, we show how device-independent quantum key distribution can be achieved when imposing an additional condition. In the non-signalling case this additional requirement is that communication is impossible between all pairwise subsystems of the honest parties, while, in the quantum case, we demand that measurements on different subsystems must commute. We give a generic security proof for device-independent quantum key distribution in these cases and apply it to an existing quantum key distribution protocol, thus proving its security even in this setting. We also show that, without any additional such restriction there always exists a successful joint attack by a non-signalling adversary.

  4. Encounter Detection Using Visual Analytics to Improve Maritime Domain Awareness

    DTIC Science & Technology

    2015-06-01

    assigned to be processed in a record set consisting of all the records within a one degree of latitude by one degree of longitude square box. For the case...0.002 3 30 185 0.001 4 30 370 0.002 37 a degree of latitude by a tenth of a degree of longitude . This prototype further reduces the processing ...STATEMENT Approved for public release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) A visual analytics process

  5. Data analysis environment (DASH2000) for the Subaru telescope

    NASA Astrophysics Data System (ADS)

    Mizumoto, Yoshihiko; Yagi, Masafumi; Chikada, Yoshihiro; Ogasawara, Ryusuke; Kosugi, George; Takata, Tadafumi; Yoshida, Michitoshi; Ishihara, Yasuhide; Yanaka, Hiroshi; Yamamoto, Tadahiro; Morita, Yasuhiro; Nakamoto, Hiroyuki

    2000-06-01

    New framework of data analysis system (DASH) has been developed for the SUBARU Telescope. It is designed using object-oriented methodology and adopted a restaurant model. DASH shares the load of CPU and I/O among distributed heterogeneous computers. The distributed object environment of the system is implemented with JAVA and CORBA. DASH has been evaluated by several prototypings. DASH2000 is the latest version, which will be released as the beta version of data analysis system for the SUBARU Telescope.

  6. Aeroelastic Analysis of a Distributed Electric Propulsion Wing

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Stanford, Bret K.; Wieseman, Carol D.; Heeg, Jennifer

    2017-01-01

    An aeroelastic analysis of a prototype distributed electric propulsion wing is presented. Results using MSC Nastran (Registered Trademark) doublet lattice aerodynamics are compared to those based on FUN3D Reynolds Averaged Navier- Stokes aerodynamics. Four levels of grid refinement were examined for the FUN3D solutions and solutions were seen to be well converged. It was found that no oscillatory instability existed, only that of divergence, which occurred in the first bending mode at a dynamic pressure of over three times the flutter clearance condition.

  7. Research on MMC-SST Oriented AC/DC Distribution System

    NASA Astrophysics Data System (ADS)

    Xie, Xifeng; Shi, Hua; Zuo, Jianglin; Zhang, Zhigang

    2018-01-01

    A modular multilevel converter-solid state transformer (MMC-SST) oriented AC/DC Distribution System is designed. Firstly, the topology structure is introduced, MMC is adopted in the input stage, multiple DC-DC converters are adopted in the isolation stage, and a Three-Phase Four-Leg inverter is adopted in the output stage. Then, the control strategy is analysed. Finally, simulation model and an experimental prototype of MMC-SST are built, simulation and experimental results show that topology and control strategy of MMC-SST are feasible.

  8. Quantum key management

    DOEpatents

    Hughes, Richard John; Thrasher, James Thomas; Nordholt, Jane Elizabeth

    2016-11-29

    Innovations for quantum key management harness quantum communications to form a cryptography system within a public key infrastructure framework. In example implementations, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a Merkle signature scheme (using Winternitz one-time digital signatures or other one-time digital signatures, and Merkle hash trees) to constitute a cryptography system. More generally, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a hash-based signature scheme. This provides a secure way to identify, authenticate, verify, and exchange secret cryptographic keys. Features of the quantum key management innovations further include secure enrollment of users with a registration authority, as well as credential checking and revocation with a certificate authority, where the registration authority and/or certificate authority can be part of the same system as a trusted authority for quantum key distribution.

  9. The multisensor payload 'Structura' for the observation of atmospheric night glows from the ISS board

    NASA Astrophysics Data System (ADS)

    Krot, Yury; Beliaev, Boris; Katkovsky, Leonid

    2016-10-01

    Aerospace Research Department of the Institute of Applied Physical Problems at Belarusian State University has developed a prototype of the optical payload intended for a space experiment on the ISS board. The prototype includes four optical modules for the night glows observation, in particular spatial-brightness and spectral characteristics in the altitude range of 80-320 km. Objects of the interest are emitting top layers of the atmosphere including exited OH radicals, atomic and molecular oxygen and sodium layers. The goal of the space experiment is a research of night glows over different regions of the Earth and a connection with natural disasters like earthquakes, cyclones, etc. Two optical modules for spatial distribution of atomic oxygen layers along the altitude consist of input lenses, spectral interferential filters and line CCD detectors. The optical module for registration of exited OH radical emissions is formed from CCD array spectrometer. The payload includes also a panchromatic (400-900 nm) high sensitive imaging camera for observing of the glows general picture. The optical modules of the prototype have been tested and general optical characteristics were determined in laboratory conditions. A solution of an astigmatism reducing of a concave diffraction grating and a method of the second diffraction order correction were applied and improved spectrometer's optical characteristics. Laboratory equipment and software were developed to imitate a dynamic scene of the night glows in laboratory conditions including an imitation of linear spectra and the spatial distribution of emissions.

  10. In-vitro development of a temporal abutment screw to protect osseointegration in immediate loaded implants.

    PubMed

    García-Roncero, Herminio; Caballé-Serrano, Jordi; Cano-Batalla, Jordi; Cabratosa-Termes, Josep; Figueras-Álvarez, Oscar

    2015-04-01

    In this study, a temporal abutment fixation screw, designed to fracture in a controlled way upon application of an occlusal force sufficient to produce critical micromotion was developed. The purpose of the screw was to protect the osseointegration of immediate loaded single implants. Seven different screw prototypes were examined by fixing titanium abutments to 112 Mozo-Grau external hexagon implants (MG Osseous®; Mozo-Grau, S.A., Valladolid, Spain). Fracture strength was tested at 30° in two subgroups per screw: one under dynamic loading and the other without prior dynamic loading. Dynamic loading was performed in a single-axis chewing simulator using 150,000 load cycles at 50 N. After normal distribution of obtained data was verified by Kolmogorov-Smirnov test, fracture resistance between samples submitted and not submitted to dynamic loading was compared by the use of Student's t-test. Comparison of fracture resistance among different screw designs was performed by the use of one-way analysis of variance. Confidence interval was set at 95%. Fractures occurred in all screws, allowing easy retrieval. Screw Prototypes 2, 5 and 6 failed during dynamic loading and exhibited statistically significant differences from the other prototypes. Prototypes 2, 5 and 6 may offer a useful protective mechanism during occlusal overload in immediate loaded implants.

  11. A detailed study of FDIRC prototype with waveform digitizing electronics in cosmic ray telescope using 3D tracks

    NASA Astrophysics Data System (ADS)

    Nishimura, K.; Dey, B.; Aston, D.; Leith, D. W. G. S.; Ratcliff, B.; Roberts, D.; Ruckman, L.; Shtol, D.; Varner, G. S.; Va'vra, J.

    2013-02-01

    We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from 384 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of ∼2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with ∼1.5 mrad angular resolution and muon energy of Emuon> 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of reconstruction ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.

  12. Testing of Prototype Magnetic Suspension Cryogenic Transfer Line

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Augustynowicz, S. D.; Nagy, Z. F.; Sojourner, S. J.; Shu, Q. S.; Cheng, G.; Susta, J. T.

    2006-04-01

    A 6-meter prototype cryogenic transfer line with magnetic suspension was tested for its mechanical and thermal performance at the Cryogenics Test Laboratory of NASA Kennedy Space Center (KSC). A test facility with two cryogenic end-boxes was designed and commissioned for the testing. Suspension mechanisms were verified through a series of tests with liquid nitrogen. The thermal performance of the prototype was determined using the new test apparatus. The tested prototype has incorporated temperature and vacuum pressure data acquisition ports, customized interfaces to cryogenic end-boxes, and instrumentation. All tests were conducted under simulated onsite transfer line working conditions. A static (boiloff rate measurement) testing method was employed to demonstrate the gross heat leak in the tested article. The real-time temperature distribution, vacuum level, levitation distance, and mass flow rate were measured. The main purpose of this paper is to summarize the testing facility design and preparation, test procedure, and primary test results. Special arrangements (such as turning on/off mechanical support units, observing levitation gap, and setting up the flowmeter) in testing of such a magnetically levitated transfer line are also discussed. Preliminary results show that the heat leak reduction of approximately one-third to one-half is achievable through such transfer lines with a magnetic suspension system.

  13. Rapid Prototyping for In Vitro Knee Rig Investigations of Prosthetized Knee Biomechanics: Comparison with Cobalt-Chromium Alloy Implant Material

    PubMed Central

    Schröder, Christian; Steinbrück, Arnd; Müller, Tatjana; Woiczinski, Matthias; Chevalier, Yan; Müller, Peter E.; Jansson, Volkmar

    2015-01-01

    Retropatellar complications after total knee arthroplasty (TKA) such as anterior knee pain and subluxations might be related to altered patellofemoral biomechanics, in particular to trochlear design and femorotibial joint positioning. A method was developed to test femorotibial and patellofemoral joint modifications separately with 3D-rapid prototyped components for in vitro tests, but material differences may further influence results. This pilot study aims at validating the use of prostheses made of photopolymerized rapid prototype material (RPM) by measuring the sliding friction with a ring-on-disc setup as well as knee kinematics and retropatellar pressure on a knee rig. Cobalt-chromium alloy (standard prosthesis material, SPM) prostheses served as validation standard. Friction coefficients between these materials and polytetrafluoroethylene (PTFE) were additionally tested as this latter material is commonly used to protect pressure sensors in experiments. No statistical differences were found between friction coefficients of both materials to PTFE. UHMWPE shows higher friction coefficient at low axial loads for RPM, a difference that disappears at higher load. No measurable statistical differences were found in knee kinematics and retropatellar pressure distribution. This suggests that using polymer prototypes may be a valid alternative to original components for in vitro TKA studies and future investigations on knee biomechanics. PMID:25879019

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demeure, I.M.

    The research presented here is concerned with representation techniques and tools to support the design, prototyping, simulation, and evaluation of message-based parallel, distributed computations. The author describes ParaDiGM-Parallel, Distributed computation Graph Model-a visual representation technique for parallel, message-based distributed computations. ParaDiGM provides several views of a computation depending on the aspect of concern. It is made of two complementary submodels, the DCPG-Distributed Computing Precedence Graph-model, and the PAM-Process Architecture Model-model. DCPGs are precedence graphs used to express the functionality of a computation in terms of tasks, message-passing, and data. PAM graphs are used to represent the partitioning of a computationmore » into schedulable units or processes, and the pattern of communication among those units. There is a natural mapping between the two models. He illustrates the utility of ParaDiGM as a representation technique by applying it to various computations (e.g., an adaptive global optimization algorithm, the client-server model). ParaDiGM representations are concise. They can be used in documenting the design and the implementation of parallel, distributed computations, in describing such computations to colleagues, and in comparing and contrasting various implementations of the same computation. He then describes VISA-VISual Assistant, a software tool to support the design, prototyping, and simulation of message-based parallel, distributed computations. VISA is based on the ParaDiGM model. In particular, it supports the editing of ParaDiGM graphs to describe the computations of interest, and the animation of these graphs to provide visual feedback during simulations. The graphs are supplemented with various attributes, simulation parameters, and interpretations which are procedures that can be executed by VISA.« less

  15. PVDaCS - A prototype knowledge-based expert system for certification of spacecraft data

    NASA Technical Reports Server (NTRS)

    Wharton, Cathleen; Shiroma, Patricia J.; Simmons, Karen E.

    1989-01-01

    On-line data management techniques to certify spacecraft information are mandated by increasing telemetry rates. Knowledge-based expert systems offer the ability to certify data electronically without the need for time-consuming human interaction. Issues of automatic certification are explored by designing a knowledge-based expert system to certify data from a scientific instrument, the Orbiter Ultraviolet Spectrometer, on an operating NASA planetary spacecraft, Pioneer Venus. The resulting rule-based system, called PVDaCS (Pioneer Venus Data Certification System), is a functional prototype demonstrating the concepts of a larger system design. A key element of the system design is the representation of an expert's knowledge through the usage of well ordered sequences. PVDaCS produces a certification value derived from expert knowledge and an analysis of the instrument's operation. Results of system performance are presented.

  16. Anaerobic microplate assay for direct microbial conversion of switchgrass and Avicel using Clostridium thermocellum.

    PubMed

    Oguntimein, Gbekeloluwa B; Rodriguez, Miguel; Dumitrache, Alexandru; Shollenberger, Todd; Decker, Stephen R; Davison, Brian H; Brown, Steven D

    2018-02-01

    To develop and prototype a high-throughput microplate assay to assess anaerobic microorganisms and lignocellulosic biomasses in a rapid, cost-effective screen for consolidated bioprocessing potential. Clostridium thermocellum parent Δhpt strain deconstructed Avicel to cellobiose, glucose, and generated lactic acid, formic acid, acetic acid and ethanol as fermentation products in titers and ratios similar to larger scale fermentations confirming the suitability of a plate-based method for C. thermocellum growth studies. C. thermocellum strain LL1210, with gene deletions in the key central metabolic pathways, produced higher ethanol titers in the Consolidated Bioprocessing (CBP) plate assay for both Avicel and switchgrass fermentations when compared to the Δhpt strain. A prototype microplate assay system is developed that will facilitate high-throughput bioprospecting for new lignocellulosic biomass types, genetic variants and new microbial strains for bioethanol production.

  17. Evaluation of a stereoscopic camera-based three-dimensional viewing workstation for ophthalmic surgery.

    PubMed

    Bhadri, Prashant R; Rowley, Adrian P; Khurana, Rahul N; Deboer, Charles M; Kerns, Ralph M; Chong, Lawrence P; Humayun, Mark S

    2007-05-01

    To evaluate the effectiveness of a prototype stereoscopic camera-based viewing system (Digital Microsurgical Workstation, three-dimensional (3D) Vision Systems, Irvine, California, USA) for anterior and posterior segment ophthalmic surgery. Institutional-based prospective study. Anterior and posterior segment surgeons performed designated standardized tasks on porcine eyes after training on prosthetic plastic eyes. Both anterior and posterior segment surgeons were able to complete tasks requiring minimal or moderate stereoscopic viewing. The results indicate that the system provides improved ergonomics. Improvements in key viewing performance areas would further enhance the value over a conventional operating microscope. The performance of the prototype system is not at par with the planned commercial system. With continued development of this technology, the three- dimensional system may be a novel viewing system in ophthalmic surgery with improved ergonomics with respect to traditional microscopic viewing.

  18. Process-aware EHR BPM systems: two prototypes and a conceptual framework.

    PubMed

    Webster, Charles; Copenhaver, Mark

    2010-01-01

    Systematic methods to improve the effectiveness and efficiency of electronic health record-mediated processes will be key to EHRs playing an important role in the positive transformation of healthcare. Business process management (BPM) systematically optimizes process effectiveness, efficiency, and flexibility. Therefore BPM offers relevant ideas and technologies. We provide a conceptual model based on EHR productivity and negative feedback control that links EHR and BPM domains, describe two EHR BPM prototype modules, and close with the argument that typical EHRs must become more process-aware if they are to take full advantage of BPM ideas and technology. A prediction: Future extensible clinical groupware will coordinate delivery of EHR functionality to teams of users by combining modular components with executable process models whose usability (effectiveness, efficiency, and user satisfaction) will be systematically improved using business process management techniques.

  19. Fabrication of a 20.5-inch-diameter segmented silicon annular optic prototype for the ROMA program

    NASA Astrophysics Data System (ADS)

    Hassell, Frank R.; Groark, Frank M.

    1995-10-01

    Recent advancements in single crystal silicon material science and fabrication capabilities and very low absorption (VLA) multi-layer dielectric coating technology have led to the development of uncooled, large aperture, high power mirrors for high energy laser (HEL) systems. Based on this success, a segmented single-crystal silicon substrate concept has been selected as the baseline fabrication approach for uncooled 1.2 meter diameter resonator annular optics for the Alpha space based high energy laser. The objective of this Resonator Optics Materials Assessment (ROMA) task was to demonstrate all of the key fabrication processes required to fabricate the full sized annular optics for the Alpha space based high energy laser. This paper documents the fabrication of a half-scale annular optic prototype (AOP) of the Alpha laser rear cone.

  20. Getting something out of nothing in the measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Tan, Yong-Gang; Cai, Qing-Yu; Yang, Hai-Feng; Hu, Yao-Hua

    2015-11-01

    Because of the monogamy of entanglement, the measurement-device-independent quantum key distribution is immune to the side-information leaking of the measurement devices. When the correlated measurement outcomes are generated from the dark counts, no entanglement is actually obtained. However, secure key bits can still be proven to be generated from these measurement outcomes. Especially, we will give numerical studies on the contributions of dark counts to the key generation rate in practical decoy state MDI-QKD where a signal source, a weaker decoy source and a vacuum decoy source are used by either legitimate key distributer.

  1. The Osseus platform: a prototype for advanced web-based distributed simulation

    NASA Astrophysics Data System (ADS)

    Franceschini, Derrick; Riecken, Mark

    2016-05-01

    Recent technological advances in web-based distributed computing and database technology have made possible a deeper and more transparent integration of some modeling and simulation applications. Despite these advances towards true integration of capabilities, disparate systems, architectures, and protocols will remain in the inventory for some time to come. These disparities present interoperability challenges for distributed modeling and simulation whether the application is training, experimentation, or analysis. Traditional approaches call for building gateways to bridge between disparate protocols and retaining interoperability specialists. Challenges in reconciling data models also persist. These challenges and their traditional mitigation approaches directly contribute to higher costs, schedule delays, and frustration for the end users. Osseus is a prototype software platform originally funded as a research project by the Defense Modeling & Simulation Coordination Office (DMSCO) to examine interoperability alternatives using modern, web-based technology and taking inspiration from the commercial sector. Osseus provides tools and services for nonexpert users to connect simulations, targeting the time and skillset needed to successfully connect disparate systems. The Osseus platform presents a web services interface to allow simulation applications to exchange data using modern techniques efficiently over Local or Wide Area Networks. Further, it provides Service Oriented Architecture capabilities such that finer granularity components such as individual models can contribute to simulation with minimal effort.

  2. An Empirical Analysis of the Cascade Secret Key Reconciliation Protocol for Quantum Key Distribution

    DTIC Science & Technology

    2011-09-01

    performance with the parity checks within each pass increasing and as a result, the processing time is expected to increase as well. A conclusion is drawn... timely manner has driven efforts to develop new key distribution methods. The most promising method is Quantum Key Distribution (QKD) and is...thank the QKD Project Team for all of the insight and support they provided in such a short time period. Thanks are especially in order for my

  3. Seaworthy Quantum Key Distribution Design and Validation (SEAKEY)

    DTIC Science & Technology

    2015-05-27

    Address: 10 Moulton Street, Cambridge, MA 02138 Title of the Project: Seaworthy Quantum Key Distribution Design and Validation (SEAKEY...Technologies Kathryn Carson Program Manager Quantum Information Processing Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...2016 4. TITLE AND SUBTITLE Seaworthy Quantum Key Distribution Design and Validation (SEAKEY) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  4. KSC-2013-4316

    NASA Image and Video Library

    2013-12-10

    CAPE CANAVERAL, Fla. – Preparations are underway to prepare the Project Morpheus prototype lander for its first free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  5. KSC-2013-4370

    NASA Image and Video Library

    2013-12-17

    CAPE CANAVERAL, Fla. -- A technician prepares the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis

  6. KSC-2012-4169

    NASA Image and Video Library

    2012-08-01

    CAPE CANAVERAL, Fla. - At a hangar near the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, Chirold Epp, Johnson Space Center Project Manager for ALHAT, speaks to members of the media. In the background is the Morpheus prototype lander, which arrived at Kennedy on July 27. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  7. KSC-2013-4367

    NASA Image and Video Library

    2013-12-17

    CAPE CANAVERAL, Fla. -- Preparations are underway to prepare the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis

  8. KSC-2012-4167

    NASA Image and Video Library

    2012-08-01

    CAPE CANAVERAL, Fla. - At a hangar near the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, the Johnson Space Center Project Morpheus Manager Jon Olansen speaks to members of the media. In the foreground is the Morpheus prototype lander, which arrived at Kennedy on July 27. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  9. KSC-2012-4168

    NASA Image and Video Library

    2012-08-01

    CAPE CANAVERAL, Fla. - At a hangar near the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, the Johnson Space Center Project Morpheus Manager Jon Olansen speaks to members of the media. In the background is the Morpheus prototype lander, which arrived at Kennedy on July 27. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  10. KSC-2013-4369

    NASA Image and Video Library

    2013-12-17

    CAPE CANAVERAL, Fla. -- Engineers and technicians prepare the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis

  11. KSC-2013-4318

    NASA Image and Video Library

    2013-12-10

    CAPE CANAVERAL, Fla. – The first free flight of the Project Morpheus prototype lander begins as the lander’s engine fires at the north of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  12. KSC-2013-4315

    NASA Image and Video Library

    2013-12-10

    CAPE CANAVERAL, Fla. – Preparations are underway to prepare the Project Morpheus prototype lander for its first free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  13. KSC-2013-4368

    NASA Image and Video Library

    2013-12-17

    CAPE CANAVERAL, Fla. -- A technician prepares the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis

  14. KSC-2013-4319

    NASA Image and Video Library

    2013-12-10

    CAPE CANAVERAL, Fla. – The first free flight of the Project Morpheus prototype lander begins as the lander’s engine fires at the north of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  15. KSC-2013-4366

    NASA Image and Video Library

    2013-12-17

    CAPE CANAVERAL, Fla. -- Preparations are underway to prepare the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis

  16. KSC-2013-4320

    NASA Image and Video Library

    2013-12-10

    CAPE CANAVERAL, Fla. – The first free flight of the Project Morpheus prototype lander begins as the lander’s engine fires at the north of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  17. KSC-2013-4317

    NASA Image and Video Library

    2013-12-10

    CAPE CANAVERAL, Fla. – Technicians and engineers prepare the Project Morpheus prototype lander for its first free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  18. Prototyping Tool for Web-Based Multiuser Online Role-Playing Game

    NASA Astrophysics Data System (ADS)

    Okamoto, Shusuke; Kamada, Masaru; Yonekura, Tatsuhiro

    This letter proposes a prototyping tool for Web-based Multiuser Online Role-Playing Game (MORPG). The design goal is to make this tool simple and powerful. The tool is comprised of a GUI editor, a translator and a runtime environment. The GUI editor is used to edit state-transition diagrams, each of which defines the behavior of the fictional characters. The state-transition diagrams are translated into C program codes, which plays the role of a game engine in RPG system. The runtime environment includes PHP, JavaScript with Ajax and HTML. So the prototype system can be played on the usual Web browser, such as Fire-fox, Safari and IE. On a click or key press by a player, the Web browser sends it to the Web server to reflect its consequence on the screens which other players are looking at. Prospected users of this tool include programming novices and schoolchildren. The knowledge or skill of any specific programming languages is not required to create state-transition diagrams. Its structure is not only suitable for the definition of a character behavior but also intuitive to help novices understand. Therefore, the users can easily create Web-based MORPG system with the tool.

  19. Prototype Development of the GMT Fast Steering Mirror

    NASA Astrophysics Data System (ADS)

    Kim, Young-Soo; Koh, J.; Jung, H.; Jung, H.; Cho, M. K.; Park, W.; Yang, H.; Kim, H.; Lee, K.; Ahn, H.; Park, B.

    2013-06-01

    A Fast Steering Mirror (FSM) is going to be produced as a secondary mirror of the Giant Magellan Telescope (GMT). FSM is 3.2 m in diameter and the focal ratio is 0.65. It is composed of seven circular segments which match with the primary mirror segments. Each segment contains a light-weighted mirror whose diameter is 1.1 m. It also contains tip-tilt actuators which would compensate wind effect and structure jitter. An FSM prototype (FSMP) has been developed, which consists of a full-size off-axis mirror segment and a tip-tilt test-bed. The main purpose of the FSMP development is to achieve key technologies, such as fabrication of highly aspheric off-axis mirror and tip-tilt actuation. The development has been conducted by a consortium of five institutions in Korea and USA, and led by Korea Astronomy and Space Science Institute. The mirror was light-weighted and grinding of the front surface was finished. Polishing is in progress with computer generated hologram tests. The tip-tilt test-bed has been manufactured and assembled. Frequency tests are being performed and optical tilt set-up is arranged for visual demonstration. In this paper, we present progress of the prototype development, and future works.

  20. A Distributed Control System Prototyping Environment to Support Control Room Modernization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lew, Roger Thomas; Boring, Ronald Laurids; Ulrich, Thomas Anthony

    Operators of critical processes, such as nuclear power production, must contend with highly complex systems, procedures, and regulations. Developing human-machine interfaces (HMIs) that better support operators is a high priority for ensuring the safe and reliable operation of critical processes. Human factors engineering (HFE) provides a rich and mature set of tools for evaluating the performance of HMIs, however the set of tools for developing and designing HMIs is still in its infancy. Here we propose a rapid prototyping approach for integrating proposed HMIs into their native environments before a design is finalized. This approach allows researchers and developers tomore » test design ideas and eliminate design flaws prior to fully developing the new system. We illustrate this approach with four prototype designs developed using Microsoft’s Windows Presentation Foundation (WPF). One example is integrated into a microworld environment to test the functionality of the design and identify the optimal level of automation for a new system in a nuclear power plant. The other three examples are integrated into a full-scale, glasstop digital simulator of a nuclear power plant. One example demonstrates the capabilities of next generation control concepts; another aims to expand the current state of the art; lastly, an HMI prototype was developed as a test platform for a new control system currently in development at U.S. nuclear power plants. WPF possesses several characteristics that make it well suited to HMI design. It provides a tremendous amount of flexibility, agility, robustness, and extensibility. Distributed control system (DCS) specific environments tend to focus on the safety and reliability requirements for real-world interfaces and consequently have less emphasis on providing functionality to support novel interaction paradigms. Because of WPF’s large user-base, Microsoft can provide an extremely mature tool. Within process control applications,WPF is platform independent and can communicate with popular full-scope process control simulator vendor plant models and DCS platforms.« less

  1. On the vulnerability of basic quantum key distribution protocols and three protocols stable to attack with 'blinding' of avalanche photodetectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotkov, S. N., E-mail: sergei.molotkov@gmail.com

    2012-05-15

    The fundamental quantum mechanics prohibitions on the measurability of quantum states allow secure key distribution between spatially remote users to be performed. Experimental and commercial implementations of quantum cryptography systems, however, use components that exist at the current technology level, in particular, one-photon avalanche photodetectors. These detectors are subject to the blinding effect. It was shown that all the known basic quantum key distribution protocols and systems based on them are vulnerable to attacks with blinding of photodetectors. In such attacks, an eavesdropper knows all the key transferred, does not produce errors at the reception side, and remains undetected. Threemore » protocols of quantum key distribution stable toward such attacks are suggested. The security of keys and detection of eavesdropping attempts are guaranteed by the internal structure of protocols themselves rather than additional technical improvements.« less

  2. A Hierarchical Modulation Coherent Communication Scheme for Simultaneous Four-State Continuous-Variable Quantum Key Distribution and Classical Communication

    NASA Astrophysics Data System (ADS)

    Yang, Can; Ma, Cheng; Hu, Linxi; He, Guangqiang

    2018-06-01

    We present a hierarchical modulation coherent communication protocol, which simultaneously achieves classical optical communication and continuous-variable quantum key distribution. Our hierarchical modulation scheme consists of a quadrature phase-shifting keying modulation for classical communication and a four-state discrete modulation for continuous-variable quantum key distribution. The simulation results based on practical parameters show that it is feasible to transmit both quantum information and classical information on a single carrier. We obtained a secure key rate of 10^{-3} bits/pulse to 10^{-1} bits/pulse within 40 kilometers, and in the meantime the maximum bit error rate for classical information is about 10^{-7}. Because continuous-variable quantum key distribution protocol is compatible with standard telecommunication technology, we think our hierarchical modulation scheme can be used to upgrade the digital communication systems to extend system function in the future.

  3. Mutual Authentication Scheme in Secure Internet of Things Technology for Comfortable Lifestyle

    PubMed Central

    Park, Namje; Kang, Namhi

    2015-01-01

    The Internet of Things (IoT), which can be regarded as an enhanced version of machine-to-machine communication technology, was proposed to realize intelligent thing-to-thing communications by utilizing the Internet connectivity. In the IoT, “things” are generally heterogeneous and resource constrained. In addition, such things are connected to each other over low-power and lossy networks. In this paper, we propose an inter-device authentication and session-key distribution system for devices with only encryption modules. In the proposed system, unlike existing sensor-network environments where the key distribution center distributes the key, each sensor node is involved with the generation of session keys. In addition, in the proposed scheme, the performance is improved so that the authenticated device can calculate the session key in advance. The proposed mutual authentication and session-key distribution system can withstand replay attacks, man-in-the-middle attacks, and wiretapped secret-key attacks. PMID:26712759

  4. Low-cost Method for Obtaining Medical Rapid Prototyping Using Desktop 3D printing: A Novel Technique for Mandibular Reconstruction Planning

    PubMed Central

    Vahdani, Soheil; Ramos, Hector

    2017-01-01

    Background Three-dimensional (3D) printing is relatively a new technology with clinical applications, which enable us to create rapid accurate prototype of the selected anatomic region, making it possible to plan complex surgery and pre-bend hardware for individual surgical cases. This study aimed to express our experience with the use of medical rapid prototype (MRP) of the maxillofacial region created by desktop 3D printer and its application in maxillofacial reconstructive surgeries. Material and Methods Three patients with benign mandible tumors were included in this study after obtaining informed consent. All patient’s maxillofacial CT scan data was processed by segmentation and isolation software and mandible MRP was printed using our desktop 3D printer. These models were used for preoperative surgical planning and prebending of the reconstruction plate. Conclusions MRP created by desktop 3D printer is a cost-efficient, quick and easily produced appliance for the planning of reconstructive surgery. It can contribute in patient orientation and helping them in a better understanding of their condition and proposed surgical treatment. It helps surgeons for pre-operative planning in the resection or reconstruction cases and represent an excellent tool in academic setting for residents training. The pre-bended reconstruction plate based on MRP, resulted in decreased surgery time, cost and anesthesia risks on the patients. Key words:3D printing, medical modeling, rapid prototype, mandibular reconstruction, ameloblastoma. PMID:29075412

  5. Effects of sludge recirculation rate and mixing time on performance of a prototype single-stage anaerobic digester for conversion of food wastes to biogas and energy recovery.

    PubMed

    Ratanatamskul, Chavalit; Saleart, Tawinan

    2016-04-01

    Food wastes have been recognized as the largest waste stream and accounts for 39.25 % of total municipal solid waste in Thailand. Chulalongkorn University has participated in the program of in situ energy recovery from food wastes under the Ministry of Energy (MOE), Thailand. This research aims to develop a prototype single-stage anaerobic digestion system for biogas production and energy recovery from food wastes inside Chulalongkorn University. Here, the effects of sludge recirculation rate and mixing time were investigated as the main key parameters for the system design and operation. From the results obtained in this study, it was found that the sludge recirculation rate of 100 % and the mixing time of 60 min per day were the most suitable design parameters to achieve high efficiencies in terms of chemical oxygen demand (COD), total solids (TS), and total volatile solid (TVS) removal and also biogas production by this prototype anaerobic digester. The obtained biogas production was found to be 0.71 m(3)/kg COD and the composition of methane was 61.6 %. Moreover, the efficiencies of COD removal were as high as 82.9 % and TVS removal could reach 83.9 % at the optimal condition. Therefore, the developed prototype single-stage anaerobic digester can be highly promising for university canteen application to recover energy from food wastes via biogas production.

  6. From R&D to end users applications in operational oceanography: The navy's "SOAP" case study

    NASA Astrophysics Data System (ADS)

    Giraud Saint-Albin, S.; Jourdan, D.

    2003-04-01

    For the last ten years, the CMO/BRESM has conducted an operational program for Ocean Analysis and Prediction SOAP, whose goal has been to support sea activities with high resolution mesoscale ocean nowcast products. Successive prototypes have been generated, operated and improved in tandem with a continuous re-evaluation of Navy Needs. This strategy played a key-role in defining the concept of “real-time integrated oceanography” which relies on remote and in situ ocean observations, (a hierarchy of) ocean models and data assimilation methods. The paper focuses on the results of the latter feasability study for next SOAP prototype: the military motivation for developing new prototypes is to extend the application domain of SOAP operational products from the operative (~ a description of the synoptic scale) to the tactical ( ~ a tailored product to strategic needs) relevance. Current SOAP P2 system is as a transition system pulled by end-user’s requirements and designed by research oceanographers from existing tools and models. The development of SOAP P3 has just started and will benefit from the emergence of an increasing offer of ocean modelling results, pushed by the GODAE initiative. It will be based on MERCATOR high resolution prototypes. From that starting point future developments will have to address both issues of defense specific requirements for high resolution ocean modeling and computation of relevant acoustical products for military applications. Especially, the crucial needs for assessing the end-users’ products reliability should be explored.

  7. Development of an Exploration-Class Cascade Distillation System: Flight Like Prototype Preliminary Design

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Sargusingh, Miriam J.

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. One such technology is the Cascade Distillation System (CDS) a multi-stage vacuum rotary distiller system designed to recover water in a microgravity environment. Its rotating cascading distiller operates similarly to the state of the art (SOA) vapor compressor distiller (VCD), but its control scheme and ancillary components are judged to be straightforward and simpler to implement into a successful design. Through the Advanced Exploration Systems (AES) Life Support Systems (LSS) Project, the NASA Johnson Space Center (JSC) in collaboration with Honeywell International is developing a second generation flight forward prototype (CDS 2.0). The key objectives for the CDS 2.0 design task is to provide a flight forward ground prototype that demonstrates improvements over the SOA system in the areas of increased reliability and robustness, and reduced mass, power and volume. It will also incorporate exploration-class automation. The products of this task are a preliminary flight system design and a high fidelity prototype of an exploration class CDS. These products will inform the design and development of the third generation CDS which is targeted for on-orbit DTO. This paper details the preliminary design of the CDS 2.0.

  8. SU-E-CAMPUS-T-03: Four-Dimensional Dose Distribution Measurement Using Plastic Scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, M; Kozuka, T; Oguchi, M

    2014-06-15

    Purpose: To develop the detector for the four-dimensional dose distribution measurement. Methods: We made the prototype detector for four-dimensional dose distribution measurement using a cylindrical plastic scintillator (5 cm diameter) and a conical reflection grass. The plastic scintillator is used as a phantom. When the plastic scintillator is irradiated, the scintillation light was emitted according to absorbed dose distribution. The conical reflection grass was arranged to surround the plastic scintillator, which project to downstream the projection images of the scintillation light. Then, the projection image was reflected to 45 degree direction by flat reflection grass, and was recorded by camcorder.more » By reconstructing the three-dimensional dose distribution from the projection image recorded in each frame, we could obtain the four-dimensional dose distribution. First, we tested the characteristic according to the amount of emitted light. Then we compared of the light profile and the dose profile calculated with the radiotherapy treatment planning system. Results: The dose dependency of the amount of light showed linearity. The pixel detecting smaller amount of light had high sensitivity than the pixel detecting larger amount of light. However the difference of the sensitivity could be corrected from the amount of light detected in each pixel. Both of the depth light profile through the conical reflection grass and the depth dose profile showed the same attenuation in the region deeper than peak depth. In lateral direction, the difference of the both profiles was shown at outside field and penumbra region. We consider that the difference is occurred due to the scatter of the scintillation light in the plastic scintillator block. Conclusion: It was possible to obtain the amount of light corresponding to the absorbed dose distribution from the prototype detector. Four-dimensional dose distributions can be reconstructed with high accuracy by the correction of the scattered light.« less

  9. A tiered observational system for anthropogenic methane emissions

    NASA Astrophysics Data System (ADS)

    Duren, R. M.; Miller, C. E.; Hulley, G. C.; Hook, S. J.; Sander, S. P.

    2014-12-01

    Improved understanding of anthropogenic methane emissions is required for closing the global carbon budget and addressing priority challenges in climate policy. Several decades of top-down and bottom-up studies show that anthropogenic methane emissions are systematically underestimated in key regions and economic sectors. These uncertainties have been compounded by the dramatic rise of disruptive technologies (e.g., the transformation in the US energy system due to unconventional gas and oil production). Methane flux estimates derived from inverse analyses and aircraft-based mass balance approaches underscore the disagreement in nationally and regionally reported methane emissions as well as the possibility of a long-tail distribution in fugitive emissions spanning the US natural gas supply chain; i.e. a small number of super-emitters may be responsible for most of the observed anomalies. Other studies highlight the challenges of sectoral and spatial attribution of fugitive emissions - including the relative contributions of dairies vs oil and gas production or disentangling the contributions of natural gas transmission, distribution, and consumption or landfill emissions in complex urban environments. Limited observational data remains a foundational barrier to resolving these challenges. We present a tiered observing system strategy for persistent, high-frequency monitoring over large areas to provide remote detection, geolocation and quantification of significant anthropogenic methane emissions across cities, states, basins and continents. We describe how this would both improve confidence in methane emission estimates and expedite resolution of fugitive emissions and leaks. We summarize recent prototype field campaigns that employ multiple vantage points and measurement techniques (including NASA's CARVE and HyTES aircraft and PanFTS instrument on Mt Wilson). We share preliminary results of this tiered observational approach including examples of individual methane point sources associated with oil and gas production and distribution, feedlots, and urban landfills in California.

  10. Recommendation System Based On Association Rules For Distributed E-Learning Management Systems

    NASA Astrophysics Data System (ADS)

    Mihai, Gabroveanu

    2015-09-01

    Traditional Learning Management Systems are installed on a single server where learning materials and user data are kept. To increase its performance, the Learning Management System can be installed on multiple servers; learning materials and user data could be distributed across these servers obtaining a Distributed Learning Management System. In this paper is proposed the prototype of a recommendation system based on association rules for Distributed Learning Management System. Information from LMS databases is analyzed using distributed data mining algorithms in order to extract the association rules. Then the extracted rules are used as inference rules to provide personalized recommendations. The quality of provided recommendations is improved because the rules used to make the inferences are more accurate, since these rules aggregate knowledge from all e-Learning systems included in Distributed Learning Management System.

  11. Summary of Research 2000, Department of Systems Management

    DTIC Science & Technology

    2001-12-01

    Postgraduate School, June 2000. Fryzlewicz, J., "Analysis of Measures of Performance and Continuous Improvement at the Naval Dental Center Pearl Harbor," Masters...mart driven relational system. Fourth, using the prototype relational data mart as a source system, a contemporary OLAP application is used to prove the...warehouse solution to integrating legacy systems are discussed. DoD KEY TECHNOLOGY AREA: Computing and Software KEYWORDS: OLAP , Data Warehouse

  12. Towards secure quantum key distribution protocol for wireless LANs: a hybrid approach

    NASA Astrophysics Data System (ADS)

    Naik, R. Lalu; Reddy, P. Chenna

    2015-12-01

    The primary goals of security such as authentication, confidentiality, integrity and non-repudiation in communication networks can be achieved with secure key distribution. Quantum mechanisms are highly secure means of distributing secret keys as they are unconditionally secure. Quantum key distribution protocols can effectively prevent various attacks in the quantum channel, while classical cryptography is efficient in authentication and verification of secret keys. By combining both quantum cryptography and classical cryptography, security of communications over networks can be leveraged. Hwang, Lee and Li exploited the merits of both cryptographic paradigms for provably secure communications to prevent replay, man-in-the-middle, and passive attacks. In this paper, we propose a new scheme with the combination of quantum cryptography and classical cryptography for 802.11i wireless LANs. Since quantum cryptography is premature in wireless networks, our work is a significant step forward toward securing communications in wireless networks. Our scheme is known as hybrid quantum key distribution protocol. Our analytical results revealed that the proposed scheme is provably secure for wireless networks.

  13. Reconciling Local Structure Disorder and the Relaxor State in (Bi1/2Na1/2)TiO3-BaTiO3

    NASA Astrophysics Data System (ADS)

    Groszewicz, Pedro B.; Gröting, Melanie; Breitzke, Hergen; Jo, Wook; Albe, Karsten; Buntkowsky, Gerd; Rödel, Jürgen

    2016-08-01

    Lead-based relaxor ferroelectrics are key functional materials indispensable for the production of multilayer ceramic capacitors and piezoelectric transducers. Currently there are strong efforts to develop novel environmentally benign lead-free relaxor materials. The structural origins of the relaxor state and the role of composition modifications in these lead-free materials are still not well understood. In the present contribution, the solid-solution (100-x)(Bi1/2Na1/2)TiO3-xBaTiO3 (BNT-xBT), a prototypic lead-free relaxor is studied by the combination of solid-state nuclear magnetic resonance (NMR) spectroscopy, dielectric measurements and ab-initio density functional theory (DFT). For the first time it is shown that the peculiar composition dependence of the EFG distribution width (ΔQISwidth) correlates strongly to the dispersion in dielectric permittivity, a fingerprint of the relaxor state. Significant disorder is found in the local structure of BNT-xBT, as indicated by the analysis of the electric field gradient (EFG) in 23Na 3QMAS NMR spectra. Aided by DFT calculations, this disorder is attributed to a continuous unimodal distribution of octahedral tilting. These results contrast strongly to the previously proposed coexistence of two octahedral tilt systems in BNT-xBT. Based on these results, we propose that considerable octahedral tilt disorder may be a general feature of these oxides and essential for their relaxor properties.

  14. A Smart Cage With Uniform Wireless Power Distribution in 3D for Enabling Long-Term Experiments With Freely Moving Animals.

    PubMed

    Mirbozorgi, S Abdollah; Bahrami, Hadi; Sawan, Mohamad; Gosselin, Benoit

    2016-04-01

    This paper presents a novel experimental chamber with uniform wireless power distribution in 3D for enabling long-term biomedical experiments with small freely moving animal subjects. The implemented power transmission chamber prototype is based on arrays of parallel resonators and multicoil inductive links, to form a novel and highly efficient wireless power transmission system. The power transmitter unit includes several identical resonators enclosed in a scalable array of overlapping square coils which are connected in parallel to provide uniform power distribution along x and y. Moreover, the proposed chamber uses two arrays of primary resonators, facing each other, and connected in parallel to achieve uniform power distribution along the z axis. Each surface includes 9 overlapped coils connected in parallel and implemented into two layers of FR4 printed circuit board. The chamber features a natural power localization mechanism, which simplifies its implementation and ease its operation by avoiding the need for active detection and control mechanisms. A single power surface based on the proposed approach can provide a power transfer efficiency (PTE) of 69% and a power delivered to the load (PDL) of 120 mW, for a separation distance of 4 cm, whereas the complete chamber prototype provides a uniform PTE of 59% and a PDL of 100 mW in 3D, everywhere inside the chamber with a size of 27×27×16 cm(3).

  15. A dynamic re-partitioning strategy based on the distribution of key in Spark

    NASA Astrophysics Data System (ADS)

    Zhang, Tianyu; Lian, Xin

    2018-05-01

    Spark is a memory-based distributed data processing framework, has the ability of processing massive data and becomes a focus in Big Data. But the performance of Spark Shuffle depends on the distribution of data. The naive Hash partition function of Spark can not guarantee load balancing when data is skewed. The time of job is affected by the node which has more data to process. In order to handle this problem, dynamic sampling is used. In the process of task execution, histogram is used to count the key frequency distribution of each node, and then generate the global key frequency distribution. After analyzing the distribution of key, load balance of data partition is achieved. Results show that the Dynamic Re-Partitioning function is better than the default Hash partition, Fine Partition and the Balanced-Schedule strategy, it can reduce the execution time of the task and improve the efficiency of the whole cluster.

  16. Distributed metadata in a high performance computing environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, John M.; Faibish, Sorin; Zhang, Zhenhua

    A computer-executable method, system, and computer program product for managing meta-data in a distributed storage system, wherein the distributed storage system includes one or more burst buffers enabled to operate with a distributed key-value store, the co computer-executable method, system, and computer program product comprising receiving a request for meta-data associated with a block of data stored in a first burst buffer of the one or more burst buffers in the distributed storage system, wherein the meta data is associated with a key-value, determining which of the one or more burst buffers stores the requested metadata, and upon determination thatmore » a first burst buffer of the one or more burst buffers stores the requested metadata, locating the key-value in a portion of the distributed key-value store accessible from the first burst buffer.« less

  17. VOSpace: a Prototype for Grid 2.0

    NASA Astrophysics Data System (ADS)

    Graham, M. J.; Morris, D.; Rixon, G.

    2007-10-01

    As Grid 1.0 was characterized by distributed computation, so Grid 2.0 will be characterized by distributed data and the infrastructure needed to support and exploit it: the emerging success of Amazon S3 is already testimony to this. VOSpace is the IVOA interface standard for accessing distributed data. Although the base definition (VOSpace 1.0) only relates to flat, unconnected data stores, subsequent versions will add additional layers of functionality. In this paper, we consider how incorporating popular web concepts such as folksonomies (tagging), social networking, and data-spaces could lead to a much richer data environment than provided by a traditional collection of networked data stores.

  18. Distributed dual-parameter optical fiber sensor based on cascaded microfiber Fabry-Pérot interferometers

    NASA Astrophysics Data System (ADS)

    Xiang, Yang; Luo, Yiyang; Zhang, Wei; Liu, Deming; Sun, Qizhen

    2017-04-01

    We propose and demonstrate a distributed fiber sensor based on cascaded microfiber Fabry-Perot interferometers (MFPI) for simultaneous refractive index (SRI) and temperature measurement. By employing MFPI which is fabricated by taper-drawing the center of a uniform fiber Bragg grating (FBG) on standard fiber into a section of microfiber, dual parameters including SRI and temperature can be detected through demodulating the reflection spectrum of the MFPI. Further, wavelength-division-multiplexing (WDM) is applied to realize distributed dual-parameter fiber sensor by using cascaded MFPIs with different Bragg wavelengths. A prototype sensor system with 5 cascaded MFPIs is constructed to experimentally demonstrate the sensing performance.

  19. Technology, the Columbus Effect, and the Third Revolution in Learning.

    ERIC Educational Resources Information Center

    Fletcher, J. D.

    This work was performed under a task entitled "Development and Assessment of ADL Prototypes." This task is intended to promote collaboration by the Services and by other government and academic partners in developing technology-based instruction. It is an essential component of the Advanced Distributed Learning (ADL) initiative being undertaken by…

  20. Materials Compatibility and Agent Operational Validation for Halon 1211 Replacement: Phases 1 2, and 3. Volume 1

    DTIC Science & Technology

    1993-03-01

    KC-135 Gl-epoxy Winglet 1 *1 = experimental; 2 = prototype development; 3 = production 9 TABLE 3. ADVANCED COMPOSITES IN MILITARY AIRCRAFT (CONCLUDED...specially blended for related agent testing and would not be available, due to its high production cost, for regular distribution.1 ’Personal

  1. GEOSTAR-II: A Prototype Water Vapor Imager/Sounder for the Path Mission

    NASA Technical Reports Server (NTRS)

    Gaier, Todd; Lambrigtsen, Bjorn; Kangaslahti, Pekka; Lim, Boon; Tanner, Alan; Harding, Dennis; Owen, Heather; Soria, Mary; ODwyer, Ian; Ruf, Christopher; hide

    2011-01-01

    We describe the development and progress of the GeoSTAR-II risk reduction activity for the NASA Earth Science Decadal Survey PATH Mission. The activity directly addresses areas of technical risk including the system design, low noise receiver production, sub-array development, signal distribution and digital signal processing.

  2. The Cause of Category-Based Distortions in Spatial Memory: A Distribution Analysis

    ERIC Educational Resources Information Center

    Sampaio, Cristina; Wang, Ranxiao Frances

    2017-01-01

    Recall of remembered locations reliably reflects a compromise between a target's true position and its region's prototypical position. The effect is quite robust, and a standard interpretation for these data is that the metric and categorical codings blend in a Bayesian combinatory fashion. However, there has been no direct experimental evidence…

  3. An Attempt To Design Synchronous Collaborative Learning Environments for Peer Dyads on the World Wide Web.

    ERIC Educational Resources Information Center

    Lee, Fong-Lok; Liang, Steven; Chan, Tak-Wai

    1999-01-01

    Describes the design, implementation, and preliminary evaluation of three synchronous distributed learning prototype systems: Co-Working System, Working Along System, and Hybrid System. Each supports a particular style of interaction, referred to a socio-activity learning model, between members of student dyads (pairs). All systems were…

  4. Mobile-IT Education (MIT.EDU): M-Learning Applications for Classroom Settings

    ERIC Educational Resources Information Center

    Sung, M.; Gips, J.; Eagle, N.; Madan, A.; Caneel, R.; DeVaul, R.; Bonsen, J.; Pentland, A.

    2005-01-01

    In this paper, we describe the Mobile-IT Education (MIT.EDU) system, which demonstrates the potential of using a distributed mobile device architecture for rapid prototyping of wireless mobile multi-user applications for use in classroom settings. MIT.EDU is a stable, accessible system that combines inexpensive, commodity hardware, a flexible…

  5. 10 CFR 32.74 - Manufacture and distribution of sources or devices containing byproduct material for medical use.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pertinent to an evaluation of its radiation safety, including: (i) The byproduct material contained, its... maintain its integrity under stresses likely to be encountered in normal use and accidents; (iv) For devices containing byproduct material, the radiation profile of a prototype device; (v) Details of quality...

  6. 10 CFR 32.74 - Manufacture and distribution of sources or devices containing byproduct material for medical use.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... accidents; (iv) For devices containing byproduct material, the radiation profile of a prototype device; (v... source or device pertinent to an evaluation of its radiation safety, including: (i) The byproduct...) Instructions for handling and storing the source or device from the radiation safety standpoint; these...

  7. 10 CFR 32.74 - Manufacture and distribution of sources or devices containing byproduct material for medical use.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... accidents; (iv) For devices containing byproduct material, the radiation profile of a prototype device; (v... source or device pertinent to an evaluation of its radiation safety, including: (i) The byproduct...) Instructions for handling and storing the source or device from the radiation safety standpoint; these...

  8. 10 CFR 32.74 - Manufacture and distribution of sources or devices containing byproduct material for medical use.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pertinent to an evaluation of its radiation safety, including: (i) The byproduct material contained, its... maintain its integrity under stresses likely to be encountered in normal use and accidents; (iv) For devices containing byproduct material, the radiation profile of a prototype device; (v) Details of quality...

  9. Integrating Evidence From Systematic Reviews, Qualitative Research, and Expert Knowledge Using Co-Design Techniques to Develop a Web-Based Intervention for People in the Retirement Transition

    PubMed Central

    O'Brien, Nicola; Heaven, Ben; Teal, Gemma; Evans, Elizabeth H; Cleland, Claire; Moffatt, Suzanne; Sniehotta, Falko F; White, Martin; Mathers, John C

    2016-01-01

    Background Integrating stakeholder involvement in complex health intervention design maximizes acceptability and potential effectiveness. However, there is little methodological guidance about how to integrate evidence systematically from various sources in this process. Scientific evidence derived from different approaches can be difficult to integrate and the problem is compounded when attempting to include diverse, subjective input from stakeholders. Objective The intent of the study was to describe and appraise a systematic, sequential approach to integrate scientific evidence, expert knowledge and experience, and stakeholder involvement in the co-design and development of a complex health intervention. The development of a Web-based lifestyle intervention for people in retirement is used as an example. Methods Evidence from three systematic reviews, qualitative research findings, and expert knowledge was compiled to produce evidence statements (stage 1). Face validity of these statements was assessed by key stakeholders in a co-design workshop resulting in a set of intervention principles (stage 2). These principles were assessed for face validity in a second workshop, resulting in core intervention concepts and hand-drawn prototypes (stage 3). The outputs from stages 1-3 were translated into a design brief and specification (stage 4), which guided the building of a functioning prototype, Web-based intervention (stage 5). This prototype was de-risked resulting in an optimized functioning prototype (stage 6), which was subject to iterative testing and optimization (stage 7), prior to formal pilot evaluation. Results The evidence statements (stage 1) highlighted the effectiveness of physical activity, dietary and social role interventions in retirement; the idiosyncratic nature of retirement and well-being; the value of using specific behavior change techniques including those derived from the Health Action Process Approach; and the need for signposting to local resources. The intervention principles (stage 2) included the need to facilitate self-reflection on available resources, personalization, and promotion of links between key lifestyle behaviors. The core concepts and hand-drawn prototypes (stage 3) had embedded in them the importance of time use and work exit planning, personalized goal setting, and acceptance of a Web-based intervention. The design brief detailed the features and modules required (stage 4), guiding the development of wireframes, module content and functionality, virtual mentors, and intervention branding (stage 5). Following an iterative process of intervention testing and optimization (stage 6), the final Web-based intervention prototype of LEAP (Living, Eating, Activity, and Planning in retirement) was produced (stage 7). The approach was resource intensive and required a multidisciplinary team. The design expert made an invaluable contribution throughout the process. Conclusions Our sequential approach fills an important methodological gap in the literature, describing the stages and techniques useful in developing an evidence-based complex health intervention. The systematic and rigorous integration of scientific evidence, expert knowledge and experience, and stakeholder input has resulted in an intervention likely to be acceptable and feasible. PMID:27489143

  10. Integrating Evidence From Systematic Reviews, Qualitative Research, and Expert Knowledge Using Co-Design Techniques to Develop a Web-Based Intervention for People in the Retirement Transition.

    PubMed

    O'Brien, Nicola; Heaven, Ben; Teal, Gemma; Evans, Elizabeth H; Cleland, Claire; Moffatt, Suzanne; Sniehotta, Falko F; White, Martin; Mathers, John C; Moynihan, Paula

    2016-08-03

    Integrating stakeholder involvement in complex health intervention design maximizes acceptability and potential effectiveness. However, there is little methodological guidance about how to integrate evidence systematically from various sources in this process. Scientific evidence derived from different approaches can be difficult to integrate and the problem is compounded when attempting to include diverse, subjective input from stakeholders. The intent of the study was to describe and appraise a systematic, sequential approach to integrate scientific evidence, expert knowledge and experience, and stakeholder involvement in the co-design and development of a complex health intervention. The development of a Web-based lifestyle intervention for people in retirement is used as an example. Evidence from three systematic reviews, qualitative research findings, and expert knowledge was compiled to produce evidence statements (stage 1). Face validity of these statements was assessed by key stakeholders in a co-design workshop resulting in a set of intervention principles (stage 2). These principles were assessed for face validity in a second workshop, resulting in core intervention concepts and hand-drawn prototypes (stage 3). The outputs from stages 1-3 were translated into a design brief and specification (stage 4), which guided the building of a functioning prototype, Web-based intervention (stage 5). This prototype was de-risked resulting in an optimized functioning prototype (stage 6), which was subject to iterative testing and optimization (stage 7), prior to formal pilot evaluation. The evidence statements (stage 1) highlighted the effectiveness of physical activity, dietary and social role interventions in retirement; the idiosyncratic nature of retirement and well-being; the value of using specific behavior change techniques including those derived from the Health Action Process Approach; and the need for signposting to local resources. The intervention principles (stage 2) included the need to facilitate self-reflection on available resources, personalization, and promotion of links between key lifestyle behaviors. The core concepts and hand-drawn prototypes (stage 3) had embedded in them the importance of time use and work exit planning, personalized goal setting, and acceptance of a Web-based intervention. The design brief detailed the features and modules required (stage 4), guiding the development of wireframes, module content and functionality, virtual mentors, and intervention branding (stage 5). Following an iterative process of intervention testing and optimization (stage 6), the final Web-based intervention prototype of LEAP (Living, Eating, Activity, and Planning in retirement) was produced (stage 7). The approach was resource intensive and required a multidisciplinary team. The design expert made an invaluable contribution throughout the process. Our sequential approach fills an important methodological gap in the literature, describing the stages and techniques useful in developing an evidence-based complex health intervention. The systematic and rigorous integration of scientific evidence, expert knowledge and experience, and stakeholder input has resulted in an intervention likely to be acceptable and feasible.

  11. Parallel computation and the Basis system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.R.

    1992-12-16

    A software package has been written that can facilitate efforts to develop powerful, flexible, and easy-to-use programs that can run in single-processor, massively parallel, and distributed computing environments. Particular attention has been given to the difficulties posed by a program consisting of many science packages that represent subsystems of a complicated, coupled system. Methods have been found to maintain independence of the packages by hiding data structures without increasing the communication costs in a parallel computing environment. Concepts developed in this work are demonstrated by a prototype program that uses library routines from two existing software systems, Basis and Parallelmore » Virtual Machine (PVM). Most of the details of these libraries have been encapsulated in routines and macros that could be rewritten for alternative libraries that possess certain minimum capabilities. The prototype software uses a flexible master-and-slaves paradigm for parallel computation and supports domain decomposition with message passing for partitioning work among slaves. Facilities are provided for accessing variables that are distributed among the memories of slaves assigned to subdomains. The software is named PROTOPAR.« less

  12. Parallel computation and the basis system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.R.

    1993-05-01

    A software package has been written that can facilitate efforts to develop powerful, flexible, and easy-to use programs that can run in single-processor, massively parallel, and distributed computing environments. Particular attention has been given to the difficulties posed by a program consisting of many science packages that represent subsystems of a complicated, coupled system. Methods have been found to maintain independence of the packages by hiding data structures without increasing the communications costs in a parallel computing environment. Concepts developed in this work are demonstrated by a prototype program that uses library routines from two existing software systems, Basis andmore » Parallel Virtual Machine (PVM). Most of the details of these libraries have been encapsulated in routines and macros that could be rewritten for alternative libraries that possess certain minimum capabilities. The prototype software uses a flexible master-and-slaves paradigm for parallel computation and supports domain decomposition with message passing for partitioning work among slaves. Facilities are provided for accessing variables that are distributed among the memories of slaves assigned to subdomains. The software is named PROTOPAR.« less

  13. Performance of Magnetic Penetration Thermometers for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Nagler, P. C.; Adams, J. S.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Hsieh, W. T.; Kelly, D. P.; Porst, J. P.; Sadleir, J. E.; Seidel, G. M.; hide

    2012-01-01

    The ideal X-ray camera for astrophysics would have more than a million pixels and provide an energy resolution of better than leV FWHM for energies up to 10 keY. We have microfabricated and characterized thin-film magnetic penetration thermometers (MPTs) that show great promise towards meeting these capabilities. MPTs operate in similar fashion to metallic magnetic calorimeters (MMCs), except that a superconducting sensor takes the place of a paramagnetic sensor and it is the temperature dependence of the superconductor's diamagnetic response that provides the temperature sensitivity. We present a description of the design and performance of our prototype thin-film MPTs with MoAu bilayer sensors, which have demonstrated an energy resolution of approx 2 eV FWHM at 1.5 keY and 4.3 eV FWHM at 5.9 keY.

  14. Secure password-based authenticated key exchange for web services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Fang; Meder, Samuel; Chevassut, Olivier

    This paper discusses an implementation of an authenticated key-exchange method rendered on message primitives defined in the WS-Trust and WS-SecureConversation specifications. This IEEE-specified cryptographic method (AuthA) is proven-secure for password-based authentication and key exchange, while the WS-Trust and WS-Secure Conversation are emerging Web Services Security specifications that extend the WS-Security specification. A prototype of the presented protocol is integrated in the WSRF-compliant Globus Toolkit V4. Further hardening of the implementation is expected to result in a version that will be shipped with future Globus Toolkit releases. This could help to address the current unavailability of decent shared-secret-based authentication options inmore » the Web Services and Grid world. Future work will be to integrate One-Time-Password (OTP) features in the authentication protocol.« less

  15. Performance of Eleocharis macrostachya and its importance for arsenic retention in constructed wetlands.

    PubMed

    Olmos-Márquez, Mario Alberto; Alarcón-Herrera, Maria Teresa; Martín-Domínguez, Ignacio Ramiro

    2012-03-01

    Arsenic (As) can be removed from water via rhizofiltration using phytostabilizing plants. The aim of this study was to investigate the performance of Eleocharis macrostachya in constructed wetland prototypes, as well as the plant's arsenic mass retention and the distribution of As along the wetland flow gradient and the soil in the wetland mesocosmos. Experiments were carried out in laboratory-scale wetland prototypes, two planted with E. macrostachya and one without plants. Samples of water were taken at the inlet and outlet of the wetlands during the 33-week test period. At the end of the experiment, plants and soil (silty-sand) from each prototype were divided in three equal segments (entrance, middle and exit) and analyzed for their arsenic content. Results revealed that the planted wetlands have a higher As-mass retention capacity (87-90% of the total As inflow) than prototypes without plants (27%). As mass balance in the planted wetlands revealed that 78% of the total inflowing As was retained in the soil bed. Nearly 2% was absorbed in the plant roots, 11% was flushed as outflow, and the fate of the remaining 9% is unknown. In the prototype without plants, the soil retained 16% of As mass, 72% of the arsenic was accounted for in the outflow, and 12% was considered unknown. Although E. macrostachya retained only 2% of the total arsenic mass in their roots, its presence was a determining factor for arsenic retention in the wetland soil medium. Hence, planted wetlands might be a suitable option for treating As-contaminated water.

  16. Distributed metadata servers for cluster file systems using shared low latency persistent key-value metadata store

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, John M.; Faibish, Sorin; Pedone, Jr., James M.

    A cluster file system is provided having a plurality of distributed metadata servers with shared access to one or more shared low latency persistent key-value metadata stores. A metadata server comprises an abstract storage interface comprising a software interface module that communicates with at least one shared persistent key-value metadata store providing a key-value interface for persistent storage of key-value metadata. The software interface module provides the key-value metadata to the at least one shared persistent key-value metadata store in a key-value format. The shared persistent key-value metadata store is accessed by a plurality of metadata servers. A metadata requestmore » can be processed by a given metadata server independently of other metadata servers in the cluster file system. A distributed metadata storage environment is also disclosed that comprises a plurality of metadata servers having an abstract storage interface to at least one shared persistent key-value metadata store.« less

  17. Participatory Design of an Online Self-Management Tool for Users With Spinal Cord Injury: Qualitative Study.

    PubMed

    Allin, Sonya; Shepherd, John; Tomasone, Jennifer; Munce, Sarah; Linassi, Gary; Hossain, Saima Noreen; Jaglal, Susan

    2018-03-21

    Rehospitalization rates resulting from secondary conditions in persons with spinal cord injuries (SCI) are high. Self-management programs for many chronic conditions have been associated with decreases in hospital readmissions. However, in the SCI community, evidence suggests that satisfaction with traditional self-management programs is low. Users with SCI have indicated preference for programs that are online (rather than in-person), that target SCI-specific concerns, and are led by peers with SCI. There is currently no program with all of these features, which addresses self-management of secondary conditions after SCI. The aim of this study was to provide details of a participatory design (PD) process for an internet-mediated self-management program for users with SCI (called SCI & U) and illustrate how it has been used to define design constraints and solutions. Users were involved in development as codesigners, codevelopers, and key informants. Codesigners and codevelopers were recruited from consumer advocacy groups and worked with a core development team. Key informants were recruited from geographically distributed advocacy groups to form a product advisory council that met regularly with the core team. During meetings, codesigners and informants walked through stages of work that typify PD processes such as exploration, discovery, and prototyping. This paper details the process by analyzing 10 meetings that took place between August 2015 and May 2016. Meetings were recorded, transcribed, and subjected to an inductive thematic analysis; resulting themes were organized according to their relationship to PD stages. A total of 16 individuals participated in meeting discussions, including 7 researchers and 9 persons with SCI from 4 Canadian provinces. Themes of trust, expertise, and community emerged in every group discussion. The exploration stage revealed interest in online self-management resources coupled with concerns about information credibility. In general, participants indicated that they felt more confident with information received from trusted, in-person sources (eg, peers or health care professionals) than information found online. The discovery stage saw participants propose and discuss concepts to filter credible information and highlight community expertise, namely (1) a community-curated resource database, (2) online information navigators, and (3) group chats with peers. Several tools and techniques were collectively prototyped in an effort to foster trust and community; these are illustrated in the Results section. A PD process engaging users as codesigners, codevelopers, and informants can be used to identify design concerns and prototype online solutions to promote self-management after SCI. Future work will assess the usability of the collectively designed tools among a broad population of Canadians with SCI and the tools' impact on self-efficacy and health. ©Sonya Allin, John Shepherd, Jennifer Tomasone, Sarah Munce, Gary Linassi, Saima Noreen Hossain, Susan Jaglal. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 21.03.2018.

  18. Practical challenges in quantum key distribution

    DOE PAGES

    Diamanti, Eleni; Lo, Hoi -Kwong; Qi, Bing; ...

    2016-11-08

    Here, quantum key distribution (QKD) promises unconditional security in data communication and is currently being deployed in commercial applications. Nonetheless, before QKD can be widely adopted, it faces a number of important challenges such as secret key rate, distance, size, cost and practical security. Here, we survey those key challenges and the approaches that are currently being taken to address them.

  19. Practical challenges in quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamanti, Eleni; Lo, Hoi -Kwong; Qi, Bing

    Here, quantum key distribution (QKD) promises unconditional security in data communication and is currently being deployed in commercial applications. Nonetheless, before QKD can be widely adopted, it faces a number of important challenges such as secret key rate, distance, size, cost and practical security. Here, we survey those key challenges and the approaches that are currently being taken to address them.

  20. Dynamic profile of a prototype pivoted proof-mass actuator. [damping the vibration of large space structures

    NASA Technical Reports Server (NTRS)

    Miller, D. W.

    1981-01-01

    A prototype of a linear inertial reaction actuation (damper) device employing a flexure-pivoted reaction (proof) mass is discussed. The mass is driven by an electromechanic motor using a dc electromagnetic field and an ac electromagnetic drive. During the damping process, the actuator dissipates structural kinetic energy as heat through electromagnetic damping. A model of the inertial, stiffness and damping properties is presented along with the characteristic differential equations describing the coupled response of the actuator and structure. The equations, employing the dynamic coefficients, are oriented in the form of a feedback control network in which distributed sensors are used to dictate actuator response leading to a specified amount of structural excitation or damping.

Top