Sample records for key ecosystem functions

  1. [Assessment on the changing conditions of ecosystems in key ecological function zones in China].

    PubMed

    Huang, Lin; Cao, Wei; Wu, Dan; Gong, Guo-li; Zhao, Guo-song

    2015-09-01

    In this paper, the dynamics of ecosystem macrostructure, qualities and core services during 2000 and 2010 were analyzed for the key ecological function zones of China, which were classified into four types of water conservation, soil conservation, wind prevention and sand fixation, and biodiversity maintenance. In the water conservation ecological function zones, the areas of forest and grassland ecosystems were decreased whereas water bodies and wetland were increased in the past 11 years, and the water conservation volume of forest, grassland and wetland ecosystems increased by 2.9%. This region needs to reverse the decreasing trends of forest and grassland ecosystems. In the soil conservation ecological function zones, the area of farmland ecosystem was decreased, and the areas of forest, grassland, water bodies and wetland ecosystems were increased. The total amount of the soil erosion was reduced by 28.2%, however, the soil conservation amount of ecosystems increased by 38.1%. In the wind prevention and sand fixation ecological function zones, the areas of grassland, water bodies and wetland ecosystems were decreased, but forest and farmland ecosystems were increased. The unit amount of the soil. wind erosion was reduced and the sand fixation amount of ecosystems increased lightly. In this kind of region that is located in arid and semiarid areas, ecological conservation needs to reduce farmland area and give priority to the protection of the original ecological system. In the biodiversity maintenance ecological function zones, the areas of grassland and desert ecosystems were decreased and other types were increased. The human disturbances showed a weakly upward trend and needs to be reduced. The key ecological function zones should be aimed at the core services and the protecting objects, to assess quantitatively on the effectiveness of ecosystem conservation and improvement.

  2. Parrots as key multilinkers in ecosystem structure and functioning.

    PubMed

    Blanco, Guillermo; Hiraldo, Fernando; Rojas, Abraham; Dénes, Francisco V; Tella, José L

    2015-09-01

    Mutually enhancing organisms can become reciprocal determinants of their distribution, abundance, and demography and thus influence ecosystem structure and dynamics. In addition to the prevailing view of parrots (Psittaciformes) as plant antagonists, we assessed whether they can act as plant mutualists in the dry tropical forest of the Bolivian inter-Andean valleys, an ecosystem particularly poor in vertebrate frugivores other than parrots (nine species). We hypothesised that if interactions between parrots and their food plants evolved as primarily or facultatively mutualistic, selection should have acted to maximize the strength of their interactions by increasing the amount and variety of resources and services involved in particular pairwise and community-wide interaction contexts. Food plants showed different growth habits across a wide phylogenetic spectrum, implying that parrots behave as super-generalists exploiting resources differing in phenology, type, biomass, and rewards from a high diversity of plants (113 species from 38 families). Through their feeding activities, parrots provided multiple services acting as genetic linkers, seed facilitators for secondary dispersers, and plant protectors, and therefore can be considered key mutualists with a pervasive impact on plant assemblages. The number of complementary and redundant mutualistic functions provided by parrots to each plant species was positively related to the number of different kinds of food extracted from them. These mutually enhancing interactions were reflected in species-level properties (e.g., biomass or dominance) of both partners, as a likely consequence of the temporal convergence of eco-(co)evolutionary dynamics shaping the ongoing structure and organization of the ecosystem. A full assessment of the, thus far largely overlooked, parrot-plant mutualisms and other ecological linkages could change the current perception of the role of parrots in the structure, organization, and

  3. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning.

    PubMed

    He, Zhili; Zhang, Ping; Wu, Linwei; Rocha, Andrea M; Tu, Qichao; Shi, Zhou; Wu, Bo; Qin, Yujia; Wang, Jianjun; Yan, Qingyun; Curtis, Daniel; Ning, Daliang; Van Nostrand, Joy D; Wu, Liyou; Yang, Yunfeng; Elias, Dwayne A; Watson, David B; Adams, Michael W W; Fields, Matthew W; Alm, Eric J; Hazen, Terry C; Adams, Paul D; Arkin, Adam P; Zhou, Jizhong

    2018-02-20

    Contamination from anthropogenic activities has significantly impacted Earth's biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly ( P < 0.05) as uranium or nitrate increased, and their changes could be used to successfully predict uranium and nitrate contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning. IMPORTANCE Disentangling the relationships between biodiversity and ecosystem functioning is an important but poorly understood topic in ecology. Predicting ecosystem functioning on the basis of biodiversity is even more difficult, particularly with microbial biomarkers. As an exploratory effort, this study used key microbial functional genes as biomarkers to provide predictive understanding of environmental contamination and ecosystem functioning. The results indicated that the overall functional gene richness

  4. Key Factors in Development of Man-Made and Natural Ecosystems

    NASA Astrophysics Data System (ADS)

    Pechurkin, N. S.

    1999-01-01

    Key factors of ecosystem functioning are of the same nature for artificial and natural types. An hierarchical approach gives the opportunity for estimation of the quantitative behavior of both individual links and the system as a whole. At the organismic level we can use interactions of studied macroorganisms (man, animal, higher plant) with selected microorganisms as key indicating factors of the organisms immune status. The most informative factor for the population/community level is an age structure of populations and relationships of domination/elimination. The integrated key factors of the ecosystems level are productivity and rates of cycling of the limiting substances. The key factors approach is of great value for growth regulations and monitoring the state of any ecosystem, including the life support system (LSS)-type.

  5. Same pattern, different mechanism: Locking onto the role of key species in seafloor ecosystem process

    PubMed Central

    Woodin, Sarah Ann; Volkenborn, Nils; Pilditch, Conrad A.; Lohrer, Andrew M.; Wethey, David S.; Hewitt, Judi E.; Thrush, Simon F.

    2016-01-01

    Seafloor biodiversity is a key mediator of ecosystem functioning, but its role is often excluded from global budgets or simplified to black boxes in models. New techniques allow quantification of the behavior of animals living below the sediment surface and assessment of the ecosystem consequences of complex interactions, yielding a better understanding of the role of seafloor animals in affecting key processes like primary productivity. Combining predictions based on natural history, behavior of key benthic species and environmental context allow assessment of differences in functioning and process, even when the measured ecosystem property in different systems is similar. Data from three sedimentary systems in New Zealand illustrate this. Analysis of the behaviors of the infaunal ecosystem engineers in each system revealed three very different mechanisms driving ecosystem function: density and excretion, sediment turnover and surface rugosity, and hydraulic activities and porewater bioadvection. Integrative metrics of ecosystem function in some cases differentiate among the systems (gross primary production) and in others do not (photosynthetic efficiency). Analyses based on behaviors and activities revealed important ecosystem functional differences and can dramatically improve our ability to model the impact of stressors on ecosystem and global processes. PMID:27230562

  6. Same pattern, different mechanism: Locking onto the role of key species in seafloor ecosystem process.

    PubMed

    Woodin, Sarah Ann; Volkenborn, Nils; Pilditch, Conrad A; Lohrer, Andrew M; Wethey, David S; Hewitt, Judi E; Thrush, Simon F

    2016-05-27

    Seafloor biodiversity is a key mediator of ecosystem functioning, but its role is often excluded from global budgets or simplified to black boxes in models. New techniques allow quantification of the behavior of animals living below the sediment surface and assessment of the ecosystem consequences of complex interactions, yielding a better understanding of the role of seafloor animals in affecting key processes like primary productivity. Combining predictions based on natural history, behavior of key benthic species and environmental context allow assessment of differences in functioning and process, even when the measured ecosystem property in different systems is similar. Data from three sedimentary systems in New Zealand illustrate this. Analysis of the behaviors of the infaunal ecosystem engineers in each system revealed three very different mechanisms driving ecosystem function: density and excretion, sediment turnover and surface rugosity, and hydraulic activities and porewater bioadvection. Integrative metrics of ecosystem function in some cases differentiate among the systems (gross primary production) and in others do not (photosynthetic efficiency). Analyses based on behaviors and activities revealed important ecosystem functional differences and can dramatically improve our ability to model the impact of stressors on ecosystem and global processes.

  7. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Zhili; Zhang, Ping; Wu, Linwei

    Contamination from anthropogenic activities has significantly impacted Earth’s biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminantsmore » would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly (P < 0.05) as uranium or nitrate increased, and their changes could be used to successfully predict uranium and nitrate contamination and ecosystem functioning. Here, this study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning.« less

  8. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning

    PubMed Central

    Zhang, Ping; Wu, Linwei; Rocha, Andrea M.; Shi, Zhou; Wu, Bo; Qin, Yujia; Wang, Jianjun; Yan, Qingyun; Curtis, Daniel; Ning, Daliang; Van Nostrand, Joy D.; Wu, Liyou; Watson, David B.; Adams, Michael W. W.; Alm, Eric J.; Adams, Paul D.; Arkin, Adam P.

    2018-01-01

    ABSTRACT Contamination from anthropogenic activities has significantly impacted Earth’s biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly (P < 0.05) as uranium or nitrate increased, and their changes could be used to successfully predict uranium and nitrate contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning. PMID:29463661

  9. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning

    DOE PAGES

    He, Zhili; Zhang, Ping; Wu, Linwei; ...

    2018-02-20

    Contamination from anthropogenic activities has significantly impacted Earth’s biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminantsmore » would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly (P < 0.05) as uranium or nitrate increased, and their changes could be used to successfully predict uranium and nitrate contamination and ecosystem functioning. Here, this study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning.« less

  10. Suppression of savanna ants alters invertebrate composition and influences key ecosystem processes.

    PubMed

    Parr, C L; Eggleton, P; Davies, A B; Evans, T A; Holdsworth, S

    2016-06-01

    In almost every ecosystem, ants (Hymenoptera: Formicidae) are the dominant terrestrial invertebrate group. Their functional value was highlighted by Wilson (1987) who famously declared that invertebrates are the "little things that run the world." However, while it is generally accepted that ants fulfil important functions, few studies have tested these assumptions and demonstrated what happens in their absence. We report on a novel large-scale field experiment in undisturbed savanna habitat where we examined how ants influence the abundance of other invertebrate taxa in the system, and affect the key processes of decomposition and herbivory. Our experiment demonstrated that ants suppressed the abundance and activity of beetles, millipedes, and termites, and also influenced decomposition rates and levels of herbivory. Our study is the first to show that top-down control of termites by ants can have important ecosystem consequences. Further studies are needed to elucidate the effects ant communities have on other aspects of the ecosystem (e.g., soils, nutrient cycling, the microbial community) and how their relative importance for ecosystem function varies among ecosystem types (e.g., savanna vs. forest).

  11. Upscaling key ecosystem functions across the conterminous United States by a water-centric ecosystem model

    NASA Astrophysics Data System (ADS)

    Sun, Ge; Caldwell, Peter; Noormets, Asko; McNulty, Steven G.; Cohen, Erika; Moore Myers, Jennifer; Domec, Jean-Christophe; Treasure, Emrys; Mu, Qiaozhen; Xiao, Jingfeng; John, Ranjeet; Chen, Jiquan

    2011-09-01

    We developed a water-centric monthly scale simulation model (WaSSI-C) by integrating empirical water and carbon flux measurements from the FLUXNET network and an existing water supply and demand accounting model (WaSSI). The WaSSI-C model was evaluated with basin-scale evapotranspiration (ET), gross ecosystem productivity (GEP), and net ecosystem exchange (NEE) estimates by multiple independent methods across 2103 eight-digit Hydrologic Unit Code watersheds in the conterminous United States from 2001 to 2006. Our results indicate that WaSSI-C captured the spatial and temporal variability and the effects of large droughts on key ecosystem fluxes. Our modeled mean (±standard deviation in space) ET (556 ± 228 mm yr-1) compared well to Moderate Resolution Imaging Spectroradiometer (MODIS) based (527 ± 251 mm yr-1) and watershed water balance based ET (571 ± 242 mm yr-1). Our mean annual GEP estimates (1362 ± 688 g C m-2 yr-1) compared well (R2 = 0.83) to estimates (1194 ± 649 g C m-2 yr-1) by eddy flux-based EC-MOD model, but both methods led significantly higher (25-30%) values than the standard MODIS product (904 ± 467 g C m-2 yr-1). Among the 18 water resource regions, the southeast ranked the highest in terms of its water yield and carbon sequestration capacity. When all ecosystems were considered, the mean NEE (-353 ± 298 g C m-2 yr-1) predicted by this study was 60% higher than EC-MOD's estimate (-220 ± 225 g C m-2 yr-1) in absolute magnitude, suggesting overall high uncertainty in quantifying NEE at a large scale. Our water-centric model offers a new tool for examining the trade-offs between regional water and carbon resources under a changing environment.

  12. Maintaining ecosystem function and services in logged tropical forests.

    PubMed

    Edwards, David P; Tobias, Joseph A; Sheil, Douglas; Meijaard, Erik; Laurance, William F

    2014-09-01

    Vast expanses of tropical forests worldwide are being impacted by selective logging. We evaluate the environmental impacts of such logging and conclude that natural timber-production forests typically retain most of their biodiversity and associated ecosystem functions, as well as their carbon, climatic, and soil-hydrological ecosystem services. Unfortunately, the value of production forests is often overlooked, leaving them vulnerable to further degradation including post-logging clearing, fires, and hunting. Because logged tropical forests are extensive, functionally diverse, and provide many ecosystem services, efforts to expand their role in conservation strategies are urgently needed. Key priorities include improving harvest practices to reduce negative impacts on ecosystem functions and services, and preventing the rapid conversion and loss of logged forests. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Plant functional traits predict green roof ecosystem services.

    PubMed

    Lundholm, Jeremy; Tran, Stephanie; Gebert, Luke

    2015-02-17

    Plants make important contributions to the services provided by engineered ecosystems such as green roofs. Ecologists use plant species traits as generic predictors of geographical distribution, interactions with other species, and ecosystem functioning, but this approach has been little used to optimize engineered ecosystems. Four plant species traits (height, individual leaf area, specific leaf area, and leaf dry matter content) were evaluated as predictors of ecosystem properties and services in a modular green roof system planted with 21 species. Six indicators of ecosystem services, incorporating thermal, hydrological, water quality, and carbon sequestration functions, were predicted by the four plant traits directly or indirectly via their effects on aggregate ecosystem properties, including canopy density and albedo. Species average height and specific leaf area were the most useful traits, predicting several services via effects on canopy density or growth rate. This study demonstrates that easily measured plant traits can be used to select species to optimize green roof performance across multiple key services.

  14. Diversity of key players in the microbial ecosystems of the human body

    PubMed Central

    Jordán, Ferenc; Lauria, Mario; Scotti, Marco; Nguyen, Thanh-Phuong; Praveen, Paurush; Morine, Melissa; Priami, Corrado

    2015-01-01

    Coexisting bacteria form various microbial communities in human body parts. In these ecosystems they interact in various ways and the properties of the interaction network can be related to the stability and functional diversity of the local bacterial community. In this study, we analyze the interaction network among bacterial OTUs in 11 locations of the human body. These belong to two major groups. One is the digestive system and the other is the female genital tract. In each local ecosystem we determine the key species, both the ones being in key positions in the interaction network and the ones that dominate by frequency. Beyond identifying the key players and discussing their biological relevance, we also quantify and compare the properties of the 11 networks. The interaction networks of the female genital system and the digestive system show totally different architecture. Both the topological properties and the identity of the key groups differ. Key groups represent four phyla of prokaryotes. Some groups appear in key positions in several locations, while others are assigned only to a single body part. The key groups of the digestive and the genital tracts are totally different. PMID:26514870

  15. Diversity of key players in the microbial ecosystems of the human body.

    PubMed

    Jordán, Ferenc; Lauria, Mario; Scotti, Marco; Nguyen, Thanh-Phuong; Praveen, Paurush; Morine, Melissa; Priami, Corrado

    2015-10-30

    Coexisting bacteria form various microbial communities in human body parts. In these ecosystems they interact in various ways and the properties of the interaction network can be related to the stability and functional diversity of the local bacterial community. In this study, we analyze the interaction network among bacterial OTUs in 11 locations of the human body. These belong to two major groups. One is the digestive system and the other is the female genital tract. In each local ecosystem we determine the key species, both the ones being in key positions in the interaction network and the ones that dominate by frequency. Beyond identifying the key players and discussing their biological relevance, we also quantify and compare the properties of the 11 networks. The interaction networks of the female genital system and the digestive system show totally different architecture. Both the topological properties and the identity of the key groups differ. Key groups represent four phyla of prokaryotes. Some groups appear in key positions in several locations, while others are assigned only to a single body part. The key groups of the digestive and the genital tracts are totally different.

  16. Evapotranspiration and favorable growing degree-days are key to tree height growth and ecosystem functioning: Meta-analyses of Pacific Northwest historical data.

    PubMed

    Liu, Yang; El-Kassaby, Yousry A

    2018-05-29

    While temperature and precipitation comprise important ecological filtering for native ranges of forest trees and are predisposing factors underlying forest ecosystem dynamics, the extent and severity of drought raises reasonable concerns for carbon storage and species diversity. Based on historical data from common garden experiments across the Pacific Northwest region, we developed non-linear niche models for height-growth trajectories of conifer trees at the sapling stage using annual or seasonal climatic variables. The correlations between virtual tree height for each locality and ecosystem functions were respectively assessed. Best-fitted models were composed of two distinct components: evapotranspiration and the degree-days disparity for temperature regimes between 5 °C and 18 °C (effective temperature sum and growth temperature, respectively). Tree height prediction for adaptive generalists (e.g., Pinus monticola, Thuja plicata) had smaller residuals than for specialists (e.g., Pinus contorta, Pseudotsuga menziesii), albeit a potential confounding factor - tree age. Discernably, there were linearly positive patterns between tree height growth and ecosystem functions (productivity, biomass and species diversity). Additionally, there was a minor effect of tree diversity on height growth in coniferous forests. This study uncovers the implication of key ecological filtering and increases our integrated understanding of how environmental cues affect tree stand growth, species dominance and ecosystem functions.

  17. Declining resilience of ecosystem functions under biodiversity loss.

    PubMed

    Oliver, Tom H; Isaac, Nick J B; August, Tom A; Woodcock, Ben A; Roy, David B; Bullock, James M

    2015-12-08

    The composition of species communities is changing rapidly through drivers such as habitat loss and climate change, with potentially serious consequences for the resilience of ecosystem functions on which humans depend. To assess such changes in resilience, we analyse trends in the frequency of species in Great Britain that provide key ecosystem functions--specifically decomposition, carbon sequestration, pollination, pest control and cultural values. For 4,424 species over four decades, there have been significant net declines among animal species that provide pollination, pest control and cultural values. Groups providing decomposition and carbon sequestration remain relatively stable, as fewer species are in decline and these are offset by large numbers of new arrivals into Great Britain. While there is general concern about degradation of a wide range of ecosystem functions, our results suggest actions should focus on particular functions for which there is evidence of substantial erosion of their resilience.

  18. Global biodiversity, stoichiometry and ecosystem function responses to human-induced C-N-P imbalances.

    PubMed

    Carnicer, Jofre; Sardans, Jordi; Stefanescu, Constantí; Ubach, Andreu; Bartrons, Mireia; Asensio, Dolores; Peñuelas, Josep

    2015-01-01

    Global change analyses usually consider biodiversity as a global asset that needs to be preserved. Biodiversity is frequently analysed mainly as a response variable affected by diverse environmental drivers. However, recent studies highlight that gradients of biodiversity are associated with gradual changes in the distribution of key dominant functional groups characterized by distinctive traits and stoichiometry, which in turn often define the rates of ecosystem processes and nutrient cycling. Moreover, pervasive links have been reported between biodiversity, food web structure, ecosystem function and species stoichiometry. Here we review current global stoichiometric gradients and how future distributional shifts in key functional groups may in turn influence basic ecosystem functions (production, nutrient cycling, decomposition) and therefore could exert a feedback effect on stoichiometric gradients. The C-N-P stoichiometry of most primary producers (phytoplankton, algae, plants) has been linked to functional trait continua (i.e. to major axes of phenotypic variation observed in inter-specific analyses of multiple traits). In contrast, the C-N-P stoichiometry of higher-level consumers remains less precisely quantified in many taxonomic groups. We show that significant links are observed between trait continua across trophic levels. In spite of recent advances, the future reciprocal feedbacks between key functional groups, biodiversity and ecosystem functions remain largely uncertain. The reported evidence, however, highlights the key role of stoichiometric traits and suggests the need of a progressive shift towards an ecosystemic and stoichiometric perspective in global biodiversity analyses. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. A meta-analysis of zooplankton functional traits influencing ecosystem function.

    PubMed

    Hébert, Marie-Pier; Beisner, Beatrix E; Maranger, Roxane

    2016-04-01

    The use of functional traits to characterize community composition has been proposed as a more effective way to link community structure to ecosystem functioning. Organismal morphology, body stoichiometry, and physiology can be readily linked to large-scale ecosystem processes through functional traits that inform on interspecific and species-environment interactions; yet such effect traits are still poorly included in trait-based approaches. Given their key trophic position in aquatic ecosystems, individual zooplankton affect energy fluxes and elemental processing. We compiled a large database of zooplankton traits contributing to carbon, nitrogen, and phosphorus cycling and examined the effect of classification and habitat (marine vs. freshwater) on trait relationships. Respiration and nutrient excretion rates followed mass-dependent scaling in both habitats, with exponents ranging from 0.70 to 0.90. Our analyses revealed surprising differences in allometry and respiration between habitats, with freshwater species having lower length-specific mass and three times higher mass-specific respiration rates. These differences in traits point to implications for ecological strategies as well as overall carbon storage and fluxes based on habitat type. Our synthesis quantifies multiple trait relationships and links organisms to ecosystem processes they influence, enabling a more complete integration of aquatic community ecology and biogeochemistry through the promising use of effect traits.

  20. Ecosystem engineering affects ecosystem functioning in high-Andean landscapes.

    PubMed

    Badano, Ernesto I; Marquet, Pablo A

    2008-04-01

    Ecosystem engineers are organisms that change the distribution of materials and energy in the abiotic environment, usually creating and maintaining new habitat patches in the landscape. Such changes in habitat conditions have been widely documented to affect the distributions and performances of other species but up to now no studies have addressed how such effects can impact the biotically driven physicochemical processes associated with these landscapes, or ecosystem functions. Based on the widely accepted positive relationship between species diversity and ecosystem functions, we propose that the effects of ecosystem engineers on other species could have an impact on ecosystem functions via two mutually inclusive mechanisms: (1) by adding new species into landscapes, hence increasing species diversity; and (2) by improving the performances of species already present in the landscape. To test these hypotheses, we focused on the effects of a high-Andean ecosystem engineer, the cushion plant Azorella monantha, by comparing the accumulation of plant biomass and nitrogen fixed in plant tissues as species richness increases in landscapes with and without the engineer species. Our results show that both ecosystem functions increased with species richness in both landscape types, but landscapes including A. monantha cushions reached higher outcomes of plant biomass and nitrogen fixed in plant tissues than landscapes without cushions. Moreover, our results indicate that such positive effects on ecosystem functions could be mediated by the two mechanisms proposed above. Then, given the conspicuousness of ecosystem engineering in nature and its strong influence on species diversity, and given the well-known relationship between species diversity and ecosystem function, we suggest that the application of the conceptual framework proposed herein to other ecosystems would help to advance our understanding of the forces driving ecosystem functioning.

  1. Plant Functional Group Composition Modifies the Effects of Precipitation Change on Grassland Ecosystem Function

    PubMed Central

    Fry, Ellen L.; Manning, Pete; Allen, David G. P.; Hurst, Alex; Everwand, Georg; Rimmler, Martin; Power, Sally A.

    2013-01-01

    Temperate grassland ecosystems face a future of precipitation change, which can alter community composition and ecosystem functions through reduced soil moisture and waterlogging. There is evidence that functionally diverse plant communities contain a wider range of water use and resource capture strategies, resulting in greater resistance of ecosystem function to precipitation change. To investigate this interaction between composition and precipitation change we performed a field experiment for three years in successional grassland in southern England. This consisted of two treatments. The first, precipitation change, simulated end of century predictions, and consisted of a summer drought phase alongside winter rainfall addition. The second, functional group identity, divided the plant community into three groups based on their functional traits- broadly described as perennials, caespitose grasses and annuals- and removed these groups in a factorial design. Ecosystem functions related to C, N and water cycling were measured regularly. Effects of functional groupidentity were apparent, with the dominant trend being that process rates were higher under control conditions where a range of perennial species were present. E.g. litter decomposition rates were significantly higher in plots containing several perennial species, the group with the highest average leaf N content. Process rates were also very strongly affected by the precipitation change treatmentwhen perennial plant species were dominant, but not where the community contained a high abundance of annual species and caespitose grasses. This contrasting response could be attributable to differing rooting patterns (shallower structures under annual plants, and deeper roots under perennials) and faster nutrient uptake in annuals compared to perennials. Our results indicate that precipitation change will have a smaller effect on key process rates in grasslandscontaining a range of perennial and annual species

  2. Obscuring ecosystem function with application of the ecosystem services concept.

    PubMed

    Peterson, Markus J; Hall, Damon M; Feldpausch-Parker, Andrea M; Peterson, Tarla Rai

    2010-02-01

    Conservationists commonly have framed ecological concerns in economic terms to garner political support for conservation and to increase public interest in preserving global biodiversity. Beginning in the early 1980s, conservation biologists adapted neoliberal economics to reframe ecosystem functions and related biodiversity as ecosystem services to humanity. Despite the economic success of programs such as the Catskill/Delaware watershed management plan in the United States and the creation of global carbon exchanges, today's marketplace often fails to adequately protect biodiversity. We used a Marxist critique to explain one reason for this failure and to suggest a possible, if partial, response. Reframing ecosystem functions as economic services does not address the political problem of commodification. Just as it obscures the labor of human workers, commodification obscures the importance of the biota (ecosystem workers) and related abiotic factors that contribute to ecosystem functions. This erasure of work done by ecosystems impedes public understanding of biodiversity. Odum and Odum's radical suggestion to use the language of ecosystems (i.e., emergy or energy memory) to describe economies, rather than using the language of economics (i.e., services) to describe ecosystems, reverses this erasure of the ecosystem worker. Considering the current dominance of economic forces, however, implementing such solutions would require social changes similar in magnitude to those that occurred during the 1960s. Niklas Luhmann argues that such substantive, yet rapid, social change requires synergy among multiple societal function systems (i.e., economy, education, law, politics, religion, science), rather than reliance on a single social sphere, such as the economy. Explicitly presenting ecosystem services as discreet and incomplete aspects of ecosystem functions not only allows potential economic and environmental benefits associated with ecosystem services, but also

  3. Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss.

    PubMed

    Danovaro, Roberto; Gambi, Cristina; Dell'Anno, Antonio; Corinaldesi, Cinzia; Fraschetti, Simonetta; Vanreusel, Ann; Vincx, Magda; Gooday, Andrew J

    2008-01-08

    Recent investigations suggest that biodiversity loss might impair the functioning and sustainability of ecosystems. Although deep-sea ecosystems are the most extensive on Earth, represent the largest reservoir of biomass, and host a large proportion of undiscovered biodiversity, the data needed to evaluate the consequences of biodiversity loss on the ocean floor are completely lacking. Here, we present a global-scale study based on 116 deep-sea sites that relates benthic biodiversity to several independent indicators of ecosystem functioning and efficiency. We show that deep-sea ecosystem functioning is exponentially related to deep-sea biodiversity and that ecosystem efficiency is also exponentially linked to functional biodiversity. These results suggest that a higher biodiversity supports higher rates of ecosystem processes and an increased efficiency with which these processes are performed. The exponential relationships presented here, being consistent across a wide range of deep-sea ecosystems, suggest that mutually positive functional interactions (ecological facilitation) can be common in the largest biome of our biosphere. Our results suggest that a biodiversity loss in deep-sea ecosystems might be associated with exponential reductions of their functions. Because the deep sea plays a key role in ecological and biogeochemical processes at a global scale, this study provides scientific evidence that the conservation of deep-sea biodiversity is a priority for a sustainable functioning of the worlds' oceans.

  4. The International Space Station as a Key Platform to Synergize Observations of Fundamental Ecosystem Properties

    NASA Astrophysics Data System (ADS)

    Fisher, J. B.; Stavros, E. N.; Pavlick, R.; Hook, S. J.; Eldering, A.; Dubayah, R.; Schimel, D.

    2016-12-01

    Terrestrial ecosystems can be described in terms of trait composition, physiological function, and physical structure; all three of these are observable remotely to varying degrees. Yet, no mission is able to singularly capture all three together, thus inhibiting our ability to dynamically measure and describe ecosystems as holistic, integrated, and interconnected entities. The International Space Station (ISS) is a new platform for global ecology. The variable overpass time offers a key advantage to investigations interested in sampling over the diurnal cycle, critical to understanding ecosystem function. The ISS also offers another key advantage—financial; it is already there with funded astronaut cargo re-supply missions, so the cost of launch and platform do not need to be added onto new science missions, thereby enabling NASA to select more missions at lower costs. In 2018, NASA will begin sending a series of independently-selected missions to the ISS focused on terrestrial ecosystems. First, ECOSTRESS will produce thermal-based evapotranspiration (ET) data, among other products. OCO-3 will arrive a few months later to measure chlorophyll fluorescence (related to gross primary production, GPP) and atmospheric CO2. Finally, GEDI will produce LiDAR-based ecosystem structure (height, leaf area index, biomass). While each mission is independently developed and funded, the respective mission scientists are working together to bridge observations and leverage their unique contemporaneous and synergistic value for global ecology. A composition-based mission is still missing from the ISS, but airborne and other space agency missions may be leveraged. This talk will describe these ISS-based terrestrial ecosystem science missions, and discuss synergies that will enable the study of ecosystems as a whole that is larger than the sum of their parts.

  5. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems

    Treesearch

    Nathaly R. Guerrero-Ramírez; Dylan Craven; Peter B. Reich; John J. Ewel; Forest Isbell; Julia Koricheva; John A. Parrotta; Harald Auge; Heather E. Erickson; David I. Forrester; Andy Hector; Jasmin Joshi; Florencia Montagnini; Cecilia Palmborg; Daniel Piotto; Catherine Potvin; Christiane Roscher; Jasper van Ruijven; David Tilman; Brian Wilsey; Nico Eisenhauer

    2017-01-01

    The effects of biodiversity on ecosystem functioning generally increase over time, but the underlying processes remain unclear. Using 26 long-term grassland and forest experimental ecosystems, we demonstrate that biodiversity–ecosystem functioning relationships strengthen mainly by greater increases in functioning in high-diversity communities in grasslands and forests...

  6. The up-scaling of ecosystem functions in a heterogeneous world

    NASA Astrophysics Data System (ADS)

    Lohrer, Andrew M.; Thrush, Simon F.; Hewitt, Judi E.; Kraan, Casper

    2015-05-01

    Earth is in the midst of a biodiversity crisis that is impacting the functioning of ecosystems and the delivery of valued goods and services. However, the implications of large scale species losses are often inferred from small scale ecosystem functioning experiments with little knowledge of how the dominant drivers of functioning shift across scales. Here, by integrating observational and manipulative experimental field data, we reveal scale-dependent influences on primary productivity in shallow marine habitats, thus demonstrating the scalability of complex ecological relationships contributing to coastal marine ecosystem functioning. Positive effects of key consumers (burrowing urchins, Echinocardium cordatum) on seafloor net primary productivity (NPP) elucidated by short-term, single-site experiments persisted across multiple sites and years. Additional experimentation illustrated how these effects amplified over time, resulting in greater primary producer biomass sediment chlorophyll a content (Chla) in the longer term, depending on climatic context and habitat factors affecting the strengths of mutually reinforcing feedbacks. The remarkable coherence of results from small and large scales is evidence of real-world ecosystem function scalability and ecological self-organisation. This discovery provides greater insights into the range of responses to broad-scale anthropogenic stressors in naturally heterogeneous environmental settings.

  7. The up-scaling of ecosystem functions in a heterogeneous world

    PubMed Central

    Lohrer, Andrew M.; Thrush, Simon F.; Hewitt, Judi E.; Kraan, Casper

    2015-01-01

    Earth is in the midst of a biodiversity crisis that is impacting the functioning of ecosystems and the delivery of valued goods and services. However, the implications of large scale species losses are often inferred from small scale ecosystem functioning experiments with little knowledge of how the dominant drivers of functioning shift across scales. Here, by integrating observational and manipulative experimental field data, we reveal scale-dependent influences on primary productivity in shallow marine habitats, thus demonstrating the scalability of complex ecological relationships contributing to coastal marine ecosystem functioning. Positive effects of key consumers (burrowing urchins, Echinocardium cordatum) on seafloor net primary productivity (NPP) elucidated by short-term, single-site experiments persisted across multiple sites and years. Additional experimentation illustrated how these effects amplified over time, resulting in greater primary producer biomass sediment chlorophyll a content (Chla) in the longer term, depending on climatic context and habitat factors affecting the strengths of mutually reinforcing feedbacks. The remarkable coherence of results from small and large scales is evidence of real-world ecosystem function scalability and ecological self-organisation. This discovery provides greater insights into the range of responses to broad-scale anthropogenic stressors in naturally heterogeneous environmental settings. PMID:25993477

  8. Ecosystem Functions Connecting Contributions from Ecosystem Services to Human Wellbeing in a Mangrove System in Northern Taiwan.

    PubMed

    Hsieh, Hwey-Lian; Lin, Hsing-Juh; Shih, Shang-Shu; Chen, Chang-Po

    2015-06-09

    The present study examined a mangrove ecosystem in northern Taiwan to determine how the various components of ecosystem function, ecosystem services and human wellbeing are connected. The overall contributions of mangrove services to specific components of human wellbeing were also assessed. A network was developed and evaluated by an expert panel consisting of hydrologists, ecologists, and experts in the field of culture, landscape or architecture. The results showed that supporting habitats was the most important function to human wellbeing, while water quality, habitable climate, air quality, recreational opportunities, and knowledge systems were services that were strongly linked to human welfare. Security of continuous supply of services appeared to be the key to a comfortable life. From a bottom-up and top-down perspective, knowledge systems (a service) were most supported by ecosystem functions, while the security of continuous supply of services (wellbeing) had affected the most services. In addition, the overall benefits of mangrove services to human prosperity concentrated on mental health, security of continuous supply of services, and physical health.

  9. Ecosystem Functions Connecting Contributions from Ecosystem Services to Human Wellbeing in a Mangrove System in Northern Taiwan

    PubMed Central

    Hsieh, Hwey-Lian; Lin, Hsing-Juh; Shih, Shang-Shu; Chen, Chang-Po

    2015-01-01

    The present study examined a mangrove ecosystem in northern Taiwan to determine how the various components of ecosystem function, ecosystem services and human wellbeing are connected. The overall contributions of mangrove services to specific components of human wellbeing were also assessed. A network was developed and evaluated by an expert panel consisting of hydrologists, ecologists, and experts in the field of culture, landscape or architecture. The results showed that supporting habitats was the most important function to human wellbeing, while water quality, habitable climate, air quality, recreational opportunities, and knowledge systems were services that were strongly linked to human welfare. Security of continuous supply of services appeared to be the key to a comfortable life. From a bottom-up and top-down perspective, knowledge systems (a service) were most supported by ecosystem functions, while the security of continuous supply of services (wellbeing) had affected the most services. In addition, the overall benefits of mangrove services to human prosperity concentrated on mental health, security of continuous supply of services, and physical health. PMID:26067989

  10. Regional scale prioritisation for key ecosystem services, renewable energy production and urban development.

    PubMed

    Casalegno, Stefano; Bennie, Jonathan J; Inger, Richard; Gaston, Kevin J

    2014-01-01

    Although the importance of addressing ecosystem service benefits in regional land use planning and decision-making is evident, substantial practical challenges remain. In particular, methods to identify priority areas for the provision of key ecosystem services and other environmental services (benefits from the environment not directly linked to the function of ecosystems) need to be developed. Priority areas are locations which provide disproportionally high benefits from one or more service. Here we map a set of ecosystem and environmental services and delineate priority areas according to different scenarios. Each scenario is produced by a set of weightings allocated to different services and corresponds to different landscape management strategies which decision makers could undertake. Using the county of Cornwall, U.K., as a case study, we processed gridded maps of key ecosystem services and environmental services, including renewable energy production and urban development. We explored their spatial distribution patterns and their spatial covariance and spatial stationarity within the region. Finally we applied a complementarity-based priority ranking algorithm (zonation) using different weighting schemes. Our conclusions are that (i) there are two main patterns of service distribution in this region, clustered services (including agriculture, carbon stocks, urban development and plant production) and dispersed services (including cultural services, energy production and floods mitigation); (ii) more than half of the services are spatially correlated and there is high non-stationarity in the spatial covariance between services; and (iii) it is important to consider both ecosystem services and other environmental services in identifying priority areas. Different weighting schemes provoke drastic changes in the delineation of priority areas and therefore decision making processes need to carefully consider the relative values attributed to different services.

  11. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems.

    PubMed

    Guerrero-Ramírez, Nathaly R; Craven, Dylan; Reich, Peter B; Ewel, John J; Isbell, Forest; Koricheva, Julia; Parrotta, John A; Auge, Harald; Erickson, Heather E; Forrester, David I; Hector, Andy; Joshi, Jasmin; Montagnini, Florencia; Palmborg, Cecilia; Piotto, Daniel; Potvin, Catherine; Roscher, Christiane; van Ruijven, Jasper; Tilman, David; Wilsey, Brian; Eisenhauer, Nico

    2017-11-01

    The effects of biodiversity on ecosystem functioning generally increase over time, but the underlying processes remain unclear. Using 26 long-term grassland and forest experimental ecosystems, we demonstrate that biodiversity-ecosystem functioning relationships strengthen mainly by greater increases in functioning in high-diversity communities in grasslands and forests. In grasslands, biodiversity effects also strengthen due to decreases in functioning in low-diversity communities. Contrasting trends across grasslands are associated with differences in soil characteristics.

  12. Balancing ecosystem function, services and disservices resulting from expanding goose populations.

    PubMed

    Buij, Ralph; Melman, Theodorus C P; Loonen, Maarten J J E; Fox, Anthony D

    2017-03-01

    As goose populations increase in abundance, their influence on ecological processes is increasing. We review the evidence for key ecological functions of wild goose populations in Eurasia and North America, including aquatic invertebrate and plant propagule transport, nutrient deposition in terrestrial and aquatic ecosystems, the influence of goose populations on vegetation biomass, carbon storage and methane emission, species diversity and disease transmission. To estimate the implications of their growing abundance for humans, we explore how these functions contribute to the provision of ecosystem services and disservices. We assess the weight, extent and trends among such impacts, as well as the balance of their value to society. We examine key unresolved issues to enable a more balanced assessment of the economic costs or benefits of migratory geese along their flyways, including the spatial and temporal variation in services and their contrasting value to different user groups. Many ecological functions of geese are concluded to provide neither services nor disservices and, ecosystem disservices currently appear to outweigh services, although this varies between regions. We consider an improved quantification of ecosystem services and disservices, and how these vary along population flyways with respect to variation in valuing certain cultural services, and under different management scenarios aimed at reducing their disservices, essential for a more balanced management of goose populations.

  13. Biodiversity and Resilience of Ecosystem Functions.

    PubMed

    Oliver, Tom H; Heard, Matthew S; Isaac, Nick J B; Roy, David B; Procter, Deborah; Eigenbrod, Felix; Freckleton, Rob; Hector, Andy; Orme, C David L; Petchey, Owen L; Proença, Vânia; Raffaelli, David; Suttle, K Blake; Mace, Georgina M; Martín-López, Berta; Woodcock, Ben A; Bullock, James M

    2015-11-01

    Accelerating rates of environmental change and the continued loss of global biodiversity threaten functions and services delivered by ecosystems. Much ecosystem monitoring and management is focused on the provision of ecosystem functions and services under current environmental conditions, yet this could lead to inappropriate management guidance and undervaluation of the importance of biodiversity. The maintenance of ecosystem functions and services under substantial predicted future environmental change (i.e., their 'resilience') is crucial. Here we identify a range of mechanisms underpinning the resilience of ecosystem functions across three ecological scales. Although potentially less important in the short term, biodiversity, encompassing variation from within species to across landscapes, may be crucial for the longer-term resilience of ecosystem functions and the services that they underpin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Regional Scale Prioritisation for Key Ecosystem Services, Renewable Energy Production and Urban Development

    PubMed Central

    Casalegno, Stefano; Bennie, Jonathan J.; Inger, Richard; Gaston, Kevin J.

    2014-01-01

    Although the importance of addressing ecosystem service benefits in regional land use planning and decision-making is evident, substantial practical challenges remain. In particular, methods to identify priority areas for the provision of key ecosystem services and other environmental services (benefits from the environment not directly linked to the function of ecosystems) need to be developed. Priority areas are locations which provide disproportionally high benefits from one or more service. Here we map a set of ecosystem and environmental services and delineate priority areas according to different scenarios. Each scenario is produced by a set of weightings allocated to different services and corresponds to different landscape management strategies which decision makers could undertake. Using the county of Cornwall, U.K., as a case study, we processed gridded maps of key ecosystem services and environmental services, including renewable energy production and urban development. We explored their spatial distribution patterns and their spatial covariance and spatial stationarity within the region. Finally we applied a complementarity-based priority ranking algorithm (zonation) using different weighting schemes. Our conclusions are that (i) there are two main patterns of service distribution in this region, clustered services (including agriculture, carbon stocks, urban development and plant production) and dispersed services (including cultural services, energy production and floods mitigation); (ii) more than half of the services are spatially correlated and there is high non-stationarity in the spatial covariance between services; and (iii) it is important to consider both ecosystem services and other environmental services in identifying priority areas. Different weighting schemes provoke drastic changes in the delineation of priority areas and therefore decision making processes need to carefully consider the relative values attributed to different services

  15. Does Biodiversity-Ecosystem Function Literature Neglect Tropical Ecosystems?

    PubMed

    Clarke, David A; York, Paul H; Rasheed, Michael A; Northfield, Tobin D

    2017-05-01

    Current evidence suggests that there is a positive relationship between biodiversity and ecosystem functioning, but few studies have addressed tropical ecosystems where the highest levels of biodiversity occur. We develop two hypotheses for the implications of generalizing from temperate studies to tropical ecosystems, and discuss the need for more tropical research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Linking plant and ecosystem functional biogeography.

    PubMed

    Reichstein, Markus; Bahn, Michael; Mahecha, Miguel D; Kattge, Jens; Baldocchi, Dennis D

    2014-09-23

    Classical biogeographical observations suggest that ecosystems are strongly shaped by climatic constraints in terms of their structure and function. On the other hand, vegetation function feeds back on the climate system via biosphere-atmosphere exchange of matter and energy. Ecosystem-level observations of this exchange reveal very large functional biogeographical variation of climate-relevant ecosystem functional properties related to carbon and water cycles. This variation is explained insufficiently by climate control and a classical plant functional type classification approach. For example, correlations between seasonal carbon-use efficiency and climate or environmental variables remain below 0.6, leaving almost 70% of variance unexplained. We suggest that a substantial part of this unexplained variation of ecosystem functional properties is related to variations in plant and microbial traits. Therefore, to progress with global functional biogeography, we should seek to understand the link between organismic traits and flux-derived ecosystem properties at ecosystem observation sites and the spatial variation of vegetation traits given geoecological covariates. This understanding can be fostered by synergistic use of both data-driven and theory-driven ecological as well as biophysical approaches.

  17. Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates

    PubMed Central

    Caldeira, Maria C.; Lecomte, Xavier; David, Teresa S.; Pinto, Joaquim G.; Bugalho, Miguel N.; Werner, Christiane

    2015-01-01

    Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs. PMID:26461978

  18. Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates.

    PubMed

    Caldeira, Maria C; Lecomte, Xavier; David, Teresa S; Pinto, Joaquim G; Bugalho, Miguel N; Werner, Christiane

    2015-10-13

    Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs.

  19. Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates

    NASA Astrophysics Data System (ADS)

    Caldeira, Maria C.; Lecomte, Xavier; David, Teresa S.; Pinto, Joaquim G.; Bugalho, Miguel N.; Werner, Christiane

    2015-10-01

    Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs.

  20. From Bacteria to Whales: Using Functional Size Spectra to Model Marine Ecosystems.

    PubMed

    Blanchard, Julia L; Heneghan, Ryan F; Everett, Jason D; Trebilco, Rowan; Richardson, Anthony J

    2017-03-01

    Size-based ecosystem modeling is emerging as a powerful way to assess ecosystem-level impacts of human- and environment-driven changes from individual-level processes. These models have evolved as mechanistic explanations for observed regular patterns of abundance across the marine size spectrum hypothesized to hold from bacteria to whales. Fifty years since the first size spectrum measurements, we ask how far have we come? Although recent modeling studies capture an impressive range of sizes, complexity, and real-world applications, ecosystem coverage is still only partial. We describe how this can be overcome by unifying functional traits with size spectra (which we call functional size spectra) and highlight the key knowledge gaps that need to be filled to model ecosystems from bacteria to whales. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Upscaling key ecosystem functions across the conterminous United States by a water‐centric ecosystem model

    Treesearch

    Ge Sun; Peter Caldwell; Asko Noormets; Steven G. McNulty; Erika Cohen; al. et.

    2011-01-01

    We developed a water‐centric monthly scale simulation model (WaSSI‐C) by integrating empirical water and carbon flux measurements from the FLUXNET network and an existing water supply and demand accounting model (WaSSI). The WaSSI‐C model was evaluated with basin‐scale evapotranspiration (ET), gross ecosystem productivity (GEP), and net ecosystem exchange (NEE)...

  2. Linking plant and ecosystem functional biogeography

    PubMed Central

    Reichstein, Markus; Bahn, Michael; Mahecha, Miguel D.; Kattge, Jens; Baldocchi, Dennis D.

    2014-01-01

    Classical biogeographical observations suggest that ecosystems are strongly shaped by climatic constraints in terms of their structure and function. On the other hand, vegetation function feeds back on the climate system via biosphere–atmosphere exchange of matter and energy. Ecosystem-level observations of this exchange reveal very large functional biogeographical variation of climate-relevant ecosystem functional properties related to carbon and water cycles. This variation is explained insufficiently by climate control and a classical plant functional type classification approach. For example, correlations between seasonal carbon-use efficiency and climate or environmental variables remain below 0.6, leaving almost 70% of variance unexplained. We suggest that a substantial part of this unexplained variation of ecosystem functional properties is related to variations in plant and microbial traits. Therefore, to progress with global functional biogeography, we should seek to understand the link between organismic traits and flux-derived ecosystem properties at ecosystem observation sites and the spatial variation of vegetation traits given geoecological covariates. This understanding can be fostered by synergistic use of both data-driven and theory-driven ecological as well as biophysical approaches. PMID:25225392

  3. Nutrient pollution disrupts key ecosystem functions on coral reefs.

    PubMed

    Silbiger, Nyssa J; Nelson, Craig E; Remple, Kristina; Sevilla, Jessica K; Quinlan, Zachary A; Putnam, Hollie M; Fox, Michael D; Donahue, Megan J

    2018-06-13

    There is a long history of examining the impacts of nutrient pollution and pH on coral reefs. However, little is known about how these two stressors interact and influence coral reef ecosystem functioning. Using a six-week nutrient addition experiment, we measured the impact of elevated nitrate (NO - 3 ) and phosphate (PO 3- 4 ) on net community calcification (NCC) and net community production (NCP) rates of individual taxa and combined reef communities. Our study had four major outcomes: (i) NCC rates declined in response to nutrient addition in all substrate types, (ii) the mixed community switched from net calcification to net dissolution under medium and high nutrient conditions, (iii) nutrients augmented pH variability through modified photosynthesis and respiration rates, and (iv) nutrients disrupted the relationship between NCC and aragonite saturation state documented in ambient conditions. These results indicate that the negative effect of NO - 3 and PO 3- 4 addition on reef calcification is likely both a direct physiological response to nutrients and also an indirect response to a shifting pH environment from altered NCP rates. Here, we show that nutrient pollution could make reefs more vulnerable to global changes associated with ocean acidification and accelerate the predicted shift from net accretion to net erosion. © 2018 The Author(s).

  4. Functional traits explain ecosystem function through opposing mechanisms.

    PubMed

    Cadotte, Marc W

    2017-08-01

    The ability to explain why multispecies assemblages produce greater biomass compared to monocultures, has been a central goal in the quest to understand biodiversity effects on ecosystem function. Species contributions to ecosystem function can be driven by two processes: niche complementarity and a selection effect that is influenced by fitness (competitive) differences, and both can be approximated with measures of species' traits. It has been hypothesised that fitness differences are associated with few, singular traits while complementarity requires multidimensional trait measures. Here, using experimental data from plant assemblages, I show that the selection effect was strongest when trait dissimilarity was low, while complementarity was greatest with high trait dissimilarity. Selection effects were best explained by a single trait, plant height. Complementarity was correlated with dissimilarity across multiple traits, representing above and below ground processes. By identifying the relevant traits linked to ecosystem function, we obtain the ability to predict combinations of species that will maximise ecosystem function. © 2017 John Wiley & Sons Ltd/CNRS.

  5. Ecosystem Functions across Trophic Levels Are Linked to Functional and Phylogenetic Diversity

    PubMed Central

    Thompson, Patrick L.; Davies, T. Jonathan; Gonzalez, Andrew

    2015-01-01

    In experimental systems, it has been shown that biodiversity indices based on traits or phylogeny can outperform species richness as predictors of plant ecosystem function. However, it is unclear whether this pattern extends to the function of food webs in natural ecosystems. Here we tested whether zooplankton functional and phylogenetic diversity explains the functioning of 23 natural pond communities. We used two measures of ecosystem function: (1) zooplankton community biomass and (2) phytoplankton abundance (Chl a). We tested for diversity-ecosystem function relationships within and across trophic levels. We found a strong correlation between zooplankton diversity and ecosystem function, whereas local environmental conditions were less important. Further, the positive diversity-ecosystem function relationships were more pronounced for measures of functional and phylogenetic diversity than for species richness. Zooplankton and phytoplankton biomass were best predicted by different indices, suggesting that the two functions are dependent upon different aspects of diversity. Zooplankton community biomass was best predicted by zooplankton trait-based functional richness, while phytoplankton abundance was best predicted by zooplankton phylogenetic diversity. Our results suggest that the positive relationship between diversity and ecosystem function can extend across trophic levels in natural environments, and that greater insight into variation in ecosystem function can be gained by combining functional and phylogenetic diversity measures. PMID:25693188

  6. Ecosystem functions across trophic levels are linked to functional and phylogenetic diversity.

    PubMed

    Thompson, Patrick L; Davies, T Jonathan; Gonzalez, Andrew

    2015-01-01

    In experimental systems, it has been shown that biodiversity indices based on traits or phylogeny can outperform species richness as predictors of plant ecosystem function. However, it is unclear whether this pattern extends to the function of food webs in natural ecosystems. Here we tested whether zooplankton functional and phylogenetic diversity explains the functioning of 23 natural pond communities. We used two measures of ecosystem function: (1) zooplankton community biomass and (2) phytoplankton abundance (Chl a). We tested for diversity-ecosystem function relationships within and across trophic levels. We found a strong correlation between zooplankton diversity and ecosystem function, whereas local environmental conditions were less important. Further, the positive diversity-ecosystem function relationships were more pronounced for measures of functional and phylogenetic diversity than for species richness. Zooplankton and phytoplankton biomass were best predicted by different indices, suggesting that the two functions are dependent upon different aspects of diversity. Zooplankton community biomass was best predicted by zooplankton trait-based functional richness, while phytoplankton abundance was best predicted by zooplankton phylogenetic diversity. Our results suggest that the positive relationship between diversity and ecosystem function can extend across trophic levels in natural environments, and that greater insight into variation in ecosystem function can be gained by combining functional and phylogenetic diversity measures.

  7. Forest restoration, biodiversity and ecosystem functioning.

    PubMed

    Aerts, Raf; Honnay, Olivier

    2011-11-24

    Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF) perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an ecosystem functioning context, but

  8. Deconstructing the relationships between phylogenetic diversity and ecology: a case study on ecosystem functioning.

    PubMed

    Davies, T Jonathan; Urban, Mark C; Rayfield, Bronwyn; Cadotte, Marc W; Peres-Neto, Pedro R

    2016-09-01

    Recent studies have supported a link between phylogenetic diversity and various ecological properties including ecosystem function. However, such studies typically assume that phylogenetic branches of equivalent length are more or less interchangeable. Here we suggest that there is a need to consider not only branch lengths but also their placement on the phylogeny. We demonstrate how two common indices of network centrality can be used to describe the evolutionary distinctiveness of network elements (nodes and branches) on a phylogeny. If phylogenetic diversity enhances ecosystem function via complementarity and the representation of functional diversity, we would predict a correlation between evolutionary distinctiveness of network elements and their contribution to ecosystem process. In contrast, if one or a few evolutionary innovations play key roles in ecosystem function, the relationship between evolutionary distinctiveness and functional contribution may be weak or absent. We illustrate how network elements associated with high functional contribution can be identified from regressions between phylogenetic diversity and productivity using a well-known empirical data set on plant productivity from the Cedar Creek Long-Term Ecological Research. We find no association between evolutionary distinctiveness and ecosystem functioning, but we are able to identify phylogenetic elements associated with species of known high functional contribution within the Fabaceae. Our perspective provides a useful guide in the search for ecological traits linking diversity and ecosystem function, and suggests a more nuanced consideration of phylogenetic diversity is required in the conservation and biodiversity-ecosystem-function literature. © 2016 by the Ecological Society of America.

  9. Contrasting biodiversity-ecosystem functioning relationships in phylogenetic and functional diversity.

    PubMed

    Steudel, Bastian; Hallmann, Christine; Lorenz, Maike; Abrahamczyk, Stefan; Prinz, Kathleen; Herrfurth, Cornelia; Feussner, Ivo; Martini, Johannes W R; Kessler, Michael

    2016-10-01

    It is well known that ecosystem functioning is positively influenced by biodiversity. Most biodiversity-ecosystem functioning experiments have measured biodiversity based on species richness or phylogenetic relationships. However, theoretical and empirical evidence suggests that ecosystem functioning should be more closely related to functional diversity than to species richness. We applied different metrics of biodiversity in an artificial biodiversity-ecosystem functioning experiment using 64 species of green microalgae in combinations of two to 16 species. We found that phylogenetic and functional diversity were positively correlated with biomass overyield, driven by their strong correlation with species richness. At low species richness, no significant correlation between overyield and functional and phylogenetic diversity was found. However, at high species richness (16 species), we found a positive relationship of overyield with functional diversity and a negative relationship with phylogenetic diversity. We show that negative phylogenetic diversity-ecosystem functioning relationships can result from interspecific growth inhibition. The opposing performances of facilitation (functional diversity) and inhibition (phylogenetic diversity) we observed at the 16 species level suggest that phylogenetic diversity is not always a good proxy for functional diversity and that results from experiments with low species numbers may underestimate negative species interactions. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services.

    PubMed

    Gianinazzi, Silvio; Gollotte, Armelle; Binet, Marie-Noëlle; van Tuinen, Diederik; Redecker, Dirk; Wipf, Daniel

    2010-11-01

    The beneficial effects of arbuscular mycorrhizal (AM) fungi on plant performance and soil health are essential for the sustainable management of agricultural ecosystems. Nevertheless, since the 'first green revolution', less attention has been given to beneficial soil microorganisms in general and to AM fungi in particular. Human society benefits from a multitude of resources and processes from natural and managed ecosystems, to which AM make a crucial contribution. These resources and processes, which are called ecosystem services, include products like food and processes like nutrient transfer. Many people have been under the illusion that these ecosystem services are free, invulnerable and infinitely available; taken for granted as public benefits, they lack a formal market and are traditionally absent from society's balance sheet. In 1997, a team of researchers from the USA, Argentina and the Netherlands put an average price tag of US $33 trillion a year on these fundamental ecosystem services. The present review highlights the key role that the AM symbiosis can play as an ecosystem service provider to guarantee plant productivity and quality in emerging systems of sustainable agriculture. The appropriate management of ecosystem services rendered by AM will impact on natural resource conservation and utilisation with an obvious net gain for human society.

  11. Advancing biodiversity-ecosystem functioning science using high-density tree-based experiments over functional diversity gradients.

    PubMed

    Tobner, Cornelia M; Paquette, Alain; Reich, Peter B; Gravel, Dominique; Messier, Christian

    2014-03-01

    Increasing concern about loss of biodiversity and its effects on ecosystem functioning has triggered a series of manipulative experiments worldwide, which have demonstrated a general trend for ecosystem functioning to increase with diversity. General mechanisms proposed to explain diversity effects include complementary resource use and invoke a key role for species' functional traits. The actual mechanisms by which complementary resource use occurs remain, however, poorly understood, as well as whether they apply to tree-dominated ecosystems. Here we present an experimental approach offering multiple innovative aspects to the field of biodiversity-ecosystem functioning (BEF) research. The International Diversity Experiment Network with Trees (IDENT) allows research to be conducted at several hierarchical levels within individuals, neighborhoods, and communities. The network investigates questions related to intraspecific trait variation, complementarity, and environmental stress. The goal of IDENT is to identify some of the mechanisms through which individuals and species interact to promote coexistence and the complementary use of resources. IDENT includes several implemented and planned sites in North America and Europe, and uses a replicated design of high-density tree plots of fixed species-richness levels varying in functional diversity (FD). The design reduces the space and time needed for trees to interact allowing a thorough set of mixtures varying over different diversity gradients (specific, functional, phylogenetic) and environmental conditions (e.g., water stress) to be tested in the field. The intention of this paper is to share the experience in designing FD-focused BEF experiments with trees, to favor collaborations and expand the network to different conditions.

  12. Ecosystem functions including soil organic carbon, total nitrogen and available potassium are crucial for vegetation recovery.

    PubMed

    Qiu, Kaiyang; Xie, Yingzhong; Xu, Dongmei; Pott, Richard

    2018-05-15

    The effects of biodiversity on ecosystem functions have been extensively studied, but little is known about the effects of ecosystem functions on biodiversity. This knowledge is important for understanding biodiversity-ecosystem functioning relationships. Desertification reversal is a significant global challenge, but the factors that play key roles in this process remain unclear. Here, using data sampled from areas undergoing desertification reversal, we identify the dominant soil factors that play a role in vegetation recovery with ordinary least squares and structural equation modelling. We found that ecosystem functions related to the cycling of soil carbon (organic C, SOC), nitrogen (total N, TN), and potassium (available K, AK) had the most substantial effects on vegetation recovery. The effects of these ecosystem functions were simultaneously influenced by the soil clay, silt and coarse sand fractions and the soil water content. Our findings suggest that K plays a critical role in ecosystem functioning and is a limiting factor in desertification reversal. Our results provide a scientific basis for desertification reversal. Specifically, we found that plant biodiversity may be regulated by N, phosphorus (P) and K cycling. Collectively, biodiversity may respond to ecosystem functions, the conservation and enhancement of which can promote the recovery of vegetation.

  13. Consumer trophic diversity as a fundamental mechanism linking predation and ecosystem functioning.

    PubMed

    Hines, Jes; Gessner, Mark O

    2012-11-01

    1. Primary production and decomposition, two fundamental processes determining the functioning of ecosystems, may be sensitive to changes in biodiversity and food web interactions. 2. The impacts of food web interactions on ecosystem functioning are generally quantified by experimentally decoupling these linked processes and examining either primary production-based (green) or decomposition-based (brown) food webs in isolation. This decoupling may strongly limit our ability to assess the importance of food web interactions on ecosystem processes. 3. To evaluate how consumer trophic diversity mediates predator effects on ecosystem functioning, we conducted a mesocosm experiment and a field study using an assemblage of invertebrates that naturally co-occur on North Atlantic coastal saltmarshes. We measured the indirect impact of predation on primary production and leaf decomposition as a result of prey communities composed of herbivores alone, detritivores alone or both prey in combination. 4. We find that primary consumers can influence ecosystem process rates not only within, but also across green and brown sub-webs. Moreover, by feeding on a functionally diverse consumer assemblage comprised of both herbivores and detritivores, generalist predators can diffuse consumer effects on decomposition, primary production and feedbacks between the two processes. 5. These results indicate that maintaining functional diversity among primary consumers can alter the consequences of traditional trophic cascades, and they emphasize the role of the detritus-based sub-web when seeking key biotic drivers of plant production. Clearly, traditional compartmentalization of empirical food webs can limit our ability to predict the influence of food web interactions on ecosystem functioning. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  14. Using the CARDAMOM framework to retrieve global terrestrial ecosystem functioning properties

    NASA Astrophysics Data System (ADS)

    Exbrayat, Jean-François; Bloom, A. Anthony; Smallman, T. Luke; van der Velde, Ivar R.; Feng, Liang; Williams, Mathew

    2016-04-01

    Terrestrial ecosystems act as a sink for anthropogenic emissions of fossil-fuel and thereby partially offset the ongoing global warming. However, recent model benchmarking and intercomparison studies have highlighted the non-trivial uncertainties that exist in our understanding of key ecosystem properties like plant carbon allocation and residence times. It leads to worrisome differences in terrestrial carbon stocks simulated by Earth system models, and their evolution in a warming future. In this presentation we attempt to provide global insights on these properties by merging an ecosystem model with remotely-sensed global observations of leaf area and biomass through a data-assimilation system: the CARbon Data MOdel fraMework (CARDAMOM). CARDAMOM relies on a Markov Chain Monte Carlo algorithm to retrieve confidence intervals of model parameters that regulate ecosystem properties independently of any prior land-cover information. The MCMC method thereby enables an explicit representation of the uncertainty in land-atmosphere fluxes and the evolution of terrestrial carbon stocks through time. Global experiments are performed for the first decade of the 21st century using a 1°×1° spatial resolution. Relationships emerge globally between key ecosystem properties. For example, our analyses indicate that leaf lifespan and leaf mass per area are highly correlated. Furthermore, there exists a latitudinal gradient in allocation patterns: high latitude ecosystems allocate more carbon to photosynthetic carbon (leaves) while plants invest more carbon in their structural parts (wood and root) in the wet tropics. Overall, the spatial distribution of these ecosystem properties does not correspond to usual land-cover maps and are also partially correlated with disturbance regimes. For example, fire-prone ecosystems present statistically significant higher values of carbon use efficiency than less disturbed ecosystems experiencing similar climatic conditions. These results

  15. When does diversity matter? Species functional diversity and ecosystem functioning across habitats and seasons in a field experiment.

    PubMed

    Frainer, André; McKie, Brendan G; Malmqvist, Björn

    2014-03-01

    Despite ample experimental evidence indicating that biodiversity might be an important driver of ecosystem processes, its role in the functioning of real ecosystems remains unclear. In particular, the understanding of which aspects of biodiversity are most important for ecosystem functioning, their importance relative to other biotic and abiotic drivers, and the circumstances under which biodiversity is most likely to influence functioning in nature, is limited. We conducted a field study that focussed on a guild of insect detritivores in streams, in which we quantified variation in the process of leaf decomposition across two habitats (riffles and pools) and two seasons (autumn and spring). The study was conducted in six streams, and the same locations were sampled in the two seasons. With the aid of structural equations modelling, we assessed spatiotemporal variation in the roles of three key biotic drivers in this process: functional diversity, quantified based on a species trait matrix, consumer density and biomass. Our models also accounted for variability related to different litter resources, and other sources of biotic and abiotic variability among streams. All three of our focal biotic drivers influenced leaf decomposition, but none was important in all habitats and seasons. Functional diversity had contrasting effects on decomposition between habitats and seasons. A positive relationship was observed in pool habitats in spring, associated with high trait dispersion, whereas a negative relationship was observed in riffle habitats during autumn. Our results demonstrate that functional biodiversity can be as significant for functioning in natural ecosystems as other important biotic drivers. In particular, variation in the role of functional diversity between seasons highlights the importance of fluctuations in the relative abundances of traits for ecosystem process rates in real ecosystems. © 2013 The Authors. Journal of Animal Ecology © 2013 British

  16. Warming alters community size structure and ecosystem functioning

    PubMed Central

    Dossena, Matteo; Yvon-Durocher, Gabriel; Grey, Jonathan; Montoya, José M.; Perkins, Daniel M.; Trimmer, Mark; Woodward, Guy

    2012-01-01

    Global warming can affect all levels of biological complexity, though we currently understand least about its potential impact on communities and ecosystems. At the ecosystem level, warming has the capacity to alter the structure of communities and the rates of key ecosystem processes they mediate. Here we assessed the effects of a 4°C rise in temperature on the size structure and taxonomic composition of benthic communities in aquatic mesocosms, and the rates of detrital decomposition they mediated. Warming had no effect on biodiversity, but altered community size structure in two ways. In spring, warmer systems exhibited steeper size spectra driven by declines in total community biomass and the proportion of large organisms. By contrast, in autumn, warmer systems had shallower size spectra driven by elevated total community biomass and a greater proportion of large organisms. Community-level shifts were mirrored by changes in decomposition rates. Temperature-corrected microbial and macrofaunal decomposition rates reflected the shifts in community structure and were strongly correlated with biomass across mesocosms. Our study demonstrates that the 4°C rise in temperature expected by the end of the century has the potential to alter the structure and functioning of aquatic ecosystems profoundly, as well as the intimate linkages between these levels of ecological organization. PMID:22496185

  17. Linking biodiversity to ecosystem function: Implications for conservation ecology

    USGS Publications Warehouse

    Schwartz, M.W.; Brigham, C.A.; Hoeksema, J.D.; Lyons, K.G.; Mills, M.H.; van Mantgem, P.

    2000-01-01

    We evaluate the empirical and theoretical support for the hypothesis that a large proportion of native species richness is required to maximize ecosystem stability and sustain function. This assessment is important for conservation strategies because sustenance of ecosystem functions has been used as an argument for the conservation of species. If ecosystem functions are sustained at relatively low species richness, then arguing for the conservation of ecosystem function, no matter how important in its own right, does not strongly argue for the conservation of species. Additionally, for this to be a strong conservation argument the link between species diversity and ecosystem functions of value to the human community must be clear. We review the empirical literature to quantify the support for two hypotheses: (1) species richness is positively correlated with ecosystem function, and (2) ecosystem functions do not saturate at low species richness relative to the observed or experimental diversity. Few empirical studies demonstrate improved function at high levels of species richness. Second, we analyze recent theoretical models in order to estimate the level of species richness required to maintain ecosystem function. Again we find that, within a single trophic level, most mathematical models predict saturation of ecosystem function at a low proportion of local species richness. We also analyze a theoretical model linking species number to ecosystem stability. This model predicts that species richness beyond the first few species does not typically increase ecosystem stability. One reason that high species richness may not contribute significantly to function or stability is that most communities are characterized by strong dominance such that a few species provide the vast majority of the community biomass. Rapid turnover of species may rescue the concept that diversity leads to maximum function and stability. The role of turnover in ecosystem function and

  18. Power and limitation of soil properties as predictors of rangeland health and ecosystem functioning in a Northern mixed-grass prairie[Abstract

    USDA-ARS?s Scientific Manuscript database

    Soil properties are thought to affect rangeland ecosystem functioning (e.g. primary productivity, hydrology), and thus soil variables that are consistently correlated with key ecosystem functions may be general indicators of rangeland health. We summarize results from several studies in mixed-grass...

  19. Integrating community assembly and biodiversity to better understand ecosystem function: the Community Assembly and the Functioning of Ecosystems (CAFE) approach.

    PubMed

    Bannar-Martin, Katherine H; Kremer, Colin T; Ernest, S K Morgan; Leibold, Mathew A; Auge, Harald; Chase, Jonathan; Declerck, Steven A J; Eisenhauer, Nico; Harpole, Stanley; Hillebrand, Helmut; Isbell, Forest; Koffel, Thomas; Larsen, Stefano; Narwani, Anita; Petermann, Jana S; Roscher, Christiane; Cabral, Juliano Sarmento; Supp, Sarah R

    2018-02-01

    The research of a generation of ecologists was catalysed by the recognition that the number and identity of species in communities influences the functioning of ecosystems. The relationship between biodiversity and ecosystem functioning (BEF) is most often examined by controlling species richness and randomising community composition. In natural systems, biodiversity changes are often part of a bigger community assembly dynamic. Therefore, focusing on community assembly and the functioning of ecosystems (CAFE), by integrating both species richness and composition through species gains, losses and changes in abundance, will better reveal how community changes affect ecosystem function. We synthesise the BEF and CAFE perspectives using an ecological application of the Price equation, which partitions the contributions of richness and composition to function. Using empirical examples, we show how the CAFE approach reveals important contributions of composition to function. These examples show how changes in species richness and composition driven by environmental perturbations can work in concert or antagonistically to influence ecosystem function. Considering how communities change in an integrative fashion, rather than focusing on one axis of community structure at a time, will improve our ability to anticipate and predict changes in ecosystem function. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  20. β-Diversity, Community Assembly, and Ecosystem Functioning.

    PubMed

    Mori, Akira S; Isbell, Forest; Seidl, Rupert

    2018-05-25

    Evidence is increasing for positive effects of α-diversity on ecosystem functioning. We highlight here the crucial role of β-diversity - a hitherto underexplored facet of biodiversity - for a better process-level understanding of biodiversity change and its consequences for ecosystems. A focus on β-diversity has the potential to improve predictions of natural and anthropogenic influences on diversity and ecosystem functioning. However, linking the causes and consequences of biodiversity change is complex because species assemblages in nature are shaped by many factors simultaneously, including disturbance, environmental heterogeneity, deterministic niche factors, and stochasticity. Because variability and change are ubiquitous in ecosystems, acknowledging these inherent properties of nature is an essential step for further advancing scientific knowledge of biodiversity-ecosystem functioning in theory and practice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. DEVELOPING TOOLS FOR EVALUATION OF INTERACTIONS BETWEEN GLOBAL CHANGE STRESSORS AND ECOSYSTEM FUNCTIONING

    EPA Science Inventory

    Case studies in key selected coral reefs and watersheds will be completed to provide scientific data, concepts and models that describe the responses of the functioning of these ecosystems to global change stressors. The studies will focus on relating global changes to local and...

  2. Plant Functional Traits: Soil and Ecosystem Services.

    PubMed

    Faucon, Michel-Pierre; Houben, David; Lambers, Hans

    2017-05-01

    Decline of ecosystem services has triggered numerous studies aiming at developing more sustainable agricultural management practices. Some agricultural practices may improve soil properties by expanding plant biodiversity. However, sustainable management of agroecosystems should be performed from a functional plant trait perspective. Advances in functional ecology, especially plant functional trait effects on ecosystem processes and services, provide pivotal knowledge for ecological intensification of agriculture; this approach acknowledges that a crop field is an agroecosystem whose ecological processes influence soil properties. We highlight the links between plant functional traits and soil properties in relation to four major ecosystem processes involved in vital ecosystem services: food production, crop protection, climate change mitigation, and soil and water conservation, aiming towards ecological intensification of sustainable agricultural and soil management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. INVASIVE PLANTS HARBOR HUNGRY DETRITIVORES THAT ALTER ECOSYSTEM FUNCTION

    EPA Science Inventory

    Ecosystems are expected to function more efficiently in response to a diverse community of inhabitants. However, biological invasions may change expected relationships between ecosystem function and diversity. We observed increased decomposition, a measure of ecosystem function...

  4. Key attributes of ecological production functions

    EPA Science Inventory

    Ecological production functions (EPFs) link ecosystems, stressors, and management actions to ecosystem service (ES) production. Though essential for improving environmental management, relatively little attention has been directed toward the characteristics of EPFs. EPFs may be d...

  5. Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions

    PubMed Central

    Lundholm, Jeremy; MacIvor, J. Scott; MacDougall, Zachary; Ranalli, Melissa

    2010-01-01

    Background Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. Methodology/Principal Findings We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Conclusions/Significance Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms

  6. Plant species and functional group combinations affect green roof ecosystem functions.

    PubMed

    Lundholm, Jeremy; Macivor, J Scott; Macdougall, Zachary; Ranalli, Melissa

    2010-03-12

    Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms governing biodiversity-ecosystem functioning relationships in green

  7. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships.

    PubMed

    Laforest-Lapointe, Isabelle; Paquette, Alain; Messier, Christian; Kembel, Steven W

    2017-06-01

    Research on biodiversity and ecosystem functioning has demonstrated links between plant diversity and ecosystem functions such as productivity. At other trophic levels, the plant microbiome has been shown to influence host plant fitness and function, and host-associated microbes have been proposed to influence ecosystem function through their role in defining the extended phenotype of host organisms However, the importance of the plant microbiome for ecosystem function has not been quantified in the context of the known importance of plant diversity and traits. Here, using a tree biodiversity-ecosystem functioning experiment, we provide strong support for the hypothesis that leaf bacterial diversity is positively linked to ecosystem productivity, even after accounting for the role of plant diversity. Our results also show that host species identity, functional identity and functional diversity are the main determinants of leaf bacterial community structure and diversity. Our study provides evidence of a positive correlation between plant-associated microbial diversity and terrestrial ecosystem productivity, and a new mechanism by which models of biodiversity-ecosystem functioning relationships can be improved.

  8. Cryptic diversity and ecosystem functioning: a complex tale of differential effects on decomposition.

    PubMed

    De Meester, N; Gingold, R; Rigaux, A; Derycke, S; Moens, T

    2016-10-01

    Marine ecosystems are experiencing accelerating population and species loss. Some ecosystem functions are decreasing and there is growing interest in the link between biodiversity and ecosystem functioning. The role of cryptic (morphologically identical but genetically distinct) species in this biodiversity-ecosystem functioning link is unclear and has not yet been formally tested. We tested if there is a differential effect of four cryptic species of the bacterivorous nematode Litoditis marina on the decomposition process of macroalgae. Bacterivorous nematodes can stimulate or slow down bacterial activity and modify the bacterial assemblage composition. Moreover, we tested if interspecific interactions among the four cryptic species influence the decomposition process. A laboratory experiment with both mono- and multispecific nematode cultures was conducted, and loss of organic matter and the activity of two key extracellular enzymes for the degradation of phytodetritus were assessed. L. marina mainly influenced qualitative aspects of the decomposition process rather than its overall rate: an effect of the nematodes on the enzymatic activities became manifest, although no clear nematode effect on bulk organic matter weight loss was found. We also demonstrated that species-specific effects on the decomposition process existed. Combining the four cryptic species resulted in high competition, with one dominant species, but without complete exclusion of other species. These interspecific interactions translated into different effects on the decomposition process. The species-specific differences indicated that each cryptic species may play an important and distinct role in ecosystem functioning. Functional differences may result in coexistence among very similar species.

  9. The maintenance of key biodiversity attributes through ecosystem restoration operations

    Treesearch

    Robert W. Gray; Bruce A. Blackwell

    2008-01-01

    The requirement to manage for key biodiversity attributes in dry forest ecosystems is mandated in the Forest Practices Code Act of British Columbia. These attributes include snags, large old trees, and large organic debris. In the Squamish Forest District dry forest restoration activities center on the use of thinning operations followed by prescribed fire to restore...

  10. Rare species support vulnerable functions in high-diversity ecosystems.

    PubMed

    Mouillot, David; Bellwood, David R; Baraloto, Christopher; Chave, Jerome; Galzin, Rene; Harmelin-Vivien, Mireille; Kulbicki, Michel; Lavergne, Sebastien; Lavorel, Sandra; Mouquet, Nicolas; Paine, C E Timothy; Renaud, Julien; Thuiller, Wilfried

    2013-01-01

    Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees), we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by ecosystems across

  11. Functional traits in agriculture: agrobiodiversity and ecosystem services.

    PubMed

    Wood, Stephen A; Karp, Daniel S; DeClerck, Fabrice; Kremen, Claire; Naeem, Shahid; Palm, Cheryl A

    2015-09-01

    Functional trait research has led to greater understanding of the impacts of biodiversity in ecosystems. Yet, functional trait approaches have not been widely applied to agroecosystems and understanding of the importance of agrobiodiversity remains limited to a few ecosystem processes and services. To improve this understanding, we argue here for a functional trait approach to agroecology that adopts recent advances in trait research for multitrophic and spatially heterogeneous ecosystems. We suggest that trait values should be measured across environmental conditions and agricultural management regimes to predict how ecosystem services vary with farm practices and environment. This knowledge should be used to develop management strategies that can be easily implemented by farmers to manage agriculture to provide multiple ecosystem services. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils

    NASA Astrophysics Data System (ADS)

    Smith, P.; Cotrufo, M. F.; Rumpel, C.; Paustian, K.; Kuikman, P. J.; Elliott, J. A.; McDowell, R.; Griffiths, R. I.; Asakawa, S.; Bustamante, M.; House, J. I.; Sobocká, J.; Harper, R.; Pan, G.; West, P. C.; Gerber, J. S.; Clark, J. M.; Adhya, T.; Scholes, R. J.; Scholes, M. C.

    2015-06-01

    Soils play a pivotal role in major global biogeochemical cycles (carbon, nutrient and water), while hosting the largest diversity of organisms on land. Because of this, soils deliver fundamental ecosystem services, and management to change a soil process in support of one ecosystem service can either provide co-benefits to other services or can result in trade-offs. In this critical review, we report the state-of-the-art understanding concerning the biogeochemical cycles and biodiversity in soil, and relate these to the provisioning, regulating, supporting and cultural ecosystem services which they underpin. We then outline key knowledge gaps and research challenges, before providing recommendations for management activities to support the continued delivery of ecosystem services from soils. We conclude that although there are knowledge gaps that require further research, enough is known to start improving soils globally. The main challenge is in finding ways to share knowledge with soil managers and policy-makers, so that best-practice management can be implemented. A key element of this knowledge sharing must be in raising awareness of the multiple ecosystem services underpinned by soils, and the natural capital they provide. The International Year of Soils in 2015 presents the perfect opportunity to begin a step-change in how we harness scientific knowledge to bring about more sustainable use of soils for a secure global society.

  13. Characterization Of Dissolved Organic Mattter In The Florida Keys Ecosystem

    NASA Astrophysics Data System (ADS)

    Adams, D. G.; Shank, G. C.

    2009-12-01

    Over the past few decades, Scleractinian coral populations in the Florida Keys have increasingly experienced mortality due to bleaching events as well as microbial mediated illnesses such as black band and white band disease. Such pathologies seem to be most correlated with elevated sea surface temperatures, increased UV exposures, and shifts in the microbial community living on the coral itself. Recent studies indicate that corals’ exposure to UV in the Florida Keys is primarily controlled by the concentration of CDOM (Chromophoric Dissolved Organic Matter) in the water column. Further, microbial community alterations may be linked to changes in concentration and chemical composition of the larger DOM (Dissolved Organic Matter) pool. Our research characterized the spatial and temporal properties of DOM in Florida Bay and along the Keys ecosystems using DOC analyses, in-situ water column optical measurements, and spectral analyses including absorbance and fluorescence measurements. We analyzed DOM characteristics along transects running from the mouth of the Shark River at the southwest base of the Everglades, through Florida Bay, and along near-shore Keys coastal waters. Two 12 hour time-series samplings were also performed at the Seven-Mile Bridge, the primary Florida Bay discharge channel to the lower Keys region. Photo-bleaching experiments showed that the chemical characteristics of the DOM pool are altered by exposure to solar radiation. Results also show that DOC (~0.8-5.8 mg C/L) and CDOM (~0.5-16.5 absorbance coefficient at 305nm) concentrations exhibit seasonal fluctuations in our study region. EEM analyses suggest seasonal transitions between primarily marine (summer) and terrestrial (winter) sources along the Keys. We are currently combining EEM-PARAFAC analysis with in-situ optical measurements to model changes in the spectral properties of DOM in the water column. Additionally, we are using stable δ13C isotopic analysis to further characterize DOM

  14. Biological factors of natural and artificial ecosystems stable (unstable) functioning

    NASA Astrophysics Data System (ADS)

    Pechurkin, Nikolai S.

    The problem of sustainable development of humanity on Earth and the problem of supporting human life in space have the same scientific and methodological bases. The key to solve both problems is a long term maintenance of balanced material cycle. As a whole, natural or artificial ecosystems are to be more closed than open, but their elements (links of systems) are to be substantially open in interactions with each other. Prolonged stable interactions of different links have to have unique joint results - closed material cycling or biotic turnover. It is necessary to include, at least, three types of main links into any system to support real material cycling: producers, consumers, reducers. Producer links are now under studies in many laboratories. It is evident that the higher productivity of link, the lower link stability. Especially, it concerns with parasite impact to plants. As usual, artificial ecosystems are more simple (incomplete) than natural ecosystems, sometimes, they have not enough links for prolonged stable functioning. For example, life support system for space flight can be incomplete in consumer link, having only some crew persons, instead of interacting populations of consumers. As for reducer link, it is necessary to "organize" a special coordinated work of microbial biocenoses to fulfill proper cycling. Possible evolution of links, their self development is a matter of special attention for the maintenance of prolonged stable functioning. It's the most danger for systems with populations of quickly reproducing, so-called, R - strategists, according to symbols of logistic equation. From another side, quick reproduction of R - strategists is able to increase artificial ecosystems and their links functioning. After some damages of system, R - strategist's link can be quickly "self repaired" up to level of normal functioning. Some experimental data of this kind and mathematical models are to be discussed in the paper. This work is supported by

  15. Water ecosystem service function assessment based on eco-hydrological process in Luanhe Basin,China

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Hao, C.; Qin, T.; Wang, G.; Weng, B.

    2012-12-01

    At present, ecological water are mainly occupied by a rapid development of social economic and population explosion, which seriously threat the ecological security and water security in watershed and regional scale. Due to the lack of a unified standard of measuring the benefit of water resource, social economic and ecosystem, the water allocation can't take place in social economic and ecosystem. The function which provided by water in terrestrial, aquatic and social economic system can be addressed through water ecosystem service function research, and it can guide the water allocation in water resource management. The function which provided by water in terrestrial, aquatic and social economic system can be addressed through water ecosystem service function research, and it can guide the water allocation in water resource management. Throughout the researches of water ecosystem service, a clear identification of the connection of water ecosystem service function has not been established, and eco-economic approach can't meet the practical requirement of water allocation. Based on "nature-artificiality" dual water cycle theory and eco-hydrological process, this paper proposes a connection and indicator system of water ecosystem service function. In approach, this paper establishes an integrated assessment approach through prototype observation technology, numerical simulation, physical simulation and modern geographic information technology. The core content is to couple an eco-hydrological model, which involves the key processes of distributed hydrological model (WEP), ecological model (CLM-DGVM), in terms of eco-hydrological process. This paper systematically evaluates the eco-hydrological process and evolution of Luanhe Basin in terms of precipitation, ET, runoff, groundwater, ecosystem's scale, form and distribution. According to the results of eco-hydrological process, this paper assesses the direct and derived service function. The result indicates that the

  16. Biogeochemical processes underpin ecosystem services

    USDA-ARS?s Scientific Manuscript database

    Elemental cycling is critical to the function of ecosystems and delivery of key ecosystem services because many of these elements are essential nutrients or detrimental toxicants that directly affect the health of organisms and ecosystems. A team of authors from North Carolina State University and ...

  17. Function key and shortcut key use in airway facilities.

    DOT National Transportation Integrated Search

    2003-02-01

    This document provides information on the function keys and shortcut keys used by systems in the Federal Aviation Administration : Airway Facilities (AF) work environment. It includes a catalog of the function keys and shortcut keys used by each syst...

  18. Tropical Marginal Seas: Priority Regions for Managing Marine Biodiversity and Ecosystem Function

    NASA Astrophysics Data System (ADS)

    McKinnon, A. David; Williams, Alan; Young, Jock; Ceccarelli, Daniela; Dunstan, Piers; Brewin, Robert J. W.; Watson, Reg; Brinkman, Richard; Cappo, Mike; Duggan, Samantha; Kelley, Russell; Ridgway, Ken; Lindsay, Dhugal; Gledhill, Daniel; Hutton, Trevor; Richardson, Anthony J.

    2014-01-01

    Tropical marginal seas (TMSs) are natural subregions of tropical oceans containing biodiverse ecosystems with conspicuous, valued, and vulnerable biodiversity assets. They are focal points for global marine conservation because they occur in regions where human populations are rapidly expanding. Our review of 11 TMSs focuses on three key ecosystems - coral reefs and emergent atolls, deep benthic systems, and pelagic biomes - and synthesizes, illustrates, and contrasts knowledge of biodiversity, ecosystem function, interaction between adjacent habitats, and anthropogenic pressures. TMSs vary in the extent that they have been subject to human influence - from the nearly pristine Coral Sea to the heavily exploited South China and Caribbean Seas - but we predict that they will all be similarly complex to manage because most span multiple national jurisdictions. We conclude that developing a structured process to identify ecologically and biologically significant areas that uses a set of globally agreed criteria is a tractable first step toward effective multinational and transboundary ecosystem management of TMSs.

  19. Tropical marginal seas: priority regions for managing marine biodiversity and ecosystem function.

    PubMed

    McKinnon, A David; Williams, Alan; Young, Jock; Ceccarelli, Daniela; Dunstan, Piers; Brewin, Robert J W; Watson, Reg; Brinkman, Richard; Cappo, Mike; Duggan, Samantha; Kelley, Russell; Ridgway, Ken; Lindsay, Dhugal; Gledhill, Daniel; Hutton, Trevor; Richardson, Anthony J

    2014-01-01

    Tropical marginal seas (TMSs) are natural subregions of tropical oceans containing biodiverse ecosystems with conspicuous, valued, and vulnerable biodiversity assets. They are focal points for global marine conservation because they occur in regions where human populations are rapidly expanding. Our review of 11 TMSs focuses on three key ecosystems-coral reefs and emergent atolls, deep benthic systems, and pelagic biomes-and synthesizes, illustrates, and contrasts knowledge of biodiversity, ecosystem function, interaction between adjacent habitats, and anthropogenic pressures. TMSs vary in the extent that they have been subject to human influence-from the nearly pristine Coral Sea to the heavily exploited South China and Caribbean Seas-but we predict that they will all be similarly complex to manage because most span multiple national jurisdictions. We conclude that developing a structured process to identify ecologically and biologically significant areas that uses a set of globally agreed criteria is a tractable first step toward effective multinational and transboundary ecosystem management of TMSs.

  20. Virus decomposition provides an important contribution to benthic deep-sea ecosystem functioning.

    PubMed

    Dell'Anno, Antonio; Corinaldesi, Cinzia; Danovaro, Roberto

    2015-04-21

    Viruses are key biological agents of prokaryotic mortality in the world oceans, particularly in deep-sea ecosystems where nearly all of the prokaryotic C production is transformed into organic detritus. However, the extent to which the decomposition of viral particles (i.e., organic material of viral origin) influences the functioning of benthic deep-sea ecosystems remains completely unknown. Here, using various independent approaches, we show that in deep-sea sediments an important fraction of viruses, once they are released by cell lysis, undergo fast decomposition. Virus decomposition rates in deep-sea sediments are high even at abyssal depths and are controlled primarily by the extracellular enzymatic activities that hydrolyze the proteins of the viral capsids. We estimate that on a global scale the decomposition of benthic viruses releases ∼37-50 megatons of C per year and thus represents an important source of labile organic compounds in deep-sea ecosystems. Organic material released from decomposed viruses is equivalent to 3 ± 1%, 6 ± 2%, and 12 ± 3% of the input of photosynthetically produced C, N, and P supplied through particles sinking to bathyal/abyssal sediments. Our data indicate that the decomposition of viruses provides an important, previously ignored contribution to deep-sea ecosystem functioning and has an important role in nutrient cycling within the largest ecosystem of the biosphere.

  1. Virus decomposition provides an important contribution to benthic deep-sea ecosystem functioning

    PubMed Central

    Dell’Anno, Antonio; Corinaldesi, Cinzia

    2015-01-01

    Viruses are key biological agents of prokaryotic mortality in the world oceans, particularly in deep-sea ecosystems where nearly all of the prokaryotic C production is transformed into organic detritus. However, the extent to which the decomposition of viral particles (i.e., organic material of viral origin) influences the functioning of benthic deep-sea ecosystems remains completely unknown. Here, using various independent approaches, we show that in deep-sea sediments an important fraction of viruses, once they are released by cell lysis, undergo fast decomposition. Virus decomposition rates in deep-sea sediments are high even at abyssal depths and are controlled primarily by the extracellular enzymatic activities that hydrolyze the proteins of the viral capsids. We estimate that on a global scale the decomposition of benthic viruses releases ∼37–50 megatons of C per year and thus represents an important source of labile organic compounds in deep-sea ecosystems. Organic material released from decomposed viruses is equivalent to 3 ± 1%, 6 ± 2%, and 12 ± 3% of the input of photosynthetically produced C, N, and P supplied through particles sinking to bathyal/abyssal sediments. Our data indicate that the decomposition of viruses provides an important, previously ignored contribution to deep-sea ecosystem functioning and has an important role in nutrient cycling within the largest ecosystem of the biosphere. PMID:25848024

  2. Rare Species Support Vulnerable Functions in High-Diversity Ecosystems

    PubMed Central

    Mouillot, David; Bellwood, David R.; Baraloto, Christopher; Chave, Jerome; Galzin, Rene; Harmelin-Vivien, Mireille; Kulbicki, Michel; Lavergne, Sebastien; Lavorel, Sandra; Mouquet, Nicolas; Paine, C. E. Timothy; Renaud, Julien; Thuiller, Wilfried

    2013-01-01

    Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees), we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by ecosystems across

  3. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils

    NASA Astrophysics Data System (ADS)

    Smith, P.; Cotrufo, M. F.; Rumpel, C.; Paustian, K.; Kuikman, P. J.; Elliott, J. A.; McDowell, R.; Griffiths, R. I.; Asakawa, S.; Bustamante, M.; House, J. I.; Sobocká, J.; Harper, R.; Pan, G.; West, P. C.; Gerber, J. S.; Clark, J. M.; Adhya, T.; Scholes, R. J.; Scholes, M. C.

    2015-11-01

    Soils play a pivotal role in major global biogeochemical cycles (carbon, nutrient, and water), while hosting the largest diversity of organisms on land. Because of this, soils deliver fundamental ecosystem services, and management to change a soil process in support of one ecosystem service can either provide co-benefits to other services or result in trade-offs. In this critical review, we report the state-of-the-art understanding concerning the biogeochemical cycles and biodiversity in soil, and relate these to the provisioning, regulating, supporting, and cultural ecosystem services which they underpin. We then outline key knowledge gaps and research challenges, before providing recommendations for management activities to support the continued delivery of ecosystem services from soils. We conclude that, although soils are complex, there are still knowledge gaps, and fundamental research is still needed to better understand the relationships between different facets of soils and the array of ecosystem services they underpin, enough is known to implement best practices now. There is a tendency among soil scientists to dwell on the complexity and knowledge gaps rather than to focus on what we do know and how this knowledge can be put to use to improve the delivery of ecosystem services. A significant challenge is to find effective ways to share knowledge with soil managers and policy makers so that best management can be implemented. A key element of this knowledge exchange must be to raise awareness of the ecosystems services underpinned by soils and thus the natural capital they provide. We know enough to start moving in the right direction while we conduct research to fill in our knowledge gaps. The lasting legacy of the International Year of Soils in 2015 should be for soil scientists to work together with policy makers and land managers to put soils at the centre of environmental policy making and land management decisions.

  4. Multitrophic functional diversity predicts ecosystem functioning in experimental assemblages of estuarine consumers.

    PubMed

    Lefcheck, Jonathan S; Duffy, J Emmett

    2015-11-01

    The use of functional traits to explain how biodiversity affects ecosystem functioning has attracted intense interest, yet few studies have a priori altered functional diversity, especially in multitrophic communities. Here, we manipulated multivariate functional diversity of estuarine grazers and predators within multiple levels of species richness to test how species richness and functional diversity predicted ecosystem functioning in a multitrophic food web. Community functional diversity was a better predictor than species richness for the majority of ecosystem properties, based on generalized linear mixed-effects models. Combining inferences from eight traits into a single multivariate index increased prediction accuracy of these models relative to any individual trait. Structural equation modeling revealed that functional diversity of both grazers and predators was important in driving final biomass within trophic levels, with stronger effects observed for predators. We also show that different species drove different ecosystem responses, with evidence for both sampling effects and complementarity. Our study extends experimental investigations of functional trait diversity to a multilevel food web, and demonstrates that functional diversity can be more accurate and effective than species richness in predicting community biomass in a food web context.

  5. Emergent Global Patterns of Ecosystem Structure and Function from a Mechanistic General Ecosystem Model

    PubMed Central

    Emmott, Stephen; Hutton, Jon; Lyutsarev, Vassily; Smith, Matthew J.; Scharlemann, Jörn P. W.; Purves, Drew W.

    2014-01-01

    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures. PMID:24756001

  6. Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model.

    PubMed

    Harfoot, Michael B J; Newbold, Tim; Tittensor, Derek P; Emmott, Stephen; Hutton, Jon; Lyutsarev, Vassily; Smith, Matthew J; Scharlemann, Jörn P W; Purves, Drew W

    2014-04-01

    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures.

  7. Linking Ecosystem Services Benefit Transfer Databases and Ecosystem Services Production Function Libraries

    EPA Science Inventory

    The quantification or estimation of the economic and non-economic values of ecosystem services can be done from a number of distinct approaches. For example, practitioners may use ecosystem services production function models (ESPFMs) for a particular location, or alternatively, ...

  8. Functional ecomorphology: Feedbacks between form and function in fluvial landscape ecosystems

    NASA Astrophysics Data System (ADS)

    Fisher, Stuart G.; Heffernan, James B.; Sponseller, Ryan A.; Welter, Jill R.

    2007-09-01

    The relationship between form and function has been a central organizing principle in biology throughout its history as a formal science. This concept has been relevant from molecules to organisms but loses meaning at population and community levels where study targets are abstract collectives and assemblages. Ecosystems include organisms and abiotic factors but ecosystem ecology too has developed until recently without a strong spatially explicit reference. Landscape ecology provides an opportunity to once again anneal form and function and to consider reciprocal causation between them. This ecomorphologic view can be applied at a variety of ecologically relevant scales and consists of an investigation of how geomorphology provides a structural template that shapes, and is shaped by ecological processes. Running water ecosystems illustrate several principles governing the interaction of landscape form and ecological function subsumed by the concept of "Functional Ecomorphology". Particularly lucrative are ecosystem-level interactions between geologic form and biogeochemical processes integrated by hydrologic flowpaths. While the utility of a flowpath-based approach is most apparent in streams, spatially explicit biogeochemical processing pervades all landscapes and may be of general ecological application.

  9. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices

    PubMed Central

    Gagic, Vesna; Bartomeus, Ignasi; Jonsson, Tomas; Taylor, Astrid; Winqvist, Camilla; Fischer, Christina; Slade, Eleanor M.; Steffan-Dewenter, Ingolf; Emmerson, Mark; Potts, Simon G.; Tscharntke, Teja; Weisser, Wolfgang; Bommarco, Riccardo

    2015-01-01

    Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se. PMID:25567651

  10. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function.

    PubMed

    Powell, Jeff R; Rillig, Matthias C

    2018-03-30

    Contents Summary I. pathways of influence and pervasiveness of effects II. AM fungal richness effects on ecosystem functions III. Other dimensions of biodiversity IV. Back to basics - primary axes of niche differentiation by AM fungi V. Functional diversity of AM fungi - a role for biological stoichiometry? VI. Past, novel and future ecosystems VII. Opportunities and the way forward Acknowledgements References SUMMARY: Arbuscular mycorrhizal (AM) fungi play important functional roles in ecosystems, including the uptake and transfer of nutrients, modification of the physical soil environment and alteration of plant interactions with other biota. Several studies have demonstrated the potential for variation in AM fungal diversity to also affect ecosystem functioning, mainly via effects on primary productivity. Diversity in these studies is usually characterized in terms of the number of species, unique evolutionary lineages or complementary mycorrhizal traits, as well as the ability of plants to discriminate among AM fungi in space and time. However, the emergent outcomes of these relationships are usually indirect, and thus context dependent, and difficult to predict with certainty. Here, we advocate a fungal-centric view of AM fungal biodiversity-ecosystem function relationships that focuses on the direct and specific links between AM fungal fitness and consequences for their roles in ecosystems, especially highlighting functional diversity in hyphal resource economics. We conclude by arguing that an understanding of AM fungal functional diversity is fundamental to determine whether AM fungi have a role in the exploitation of marginal/novel environments (whether past, present or future) and highlight avenues for future research. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  11. Regional zooplankton dispersal provides spatial insurance for ecosystem function.

    PubMed

    Symons, Celia C; Arnott, Shelley E

    2013-05-01

    Changing environmental conditions are affecting diversity and ecosystem function globally. Theory suggests that dispersal from a regional species pool may buffer against changes in local community diversity and ecosystem function after a disturbance through the establishment of functionally redundant tolerant species. The spatial insurance provided by dispersal may decrease through time after environmental change as the local community monopolizes resources and reduces community invasibility. To test for evidence of the spatial insurance hypothesis and to determine the role dispersal timing plays in this response we conducted a field experiment using crustacean zooplankton communities in a subarctic region that is expected to be highly impacted by climate change - Churchill, Canada. Three experiments were conducted where nutrients, salt, and dispersal were manipulated. The three experiments differed in time-since-disturbance that the dispersers were added. We found that coarse measures of diversity (i.e. species richness, evenness, and Shannon-Weiner diversity) were generally resistant to large magnitude disturbances, and that dispersal had the most impact on diversity when dispersers were added shortly after disturbance. Ecosystem functioning (chl-a) was degraded in disturbed communities, but dispersal recovered ecosystem function to undisturbed levels. This spatial insurance for ecosystem function was mediated through changes in community composition and the relative abundance of functional groups. Results suggest that regional diversity and habitat connectivity will be important in the future to maintain ecosystem function by introducing functionally redundant species to promote compensatory dynamics. © 2012 Blackwell Publishing Ltd.

  12. Species richness and biomass explain spatial turnover in ecosystem functioning across tropical and temperate ecosystems.

    PubMed

    Barnes, Andrew D; Weigelt, Patrick; Jochum, Malte; Ott, David; Hodapp, Dorothee; Haneda, Noor Farikhah; Brose, Ulrich

    2016-05-19

    Predicting ecosystem functioning at large spatial scales rests on our ability to scale up from local plots to landscapes, but this is highly contingent on our understanding of how functioning varies through space. Such an understanding has been hampered by a strong experimental focus of biodiversity-ecosystem functioning research restricted to small spatial scales. To address this limitation, we investigate the drivers of spatial variation in multitrophic energy flux-a measure of ecosystem functioning in complex communities-at the landscape scale. We use a structural equation modelling framework based on distance matrices to test how spatial and environmental distances drive variation in community energy flux via four mechanisms: species composition, species richness, niche complementarity and biomass. We found that in both a tropical and a temperate study region, geographical and environmental distance indirectly influence species richness and biomass, with clear evidence that these are the dominant mechanisms explaining variability in community energy flux over spatial and environmental gradients. Our results reveal that species composition and trait variability may become redundant in predicting ecosystem functioning at the landscape scale. Instead, we demonstrate that species richness and total biomass may best predict rates of ecosystem functioning at larger spatial scales. © 2016 The Author(s).

  13. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices.

    PubMed

    Gagic, Vesna; Bartomeus, Ignasi; Jonsson, Tomas; Taylor, Astrid; Winqvist, Camilla; Fischer, Christina; Slade, Eleanor M; Steffan-Dewenter, Ingolf; Emmerson, Mark; Potts, Simon G; Tscharntke, Teja; Weisser, Wolfgang; Bommarco, Riccardo

    2015-02-22

    Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Maximum entropy models of ecosystem functioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertram, Jason, E-mail: jason.bertram@anu.edu.au

    2014-12-05

    Using organism-level traits to deduce community-level relationships is a fundamental problem in theoretical ecology. This problem parallels the physical one of using particle properties to deduce macroscopic thermodynamic laws, which was successfully achieved with the development of statistical physics. Drawing on this parallel, theoretical ecologists from Lotka onwards have attempted to construct statistical mechanistic theories of ecosystem functioning. Jaynes’ broader interpretation of statistical mechanics, which hinges on the entropy maximisation algorithm (MaxEnt), is of central importance here because the classical foundations of statistical physics do not have clear ecological analogues (e.g. phase space, dynamical invariants). However, models based on themore » information theoretic interpretation of MaxEnt are difficult to interpret ecologically. Here I give a broad discussion of statistical mechanical models of ecosystem functioning and the application of MaxEnt in these models. Emphasising the sample frequency interpretation of MaxEnt, I show that MaxEnt can be used to construct models of ecosystem functioning which are statistical mechanical in the traditional sense using a savanna plant ecology model as an example.« less

  15. Functional consequences of realistic biodiversity changes in a marine ecosystem

    PubMed Central

    Bracken, Matthew E. S.; Friberg, Sara E.; Gonzalez-Dorantes, Cirse A.; Williams, Susan L.

    2008-01-01

    Declines in biodiversity have prompted concern over the consequences of species loss for the goods and services provided by natural ecosystems. However, relatively few studies have evaluated the functional consequences of realistic, nonrandom changes in biodiversity. Instead, most designs have used randomly selected assemblages from a local species pool to construct diversity gradients. It is therefore difficult, based on current evidence, to predict the functional consequences of realistic declines in biodiversity. In this study, we used tide pool microcosms to demonstrate that the effects of real-world changes in biodiversity may be very different from those of random diversity changes. Specifically, we measured the relationship between the diversity of a seaweed assemblage and its ability to use nitrogen, a key limiting nutrient in nearshore marine systems. We quantified nitrogen uptake using both experimental and model seaweed assemblages and found that natural increases in diversity resulted in enhanced rates of nitrogen use, whereas random diversity changes had no effect on nitrogen uptake. Our results suggest that understanding the real-world consequences of declining biodiversity will require addressing changes in species performance along natural diversity gradients and understanding the relationships between species' susceptibility to loss and their contributions to ecosystem functioning. PMID:18195375

  16. Soil fauna, soil properties and geo-ecosystem functioning

    NASA Astrophysics Data System (ADS)

    Cammeraat, L. H.

    2012-04-01

    The impact of soil fauna on soil processes is of utmost importance, as the activity of soil fauna directly affects soil quality. This is expressed by the direct effects of soil fauna on soil physical and soil chemical properties that not only have great importance to food production and ecosystems services, but also on weathering and hydrological and geomorphological processes. Soil animals can be perceived as ecosystem engineers that directly affect the flow of water, sediments and nutrients through terrestrial ecosystems. The biodiversity of animals living in the soil is huge and shows a huge range in size, functions and effects. Most work has been focused on only a few species such as earthworms and termites, but in general the knowledge on the effect of soil biota on soil ecosystem functioning is limited as it is for their impact on processes in the soil and on the soil surface. In this presentation we would like to review some of the impacts of soil fauna on soil properties that have implications for geo-ecosystem functioning and soil formation processes.

  17. Quantifying effects of biodiversity on ecosystem functioning across times and places†

    PubMed Central

    Isbell, Forest; Cowles, Jane; Dee, Laura E.; Loreau, Michel; Reich, Peter B.; Gonzalez, Andrew; Hector, Andy; Schmid, Bernhard

    2018-01-01

    Biodiversity loss decreases ecosystem functioning at the local scales at which species interact, but it remains unclear how biodiversity loss affects ecosystem functioning at the larger scales of space and time that are most relevant to biodiversity conservation and policy. Theory predicts that additional insurance effects of biodiversity on ecosystem functioning could emerge across time and space if species respond asynchronously to environmental variation and if species become increasingly dominant when and where they are most productive. Even if only a few dominant species maintain ecosystem functioning within a particular time and place, ecosystem functioning may be enhanced by many different species across many times and places (β-diversity). Here, we develop and apply a new approach to estimate these previously unquantified insurance effects of biodiversity on ecosystem functioning that arise due to species turnover across times and places. In a long-term (18-year) grassland plant diversity experiment, we find that total insurance effects are positive in sign and substantial in magnitude, amounting to 19% of the net biodiversity effect, mostly due to temporal insurance effects. Species loss can therefore reduce ecosystem functioning both locally and by eliminating species that would otherwise enhance ecosystem functioning across temporally fluctuating and spatially heterogeneous environments. PMID:29493062

  18. Quantifying effects of biodiversity on ecosystem functioning across times and places.

    PubMed

    Isbell, Forest; Cowles, Jane; Dee, Laura E; Loreau, Michel; Reich, Peter B; Gonzalez, Andrew; Hector, Andy; Schmid, Bernhard

    2018-06-01

    Biodiversity loss decreases ecosystem functioning at the local scales at which species interact, but it remains unclear how biodiversity loss affects ecosystem functioning at the larger scales of space and time that are most relevant to biodiversity conservation and policy. Theory predicts that additional insurance effects of biodiversity on ecosystem functioning could emerge across time and space if species respond asynchronously to environmental variation and if species become increasingly dominant when and where they are most productive. Even if only a few dominant species maintain ecosystem functioning within a particular time and place, ecosystem functioning may be enhanced by many different species across many times and places (β-diversity). Here, we develop and apply a new approach to estimate these previously unquantified insurance effects of biodiversity on ecosystem functioning that arise due to species turnover across times and places. In a long-term (18-year) grassland plant diversity experiment, we find that total insurance effects are positive in sign and substantial in magnitude, amounting to 19% of the net biodiversity effect, mostly due to temporal insurance effects. Species loss can therefore reduce ecosystem functioning both locally and by eliminating species that would otherwise enhance ecosystem functioning across temporally fluctuating and spatially heterogeneous environments. © 2018 John Wiley & Sons Ltd/CNRS.

  19. Structural and Functional Loss in Restored Wetland Ecosystems

    PubMed Central

    Moreno-Mateos, David; Power, Mary E.; Comín, Francisco A.; Yockteng, Roxana

    2012-01-01

    Wetlands are among the most productive and economically valuable ecosystems in the world. However, because of human activities, over half of the wetland ecosystems existing in North America, Europe, Australia, and China in the early 20th century have been lost. Ecological restoration to recover critical ecosystem services has been widely attempted, but the degree of actual recovery of ecosystem functioning and structure from these efforts remains uncertain. Our results from a meta-analysis of 621 wetland sites from throughout the world show that even a century after restoration efforts, biological structure (driven mostly by plant assemblages), and biogeochemical functioning (driven primarily by the storage of carbon in wetland soils), remained on average 26% and 23% lower, respectively, than in reference sites. Either recovery has been very slow, or postdisturbance systems have moved towards alternative states that differ from reference conditions. We also found significant effects of environmental settings on the rate and degree of recovery. Large wetland areas (>100 ha) and wetlands restored in warm (temperate and tropical) climates recovered more rapidly than smaller wetlands and wetlands restored in cold climates. Also, wetlands experiencing more (riverine and tidal) hydrologic exchange recovered more rapidly than depressional wetlands. Restoration performance is limited: current restoration practice fails to recover original levels of wetland ecosystem functions, even after many decades. If restoration as currently practiced is used to justify further degradation, global loss of wetland ecosystem function and structure will spread. PMID:22291572

  20. Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity.

    PubMed

    Langenheder, Silke; Bulling, Mark T; Solan, Martin; Prosser, James I

    2010-05-26

    With the recognition that environmental change resulting from anthropogenic activities is causing a global decline in biodiversity, much attention has been devoted to understanding how changes in biodiversity may alter levels of ecosystem functioning. Although environmental complexity has long been recognised as a major driving force in evolutionary processes, it has only recently been incorporated into biodiversity-ecosystem functioning investigations. Environmental complexity is expected to strengthen the positive effect of species richness on ecosystem functioning, mainly because it leads to stronger complementarity effects, such as resource partitioning and facilitative interactions among species when the number of available resource increases. Here we implemented an experiment to test the combined effect of species richness and environmental complexity, more specifically, resource richness on ecosystem functioning over time. We show, using all possible combinations of species within a bacterial community consisting of six species, and all possible combinations of three substrates, that diversity-functioning (metabolic activity) relationships change over time from linear to saturated. This was probably caused by a combination of limited complementarity effects and negative interactions among competing species as the experiment progressed. Even though species richness and resource richness both enhanced ecosystem functioning, they did so independently from each other. Instead there were complex interactions between particular species and substrate combinations. Our study shows clearly that both species richness and environmental complexity increase ecosystem functioning. The finding that there was no direct interaction between these two factors, but that instead rather complex interactions between combinations of certain species and resources underlie positive biodiversity ecosystem functioning relationships, suggests that detailed knowledge of how individual

  1. Bacterial Biodiversity-Ecosystem Functioning Relations Are Modified by Environmental Complexity

    PubMed Central

    Langenheder, Silke; Bulling, Mark T.; Solan, Martin; Prosser, James I.

    2010-01-01

    Background With the recognition that environmental change resulting from anthropogenic activities is causing a global decline in biodiversity, much attention has been devoted to understanding how changes in biodiversity may alter levels of ecosystem functioning. Although environmental complexity has long been recognised as a major driving force in evolutionary processes, it has only recently been incorporated into biodiversity-ecosystem functioning investigations. Environmental complexity is expected to strengthen the positive effect of species richness on ecosystem functioning, mainly because it leads to stronger complementarity effects, such as resource partitioning and facilitative interactions among species when the number of available resource increases. Methodology/Principal Findings Here we implemented an experiment to test the combined effect of species richness and environmental complexity, more specifically, resource richness on ecosystem functioning over time. We show, using all possible combinations of species within a bacterial community consisting of six species, and all possible combinations of three substrates, that diversity-functioning (metabolic activity) relationships change over time from linear to saturated. This was probably caused by a combination of limited complementarity effects and negative interactions among competing species as the experiment progressed. Even though species richness and resource richness both enhanced ecosystem functioning, they did so independently from each other. Instead there were complex interactions between particular species and substrate combinations. Conclusions/Significance Our study shows clearly that both species richness and environmental complexity increase ecosystem functioning. The finding that there was no direct interaction between these two factors, but that instead rather complex interactions between combinations of certain species and resources underlie positive biodiversity ecosystem functioning

  2. Consumer diversity across kingdoms supports multiple functions in a coastal ecosystem

    PubMed Central

    Hensel, Marc J. S.; Silliman, Brian R.

    2013-01-01

    The global biodiversity crisis impairs the valuable benefits ecosystems provide humans. These nature-generated benefits are defined by a multitude of different ecosystem functions that operate simultaneously. Although several studies have simulated species loss in communities and tracked the response of single functions such as productivity or nutrient cycling, these studies have involved relatively similar taxa, and seldom are strikingly different functions examined. With the exception of highly managed ecosystems such as agricultural fields, rarely are we interested in only one function being performed well. Instead, we rely on ecosystems to deliver several different functions at the same time. Here, we experimentally investigated the extinction impacts of dominant consumers in a salt marsh. These consumers are remarkably phylogenetically diverse, spanning two kingdoms (i.e., Animalia and Fungi). Our field studies reveal that a diverse consumer assemblage significantly enhances simultaneous functioning of disparate ecosystem processes (i.e., productivity, decomposition, and infiltration). Extreme functional and phylogenetic differences among consumers underlie this relationship. Each marsh consumer affected at least one different ecosystem function, and each individual function was affected by no more than two consumers. The implications of these findings are profound: If we want ecosystems to perform many different functions well, it is not just number of species that matter. Rather, the presence of species representing markedly different ecologies and biology is also essential to maximizing multiple functions. Moreover, this work emphasizes the need to incorporate both microcomponents and macrocomponents of food webs to accurately predict biodiversity declines on integrated-ecosystem functioning. PMID:24297926

  3. Science and Measurement Requirements for a Plant Physiology and Functional Types Mission: Measuring the Composition, Function and Health of Global Land and Coastal Ocean Ecosystems

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Rogez, Francois; Green, Rob; Ungar, Steve; Knox, Robert; Asner, Greg; Muller-Karger, Frank; Bissett, Paul; Chekalyuk, Alex; Dierssen, Heidi; hide

    2007-01-01

    This slide presentation reviews the proposed Plant Physiology and Functional Types (PPFT) Mission. The National Academy of Sciences Decadal Survey, placed a critical priority on a Mission to observe distribution and changes in ecosystem functions. The PPFT satellite mission provides the essential measurements needed to assess drivers of change in biodiversity and ecosystem services that affect human welfare. The presentation reviews the science questions that the mission will be designed to answer, the science rationale, the science measurements, the mission concept, the planned instrumentation, the calibration method, and key signal to noise ratios and uniformity requirements.

  4. Impacts of engineered nanomaterials on microbial community structure and function in natural and engineered ecosystems.

    PubMed

    Mohanty, Anee; Wu, Yichao; Cao, Bin

    2014-10-01

    In natural and engineered environments, microorganisms often exist as complex communities, which are key to the health of ecosystems and the success of bioprocesses in various engineering applications. With the rapid development of nanotechnology in recent years, engineered nanomaterials (ENMs) have been considered one type of emerging contaminants that pose great potential risks to the proper function of microbial communities in natural and engineered ecosystems. The impacts of ENMs on microorganisms have attracted increasing research attentions; however, most studies focused on the antimicrobial activities of ENMs at single cell and population level. Elucidating the influence of ENMs on microbial communities represents a critical step toward a comprehensive understanding of the ecotoxicity of ENMs. In this mini-review, we summarize and discuss recent research work on the impacts of ENMs on microbial communities in natural and engineered ecosystems, with an emphasis on their influences on the community structure and function. We also highlight several important research topics which may be of great interest to the research community.

  5. Increasing fish taxonomic and functional richness affects ecosystem properties of small headwater prairie streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Erika C.; Gido, Keith B.; Bello, Nora

    Stream fish can regulate their environment through direct and indirect pathways, and the relative influence of communities with different taxonomic and functional richness on ecosystem properties likely depends on habitat structure. Given this complexity, it is not surprising that observational studies of how stream fish communities influence ecosystems have shown mixed results. In this study, we evaluated the effect of an observed gradient of taxonomic (zero, one, two or three species) and functional (zero, one or two groups) richness of fishes on several key ecosystem properties in experimental stream mesocosms. Our study simulated small (less than two metres wide) headwatermore » prairie streams with a succession of three pool-riffle structures (upstream, middle and downstream) per mesocosm. Additionally, ecosystem responses included chlorophyll a from floating algal mats and benthic algae, benthic organic matter, macroinvertebrates (all as mass per unit area), algal filament length and stream metabolism (photosynthesis and respiration rate). Ecosystem responses were analysed individually using general linear mixed models. Significant treatment (taxonomic and functional richness) by habitat (pools and riffles) interactions were found for all but one ecosystem response variable. After accounting for location (upstream, middle and downstream) effects, the presence of one or two grazers resulted in shorter mean algal filament lengths in pools compared to no-fish controls. These observations suggest grazers can maintain short algal filaments in pools, which may inhibit long filaments from reaching the surface. Accordingly, floating algal mats decreased in mid- and downstream locations in grazer treatment relative to no-fish controls. At the scale of the entire reach, gross primary productivity and respiration were greater in treatments with two grazer species compared to mixed grazer/insectivore or control treatments. Lastly, the distribution of stream resources

  6. Increasing fish taxonomic and functional richness affects ecosystem properties of small headwater prairie streams

    DOE PAGES

    Martin, Erika C.; Gido, Keith B.; Bello, Nora; ...

    2016-04-06

    Stream fish can regulate their environment through direct and indirect pathways, and the relative influence of communities with different taxonomic and functional richness on ecosystem properties likely depends on habitat structure. Given this complexity, it is not surprising that observational studies of how stream fish communities influence ecosystems have shown mixed results. In this study, we evaluated the effect of an observed gradient of taxonomic (zero, one, two or three species) and functional (zero, one or two groups) richness of fishes on several key ecosystem properties in experimental stream mesocosms. Our study simulated small (less than two metres wide) headwatermore » prairie streams with a succession of three pool-riffle structures (upstream, middle and downstream) per mesocosm. Additionally, ecosystem responses included chlorophyll a from floating algal mats and benthic algae, benthic organic matter, macroinvertebrates (all as mass per unit area), algal filament length and stream metabolism (photosynthesis and respiration rate). Ecosystem responses were analysed individually using general linear mixed models. Significant treatment (taxonomic and functional richness) by habitat (pools and riffles) interactions were found for all but one ecosystem response variable. After accounting for location (upstream, middle and downstream) effects, the presence of one or two grazers resulted in shorter mean algal filament lengths in pools compared to no-fish controls. These observations suggest grazers can maintain short algal filaments in pools, which may inhibit long filaments from reaching the surface. Accordingly, floating algal mats decreased in mid- and downstream locations in grazer treatment relative to no-fish controls. At the scale of the entire reach, gross primary productivity and respiration were greater in treatments with two grazer species compared to mixed grazer/insectivore or control treatments. Lastly, the distribution of stream resources

  7. Research needs to better understand Lake Ontario ecosystem function: A workshop summary

    USGS Publications Warehouse

    Stewart, Thomas J.; Rudstam, Lars G.; Watkins, James M.; Johnson, Timothy B.; Weidel, Brian C.; Koops, Marten A.

    2016-01-01

    Lake Ontario investigators discussed and interpreted published and unpublished information during two workshops to assess our current understanding of Lake Ontario ecosystem function and to identify research needs to guide future research and monitoring activities. The purpose of this commentary is to summarize key investigative themes and hypotheses that emerged from the workshops. The outcomes of the workshop discussions are organized under four themes: spatial linkages and interactions, drivers of primary production, trophic transfer, and human interactions.

  8. Ecosystem functioning is enveloped by hydrometeorological variability.

    PubMed

    Pappas, Christoforos; Mahecha, Miguel D; Frank, David C; Babst, Flurin; Koutsoyiannis, Demetris

    2017-09-01

    Terrestrial ecosystem processes, and the associated vegetation carbon dynamics, respond differently to hydrometeorological variability across timescales, and so does our scientific understanding of the underlying mechanisms. Long-term variability of the terrestrial carbon cycle is not yet well constrained and the resulting climate-biosphere feedbacks are highly uncertain. Here we present a comprehensive overview of hydrometeorological and ecosystem variability from hourly to decadal timescales integrating multiple in situ and remote-sensing datasets characterizing extra-tropical forest sites. We find that ecosystem variability at all sites is confined within a hydrometeorological envelope across sites and timescales. Furthermore, ecosystem variability demonstrates long-term persistence, highlighting ecological memory and slow ecosystem recovery rates after disturbances. However, simulation results with state-of-the-art process-based models do not reflect this long-term persistent behaviour in ecosystem functioning. Accordingly, we develop a cross-time-scale stochastic framework that captures hydrometeorological and ecosystem variability. Our analysis offers a perspective for terrestrial ecosystem modelling and paves the way for new model-data integration opportunities in Earth system sciences.

  9. Impact of seasonal variation on soil bacterial diversity and ecosystem functioning

    NASA Astrophysics Data System (ADS)

    Amoo, Adenike Eunice; Oluranti Babalola, Olubukola

    2017-04-01

    Soil biodiversity boosts the functioning of the ecosystem thereby contributing to the provision of various ecosystem services. Understanding the link between biodiversity and ecosystem functioning and their reaction to environmental heterogeneity can maximize the contribution of soil microbes to ecosystem services. The diversity, abundance and function of microorganisms can be altered by seasonal variation. There is a dearth of information on how soil biodiversity respond to environmental changes. The impact of seasonal variation on bacterial communities and its effects on soil functioning in four South African forests was investigated. The samples were analysed for pH, moisture content, total carbon and nitrogen, soil nitrate and extractable phosphate. High-throughput sequencing and quantitative PCR were used to determine the diversity and abundance of bacteria. Community level physiological profiles (CLPPs) were measured using the MicroResp™ method. Enzyme activities were additionally used as proxy for ecosystem functions. The functional genes for nitrification and phosphate solubilisation were also measured. Seasonal variation has strong effects on bacterial communities and consequently soil processes. A reduction in biodiversity has direct results on soil ecosystem functioning.

  10. Functional complexity and ecosystem stability: an experimental approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Voris, P.; O'Neill, R.V.; Shugart, H.H.

    1978-01-01

    The complexity-stability hypothesis was experimentally tested using intact terrestrial microcosms. Functional complexity was defined as the number and significance of component interactions (i.e., population interactions, physical-chemical reactions, biological turnover rates) influenced by nonlinearities, feedbacks, and time delays. It was postulated that functional complexity could be nondestructively measured through analysis of a signal generated from the system. Power spectral analysis of hourly CO/sub 2/ efflux, from eleven old-field microcosms, was analyzed for the number of low frequency peaks and used to rank the functional complexity of each system. Ranking of ecosystem stability was based on the capacity of the system tomore » retain essential nutrients and was measured by net loss of Ca after the system was stressed. Rank correlation supported the hypothesis that increasing ecosystem functional complexity leads to increasing ecosystem stability. The results indicated that complex functional dynamics can serve to stabilize the system. The results also demonstrated that microcosms are useful tools for system-level investigations.« less

  11. Diverse effects of invasive ecosystem engineers on marine biodiversity and ecosystem functions: A global review and meta-analysis.

    PubMed

    Guy-Haim, Tamar; Lyons, Devin A; Kotta, Jonne; Ojaveer, Henn; Queirós, Ana M; Chatzinikolaou, Eva; Arvanitidis, Christos; Como, Serena; Magni, Paolo; Blight, Andrew J; Orav-Kotta, Helen; Somerfield, Paul J; Crowe, Tasman P; Rilov, Gil

    2018-03-01

    Invasive ecosystem engineers (IEE) are potentially one of the most influential types of biological invaders. They are expected to have extensive ecological impacts by altering the physical-chemical structure of ecosystems, thereby changing the rules of existence for a broad range of resident biota. To test the generality of this expectation, we used a global systematic review and meta-analysis to examine IEE effects on the abundance of individual species and communities, biodiversity (using several indices) and ecosystem functions, focusing on marine and estuarine environments. We found that IEE had a significant effect (positive and negative) in most studies testing impacts on individual species, but the overall (cumulative) effect size was small and negative. Many individual studies showed strong IEE effects on community abundance and diversity, but the direction of effects was variable, leading to statistically non-significant overall effects in most categories. In contrast, there was a strong overall effect on most ecosystem functions we examined. IEE negatively affected metabolic functions and primary production, but positively affected nutrient flux, sedimentation and decomposition. We use the results to develop a conceptual model by highlighting pathways whereby IEE impact communities and ecosystem functions, and identify several sources of research bias in the IEE-related invasion literature. Only a few of the studies simultaneously quantified IEE effects on community/diversity and ecosystem functions. Therefore, understanding how IEE may alter biodiversity-ecosystem function relationships should be a primary focus of future studies of invasion biology. Moreover, the clear effects of IEE on ecosystem functions detected in our study suggest that scientists and environmental managers ought to examine how the effects of IEE might be manifested in the services that marine ecosystems provide to humans. © 2017 John Wiley & Sons Ltd.

  12. Parasites as drivers of key processes in aquatic ecosystems: Facts and future directions.

    PubMed

    Sures, B; Nachev, M; Pahl, M; Grabner, D; Selbach, C

    2017-09-01

    Despite the advances in our understanding of the ecological importance of parasites that we have made in recent years, we are still far away from having a complete picture of the ecological implications connected to parasitism. In the present paper we highlight key issues that illustrate (1) important contributions of parasites to biodiversity, (2) their integral role in ecosystems, (3) as well as their ecological effects as keystone species (4) and in biological invasion processes. By using selected examples from aquatic ecosystems we want to provide an insight and generate interest into the topic, and want to show directions for future research in the field of ecological parasitology. This may help to convince more parasitologists and ecologists contributing and advancing our understanding of the complex and fascinating interplay of parasites, hosts and ecosystems. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Ecosystem services provided by waterbirds.

    PubMed

    Green, Andy J; Elmberg, Johan

    2014-02-01

    Ecosystem services are ecosystem processes that directly or indirectly benefit human well-being. There has been much recent literature identifying different services and the communities and species that provide them. This is a vital first step towards management and maintenance of these services. In this review, we specifically address the waterbirds, which play key functional roles in many aquatic ecosystems, including as predators, herbivores and vectors of seeds, invertebrates and nutrients, although these roles have often been overlooked. Waterbirds can maintain the diversity of other organisms, control pests, be effective bioindicators of ecological conditions, and act as sentinels of potential disease outbreaks. They also provide important provisioning (meat, feathers, eggs, etc.) and cultural services to both indigenous and westernized societies. We identify key gaps in the understanding of ecosystem services provided by waterbirds and areas for future research required to clarify their functional role in ecosystems and the services they provide. We consider how the economic value of these services could be calculated, giving some examples. Such valuation will provide powerful arguments for waterbird conservation. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  14. Soil ecosystem functioning under climate change: plant species and community effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kardol, Paul; Cregger, Melissa; Campany, Courtney E

    2010-01-01

    Feedbacks of terrestrial ecosystems to climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the microbial communities that feed on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and water availability. Specifically, we collected soils at the plot level (plant community soils), and beneathmore » dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: 1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activities, and soil nematodes. Multiple climate change factors can interact to shape ecosystems, but in this case, those interactions were largely driven by changes in water availability. 2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning and this impact was not obvious when looking at plant community soils. Climate change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. In sum, these results indicate that accurate assessments of climate change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate change-induced shifts in plant community composition will likely modify or counteract the

  15. Soil ecosystem functioning under climate change: plant species and community effects.

    PubMed

    Kardol, Paul; Cregger, Melissa A; Campany, Courtney E; Classen, Aimee T

    2010-03-01

    Feedbacks of terrestrial ecosystems to atmospheric and climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the soil communities that depend on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and precipitation in Tennessee (USA). Specifically, we collected soils at the plot level (plant community soils) and beneath dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: (1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activity, and soil nematodes. Multiple climate-change factors can interact to shape ecosystems, but in our study, those interactions were largely driven by changes in water. (2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning, and this impact was not obvious when looking at plant community soils. Climate-change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. These results indicate that accurate assessments of climate-change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate-change-induced shifts in plant community composition will likely modify or counteract the

  16. Changing seasonality of Arctic hydrology disrupts key biotic linkages in Arctic aquatic ecosystems.

    NASA Astrophysics Data System (ADS)

    Deegan, L.; MacKenzie, C.; Peterson, B. J.; Fishscape Project

    2011-12-01

    Arctic grayling (Thymallus arcticus) is an important circumpolar species that provide a model system for understanding the impacts of changing seasonality on arctic ecosystem function. Grayling serve as food for other biota, including lake trout, birds and humans, and act as top-down controls in stream ecosystems. In Arctic tundra streams, grayling spend their summers in streams but are obligated to move back into deep overwintering lakes in the fall. Climatic change that affects the seasonality of river hydrology could have a significant impact on grayling populations: grayling may leave overwintering lakes sooner in the spring and return later in the fall due to a longer open water season, but the migration could be disrupted by drought due to increased variability in discharge. In turn, a shorter overwintering season may impact lake trout dynamics in the lakes, which may rely on the seasonal inputs of stream nutrients in the form of migrating grayling into these oligotrophic lakes. To assess how shifting seasonality of Arctic river hydrology may disrupt key trophic linkages within and between lake and stream components of watersheds on the North Slope of the Brooks Mountain Range, Alaska, we have undertaken new work on grayling and lake trout population and food web dynamics. We use Passive Integrated Transponder (PIT) tags coupled with stream-width antenna units to monitor grayling movement across Arctic tundra watersheds during the summer, and into overwintering habitat in the fall. Results indicate that day length may prime grayling migration readiness, but that flooding events are likely the cue grayling use to initiate migration in to overwintering lakes. Many fish used high discharge events in the stream as an opportunity to move into lakes. Stream and lake derived stable isotopes also indicate that lake trout rely on these seasonally transported inputs of stream nutrients for growth. Thus, changes in the seasonality of river hydrology may have broader

  17. Functional approach in estimation of cultural ecosystem services of recreational areas

    NASA Astrophysics Data System (ADS)

    Sautkin, I. S.; Rogova, T. V.

    2018-01-01

    The article is devoted to the identification and analysis of cultural ecosystem services of recreational areas from the different forest plant functional groups in the suburbs of Kazan. The study explored two cultural ecosystem services supplied by forest plants by linking these services to different plant functional traits. Information on the functional traits of 76 plants occurring in the forest ecosystems of the investigated area was collected from reference books on the biological characteristics of plant species. Analysis of these species and traits with the Ward clustering method yielded four functional groups with different potentials for delivering ecosystem services. The results show that the contribution of species diversity to services can be characterized through the functional traits of plants. This proves that there is a stable relationship between biodiversity and the quality and quantity of ecosystem services. The proposed method can be extended to other types of services (regulating and supporting). The analysis can be used in the socio-economic assessment of natural ecosystems for recreation and other uses.

  18. Understanding the structure and functioning of polar pelagic ecosystems to predict the impacts of change

    PubMed Central

    Drinkwater, K. F.; Grant, S. M.; Heymans, J. J.; Hofmann, E. E.; Hunt, G. L.; Johnston, N. M.

    2016-01-01

    The determinants of the structure, functioning and resilience of pelagic ecosystems across most of the polar regions are not well known. Improved understanding is essential for assessing the value of biodiversity and predicting the effects of change (including in biodiversity) on these ecosystems and the services they maintain. Here we focus on the trophic interactions that underpin ecosystem structure, developing comparative analyses of how polar pelagic food webs vary in relation to the environment. We highlight that there is not a singular, generic Arctic or Antarctic pelagic food web, and, although there are characteristic pathways of energy flow dominated by a small number of species, alternative routes are important for maintaining energy transfer and resilience. These more complex routes cannot, however, provide the same rate of energy flow to highest trophic-level species. Food-web structure may be similar in different regions, but the individual species that dominate mid-trophic levels vary across polar regions. The characteristics (traits) of these species are also different and these differences influence a range of food-web processes. Low functional redundancy at key trophic levels makes these ecosystems particularly sensitive to change. To develop models for projecting responses of polar ecosystems to future environmental change, we propose a conceptual framework that links the life histories of pelagic species and the structure of polar food webs. PMID:27928038

  19. Understanding the structure and functioning of polar pelagic ecosystems to predict the impacts of change.

    PubMed

    Murphy, E J; Cavanagh, R D; Drinkwater, K F; Grant, S M; Heymans, J J; Hofmann, E E; Hunt, G L; Johnston, N M

    2016-12-14

    The determinants of the structure, functioning and resilience of pelagic ecosystems across most of the polar regions are not well known. Improved understanding is essential for assessing the value of biodiversity and predicting the effects of change (including in biodiversity) on these ecosystems and the services they maintain. Here we focus on the trophic interactions that underpin ecosystem structure, developing comparative analyses of how polar pelagic food webs vary in relation to the environment. We highlight that there is not a singular, generic Arctic or Antarctic pelagic food web, and, although there are characteristic pathways of energy flow dominated by a small number of species, alternative routes are important for maintaining energy transfer and resilience. These more complex routes cannot, however, provide the same rate of energy flow to highest trophic-level species. Food-web structure may be similar in different regions, but the individual species that dominate mid-trophic levels vary across polar regions. The characteristics (traits) of these species are also different and these differences influence a range of food-web processes. Low functional redundancy at key trophic levels makes these ecosystems particularly sensitive to change. To develop models for projecting responses of polar ecosystems to future environmental change, we propose a conceptual framework that links the life histories of pelagic species and the structure of polar food webs. © 2016 The Authors.

  20. Ontogenetic functional diversity: size structure of a keystone predator drives functioning of a complex ecosystem.

    PubMed

    Rudolf, Volker H W; Rasmussen, Nick L

    2013-05-01

    A central challenge in community ecology is to understand the connection between biodiversity and the functioning of ecosystems. While traditional approaches have largely focused on species-level diversity, increasing evidence indicates that there exists substantial ecological diversity among individuals within species. By far, the largest source of this intraspecific diversity stems from variation among individuals in ontogenetic stage and size. Although such ontogenetic shifts are ubiquitous in natural communities, whether and how they scale up to influence the structure and functioning of complex ecosystems is largely unknown. Here we take an experimental approach to examine the consequences of ontogenetic niche shifts for the structure of communities and ecosystem processes. In particular we experimentally manipulated the stage structure in a keystone predator, larvae of the dragonfly Anax junius, in complex experimental pond communities to test whether changes in the population stage or size structure of a keystone species scale up to alter community structure and ecosystem processes, and how functional differences scale with relative differences in size among stages. We found that the functional role of A. junius was stage-specific. Altering what stages were present in a pond led to concurrent changes in community structure, primary producer biomass (periphyton and phytoplankton), and ultimately altered ecosystem processes (respiration and net primary productivity), indicating a strong, but stage-specific, trophic cascade. Interestingly, the stage-specific effects did not simply scale with size or biomass of the predator, but instead indicated clear ontogenetic niche shifts in ecological interactions. Thus, functional differences among stages within a keystone species scaled up to alter the functioning of entire ecosystems. Therefore, our results indicate that the classical approach of assuming an average functional role of a species can be misleading because

  1. Biodiversity, ecosystem functioning, and classical biological control.

    PubMed

    Evans, Edward W

    Increasing concern over worldwide loss of biodiversity has led ecologists to focus intently on how ecosystem functioning may depend on diversity. In applied entomology, there is longstanding interest in the issue, especially as regards the importance of natural enemy diversity for pest control. Here I review parallels in interest, conceptual framework, and conclusions concerning biodiversity as it affects ecosystem functioning in general and classical biological control in particular. Whereas the former focuses on implications of loss of diversity, the latter focuses on implications of increase in diversity as additional species of natural enemies are introduced to novel communities in new geographic regions for insect pest and weed control. Many field studies now demonstrate that ecosystem functioning, e.g., as reflected in primary productivity, is enhanced and stabilized over time by high diversity as the community increases in its efficiency in exploiting available resources. Similarly, there is growing field support for the generalization that increasing species and functional diversity of natural enemies leads to increasing pest suppression. Nonetheless a central concern of classical biological control in particular, as it seeks to minimize non-target effects, remains as to whether one or a few species of natural enemies can provide sufficient pest control.

  2. Forecasting Urban Forest Ecosystem Structure, Function, and Vulnerability

    NASA Astrophysics Data System (ADS)

    Steenberg, James W. N.; Millward, Andrew A.; Nowak, David J.; Robinson, Pamela J.; Ellis, Alexis

    2017-03-01

    The benefits derived from urban forest ecosystems are garnering increasing attention in ecological research and municipal planning. However, because of their location in heterogeneous and highly-altered urban landscapes, urban forests are vulnerable and commonly suffer disproportionate and varying levels of stress and disturbance. The objective of this study is to assess and analyze the spatial and temporal changes, and potential vulnerability, of the urban forest resource in Toronto, Canada. This research was conducted using a spatially-explicit, indicator-based assessment of vulnerability and i-Tree Forecast modeling of temporal changes in forest structure and function. Nine scenarios were simulated for 45 years and model output was analyzed at the ecosystem and municipal scale. Substantial mismatches in ecological processes between spatial scales were found, which can translate into unanticipated loss of function and social inequities if not accounted for in planning and management. At the municipal scale, the effects of Asian longhorned beetle and ice storm disturbance were far less influential on structure and function than changes in management actions. The strategic goals of removing invasive species and increasing tree planting resulted in a decline in carbon storage and leaf biomass. Introducing vulnerability parameters in the modeling increased the spatial heterogeneity in structure and function while expanding the disparities of resident access to ecosystem services. There was often a variable and uncertain relationship between vulnerability and ecosystem structure and function. Vulnerability assessment and analysis can provide strategic planning initiatives with valuable insight into the processes of structural and functional change resulting from management intervention.

  3. Forecasting Urban Forest Ecosystem Structure, Function, and Vulnerability.

    PubMed

    Steenberg, James W N; Millward, Andrew A; Nowak, David J; Robinson, Pamela J; Ellis, Alexis

    2017-03-01

    The benefits derived from urban forest ecosystems are garnering increasing attention in ecological research and municipal planning. However, because of their location in heterogeneous and highly-altered urban landscapes, urban forests are vulnerable and commonly suffer disproportionate and varying levels of stress and disturbance. The objective of this study is to assess and analyze the spatial and temporal changes, and potential vulnerability, of the urban forest resource in Toronto, Canada. This research was conducted using a spatially-explicit, indicator-based assessment of vulnerability and i-Tree Forecast modeling of temporal changes in forest structure and function. Nine scenarios were simulated for 45 years and model output was analyzed at the ecosystem and municipal scale. Substantial mismatches in ecological processes between spatial scales were found, which can translate into unanticipated loss of function and social inequities if not accounted for in planning and management. At the municipal scale, the effects of Asian longhorned beetle and ice storm disturbance were far less influential on structure and function than changes in management actions. The strategic goals of removing invasive species and increasing tree planting resulted in a decline in carbon storage and leaf biomass. Introducing vulnerability parameters in the modeling increased the spatial heterogeneity in structure and function while expanding the disparities of resident access to ecosystem services. There was often a variable and uncertain relationship between vulnerability and ecosystem structure and function. Vulnerability assessment and analysis can provide strategic planning initiatives with valuable insight into the processes of structural and functional change resulting from management intervention.

  4. Insights into functional bacterial diversity and its effects on Alpine bog ecosystem functioning.

    PubMed

    Bragina, Anastasia; Berg, Christian; Müller, Henry; Moser, Daniel; Berg, Gabriele

    2013-01-01

    Plant-associated bacteria are important for the growth and health of their host, but little is known about its functional diversity and impact on ecosystem functioning. We studied bacterial nitrogen fixation and methane oxidation from indicator Sphagnum mosses in Alpine bogs to test a hypothesis that the plant microbiome contained different functional patterns depending on their functions within the ecosystem. A high abundance and diversity of nitrogenase genes were detected, mostly specific for each Sphagnum. In contrast, methanotrophs formed highly similar patterns despite a high abundance and diversity of methane monooxygenase genes. Our hypothesis was supported by these contrasting functional patterns together with the result that the Sphagnum sporophyte contained a high proportion of specific diazotrophs (45.5%) but no potential methanotrophs. While essential for plant growth under nutrient-limited conditions, nitrogen-fixing bacteria were highly specific and transferred with the sporophyte unlike the ubiquitous methanotrophs which are important for the climate-relevant ecosystem itself.

  5. Detecting Subtle Shifts in Ecosystem Functioning in a Dynamic Estuarine Environment

    PubMed Central

    Pratt, Daniel R.; Lohrer, Andrew M.; Thrush, Simon F.; Hewitt, Judi E.; Townsend, Michael; Cartner, Katie; Pilditch, Conrad A.; Harris, Rachel J.; van Colen, Carl; Rodil, Iván F.

    2015-01-01

    Identifying the effects of stressors before they impact ecosystem functioning can be challenging in dynamic, heterogeneous ‘real-world’ ecosystems. In aquatic systems, for example, reductions in water clarity can limit the light available for photosynthesis, with knock-on consequences for secondary consumers, though in naturally turbid wave-swept estuaries, detecting the effects of elevated turbidity can be difficult. The objective of this study was to investigate the effects of shading on ecosystem functions mediated by sandflat primary producers (microphytobenthos) and deep-dwelling surface-feeding macrofauna (Macomona liliana; Bivalvia, Veneroida, Tellinidae). Shade cloths (which reduced incident light intensity by ~80%) were deployed on an exposed, intertidal sandflat to experimentally stress the microphytobenthic community associated with the sediment surface. After 13 weeks, sediment properties, macrofauna and fluxes of oxygen and inorganic nutrients across the sediment-water interface were measured. A multivariate metric of ecosystem function (MF) was generated by combining flux-based response variables, and distance-based linear models were used to determine shifts in the drivers of ecosystem function between non-shaded and shaded plots. No significant differences in MF or in the constituent ecosystem function variables were detected between the shaded and non-shaded plots. However, shading reduced the total explained variation in MF (from 64% in non-shaded plots to 15% in shaded plots) and affected the relative influence of M. liliana and other explanatory variables on MF. This suggests that although shade stress may shift the drivers of ecosystem functioning (consistent with earlier investigations of shading effects on sandflat interaction networks), ecosystem functions appear to have a degree of resilience to those changes. PMID:26214854

  6. Biodiversity effects on ecosystem functioning change along environmental stress gradients.

    PubMed

    Steudel, Bastian; Hector, Andy; Friedl, Thomas; Löfke, Christian; Lorenz, Maike; Wesche, Moritz; Kessler, Michael; Gessner, Mark

    2012-12-01

    Positive relationship between biodiversity and ecosystem functioning has been observed in many studies, but how this relationship is affected by environmental stress is largely unknown. To explore this influence, we measured the biomass of microalgae grown in microcosms along two stress gradients, heat and salinity, and compared our results with 13 published case studies that measured biodiversity-ecosystem functioning relationships under varying environmental conditions. We found that positive effects of biodiversity on ecosystem functioning decreased with increasing stress intensity in absolute terms. However, in relative terms, increasing stress had a stronger negative effect on low-diversity communities. This shows that more diverse biotic communities are functionally less susceptible to environmental stress, emphasises the need to maintain high levels of biodiversity as an insurance against impacts of changing environmental conditions and sets the stage for exploring the mechanisms underlying biodiversity effects in stressed ecosystems. © 2012 Blackwell Publishing Ltd/CNRS.

  7. Resilience and stability of a pelagic marine ecosystem

    PubMed Central

    Lindegren, Martin; Checkley, David M.; Ohman, Mark D.; Koslow, J. Anthony; Goericke, Ralf

    2016-01-01

    The accelerating loss of biodiversity and ecosystem services worldwide has accentuated a long-standing debate on the role of diversity in stabilizing ecological communities and has given rise to a field of research on biodiversity and ecosystem functioning (BEF). Although broad consensus has been reached regarding the positive BEF relationship, a number of important challenges remain unanswered. These primarily concern the underlying mechanisms by which diversity increases resilience and community stability, particularly the relative importance of statistical averaging and functional complementarity. Our understanding of these mechanisms relies heavily on theoretical and experimental studies, yet the degree to which theory adequately explains the dynamics and stability of natural ecosystems is largely unknown, especially in marine ecosystems. Using modelling and a unique 60-year dataset covering multiple trophic levels, we show that the pronounced multi-decadal variability of the Southern California Current System (SCCS) does not represent fundamental changes in ecosystem functioning, but a linear response to key environmental drivers channelled through bottom-up and physical control. Furthermore, we show strong temporal asynchrony between key species or functional groups within multiple trophic levels caused by opposite responses to these drivers. We argue that functional complementarity is the primary mechanism reducing community variability and promoting resilience and stability in the SCCS. PMID:26763697

  8. Spatial Assessment of Forest Ecosystem Functions and Services using Human Relating Factors for SDG

    NASA Astrophysics Data System (ADS)

    Song, C.; Lee, W. K.; Jeon, S. W.; Kim, T.; Lim, C. H.

    2015-12-01

    Application of ecosystem service concept in environmental related decision making could be numerical and objective standard for policy maker between preserving and developing perspective of environment. However, pursuing maximum benefit from natural capital through ecosystem services caused failure by losing ecosystem functions through its trade-offs. Therefore, difference between ecosystem functions and services were demonstrated and would apply human relating perspectives. Assessment results of ecosystem functions and services can be divided 3 parts. Tree growth per year set as the ecosystem function factor and indicated through so called pure function map. After that, relating functions can be driven such as water conservation, air pollutant purification, climate change regulation, and timber production. Overall process and amount are numerically quantified. These functional results can be transferred to ecosystem services by multiplying economic unit value, so function reflecting service maps can be generated. On the other hand, above services, to implement more reliable human demand, human reflecting service maps are also be developed. As the validation, quantified ecosystem functions are compared with former results through pixel based analysis. Three maps are compared, and through comparing difference between ecosystem function and services and inversed trends in function based and human based service are analysed. In this study, we could find differences in PF, FRS, and HRS in relation to based ecosystem conditions. This study suggests that the differences in PF, FRS, and HRS should be understood in the decision making process for sustainable management of ecosystem services. Although the analysis is based on in sort existing process separation, it is important to consider the possibility of different usage of ecosystem function assessment results and ecosystem service assessment results in SDG policy making. Furthermore, process based functional approach

  9. Indicators of ecosystem function identify alternate states in the sagebrush steppe.

    PubMed

    Kachergis, Emily; Rocca, Monique E; Fernandez-Gimenez, Maria E

    2011-10-01

    Models of ecosystem change that incorporate nonlinear dynamics and thresholds, such as state-and-transition models (STMs), are increasingly popular tools for land management decision-making. However, few models are based on systematic collection and documentation of ecological data, and of these, most rely solely on structural indicators (species composition) to identify states and transitions. As STMs are adopted as an assessment framework throughout the United States, finding effective and efficient ways to create data-driven models that integrate ecosystem function and structure is vital. This study aims to (1) evaluate the utility of functional indicators (indicators of rangeland health, IRH) as proxies for more difficult ecosystem function measurements and (2) create a data-driven STM for the sagebrush steppe of Colorado, USA, that incorporates both ecosystem structure and function. We sampled soils, plant communities, and IRH at 41 plots with similar clayey soils but different site histories to identify potential states and infer the effects of management practices and disturbances on transitions. We found that many IRH were correlated with quantitative measures of functional indicators, suggesting that the IRH can be used to approximate ecosystem function. In addition to a reference state that functions as expected for this soil type, we identified four biotically and functionally distinct potential states, consistent with the theoretical concept of alternate states. Three potential states were related to management practices (chemical and mechanical shrub treatments and seeding history) while one was related only to ecosystem processes (erosion). IRH and potential states were also related to environmental variation (slope, soil texture), suggesting that there are environmental factors within areas with similar soils that affect ecosystem dynamics and should be noted within STMs. Our approach generated an objective, data-driven model of ecosystem dynamics

  10. The use of wooden sticks to assess stream ecosystem functioning: comparison with leaf breakdown rates.

    PubMed

    Arroita, Maite; Aristi, Ibon; Flores, Lorea; Larrañaga, Aitor; Díez, Joserra; Mora, Juanita; Romaní, Anna M; Elosegi, Arturo

    2012-12-01

    Breakdown of organic matter is a key process in streams and rivers, and thus, it has potential to assess functional impairment of river ecosystems. Because the litter-bag method commonly used to measure leaf breakdown is time consuming and expensive, several authors proposed to measure breakdown of wooden sticks instead. Nevertheless, currently there is little information on the performance of wooden sticks versus that of leaves. We compared the breakdown of tongue depressors made of untreated poplar wood, to that of six common leaf species in two large streams in the Basque Country (northern Spain), one polluted and the other unpolluted. Breakdown rates ranged from 0.0011 to 0.0120 day(-1), and were significantly lower in the polluted stream. Wooden sticks performed very similarly to leaves, but were less affected by flood-induced physical abrasion. The ranking of the materials according to their breakdown rate was consistent, irrespective of the stream. The experiments with leaves were 10 times more costly for breakdown rate, 4 times if we include the rest of the variables measured. Therefore wooden sticks offer a promising tool to assess river ecosystem functioning, although more research is necessary to define the thresholds for ecosystem functional impairment. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning

    PubMed Central

    Seidl, Rupert; Rammer, Werner; Spies, Thomas A.

    2015-01-01

    Disturbances are key drivers of forest ecosystem dynamics, and forests are well adapted to their natural disturbance regimes. However, as a result of climate change, disturbance frequency is expected to increase in the future in many regions. It is not yet clear how such changes might affect forest ecosystems, and which mechanisms contribute to (current and future) disturbance resilience. We studied a 6364-ha landscape in the western Cascades of Oregon, USA, to investigate how patches of remnant old-growth trees (as one important class of biological legacies) affect the resilience of forest ecosystems to disturbance. Using the spatially explicit, individual-based, forest landscape model iLand, we analyzed the effect of three different levels of remnant patches (0%, 12%, and 24% of the landscape) on 500-year recovery trajectories after a large, high-severity wildfire. In addition, we evaluated how three different levels of fire frequency modulate the effects of initial legacies. We found that remnant live trees enhanced the recovery of total ecosystem carbon (TEC) stocks after disturbance, increased structural complexity of forest canopies, and facilitated the recolonization of late-seral species (LSS). Legacy effects were most persistent for indicators of species composition (still significant 500 years after disturbance), while TEC (i.e., a measure of ecosystem functioning) was least affected, with no significant differences among legacy scenarios after 236 years. Compounding disturbances were found to dampen legacy effects on all indicators, and higher initial legacy levels resulted in elevated fire severity in the second half of the study period. Overall, disturbance frequency had a stronger effect on ecosystem properties than the initial level of remnant old-growth trees. A doubling of the historically observed fire frequency to a mean fire return interval of 131 years reduced TEC by 10.5% and lowered the presence of LSS on the landscape by 18.1% on average

  12. Rising tides, cumulative impacts and cascading changes to estuarine ecosystem functions.

    PubMed

    O'Meara, Theresa A; Hillman, Jenny R; Thrush, Simon F

    2017-08-31

    In coastal ecosystems, climate change affects multiple environmental factors, yet most predictive models are based on simple cause-and-effect relationships. Multiple stressor scenarios are difficult to predict because they can create a ripple effect through networked ecosystem functions. Estuarine ecosystem function relies on an interconnected network of physical and biological processes. Estuarine habitats play critical roles in service provision and represent global hotspots for organic matter processing, nutrient cycling and primary production. Within these systems, we predicted functional changes in the impacts of land-based stressors, mediated by changing light climate and sediment permeability. Our in-situ field experiment manipulated sea level, nutrient supply, and mud content. We used these stressors to determine how interacting environmental stressors influence ecosystem function and compared results with data collected along elevation gradients to substitute space for time. We show non-linear, multi-stressor effects deconstruct networks governing ecosystem function. Sea level rise altered nutrient processing and impacted broader estuarine services ameliorating nutrient and sediment pollution. Our experiment demonstrates how the relationships between nutrient processing and biological/physical controls degrade with environmental stress. Our results emphasise the importance of moving beyond simple physically-forced relationships to assess consequences of climate change in the context of ecosystem interactions and multiple stressors.

  13. Partition of some key regulating services in terrestrial ecosystems: Meta-analysis and review.

    PubMed

    Viglizzo, E F; Jobbágy, E G; Ricard, M F; Paruelo, J M

    2016-08-15

    Our knowledge about the functional foundations of ecosystem service (ES) provision is still limited and more research is needed to elucidate key functional mechanisms. Using a simplified eco-hydrological scheme, in this work we analyzed how land-use decisions modify the partition of some essential regulatory ES by altering basic relationships between biomass stocks and water flows. A comprehensive meta-analysis and review was conducted based on global, regional and local data from peer-reviewed publications. We analyzed five datasets comprising 1348 studies and 3948 records on precipitation (PPT), aboveground biomass (AGB), AGB change, evapotranspiration (ET), water yield (WY), WY change, runoff (R) and infiltration (I). The conceptual framework was focused on ES that are associated with the ecological functions (e.g., intermediate ES) of ET, WY, R and I. ES included soil protection, carbon sequestration, local climate regulation, water-flow regulation and water recharge. To address the problem of data normality, the analysis included both parametric and non-parametric regression analysis. Results demonstrate that PPT is a first-order biophysical factor that controls ES release at the broader scales. At decreasing scales, ES are partitioned as result of PPT interactions with other biophysical and anthropogenic factors. At intermediate scales, land-use change interacts with PPT modifying ES partition as it the case of afforestation in dry regions, where ET and climate regulation may be enhanced at the expense of R and water-flow regulation. At smaller scales, site-specific conditions such as topography interact with PPT and AGB displaying different ES partition formats. The probable implications of future land-use and climate change on some key ES production and partition are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Biodiversity and ecosystem functioning in evolving food webs.

    PubMed

    Allhoff, K T; Drossel, B

    2016-05-19

    We use computer simulations in order to study the interplay between biodiversity and ecosystem functioning (BEF) during both the formation and the ongoing evolution of large food webs. A species in our model is characterized by its own body mass, its preferred prey body mass and the width of its potential prey body mass spectrum. On an ecological time scale, population dynamics determines which species are viable and which ones go extinct. On an evolutionary time scale, new species emerge as modifications of existing ones. The network structure thus emerges and evolves in a self-organized manner. We analyse the relation between functional diversity and five community level measures of ecosystem functioning. These are the metabolic loss of the predator community, the total biomasses of the basal and the predator community, and the consumption rates on the basal community and within the predator community. Clear BEF relations are observed during the initial build-up of the networks, or when parameters are varied, causing bottom-up or top-down effects. However, ecosystem functioning measures fluctuate only very little during long-term evolution under constant environmental conditions, despite changes in functional diversity. This result supports the hypothesis that trophic cascades are weaker in more complex food webs. © 2016 The Author(s).

  15. Extinction order and altered community structure rapidly disrupt ecosystem functioning.

    PubMed

    Larsen, Trond H; Williams, Neal M; Kremen, Claire

    2005-05-01

    By causing extinctions and altering community structure, anthropogenic disturbances can disrupt processes that maintain ecosystem integrity. However, the relationship between community structure and ecosystem functioning in natural systems is poorly understood. Here we show that habitat loss appeared to disrupt ecosystem functioning by affecting extinction order, species richness and abundance. We studied pollination by bees in a mosaic of agricultural and natural habitats in California and dung burial by dung beetles on recently created islands in Venezuela. We found that large-bodied bee and beetle species tended to be both most extinction-prone and most functionally efficient, contributing to rapid functional loss. Simulations confirmed that extinction order led to greater disruption of function than predicted by random species loss. Total abundance declined with richness and also appeared to contribute to loss of function. We demonstrate conceptually and empirically how the non-random response of communities to disturbance can have unexpectedly large functional consequences.

  16. Structure and functioning of dryland ecosystems in a changing world

    PubMed Central

    Maestre, Fernando T.; Eldridge, David J.; Soliveres, Santiago; Kéfi, Sonia; Delgado-Baquerizo, Manuel; Bowker, Matthew A.; García-Palacios, Pablo; Gaitán, Juan; Gallardo, Antonio; Lázaro, Roberto; Berdugo, Miguel

    2017-01-01

    Understanding how drylands respond to ongoing environmental change is extremely important for global sustainability. Here we review how biotic attributes, climate, grazing pressure, land cover change and nitrogen deposition affect the functioning of drylands at multiple spatial scales. Our synthesis highlights the importance of biotic attributes (e.g. species richness) in maintaining fundamental ecosystem processes such as primary productivity, illustrate how N deposition and grazing pressure are impacting ecosystem functioning in drylands worldwide, and highlight the importance of the traits of woody species as drivers of their expansion in former grasslands. We also emphasize the role of attributes such as species richness and abundance in controlling the responses of ecosystem functioning to climate change. This knowledge is essential to guide conservation and restoration efforts in drylands, as biotic attributes can be actively managed at the local scale to increase ecosystem resilience to global change. PMID:28239303

  17. Structure and functioning of dryland ecosystems in a changing world.

    PubMed

    Maestre, Fernando T; Eldridge, David J; Soliveres, Santiago; Kéfi, Sonia; Delgado-Baquerizo, Manuel; Bowker, Matthew A; García-Palacios, Pablo; Gaitán, Juan; Gallardo, Antonio; Lázaro, Roberto; Berdugo, Miguel

    2016-11-01

    Understanding how drylands respond to ongoing environmental change is extremely important for global sustainability. Here we review how biotic attributes, climate, grazing pressure, land cover change and nitrogen deposition affect the functioning of drylands at multiple spatial scales. Our synthesis highlights the importance of biotic attributes (e.g. species richness) in maintaining fundamental ecosystem processes such as primary productivity, illustrate how N deposition and grazing pressure are impacting ecosystem functioning in drylands worldwide, and highlight the importance of the traits of woody species as drivers of their expansion in former grasslands. We also emphasize the role of attributes such as species richness and abundance in controlling the responses of ecosystem functioning to climate change. This knowledge is essential to guide conservation and restoration efforts in drylands, as biotic attributes can be actively managed at the local scale to increase ecosystem resilience to global change.

  18. The Functionally-Assembled Terrestrial Ecosystem Simulator Version 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Chonggang; Christoffersen, Bradley

    The Functionally-Assembled Terrestrial Ecosystem Simulator (FATES) is a vegetation model for use in Earth system models (ESMs). The model includes a size- and age-structured representation of tree dynamics, competition between functionally diverse plant functional types, and the biophysics underpinning plant growth, competition, mortality, as well as the carbon, water, and energy exchange with the atmosphere. The FATES model is designed as a modular vegetation model that can be integrated within a host land model for inclusion in ESMs. The model is designed for use in global change studies to understand and project the responses and feedbacks between terrestrial ecosystems andmore » the Earth system under changing climate and other forcings.« less

  19. Trait-based Modeling Reveals How Plankton Biodiversity-Ecosystem Function (BEF) Relationships Depend on Environmental Variability

    NASA Astrophysics Data System (ADS)

    Smith, S. L.; Chen, B.; Vallina, S. M.

    2017-12-01

    Biodiversity-Ecosystem Function (BEF) relationships, which are most commonly quantified in terms of productivity or total biomass yield, are known to depend on the timescale of the experiment or field study, both for terrestrial plants and phytoplankton, which have each been widely studied as model ecosystems. Although many BEF relationships are positive (i.e., increasing biodiversity enhances function), in some cases there is an optimal intermediate diversity level (i.e., a uni-modal relationship), and in other cases productivity decreases with certain measures of biodiversity. These differences in BEF relationships cannot be reconciled merely by differences in the timescale of experiments. We will present results from simulation experiments applying recently developed trait-based models of phytoplankton communities and ecosystems, using the `adaptive dynamics' framework to represent continuous distributions of size and other key functional traits. Controlled simulation experiments were conducted with different levels of phytoplankton size-diversity, which through trait-size correlations implicitly represents functional-diversity. One recent study applied a theoretical box model for idealized simulations at different frequencies of disturbance. This revealed how the shapes of BEF relationships depend systematically on the frequency of disturbance and associated nutrient supply. We will also present more recent results obtained using a trait-based plankton ecosystem model embedded in a three-dimensional ocean model applied to the North Pacific. This reveals essentially the same pattern in a spatially explicit model with more realistic environmental forcing. In the relatively more variable subarctic, productivity tends to increase with the size (and hence functional) diversity of phytoplankton, whereas productivity tends to decrease slightly with increasing size-diversity in the relatively calm subtropics. Continuous trait-based models can capture essential features

  20. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems.

    PubMed

    Hisano, Masumi; Searle, Eric B; Chen, Han Y H

    2018-02-01

    Forest ecosystems are critical to mitigating greenhouse gas emissions through carbon sequestration. However, climate change has affected forest ecosystem functioning in both negative and positive ways, and has led to shifts in species/functional diversity and losses in plant species diversity which may impair the positive effects of diversity on ecosystem functioning. Biodiversity may mitigate climate change impacts on (I) biodiversity itself, as more-diverse systems could be more resilient to climate change impacts, and (II) ecosystem functioning through the positive relationship between diversity and ecosystem functioning. By surveying the literature, we examined how climate change has affected forest ecosystem functioning and plant diversity. Based on the biodiversity effects on ecosystem functioning (B→EF), we specifically address the potential for biodiversity to mitigate climate change impacts on forest ecosystem functioning. For this purpose, we formulate a concept whereby biodiversity may reduce the negative impacts or enhance the positive impacts of climate change on ecosystem functioning. Further B→EF studies on climate change in natural forests are encouraged to elucidate how biodiversity might influence ecosystem functioning. This may be achieved through the detailed scrutiny of large spatial/long temporal scale data sets, such as long-term forest inventories. Forest management strategies based on B→EF have strong potential for augmenting the effectiveness of the roles of forests in the mitigation of climate change impacts on ecosystem functioning. © 2017 Cambridge Philosophical Society.

  1. Response diversity determines the resilience of ecosystems to environmental change.

    PubMed

    Mori, Akira S; Furukawa, Takuya; Sasaki, Takehiro

    2013-05-01

    A growing body of evidence highlights the importance of biodiversity for ecosystem stability and the maintenance of optimal ecosystem functionality. Conservation measures are thus essential to safeguard the ecosystem services that biodiversity provides and human society needs. Current anthropogenic threats may lead to detrimental (and perhaps irreversible) ecosystem degradation, providing strong motivation to evaluate the response of ecological communities to various anthropogenic pressures. In particular, ecosystem functions that sustain key ecosystem services should be identified and prioritized for conservation action. Traditional diversity measures (e.g. 'species richness') may not adequately capture the aspects of biodiversity most relevant to ecosystem stability and functionality, but several new concepts may be more appropriate. These include 'response diversity', describing the variation of responses to environmental change among species of a particular community. Response diversity may also be a key determinant of ecosystem resilience in the face of anthropogenic pressures and environmental uncertainty. However, current understanding of response diversity is poor, and we see an urgent need to disentangle the conceptual strands that pervade studies of the relationship between biodiversity and ecosystem functioning. Our review clarifies the links between response diversity and the maintenance of ecosystem functionality by focusing on the insurance hypothesis of biodiversity and the concept of functional redundancy. We provide a conceptual model to describe how loss of response diversity may cause ecosystem degradation through decreased ecosystem resilience. We explicitly explain how response diversity contributes to functional compensation and to spatio-temporal complementarity among species, leading to long-term maintenance of ecosystem multifunctionality. Recent quantitative studies suggest that traditional diversity measures may often be uncoupled from

  2. Organism-Sediment Interactions Govern Post-Hypoxia Recovery of Ecosystem Functioning

    PubMed Central

    Van Colen, Carl; Rossi, Francesca; Montserrat, Francesc; Andersson, Maria G. I.; Gribsholt, Britta; Herman, Peter M. J.; Degraer, Steven; Vincx, Magda; Ysebaert, Tom; Middelburg, Jack J.

    2012-01-01

    Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning. PMID:23185440

  3. Marine biodiversity–ecosystem functions under uncertain environmental futures

    PubMed Central

    Bulling, Mark T.; Hicks, Natalie; Murray, Leigh; Paterson, David M.; Raffaelli, Dave; White, Piran C. L.; Solan, Martin

    2010-01-01

    Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity–ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH4-N into the water column, but no effect of species richness on the release of PO4-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty. PMID:20513718

  4. Marine biodiversity-ecosystem functions under uncertain environmental futures.

    PubMed

    Bulling, Mark T; Hicks, Natalie; Murray, Leigh; Paterson, David M; Raffaelli, Dave; White, Piran C L; Solan, Martin

    2010-07-12

    Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity-ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH(4)-N into the water column, but no effect of species richness on the release of PO(4)-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty.

  5. Consequences of Increasing Hypoxic Disturbance on Benthic Communities and Ecosystem Functioning

    PubMed Central

    Villnäs, Anna; Norkko, Joanna; Lukkari, Kaarina; Hewitt, Judi; Norkko, Alf

    2012-01-01

    Disturbance-mediated species loss has prompted research considering how ecosystem functions are changed when biota is impaired. However, there is still limited empirical evidence from natural environments evaluating the direct and indirect (i.e. via biota) effects of disturbance on ecosystem functioning. Oxygen deficiency is a widespread threat to coastal and estuarine communities. While the negative impacts of hypoxia on benthic communities are well known, few studies have assessed in situ how benthic communities subjected to different degrees of hypoxic stress alter their contribution to ecosystem functioning. We studied changes in sediment ecosystem function (i.e. oxygen and nutrient fluxes across the sediment water-interface) by artificially inducing hypoxia of different durations (0, 3, 7 and 48 days) in a subtidal sandy habitat. Benthic chamber incubations were used for measuring responses in sediment oxygen and nutrient fluxes. Changes in benthic species richness, structure and traits were quantified, while stress-induced behavioral changes were documented by observing bivalve reburial rates. The initial change in faunal behavior was followed by non-linear degradation in benthic parameters (abundance, biomass, bioturbation potential), gradually impairing the structural and functional composition of the benthic community. In terms of ecosystem function, the increasing duration of hypoxia altered sediment oxygen consumption and enhanced sediment effluxes of NH4 + and dissolved Si. Although effluxes of PO4 3− were not altered significantly, changes were observed in sediment PO4 3− sorption capability. The duration of hypoxia (i.e. number of days of stress) explained a minor part of the changes in ecosystem function. Instead, the benthic community and disturbance-driven changes within the benthos explained a larger proportion of the variability in sediment oxygen- and nutrient fluxes. Our results emphasize that the level of stress to the benthic habitat

  6. Identifying key areas of ecosystem services potential to improve ecological management in Chongqing City, southwest China.

    PubMed

    Xiao, Yang; Xiao, Qiang

    2018-03-29

    Because natural ecosystems and ecosystem services (ES) are both critical to the well-being of humankind, it is important to understand their relationships and congruence for conservation planning. Spatial conservation planning is required to set focused preservation priorities and to assess future ecological implications. This study uses the combined measures of ES models and ES potential to estimate and analyze all four groups of ecosystem services to generate opportunities to maximize ecosystem services. Subsequently, we identify the key areas of conservation priorities as future forestation and conservation hotspot zones to improve the ecological management in Chongqing City, located in the upper reaches of the Three Gorges Reservoir Area, China. Results show that ecosystem services potential is extremely obvious. Compared to ecosystem services from 2000, we determined that soil conservation could be increased by 59.11%, carbon sequestration by 129.51%, water flow regulation by 83.42%, and water purification by 84.42%. According to our prioritization results, approximately 48% of area converted to forests exhibited high improvements in all ecosystem services (categorized as hotspot-1, hotspot-2, and hotspot-3). The hotspots identified in this study can be used as an excellent surrogate for evaluation ecological engineering benefits and can be effectively applied in improving ecological management planning.

  7. Alternative hypotheses to explain why biodiversity-ecosystem functioning relationships are concave-up in some natural ecosystems but concave-down in manipulative experiments.

    PubMed

    Mora, Camilo; Danovaro, Roberto; Loreau, Michel

    2014-06-25

    Recent studies of the relationship between biodiversity and functioning in marine ecosystems have yielded non-saturating patterns that contrast sharply with the results of experimental studies, where ecosystem functioning rapidly saturates with increases in biodiversity. Here we provide a simple theoretical framework of three alternative hypotheses that, individually or combined, are likely to explain this contrast: i) the use of functional richness instead of species richness, ii) an increased production efficiency of species in producing biomass when more ecological interactions are present, and iii) the fact that communities are likely assembled in an ordered succession of species from low to high ecological efficiency. Our results provide theoretical support for concave-up biodiversity-ecosystem functioning relationships in natural ecosystems and confirm that the loss of species can have substantially larger effects on the functioning of natural ecosystems than anticipated from controlled manipulative experiments.

  8. An Ecosystem-Based Approach to Assess the Status of a Mediterranean Ecosystem, the Posidonia oceanica Seagrass Meadow

    PubMed Central

    Personnic, Sébastien; Boudouresque, Charles F.; Astruch, Patrick; Ballesteros, Enric; Blouet, Sylvain; Bellan-Santini, Denise; Bonhomme, Patrick; Thibault-Botha, Delphine; Feunteun, Eric; Harmelin-Vivien, Mireille; Pergent, Gérard; Pergent-Martini, Christine; Pastor, Jérémy; Poggiale, Jean-Christophe; Renaud, Florent; Thibaut, Thierry; Ruitton, Sandrine

    2014-01-01

    Biotic indices, which reflect the quality of the environment, are widely used in the marine realm. Sometimes, key species or ecosystem engineers are selected for this purpose. This is the case of the Mediterranean seagrass Posidonia oceanica, widely used as a biological quality element in the context of the European Union Water Framework Directive (WFD). The good quality of a water body and the apparent health of a species, whether or not an ecosystem engineer such as P. oceanica, is not always indicative of the good structure and functioning of the whole ecosystem. A key point of the recent Marine Strategy Framework Directive (MSFD) is the ecosystem-based approach. Here, on the basis of a simplified conceptual model of the P. oceanica ecosystem, we have proposed an ecosystem-based index of the quality of its functioning, compliant with the MSFD requirements. This index (EBQI) is based upon a set of representative functional compartments, the weighting of these compartments and the assessment of the quality of each compartment by comparison of a supposed baseline. The index well discriminated 17 sites in the north-western Mediterranean (French Riviera, Provence, Corsica, Catalonia and Balearic Islands) covering a wide range of human pressure levels. The strong points of the EBQI are that it is easy to implement, non-destructive, relatively robust, according to the selection of the compartments and to their weighting, and associated with confidence indices that indicate possible weakness and biases and therefore the need for further field data acquisition. PMID:24933020

  9. Realizing ecosystem services: wetland hydrologic function along a gradient of ecosystem condition.

    PubMed

    McLaughlin, Daniel L; Cohen, Matthew J

    2013-10-01

    Wetlands provide numerous ecosystem services, from habitat provision to pollutant removal, floodwater storage, and microclimate regulation. Delivery of particular services relies on specific ecological functions, and thus to varying degree on wetland ecological condition, commonly quantified as departure from minimally impacted reference sites. Condition assessments are widely adopted as regulatory indicators of ecosystem function, and for some services (e.g., habitat) links between condition and function are often direct. For others, however, links are more tenuous, and using condition alone to enumerate ecosystem value (e.g., for compensatory mitigation) may underestimate important services. Hydrologic function affects many services cited in support of wetland protection both directly (floodwater retention, microclimate regulation) and indirectly (biogeochemical cycling, pollutant removal). We investigated links between condition and hydrologic function to test the hypothesis, embedded in regulatory assessment of wetland value, that condition predicts function. Condition was assessed using rapid and intensive approaches, including Florida's official wetland assessment tool, in 11 isolated forested wetlands in north Florida (USA) spanning a land use intensity gradient. Hydrologic function was assessed using hydrologic regime (mean, variance, and rates of change of water depth), and measurements of groundwater exchange and evapotranspiration (ET). Despite a wide range in condition, no systematic variation in hydrologic regime was observed; indeed reference sites spanned the full range of variation. In contrast, ET was affected by land use, with higher rates in intensive (agriculture and urban) landscapes in response to higher leaf area. ET determines latent heat exchange, which regulates microclimate, a valuable service in urban heat islands. Higher ET also indicates higher productivity and thus carbon cycling. Groundwater exchange regularly reversed flow direction

  10. High Microbial Diversity Promotes Soil Ecosystem Functioning.

    PubMed

    Maron, Pierre-Alain; Sarr, Amadou; Kaisermann, Aurore; Lévêque, Jean; Mathieu, Olivier; Guigue, Julien; Karimi, Battle; Bernard, Laetitia; Dequiedt, Samuel; Terrat, Sébastien; Chabbi, Abad; Ranjard, Lionel

    2018-05-01

    In soil, the link between microbial diversity and carbon transformations is challenged by the concept of functional redundancy. Here, we hypothesized that functional redundancy may decrease with increasing carbon source recalcitrance and that coupling of diversity with C cycling may change accordingly. We manipulated microbial diversity to examine how diversity decrease affects the decomposition of easily degradable (i.e., allochthonous plant residues) versus recalcitrant (i.e., autochthonous organic matter) C sources. We found that a decrease in microbial diversity (i) affected the decomposition of both autochthonous and allochthonous carbon sources, thereby reducing global CO 2 emission by up to 40%, and (ii) shaped the source of CO 2 emission toward preferential decomposition of most degradable C sources. Our results also revealed that the significance of the diversity effect increases with nutrient availability. Altogether, these findings show that C cycling in soil may be more vulnerable to microbial diversity changes than expected from previous studies, particularly in ecosystems exposed to nutrient inputs. Thus, concern about the preservation of microbial diversity may be highly relevant in the current global-change context assumed to impact soil biodiversity and the pulse inputs of plant residues and rhizodeposits into the soil. IMPORTANCE With hundreds of thousands of taxa per gram of soil, microbial diversity dominates soil biodiversity. While numerous studies have established that microbial communities respond rapidly to environmental changes, the relationship between microbial diversity and soil functioning remains controversial. Using a well-controlled laboratory approach, we provide empirical evidence that microbial diversity may be of high significance for organic matter decomposition, a major process on which rely many of the ecosystem services provided by the soil ecosystem. These new findings should be taken into account in future studies aimed at

  11. Loss of functionally unique species may gradually undermine ecosystems

    PubMed Central

    O'Gorman, Eoin J.; Yearsley, Jon M.; Crowe, Tasman P.; Emmerson, Mark C.; Jacob, Ute; Petchey, Owen L.

    2011-01-01

    Functionally unique species contribute to the functional diversity of natural systems, often enhancing ecosystem functioning. An abundance of weakly interacting species increases stability in natural systems, suggesting that loss of weakly linked species may reduce stability. Any link between the functional uniqueness of a species and the strength of its interactions in a food web could therefore have simultaneous effects on ecosystem functioning and stability. Here, we analyse patterns in 213 real food webs and show that highly unique species consistently tend to have the weakest mean interaction strength per unit biomass in the system. This relationship is not a simple consequence of the interdependence of both measures on body size and appears to be driven by the empirical pattern of size structuring in aquatic systems and the trophic position of each species in the web. Food web resolution also has an important effect, with aggregation of species into higher taxonomic groups producing a much weaker relationship. Food webs with fewer unique and less weakly interacting species also show significantly greater variability in their levels of primary production. Thus, the loss of highly unique, weakly interacting species may eventually lead to dramatic state changes and unpredictable levels of ecosystem functioning. PMID:21106593

  12. Millennial Climatic Fluctuations Are Key to the Structure of Last Glacial Ecosystems

    PubMed Central

    Huntley, Brian; Allen, Judy R. M.; Collingham, Yvonne C.; Hickler, Thomas; Lister, Adrian M.; Singarayer, Joy; Stuart, Anthony J.; Sykes, Martin T.; Valdes, Paul J.

    2013-01-01

    Whereas fossil evidence indicates extensive treeless vegetation and diverse grazing megafauna in Europe and northern Asia during the last glacial, experiments combining vegetation models and climate models have to-date simulated widespread persistence of trees. Resolving this conflict is key to understanding both last glacial ecosystems and extinction of most of the mega-herbivores. Using a dynamic vegetation model (DVM) we explored the implications of the differing climatic conditions generated by a general circulation model (GCM) in “normal” and “hosing” experiments. Whilst the former approximate interstadial conditions, the latter, designed to mimic Heinrich Events, approximate stadial conditions. The “hosing” experiments gave simulated European vegetation much closer in composition to that inferred from fossil evidence than did the “normal” experiments. Given the short duration of interstadials, and the rate at which forest cover expanded during the late-glacial and early Holocene, our results demonstrate the importance of millennial variability in determining the character of last glacial ecosystems. PMID:23613985

  13. Millennial climatic fluctuations are key to the structure of last glacial ecosystems.

    PubMed

    Huntley, Brian; Allen, Judy R M; Collingham, Yvonne C; Hickler, Thomas; Lister, Adrian M; Singarayer, Joy; Stuart, Anthony J; Sykes, Martin T; Valdes, Paul J

    2013-01-01

    Whereas fossil evidence indicates extensive treeless vegetation and diverse grazing megafauna in Europe and northern Asia during the last glacial, experiments combining vegetation models and climate models have to-date simulated widespread persistence of trees. Resolving this conflict is key to understanding both last glacial ecosystems and extinction of most of the mega-herbivores. Using a dynamic vegetation model (DVM) we explored the implications of the differing climatic conditions generated by a general circulation model (GCM) in "normal" and "hosing" experiments. Whilst the former approximate interstadial conditions, the latter, designed to mimic Heinrich Events, approximate stadial conditions. The "hosing" experiments gave simulated European vegetation much closer in composition to that inferred from fossil evidence than did the "normal" experiments. Given the short duration of interstadials, and the rate at which forest cover expanded during the late-glacial and early Holocene, our results demonstrate the importance of millennial variability in determining the character of last glacial ecosystems.

  14. Trade-off between taxon diversity and functional diversity in European lake ecosystems.

    PubMed

    Grossmann, Lars; Beisser, Daniela; Bock, Christina; Chatzinotas, Antonis; Jensen, Manfred; Preisfeld, Angelika; Psenner, Roland; Rahmann, Sven; Wodniok, Sabina; Boenigk, Jens

    2016-12-01

    Inferring ecosystem functioning and ecosystem services through inspections of the species inventory is a major aspect of ecological field studies. Ecosystem functions are often stable despite considerable species turnover. Using metatranscriptome analyses, we analyse a thus-far unparalleled freshwater data set which comprises 21 mainland European freshwater lakes from the Sierra Nevada (Spain) to the Carpathian Mountains (Romania) and from northern Germany to the Apennines (Italy) and covers an altitudinal range from 38 m above sea level (a.s.l) to 3110 m a.s.l. The dominant taxa were Chlorophyta and streptophytic algae, Ciliophora, Bacillariophyta and Chrysophyta. Metatranscriptomics provided insights into differences in community composition and into functional diversity via the relative share of taxa to the overall read abundance of distinct functional genes on the ecosystem level. The dominant metabolic pathways in terms of the fraction of expressed sequences in the cDNA libraries were affiliated with primary metabolism, specifically oxidative phosphorylation, photosynthesis and the TCA cycle. Our analyses indicate that community composition is a good first proxy for the analysis of ecosystem functions. However, differential gene regulation modifies the relative importance of taxa in distinct pathways. Whereas taxon composition varies considerably between lakes, the relative importance of distinct metabolic pathways is much more stable, indicating that ecosystem functioning is buffered against shifts in community composition through a functional redundancy of taxa. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  15. Alternative hypotheses to explain why biodiversity-ecosystem functioning relationships are concave-up in some natural ecosystems but concave-down in manipulative experiments

    PubMed Central

    Mora, Camilo; Danovaro, Roberto; Loreau, Michel

    2014-01-01

    Recent studies of the relationship between biodiversity and functioning in marine ecosystems have yielded non-saturating patterns that contrast sharply with the results of experimental studies, where ecosystem functioning rapidly saturates with increases in biodiversity. Here we provide a simple theoretical framework of three alternative hypotheses that, individually or combined, are likely to explain this contrast: i) the use of functional richness instead of species richness, ii) an increased production efficiency of species in producing biomass when more ecological interactions are present, and iii) the fact that communities are likely assembled in an ordered succession of species from low to high ecological efficiency. Our results provide theoretical support for concave-up biodiversity-ecosystem functioning relationships in natural ecosystems and confirm that the loss of species can have substantially larger effects on the functioning of natural ecosystems than anticipated from controlled manipulative experiments. PMID:24962477

  16. Effects on the function of Arctic ecosystems in the short- and long-term perspectives.

    PubMed

    Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus

    2004-11-01

    Historically, the function of Arctic ecosystems in terms of cycles of nutrients and carbon has led to low levels of primary production and exchanges of energy, water and greenhouse gases have led to low local and regional cooling. Sequestration of carbon from atmospheric CO2, in extensive, cold organic soils and the high albedo from low, snow-covered vegetation have had impacts on regional climate. However, many aspects of the functioning of Arctic ecosystems are sensitive to changes in climate and its impacts on biodiversity. The current Arctic climate results in slow rates of organic matter decomposition. Arctic ecosystems therefore tend to accumulate organic matter and elements despite low inputs. As a result, soil-available elements like nitrogen and phosphorus are key limitations to increases in carbon fixation and further biomass and organic matter accumulation. Climate warming is expected to increase carbon and element turnover, particularly in soils, which may lead to initial losses of elements but eventual, slow recovery. Individual species and species diversity have clear impacts on element inputs and retention in Arctic ecosystems. Effects of increased CO2 and UV-B on whole ecosystems, on the other hand, are likely to be small although effects on plant tissue chemisty, decomposition and nitrogen fixation may become important in the long-term. Cycling of carbon in trace gas form is mainly as CO2 and CH4. Most carbon loss is in the form of CO2, produced by both plants and soil biota. Carbon emissions as methane from wet and moist tundra ecosystems are about 5% of emissions as CO2 and are responsive to warming in the absence of any other changes. Winter processes and vegetation type also affect CH4 emissions as well as exchanges of energy between biosphere and atmosphere. Arctic ecosystems exhibit the largest seasonal changes in energy exchange of any terrestrial ecosystem because of the large changes in albedo from late winter, when snow reflects most

  17. Megafauna and ecosystem function from the Pleistocene to the Anthropocene.

    PubMed

    Malhi, Yadvinder; Doughty, Christopher E; Galetti, Mauro; Smith, Felisa A; Svenning, Jens-Christian; Terborgh, John W

    2016-01-26

    Large herbivores and carnivores (the megafauna) have been in a state of decline and extinction since the Late Pleistocene, both on land and more recently in the oceans. Much has been written on the timing and causes of these declines, but only recently has scientific attention focused on the consequences of these declines for ecosystem function. Here, we review progress in our understanding of how megafauna affect ecosystem physical and trophic structure, species composition, biogeochemistry, and climate, drawing on special features of PNAS and Ecography that have been published as a result of an international workshop on this topic held in Oxford in 2014. Insights emerging from this work have consequences for our understanding of changes in biosphere function since the Late Pleistocene and of the functioning of contemporary ecosystems, as well as offering a rationale and framework for scientifically informed restoration of megafaunal function where possible and appropriate.

  18. Megafauna and ecosystem function from the Pleistocene to the Anthropocene

    PubMed Central

    Malhi, Yadvinder; Doughty, Christopher E.; Galetti, Mauro; Smith, Felisa A.; Svenning, Jens-Christian; Terborgh, John W.

    2016-01-01

    Large herbivores and carnivores (the megafauna) have been in a state of decline and extinction since the Late Pleistocene, both on land and more recently in the oceans. Much has been written on the timing and causes of these declines, but only recently has scientific attention focused on the consequences of these declines for ecosystem function. Here, we review progress in our understanding of how megafauna affect ecosystem physical and trophic structure, species composition, biogeochemistry, and climate, drawing on special features of PNAS and Ecography that have been published as a result of an international workshop on this topic held in Oxford in 2014. Insights emerging from this work have consequences for our understanding of changes in biosphere function since the Late Pleistocene and of the functioning of contemporary ecosystems, as well as offering a rationale and framework for scientifically informed restoration of megafaunal function where possible and appropriate. PMID:26811442

  19. Functional resilience of microbial ecosystems in soil: How important is a spatial analysis?

    NASA Astrophysics Data System (ADS)

    König, Sara; Banitz, Thomas; Centler, Florian; Frank, Karin; Thullner, Martin

    2015-04-01

    Microbial life in soil is exposed to fluctuating environmental conditions influencing the performance of microbially mediated ecosystem services such as biodegradation of contaminants. However, as this environment is typically very heterogeneous, spatial aspects can be expected to play a major role for the ability to recover from a stress event. To determine key processes for functional resilience, simple scenarios with varying stress intensities were simulated within a microbial simulation model and the biodegradation rate in the recovery phase monitored. Parameters including microbial growth and dispersal rates were varied over a typical range to consider microorganisms with varying properties. Besides an aggregated temporal monitoring, the explicit observation of the spatio-temporal dynamics proved essential to understand the recovery process. For a mechanistic understanding of the model system, scenarios were also simulated with selected processes being switched-off. Results of the mechanistic and the spatial view show that the key factors for functional recovery with respect to biodegradation after a simple stress event depend on the location of the observed habitats. The limiting factors near unstressed areas are spatial processes - the mobility of the bacteria as well as substrate diffusion - the longer the distance to the unstressed region the more important becomes the process growth. Furthermore, recovery depends on the stress intensity - after a low stress event the spatial configuration has no influence on the key factors for functional resilience. To confirm these results, we repeated the stress scenarios but this time including an additional dispersal network representing a fungal network in soil. The system benefits from an increased spatial performance due to the higher mobility of the degrading microorganisms. However, this effect appears only in scenarios where the spatial distribution of the stressed area plays a role. With these simulations we

  20. Ecosystem engineering by invasive exotic beavers reduces in-stream diversity and enhances ecosystem function in Cape Horn, Chile.

    PubMed

    Anderson, Christopher B; Rosemond, Amy D

    2007-11-01

    Species invasions are of global significance, but predicting their impacts can be difficult. Introduced ecosystem engineers, however, provide an opportunity to test the underlying mechanisms that may be common to all invasive engineers and link relationships between changes in diversity and ecosystem function, thereby providing explanatory power for observed ecological patterns. Here we test specific predictions for an invasive ecosystem engineer by quantifying the impacts of habitat and resource modifications caused by North American beavers (Castor canadensis) on aquatic macroinvertebrate community structure and stream ecosystem function in the Cape Horn Biosphere Reserve, Chile. We compared responses to beavers in three habitat types: (1) forested (unimpacted) stream reaches, (2) beaver ponds, and (3) sites immediately downstream of beaver dams in four streams. We found that beaver engineering in ponds created taxonomically simplified, but more productive, benthic macroinvertebrate assemblages. Specifically, macroinvertebrate richness, diversity and number of functional feeding groups were reduced by half, while abundance, biomass and secondary production increased three- to fivefold in beaver ponds compared to forested sites. Reaches downstream of beaver ponds were very similar to natural forested sections. Beaver invasion effects on both community and ecosystem parameters occurred predominantly via increased retention of fine particulate organic matter, which was associated with reduced macroinvertebrate richness and diversity (via homogenization of benthic microhabitat) and increased macroinvertebrate biomass and production (via greater food availability). Beaver modifications to macroinvertebrate community structure were largely confined to ponds, but increased benthic production in beaver-modified habitats adds to energy retention and flow for the entire stream ecosystem. Furthermore, the effects of beavers on taxa richness (negative) and measures of

  1. Meta-ecosystem dynamics and functioning on finite spatial networks

    PubMed Central

    Marleau, Justin N.; Guichard, Frédéric; Loreau, Michel

    2014-01-01

    The addition of spatial structure to ecological concepts and theories has spurred integration between sub-disciplines within ecology, including community and ecosystem ecology. However, the complexity of spatial models limits their implementation to idealized, regular landscapes. We present a model meta-ecosystem with finite and irregular spatial structure consisting of local nutrient–autotrophs–herbivores ecosystems connected through spatial flows of materials and organisms. We study the effect of spatial flows on stability and ecosystem functions, and provide simple metrics of connectivity that can predict these effects. Our results show that high rates of nutrient and herbivore movement can destabilize local ecosystem dynamics, leading to spatially heterogeneous equilibria or oscillations across the meta-ecosystem, with generally increased meta-ecosystem primary and secondary production. However, the onset and the spatial scale of these emergent dynamics depend heavily on the spatial structure of the meta-ecosystem and on the relative movement rate of the autotrophs. We show how this strong dependence on finite spatial structure eludes commonly used metrics of connectivity, but can be predicted by the eigenvalues and eigenvectors of the connectivity matrix that describe the spatial structure and scale. Our study indicates the need to consider finite-size ecosystems in meta-ecosystem theory. PMID:24403323

  2. Reintroducing Environmental Change Drivers in Biodiversity-Ecosystem Functioning Research.

    PubMed

    De Laender, Frederik; Rohr, Jason R; Ashauer, Roman; Baird, Donald J; Berger, Uta; Eisenhauer, Nico; Grimm, Volker; Hommen, Udo; Maltby, Lorraine; Meliàn, Carlos J; Pomati, Francesco; Roessink, Ivo; Radchuk, Viktoriia; Van den Brink, Paul J

    2016-12-01

    For the past 20 years, research on biodiversity and ecosystem functioning (B-EF) has only implicitly considered the underlying role of environmental change. We illustrate that explicitly reintroducing environmental change drivers in B-EF research is needed to predict the functioning of ecosystems facing changes in biodiversity. Next we show how this reintroduction improves experimental control over community composition and structure, which helps to provide mechanistic insight on how multiple aspects of biodiversity relate to function and how biodiversity and function relate in food webs. We also highlight challenges for the proposed reintroduction and suggest analyses and experiments to better understand how random biodiversity changes, as studied by classic approaches in B-EF research, contribute to the shifts in function that follow environmental change. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  3. Asynchrony among local communities stabilises ecosystem function of metacommunities.

    PubMed

    Wilcox, Kevin R; Tredennick, Andrew T; Koerner, Sally E; Grman, Emily; Hallett, Lauren M; Avolio, Meghan L; La Pierre, Kimberly J; Houseman, Gregory R; Isbell, Forest; Johnson, David Samuel; Alatalo, Juha M; Baldwin, Andrew H; Bork, Edward W; Boughton, Elizabeth H; Bowman, William D; Britton, Andrea J; Cahill, James F; Collins, Scott L; Du, Guozhen; Eskelinen, Anu; Gough, Laura; Jentsch, Anke; Kern, Christel; Klanderud, Kari; Knapp, Alan K; Kreyling, Juergen; Luo, Yiqi; McLaren, Jennie R; Megonigal, Patrick; Onipchenko, Vladimir; Prevéy, Janet; Price, Jodi N; Robinson, Clare H; Sala, Osvaldo E; Smith, Melinda D; Soudzilovskaia, Nadejda A; Souza, Lara; Tilman, David; White, Shannon R; Xu, Zhuwen; Yahdjian, Laura; Yu, Qiang; Zhang, Pengfei; Zhang, Yunhai

    2017-12-01

    Temporal stability of ecosystem functioning increases the predictability and reliability of ecosystem services, and understanding the drivers of stability across spatial scales is important for land management and policy decisions. We used species-level abundance data from 62 plant communities across five continents to assess mechanisms of temporal stability across spatial scales. We assessed how asynchrony (i.e. different units responding dissimilarly through time) of species and local communities stabilised metacommunity ecosystem function. Asynchrony of species increased stability of local communities, and asynchrony among local communities enhanced metacommunity stability by a wide range of magnitudes (1-315%); this range was positively correlated with the size of the metacommunity. Additionally, asynchronous responses among local communities were linked with species' populations fluctuating asynchronously across space, perhaps stemming from physical and/or competitive differences among local communities. Accordingly, we suggest spatial heterogeneity should be a major focus for maintaining the stability of ecosystem services at larger spatial scales. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  4. Ecosystem Function: Cyanobacteria Solutions, A Missed Opportunity?

    EPA Science Inventory

    Stream and wetland riparian functions integrate the relationships between species, their habitats and fostering ecosystem resilience, which is critical to resilience – i.e., ensuring long-term sustainability. These relationships are dependent on the drivers of ecological functio...

  5. Connectivity, non-random extinction and ecosystem function in experimental metacommunities.

    PubMed

    Staddon, Philip; Lindo, Zoë; Crittenden, Peter D; Gilbert, Francis; Gonzalez, Andrew

    2010-05-01

    The spatial insurance hypothesis indicates that connectivity is an important attribute of natural ecosystems that sustains both biodiversity and ecosystem function. We tested the hypothesis by measuring the impact of manipulating connectivity in experimental metacommunties of a natural and diverse microecosystem. Isolation led to the extinction of large-bodied apex predators, subsequently followed by increases in prey species abundance. This trophic cascade was associated with significantly altered carbon and nitrogen fluxes in fragmented treatments. The ecosystem impacts were characteristic of a function debt because they persisted for several generations after the initial loss of connectivity. Local extinctions and disruption of ecosystem processes were mitigated, and even reversed, by the presence of corridors in the connected metacommunities, although these beneficial effects were unexpectedly delayed. We hypothesized that corridors maintained grazer movement between fragments, which enhanced microbial activity, and decomposition in comparison to isolated fragments. Our results indicate that knowledge of habitat connectivity and spatial processes is essential to understand the magnitude and timing of ecosystem perturbation in fragmented landscapes.

  6. Biodiversity and Ecosystem Multi-Functionality: Observed Relationships in Smallholder Fallows in Western Kenya

    PubMed Central

    Sircely, Jason; Naeem, Shahid

    2012-01-01

    Recent studies indicate that species richness can enhance the ability of plant assemblages to support multiple ecosystem functions. To understand how and when ecosystem services depend on biodiversity, it is valuable to expand beyond experimental grasslands. We examined whether plant diversity improves the capacity of agroecosystems to sustain multiple ecosystem services—production of wood and forage, and two elements of soil formation—in two types of smallholder fallows in western Kenya. In 18 grazed and 21 improved fallows, we estimated biomass and quantified soil organic carbon, soil base cations, sand content, and soil infiltration capacity. For four ecosystem functions (wood biomass, forage biomass, soil base cations, steady infiltration rates) linked to the focal ecosystem services, we quantified ecosystem service multi-functionality as (1) the proportion of functions above half-maximum, and (2) mean percentage excess above mean function values, and assessed whether plant diversity or environmental favorability better predicted multi-functionality. In grazed fallows, positive effects of plant diversity best explained the proportion above half-maximum and mean percentage excess, the former also declining with grazing intensity. In improved fallows, the proportion above half-maximum was not associated with soil carbon or plant diversity, while soil carbon predicted mean percentage excess better than diversity. Grazed fallows yielded stronger evidence for diversity effects on multi-functionality, while environmental conditions appeared more influential in improved fallows. The contrast in diversity-multi-functionality relationships among fallow types appears related to differences in management and associated factors including disturbance and species composition. Complementary effects of species with contrasting functional traits on different functions and multi-functional species may have contributed to diversity effects in grazed fallows. Biodiversity and

  7. Effects of Non-Indigenous Oysters on Microbial Diversity and Ecosystem Functioning

    PubMed Central

    Green, Dannielle S.; Boots, Bas; Crowe, Tasman P.

    2012-01-01

    Invasive ecosystem engineers can physically and chemically alter the receiving environment, thereby affecting biodiversity and ecosystem functioning. The Pacific oyster, Crassostrea gigas, invasive throughout much of the world, can establish dense populations monopolising shorelines and possibly altering ecosystem processes including decomposition and nutrient cycling. The effects of increasing cover of invasive C. gigas on ecosystem processes and associated microbial assemblages in mud-flats were tested experimentally in the field. Pore-water nutrients (NH4 + and total oxidised nitrogen), sediment chlorophyll content, microbial activity, total carbon and nitrogen, and community respiration (CO2 and CH4) were measured to assess changes in ecosystem functioning. Assemblages of bacteria and functionally important microbes, including methanogens, methylotrophs and ammonia-oxidisers were assessed in the oxic and anoxic layers of sediment using terminal restriction length polymorphism of the bacterial 16S rRNA, mxaF, amoA and archaeal mcrA genes respectively. At higher covers (40 and 80%) of oysters there was significantly greater microbial activity, increased chlorophyll content, CO2 (13 fold greater) and CH4 (6 fold greater) emission from the sediment compared to mud-flats without C. gigas. At 10% cover, C. gigas increased the concentration of total oxidised nitrogen and altered the assemblage structure of ammonia-oxidisers and methanogens. Concentrations of pore-water NH4 + were increased by C. gigas regardless of cover. Invasive species can alter ecosystem functioning not only directly, but also indirectly, by affecting microbial communities vital for the maintenance of ecosystem processes, but the nature and magnitude of these effects can be non-linear, depending on invader abundance. PMID:23144762

  8. Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning.

    PubMed

    Barnes, Andrew D; Jochum, Malte; Mumme, Steffen; Haneda, Noor Farikhah; Farajallah, Achmad; Widarto, Tri Heru; Brose, Ulrich

    2014-10-28

    Our knowledge about land-use impacts on biodiversity and ecosystem functioning is mostly limited to single trophic levels, leaving us uncertain about whole-community biodiversity-ecosystem functioning relationships. We analyse consequences of the globally important land-use transformation from tropical forests to oil palm plantations. Species diversity, density and biomass of invertebrate communities suffer at least 45% decreases from rainforest to oil palm. Combining metabolic and food-web theory, we calculate annual energy fluxes to model impacts of land-use intensification on multitrophic ecosystem functioning. We demonstrate a 51% reduction in energy fluxes from forest to oil palm communities. Species loss clearly explains variation in energy fluxes; however, this relationship depends on land-use systems and functional feeding guilds, whereby predators are the most heavily affected. Biodiversity decline from forest to oil palm is thus accompanied by even stronger reductions in functionality, threatening to severely limit the functional resilience of communities to cope with future global changes.

  9. A new method for large-scale assessment of change in ecosystem functioning in relation to land degradation

    NASA Astrophysics Data System (ADS)

    Horion, Stephanie; Ivits, Eva; Verzandvoort, Simone; Fensholt, Rasmus

    2017-04-01

    Ongoing pressures on European land are manifold with extreme climate events and non-sustainable use of land resources being amongst the most important drivers altering the functioning of the ecosystems. The protection and conservation of European natural capital is one of the key objectives of the 7th Environmental Action Plan (EAP). The EAP stipulates that European land must be managed in a sustainable way by 2020 and the UN Sustainable development goals define a Land Degradation Neutral world as one of the targets. This implies that land degradation (LD) assessment of European ecosystems must be performed repeatedly allowing for the assessment of the current state of LD as well as changes compared to a baseline adopted by the UNCCD for the objective of land degradation neutrality. However, scientifically robust methods are still lacking for large-scale assessment of LD and repeated consistent mapping of the state of terrestrial ecosystems. Historical land degradation assessments based on various methods exist, but methods are generally non-replicable or difficult to apply at continental scale (Allan et al. 2007). The current lack of research methods applicable at large spatial scales is notably caused by the non-robust definition of LD, the scarcity of field data on LD, as well as the complex inter-play of the processes driving LD (Vogt et al., 2011). Moreover, the link between LD and changes in land use (how land use changes relates to change in vegetation productivity and ecosystem functioning) is not straightforward. In this study we used the segmented trend method developed by Horion et al. (2016) for large-scale systematic assessment of hotspots of change in ecosystem functioning in relation to LD. This method alleviates shortcomings of widely used linear trend model that does not account for abrupt change, nor adequately captures the actual changes in ecosystem functioning (de Jong et al. 2013; Horion et al. 2016). Here we present a new methodology for

  10. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge

    USGS Publications Warehouse

    Hooper, D.U.; Chapin, F. S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; Schmid, B.; SetSlS, H.; Symstad, A.J.; Vandermeer, J.; Wardle, D.A.

    2005-01-01

    Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls.The scientific community has come to a broad consensus on many aspects of the relationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are structured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.Based on our review of the scientific literature, we are certain of the following conclusions:1) Species' functional characteristics strongly influence ecosystem properties. Functional characteristics operate in a variety of contexts

  11. Stable isotope views on ecosystem function: challenging or challenged?

    PubMed

    Resco, Víctor; Querejeta, José I; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A; Torres-Cañabate, Patricia; Valladares, Fernando

    2010-06-23

    Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Ubeda, 18-22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes.

  12. Soil biodiversity and soil community composition determine ecosystem multifunctionality

    PubMed Central

    Wagg, Cameron; Bender, S. Franz; Widmer, Franco; van der Heijden, Marcel G. A.

    2014-01-01

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability. PMID:24639507

  13. Riparian ecosystems and buffers - multiscale structure, function, and management: introduction

    Treesearch

    Kathleen A. Dwire; Richard R. Lowrance

    2006-01-01

    Given the importance of issues related to improved understanding and management of riparian ecosystems and buffers, the American Water Resources Association (AWRA) sponsored a Summer Specialty Conference in June 2004 at Olympic Valley, California, entitled 'Riparian Ecosystems and Buffers: Multiscale Structure, Function, and Management.' The primary objective...

  14. Large-scale variation in combined impacts of canopy loss and disturbance on community structure and ecosystem functioning.

    PubMed

    Crowe, Tasman P; Cusson, Mathieu; Bulleri, Fabio; Davoult, Dominique; Arenas, Francisco; Aspden, Rebecca; Benedetti-Cecchi, Lisandro; Bevilacqua, Stanislao; Davidson, Irvine; Defew, Emma; Fraschetti, Simonetta; Golléty, Claire; Griffin, John N; Herkül, Kristjan; Kotta, Jonne; Migné, Aline; Molis, Markus; Nicol, Sophie K; Noël, Laure M-L J; Pinto, Isabel Sousa; Valdivia, Nelson; Vaselli, Stefano; Jenkins, Stuart R

    2013-01-01

    Ecosystems are under pressure from multiple human disturbances whose impact may vary depending on environmental context. We experimentally evaluated variation in the separate and combined effects of the loss of a key functional group (canopy algae) and physical disturbance on rocky shore ecosystems at nine locations across Europe. Multivariate community structure was initially affected (during the first three to six months) at six locations but after 18 months, effects were apparent at only three. Loss of canopy caused increases in cover of non-canopy algae in the three locations in southern Europe and decreases in some northern locations. Measures of ecosystem functioning (community respiration, gross primary productivity, net primary productivity) were affected by loss of canopy at five of the six locations for which data were available. Short-term effects on community respiration were widespread, but effects were rare after 18 months. Functional changes corresponded with changes in community structure and/or species richness at most locations and times sampled, but no single aspect of biodiversity was an effective predictor of longer-term functional changes. Most ecosystems studied were able to compensate in functional terms for impacts caused by indiscriminate physical disturbance. The only consistent effect of disturbance was to increase cover of non-canopy species. Loss of canopy algae temporarily reduced community resistance to disturbance at only two locations and at two locations actually increased resistance. Resistance to disturbance-induced changes in gross primary productivity was reduced by loss of canopy algae at four locations. Location-specific variation in the effects of the same stressors argues for flexible frameworks for the management of marine environments. These results also highlight the need to analyse how species loss and other stressors combine and interact in different environmental contexts.

  15. Large-Scale Variation in Combined Impacts of Canopy Loss and Disturbance on Community Structure and Ecosystem Functioning

    PubMed Central

    Crowe, Tasman P.; Cusson, Mathieu; Bulleri, Fabio; Davoult, Dominique; Arenas, Francisco; Aspden, Rebecca; Benedetti-Cecchi, Lisandro; Bevilacqua, Stanislao; Davidson, Irvine; Defew, Emma; Fraschetti, Simonetta; Golléty, Claire; Griffin, John N.; Herkül, Kristjan; Kotta, Jonne; Migné, Aline; Molis, Markus; Nicol, Sophie K.; Noël, Laure M-L J.; Pinto, Isabel Sousa; Valdivia, Nelson; Vaselli, Stefano; Jenkins, Stuart R.

    2013-01-01

    Ecosystems are under pressure from multiple human disturbances whose impact may vary depending on environmental context. We experimentally evaluated variation in the separate and combined effects of the loss of a key functional group (canopy algae) and physical disturbance on rocky shore ecosystems at nine locations across Europe. Multivariate community structure was initially affected (during the first three to six months) at six locations but after 18 months, effects were apparent at only three. Loss of canopy caused increases in cover of non-canopy algae in the three locations in southern Europe and decreases in some northern locations. Measures of ecosystem functioning (community respiration, gross primary productivity, net primary productivity) were affected by loss of canopy at five of the six locations for which data were available. Short-term effects on community respiration were widespread, but effects were rare after 18 months. Functional changes corresponded with changes in community structure and/or species richness at most locations and times sampled, but no single aspect of biodiversity was an effective predictor of longer-term functional changes. Most ecosystems studied were able to compensate in functional terms for impacts caused by indiscriminate physical disturbance. The only consistent effect of disturbance was to increase cover of non-canopy species. Loss of canopy algae temporarily reduced community resistance to disturbance at only two locations and at two locations actually increased resistance. Resistance to disturbance-induced changes in gross primary productivity was reduced by loss of canopy algae at four locations. Location-specific variation in the effects of the same stressors argues for flexible frameworks for the management of marine environments. These results also highlight the need to analyse how species loss and other stressors combine and interact in different environmental contexts. PMID:23799082

  16. Bird functional diversity decreases with time since disturbance: Does patchy prescribed fire enhance ecosystem function?.

    PubMed

    Sitters, Holly; Di Stefano, Julian; Christie, Fiona; Swan, Matthew; York, Alan

    2016-01-01

    Animal species diversity is often associated with time since disturbance, but the effects of disturbances such as fire on functional diversity are unknown. Functional diversity measures the range, abundance, and distribution of trait values in a community, and links changes in species composition with the consequences for ecosystem function. Improved understanding of the relationship between time since fire (TSF) and functional diversity is critical given that the frequency of both prescribed fire and wildfire is expected to increase. To address this knowledge gap, we examined responses of avian functional diversity to TSF and two direct measures of environmental heterogeneity, plant diversity, and structural heterogeneity. We surveyed birds across a 70-year chronosequence spanning four vegetation types in southeast Australia. Six bird functional traits were used to derive four functional diversity indices (richness, evenness, divergence, and dispersion) and the effects of TSF, plant diversity and structural heterogeneity on species richness and the functional diversity indices were examined using mixed models. We used a regression tree method to identify traits associated with species more common in young vegetation. Functional richness and dispersion were negatively associated with TSF in all vegetation types, suggesting that recent prescribed fire generates heterogeneous vegetation and provides greater opportunities for resource partitioning. Species richness was not significantly associated with TSF, and is probably an unreliable surrogate for functional diversity in fire-prone systems. A positive, relationship between functional evenness and structural heterogeneity was comnon to all vegetation types, suggesting that fine-scale (tens of meters) structural variation can enhance ecosystem function. Species more common in young vegetation were primarily linked by their specialist diets, indicating that ecosystem services such as seed dispersal and insect control

  17. Biodiversity, ecosystem functions and services in environmental risk assessment: introduction to the special issue.

    PubMed

    Schäfer, Ralf B

    2012-01-15

    This Special Issue focuses on the questions if and how biodiversity, ecosystem functions and resulting services could be incorporated into the Ecological Risk Assessment (ERA). Therefore, three articles provide a framework for the integration of ecosystem services into ERA of soils, sediments and pesticides. Further articles demonstrate ways how stakeholders can be integrated into an ecosystem service-based ERA for soils and describe how the current monitoring could be adapted to new assessment endpoints that are directly linked to ecosystem services. Case studies show that the current ERA may not be protective for biodiversity, ecosystem functions and resulting services and that both pesticides and salinity currently adversely affect ecosystem functions in the field. Moreover, ecological models can be used for prediction of new protection goals and could finally support their implementation into the ERA. Overall, the Special Issue stresses the urgent need to enhance current procedures of ERA if biodiversity, ecosystem functions and resulting services are to be protected. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. An ecohydraulic view on stream resilience and ecosystem functioning - what can science teach management?

    NASA Astrophysics Data System (ADS)

    Battin, Tom J.; Dzubakova, Katharina; Boodoo, Kyle; Ulseth, Amber

    2017-04-01

    Streams and rivers are increasingly exposed to environmental change across various spatial and temporal scales. Consequently, ecosystem health and integrity are becoming compromised. Most management strategies designed to recover and maintain stream ecosystem health involve engineering measures of geomorphology. The success of such engineering measures relies on a thorough understanding of the underlying physical, chemical and biological process coupling across scales. First, we present results from experimental work unraveling the relevance of streambed heterogeneity for the resilience of phototrophic biofilms. This is critical as phototrophic biofilms are key for nutrient removal and hence for keeping the water clean. These biofilms are also the machinery of primary production and related carbon fluxes in stream ecosystems. Next, we show how climate change may affect primary production, including CO2, in streams and the networks they form. In fact, streams are now recognized as major sources of CO2 to the atmosphere and contributors to the global carbon cycle. Despite this, we do not yet understand how geomorphological features, themselves continuously reworked by hydrology and sedimentary dynamics, affect CO2 fluxes in streams. We show that gravel bars, clearly conspicuous geomorphological features, are hotspots of CO2 fluxes compared to the streamwater itself. This has major implications for carbon cycling and stream ecosystem functioning. Finally, we discuss what stream management could learn from ecohydraulic insights from young scientists doing excellent basic research.

  19. Using ecological production functions to link ecological processes to ecosystem services.

    EPA Science Inventory

    Ecological production functions (EPFs) link ecosystems, stressors, and management actions to ecosystem services (ES) production. Although EPFs are acknowledged as being essential to improve environmental management, their use in ecological risk assessment has received relatively ...

  20. Ecosystem-scale fluxes in seminatural Pyrenean grasslands: role of annual dynamics of plant functional types

    NASA Astrophysics Data System (ADS)

    Altimir, Nuria; Ibañez, Mercedes; Elbers, Jan; Rota, Cristina; Arias, Claudia; Carrara, Arnaud; Nogues, Salvador; Sebastia, Maria-Teresa

    2013-04-01

    The net ecosystem exchange (NEE) and the annual C balance of a site are in general modulated by light, temperature and availability of water and other resources to the plants. In grasslands, NEE is expected to depend strongly on the vegetation with a relationship that can be summarized by the above-ground biomass, its amount and dynamics. Any factor controlling the amount of green biomass is expected to have a strong impact on the short-term NEE, such as amount of solar radiation, water availability and grazing pressure. These controls are modulated differently depending on the plant functional type enduring them. Furthermore, as different guilds follow different functional strategies for optimization of the resources, they also present different patterns of change in their capacities such as photosynthetic fixation, belowground C allocation, and C loss via respiration. We examined these relationships at several semi-natural pastures to determine how the seasonal distribution of plant functional types is detected in the short-term ecosystem exchange and what role it plays. We have looked into these patterns to determine the general variation of key processes and whether different temporal patterns arise between different guilds. The study sites are in the Pyrenees, on the mountain pastures of La Bertolina, Alinyà, and Castellar at 1300, 1700, 1900 m a.s.l. respectively. We performed ecosystem-scale flux measurements by means of micrometeorologial stations combined with a thorough description of the vegetation including below- and above-ground biomass and leaf area as well as monitoring of natural abundance of C isotopes, discriminated by plant functional types. We present here the results of the study.

  1. Environmental proteomics reveals taxonomic and functional changes in an enriched aquatic ecosystem.

    PubMed

    Northrop, Amanda C; Brooks, Rachel; Ellison, Aaron M; Gotelli, Nicholas J; Ballif, Bryan A

    2017-10-01

    Aquatic ecosystem enrichment can lead to distinct and irreversible changes to undesirable states. Understanding changes in active microbial community function and composition following organic-matter loading in enriched ecosystems can help identify biomarkers of such state changes. In a field experiment, we enriched replicate aquatic ecosystems in the pitchers of the northern pitcher plant, Sarracenia purpurea . Shotgun metaproteomics using a custom metagenomic database identified proteins, molecular pathways, and contributing microbial taxa that differentiated control ecosystems from those that were enriched. The number of microbial taxa contributing to protein expression was comparable between treatments; however, taxonomic evenness was higher in controls. Functionally active bacterial composition differed significantly among treatments and was more divergent in control pitchers than enriched pitchers. Aerobic and facultative anaerobic bacteria contributed most to identified proteins in control and enriched ecosystems, respectively. The molecular pathways and contributing taxa in enriched pitcher ecosystems were similar to those found in larger enriched aquatic ecosystems and are consistent with microbial processes occurring at the base of detrital food webs. Detectable differences between protein profiles of enriched and control ecosystems suggest that a time series of environmental proteomics data may identify protein biomarkers of impending state changes to enriched states.

  2. Stable isotope views on ecosystem function: challenging or challenged?

    PubMed Central

    Resco, Víctor; Querejeta, José I.; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C.; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A.; Torres-Cañabate, Patricia; Valladares, Fernando

    2010-01-01

    Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Úbeda, 18–22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes. PMID:20015858

  3. How lichens impact on terrestrial community and ecosystem properties.

    PubMed

    Asplund, Johan; Wardle, David A

    2017-08-01

    Lichens occur in most terrestrial ecosystems; they are often present as minor contributors, but in some forests, drylands and tundras they can make up most of the ground layer biomass. As such, lichens dominate approximately 8% of the Earth's land surface. Despite their potential importance in driving ecosystem biogeochemistry, the influence of lichens on community processes and ecosystem functioning have attracted relatively little attention. Here, we review the role of lichens in terrestrial ecosystems and draw attention to the important, but often overlooked role of lichens as determinants of ecological processes. We start by assessing characteristics that vary among lichens and that may be important in determining their ecological role; these include their growth form, the types of photobionts that they contain, their key functional traits, their water-holding capacity, their colour, and the levels of secondary compounds in their thalli. We then assess how these differences among lichens influence their impacts on ecosystem and community processes. As such, we consider the consequences of these differences for determining the impacts of lichens on ecosystem nutrient inputs and fluxes, on the loss of mass and nutrients during lichen thallus decomposition, and on the role of lichenivorous invertebrates in moderating decomposition. We then consider how differences among lichens impact on their interactions with consumer organisms that utilize lichen thalli, and that range in size from microfauna (for which the primary role of lichens is habitat provision) to large mammals (for which lichens are primarily a food source). We then address how differences among lichens impact on plants, through for example increasing nutrient inputs and availability during primary succession, and serving as a filter for plant seedling establishment. Finally we identify areas in need of further work for better understanding the role of lichens in terrestrial ecosystems. These include

  4. Re-introducing environmental change drivers in biodiversity-ecosystem functioning research

    PubMed Central

    De Laender, Frederik; Rohr, Jason R.; Ashauer, Roman; Baird, Donald J.; Berger, Uta; Eisenhauer, Nico; Grimm, Volker; Hommen, Udo; Maltby, Lorraine; Meliàn, Carlos J.; Pomati, Francesco; Roessink, Ivo; Radchuk, Viktoriia; Van den Brink, Paul J.

    2016-01-01

    For the past 20 years, research on biodiversity and ecosystem functioning (B-EF) has only implicitly considered the underlying role of environmental change. We illustrate that explicitly re-introducing environmental change drivers in B-EF research is needed to predict the functioning of ecosystems facing changes in biodiversity. Next, we show how this reintroduction improves experimental control over community composition and structure, which helps to obtain mechanistic insight about how multiple aspects of biodiversity relate to function, and how biodiversity and function relate in food-webs. We also highlight challenges for the proposed re-introduction, and suggest analyses and experiments to better understand how random biodiversity changes, as studied by classic approaches in B-EF research, contribute to the shifts in function that follow environmental change. PMID:27742415

  5. Potential and limitations of inferring ecosystem photosynthetic capacity from leaf functional traits

    Treesearch

    Talie Musavi; Mirco Migliavacca; Martine Janet van de Weg; Jens Kattge; Georg Wohlfahrt; Peter M. van Bodegom; Markus Reichstein; Michael Bahn; Arnaud Carrara; Tomas F. Domingues; Michael Gavazzi; Damiano Gianelle; Cristina Gimeno; André Granier; Carsten Gruening; Kateřina Havránková; Mathias Herbst; Charmaine Hrynkiw; Aram Kalhori; Thomas Kaminski; Katja Klumpp; Pasi Kolari; Bernard Longdoz; Stefano Minerbi; Leonardo Montagnani; Eddy Moors; Walter C. Oechel; Peter B. Reich; Shani Rohatyn; Alessandra Rossi; Eyal Rotenberg; Andrej Varlagin; Matthew Wilkinson; Christian Wirth; Miguel D. Mahecha

    2016-01-01

    The aim of this study was to systematically analyze the potential and limitations of using plant functional trait observations from global databases versus in situ data to improve our understanding of vegetation impacts on ecosystem functional properties (EFPs). Using ecosystem photosynthetic capacity as an example, we first provide an objective approach to derive...

  6. Towards a Stochastic Predictive Understanding of Ecosystem Functioning and Resilience to Environmental Changes

    NASA Astrophysics Data System (ADS)

    Pappas, C.

    2017-12-01

    Terrestrial ecosystem processes respond differently to hydrometeorological variability across timescales, and so does our scientific understanding of the underlying mechanisms. Process-based modeling of ecosystem functioning is therefore challenging, especially when long-term predictions are envisioned. Here we analyze the statistical properties of hydrometeorological and ecosystem variability, i.e., the variability of ecosystem process related to vegetation carbon dynamics, from hourly to decadal timescales. 23 extra-tropical forest sites, covering different climatic zones and vegetation characteristics, are examined. Micrometeorological and reanalysis data of precipitation, air temperature, shortwave radiation and vapor pressure deficit are used to describe hydrometeorological variability. Ecosystem variability is quantified using long-term eddy covariance flux data of hourly net ecosystem exchange of CO2 between land surface and atmosphere, monthly remote sensing vegetation indices, annual tree-ring widths and above-ground biomass increment estimates. We find that across sites and timescales ecosystem variability is confined within a hydrometeorological envelope that describes the range of variability of the available resources, i.e., water and energy. Furthermore, ecosystem variability demonstrates long-term persistence, highlighting ecological memory and slow ecosystem recovery rates after disturbances. We derive an analytical model, combining deterministic harmonics and stochastic processes, that represents major mechanisms and uncertainties and mimics the observed pattern of hydrometeorological and ecosystem variability. This stochastic framework offers a parsimonious and mathematically tractable approach for modelling ecosystem functioning and for understanding its response and resilience to environmental changes. Furthermore, this framework reflects well the observed ecological memory, an inherent property of ecosystem functioning that is currently not

  7. Seafloor heterogeneity influences the biodiversity–ecosystem functioning relationships in the deep sea

    PubMed Central

    Zeppilli, Daniela; Pusceddu, Antonio; Trincardi, Fabio; Danovaro, Roberto

    2016-01-01

    Theoretical ecology predicts that heterogeneous habitats allow more species to co-exist in a given area. In the deep sea, biodiversity is positively linked with ecosystem functioning, suggesting that deep-seabed heterogeneity could influence ecosystem functions and the relationships between biodiversity and ecosystem functioning (BEF). To shed light on the BEF relationships in a heterogeneous deep seabed, we investigated variations in meiofaunal biodiversity, biomass and ecosystem efficiency within and among different seabed morphologies (e.g., furrows, erosional troughs, sediment waves and other depositional structures, landslide scars and deposits) in a narrow geo-morphologically articulated sector of the Adriatic Sea. We show that distinct seafloor morphologies are characterized by highly diverse nematode assemblages, whereas areas sharing similar seabed morphologies host similar nematode assemblages. BEF relationships are consistently positive across the entire region, but different seabed morphologies are characterised by different slope coefficients of the relationship. Our results suggest that seafloor heterogeneity, allowing diversified assemblages across different habitats, increases diversity and influence ecosystem processes at the regional scale, and BEF relationships at smaller spatial scales. We conclude that high-resolution seabed mapping and a detailed analysis of the species distribution at the habitat scale are crucial for improving management of goods and services delivered by deep-sea ecosystems. PMID:27211908

  8. Biodiversity and ecosystem functioning in dynamic landscapes

    PubMed Central

    Brose, Ulrich; Hillebrand, Helmut

    2016-01-01

    The relationship between biodiversity and ecosystem functioning (BEF) and its consequence for ecosystem services has predominantly been studied by controlled, short-term and small-scale experiments under standardized environmental conditions and constant community compositions. However, changes in biodiversity occur in real-world ecosystems with varying environments and a dynamic community composition. In this theme issue, we present novel research on BEF in such dynamic communities. The contributions are organized in three sections on BEF relationships in (i) multi-trophic diversity, (ii) non-equilibrium biodiversity under disturbance and varying environmental conditions, and (iii) large spatial and long temporal scales. The first section shows that multi-trophic BEF relationships often appear idiosyncratic, while accounting for species traits enables a predictive understanding. Future BEF research on complex communities needs to include ecological theory that is based on first principles of species-averaged body masses, stoichiometry and effects of environmental conditions such as temperature. The second section illustrates that disturbance and varying environments have direct as well as indirect (via changes in species richness, community composition and species' traits) effects on BEF relationships. Fluctuations in biodiversity (species richness, community composition and also trait dominance within species) can severely modify BEF relationships. The third section demonstrates that BEF at larger spatial scales is driven by different variables. While species richness per se and community biomass are most important, species identity effects and community composition are less important than at small scales. Across long temporal scales, mass extinctions represent severe changes in biodiversity with mixed effects on ecosystem functions. Together, the contributions of this theme issue identify new research frontiers and answer some open questions on BEF relationships

  9. Using a Multi-Trait Approach to Manipulate Plant Functional Diversity in a Biodiversity-Ecosystem Function Experiment

    PubMed Central

    Schittko, Conrad; Hawa, Mahmoud; Wurst, Susanne

    2014-01-01

    A frequent pattern emerging from biodiversity-ecosystem function studies is that functional group richness enhances ecosystem functions such as primary productivity. However, the manipulation of functional group richness goes along with major disadvantages like the transformation of functional trait data into categories or the exclusion of functional differences between organisms in the same group. In a mesocosm study we manipulated plant functional diversity based on the multi-trait Functional Diversity (FD)-approach of Petchey and Gaston by using database data of seven functional traits and information on the origin of the species in terms of being native or exotic. Along a gradient ranging from low to high FD we planted 40 randomly selected eight-species mixtures under controlled conditions. We found a significant positive linear correlation of FD with aboveground productivity and a negative correlation with invasibility of the plant communities. Based on community-weighted mean calculations for each functional trait, we figured out that the traits N-fixation and species origin, i.e. being native or exotic, played the most important role for community productivity. Our results suggest that the identification of the impact of functional trait diversity and the relative contributions of relevant traits is essential for a mechanistic understanding of the role of biodiversity for ecosystem functions such as aboveground biomass production and resistance against invasion. PMID:24897501

  10. Frontiers in Ecosystem Science: Energizing the Research Agenda

    NASA Astrophysics Data System (ADS)

    Weathers, K. C.; Groffman, P. M.; VanDolah, E.

    2014-12-01

    Ecosystem science has a long history as a core component of the discipline of Ecology, and although topics of research have fluctuated over the years, it retains a clear identity and continues to be a vital field. As science is becoming more interdisciplinary, particularly the science of global environmental change, ecosystem scientists are addressing new and important questions at the interface of multiple disciplines. Over the last two years, we organized a series of workshops and discussion groups at multiple scientific-society meetings, including AGU to identify frontiers in ecosystem research. The workshops featured short "soapbox" presentations where speakers highlighted key questions in ecosystem science. The presentations were recorded (video and audio) and subjected to qualitative text analysis for identification of frontier themes, attendees completed surveys, and a dozen additional "key informants" were interviewed about their views about frontiers of the discipline. Our effort produced 253 survey participants; the two largest groups of participants were full professors (24%) and graduate students (24%); no other specific group was > 10%. Formal text analysis of the soapbox presentations produced three major themes; "frontiers," "capacity building," and "barriers to implementation" with four or five sub-themes within each major theme. Key "frontiers" included; 1) better understanding of the drivers of ecosystem change, 2) better understanding of ecosystem process and function, 3) human dimensions of ecosystem science, and 4) problem-solving/applied research. Under "capacity building," key topics included: holistic approaches, cross-disciplinary collaboration, public support for research, data, training, and technology investment. Under "barriers" key topics included: limitations in theoretical thinking, insufficient funding/support, fragmentation across discipline, data access and data synthesis. In-depth interviews with 13 experts validated findings

  11. The effects of food web structure on ecosystem function exceeds those of precipitation.

    PubMed

    Trzcinski, M Kurtis; Srivastava, Diane S; Corbara, Bruno; Dézerald, Olivier; Leroy, Céline; Carrias, Jean-François; Dejean, Alain; Céréghino, Régis

    2016-09-01

    Ecosystems are being stressed by climate change, but few studies have tested food web responses to changes in precipitation patterns and the consequences to ecosystem function. Fewer still have considered whether results from one geographic region can be applied to other regions, given the degree of community change over large biogeographic gradients. We assembled, in one field site, three types of macroinvertebrate communities within water-filled bromeliads. Two represented food webs containing both a fast filter feeder-microbial and slow detritivore energy channels found in Costa Rica and Puerto Rico, and one represented the structurally simpler food webs in French Guiana, which only contained the fast filter feeder-microbial channel. We manipulated the amount and distribution of rain entering bromeliads and examined how food web structure mediated ecosystem responses to changes in the quantity and temporal distribution of precipitation. Food web structure affected the survival of functional groups in general and ecosystem functions such as decomposition and the production of fine particulate organic matter. Ecosystem processes were more affected by decreased precipitation than were the abundance of micro-organisms and metazoans. In our experiments, the sensitivity of the ecosystem to precipitation change was primarily revealed in the food web dominated by the single filter feeder-microbial channel because other top-down and bottom-up processes were weak or absent. Our results show stronger effects of food web structure than precipitation change per se on the functioning of bromeliad ecosystems. Consequently, we predict that ecosystem function in bromeliads throughout the Americas will be more sensitive to changes in the distribution of species, rather than to the direct effects caused by changes in precipitation. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  12. Re-connecting Urban Ecohydrology to Improve Ecosystem Functioning: The Role of Local-scale Green Infrastructure

    NASA Astrophysics Data System (ADS)

    Pavao-Zuckerman, M.

    2010-12-01

    As rates of urbanization continue to rise and a greater proportion of the population lives in urban and suburban areas, the provision of ecological services and functions become increasingly important to sustain human and environmental health in urban ecosystems. Soils play a primary role in the healthy functioning of ecosystems that provide supporting, provisioning, regulating, preserving, and cultural ecosystem services, yet developing our understanding of how urban soils function to provide these services within an ecological context is just getting underway. Soils in urban ecosytems are highly heterogeneous, and are affected by both direct and indirect influences and local modifications which alter their functioning relative to non-urbanized local soils. Here I discuss the functioning of rain gardens in and around Tucson, AZ, that have been installed in the urban landscape with the purpose of providing various ecosystem services to local residents and the greater urban ecosystem. This reconnection of ecohydrologic flows in the city has the potential to alter the structure and function of urban ecosystems in positive (through the increase in water availability) and negative (through the import of pollutants to soils) ways. This study compares soil properties, microbial function, and ecosystem functions within the urban ecosystem to determine how urbanization alters soils in semi-arid environments, and to determine if green urban modifications in desert cities can improve soils and ecosystem services. Soils in rain gardens have nearly twice the organic matter contents of native and urban soils, and correspondingly, greater microbial function (as indicated through respiration potential), higher abundance (through substrate induced respiration), and community complexity (indicated by a 3x increase in metabolic diversity) in these green design modifications. Net N-mineralization rates are almost 1.5 times faster in the rain garden basins than urban soils in general

  13. Plant functional traits and diversity in sand dune ecosystems across different biogeographic regions

    NASA Astrophysics Data System (ADS)

    Mahdavi, P.; Bergmeier, E.

    2016-07-01

    Plant species of a functional group respond similarly to environmental pressures and may be expected to act similarly on ecosystem processes and habitat properties. However, feasibility and applicability of functional groups in ecosystems across very different climatic regions have not yet been studied. In our approach we specified the functional groups in sand dune ecosystems of the Mediterranean, Hyrcanian and Irano-Turanian phytogeographic regions. We examined whether functional groups are more influenced by region or rather by habitat characteristics, and identified trait syndromes associated with common habitat types in sand dunes (mobile dunes, stabilized dunes, salt marshes, semi-wet sands, disturbed habitats). A database of 14 traits, 309 species and 314 relevés was examined and trait-species, trait-plot and species-plot matrices were built. Cluster analysis revealed similar plant functional groups in sand dune ecosystems across regions of very different species composition and climate. Specifically, our study showed that plant traits in sand dune ecosystems are grouped reflecting habitat affiliation rather than region and species pool. Environmental factors and constraints such as sand mobility, soil salinity, water availability, nutrient status and disturbance are more important for the occurrence and distribution of plant functional groups than regional belonging. Each habitat is shown to be equipped with specific functional groups and can be described by specific sets of traits. In restoration ecology the completeness of functional groups and traits in a site may serve as a guideline for maintaining or restoring the habitat.

  14. Effects of Detrital Subsidies on Soft-Sediment Ecosystem Function Are Transient and Source-Dependent.

    PubMed

    Gladstone-Gallagher, Rebecca V; Lohrer, Andrew M; Lundquist, Carolyn J; Pilditch, Conrad A

    2016-01-01

    Detrital subsidies from marine macrophytes are prevalent in temperate estuaries, and their role in structuring benthic macrofaunal communities is well documented, but the resulting impact on ecosystem function is not understood. We conducted a field experiment to test the effects of detrital decay on soft-sediment primary production, community metabolism and nutrient regeneration (measures of ecosystem function). Twenty four (2 m2) plots were established on an intertidal sandflat, to which we added 0 or 220 g DW m-2 of detritus from either mangroves (Avicennia marina), seagrass (Zostera muelleri), or kelp (Ecklonia radiata) (n = 6 plots per treatment). Then, after 4, 17 and 46 d we measured ecosystem function, macrofaunal community structure and sediment properties. We hypothesized that (1) detrital decay would stimulate benthic primary production either by supplying nutrients to the benthic macrophytes, or by altering the macrofaunal community; and (2) ecosystem responses would depend on the stage and rate of macrophyte decay (a function of source). Avicennia detritus decayed the slowest with a half-life (t50) of 46 d, while Zostera and Ecklonia had t50 values of 28 and 2.6 d, respectively. However, ecosystem responses were not related to these differences. Instead, we found transient effects (up to 17 d) of Avicennia and Ecklonia detritus on benthic primary production, where initially (4 d) these detrital sources suppressed primary production, but after 17 d, primary production was stimulated in Avicennia plots relative to controls. Other ecosystem function response variables and the macrofaunal community composition were not altered by the addition of detritus, but did vary with time. By sampling ecosystem function temporally, we were able to capture the in situ transient effects of detrital subsidies on important benthic ecosystem functions.

  15. Warming weakens facilitative interactions between decomposers and detritivores, and modifies freshwater ecosystem functioning.

    PubMed

    Bernabé, Tiago N; de Omena, Paula M; Santos, Viviane Piccin Dos; de Siqueira, Virgínia M; de Oliveira, Valéria M; Romero, Gustavo Q

    2018-02-27

    Warming is among the major drivers of changes in biotic interactions and, in turn, ecosystem functioning. The decomposition process occurs in a chain of facilitative interactions between detritivores and microorganisms. It remains unclear, however, what effect warming may have on the interrelations between detritivores and microorganisms, and the consequences for the functioning of natural freshwater ecosystems. To address these gaps, we performed a field experiment using tank bromeliads and their associated aquatic fauna. We manipulated the presence of bacteria and detritivorous macroinvertebrates (control, "bacteria," and "bacteria + macroinvertebrates") under ambient and warming scenarios, and analyzed the effects on the microorganisms and ecosystem functioning (detritus mass loss, colored dissolved organic matter, and nitrogen flux). We applied antibiotic solution to eliminate or reduce bacteria from control bromeliads. After 60 days incubation, bacterial density was higher in the presence than in the absence of macroinvertebrates. In the absence of macroinvertebrates, temperature did not influence bacterial density. However, in the presence of macroinvertebrates, bacterial density decreased by 54% with warming. The magnitude of the effects of organisms on ecosystem functioning was higher in the combined presence of bacteria and macroinvertebrates. However, warming reduced the overall positive effects of detritivores on bacterial density, which in turn, cascaded down to ecosystem functioning by decreasing decomposition and nitrogen flux. These results show the existence of facilitative mechanisms between bacteria and detritivores in the decomposition process, which might collapse due to warming. Detritivores seem to contribute to nutrient cycling as they facilitate bacterial populations, probably by increasing nutrient input (feces) in the ecosystem. However, increased temperature mitigated these beneficial effects. Our results add to a growing research body

  16. European seaweeds under pressure: Consequences for communities and ecosystem functioning

    NASA Astrophysics Data System (ADS)

    Mineur, Frédéric; Arenas, Francisco; Assis, Jorge; Davies, Andrew J.; Engelen, Aschwin H.; Fernandes, Francisco; Malta, Erik-jan; Thibaut, Thierry; Van Nguyen, Tu; Vaz-Pinto, Fátima; Vranken, Sofie; Serrão, Ester A.; De Clerck, Olivier

    2015-04-01

    Seaweed assemblages represent the dominant autotrophic biomass in many coastal environments, playing a central structural and functional role in several ecosystems. In Europe, seaweed assemblages are highly diverse systems. The combined seaweed flora of different European regions hold around 1550 species (belonging to nearly 500 genera), with new species continuously uncovered, thanks to the emergence of molecular tools. In this manuscript we review the effects of global and local stressors on European seaweeds, their communities, and ecosystem functioning. Following a brief review on the present knowledge on European seaweed diversity and distribution, and the role of seaweed communities in biodiversity and ecosystem functioning, we discuss the effects of biotic homogenization (invasive species) and global climate change (shifts in bioclimatic zones and ocean acidification) on the distribution of individual species and their effect on the structure and functioning of seaweed communities. The arrival of new introduced species (that already account for 5-10% of the European seaweeds) and the regional extirpation of native species resulting from oceans' climate change are creating new diversity scenarios with undetermined functional consequences. Anthropogenic local stressors create additional disruption often altering dramatically assemblage's structure. Hence, we discuss ecosystem level effects of such stressors like harvesting, trampling, habitat modification, overgrazing and eutrophication that impact coastal communities at local scales. Last, we conclude by highlighting significant knowledge gaps that need to be addressed to anticipate the combined effects of global and local stressors on seaweed communities. With physical and biological changes occurring at unexpected pace, marine phycologists should now integrate and join their research efforts to be able to contribute efficiently for the conservation and management of coastal systems.

  17. The influence of balanced and imbalanced resource supply on biodiversity-functioning relationship across ecosystems.

    PubMed

    Lewandowska, Aleksandra M; Biermann, Antje; Borer, Elizabeth T; Cebrián-Piqueras, Miguel A; Declerck, Steven A J; De Meester, Luc; Van Donk, Ellen; Gamfeldt, Lars; Gruner, Daniel S; Hagenah, Nicole; Harpole, W Stanley; Kirkman, Kevin P; Klausmeier, Christopher A; Kleyer, Michael; Knops, Johannes M H; Lemmens, Pieter; Lind, Eric M; Litchman, Elena; Mantilla-Contreras, Jasmin; Martens, Koen; Meier, Sandra; Minden, Vanessa; Moore, Joslin L; Venterink, Harry Olde; Seabloom, Eric W; Sommer, Ulrich; Striebel, Maren; Trenkamp, Anastasia; Trinogga, Juliane; Urabe, Jotaro; Vyverman, Wim; Van de Waal, Dedmer B; Widdicombe, Claire E; Hillebrand, Helmut

    2016-05-19

    Numerous studies show that increasing species richness leads to higher ecosystem productivity. This effect is often attributed to more efficient portioning of multiple resources in communities with higher numbers of competing species, indicating the role of resource supply and stoichiometry for biodiversity-ecosystem functioning relationships. Here, we merged theory on ecological stoichiometry with a framework of biodiversity-ecosystem functioning to understand how resource use transfers into primary production. We applied a structural equation model to define patterns of diversity-productivity relationships with respect to available resources. Meta-analysis was used to summarize the findings across ecosystem types ranging from aquatic ecosystems to grasslands and forests. As hypothesized, resource supply increased realized productivity and richness, but we found significant differences between ecosystems and study types. Increased richness was associated with increased productivity, although this effect was not seen in experiments. More even communities had lower productivity, indicating that biomass production is often maintained by a few dominant species, and reduced dominance generally reduced ecosystem productivity. This synthesis, which integrates observational and experimental studies in a variety of ecosystems and geographical regions, exposes common patterns and differences in biodiversity-functioning relationships, and increases the mechanistic understanding of changes in ecosystems productivity. © 2016 The Author(s).

  18. Calibration of two complex ecosystem models with different likelihood functions

    NASA Astrophysics Data System (ADS)

    Hidy, Dóra; Haszpra, László; Pintér, Krisztina; Nagy, Zoltán; Barcza, Zoltán

    2014-05-01

    The biosphere is a sensitive carbon reservoir. Terrestrial ecosystems were approximately carbon neutral during the past centuries, but they became net carbon sinks due to climate change induced environmental change and associated CO2 fertilization effect of the atmosphere. Model studies and measurements indicate that the biospheric carbon sink can saturate in the future due to ongoing climate change which can act as a positive feedback. Robustness of carbon cycle models is a key issue when trying to choose the appropriate model for decision support. The input parameters of the process-based models are decisive regarding the model output. At the same time there are several input parameters for which accurate values are hard to obtain directly from experiments or no local measurements are available. Due to the uncertainty associated with the unknown model parameters significant bias can be experienced if the model is used to simulate the carbon and nitrogen cycle components of different ecosystems. In order to improve model performance the unknown model parameters has to be estimated. We developed a multi-objective, two-step calibration method based on Bayesian approach in order to estimate the unknown parameters of PaSim and Biome-BGC models. Biome-BGC and PaSim are a widely used biogeochemical models that simulate the storage and flux of water, carbon, and nitrogen between the ecosystem and the atmosphere, and within the components of the terrestrial ecosystems (in this research the developed version of Biome-BGC is used which is referred as BBGC MuSo). Both models were calibrated regardless the simulated processes and type of model parameters. The calibration procedure is based on the comparison of measured data with simulated results via calculating a likelihood function (degree of goodness-of-fit between simulated and measured data). In our research different likelihood function formulations were used in order to examine the effect of the different model

  19. Ecosystem health: I. Measuring ecosystem health

    NASA Astrophysics Data System (ADS)

    Schaeffer, David J.; Herricks, Edwin E.; Kerster, Harold W.

    1988-07-01

    Ecosystem analysis has been advanced by an improved understanding of how ecosystems are structured and how they function. Ecology has advanced from an emphasis on natural history to consideration of energetics, the relationships and connections between species, hierarchies, and systems theory. Still, we consider ecosystems as entities with a distinctive character and individual characteristics. Ecosystem maintenance and preservation form the objective of impact analysis, hazard evaluation, and other management or regulation activities. In this article we explore an approach to ecosystem analysis which identifies and quantifies factors which define the condition or state of an ecosystem in terms of health criteria. We relate ecosystem health to human/nonhuman animal health and explore the difficulties of defining ecosystem health and suggest criteria which provide a functional definition of state and condition. We suggest that, as has been found in human/nonhuman animal health studies, disease states can be recognized before disease is of clinical magnitude. Example disease states for ecosystems are functionally defined and discussed, together with test systems for their early detection.

  20. Trophic interactions, ecosystem structure and function in the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Lin, Qun; Jin, Xianshi; Zhang, Bo

    2013-01-01

    The southern Yellow Sea is an important fishing ground, providing abundant fishery resources. However, overfishing and climate change have caused a decline in the resource and damaged the ecosystem. We developed an ecosystem model to analyze the trophic interactions and ecosystem structure and function to guide sustainable development of the ecosystem. A trophic mass-balance model of the southern Yellow Sea during 2000-2001 was constructed using Ecopath with Ecosim software. We defined 22 important functional groups and studied their diet composition. The trophic levels of fish, shrimp, crabs, and cephalopods were between 2.78 and 4.39, and the mean trophic level of the fisheries was 3.24. The trophic flows within the food web occurred primarily in the lower trophic levels. The mean trophic transfer efficiency was 8.1%, of which 7.1% was from primary producers and 9.3% was from detritus within the ecosystem. The transfer efficiency between trophic levels II to III to IV to V to >V was 5.0%, 5.7%, 18.5%, and 19.7%-20.4%, respectively. Of the total flow, phytoplankton contributed 61% and detritus contributed 39%. Fishing is defined as a top predator within the ecosystem, and has a negative impact on most commercial species. Moreover, the ecosystem had a high gross efficiency of the fishery and a high value of primary production required to sustain the fishery. Together, our data suggest there is high fishing pressure in the southern Yellow Sea. Based on analysis of Odum's ecological parameters, this ecosystem was at an immature stage. Our results provide some insights into the structure and development of this ecosystem.

  1. Vegetation ecology meets ecosystem science: Permanent grasslands as a functional biogeography case study.

    PubMed

    Violle, Cyrille; Choler, Philippe; Borgy, Benjamin; Garnier, Eric; Amiaud, Bernard; Debarros, Guilhem; Diquelou, Sylvain; Gachet, Sophie; Jolivet, Claudy; Kattge, Jens; Lavorel, Sandra; Lemauviel-Lavenant, Servane; Loranger, Jessy; Mikolajczak, Alexis; Munoz, François; Olivier, Jean; Viovy, Nicolas

    2015-11-15

    The effect of biodiversity on ecosystem functioning has been widely acknowledged, and the importance of the functional roles of species, as well as their diversity, in the control of ecosystem processes has been emphasised recently. However, bridging biodiversity and ecosystem science to address issues at a biogeographic scale is still in its infancy. Bridging this gap is the primary goal of the emerging field of functional biogeography. While the rise of Big Data has catalysed functional biogeography studies in recent years, comprehensive evidence remains scarce. Here, we present the rationale and the first results of a country-wide initiative focused on the C3 permanent grasslands. We aimed to collate, integrate and process large databases of vegetation relevés, plant traits and environmental layers to provide a country-wide assessment of ecosystem properties and services which can be used to improve regional models of climate and land use changes. We outline the theoretical background, data availability, and ecoinformatics challenges associated with the approach and its feasibility. We provide a case study of upscaling of leaf dry matter content averaged at ecosystem level and country-wide predictions of forage digestibility. Our framework sets milestones for further hypothesis testing in functional biogeography and earth system modelling. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Functional groups of ecosystem engineers: a proposed classification with comments on current issues.

    PubMed

    Berke, Sarah K

    2010-08-01

    Ecologists have long known that certain organisms fundamentally modify, create, or define habitats by altering the habitat's physical properties. In the past 15 years, these processes have been formally defined as "ecosystem engineering", reflecting a growing consensus that environmental structuring by organisms represents a fundamental class of ecological interactions occurring in most, if not all, ecosystems. Yet, the precise definition and scope of ecosystem engineering remains debated, as one should expect given the complexity, enormity, and variability of ecological systems. Here I briefly comment on a few specific current points of contention in the ecosystem engineering concept. I then suggest that ecosystem engineering can be profitably subdivided into four narrower functional categories reflecting four broad mechanisms by which ecosystem engineering occurs: structural engineers, bioturbators, chemical engineers, and light engineers. Finally, I suggest some conceptual model frameworks that could apply broadly within these functional groups.

  3. Ground-based Remote Sensing for Quantifying Subsurface and Surface Co-variability to Scale Arctic Ecosystem Functioning

    NASA Astrophysics Data System (ADS)

    Oktem, R.; Wainwright, H. M.; Curtis, J. B.; Dafflon, B.; Peterson, J.; Ulrich, C.; Hubbard, S. S.; Torn, M. S.

    2016-12-01

    Predicting carbon cycling in Arctic requires quantifying tightly coupled surface and subsurface processes including permafrost, hydrology, vegetation and soil biogeochemistry. The challenge has been a lack of means to remotely sense key ecosystem properties in high resolution and over large areas. A particular challenge has been characterizing soil properties that are known to be highly heterogeneous. In this study, we exploit tightly-coupled above/belowground ecosystem functioning (e.g., the correlations among soil moisture, vegetation and carbon fluxes) to estimate subsurface and other key properties over large areas. To test this concept, we have installed a ground-based remote sensing platform - a track-mounted tram system - along a 70 m transect in the ice-wedge polygonal tundra near Barrow, Alaska. The tram carries a suite of near-surface remote sensing sensors, including sonic depth, thermal IR, NDVI and multispectral sensors. Joint analysis with multiple ground-based measurements (soil temperature, active layer soil moisture, and carbon fluxes) was performed to quantify correlations and the dynamics of above/belowground processes at unprecedented resolution, both temporally and spatially. We analyzed the datasets with particular focus on correlating key subsurface and ecosystem properties with surface properties that can be measured by satellite/airborne remote sensing over a large area. Our results provided several new insights about system behavior and also opens the door for new characterization approaches. We documented that: (1) soil temperature (at >5 cm depth; critical for permafrost thaw) was decoupled from soil surface temperature and was influenced strongly by soil moisture, (2) NDVI and greenness index were highly correlated with both soil moisture and gross primary productivity (based on chamber flux data), and (3) surface deformation (which can be measured by InSAR) was a good proxy for thaw depth dynamics at non-inundated locations.

  4. The need to disentangle key concepts from ecosystem-approach jargon.

    PubMed

    Waylen, K A; Hastings, E J; Banks, E A; Holstead, K L; Irvine, R J; Blackstock, K L

    2014-10-01

    The ecosystem approach--as endorsed by the Convention on Biological Diversity (CDB) in 2000-is a strategy for holistic, sustainable, and equitable natural resource management, to be implemented via the 12 Malawi Principles. These principles describe the need to manage nature in terms of dynamic ecosystems, while fully engaging with local peoples. It is an ambitious concept. Today, the term is common throughout the research and policy literature on environmental management. However, multiple meanings have been attached to the term, resulting in confusion. We reviewed references to the ecosystem approach from 1957 to 2012 and identified 3 primary uses: as an alternative to ecosystem management or ecosystem-based management; in reference to an integrated and equitable approach to resource management as per the CBD; and as a term signifying a focus on understanding and valuing ecosystem services. Although uses of this term and its variants may overlap in meaning, typically, they do not entirely reflect the ethos of the ecosystem approach as defined by the CBD. For example, there is presently an increasing emphasis on ecosystem services, but focusing on these alone does not promote decentralization of management or use of all forms of knowledge, both of which are integral to the CBD's concept. We highlight that the Malawi Principles are at risk of being forgotten. To better understand these principles, more effort to implement them is required. Such efforts should be evaluated, ideally with comparative approaches, before allowing the CBD's concept of holistic and socially engaged management to be abandoned or superseded. It is possible that attempts to implement all 12 principles together will face many challenges, but they may also offer a unique way to promote holistic and equitable governance of natural resources. Therefore, we believe that the CBD's concept of the ecosystem approach demands more attention. © 2014 Society for Conservation Biology.

  5. The importance of biodiversity and dominance for multiple ecosystem functions in a human-modified tropical landscape.

    PubMed

    Lohbeck, Madelon; Bongers, Frans; Martinez-Ramos, Miguel; Poorter, Lourens

    2016-10-01

    Many studies suggest that biodiversity may be particularly important for ecosystem multifunctionality, because different species with different traits can contribute to different functions. Support, however, comes mostly from experimental studies conducted at small spatial scales in low-diversity systems. Here, we test whether different species contribute to different ecosystem functions that are important for carbon cycling in a high-diversity human-modified tropical forest landscape in Southern Mexico. We quantified aboveground standing biomass, primary productivity, litter production, and wood decomposition at the landscape level, and evaluated the extent to which tree species contribute to these ecosystem functions. We used simulations to tease apart the effects of species richness, species dominance and species functional traits on ecosystem functions. We found that dominance was more important than species traits in determining a species' contribution to ecosystem functions. As a consequence of the high dominance in human-modified landscapes, the same small subset of species mattered across different functions. In human-modified landscapes in the tropics, biodiversity may play a limited role for ecosystem multifunctionality due to the potentially large effect of species dominance on biogeochemical functions. However, given the spatial and temporal turnover in species dominance, biodiversity may be critically important for the maintenance and resilience of ecosystem functions. © 2016 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.

  6. Environmental Drivers of Benthic Flux Variation and Ecosystem Functioning in Salish Sea and Northeast Pacific Sediments.

    PubMed

    Belley, Rénald; Snelgrove, Paul V R; Archambault, Philippe; Juniper, S Kim

    2016-01-01

    The upwelling of deep waters from the oxygen minimum zone in the Northeast Pacific from the continental slope to the shelf and into the Salish Sea during spring and summer offers a unique opportunity to study ecosystem functioning in the form of benthic fluxes along natural gradients. Using the ROV ROPOS we collected sediment cores from 10 sites in May and July 2011, and September 2013 to perform shipboard incubations and flux measurements. Specifically, we measured benthic fluxes of oxygen and nutrients to evaluate potential environmental drivers of benthic flux variation and ecosystem functioning along natural gradients of temperature and bottom water dissolved oxygen concentrations. The range of temperature and dissolved oxygen encountered across our study sites allowed us to apply a suite of multivariate analyses rarely used in flux studies to identify bottom water temperature as the primary environmental driver of benthic flux variation and organic matter remineralization. Redundancy analysis revealed that bottom water characteristics (temperature and dissolved oxygen), quality of organic matter (chl a:phaeo and C:N ratios) and sediment characteristics (mean grain size and porosity) explained 51.5% of benthic flux variation. Multivariate analyses identified significant spatial and temporal variation in benthic fluxes, demonstrating key differences between the Northeast Pacific and Salish Sea. Moreover, Northeast Pacific slope fluxes were generally lower than shelf fluxes. Spatial and temporal variation in benthic fluxes in the Salish Sea were driven primarily by differences in temperature and quality of organic matter on the seafloor following phytoplankton blooms. These results demonstrate the utility of multivariate approaches in differentiating among potential drivers of seafloor ecosystem functioning, and indicate that current and future predictive models of organic matter remineralization and ecosystem functioning of soft-muddy shelf and slope seafloor

  7. Forest biodiversity and the delivery of ecosystem goods and services: translating science into policy

    Treesearch

    Ian Thompson; Kimiko Okabe; Jason Tylianakis; Pushpam Kumar; Eckehard G. Brockerhoff; Nancy Schellhorn; John A. Parrotta; Robert Nasi

    2011-01-01

    Biodiversity is integral to almost all ecosystem processes, with some species playing key functional roles that are essential for maintaining the value of ecosystems to humans. However, many ecosystem services remain nonvalued, and decisionmakers rarely consider biodiversity in policy development, in part because the relationships between biodiversity and the provision...

  8. Shifts of community composition and population density substantially affect ecosystem function despite invariant richness.

    PubMed

    Spaak, Jurg W; Baert, Jan M; Baird, Donald J; Eisenhauer, Nico; Maltby, Lorraine; Pomati, Francesco; Radchuk, Viktoriia; Rohr, Jason R; Van den Brink, Paul J; De Laender, Frederik

    2017-10-01

    There has been considerable focus on the impacts of environmental change on ecosystem function arising from changes in species richness. However, environmental change may affect ecosystem function without affecting richness, most notably by affecting population densities and community composition. Using a theoretical model, we find that, despite invariant richness, (1) small environmental effects may already lead to a collapse of function; (2) competitive strength may be a less important determinant of ecosystem function change than the selectivity of the environmental change driver and (3) effects on ecosystem function increase when effects on composition are larger. We also present a complementary statistical analysis of 13 data sets of phytoplankton and periphyton communities exposed to chemical stressors and show that effects on primary production under invariant richness ranged from -75% to +10%. We conclude that environmental protection goals relying on measures of richness could underestimate ecological impacts of environmental change. © 2017 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  9. Trait-based approaches for understanding microbial biodiversity and ecosystem functioning

    PubMed Central

    Krause, Sascha; Le Roux, Xavier; Niklaus, Pascal A.; Van Bodegom, Peter M.; Lennon, Jay T.; Bertilsson, Stefan; Grossart, Hans-Peter; Philippot, Laurent; Bodelier, Paul L. E.

    2014-01-01

    In ecology, biodiversity-ecosystem functioning (BEF) research has seen a shift in perspective from taxonomy to function in the last two decades, with successful application of trait-based approaches. This shift offers opportunities for a deeper mechanistic understanding of the role of biodiversity in maintaining multiple ecosystem processes and services. In this paper, we highlight studies that have focused on BEF of microbial communities with an emphasis on integrating trait-based approaches to microbial ecology. In doing so, we explore some of the inherent challenges and opportunities of understanding BEF using microbial systems. For example, microbial biologists characterize communities using gene phylogenies that are often unable to resolve functional traits. Additionally, experimental designs of existing microbial BEF studies are often inadequate to unravel BEF relationships. We argue that combining eco-physiological studies with contemporary molecular tools in a trait-based framework can reinforce our ability to link microbial diversity to ecosystem processes. We conclude that such trait-based approaches are a promising framework to increase the understanding of microbial BEF relationships and thus generating systematic principles in microbial ecology and more generally ecology. PMID:24904563

  10. Functional trait responses to sediment deposition reduce macrofauna-mediated ecosystem functioning in an estuarine mudflat

    NASA Astrophysics Data System (ADS)

    Mestdagh, Sebastiaan; Bagaço, Leila; Braeckman, Ulrike; Ysebaert, Tom; De Smet, Bart; Moens, Tom; Van Colen, Carl

    2018-05-01

    Human activities, among which dredging and land use change in river basins, are altering estuarine ecosystems. These activities may result in changes in sedimentary processes, affecting biodiversity of sediment macrofauna. As macrofauna controls sediment chemistry and fluxes of energy and matter between water column and sediment, changes in the structure of macrobenthic communities could affect the functioning of an entire ecosystem. We assessed the impact of sediment deposition on intertidal macrobenthic communities and on rates of an important ecosystem function, i.e. sediment community oxygen consumption (SCOC). An experiment was performed with undisturbed sediment samples from the Scheldt river estuary (SW Netherlands). The samples were subjected to four sedimentation regimes: one control and three with a deposited sediment layer of 1, 2 or 5 cm. Oxygen consumption was measured during incubation at ambient temperature. Luminophores applied at the surface, and a seawater-bromide mixture, served as tracers for bioturbation and bio-irrigation, respectively. After incubation, the macrofauna was extracted, identified, and counted and then classified into functional groups based on motility and sediment reworking capacity. Total macrofaunal densities dropped already under the thinnest deposits. The most affected fauna were surficial and low-motility animals, occurring at high densities in the control. Their mortality resulted in a drop in SCOC, which decreased steadily with increasing deposit thickness, while bio-irrigation and bioturbation activity showed increases in the lower sediment deposition regimes but decreases in the more extreme treatments. The initial increased activity likely counteracted the effects of the drop in low-motility, surficial fauna densities, resulting in a steady rather than sudden fall in oxygen consumption. We conclude that the functional identity in terms of motility and sediment reworking can be crucial in our understanding of the

  11. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    DOE PAGES

    Xue, Kai; Xie, Jianping; Zhou, Aifen; ...

    2016-05-06

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward moremore » C 4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C 4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming.« less

  12. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Kai; Xie, Jianping; Zhou, Aifen

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward moremore » C 4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C 4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming.« less

  13. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    PubMed Central

    Xue, Kai; Xie, Jianping; Zhou, Aifen; Liu, Feifei; Li, Dejun; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Luo, Yiqi; Zhou, Jizhong

    2016-01-01

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward more C4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming. PMID:27199978

  14. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources

    NASA Astrophysics Data System (ADS)

    Fisher, Joshua B.; Melton, Forrest; Middleton, Elizabeth; Hain, Christopher; Anderson, Martha; Allen, Richard; McCabe, Matthew F.; Hook, Simon; Baldocchi, Dennis; Townsend, Philip A.; Kilic, Ayse; Tu, Kevin; Miralles, Diego D.; Perret, Johan; Lagouarde, Jean-Pierre; Waliser, Duane; Purdy, Adam J.; French, Andrew; Schimel, David; Famiglietti, James S.; Stephens, Graeme; Wood, Eric F.

    2017-04-01

    The fate of the terrestrial biosphere is highly uncertain given recent and projected changes in climate. This is especially acute for impacts associated with changes in drought frequency and intensity on the distribution and timing of water availability. The development of effective adaptation strategies for these emerging threats to food and water security are compromised by limitations in our understanding of how natural and managed ecosystems are responding to changing hydrological and climatological regimes. This information gap is exacerbated by insufficient monitoring capabilities from local to global scales. Here, we describe how evapotranspiration (ET) represents the key variable in linking ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, and highlight both the outstanding science and applications questions and the actions, especially from a space-based perspective, necessary to advance them.

  15. The Future of Evapotranspiration: Global Requirements for Ecosystem Functioning, Carbon and Climate Feedbacks, Agricultural Management, and Water Resources

    NASA Technical Reports Server (NTRS)

    Fisher, Joshua B.; Melton, Forrest; Middleton, Elizabeth; Hain, Christopher; Anderson, Martha; Allen, Richard; McCabe, Matthew F.; Hook, Simon; Baldocchi, Dennis; Townsend, Philip A.; hide

    2017-01-01

    The fate of the terrestrial biosphere is highly uncertain given recent and projected changes in climate. This is especially acute for impacts associated with changes in drought frequency and intensity on the distribution and timing of water availability. The development of effective adaptation strategies for these emerging threats to food and water security are compromised by limitations in our understanding of how natural and managed ecosystems are responding to changing hydrological and climatological regimes. This information gap is exacerbated by insufficient monitoring capabilities from local to global scales. Here, we describe how evapotranspiration (ET) represents the key variable in linking ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, and highlight both the outstanding science and applications questions and the actions, especially from a space-based perspective, necessary to advance them.

  16. Unravelling ecosystem functions at the Amazonia-Cerrado transition: II. Carbon stocks and CO2 soil efflux in cerradão forest undergoing ecological succession

    NASA Astrophysics Data System (ADS)

    Peixoto, Karine S.; Marimon-Junior, Ben Hur; Marimon, Beatriz S.; Elias, Fernando; de Farias, Josenilton; Freitag, Renata; Mews, Henrique A.; das Neves, Eder C.; Prestes, Nayane Cristina C. S.; Malhi, Yadvinder

    2017-07-01

    The transition region between two major South American biomes, the Amazon forest and the Cerrado (Brazilian savanna), has been substantially converted into human-modified ecosystems. Nevertheless, the recovery dynamics of ecosystem functions in this important zone of (ecological) tension (ZOT) remain poorly understood. In this study, we compared two areas of cerradão (a forest-woodland of the Brazilian savanna; Portuguese augmentative of cerrado), one in secondary succession (SC) and one adjacent and well preserved (PC), to test whether the ecosystem functions lost after conversion to pasture were restored after 22 years of regeneration. We tested the hypothesis that the increase in annual aboveground biomass in the SC would be greater than that in the PC because of anticipated successional gains. We also investigated soil CO2 efflux, litter layer content, and fine root biomass in both the SC and PC. In terms of biomass recovery our hypothesis was not supported: the biomass did not increase in the successional area over the study period, which suggested limited capacity for recovery in this key ecosystem compartment. By contrast, the structure and function of the litter layer and root mat were largely reconstituted in the secondary vegetation. Overall, we provide evidence that 22 years of secondary succession were not sufficient for these short and open forests (e.g., cerradão) in the ZOT to recover ecosystem functions to the levels observed in preserved vegetation of identical physiognomy.

  17. Large herbivores affect forest ecosystem functions by altering the structure of dung beetle communities

    NASA Astrophysics Data System (ADS)

    Iida, Taichi; Soga, Masashi; Koike, Shinsuke

    2018-04-01

    Dramatic increases in populations of large mammalian herbivores have become a major ecological issue, particularly in the northern hemisphere, due to their substantial impacts on both animal and plant communities through processes such as grazing, browsing, and trampling. However, little is known about the consequences of these population explosions on ecosystem functions. Here, we experimentally investigated how the population density of sika deer (Cervus nippon) in temperate deciduous forest areas in Japan affected the decomposition of mammal dung by dung beetles, which is a key process in forest ecosystems. We measured a range of environmental variables (e.g., vegetation cover, soil hardness) and the dung decomposition rate, measured as the amount of deer dung decomposed during one week, and sampled dung beetles at 16 study sites with three different deer densities (high/intermediate/low). We then used structural equation modeling to investigate the relationships between deer density, environmental variables, the biomass of dung beetles (classified into small or large species), and the dung decomposition rate. We found that the biomass of small species increased with increasing deer density, whereas that of large species was not related to deer density. Furthermore, the dung decomposition rate was positively related to the biomass of small species but unrelated to that of large species. Overall, our results showed that an increase in deer density affects the decomposition rate of mammal dung by changing the structure of dung beetle communities (i.e., increasing the number of small dung beetles). Such an understanding of how increases in large herbivore populations affect ecosystem functions is important for accurately evaluating the ecological consequences of their overabundance and ultimately managing their populations appropriately.

  18. Patterns of Distribution and Spatial Indicators of Ecosystem Change Based on Key Species in the Southern Benguela.

    PubMed

    Watermeyer, Katherine E; Hutchings, Laurence; Jarre, Astrid; Shannon, Lynne J

    2016-01-01

    Several commercially and ecologically important species in the southern Benguela have undergone southward and eastward shifts in their distributions over previous decades, most notably the small pelagic fish sardine Sardinops sagax and anchovy Engraulis encrasicolus. Understanding these changes and their implications is essential in implementing an ecosystem approach to fisheries in the southern Benguela and attempting to appreciate the potential impacts of future environmental change. To investigate possible impacts of these shifts at an ecosystem level, distribution maps for before (1985-1991), during (1997-2000) and after (2003-2008) the shift in small pelagic fish were constructed for 14 key species from catch and survey data, and used to calculate spatial indicators including proportion east and west of Cape Agulhas, relative overlap in biomass and area, index of diversity, connectivity. Potential interactions on the south and west coasts were also compared. For several species (redeye; chub mackerel; kingklip; chokka squid; yellowtail), previously unidentified increases in the proportion of biomass east of Cape Agulhas were shown to have occurred over the same period as that of small pelagic fish, although none to the same degree. On average, overlap with small pelagic fish increased over time and overall system connectivity was lowest in the intermediate period, possibly indicating a system under transition. Connectivity declined over time on the west coast while increasing on the east coast. Distributions of other species have changed over time, with the region east of Cape Agulhas becoming increasingly important in terms of potential trophic interaction. Variations in distribution of biomass and structural complexity affect the trophic structure and hence functioning of the system, and implications should be considered when attempting to identify the possible ecosystem impacts of current and future system-level change.

  19. Microbes as engines of ecosystem function: When does community structure enhance predictions of ecosystem processes?

    DOE PAGES

    Graham, Emily B.; Knelman, Joseph E.; Schindlbacher, Andreas; ...

    2016-02-24

    In this study, microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of processmore » rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.« less

  20. Microbes as engines of ecosystem function: When does community structure enhance predictions of ecosystem processes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Emily B.; Knelman, Joseph E.; Schindlbacher, Andreas

    In this study, microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of processmore » rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.« less

  1. Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes?

    PubMed Central

    Graham, Emily B.; Knelman, Joseph E.; Schindlbacher, Andreas; Siciliano, Steven; Breulmann, Marc; Yannarell, Anthony; Beman, J. M.; Abell, Guy; Philippot, Laurent; Prosser, James; Foulquier, Arnaud; Yuste, Jorge C.; Glanville, Helen C.; Jones, Davey L.; Angel, Roey; Salminen, Janne; Newton, Ryan J.; Bürgmann, Helmut; Ingram, Lachlan J.; Hamer, Ute; Siljanen, Henri M. P.; Peltoniemi, Krista; Potthast, Karin; Bañeras, Lluís; Hartmann, Martin; Banerjee, Samiran; Yu, Ri-Qing; Nogaro, Geraldine; Richter, Andreas; Koranda, Marianne; Castle, Sarah C.; Goberna, Marta; Song, Bongkeun; Chatterjee, Amitava; Nunes, Olga C.; Lopes, Ana R.; Cao, Yiping; Kaisermann, Aurore; Hallin, Sara; Strickland, Michael S.; Garcia-Pausas, Jordi; Barba, Josep; Kang, Hojeong; Isobe, Kazuo; Papaspyrou, Sokratis; Pastorelli, Roberta; Lagomarsino, Alessandra; Lindström, Eva S.; Basiliko, Nathan; Nemergut, Diana R.

    2016-01-01

    Microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology. PMID:26941732

  2. Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes?

    PubMed

    Graham, Emily B; Knelman, Joseph E; Schindlbacher, Andreas; Siciliano, Steven; Breulmann, Marc; Yannarell, Anthony; Beman, J M; Abell, Guy; Philippot, Laurent; Prosser, James; Foulquier, Arnaud; Yuste, Jorge C; Glanville, Helen C; Jones, Davey L; Angel, Roey; Salminen, Janne; Newton, Ryan J; Bürgmann, Helmut; Ingram, Lachlan J; Hamer, Ute; Siljanen, Henri M P; Peltoniemi, Krista; Potthast, Karin; Bañeras, Lluís; Hartmann, Martin; Banerjee, Samiran; Yu, Ri-Qing; Nogaro, Geraldine; Richter, Andreas; Koranda, Marianne; Castle, Sarah C; Goberna, Marta; Song, Bongkeun; Chatterjee, Amitava; Nunes, Olga C; Lopes, Ana R; Cao, Yiping; Kaisermann, Aurore; Hallin, Sara; Strickland, Michael S; Garcia-Pausas, Jordi; Barba, Josep; Kang, Hojeong; Isobe, Kazuo; Papaspyrou, Sokratis; Pastorelli, Roberta; Lagomarsino, Alessandra; Lindström, Eva S; Basiliko, Nathan; Nemergut, Diana R

    2016-01-01

    Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.

  3. Great Lakes rivermouth ecosystems: scientific synthesis and management implications

    USGS Publications Warehouse

    Larson, James H.; Trebitz, Anett S.; Steinman, Alan D.; Wiley, Michael J.; Carlson Mazur, Martha; Pebbles, Victoria; Braun, Heather A.; Seelbach, Paul W.

    2013-01-01

    At the interface of the Great Lakes and their tributary rivers lies the rivermouths, a class of aquatic ecosystem where lake and lotic processes mix and distinct features emerge. Many rivermouths are the focal point of both human interaction with the Great Lakes and human impacts to the lakes; many cities, ports, and beaches are located in rivermouth ecosystems, and these human pressures often degrade key ecological functions that rivermouths provide. Despite their ecological uniqueness and apparent economic importance, there has been relatively little research on these ecosystems as a class relative to studies on upstream rivers or the open-lake waters. Here we present a synthesis of current knowledge about ecosystem structure and function in Great Lakes rivermouths based on studies in both Laurentian rivermouths, coastal wetlands, and marine estuarine systems. A conceptual model is presented that establishes a common semantic framework for discussing the characteristic spatial features of rivermouths. This model then is used to conceptually link ecosystem structure and function to ecological services provided by rivermouths. This synthesis helps identify the critical gaps in understanding rivermouth ecology. Specifically, additional information is needed on how rivermouths collectively influence the Great Lakes ecosystem, how human alterations influence rivermouth functions, and how ecosystem services provided by rivermouths can be managed to benefit the surrounding socioeconomic networks.

  4. Available nitrogen is the key factor influencing soil microbial functional gene diversity in tropical rainforest.

    PubMed

    Cong, Jing; Liu, Xueduan; Lu, Hui; Xu, Han; Li, Yide; Deng, Ye; Li, Diqiang; Zhang, Yuguang

    2015-08-20

    Tropical rainforests cover over 50% of all known plant and animal species and provide a variety of key resources and ecosystem services to humans, largely mediated by metabolic activities of soil microbial communities. A deep analysis of soil microbial communities and their roles in ecological processes would improve our understanding on biogeochemical elemental cycles. However, soil microbial functional gene diversity in tropical rainforests and causative factors remain unclear. GeoChip, contained almost all of the key functional genes related to biogeochemical cycles, could be used as a specific and sensitive tool for studying microbial gene diversity and metabolic potential. In this study, soil microbial functional gene diversity in tropical rainforest was analyzed by using GeoChip technology. Gene categories detected in the tropical rainforest soils were related to different biogeochemical processes, such as carbon (C), nitrogen (N) and phosphorus (P) cycling. The relative abundance of genes related to C and P cycling detected mostly derived from the cultured bacteria. C degradation gene categories for substrates ranging from labile C to recalcitrant C were all detected, and gene abundances involved in many recalcitrant C degradation gene categories were significantly (P < 0.05) different among three sampling sites. The relative abundance of genes related to N cycling detected was significantly (P < 0.05) different, mostly derived from the uncultured bacteria. The gene categories related to ammonification had a high relative abundance. Both canonical correspondence analysis and multivariate regression tree analysis showed that soil available N was the most correlated with soil microbial functional gene structure. Overall high microbial functional gene diversity and different soil microbial metabolic potential for different biogeochemical processes were considered to exist in tropical rainforest. Soil available N could be the key factor in shaping the

  5. Human-aided admixture may fuel ecosystem transformation during biological invasions: theoretical and experimental evidence.

    PubMed

    Molofsky, Jane; Keller, Stephen R; Lavergne, Sébastien; Kaproth, Matthew A; Eppinga, Maarten B

    2014-04-01

    Biological invasions can transform our understanding of how the interplay of historical isolation and contemporary (human-aided) dispersal affects the structure of intraspecific diversity in functional traits, and in turn, how changes in functional traits affect other scales of biological organization such as communities and ecosystems. Because biological invasions frequently involve the admixture of previously isolated lineages as a result of human-aided dispersal, studies of invasive populations can reveal how admixture results in novel genotypes and shifts in functional trait variation within populations. Further, because invasive species can be ecosystem engineers within invaded ecosystems, admixture-induced shifts in the functional traits of invaders can affect the composition of native biodiversity and alter the flow of resources through the system. Thus, invasions represent promising yet under-investigated examples of how the effects of short-term evolutionary changes can cascade across biological scales of diversity. Here, we propose a conceptual framework that admixture between divergent source populations during biological invasions can reorganize the genetic variation underlying key functional traits, leading to shifts in the mean and variance of functional traits within invasive populations. Changes in the mean or variance of key traits can initiate new ecological feedback mechanisms that result in a critical transition from a native ecosystem to a novel invasive ecosystem. We illustrate the application of this framework with reference to a well-studied plant model system in invasion biology and show how a combination of quantitative genetic experiments, functional trait studies, whole ecosystem field studies and modeling can be used to explore the dynamics predicted to trigger these critical transitions.

  6. Understanding the relationship between vegetation phenology and productivity across key dryland ecosystem types through the integration of PhenoCam, satellite, and eddy covariance data

    NASA Astrophysics Data System (ADS)

    Yan, D.; Scott, R. L.; Moore, D. J.; Biederman, J. A.; Smith, W. K.

    2017-12-01

    Land surface phenology (LSP) - defined as remotely sensed seasonal variations in vegetation greenness - is intrinsically linked to seasonal carbon uptake, and is thus commonly used as a proxy for vegetation productivity (gross primary productivity; GPP). Yet, the relationship between LSP and GPP remains uncertain, particularly for understudied dryland ecosystems characterized by relatively large spatial and temporal variability. Here, we explored the relationship between LSP and the phenology of GPP for three dominant dryland ecosystem types, and we evaluated how these relationships change as a function of spatial and temporal scale. We focused on three long-term dryland eddy covariance flux tower sites: Walnut Gulch Lucky Hills Shrubland (WHS), Walnut Gulch Kendall Grassland (WKG), and Santa Rita Mesquite (SRM). We analyzed daily canopy-level, 16-day 30m, and 8-day 500m time series of greenness indices from PhenoCam, Landsat 7 ETM+/Landsat 8 OLI, and MODIS, respectively. We first quantified the impact of spatial scale by temporally resampling canopy-level PhenoCam, 30m Landsat, and 500m MODIS to 16-day intervals and then comparing against flux tower GPP estimates. We next quantified the impact of temporal scale by spatially resampling daily PhenoCam, 16-day Landsat, and 8-day MODIS to 500m time series and then comparing against flux tower GPP estimates. We find evidence of critical periods of decoupling between LSP and the phenology of GPP that vary according to the spatial and temporal scale, and as a function of ecosystem type. Our results provide key insight into dryland LSP and GPP dynamics that can be used in future efforts to improve ecosystem process models and satellite-based vegetation productivity algorithms.

  7. A review of the ecosystem functions in oil palm plantations, using forests as a reference system.

    PubMed

    Dislich, Claudia; Keyel, Alexander C; Salecker, Jan; Kisel, Yael; Meyer, Katrin M; Auliya, Mark; Barnes, Andrew D; Corre, Marife D; Darras, Kevin; Faust, Heiko; Hess, Bastian; Klasen, Stephan; Knohl, Alexander; Kreft, Holger; Meijide, Ana; Nurdiansyah, Fuad; Otten, Fenna; Pe'er, Guy; Steinebach, Stefanie; Tarigan, Suria; Tölle, Merja H; Tscharntke, Teja; Wiegand, Kerstin

    2017-08-01

    Oil palm plantations have expanded rapidly in recent decades. This large-scale land-use change has had great ecological, economic, and social impacts on both the areas converted to oil palm and their surroundings. However, research on the impacts of oil palm cultivation is scattered and patchy, and no clear overview exists. We address this gap through a systematic and comprehensive literature review of all ecosystem functions in oil palm plantations, including several (genetic, medicinal and ornamental resources, information functions) not included in previous systematic reviews. We compare ecosystem functions in oil palm plantations to those in forests, as the conversion of forest to oil palm is prevalent in the tropics. We find that oil palm plantations generally have reduced ecosystem functioning compared to forests: 11 out of 14 ecosystem functions show a net decrease in level of function. Some functions show decreases with potentially irreversible global impacts (e.g. reductions in gas and climate regulation, habitat and nursery functions, genetic resources, medicinal resources, and information functions). The most serious impacts occur when forest is cleared to establish new plantations, and immediately afterwards, especially on peat soils. To variable degrees, specific plantation management measures can prevent or reduce losses of some ecosystem functions (e.g. avoid illegal land clearing via fire, avoid draining of peat, use of integrated pest management, use of cover crops, mulch, and compost) and we highlight synergistic mitigation measures that can improve multiple ecosystem functions simultaneously. The only ecosystem function which increases in oil palm plantations is, unsurprisingly, the production of marketable goods. Our review highlights numerous research gaps. In particular, there are significant gaps with respect to socio-cultural information functions. Further, there is a need for more empirical data on the importance of spatial and temporal

  8. Microbial ecology of fermentative hydrogen producing bioprocesses: useful insights for driving the ecosystem function.

    PubMed

    Cabrol, Lea; Marone, Antonella; Tapia-Venegas, Estela; Steyer, Jean-Philippe; Ruiz-Filippi, Gonzalo; Trably, Eric

    2017-03-01

    One of the most important biotechnological challenges is to develop environment friendly technologies to produce new sources of energy. Microbial production of biohydrogen through dark fermentation, by conversion of residual biomass, is an attractive solution for short-term development of bioH2 producing processes. Efficient biohydrogen production relies on complex mixed communities working in tight interaction. Species composition and functional traits are of crucial importance to maintain the ecosystem service. The analysis of microbial community revealed a wide phylogenetic diversity that contributes in different-and still mostly unclear-ways to hydrogen production. Bridging this gap of knowledge between microbial ecology features and ecosystem functionality is essential to optimize the bioprocess and develop strategies toward a maximization of the efficiency and stability of substrate conversion. The aim of this review is to provide a comprehensive overview of the most up-to-date biodata available and discuss the main microbial community features of biohydrogen engineered ecosystems, with a special emphasis on the crucial role of interactions and the relationships between species composition and ecosystem service. The elucidation of intricate relationships between community structure and ecosystem function would make possible to drive ecosystems toward an improved functionality on the basis of microbial ecology principles. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Biogeochemical significance of pelagic ecosystem function: an end-Cretaceous case study

    PubMed Central

    Penman, Donald E.; Rae, James W. B.

    2016-01-01

    Pelagic ecosystem function is integral to global biogeochemical cycling, and plays a major role in modulating atmospheric CO2 concentrations (pCO2). Uncertainty as to the effects of human activities on marine ecosystem function hinders projection of future atmospheric pCO2. To this end, events in the geological past can provide informative case studies in the response of ecosystem function to environmental and ecological changes. Around the Cretaceous–Palaeogene (K–Pg) boundary, two such events occurred: Deccan large igneous province (LIP) eruptions and massive bolide impact at the Yucatan Peninsula. Both perturbed the environment, but only the impact coincided with marine mass extinction. As such, we use these events to directly contrast the response of marine biogeochemical cycling to environmental perturbation with and without changes in global species richness. We measure this biogeochemical response using records of deep-sea carbonate preservation. We find that Late Cretaceous Deccan volcanism prompted transient deep-sea carbonate dissolution of a larger magnitude and timescale than predicted by geochemical models. Even so, the effect of volcanism on carbonate preservation was slight compared with bolide impact. Empirical records and geochemical models support a pronounced increase in carbonate saturation state for more than 500 000 years following the mass extinction of pelagic carbonate producers at the K–Pg boundary. These examples highlight the importance of pelagic ecosystems in moderating climate and ocean chemistry. PMID:27114586

  10. Structuring institutional analysis for urban ecosystems: A key to sustainable urban forest management

    Treesearch

    Sarah K. Mincey; Miranda Hutten; Burnell C. Fischer; Tom P. Evans; Susan I. Stewart; Jessica M. Vogt

    2013-01-01

    A decline in urban forest structure and function in the United States jeopardizes the current focus on developing sustainable cities. A number of social dilemmas—for example, free-rider problems—restrict the sustainable production of ecosystem services and the stock of urban trees from which they flow. However, institutions, or the rules, norms, and strategies that...

  11. Links between tree species, symbiotic fungal diversity and ecosystem functioning in simplified tropical ecosystems.

    PubMed

    Lovelock, Catherine E; Ewel, John J

    2005-07-01

    We studied the relationships among plant and arbuscular mycorrhizal (AM) fungal diversity, and their effects on ecosystem function, in a series of replicate tropical forestry plots in the La Selva Biological Station, Costa Rica. Forestry plots were 12 yr old and were either monocultures of three tree species, or polycultures of the tree species with two additional understory species. Relationships among the AM fungal spore community, host species, plant community diversity and ecosystem phosphorus-use efficiency (PUE) and net primary productivity (NPP) were assessed. Analysis of the relative abundance of AM fungal spores found that host tree species had a significant effect on the AM fungal community, as did host plant community diversity (monocultures vs polycultures). The Shannon diversity index of the AM fungal spore community differed significantly among the three host tree species, but was not significantly different between monoculture and polyculture plots. Over all the plots, significant positive relationships were found between AM fungal diversity and ecosystem NPP, and between AM fungal community evenness and PUE. Relative abundance of two of the dominant AM fungal species also showed significant correlations with NPP and PUE. We conclude that the AM fungal community composition in tropical forests is sensitive to host species, and provide evidence supporting the hypothesis that the diversity of AM fungi in tropical forests and ecosystem NPP covaries.

  12. Risks of large-scale use of systemic insecticides to ecosystem functioning and services.

    PubMed

    Chagnon, Madeleine; Kreutzweiser, David; Mitchell, Edward A D; Morrissey, Christy A; Noome, Dominique A; Van der Sluijs, Jeroen P

    2015-01-01

    Large-scale use of the persistent and potent neonicotinoid and fipronil insecticides has raised concerns about risks to ecosystem functions provided by a wide range of species and environments affected by these insecticides. The concept of ecosystem services is widely used in decision making in the context of valuing the service potentials, benefits, and use values that well-functioning ecosystems provide to humans and the biosphere and, as an endpoint (value to be protected), in ecological risk assessment of chemicals. Neonicotinoid insecticides are frequently detected in soil and water and are also found in air, as dust particles during sowing of crops and aerosols during spraying. These environmental media provide essential resources to support biodiversity, but are known to be threatened by long-term or repeated contamination by neonicotinoids and fipronil. We review the state of knowledge regarding the potential impacts of these insecticides on ecosystem functioning and services provided by terrestrial and aquatic ecosystems including soil and freshwater functions, fisheries, biological pest control, and pollination services. Empirical studies examining the specific impacts of neonicotinoids and fipronil to ecosystem services have focused largely on the negative impacts to beneficial insect species (honeybees) and the impact on pollination service of food crops. However, here we document broader evidence of the effects on ecosystem functions regulating soil and water quality, pest control, pollination, ecosystem resilience, and community diversity. In particular, microbes, invertebrates, and fish play critical roles as decomposers, pollinators, consumers, and predators, which collectively maintain healthy communities and ecosystem integrity. Several examples in this review demonstrate evidence of the negative impacts of systemic insecticides on decomposition, nutrient cycling, soil respiration, and invertebrate populations valued by humans. Invertebrates

  13. Spatial pattern enhances ecosystem functioning in an African savanna.

    PubMed

    Pringle, Robert M; Doak, Daniel F; Brody, Alison K; Jocqué, Rudy; Palmer, Todd M

    2010-05-25

    The finding that regular spatial patterns can emerge in nature from local interactions between organisms has prompted a search for the ecological importance of these patterns. Theoretical models have predicted that patterning may have positive emergent effects on fundamental ecosystem functions, such as productivity. We provide empirical support for this prediction. In dryland ecosystems, termite mounds are often hotspots of plant growth (primary productivity). Using detailed observations and manipulative experiments in an African savanna, we show that these mounds are also local hotspots of animal abundance (secondary and tertiary productivity): insect abundance and biomass decreased with distance from the nearest termite mound, as did the abundance, biomass, and reproductive output of insect-eating predators. Null-model analyses indicated that at the landscape scale, the evenly spaced distribution of termite mounds produced dramatically greater abundance, biomass, and reproductive output of consumers across trophic levels than would be obtained in landscapes with randomly distributed mounds. These emergent properties of spatial pattern arose because the average distance from an arbitrarily chosen point to the nearest feature in a landscape is minimized in landscapes where the features are hyper-dispersed (i.e., uniformly spaced). This suggests that the linkage between patterning and ecosystem functioning will be common to systems spanning the range of human management intensities. The centrality of spatial pattern to system-wide biomass accumulation underscores the need to conserve pattern-generating organisms and mechanisms, and to incorporate landscape patterning in efforts to restore degraded habitats and maximize the delivery of ecosystem services.

  14. Climate change's impact on key ecosystem services and the human well-being they support in the US

    USGS Publications Warehouse

    Nelson, Erik J.; Kareiva, Peter; Ruckelshaus, Mary; Arkema, Katie; Geller, Gary; Girvetz, Evan; Goodrich, Dave; Matzek, Virginia; Pinsky, Malin; Reid, Walt; Saunders, Martin; Semmens, Darius J.; Tallis, Heather

    2013-01-01

    Climate change alters the functions of ecological systems. As a result, the provision of ecosystem services and the well-being of people that rely on these services are being modified. Climate models portend continued warming and more frequent extreme weather events across the US. Such weather-related disturbances will place a premium on the ecosystem services that people rely on. We discuss some of the observed and anticipated impacts of climate change on ecosystem service provision and livelihoods in the US. We also highlight promising adaptive measures. The challenge will be choosing which adaptive strategies to implement, given limited resources and time. We suggest using dynamic balance sheets or accounts of natural capital and natural assets to prioritize and evaluate national and regional adaptation strategies that involve ecosystem services.

  15. Using avian functional traits to assess the impact of land-cover change on ecosystem processes linked to resilience in tropical forests.

    PubMed

    Bregman, Tom P; Lees, Alexander C; MacGregor, Hannah E A; Darski, Bianca; de Moura, Nárgila G; Aleixo, Alexandre; Barlow, Jos; Tobias, Joseph A

    2016-12-14

    Vertebrates perform key roles in ecosystem processes via trophic interactions with plants and insects, but the response of these interactions to environmental change is difficult to quantify in complex systems, such as tropical forests. Here, we use the functional trait structure of Amazonian forest bird assemblages to explore the impacts of land-cover change on two ecosystem processes: seed dispersal and insect predation. We show that trait structure in assemblages of frugivorous and insectivorous birds remained stable after primary forests were subjected to logging and fire events, but that further intensification of human land use substantially reduced the functional diversity and dispersion of traits, and resulted in communities that occupied a different region of trait space. These effects were only partially reversed in regenerating secondary forests. Our findings suggest that local extinctions caused by the loss and degradation of tropical forest are non-random with respect to functional traits, thus disrupting the network of trophic interactions regulating seed dispersal by forest birds and herbivory by insects, with important implications for the structure and resilience of human-modified tropical forests. Furthermore, our results illustrate how quantitative functional traits for specific guilds can provide a range of metrics for estimating the contribution of biodiversity to ecosystem processes, and the response of such processes to land-cover change. © 2016 The Author(s).

  16. Using avian functional traits to assess the impact of land-cover change on ecosystem processes linked to resilience in tropical forests

    PubMed Central

    Bregman, Tom P.; Lees, Alexander C.; MacGregor, Hannah E. A.; Darski, Bianca; de Moura, Nárgila G.; Aleixo, Alexandre; Barlow, Jos

    2016-01-01

    Vertebrates perform key roles in ecosystem processes via trophic interactions with plants and insects, but the response of these interactions to environmental change is difficult to quantify in complex systems, such as tropical forests. Here, we use the functional trait structure of Amazonian forest bird assemblages to explore the impacts of land-cover change on two ecosystem processes: seed dispersal and insect predation. We show that trait structure in assemblages of frugivorous and insectivorous birds remained stable after primary forests were subjected to logging and fire events, but that further intensification of human land use substantially reduced the functional diversity and dispersion of traits, and resulted in communities that occupied a different region of trait space. These effects were only partially reversed in regenerating secondary forests. Our findings suggest that local extinctions caused by the loss and degradation of tropical forest are non-random with respect to functional traits, thus disrupting the network of trophic interactions regulating seed dispersal by forest birds and herbivory by insects, with important implications for the structure and resilience of human-modified tropical forests. Furthermore, our results illustrate how quantitative functional traits for specific guilds can provide a range of metrics for estimating the contribution of biodiversity to ecosystem processes, and the response of such processes to land-cover change. PMID:27928045

  17. Ecosystem services: from theory to implementation.

    PubMed

    Daily, Gretchen C; Matson, Pamela A

    2008-07-15

    Around the world, leaders are increasingly recognizing ecosystems as natural capital assets that supply life-support services of tremendous value. The challenge is to turn this recognition into incentives and institutions that will guide wise investments in natural capital, on a large scale. Advances are required on three key fronts, each featured here: the science of ecosystem production functions and service mapping; the design of appropriate finance, policy, and governance systems; and the art of implementing these in diverse biophysical and social contexts. Scientific understanding of ecosystem production functions is improving rapidly but remains a limiting factor in incorporating natural capital into decisions, via systems of national accounting and other mechanisms. Novel institutional structures are being established for a broad array of services and places, creating a need and opportunity for systematic assessment of their scope and limitations. Finally, it is clear that formal sharing of experience, and defining of priorities for future work, could greatly accelerate the rate of innovation and uptake of new approaches.

  18. Extreme Drought Event and Shrub Invasion Reduce Oak Trees Functioning and Resilience on Water-Limited Ecosystems

    NASA Astrophysics Data System (ADS)

    Caldeira, M. C.; Lobo-do-Vale, R.; Lecomte, X.; David, T. S.; Pinto, J. G.; Bugalho, M. N.; Werner, C.

    2016-12-01

    Extreme droughts and plant invasions are major drivers of global change that can critically affect ecosystem functioning. Shrub encroachment is increasing in many regions worldwide and extreme events are projected to increase in frequency and intensity, namely in the Mediterranean region. Nevertheless, little is known about how these drivers may interact and affect ecosystem functioning and resilience Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event in a Mediterranean oak woodland, we show that the combination of native shrub invasion and extreme drought reduced ecosystem transpiration and the resilience of the key-stone oak tree species. We established six 25 x 25 m paired plots in a shrub (Cistus ladanifer L.) encroached Mediterranean cork-oak (Quercus suber L.) woodland. We measured sapflow and pre-dawn leaf water potential of trees and shrubs and soil water content in all plots during four years. We determined the resilience of tree transpiration to evaluate to what extent trees recovered from the extreme drought event. From February to November 2011 we conducted baseline measurements for plot comparison. In November 2011 all the shrubs from one of all the paired plots were cut and removed. Ecosystem transpiration was dominated by the water use of the invasive shrub, which further increased after the extreme drought. Simultaneously, tree transpiration in invaded plots declined more sharply (67 ± 13 %) than in plots cleared from shrubs (31 ± 11%) relative to the pre-drought year (2011). Trees in invaded plots were not able to recover in the following wetter year showing lower resilience to the extreme drought event. Our results imply that in Mediterranean-type of climates invasion by water spending species coupled with the projected recurrent extreme droughts will cause critical drought tolerance thresholds of trees to be overcome, thus increasing the probability of tree mortality.

  19. Microbial communities, processes and functions in acid mine drainage ecosystems.

    PubMed

    Chen, Lin-xing; Huang, Li-nan; Méndez-García, Celia; Kuang, Jia-liang; Hua, Zheng-shuang; Liu, Jun; Shu, Wen-sheng

    2016-04-01

    Acid mine drainage (AMD) is generated from the oxidative dissolution of metal sulfides when water and oxygen are available largely due to human mining activities. This process can be accelerated by indigenous microorganisms. In the last several decades, culture-dependent researches have uncovered and validated the roles of AMD microorganisms in metal sulfides oxidation and acid generation processes, and culture-independent studies have largely revealed the diversity and metabolic potentials and activities of AMD communities, leading towards a full understanding of the microbial diversity, functions and interactions in AMD ecosystems. This review describes the diversity of microorganisms and their functions in AMD ecosystems, and discusses their biotechnological applications in biomining and AMD bioremediation according to their capabilities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effects of declining oak vitality on ecosystem functions: Lessons from a Spanish oak woodland

    NASA Astrophysics Data System (ADS)

    López-Sánchez, Aida; Bareth, Georg; Bolten, Andreas; Linstädter, Anja

    2017-04-01

    Mediterranean oak woodlands have a great ecological and socio-economic importance. Today, these fragile ecosystems are facing unprecedented degradation threats from Novel Oak Diseases (NODs). Among NOD drivers, maladapted land management practices and climate change are most important. Although it is generally believed that NOD-related declines in tree vitality will have detrimental effects on ecosystem functions, little is known on the magnitude of change, and whether different functions are affected in a similar way. Here we analyzed effects of tree vitality on various ecosystem functions, comparing subcanopy and intercanopy habitats across two oak species (Quercus ilex and Q. suber) in a Spanish oak woodland. We asked how functions - including aboveground net primary productivity (ANPP), taxonomic diversity, and litter decomposition rates - were affected by oak trees' size and vitality. We also combined measurements in the ecosystem function habitat index (MEFHI), a proxy of ecosystem multifunctionality. Field research was carried out in 2016 on a dehesa in southern Spain. We used a stratified random sampling to contrast trees of different species affiliation, size and vitality. Tree vitality was estimated as crown density (assessed via hemispherical photography), and as tree vigor, which combines the grade of canopy defoliation with proxies for tree size (dbh, height, crown height and crown radius). For each tree (n = 34), two plots (50 x 50 cm) were located; one in the subcanopy habitat, and the other in the intercanopy area beyond the tree crown's influence. On all 68 plots, moveable cages were placed during the main growth period (March to May) to estimate ANPP under grazed conditions. Litter decomposition rates were assessed via the tea bag index. ANPP and the biomass of grasses, forbs and legumes were recorded via destructive sampling. To take plots' highly variable environmental conditions into account, we recorded a suite of abiotic and biotic

  1. Parameterization of aquatic ecosystem functioning and its natural variation: Hierarchical Bayesian modelling of plankton food web dynamics

    NASA Astrophysics Data System (ADS)

    Norros, Veera; Laine, Marko; Lignell, Risto; Thingstad, Frede

    2017-10-01

    Methods for extracting empirically and theoretically sound parameter values are urgently needed in aquatic ecosystem modelling to describe key flows and their variation in the system. Here, we compare three Bayesian formulations for mechanistic model parameterization that differ in their assumptions about the variation in parameter values between various datasets: 1) global analysis - no variation, 2) separate analysis - independent variation and 3) hierarchical analysis - variation arising from a shared distribution defined by hyperparameters. We tested these methods, using computer-generated and empirical data, coupled with simplified and reasonably realistic plankton food web models, respectively. While all methods were adequate, the simulated example demonstrated that a well-designed hierarchical analysis can result in the most accurate and precise parameter estimates and predictions, due to its ability to combine information across datasets. However, our results also highlighted sensitivity to hyperparameter prior distributions as an important caveat of hierarchical analysis. In the more complex empirical example, hierarchical analysis was able to combine precise identification of parameter values with reasonably good predictive performance, although the ranking of the methods was less straightforward. We conclude that hierarchical Bayesian analysis is a promising tool for identifying key ecosystem-functioning parameters and their variation from empirical datasets.

  2. Global Human Footprint on the Linkage between Biodiversity and Ecosystem Functioning in Reef Fishes

    PubMed Central

    Mora, Camilo; Aburto-Oropeza, Octavio; Ayala Bocos, Arturo; Ayotte, Paula M.; Banks, Stuart; Bauman, Andrew G.; Beger, Maria; Bessudo, Sandra; Booth, David J.; Brokovich, Eran; Brooks, Andrew; Chabanet, Pascale; Cinner, Joshua E.; Cortés, Jorge; Cruz-Motta, Juan J.; Cupul Magaña, Amilcar; DeMartini, Edward E.; Edgar, Graham J.; Feary, David A.; Ferse, Sebastian C. A.; Friedlander, Alan M.; Gaston, Kevin J.; Gough, Charlotte; Graham, Nicholas A. J.; Green, Alison; Guzman, Hector; Hardt, Marah; Kulbicki, Michel; Letourneur, Yves; López Pérez, Andres; Loreau, Michel; Loya, Yossi; Martinez, Camilo; Mascareñas-Osorio, Ismael; Morove, Tau; Nadon, Marc-Olivier; Nakamura, Yohei; Paredes, Gustavo; Polunin, Nicholas V. C.; Pratchett, Morgan S.; Reyes Bonilla, Héctor; Rivera, Fernando; Sala, Enric; Sandin, Stuart A.; Soler, German; Stuart-Smith, Rick; Tessier, Emmanuel; Tittensor, Derek P.; Tupper, Mark; Usseglio, Paolo; Vigliola, Laurent; Wantiez, Laurent; Williams, Ivor; Wilson, Shaun K.; Zapata, Fernando A.

    2011-01-01

    Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas. PMID:21483714

  3. Sierra Nevada grasslands: interactions between livestock grazing and ecosystem structure and function

    Treesearch

    Barbara H. Allen-Diaz

    2004-01-01

    Livestock grazing plays an integral role in the grass-dominated ecosystems of the Sierra Nevada. Grazing has been asserted to influence such key ecological characteristics as water quality, net primary productivity, nutrient cycling, plant and animal diversity, wildlife habitat availability, and oak regeneration (Belsky and others 1999, Kauffmann and Krueger 1984)....

  4. Changes in the location of biodiversity-ecosystem function hot spots across the seafloor landscape with increasing sediment nutrient loading.

    PubMed

    Thrush, Simon F; Hewitt, Judi E; Kraan, Casper; Lohrer, A M; Pilditch, Conrad A; Douglas, Emily

    2017-04-12

    Declining biodiversity and loss of ecosystem function threatens the ability of habitats to contribute ecosystem services. However, the form of the relationship between biodiversity and ecosystem function (BEF) and how relationships change with environmental change is poorly understood. This limits our ability to predict the consequences of biodiversity loss on ecosystem function, particularly in real-world marine ecosystems that are species rich, and where multiple ecosystem functions are represented by multiple indicators. We investigated spatial variation in BEF relationships across a 300 000 m 2 intertidal sandflat by nesting experimental manipulations of sediment pore water nitrogen concentration into sites with contrasting macrobenthic community composition. Our results highlight the significance of many different elements of biodiversity associated with environmental characteristics, community structure, functional diversity, ecological traits or particular species (ecosystem engineers) to important functions of coastal marine sediments (benthic oxygen consumption, ammonium pore water concentrations and flux across the sediment-water interface). Using the BEF relationships developed from our experiment, we demonstrate patchiness across a landscape in functional performance and the potential for changes in the location of functional hot and cold spots with increasing nutrient loading that have important implications for mapping and predicating change in functionality and the concomitant delivery of ecosystem services. © 2017 The Author(s).

  5. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions

    PubMed Central

    Nagelkerken, Ivan; Connell, Sean D.

    2015-01-01

    Rising anthropogenic CO2 emissions are anticipated to drive change to ocean ecosystems, but a conceptualization of biological change derived from quantitative analyses is lacking. Derived from multiple ecosystems and latitudes, our metaanalysis of 632 published experiments quantified the direction and magnitude of ecological change resulting from ocean acidification and warming to conceptualize broadly based change. Primary production by temperate noncalcifying plankton increases with elevated temperature and CO2, whereas tropical plankton decreases productivity because of acidification. Temperature increases consumption by and metabolic rates of herbivores, but this response does not translate into greater secondary production, which instead decreases with acidification in calcifying and noncalcifying species. This effect creates a mismatch with carnivores whose metabolic and foraging costs increase with temperature. Species diversity and abundances of tropical as well as temperate species decline with acidification, with shifts favoring novel community compositions dominated by noncalcifiers and microorganisms. Both warming and acidification instigate reduced calcification in tropical and temperate reef-building species. Acidification leads to a decline in dimethylsulfide production by ocean plankton, which as a climate gas, contributes to cloud formation and maintenance of the Earth’s heat budget. Analysis of responses in short- and long-term experiments and of studies at natural CO2 vents reveals little evidence of acclimation to acidification or temperature changes, except for microbes. This conceptualization of change across whole communities and their trophic linkages forecast a reduction in diversity and abundances of various key species that underpin current functioning of marine ecosystems. PMID:26460052

  6. Adding ecosystem function to agent-based land use models

    USDA-ARS?s Scientific Manuscript database

    The objective of this paper is to examine issues in the inclusion of simulations of ecosystem functions in agent-based models of land use decision-making. The reasons for incorporating these simulations include local interests in land fertility and global interests in carbon sequestration. Biogeoche...

  7. The Importance of Context in Development and Application of Ecosystem Services Production Functions

    EPA Science Inventory

    The task of estimating ecosystem service production and delivery deserves special attention. When approached as a function of land cover at any given time, context driven facets of ecosystem service production, delivery, and resulting effects on human well-being can be overlooke...

  8. Extreme drought event and shrub invasion combine to reduce ecosystem functioning and resilience in water-limited climates

    NASA Astrophysics Data System (ADS)

    Caldeira, Maria; Lecomte, Xavier; David, Teresa; Pinto, Joaquim; Bugalho, Miguel; Werner, Christiane

    2016-04-01

    Extreme droughts and plant invasions are major drivers of global change that can critically affect ecosystem functioning. Shrub encroachment is increasing in many regions worldwide and extreme events are projected to increase in frequency and intensity, namely in the Mediterranean region. Nevertheless, little is known about how these drivers may interact and affect ecosystem functioning and resilience to extreme droughts. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that the native shrub invasion and extreme drought combined to reduce ecosystem transpiration and the resilience of the key-stone oak tree species. We established six 25 x 25 m paired plots in a shrub (Cistus ladanifer L.) encroached Mediterranean cork-oak (Quercus suber L.) woodland. We measured sapflow and pre-dawn leaf water potential of trees and shrubs and soil water content in all plots during three years. We determined the resilience of tree transpiration to evaluate to what extent trees recovered from the extreme drought event. From February to November 2011 we conducted baseline measurements for plot comparison. In November 2011 all the shrubs from one of all the paired plots were cut and removed. Ecosystem transpiration was dominated by the water use of the invasive shrub, which further increased after the extreme drought. Simultaneously, tree transpiration in invaded plots declined much stronger (67 ± 13 %) than in plots cleared from shrubs (31 ± 11%) relative to the pre-drought year. Trees in invaded plots were not able to recover in the following wetter year showing lower resilience to the extreme drought event. Our results imply that in Mediterranean-type of climates invasion by water spending species can combine with projected recurrent extreme droughts causing critical drought tolerance thresholds of trees to be overcome increasing the probability of tree mortality (Caldeira et.al. 2015

  9. Functional group diversity is key to Southern Ocean benthic carbon pathways

    PubMed Central

    Sands, Chester J.

    2017-01-01

    High latitude benthos are globally important in terms of accumulation and storage of ocean carbon, and the feedback this is likely to have on regional warming. Understanding this ecosystem service is important but difficult because of complex taxonomic diversity, history and geography of benthic biomass. Using South Georgia as a model location (where the history and geography of benthic biology is relatively well studied) we investigated whether the composition of functional groups were critical to benthic accumulation, immobilization and burial pathway to sequestration–and also aid their study through simplification of identification. We reclassified [1], [2]) morphotype and carbon mass data to 13 functional groups, for each sample of 32 sites around the South Georgia continental shelf. We investigated the influence on carbon accumulation, immobilization and sequestration estimate by multiple factors including the compositions of functional groups. Functional groups showed high diversity within and between sites, and within and between habitat types. Carbon storage was not linked to a functional group in particular but accumulation and immobilization increased with the number of functional groups present and the presence of hard substrata. Functional groups were also important to carbon burial rate, which increased with the presence of mixed (hard and soft substrata). Functional groups showed high surrogacy for taxonomic composition and were useful for examining contrasting habitat categorization. Functional groups not only aid marine carbon storage investigation by reducing time and the need for team size and speciality, but also important to benthic carbon pathways per se. There is a distinct geography to seabed carbon storage; seabed boulder-fields are hotspots of carbon accumulation and immobilization, whilst the interface between such boulder-fields and sediments are key places for burial and sequestration. PMID:28654664

  10. Exploring the Alaskan black spruce ecosystem: variability in species composition, ecosystem function, and fire history

    Treesearch

    T.N. Hollingsworth

    2008-01-01

    In this overview, I present extensive studies looking at the structure and function of the black spruce (Picea mariana) ecosystem of the boreal region of interior Alaska. One of the studies provides a classification of black spruce communities, the most abundant forest type in the region. Other studies examine large-scale processes that drive this...

  11. Arctic ecosystem functional zones: identification and quantification using an above and below ground monitoring strategy

    NASA Astrophysics Data System (ADS)

    Hubbard, Susan S.; Ajo-Franklin, Jonathan B.; Dafflon, Baptiste; Dou, Shan; Kneafsey, Tim J.; Peterson, John E.; Tas, Neslihan; Torn, Margaret S.; Phuong Tran, Anh; Ulrich, Craig; Wainwright, Haruko; Wu, Yuxin; Wullschleger, Stan

    2015-04-01

    Although accurate prediction of ecosystem feedbacks to climate requires characterization of the properties that influence terrestrial carbon cycling, performing such characterization is challenging due to the disparity of scales involved. This is particularly true in vulnerable Arctic ecosystems, where microbial activities leading to the production of greenhouse gasses are a function of small-scale hydrological, geochemical, and thermal conditions influenced by geomorphology and seasonal dynamics. As part of the DOE Next-Generation Ecosystem Experiment (NGEE-Arctic), we are advancing two approaches to improve the characterization of complex Arctic ecosystems, with an initial application to an ice-wedge polygon dominated tundra site near Barrow, AK, USA. The first advance focuses on developing a new strategy to jointly monitor above- and below- ground properties critical for carbon cycling in the tundra. The strategy includes co-characterization of properties within the three critical ecosystem compartments: land surface (vegetation, water inundation, snow thickness, and geomorphology); active layer (peat thickness, soil moisture, soil texture, hydraulic conductivity, soil temperature, and geochemistry); and permafrost (mineral soil and ice content, nature, and distribution). Using a nested sampling strategy, a wide range of measurements have been collected at the study site over the past three years, including: above-ground imagery (LiDAR, visible, near infrared, NDVI) from various platforms, surface geophysical datasets (electrical, electromagnetic, ground penetrating radar, seismic), and point measurements (such as CO2 and methane fluxes, soil properties, microbial community composition). A subset of the coincident datasets is autonomously collected daily. Laboratory experiments and new inversion approaches are used to improve interpretation of the field geophysical datasets in terms of ecosystem properties. The new strategy has significantly advanced our ability

  12. Physical Unclonable Function Hardware Keys Utilizing Kirchhoff-Law Secure Key Exchange and Noise-Based Logic

    NASA Astrophysics Data System (ADS)

    Kish, Laszlo B.; Kwan, Chiman

    Weak unclonable function (PUF) encryption key means that the manufacturer of the hardware can clone the key but not anybody else. Strong unclonable function (PUF) encryption key means that even the manufacturer of the hardware is unable to clone the key. In this paper, first we introduce an "ultra" strong PUF with intrinsic dynamical randomness, which is not only unclonable but also gets renewed to an independent key (with fresh randomness) during each use via the unconditionally secure key exchange. The solution utilizes the Kirchhoff-law-Johnson-noise (KLJN) method for dynamical key renewal and a one-time-pad secure key for the challenge/response process. The secure key is stored in a flash memory on the chip to provide tamper-resistance and nonvolatile storage with zero power requirements in standby mode. Simplified PUF keys are shown: a strong PUF utilizing KLJN protocol during the first run and noise-based logic (NBL) hyperspace vector string verification method for the challenge/response during the rest of its life or until it is re-initialized. Finally, the simplest PUF utilizes NBL without KLJN thus it can be cloned by the manufacturer but not by anybody else.

  13. Animal diversity and ecosystem functioning in dynamic food webs

    NASA Astrophysics Data System (ADS)

    Schneider, Florian D.; Brose, Ulrich; Rall, Björn C.; Guill, Christian

    2016-10-01

    Species diversity is changing globally and locally, but the complexity of ecological communities hampers a general understanding of the consequences of animal species loss on ecosystem functioning. High animal diversity increases complementarity of herbivores but also increases feeding rates within the consumer guild. Depending on the balance of these counteracting mechanisms, species-rich animal communities may put plants under top-down control or may release them from grazing pressure. Using a dynamic food-web model with body-mass constraints, we simulate ecosystem functions of 20,000 communities of varying animal diversity. We show that diverse animal communities accumulate more biomass and are more exploitative on plants, despite their higher rates of intra-guild predation. However, they do not reduce plant biomass because the communities are composed of larger, and thus energetically more efficient, plant and animal species. This plasticity of community body-size structure reconciles the debate on the consequences of animal species loss for primary productivity.

  14. Mammalian engineers drive soil microbial communities and ecosystem functions across a disturbance gradient.

    PubMed

    Eldridge, David J; Delgado-Baquerizo, Manuel; Woodhouse, Jason N; Neilan, Brett A

    2016-11-01

    The effects of mammalian ecosystem engineers on soil microbial communities and ecosystem functions in terrestrial ecosystems are poorly known. Disturbance from livestock has been widely reported to reduce soil function, but disturbance by animals that forage in the soil may partially offset these negative effects of livestock, directly and/or indirectly by shifting the composition and diversity of soil microbial communities. Understanding the role of disturbance from livestock and ecosystem engineers in driving soil microbes and functions is essential for formulating sustainable ecosystem management and conservation policies. We compared soil bacterial community composition and enzyme concentrations within four microsites: foraging pits of two vertebrates, the indigenous short-beaked echidna (Tachyglossus aculeatus) and the exotic European rabbit (Oryctolagus cuniculus), and surface and subsurface soils along a gradient in grazing-induced disturbance in an arid woodland. Microbial community composition varied little across the disturbance gradient, but there were substantial differences among the four microsites. Echidna pits supported a lower relative abundance of Acidobacteria and Cyanobacteria, but a higher relative abundance of Proteobacteria than rabbit pits and surface microsites. Moreover, these microsite differences varied with disturbance. Rabbit pits had a similar profile to the subsoil or the surface soils under moderate and high, but not low disturbance. Overall, echidna foraging pits had the greatest positive effect on function, assessed as mean enzyme concentrations, but rabbits had the least. The positive effects of echidna foraging on function were indirectly driven via microbial community composition. In particular, increasing activity was positively associated with increasing relative abundance of Proteobacteria, but decreasing Acidobacteria. Our study suggests that soil disturbance by animals may offset, to some degree, the oft-reported negative

  15. River ecosystem processes: A synthesis of approaches, criteria of use and sensitivity to environmental stressors.

    PubMed

    von Schiller, Daniel; Acuña, Vicenç; Aristi, Ibon; Arroita, Maite; Basaguren, Ana; Bellin, Alberto; Boyero, Luz; Butturini, Andrea; Ginebreda, Antoni; Kalogianni, Eleni; Larrañaga, Aitor; Majone, Bruno; Martínez, Aingeru; Monroy, Silvia; Muñoz, Isabel; Paunović, Momir; Pereda, Olatz; Petrovic, Mira; Pozo, Jesús; Rodríguez-Mozaz, Sara; Rivas, Daniel; Sabater, Sergi; Sabater, Francesc; Skoulikidis, Nikolaos; Solagaistua, Libe; Vardakas, Leonidas; Elosegi, Arturo

    2017-10-15

    River ecosystems are subject to multiple stressors that affect their structure and functioning. Ecosystem structure refers to characteristics such as channel form, water quality or the composition of biological communities, whereas ecosystem functioning refers to processes such as metabolism, organic matter decomposition or secondary production. Structure and functioning respond in contrasting and complementary ways to environmental stressors. Moreover, assessing the response of ecosystem functioning to stressors is critical to understand the effects on the ecosystem services that produce direct benefits to humans. Yet, there is more information on structural than on functional parameters, and despite the many approaches available to measure river ecosystem processes, structural approaches are more widely used, especially in management. One reason for this discrepancy is the lack of synthetic studies analyzing river ecosystem functioning in a way that is useful for both scientists and managers. Here, we present a synthesis of key river ecosystem processes, which provides a description of the main characteristics of each process, including criteria guiding their measurement as well as their respective sensitivity to stressors. We also discuss the current limitations, potential improvements and future steps that the use of functional measures in rivers needs to face. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  16. Divergence of ecosystem services in U.S. National Forests and Grasslands under a changing climate

    Treesearch

    Kai Duan; Ge Sun; Shanlei Sun; Peter V. Caldwell; Erika Cohen Mack; Steve McNulty; Heather D. Aldridge; Yang Zhang

    2016-01-01

    The 170 National Forests and Grasslands (NFs) in the conterminous United States are public lands that provide important ecosystem services such as clean water and timber supply to the American people. This study investigates the potential impacts of climate change on two key ecosystem functions (i.e., water yield and ecosystem productivity) using the most recent...

  17. Delayed responses of an Arctic ecosystem to an extremely dry summer: impacts on net ecosystem exchange and vegetation functioning

    NASA Astrophysics Data System (ADS)

    Zona, D.; Lipson, D. A.; Richards, J. H.; Phoenix, G. K.; Liljedahl, A. K.; Ueyama, M.; Sturtevant, C. S.; Oechel, W. C.

    2013-12-01

    The importance and mode of action of extreme events on the global carbon budget are inadequately understood. This includes the differential impact of extreme events on various ecosystem components, lag effects, recovery times, and compensatory processes. Summer 2007 in Barrow, Arctic Alaska, experienced unusually high air temperatures (fifth warmest over a 65 yr period) and record low precipitation (lowest over a 65 yr period). These abnormal conditions resulted in strongly reduced net Sphagnum CO2 uptake, but no effect neither on vascular plant development nor on net ecosystem exchange (NEE) from this arctic tundra ecosystem. Gross primary production (GPP) and ecosystem respiration (Reco) were both generally greater during most of this extreme summer. Cumulative ecosystem C uptake in 2007 was similar to the previous summers, showing the capacity of the ecosystem to compensate in its net ecosystem exchange (NEE) despite the impact on other functions and structure such as substantial necrosis of the Sphagnum layer. Surprisingly, the lowest ecosystem C uptake (2005-2009) was observed during the 2008 summer, i.e the year directly following the extremely summer. In 2008, cumulative C uptake was ∼70% lower than prior years. This reduction cannot solely be attributed to mosses, which typically contribute with ∼40% - of the entire ecosystem C uptake. The minimum summer cumulative C uptake in 2008 suggests that the entire ecosystem experienced difficulty readjusting to more typical weather after experiencing exceptionally warm and dry conditions. Importantly, the return to a substantial cumulative C uptake occurred two summers after the extreme event, which suggest a high resilience of this tundra ecosystem. Overall, these results show a highly complex response of the C uptake and its sub-components to atypically dry conditions. The impact of multiple extreme events still awaits further investigation.

  18. Ecosystem and decomposer effects on litter dynamics along an old field to old-growth forest successional gradient

    EPA Science Inventory

    Identifying the biotic (e.g. decomposers, vegetation) and abiotic (e.g. temperature, moisture) mechanisms controlling litter decomposition is key to understanding ecosystem function, especially where variation in ecosystem structure due to successional processes may alter the str...

  19. Comparing ecosystem and soil respiration: Review and key challenges of tower-based and soil measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barba, Josep; Cueva, Alejandro; Bahn, Michael

    The net ecosystem exchange (NEE) is the difference between ecosystem CO 2 assimilation and CO 2 losses to the atmosphere. Ecosystem respiration (Reco), the efflux of CO 2 from the ecosystem to the atmosphere, includes the soil-to-atmosphere carbon flux (i.e., soil respiration; Rsoil) and aboveground plant respiration. Therefore, Rsoil is a fraction of Reco and theoretically has to be smaller than Reco at daily, seasonal, and annual scales. But, several studies estimating Reco with the eddy covariance technique and measuring Rsoil within the footprint of the tower have reported higher Rsoil than Reco at different time scales. Here, we comparemore » four different and contrasting ecosystems (from forest to grasslands, and from boreal to semiarid) to test if measurements of Reco are consistently higher than Rsoil. In general, both fluxes showed similar temporal patterns, but Reco was not consistently higher than Rsoil from daily to annual scales across sites. We also identified several issues that apply for measuring NEE and measuring/upscaling Rsoil that could result in an underestimation of Reco and/or an overestimation of Rsoil. These issues are discussed based on (a) nighttime measurements of NEE, (b) Rsoil measurements, and (c) the interpretation of the functional relationships of these fluxes with temperature (i.e., Q10). Finally, we highlight that there is still a need for better integration of Rsoil with eddy covariance measurements to address challenges related to the spatial and temporal variability of Reco and Rsoil.« less

  20. Comparing ecosystem and soil respiration: Review and key challenges of tower-based and soil measurements

    DOE PAGES

    Barba, Josep; Cueva, Alejandro; Bahn, Michael; ...

    2017-11-01

    The net ecosystem exchange (NEE) is the difference between ecosystem CO 2 assimilation and CO 2 losses to the atmosphere. Ecosystem respiration (Reco), the efflux of CO 2 from the ecosystem to the atmosphere, includes the soil-to-atmosphere carbon flux (i.e., soil respiration; Rsoil) and aboveground plant respiration. Therefore, Rsoil is a fraction of Reco and theoretically has to be smaller than Reco at daily, seasonal, and annual scales. But, several studies estimating Reco with the eddy covariance technique and measuring Rsoil within the footprint of the tower have reported higher Rsoil than Reco at different time scales. Here, we comparemore » four different and contrasting ecosystems (from forest to grasslands, and from boreal to semiarid) to test if measurements of Reco are consistently higher than Rsoil. In general, both fluxes showed similar temporal patterns, but Reco was not consistently higher than Rsoil from daily to annual scales across sites. We also identified several issues that apply for measuring NEE and measuring/upscaling Rsoil that could result in an underestimation of Reco and/or an overestimation of Rsoil. These issues are discussed based on (a) nighttime measurements of NEE, (b) Rsoil measurements, and (c) the interpretation of the functional relationships of these fluxes with temperature (i.e., Q10). Finally, we highlight that there is still a need for better integration of Rsoil with eddy covariance measurements to address challenges related to the spatial and temporal variability of Reco and Rsoil.« less

  1. Ecosystem approach in education

    NASA Astrophysics Data System (ADS)

    Nabiullin, Iskander

    2017-04-01

    Environmental education is a base for sustainable development. Therefore, in our school we pay great attention to environmental education. Environmental education in our school is based on ecosystem approach. What is an ecosystem approach? Ecosystem is a fundamental concept of ecology. Living organisms and their non-living environments interact with each other as a system, and the biosphere planet functions as a global ecosystem. Therefore, it is necessary for children to understand relationships in ecosystems, and we have to develop systems thinking in our students. Ecosystem approach and systems thinking should help us to solve global environmental problems. How do we implement the ecosystem approach? Students must understand that our biosphere functions as a single ecosystem and even small changes can lead to environmental disasters. Even the disappearance of one plant or animal species can lead to irreversible consequences. So in the classroom we learn the importance of each living organism for the nature. We pay special attention to endangered species, which are listed in the Red Data List. Kids are doing projects about these organisms, make videos, print brochures and newspapers. Fieldwork also plays an important role for ecosystem approach. Every summer, we go out for expeditions to study species of plants and animals listed in the Red Data List of Tatarstan. In class, students often write essays on behalf of any endangered species of plants or animals, this also helps them to understand the importance of each living organism in nature. Each spring we organise a festival of environmental projects among students. Groups of 4-5 students work on a solution of environmental problems, such as water, air or soil pollution, waste recycling, the loss of biodiversity, etc. Participants shoot a clip about their project, print brochures. Furthermore, some of the students participate in national and international scientific Olympiads with their projects. In addition to

  2. Hydromorphological restoration stimulates river ecosystem metabolism

    NASA Astrophysics Data System (ADS)

    Kupilas, Benjamin; Hering, Daniel; Lorenz, Armin W.; Knuth, Christoph; Gücker, Björn

    2017-04-01

    Both ecosystem structure and functioning determine ecosystem status and are important for the provision of goods and services to society. However, there is a paucity of research that couples functional measures with assessments of ecosystem structure. In mid-sized and large rivers, effects of restoration on key ecosystem processes, such as ecosystem metabolism, have rarely been addressed and remain poorly understood. We compared three reaches of the third-order, gravel-bed river Ruhr in Germany: two reaches restored with moderate (R1) and substantial effort (R2) and one upstream degraded reach (D). Hydromorphology, habitat composition, and hydrodynamics were assessed. We estimated gross primary production (GPP) and ecosystem respiration (ER) using the one-station open-channel diel dissolved oxygen change method over a 50-day period at the end of each reach. Moreover, we estimated metabolic rates of the combined restored reaches (R1 + R2) using the two-station open-channel method. Values for hydromorphological variables increased with restoration intensity (D < R1 < R2). Restored reaches had lower current velocity, higher longitudinal dispersion and larger transient storage zones. However, fractions of median travel time due to transient storage were highest in R1 and lowest in R2, with intermediate values in D. The share of macrophyte cover of total wetted area was highest in R2 and lowest in R1, with intermediate values in D. Station R2 had higher average GPP and ER than R1 and D. The combined restored reaches R1 + R2 also exhibited higher GPP and ER than the degraded upstream river (station D). Restoration increased river autotrophy, as indicated by elevated GPP : ER, and net ecosystem production (NEP) of restored reaches. Temporal patterns of ER closely mirrored those of GPP, pointing to the importance of autochthonous production for ecosystem functioning. In conclusion, high reach-scale restoration effort had considerable effects on river hydrodynamics and

  3. Disentangling the effects of climate variability and functional change on ecosystem carbon dynamics using semi-empirical modelling

    NASA Astrophysics Data System (ADS)

    Wu, J.; van der Linden, L.; Lasslop, G.; Carvalhais, N.; Pilegaard, K.; Beier, C.; Ibrom, A.

    2012-04-01

    The ecosystem carbon balance is affected by both external climatic forcing (e.g. solar radiation, air temperature and humidity) and internal dynamics in the ecosystem functional properties (e.g. canopy structure, leaf photosynthetic capacity and carbohydrate reserve). In order to understand to what extent and at which temporal scale, climatic variability and functional changes regulated the interannual variation (IAV) in the net ecosystem exchange of CO2 (NEE), data-driven analysis and semi-empirical modelling (Lasslop et al. 2010) were performed based on a 13 year NEE record in a temperate deciduous forest (Pilegaard et al 2011, Wu et al. 2012). We found that the sensitivity of carbon fluxes to climatic variability was significantly higher at shorter than at longer time scales and changed seasonally. This implied that the changing distribution of climate anomalies during the vegetation period could have stronger impacts on future ecosystem carbon balances than changes in average climate. At the annual time scale, approximately 80% of the interannual variability in NEE was attributed to the variation in the model parameters, indicating the observed IAV in the carbon dynamics at the investigated site was dominated by changes in ecosystem functioning. In general this study showed the need for understanding the mechanisms of ecosystem functional change. The method can be applied at other sites to explore ecosystem behavior across different plant functional types and climate gradients. Incorporating ecosystem functional change into process based models will reduce the uncertainties in long-term predictions of ecosystem carbon balances in global climate change projections. Acknowledgements. This work was supported by the EU FP7 project CARBO-Extreme, the DTU Climate Centre and the Danish national project ECOCLIM (Danish Council for Strategic Research).

  4. Biodiversity-ecosystem functioning relationships in long-term time series and palaeoecological records: deep sea as a test bed.

    PubMed

    Yasuhara, Moriaki; Doi, Hideyuki; Wei, Chih-Lin; Danovaro, Roberto; Myhre, Sarah E

    2016-05-19

    The link between biodiversity and ecosystem functioning (BEF) over long temporal scales is poorly understood. Here, we investigate biological monitoring and palaeoecological records on decadal, centennial and millennial time scales from a BEF framework by using deep sea, soft-sediment environments as a test bed. Results generally show positive BEF relationships, in agreement with BEF studies based on present-day spatial analyses and short-term manipulative experiments. However, the deep-sea BEF relationship is much noisier across longer time scales compared with modern observational studies. We also demonstrate with palaeoecological time-series data that a larger species pool does not enhance ecosystem stability through time, whereas higher abundance as an indicator of higher ecosystem functioning may enhance ecosystem stability. These results suggest that BEF relationships are potentially time scale-dependent. Environmental impacts on biodiversity and ecosystem functioning may be much stronger than biodiversity impacts on ecosystem functioning at long, decadal-millennial, time scales. Longer time scale perspectives, including palaeoecological and ecosystem monitoring data, are critical for predicting future BEF relationships on a rapidly changing planet. © 2016 The Author(s).

  5. Monitoring ecosystem quality and function in arid settings of the Mojave Desert

    USGS Publications Warehouse

    Belnap, Jayne; Webb, Robert H.; Miller, Mark E.; Miller, David M.; DeFalco, Lesley A.; Medica, Philip A.; Brooks, Matthew L.; Esque, Todd C.; Bedford, Dave

    2008-01-01

    Monitoring ecosystem quality and function in the Mojave Desert is both a requirement of state and Federal government agencies and a means for determining potential long-term changes induced by climatic fluctuations and land use. Because it is not feasible to measure every attribute and process in the desert ecosystem, the choice of what to measure and where to measure it is the most important starting point of any monitoring program. In the Mojave Desert, ecosystem function is strongly influenced by both abiotic and biotic factors, and an understanding of the temporal and spatial variability induced by climate and landform development is needed to determine where site-specific measurements should be made. We review a wide variety of techniques for sampling, assessing, and measuring climatic variables, desert soils, biological soil crusts, annual and perennial vegetation, reptiles, and small mammals. The complete array of ecosystem attributes and processes that we describe are unlikely to be measured or monitored at any given location, but the array of possibilities allows for the development of specific monitoring protocols, which can be tailored to suit the needs of land-management agencies.

  6. Ecosystem services: From theory to implementation

    PubMed Central

    Daily, Gretchen C.; Matson, Pamela A.

    2008-01-01

    Around the world, leaders are increasingly recognizing ecosystems as natural capital assets that supply life-support services of tremendous value. The challenge is to turn this recognition into incentives and institutions that will guide wise investments in natural capital, on a large scale. Advances are required on three key fronts, each featured here: the science of ecosystem production functions and service mapping; the design of appropriate finance, policy, and governance systems; and the art of implementing these in diverse biophysical and social contexts. Scientific understanding of ecosystem production functions is improving rapidly but remains a limiting factor in incorporating natural capital into decisions, via systems of national accounting and other mechanisms. Novel institutional structures are being established for a broad array of services and places, creating a need and opportunity for systematic assessment of their scope and limitations. Finally, it is clear that formal sharing of experience, and defining of priorities for future work, could greatly accelerate the rate of innovation and uptake of new approaches. PMID:18621697

  7. The Sphagnum microbiome supports bog ecosystem functioning under extreme conditions.

    PubMed

    Bragina, Anastasia; Oberauner-Wappis, Lisa; Zachow, Christin; Halwachs, Bettina; Thallinger, Gerhard G; Müller, Henry; Berg, Gabriele

    2014-09-01

    Sphagnum-dominated bogs represent a unique yet widely distributed type of terrestrial ecosystem and strongly contribute to global biosphere functioning. Sphagnum is colonized by highly diverse microbial communities, but less is known about their function. We identified a high functional diversity within the Sphagnum microbiome applying an Illumina-based metagenomic approach followed by de novo assembly and MG-RAST annotation. An interenvironmental comparison revealed that the Sphagnum microbiome harbours specific genetic features that distinguish it significantly from microbiomes of higher plants and peat soils. The differential traits especially support ecosystem functioning by a symbiotic lifestyle under poikilohydric and ombrotrophic conditions. To realise a plasticity-stability balance, we found abundant subsystems responsible to cope with oxidative and drought stresses, to exchange (mobile) genetic elements, and genes that encode for resistance to detrimental environmental factors, repair and self-controlling mechanisms. Multiple microbe-microbe and plant-microbe interactions were also found to play a crucial role as indicated by diverse genes necessary for biofilm formation, interaction via quorum sensing and nutrient exchange. A high proportion of genes involved in nitrogen cycle and recycling of organic material supported the role of bacteria for nutrient supply. 16S rDNA analysis indicated a higher structural diversity than that which had been previously detected using PCR-dependent techniques. Altogether, the diverse Sphagnum microbiome has the ability to support the life of the host plant and the entire ecosystem under changing environmental conditions. Beyond this, the moss microbiome presents a promising bio-resource for environmental biotechnology - with respect to novel enzymes or stress-protecting bacteria. © 2014 John Wiley & Sons Ltd.

  8. An ecosystem model of an exploited southern Mediterranean shelf region (Gulf of Gabes, Tunisia) and a comparison with other Mediterranean ecosystem model properties

    NASA Astrophysics Data System (ADS)

    Hattab, Tarek; Ben Rais Lasram, Frida; Albouy, Camille; Romdhane, Mohamed Salah; Jarboui, Othman; Halouani, Ghassen; Cury, Philippe; Le Loc'h, François

    2013-12-01

    In this paper, we describe an exploited continental shelf ecosystem (Gulf of Gabes) in the southern Mediterranean Sea using an Ecopath mass-balance model. This allowed us to determine the structure and functioning of this ecosystem and assess the impacts of fishing upon it. The model represents the average state of the ecosystem between 2000 and 2005. It includes 41 functional groups, which encompass the entire trophic spectrum from phytoplankton to higher trophic levels (e.g., fishes, birds, and mammals), and also considers the fishing activities in the area (five fleets). Model results highlight an important bentho-pelagic coupling in the system due to the links between plankton and benthic invertebrates through detritus. A comparison of this model with those developed for other continental shelf regions in the Mediterranean (i.e., the southern Catalan, the northern-central Adriatic, and the northern Aegean Seas) emphasizes similar patterns in their trophic functioning. Low and medium trophic levels (i.e., zooplankton, benthic molluscs, and polychaetes) and sharks were identified as playing key ecosystem roles and were classified as keystone groups. An analysis of ecosystem attributes indicated that the Gulf of Gabes is the least mature (i.e., in the earliest stages of ecosystem development) of the four ecosystems that were compared and it is suggested that this is due, at least in part, to the impacts of fishing. Bottom trawling was identified as having the widest-ranging impacts across the different functional groups and the largest impacts on some commercially-targeted demersal fish species. Several exploitation indices highlighted that the Gulf of Gabes ecosystem is highly exploited, a finding which is supported by stock assessment outcomes. This suggests that it is unlikely that the gulf can be fished at sustainable levels, a situation which is similar to other marine ecosystems in the Mediterranean Sea.

  9. Quantifying the pedo-ecohydrological structure and function of degraded, grassland ecosystems

    NASA Astrophysics Data System (ADS)

    Brazier, Richard E.

    2015-04-01

    Grassland ecosystems cover significant areas of the terrestrial land mass, across a range of geoclimates, from arctic tundra, through temperate and semi-arid landscapes. In very few locations, such grasslands may be termed 'pristine' in that they remain undamaged by human activities and resilient to changing climates. In far more cases, grasslands are being degraded, often irreversibly so, with significant implications for a number of ecosystem services related to water resources, soil quality, nutrient cycles, and therefore both global food and water security. This paper draws upon empirical research that has been undertaken over the last decade to characterise a range of different grasslands in terms of soil properties, vegetation structure and geomorphology and to understand how these structures or patterns might interact or control how the grassland ecosystems function. Particular emphasis is placed upon quantifying fluxes of water, within and from grasslands, but also fluxes of sediment, via the processes of soil erosion and finally fluxes of the macronutrients Nitrogen, Phosphorus and Carbon from the landscape to surface waters. Data are presented from semi-arid grasslands, which are subject to severe encroachment by woody species, temperate upland grasslands that have been 'improved' via drainage to support grazing, temperate lowland grasslands, that are unimproved (Culm or Rhôs pastures) and finally intensively managed grasslands in temperate regions, that have been significantly modified via land management practices to improve productivity. It is hypothesised that, once degraded, the structure and function of these very diverse grassland ecosystems follows the same negative trajectory, resulting in depleted soil depths, nutrient storage capacities and therefore reduced plant growth and long-term carbon sequestration. Results demonstrate that similar, but highly complex and non-linear responses to perturbation of the ecosystem are observed, regardless of

  10. Comparing ecosystem and soil respiration: Review and key challenges of tower-based and soil measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barba, Josep; Cueva, Alejandro; Bahn, Michael

    The net ecosystem exchange (NEE) is the difference between ecosystem CO2 assimilation and CO2 losses to the atmosphere. Ecosystem respiration (Reco), the efflux of CO2 from the ecosystem to the atmosphere, includes the soil-to-atmosphere carbon flux (i.e., soil respiration; Rsoil) and aboveground plant respiration. Therefore, Rsoil is a fraction of Reco and by definition has to be smaller than Reco at annual, seasonal and daily scales. However, several studies estimating Reco with the eddy covariance technique and measuring Rsoil within the footprint of the tower have reported higher Rsoil than Reco at different time scales. Here, we compare four differentmore » and contrasting ecosystems (from forest to grasslands, and from boreal to semiarid) to study whether, and under what conditions, measurements of Reco are lower than Rsoil. In general, both fluxes showed similar temporal patterns, but Reco was not consistently higher than Rsoil from daily to annual scales across sites. We identified several issues that apply for measuring NEE and measuring/upscaling Rsoil that could result in an underestimation of Reco and/or an overestimation of Rsoil. These issues are discussed based on (a) nighttime measurements of NEE, (b) Rsoil measurements, and (c) the interpretation of the functional relationships of these fluxes with temperature (i.e., Q10). We highlight that there is still a need for better integration of Rsoil with eddy covariance measurements to address challenges related to spatial and temporal variability of Reco and Rsoil.« less

  11. Linking Soil Microbial Ecology to Ecosystem Functioning in Integrated Crop-Livestock Systems

    USDA-ARS?s Scientific Manuscript database

    Enhanced soil stability, nutrient cycling and C sequestration potential are important ecosystem functions driven by soil microbial processes and are directly influenced by agricultural management. Integrated crop-livestock agroecosystems (ICL) can enhance these functions via high-residue returning c...

  12. Biodiversity-ecosystem functioning relationships in a long-term non-weeded field experiment.

    PubMed

    Veen, Ciska G F; van der Putten, Wim H; Bezemer, T Martijn

    2018-05-30

    Many grassland biodiversity experiments show a positive relationship between biodiversity and ecosystem functioning, however, in most these experiments plant communities are established by sowing and natural colonization is prevented by selective weeding of non-sown species. During ecosystem restoration, for example on abandoned fields, plant communities start on bare soil, and diversity is often manipulated in a single sowing event. How such initial plant diversity manipulations influence plant biodiversity development and ecosystem functioning is not well understood. We examined how relationships between taxonomic and functional diversity, biomass production and stability develop over 16 years in non-weeded plots sown with 15 species, 4 species, or that were not sown. We found that sown plant communities become functionally similar to unsown, naturally colonized plant communities. However, initial sowing treatments had long-lasting effects on species composition and taxonomic diversity. We found only few relationships between biomass production, or stability in biomass production, and functional or taxonomic diversity, and the ones we observed were negative. In addition, the cover of dominant plant species was positively related to biomass production and stability. We conclude that effects of introducing plant species at the start of secondary succession can persist for a long time, and that in secondary succession communities with natural plant species dynamics diversity-functioning relationships can be weak or negative. Moreover, our findings indicate that in systems where natural colonization of species is allowed effects of plant dominance may underlie diversity-functioning relationships. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. How will ocean acidification affect Baltic sea ecosystems? an assessment of plausible impacts on key functional groups.

    PubMed

    Havenhand, Jonathan N

    2012-09-01

    Increasing partial pressure of atmospheric CO₂ is causing ocean pH to fall-a process known as 'ocean acidification'. Scenario modeling suggests that ocean acidification in the Baltic Sea may cause a ≤ 3 times increase in acidity (reduction of 0.2-0.4 pH units) by the year 2100. The responses of most Baltic Sea organisms to ocean acidification are poorly understood. Available data suggest that most species and ecologically important groups in the Baltic Sea food web (phytoplankton, zooplankton, macrozoobenthos, cod and sprat) will be robust to the expected changes in pH. These conclusions come from (mostly) single-species and single-factor studies. Determining the emergent effects of ocean acidification on the ecosystem from such studies is problematic, yet very few studies have used multiple stressors and/or multiple trophic levels. There is an urgent need for more data from Baltic Sea populations, particularly from environmentally diverse regions and from controlled mesocosm experiments. In the absence of such information it is difficult to envision the likely effects of future ocean acidification on Baltic Sea species and ecosystems.

  14. Integration of near-surface remote sensing and eddy covariance measurements: new insights on managed ecosystem structure and functioning

    NASA Astrophysics Data System (ADS)

    Hatala, J.; Sonnentag, O.; Detto, M.; Runkle, B.; Vargas, R.; Kelly, M.; Baldocchi, D. D.

    2009-12-01

    Ground-based, visible light imagery has been used for different purposes in agricultural and ecological research. A series of recent studies explored the utilization of networked digital cameras to continuously monitor vegetation by taking oblique canopy images at fixed view angles and time intervals. In our contribution we combine high temporal resolution digital camera imagery, eddy-covariance, and meteorological measurements with weekly field-based hyperspectral and LAI measurements to gain new insights on temporal changes in canopy structure and functioning of two managed ecosystems in California’s Sacramento-San Joaquin River Delta: a pasture infested by the invasive perennial pepperweed (Lepidium latifolium) and a rice plantation (Oryza sativa). Specific questions we address are: a) how does year-round grazing affect pepperweed canopy development, b) is it possible to identify phenological key events of managed ecosystems (pepperweed: flowering; rice: heading) from the limited spectral information of digital camera imagery, c) is a simple greenness index derived from digital camera imagery sufficient to track leaf area index and canopy development of managed ecosystems, and d) what are the scales of temporal correlation between digital camera signals and carbon and water fluxes of managed ecosystems? Preliminary results for the pasture-pepperweed ecosystem show that year-round grazing inhibits the accumulation of dead stalks causing earlier green-up and that digital camera imagery is well suited to capture the onset of flowering and the associated decrease in photosynthetic CO2 uptake. Results from our analyses are of great relevance from both a global environmental change and land management perspective.

  15. Ecosystem services of Phragmites in North America with emphasis on habitat functions

    PubMed Central

    Kiviat, Erik

    2013-01-01

    Phragmites australis (common reed) is widespread in North America, with native and non-native haplotypes. Many ecologists and wetland managers have considered P. australis a weed with little value to the native biota or human society. I document important ecosystem services of Phragmites including support for many common and rare species of plants and animals. This paper is based on an extensive review of the ecology and natural history literature, discussions with field workers, and observations in 13 US states and one Canadian province during the past 40 years. Phragmites sequesters nutrients, heavy metals and carbon, builds and stabilizes soils, and creates self-maintaining vegetation in urban and industrial areas where many plants do not thrive. These non-habitat ecosystem services are proportional to biomass and productivity. Phragmites was widely used by Native Americans for many purposes; the most important current direct use is for the treatment of wastes. Most of the knowledge of non-habitat ecosystem services is based on studies of P. australis haplotype M (an Old World haplotype). Phragmites also has habitat functions for many organisms. These functions depend on the characteristics of the landscape, habitat, Phragmites stand, species using Phragmites and life history element. The functions that Phragmites provides for many species are optimal at lower levels of Phragmites biomass and extent of stands. Old World Phragmites, contrary to many published statements, as well as North American native Phragmites, provide valuable ecosystem services including products for human use and habitat functions for other organisms. Phragmites stands may need management (e.g. thinning, fragmentation, containment or removal) to create or maintain suitable habitat for desired species of animals and plants.

  16. Holocene key coral species in the Northwest Pacific: indicators of reef formation and reef ecosystem responses to global climate change and anthropogenic stresses in the near future

    NASA Astrophysics Data System (ADS)

    Hongo, Chuki

    2012-03-01

    The geological record of key coral species that contribute to reef formation and maintenance of reef ecosystems is important for understanding the ecosystem response to global-scale climate change and anthropogenic stresses in the near future. Future responses can be predicted from accumulated data on Holocene reef species identified in drillcore and from data on raised reef terraces. The present study analyzes a dataset based on 27 drillcores, raised reef terraces, and 134 radiocarbon and U-Th ages from reefs of the Northwest Pacific, with the aim of examining the role of key coral species in reef growth and maintenance for reef ecosystem during Holocene sea-level change. The results indicate a latitudinal change in key coral species: arborescent Acropora (Acropora intermedia and Acropora muricata) was the dominant reef builder at reef crests in the tropics, whereas Porites (Porites australiensis, Porites lutea, and Porites lobata) was the dominant contributor to reef growth in the subtropics between 10,000 and 7000 cal. years BP (when the rate of sea-level rise was 10 m/ka). Acropora digitifera, Acropora hyacinthus, Acropora robusta/A. abrotanoides, Isopora palifera, Favia stelligera, and Goniastrea retiformis from the corymbose and tabular Acropora facies were the main key coral species at reef crests between 7000 and 5000 cal. years BP (when the rate of sea-level rise was 5 m/ka) and during the following period of stable sea-level. Massive Porites (P. australiensis, P. lutea, and P. lobata) contributed to reef growth in shallow lagoons during the period of stable sea level. Key coral species from the corymbose and tabular Acropora facies have the potential to build reefs and maintain ecosystems in the near future under a global sea-level rise of 2-6 m/ka, as do key coral species from the arborescent Acropora facies and massive Porites facies, which show vigorous growth and are tolerant to relatively deep-water, low-energy environments. However, these species

  17. Understanding the value of plant diversity for ecosystem functioning through niche theory

    PubMed Central

    Isbell, Forest; Purves, Drew W.; Loreau, Michel

    2016-01-01

    Biodiversity experiments have generated robust empirical results supporting the hypothesis that ecosystems function better when they contain more species. Given that ecosystems provide services that are valued by humans, this inevitably suggests that the loss of species from natural ecosystems could diminish their value. This raises two important questions. First, will experimental results translate into the real world, where species are being lost at an alarming rate? And second, what are the benefits and pitfalls of such valuation exercises? We argue that the empirical results obtained in experiments are entirely consistent with well-established theories of species coexistence. We then examine the current body of work through the lens of niche theory and highlight where closer links with theory could open up opportunities for future research. We argue that niche theory predicts that diversity–functioning relationships are likely to be stronger (and require more species) in the field than in simplified experimental settings. However, we caution that while many of the biological processes that promote coexistence can also generate diversity–function relationships, there is no simple mapping between the two. This implies that valuation exercises need to proceed with care. PMID:27928043

  18. Understanding the value of plant diversity for ecosystem functioning through niche theory.

    PubMed

    Turnbull, Lindsay A; Isbell, Forest; Purves, Drew W; Loreau, Michel; Hector, Andy

    2016-12-14

    Biodiversity experiments have generated robust empirical results supporting the hypothesis that ecosystems function better when they contain more species. Given that ecosystems provide services that are valued by humans, this inevitably suggests that the loss of species from natural ecosystems could diminish their value. This raises two important questions. First, will experimental results translate into the real world, where species are being lost at an alarming rate? And second, what are the benefits and pitfalls of such valuation exercises? We argue that the empirical results obtained in experiments are entirely consistent with well-established theories of species coexistence. We then examine the current body of work through the lens of niche theory and highlight where closer links with theory could open up opportunities for future research. We argue that niche theory predicts that diversity-functioning relationships are likely to be stronger (and require more species) in the field than in simplified experimental settings. However, we caution that while many of the biological processes that promote coexistence can also generate diversity-function relationships, there is no simple mapping between the two. This implies that valuation exercises need to proceed with care. © 2016 The Author(s).

  19. Assessment of the impact of increased solar ultraviolet radiation upon marine ecosystems

    NASA Technical Reports Server (NTRS)

    Vandyke, H.; Worrest, R. C.

    1976-01-01

    Data was provided to assess the potential impact upon marine ecosystems if space shuttle operations contribute to a reduction of the stratospheric ozone layer. The potential for irreversible damage to the productivity, structure and/or functioning of a model estuarine ecosystem by increased UV-B radiation was established. The sensitivity of key community components (the primary producers) to increased UV-B radiation was delineated.

  20. Linking hydrology, ecosystem function, and livelihood sustainability in African papyrus wetlands using a Bayesian Network Model

    NASA Astrophysics Data System (ADS)

    van Dam, A.; Gettel, G. M.; Kipkemboi, J.; Rahman, M. M.

    2011-12-01

    Papyrus wetlands in East Africa provide ecosystem services supporting the livelihoods of millions but are rapidly degrading due to economic development. For ecosystem conservation, an integrated understanding of the natural and social processes driving ecosystem change is needed. This research focuses on integrating the causal relationships between hydrology, ecosystem function, and livelihood sustainability in Nyando wetland, western Kenya. Livelihood sustainability is based on ecosystem services that include plant and animal harvest for building material and food, conversion of wetlands to crop and grazing land, water supply, and water quality regulation. Specific objectives were: to integrate studies of hydrology, ecology, and livelihood activities using a Bayesian Network (BN) model and include stakeholder involvement in model development. The BN model (Netica 4.16) had 35 nodes with seven decision nodes describing demography, economy, papyrus market, and rainfall, and two target nodes describing ecosystem function (defined by groundwater recharge, nutrient and sediment retention, and biodiversity) and livelihood sustainability (drinking water supply, crop production, livestock production, and papyrus yield). The conditional probability tables were populated using results of ecohydrological and socio-economic field work and consultations with stakeholders. The model was evaluated for an average year with decision node probabilities set according to data from research, expert opinion, and stakeholders' views. Then, scenarios for dry and wet seasons and for economic development (low population growth and unemployment) and policy development (more awareness of wetland value) were evaluated. In an average year, the probability for maintaining a "good" level of sediment and nutrient retention functions, groundwater recharge, and biodiversity was about 60%. ("Good" is defined by expert opinion based on ongoing field research.) In the dry season, the probability was

  1. Biofilm function and variability in a hydrothermal ecosystem: insights from environmental genomes

    NASA Astrophysics Data System (ADS)

    Meyer-Dombard, D. R.; Raymond, J.; Shock, E. L.

    2007-12-01

    The ability to adapt to variable environmental conditions is key to survival for all organisms, but may be especially crucial to microorganisms in extreme environments such as hydrothermal systems. Streamer biofilm communities (SBCs) made up of thermophilic chemotrophic microorganisms are common in alkaline-chloride geothermal environments worldwide, but the in situ physiochemical growth parameters and requirements of SBCs are largely unknown [1]. Hot springs in Yellowstone National Park's alkaline geyser basins support SBC growth. However, despite the relative geochemical homogeneity of source pools and widespread ecosystem suitability in these regions (as indicated by energetic profiling [2]), SBCs are not ubiquitous in these ecosystems. The ability of hydrothermal systems to support the growth of SBCs, the relationship between these geochemically driven environments and the microbes that live there, and the function of individuals in these communities are aspects that are adressed here by applying environmental genomics. Analysis of 16S rRNA and total membrane lipid extracts have revealed that community composition of SBCs in "Bison Pool" varies as a function of changing environmental conditions along the outflow channel. In addition, a significant crenarchaeal component was discovered in the "Bison Pool" SBCs. In general, the SBC bacterial diversity triples while the archaeal component varies little (from 3 to 2 genera) in a 5-10°C gradient with distance from the source. While these SBCs are low in overall diversity, the majority of the taxa identified represent uncultured groups of Bacteria and Archaea. As a result, the community function of these taxa and their role in the formation of the biofilms is unknown. However, recent genomic analysis from environmental DNA affords insight into the roles of specific organisms within SBCs at "Bison Pool," and integration of these data with an extensive corresponding geochemical dataset may indicate shifting community

  2. Scaling up functional traits for ecosystem services with remote sensing: concepts and methods.

    PubMed

    Abelleira Martínez, Oscar J; Fremier, Alexander K; Günter, Sven; Ramos Bendaña, Zayra; Vierling, Lee; Galbraith, Sara M; Bosque-Pérez, Nilsa A; Ordoñez, Jenny C

    2016-07-01

    Ecosystem service-based management requires an accurate understanding of how human modification influences ecosystem processes and these relationships are most accurate when based on functional traits. Although trait variation is typically sampled at local scales, remote sensing methods can facilitate scaling up trait variation to regional scales needed for ecosystem service management. We review concepts and methods for scaling up plant and animal functional traits from local to regional spatial scales with the goal of assessing impacts of human modification on ecosystem processes and services. We focus our objectives on considerations and approaches for (1) conducting local plot-level sampling of trait variation and (2) scaling up trait variation to regional spatial scales using remotely sensed data. We show that sampling methods for scaling up traits need to account for the modification of trait variation due to land cover change and species introductions. Sampling intraspecific variation, stratification by land cover type or landscape context, or inference of traits from published sources may be necessary depending on the traits of interest. Passive and active remote sensing are useful for mapping plant phenological, chemical, and structural traits. Combining these methods can significantly improve their capacity for mapping plant trait variation. These methods can also be used to map landscape and vegetation structure in order to infer animal trait variation. Due to high context dependency, relationships between trait variation and remotely sensed data are not directly transferable across regions. We end our review with a brief synthesis of issues to consider and outlook for the development of these approaches. Research that relates typical functional trait metrics, such as the community-weighted mean, with remote sensing data and that relates variation in traits that cannot be remotely sensed to other proxies is needed. Our review narrows the gap between

  3. Integrated omics for the identification of key functionalities in biological wastewater treatment microbial communities.

    PubMed

    Narayanasamy, Shaman; Muller, Emilie E L; Sheik, Abdul R; Wilmes, Paul

    2015-05-01

    Biological wastewater treatment plants harbour diverse and complex microbial communities which prominently serve as models for microbial ecology and mixed culture biotechnological processes. Integrated omic analyses (combined metagenomics, metatranscriptomics, metaproteomics and metabolomics) are currently gaining momentum towards providing enhanced understanding of community structure, function and dynamics in situ as well as offering the potential to discover novel biological functionalities within the framework of Eco-Systems Biology. The integration of information from genome to metabolome allows the establishment of associations between genetic potential and final phenotype, a feature not realizable by only considering single 'omes'. Therefore, in our opinion, integrated omics will become the future standard for large-scale characterization of microbial consortia including those underpinning biological wastewater treatment processes. Systematically obtained time and space-resolved omic datasets will allow deconvolution of structure-function relationships by identifying key members and functions. Such knowledge will form the foundation for discovering novel genes on a much larger scale compared with previous efforts. In general, these insights will allow us to optimize microbial biotechnological processes either through better control of mixed culture processes or by use of more efficient enzymes in bioengineering applications. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  4. Assessing pathogen and insect succession functions in forest ecosystems

    Treesearch

    Susan K. Hagle; Sandra J. Kegley; Stephen B. Williams

    1995-01-01

    The pilot test of a method to assess the ecological function of pathogens and insects in forests is reported. The analysis is a practical application of current ecosystem management theory.The influences of pathogens and insects on forest succession are measured by relating successional transition rates and types to conditions for pathogen and insect activities which...

  5. Abrupt shifts in ecosystem function and intensification of global biogeochemical cycle driven by hydroclimatic extremes

    NASA Astrophysics Data System (ADS)

    Ma, Xuanlong; Huete, Alfredo; Ponce-Campos, Guillermo; Zhang, Yongguang; Xie, Zunyi; Giovannini, Leandro; Cleverly, James; Eamus, Derek

    2016-04-01

    Amplification of the hydrologic cycle as a consequence of global warming is increasing the frequency, intensity, and spatial extent of extreme climate events globally. The potential influences resulting from amplification of the hydro-climatic cycle, coupled with an accelerating warming trend, pose great concerns on the sustainability of terrestrial ecosystems to sequester carbon, maintain biodiversity, provide ecosystem services, food security, and support human livelihood. Despite the great implications, the magnitude, direction, and carry-over effect of these extreme climate events on ecosystem function, remain largely uncertain. To address these pressing issues, we conducted an observational, interdisciplinary study using satellite retrievals of atmospheric CO2 and photosynthesis (chlorophyll fluorescence), and in-situ flux tower measures of ecosystem-atmosphere carbon exchange, to reveal the shifts in ecosystem function across extreme drought and wet periods. We further determine the factors that govern ecosystem sensitivity to hydroclimatic extremes. We focus on Australia but extended our analyses to other global dryland regions due to their significant role in global biogeochemical cycles. Our results revealed dramatic impacts of drought and wet hydroclimatic extremes on ecosystem function, with abrupt changes in vegetation productivity, carbon uptake, and water-use-efficiency between years. Drought resulted in widespread reductions or collapse in the normal patterns of vegetation growth seasonality such that in many cases there was no detectable phenological cycle during extreme drought years. We further identified a significant increasing trend (p < 0.001) in extreme wet year precipitation amounts over Australia and many other global regions, resulting in an increasing trend in magnitude of the episodic carbon sink pulses coupled to each La Niña-induced wet years. This finding is of global biogeochemical significance, with the consequence of amplifying

  6. Quantifying the pedo-ecohydrological structure and function of degraded, grassland ecosystems

    NASA Astrophysics Data System (ADS)

    Brazier, Richard E.

    2015-04-01

    Grassland ecosystems cover significant areas of the terrestrial land mass, across a range of geoclimates, from arctic tundra, through temperate and semi-arid landscapes. In very few locations, such grasslands may be termed 'pristine' in that they remain undamaged by human activities and resilient to changing climates. In far more cases, grasslands are being degraded, often irreversibly so, with significant implications for a number of ecosystem services related to water resources, soil quality, nutrient cycles, and therefore both global food and water security. This paper draws upon empirical research that has been undertaken over the last decade to characterise a range of different grasslands in terms of soil properties, vegetation structure and geomorphology and to understand how these structures or patterns might interact or control how the grassland ecosystems function. Particular emphasis is placed upon quantifying fluxes of water, within and from grasslands, but also fluxes of sediment, via the processes of soil erosion and finally fluxes of the macronutrients Nitrogen, Phosphorus and Carbon from the landscape to surface waters. Data are presented from semi-arid grasslands, which are subject to severe encroachment by woody species, temperate upland grasslands that have been 'improved' via drainage to support grazing, temperate lowland grasslands, that are unimproved (Culm or Rhôs pastures) and finally intensively managed grasslands in temperate regions, that have been significantly modified via land management practices to improve productivity. It is hypothesised that, once degraded, the structure and function of these very diverse grassland ecosystems follows the same negative trajectory, resulting in depleted soil depths, nutrient storage capacities and therefore reduced plant growth and long-term carbon sequestration. Results demonstrate that similar, but highly complex and non-linear responses to perturbation of the ecosystem are observed, regardless of

  7. Plant diversity and root traits benefit physical properties key to soil function in grasslands.

    PubMed

    Gould, Iain J; Quinton, John N; Weigelt, Alexandra; De Deyn, Gerlinde B; Bardgett, Richard D

    2016-09-01

    Plant diversity loss impairs ecosystem functioning, including important effects on soil. Most studies that have explored plant diversity effects belowground, however, have largely focused on biological processes. As such, our understanding of how plant diversity impacts the soil physical environment remains limited, despite the fundamental role soil physical structure plays in ensuring soil function and ecosystem service provision. Here, in both a glasshouse and a long-term field study, we show that high plant diversity in grassland systems increases soil aggregate stability, a vital structural property of soil, and that root traits play a major role in determining diversity effects. We also reveal that the presence of particular plant species within mixed communities affects an even wider range of soil physical processes, including hydrology and soil strength regimes. Our results indicate that alongside well-documented effects on ecosystem functioning, plant diversity and root traits also benefit essential soil physical properties. © 2016 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  8. Taking a closer look: disentangling effects of functional diversity on ecosystem functions with a trait-based model across hierarchy and time.

    PubMed

    Holzwarth, Frédéric; Rüger, Nadja; Wirth, Christian

    2015-03-01

    Biodiversity and ecosystem functioning (BEF) research has progressed from the detection of relationships to elucidating their drivers and underlying mechanisms. In this context, replacing taxonomic predictors by trait-based measures of functional composition (FC)-bridging functions of species and of ecosystems-is a widely used approach. The inherent challenge of trait-based approaches is the multi-faceted, dynamic and hierarchical nature of trait influence: (i) traits may act via different facets of their distribution in a community, (ii) their influence may change over time and (iii) traits may influence processes at different levels of the natural hierarchy of organization. Here, we made use of the forest ecosystem model 'LPJ-GUESS' parametrized with empirical trait data, which creates output of individual performance, community assembly, stand-level states and processes. To address the three challenges, we resolved the dynamics of the top-level ecosystem function 'annual biomass change' hierarchically into its various component processes (growth, leaf and root turnover, recruitment and mortality) and states (stand structures, water stress) and traced the influence of different facets of FC along this hierarchy in a path analysis. We found an independent influence of functional richness, dissimilarity and identity on ecosystem states and processes and hence biomass change. Biodiversity effects were only positive during early succession and later turned negative. Unexpectedly, resource acquisition (growth, recruitment) and conservation (mortality, turnover) played an equally important role throughout the succession. These results add to a mechanistic understanding of biodiversity effects and place a caveat on simplistic approaches omitting hierarchical levels when analysing BEF relationships. They support the view that BEF relationships experience dramatic shifts over successional time that should be acknowledged in mechanistic theories.

  9. The role of ants, birds and bats for ecosystem functions and yield in oil palm plantations.

    PubMed

    Denmead, Lisa H; Darras, Kevin; Clough, Yann; Diaz, Patrick; Grass, Ingo; Hoffmann, Munir P; Nurdiansyah, Fuad; Fardiansah, Rico; Tscharntke, Teja

    2017-07-01

    One of the world's most important and rapidly expanding crops, oil palm, is associated with low levels of biodiversity. Changes in predator communities might alter ecosystem services and subsequently sustainable management but these links have received little attention to date. Here, for the first time, we manipulated ant and flying vertebrate (birds and bats) access to oil palms in six smallholder plantations in Sumatra (Indonesia) and measured effects on arthropod communities, related ecosystem functions (herbivory, predation, decomposition and pollination) and crop yield. Arthropod predators increased in response to reductions in ant and bird access, but the overall effect of experimental manipulations on ecosystem functions was minimal. Similarly, effects on yield were not significant. We conclude that ecosystem functions and productivity in oil palm are, under current levels of low pest pressure and large pollinator populations, robust to large reductions of major predators. © 2017 by the Ecological Society of America.

  10. Assessment of the impact of increased solar ultraviolet radiation upon marine ecosystems

    NASA Technical Reports Server (NTRS)

    Vandyke, H.

    1977-01-01

    Specifically, the study has addressed the following: (1) potential for irreversible damage to the productivity, structure and/or functioning of a model estuarine ecosystem by increased UV-B radiation or ecosystems highly stable or amenable to adaptive change, and (2) the sensitivity of key community components (the primary producers, consumers, and decomposers) to increased UV-B radiation. Three areas of study were examined during the past year: (1) a continuation of the study utilizing the two seminatural ecosystem chambers, (2) a pilot study utilizing three flow-through ecosystem tanks enclosed in a small, outdoor greenhouse, and (3) sensitivity studies of representative primary producers and consumers.

  11. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition.

    PubMed

    Allan, Eric; Manning, Pete; Alt, Fabian; Binkenstein, Julia; Blaser, Stefan; Blüthgen, Nico; Böhm, Stefan; Grassein, Fabrice; Hölzel, Norbert; Klaus, Valentin H; Kleinebecker, Till; Morris, E Kathryn; Oelmann, Yvonne; Prati, Daniel; Renner, Swen C; Rillig, Matthias C; Schaefer, Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Solly, Emily; Sorkau, Elisabeth; Steckel, Juliane; Steffen-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Weiner, Christiane N; Weisser, Wolfgang W; Werner, Michael; Westphal, Catrin; Wilcke, Wolfgang; Fischer, Markus

    2015-08-01

    Global change, especially land-use intensification, affects human well-being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real-world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land-use intensity. We also introduce five multifunctionality measures in which ecosystem services were weighted according to realistic land-use objectives. We found that indirect land-use effects, i.e. those mediated by biodiversity loss and by changes to functional composition, were as strong as direct effects on average. Their strength varied with land-use objectives and regional context. Biodiversity loss explained indirect effects in a region of intermediate productivity and was most damaging when land-use objectives favoured supporting and cultural services. In contrast, functional composition shifts, towards fast-growing plant species, strongly increased provisioning services in more inherently unproductive grasslands. © 2015 The Authors Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  12. Terrestrial ecosystems in a changing environment: a dominant role for water.

    PubMed

    Bernacchi, Carl J; VanLoocke, Andy

    2015-01-01

    Transpiration--the movement of water from the soil, through plants, and into the atmosphere--is the dominant water flux from the earth's terrestrial surface. The evolution of vascular plants, while increasing terrestrial primary productivity, led to higher transpiration rates and widespread alterations in the global climate system. Similarly, anthropogenic influences on transpiration rates are already influencing terrestrial hydrologic cycles, with an even greater potential for changes lying ahead. Intricate linkages among anthropogenic activities, terrestrial productivity, the hydrologic cycle, and global demand for ecosystem services will lead to increased pressures on ecosystem water demands. Here, we focus on identifying the key drivers of ecosystem water use as they relate to plant physiological function, the role of predicted global changes in ecosystem water uses, trade-offs between ecosystem water use and carbon uptake, and knowledge gaps.

  13. Placing biodiversity in ecosystem models without getting lost in translation

    NASA Astrophysics Data System (ADS)

    Queirós, Ana M.; Bruggeman, Jorn; Stephens, Nicholas; Artioli, Yuri; Butenschön, Momme; Blackford, Jeremy C.; Widdicombe, Stephen; Allen, J. Icarus; Somerfield, Paul J.

    2015-04-01

    A key challenge to progressing our understanding of biodiversity's role in the sustenance of ecosystem function is the extrapolation of the results of two decades of dedicated empirical research to regional, global and future landscapes. Ecosystem models provide a platform for this progression, potentially offering a holistic view of ecosystems where, guided by the mechanistic understanding of processes and their connection to the environment and biota, large-scale questions can be investigated. While the benefits of depicting biodiversity in such models are widely recognized, its application is limited by difficulties in the transfer of knowledge from small process oriented ecology into macro-scale modelling. Here, we build on previous work, breaking down key challenges of that knowledge transfer into a tangible framework, highlighting successful strategies that both modelling and ecology communities have developed to better interact with one another. We use a benthic and a pelagic case-study to illustrate how aspects of the links between biodiversity and ecosystem process have been depicted in marine ecosystem models (ERSEM and MIRO), from data, to conceptualisation and model development. We hope that this framework may help future interactions between biodiversity researchers and model developers by highlighting concrete solutions to common problems, and in this way contribute to the advance of the mechanistic understanding of the role of biodiversity in marine (and terrestrial) ecosystems.

  14. Evaluation of mangrove ecosystem service functions of Ximen Island Marine Specially Protected Areas in Yueqing Bay, China

    NASA Astrophysics Data System (ADS)

    Wang, D. G.; Sun, L.; Tan, Y. H.; Shi, A. Q.; Cheng, J.

    2017-08-01

    Taking the mangrove ecosystem of Ximen Island National Marine Specially Protected Areas as the research object, the ecological service value of the mangrove forest was evaluated and analyzed using a market value method, an ecological value method and a carbon tax method. The results showed that the ecosystem service value of the mangrove forest on Ximen Island is worth a total of 16,104,000 CNY/a. Among the value of individual ecosystem services, the direct value of material production function and leisure function reached 1,385,000 CNY/a, with a ratio of 8.6%. The indirect value of disturbance regulation, gas regulation, water purification, habitat function and culture research reached 14,719,000 CNY/a, with a ratio of 91.4%. Among the above sub-items, the proportion of disturbance regulation value, habitat function value and cultural research function value reached 78.8%, which reflects the important scientific value and ecological value of the Ximen Island mangrove ecosystem, especially its vital importance in providing a habitat for birds and playing a role in disaster prevention and mitigation.

  15. Nutrient cycling Microbial Ecosystems: Assembly, Function and Targeted Design

    DTIC Science & Technology

    2017-05-05

    different chemical transformations, converting potentially harmful chemicals via a series of intermediates, to harmless waste products. This shuttling of...Report: Nutrient-cycling Microbial Ecosystems: Assembly, Function and Targeted Design The views, opinions and/or findings contained in this report...are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other

  16. Ecosystem-scale plant hydraulic strategies inferred from remotely-sensed soil moisture

    NASA Astrophysics Data System (ADS)

    Bassiouni, M.; Good, S. P.; Higgins, C. W.

    2017-12-01

    Characterizing plant hydraulic strategies at the ecosystem scale is important to improve estimates of evapotranspiration and to understand ecosystem productivity and resilience. However, quantifying plant hydraulic traits beyond the species level is a challenge. The probability density function of soil moisture observations provides key information about the soil moisture states at which evapotranspiration is reduced by water stress. Here, an inverse Bayesian approach is applied to a standard bucket model of soil column hydrology forced with stochastic precipitation inputs. Through this approach, we are able to determine the soil moisture thresholds at which stomata are open or closed that are most consistent with observed soil moisture probability density functions. This research utilizes remotely-sensed soil moisture data to explore global patterns of ecosystem-scale plant hydraulic strategies. Results are complementary to literature values of measured hydraulic traits of various species in different climates and previous estimates of ecosystem-scale plant isohydricity. The presented approach provides a novel relation between plant physiological behavior and soil-water dynamics.

  17. The use of soil quality indicators to assess soil functionality in restored semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, Miriam; Erickson, Todd E.; Dixon, Kingsley W.; Merritt, David J.

    2016-04-01

    Keywords: Pilbara, 1-day CO2 test, microbial activity, mine restoration, soil health, ecosystem services. Introduction Semi-arid and arid environments are highly vulnerable to land degradation and their restoration has commonly showed low rates of success (James et al., 2013). A systematic knowledge of soil functionality is critical to successful restoration of degraded ecosystems since approximately 80% of ecosystem services can be connected to soil functions. The assessment of soil functionality generally involves the evaluation of soil properties and processes as they relate to the ability of soil to function effectively as a component of a healthy ecosystem (Costantini et al., 2015) Using soil quality indicators may be a valuable approach to assess functionality of topsoil and novel substrates used in restoration (Muñoz-Rojas et al., 2014; 2015). A key soil chemical indicator is soil organic C, that has been widely used as an attribute of soil quality because of the many functions that it provides and supports (Willaarts et al., 2015). However, microbial indicators can be more sensitive to disturbances and could be a valuable addition in soil assessment studies in restoration programs. Here, we propose a set of soil quality indicators to assess the soil status in restored soils (topsoil and waste material) of semi-arid environments. The study was conducted during March 2015 in the Pilbara biogeographical region (northwestern Australia) at an iron ore mine site rehabilitated in 2011. Methods Soil samples were collected from two sub-areas with different soil materials used as growth media: topsoil retrieved from nearby stockpiles and a lateritic waste material utilised for its erosive stability and physical competence. An undisturbed natural shrub-grassland ecosystem dominated by Triodia spp. and Acacia spp. representative of the restored area was selected as the analogue reference site. Soil physicochemical analysis were undertaken according to standard methods

  18. Ecosystem Services Transcend Boundaries: Estuaries Provide Resource Subsidies and Influence Functional Diversity in Coastal Benthic Communities

    PubMed Central

    Savage, Candida; Thrush, Simon F.; Lohrer, Andrew M.; Hewitt, Judi E.

    2012-01-01

    Background Estuaries are highly productive ecosystems that can export organic matter to coastal seas (the ‘outwelling hypothesis’). However the role of this food resource subsidy on coastal ecosystem functioning has not been examined. Methodology/Principal Findings We investigated the influence of estuarine primary production as a resource subsidy and the influence of estuaries on biodiversity and ecosystem functioning in coastal mollusk-dominated sediment communities. Stable isotope values (δ13C, δ15N) demonstrated that estuarine primary production was exported to the adjacent coast and contributed to secondary production up to 4 km from the estuary mouth. Further, isotope signatures of suspension feeding bivalves on the adjacent coast (Dosinia subrosea) closely mirrored the isotope values of the dominant bivalves inside the estuaries (Austrovenus stutchburyi), indicating utilization of similar organic matter sources. However, the food subsidies varied between estuaries; with estuarine suspended particulate organic matter (SPOM) dominant at Tairua estuary, while seagrass and fringing vegetation detritus was proportionately more important at Whangapoua estuary, with lesser contributions of estuarine SPOM. Distance from the estuary mouth and the size and density of large bivalves (Dosinia spp.) had a significant influence on the composition of biological traits in the coastal macrobenthic communities, signaling the potential influence of these spatial subsidies on ecosystem functioning. Conclusions/Significance Our study demonstrated that the locations where ecosystem services like productivity are generated are not necessarily where the services are utilized. Further, we identified indirect positive effects of the nutrient subsidies on biodiversity (the estuarine subsidies influenced the bivalves, which in turn affected the diversity and functional trait composition of the coastal sediment macrofaunal communities). These findings highlight the importance of

  19. Interactive effects of climate change and biodiversity loss on ecosystem functioning.

    PubMed

    Pires, Aliny P F; Srivastava, Diane S; Marino, Nicholas A C; MacDonald, A Andrew M; Figueiredo-Barros, Marcos Paulo; Farjalla, Vinicius F

    2018-05-01

    Climate change and biodiversity loss are expected to simultaneously affect ecosystems, however research on how each driver mediates the effect of the other has been limited in scope. The multiple stressor framework emphasizes non-additive effects, but biodiversity may also buffer the effects of climate change, and climate change may alter which mechanisms underlie biodiversity-function relationships. Here, we performed an experiment using tank bromeliad ecosystems to test the various ways that rainfall changes and litter diversity may jointly determine ecological processes. Litter diversity and rainfall changes interactively affected multiple functions, but how depends on the process measured. High litter diversity buffered the effects of altered rainfall on detritivore communities, evidence of insurance against impacts of climate change. Altered rainfall affected the mechanisms by which litter diversity influenced decomposition, reducing the importance of complementary attributes of species (complementarity effects), and resulting in an increasing dependence on the maintenance of specific species (dominance effects). Finally, altered rainfall conditions prevented litter diversity from fueling methanogenesis, because such changes in rainfall reduced microbial activity by 58%. Together, these results demonstrate that the effects of climate change and biodiversity loss on ecosystems cannot be understood in isolation and interactions between these stressors can be multifaceted. © 2018 by the Ecological Society of America.

  20. Impacts of discarded plastic bags on marine assemblages and ecosystem functioning.

    PubMed

    Green, Dannielle Senga; Boots, Bas; Blockley, David James; Rocha, Carlos; Thompson, Richard

    2015-05-05

    The accumulation of plastic debris is a global environmental problem due to its durability, persistence, and abundance. Although effects of plastic debris on individual marine organisms, particularly mammals and birds, have been extensively documented (e.g., entanglement and choking), very little is known about effects on assemblages and consequences for ecosystem functioning. In Europe, around 40% of the plastic items produced are utilized as single-use packaging, which rapidly accumulate in waste management facilities and as litter in the environment. A range of biodegradable plastics have been developed with the aspiration of reducing the persistence of litter; however, their impacts on marine assemblages or ecosystem functioning have never been evaluated. A field experiment was conducted to assess the impact of conventional and biodegradable plastic carrier bags as litter on benthic macro- and meio-faunal assemblages and biogeochemical processes (primary productivity, redox condition, organic matter content, and pore-water nutrients) on an intertidal shore near Dublin, Ireland. After 9 weeks, the presence of either type of bag created anoxic conditions within the sediment along with reduced primary productivity and organic matter and significantly lower abundances of infaunal invertebrates. This indicates that both conventional and biodegradable bags can rapidly alter marine assemblages and the ecosystem services they provide.

  1. Climate change's impact on key ecosystem services and the human well-being they support in the US

    USDA-ARS?s Scientific Manuscript database

    Climate change alters the structure and functions of ecological systems and as a result can modify their provision of ecosystem services. Some American communities have already experienced economic hardship due to spatial shifts in fish biomass caused by warming ocean waters. Documented reductions i...

  2. Redefining ecosystem multifunctionality.

    PubMed

    Manning, Peter; van der Plas, Fons; Soliveres, Santiago; Allan, Eric; Maestre, Fernando T; Mace, Georgina; Whittingham, Mark J; Fischer, Markus

    2018-03-01

    Recent years have seen a surge of interest in ecosystem multifunctionality, a concept that has developed in the largely separate fields of biodiversity-ecosystem function and land management research. Here we discuss the merit of the multifunctionality concept, the advances it has delivered, the challenges it faces and solutions to these challenges. This involves the redefinition of multifunctionality as a property that exists at two levels: ecosystem function multifunctionality and ecosystem service multifunctionality. The framework presented provides a road map for the development of multifunctionality measures that are robust, quantifiable and relevant to both fundamental ecological science and ecosystem management.

  3. Response diversity, nonnative species, and disassembly rules buffer freshwater ecosystem processes from anthropogenic change.

    PubMed

    Moore, Jonathan W; Olden, Julian D

    2017-05-01

    Integrating knowledge of environmental degradation, biodiversity change, and ecosystem processes across large spatial scales remains a key challenge to illuminating the resilience of earth's systems. There is now a growing realization that the manner in which communities will respond to anthropogenic impacts will ultimately control the ecosystem consequences. Here, we examine the response of freshwater fishes and their nutrient excretion - a key ecosystem process that can control aquatic productivity - to human land development across the contiguous United States. By linking a continental-scale dataset of 533 fish species from 8100 stream locations with species functional traits, nutrient excretion, and land remote sensing, we present four key findings. First, we provide the first geographic footprint of nutrient excretion by freshwater fishes across the United States and reveal distinct local- and continental-scale heterogeneity in community excretion rates. Second, fish species exhibited substantial response diversity in their sensitivity to land development; for native species, the more tolerant species were also the species contributing greater ecosystem function in terms of nutrient excretion. Third, by modeling increased land-use change and resultant shifts in fish community composition, land development is estimated to decrease fish nutrient excretion in the majority (63%) of ecoregions. Fourth, the loss of nutrient excretion would be 28% greater if biodiversity loss was random or 84% greater if there were no nonnative species. Thus, ecosystem processes are sensitive to increased anthropogenic degradation but biotic communities provide multiple pathways for resistance and this resistance varies across space. © 2016 John Wiley & Sons Ltd.

  4. Assessing the Impacts of forest degradation on water, energy, and carbon budgets in Amazon forest using the Functionally Assembled Terrestrial Ecosystem Simulator

    NASA Astrophysics Data System (ADS)

    Huang, M.; Xu, Y.; Longo, M.; Keller, M.; Knox, R. G.; Koven, C.; Fisher, R.

    2017-12-01

    Tropical forest degradation from logging, fire, and fragmentation not only alters carbon stocks and carbon fluxes, but also impacts physical land-surface properties such as albedo and roughness length. Such impacts are poorly quantified to date due to difficulties in accessing and maintaining observational infrastructures, and the lack of proper modeling tools for capturing the interactions among biophysical properties, ecosystem demography, and biogeochemical cycling in tropical forests. As a first step to address these limitations, we implemented a selective logging module into the Functional Assembled Terrestrial Ecosystem Simulator (FATES) and parameterized the model to reproduce the selective logging experiment at the Tapajos National Forest in Brazil. The model was spun up until it reached the steady state, and simulations with and without logging were compared with the eddy covariance flux towers located at the logged and intact sites. The sensitivity of simulated water, energy, and carbon fluxes to key plant functional traits (e.g. Vcmax and leaf longevity) were quantified by perturbing their values within their documented ranges. Our results suggest that the model can reproduce water and carbon fluxes in intact forests, although sensible heat fluxes were overestimated. The effects of logging intensity and techniques on fluxes were assessed by specifying different disturbance parameters in the models (e.g., size-dependent mortality rates associated with timber harvest, collateral damage, and mechanical damage for infrastructure construction). The model projections suggest that even though the degraded forests rapidly recover water and energy fluxes compared with old-growth forests, the recovery times for carbon stocks, forest structure and composition are much longer. In addition, the simulated recovery trajectories are highly dependent on choices of values for functional traits. Our study highlights the advantages of an Earth system modeling approach

  5. [Structure and function of Fenshuijiang Reservoir ecosystem based on the analysis with Ecopath model].

    PubMed

    Wu, Zhen; Jia, Pei-Qiao; Hu, Zhong-Jun; Chen, Li-Qiao; Gu, Zhi-Min; Liu, Qi-Gen

    2012-03-01

    Based on the 2008-2009 survey data of fishery resources and eco-environment of Fenshuijiang Reservoir, a mass balance model for the Reservoir ecosystem was constructed by Ecopath with Ecosim software. The model was composed of 14 functional groups, including silver carp, bighead carp, Hemibarbus maculates, Cutler alburnus, Microlepis and other fishes, Oligochaeta, aquatic insect, zooplankton, phytoplankton, and organic detritus, etc. , being able to better simulate Fenshuijiang Reservoir ecosystem. In this ecosystem, there were five trophic levels (TLs), and the nutrient flow mainly occurred in the first three TLs. Grazing and detritus food chains were the main energy flows in the ecosystem, but the food web was simpler and susceptible to be disturbed by outer environment. The transfer efficiency at lower TLs was relatively low, indicating that the ecosystem had a lower capability in energy utilization, and the excessive stock of nutrients in the ecosystem could lead to eutrophication. The lower connectance index, system omnivory index, Finn' s cycled index, and Finn's mean path length demonstrated that the ecosystem was unstable, while the high ecosystem property indices such as Pp/R and Pp/B showed that the ecosystem was immature and highly productive. It was suggested that Fenshuijiang Reservoir was still a developing new reservoir ecosystem, with a very short history and comparatively high primary productivity.

  6. Long-term and large-scale perspectives on the relationship between biodiversity and ecosystem functioning

    USGS Publications Warehouse

    Symstad, A.J.; Chapin, F. S.; Wall, D.H.; Gross, K.L.; Huenneke, L.F.; Mittelbach, G.G.; Peters, Debra P.C.; Tilman, D.

    2003-01-01

    In a growing body of literature from a variety of ecosystems is strong evidence that various components of biodiversity have significant impacts on ecosystem functioning. However, much of this evidence comes from short-term, small-scale experiments in which communities are synthesized from relatively small species pools and conditions are highly controlled. Extrapolation of the results of such experiments to longer time scales and larger spatial scales—those of whole ecosystems—is difficult because the experiments do not incorporate natural processes such as recruitment limitation and colonization of new species. We show how long-term study of planned and accidental changes in species richness and composition suggests that the effects of biodiversity on ecosystem functioning will vary over time and space. More important, we also highlight areas of uncertainty that need to be addressed through coordinated cross-scale and cross-site research.

  7. Spatial assessment of land degradation through key ecosystem services: The role of globally available data.

    PubMed

    Cerretelli, Stefania; Poggio, Laura; Gimona, Alessandro; Yakob, Getahun; Boke, Shiferaw; Habte, Mulugeta; Coull, Malcolm; Peressotti, Alessandro; Black, Helaina

    2018-07-01

    Land degradation is a serious issue especially in dry and developing countries leading to ecosystem services (ESS) degradation due to soil functions' depletion. Reliably mapping land degradation spatial distribution is therefore important for policy decisions. The main objectives of this paper were to infer land degradation through ESS assessment and compare the modelling results obtained using different sets of data. We modelled important physical processes (sediment erosion and nutrient export) and the equivalent ecosystem services (sediment and nutrient retention) to infer land degradation in an area in the Ethiopian Great Rift Valley. To model soil erosion/retention capability, and nitrogen export/retention capability, two datasets were used: a 'global' dataset derived from existing global-coverage data and a hybrid dataset where global data were integrated with data from local surveys. The results showed that ESS assessments can be used to infer land degradation and identify priority areas for interventions. The comparison between the modelling results of the two different input datasets showed that caution is necessary if only global-coverage data are used at a local scale. In remote and data-poor areas, an approach that integrates global data with targeted local sampling campaigns might be a good compromise to use ecosystem services in decision-making. Copyright © 2018. Published by Elsevier B.V.

  8. Effects of a large scale nitrogen and phosphorous fertilization on the ecosystem functioning of a Mediterranean tree-grass ecosystem

    NASA Astrophysics Data System (ADS)

    Migliavacca, Mirco; El Madany, Tarek; Perez-Priego, Oscar; Carrara, Arnaud; Hammer, Tiana; Henkel, Kathin; Kolle, Olaf; Luo, Yunpeng; Moreno, Gerardo; Morris, Kendalynn; Nair, Richard; Schrumpf, Marion; Wutzler, Thomas; Reichstein, Markus

    2017-04-01

    Recent studies have shown how human induced N/P imbalances affect essential ecosystem processes, and might be particularly important in water-limited ecosystems. In this contribution we will present results from an ecosystem scale nutrient manipulation experiment on a Mediterranean tree-grass ecosystem (Majadas del Tietar, Spain). Specifically, we will show how ecosystem functioning (e.g. light use efficiency, water use efficiency - WUE, albedo) changes as consequence of N and NP fertilization. A cluster of eddy covariance (EC) flux towers has been set up beside a long-term EC site (Control site) to measured high temporal resolution C and water fluxes between the ecosystem and the atmosphere. The sites were selected in a way to have similar pre-treatment conditions. Two out of three EC footprint areas (18 Ha) were fertilized with N and NP at the beginning of 2015 and 2016. To interpret the variations in C and water fluxes measured with the EC systems we monitored spatial and temporal variations in phenology, plant traits, species richness, and tree transpiration by using sap-flow meters, digital repeat photography, as well as soil sampling. The results show a consistent increase ( 15% compared to the Control site) in net ecosystem production (NEP) observed both in the N and the NP treatments. An increase of evapotranspiration (ET) of about 15% and 10% is observed in the N and NP site, respectively, indicating an increase of WUE in the NP treatment. The partitioning of the NEP into its gross components, the gross primary production (GPP) and the total ecosystem respiration (TER), show that the fertilization stimulated more GPP rather than TER, increasing therefore the capability of the ecosystem to act as carbon sink. The effects of fertilization are pronounced in spring and autumn and negligible in summer. This indicates that grass reacted much more than trees to N and NP addition. An increase of greenness and also an earlier green-up of grass in the N and NP sites

  9. The Need to Disentangle Key Concepts from Ecosystem-Approach Jargon

    PubMed Central

    WAYLEN, K A; HASTINGS, E J; BANKS, E A; HOLSTEAD, K L; IRVINE, R J; BLACKSTOCK, K L

    2014-01-01

    The ecosystem approach—as endorsed by the Convention on Biological Diversity (CDB) in 2000—is a strategy for holistic, sustainable, and equitable natural resource management, to be implemented via the 12 Malawi Principles. These principles describe the need to manage nature in terms of dynamic ecosystems, while fully engaging with local peoples. It is an ambitious concept. Today, the term is common throughout the research and policy literature on environmental management. However, multiple meanings have been attached to the term, resulting in confusion. We reviewed references to the ecosystem approach from 1957 to 2012 and identified 3 primary uses: as an alternative to ecosystem management or ecosystem-based management; in reference to an integrated and equitable approach to resource management as per the CBD; and as a term signifying a focus on understanding and valuing ecosystem services. Although uses of this term and its variants may overlap in meaning, typically, they do not entirely reflect the ethos of the ecosystem approach as defined by the CBD. For example, there is presently an increasing emphasis on ecosystem services, but focusing on these alone does not promote decentralization of management or use of all forms of knowledge, both of which are integral to the CBD’s concept. We highlight that the Malawi Principles are at risk of being forgotten. To better understand these principles, more effort to implement them is required. Such efforts should be evaluated, ideally with comparative approaches, before allowing the CBD’s concept of holistic and socially engaged management to be abandoned or superseded. It is possible that attempts to implement all 12 principles together will face many challenges, but they may also offer a unique way to promote holistic and equitable governance of natural resources. Therefore, we believe that the CBD’s concept of the ecosystem approach demands more attention. La Necesidad de Desenredar Conceptos Clave del

  10. Potential impacts of climate change on biogeochemical functioning of Cerrado ecosystems.

    PubMed

    Bustamante, M M C; Nardoto, G B; Pinto, A S; Resende, J C F; Takahashi, F S C; Vieira, L C G

    2012-08-01

    The Cerrado Domain comprises one of the most diverse savannas in the world and is undergoing a rapid loss of habitats due to changes in fire regimes and intense conversion of native areas to agriculture. We reviewed data on the biogeochemical functioning of Cerrado ecosystems and evaluated the potential impacts of regional climate changes. Variation in temperature extremes and in total amount of rainfall and altitude throughout the Cerrado determines marked differences in the composition of species. Cerrado ecosystems are controlled by interactions between water and nutrient availability. In general, nutrient cycles (N, P and base cations) are very conservative, while litter, microbial and plant biomass are important stocks. In terms of C cycling, root systems and especially the soil organic matter are the most important stocks. Typical cerrado ecosystems function as C sinks on an annual basis, although they work as source of C to the atmosphere close to the end of the dry season. Fire is an important factor altering stocks and fluxes of C and nutrients. Predicted changes in temperature, amount and distribution of precipitation vary according to Cerrado sub-regions with more marked changes in the northeastern part of the domain. Higher temperatures, decreases in rainfall with increase in length of the dry season could shift net ecosystem exchanges from C sink to source of C and might intensify burning, reducing nutrient stocks. Interactions between the heterogeneity in the composition and abundance of biological communities throughout the Cerrado Domain and current and future changes in land use make it difficult to project the impacts of future climate scenarios at different temporal and spatial scales and new modeling approaches are needed.

  11. Ecosystem services in sustainable groundwater management.

    PubMed

    Tuinstra, Jaap; van Wensem, Joke

    2014-07-01

    The ecosystem services concept seems to get foothold in environmental policy and management in Europe and, for instance, The Netherlands. With respect to groundwater management there is a challenge to incorporate this concept in such a way that it contributes to the sustainability of decisions. Groundwater is of vital importance to societies, which is reflected in the presented overview of groundwater related ecosystem services. Classifications of these services vary depending on the purpose of the listing (valuation, protection, mapping et cetera). Though the scientific basis is developing, the knowledge-availability still can be a critical factor in decision making based upon ecosystem services. The examples in this article illustrate that awareness of the value of groundwater can result in balanced decisions with respect to the use of ecosystem services. The ecosystem services concept contributes to this awareness and enhances the visibility of the groundwater functions in the decision making process. The success of the ecosystem services concept and its contribution to sustainable groundwater management will, however, largely depend on other aspects than the concept itself. Local and actual circumstances, policy ambitions and knowledge availability will play an important role. Solutions can be considered more sustainable when more of the key elements for sustainable groundwater management, as defined in this article, are fully used and the presented guidelines for long term use of ecosystem services are respected. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Herbivorous fishes, ecosystem function and mobile links on coral reefs

    NASA Astrophysics Data System (ADS)

    Welsh, J. Q.; Bellwood, D. R.

    2014-06-01

    Understanding large-scale movement of ecologically important taxa is key to both species and ecosystem management. Those species responsible for maintaining functional connectivity between habitats are often called mobile links and are regarded as essential elements of resilience. By providing connectivity, they support resilience across spatial scales. Most marine organisms, including fishes, have long-term, biogeographic-scale connectivity through larval movement. Although most reef species are highly site attached after larval settlement, some taxa may also be able to provide rapid, reef-scale connectivity as adults. On coral reefs, the identity of such taxa and the extent of their mobility are not yet known. We use acoustic telemetry to monitor the movements of Kyphosus vaigiensis, one of the few reef fishes that feeds on adult brown macroalgae. Unlike other benthic herbivorous fish species, it also exhibits large-scale (>2 km) movements. Individual K. vaigiensis cover, on average, a 2.5 km length of reef (11 km maximum) each day. These large-scale movements suggest that this species may act as a mobile link, providing functional connectivity, should the need arise, and helping to support functional processes across habitats and spatial scales. An analysis of published studies of home ranges in reef fishes found a consistent relationship between home range size and body length. K. vaigiensis is the sole herbivore to depart significantly from the expected home range-body size relationship, with home range sizes more comparable to exceptionally mobile large pelagic predators rather than other reef herbivores. While the large-scale movements of K. vaigiensis reveal its potential capacity to enhance resilience over large areas, it also emphasizes the potential limitations of small marine reserves to protect some herbivore populations.

  13. Can functional equivalency between seagrasses and other coastal habitats offset loss of ecosystem health with reduced seagrass abundance?

    NASA Astrophysics Data System (ADS)

    Cebrian, J.; Anton, A.; Christiaen, B.; Gamble, R.; Stutes, J.

    2016-02-01

    Seagrasses provide important ecosystem services, such as habitat for fisheries, shoreline stabilization, pollution filtration, and carbon sequestration. Thus, seagrass loss may seriously compromise coastal ecosystem services worldwide. However, functional equivalency (or redundancy) between seagrasses and other components of coastal ecosystems, such as algae and marshes, can offset the loss of services under declining seagrass abundance. That is, if seagrasses are redundant with algae and marshes in their functionality, then ecosystem services may be preserved in changing coasts with declining seagrass but pervading algal and marsh communities. Here we present several instances of functional redundancy between seagrasses and other coastal components in the Northern Gulf of Mexico. We first examine how net ecosystem production, which sets a limit to carbon accumulation and export to neighbouring communities, changes with eutrophication-induced seagrass decline and concomitant increase in algal abundance. Results from comparative and manipulative field studies are congruent and show no change in net ecosystem production despite drastic shifts from seagrass to algal dominance. We further provide evidence that fringing marshes can counteract the reduction in habitat provision for structure-dependent fisheries due to seagrass loss. Using a large-scale field comparison we show that, as long as fringing marshes are preserved, the abundance and diversity of structure-dependent fisheries are maintained despite large seagrass loss. Functional redundancy for habitat provision also occurs between seagrasses and well-oxygenated macroagal stands, since canopy-dwelling faunal abundance remains unaltered if seagrasses are replaced by normoxic algal stands. In concert the results demonstrate substantial functional equivalency between seagrasses and other coastal components, and indicate seagrass loss does not necessarily result in depressed coastal ecosystem health and services.

  14. Ecosystem services and economic theory: integration for policy-relevant research.

    PubMed

    Fisher, Brendan; Turner, Kerry; Zylstra, Matthew; Brouwer, Roy; de Groot, Rudolf; Farber, Stephen; Ferraro, Paul; Green, Rhys; Hadley, David; Harlow, Julian; Jefferiss, Paul; Kirkby, Chris; Morling, Paul; Mowatt, Shaun; Naidoo, Robin; Paavola, Jouni; Strassburg, Bernardo; Yu, Doug; Balmford, Andrew

    2008-12-01

    It has become essential in policy and decision-making circles to think about the economic benefits (in addition to moral and scientific motivations) humans derive from well-functioning ecosystems. The concept of ecosystem services has been developed to address this link between ecosystems and human welfare. Since policy decisions are often evaluated through cost-benefit assessments, an economic analysis can help make ecosystem service research operational. In this paper we provide some simple economic analyses to discuss key concepts involved in formalizing ecosystem service research. These include the distinction between services and benefits, understanding the importance of marginal ecosystem changes, formalizing the idea of a safe minimum standard for ecosystem service provision, and discussing how to capture the public benefits of ecosystem services. We discuss how the integration of economic concepts and ecosystem services can provide policy and decision makers with a fuller spectrum of information for making conservation-conversion trade-offs. We include the results from a survey of the literature and a questionnaire of researchers regarding how ecosystem service research can be integrated into the policy process. We feel this discussion of economic concepts will be a practical aid for ecosystem service research to become more immediately policy relevant.

  15. Integrating Human and Ecosystem Health Through Ecosystem Services Frameworks.

    PubMed

    Ford, Adriana E S; Graham, Hilary; White, Piran C L

    2015-12-01

    The pace and scale of environmental change is undermining the conditions for human health. Yet the environment and human health remain poorly integrated within research, policy and practice. The ecosystem services (ES) approach provides a way of promoting integration via the frameworks used to represent relationships between environment and society in simple visual forms. To assess this potential, we undertook a scoping review of ES frameworks and assessed how each represented seven key dimensions, including ecosystem and human health. Of the 84 ES frameworks identified, the majority did not include human health (62%) or include feedback mechanisms between ecosystems and human health (75%). While ecosystem drivers of human health are included in some ES frameworks, more comprehensive frameworks are required to drive forward research and policy on environmental change and human health.

  16. Resilience, Integrity and Ecosystem Dynamics: Bridging Ecosystem Theory and Management

    NASA Astrophysics Data System (ADS)

    Müller, Felix; Burkhard, Benjamin; Kroll, Franziska

    In this paper different approaches to elucidate ecosystem dynamics are described, illustrated and interrelated. Ecosystem development is distinguished into two separate sequences, a complexifying phase which is characterized by orientor optimization and a destruction based phase which follows disturbances. The two developmental pathways are integrated in a modified illustration of the "adaptive cycle". Based on these fundamentals, the recent definitions of resilience, adaptability and vulnerability are discussed and a modified comprehension is proposed. Thereafter, two case studies about wetland dynamics are presented to demonstrate both, the consequences of disturbance and the potential of ecosystem recovery. In both examples ecosystem integrity is used as a key indicator variable. Based on the presented results the relativity and the normative loading of resilience quantification is worked out. The paper ends with the suggestion that the features of adaptability could be used as an integrative guideline for the analysis of ecosystem dynamics and as a well-suited concept for ecosystem management.

  17. Resilience, Integrity and Ecosystem Dynamics: Bridging Ecosystem Theory and Management

    NASA Astrophysics Data System (ADS)

    Müller, Felix; Burkhard, Benjamin; Kroll, Franziska

    In this paper different approaches to elucidate ecosystem dynamics are described, illustrated and interrelated. Ecosystem development is distinguished into two separate sequences, a complexifying phase which is characterized by orientor optimization and a destruction based phase which follows disturbances. The two developmental pathways are integrated in a modified illustration of the “adaptive cycle”. Based on these fundamentals, the recent definitions of resilience, adaptability and vulnerability are discussed and a modified comprehension is proposed. Thereafter, two case studies about wetland dynamics are presented to demonstrate both, the consequences of disturbance and the potential of ecosystem recovery. In both examples ecosystem integrity is used as a key indicator variable. Based on the presented results the relativity and the normative loading of resilience quantification is worked out. The paper ends with the suggestion that the features of adaptability could be used as an integrative guideline for the analysis of ecosystem dynamics and as a well-suited concept for ecosystem management.

  18. Fire and aquatic ecosystems of the western USA: Current knowledge and key questions

    USGS Publications Warehouse

    Bisson, P.A.; Rieman, B.; Luce, C.; Hessburg, Paul F.; Lee, D.; Kershner, J.; Reeves, G.H.; Gresswell, Robert E.

    2003-01-01

    Understanding of the effects of wildland fire and fire management on aquatic and riparian ecosystems is an evolving field, with many questions still to be resolved. Limitations of current knowledge, and the certainty that fire management will continue, underscore the need to summarize available information. Integrating fire and fuels management with aquatic ecosystem conservation begins with recognizing that terrestrial and aquatic ecosystems are linked and dynamic, and that fire can play a critical role in maintaining aquatic ecological diversity. To protect aquatic ecosystems we argue that it will be important to: (1) accommodate fire-related and other ecological processes that maintain aquatic habitats and biodiversity, and not simply control fires or fuels; (2) prioritize projects according to risks and opportunities for fire control and the protection of aquatic ecosystems; and (3) develop new consistency in the management and regulatory process. Ultimately, all natural resource management is uncertain; the role of science is to apply experimental design and hypothesis testing to management applications that affect fire and aquatic ecosystems. Policy-makers and the public will benefit from an expanded appreciation of fire ecology that enables them to implement watershed management projects as experiments with hypothesized outcomes, adequate controls, and replication.

  19. Small but Powerful: Top Predator Local Extinction Affects Ecosystem Structure and Function in an Intermittent Stream

    PubMed Central

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators’ extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a ‘mesopredator release’, affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to ‘mesopredator release’, and also to ‘prey release’ despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem’s structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers’ extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been

  20. Ecosystem services and emergent vulnerability in managed ecosystems: A geospatial decision-support tool

    Treesearch

    Colin M. Beier; Trista M. Patterson; F. Stuart Chapin III

    2008-01-01

    Managed ecosystems experience vulnerabilities when ecological resilience declines and key flows of ecosystem services become depleted or lost. Drivers of vulnerability often include local management actions in conjunction with other external, larger scale factors. To translate these concepts to management applications, we developed a conceptual model of feedbacks...

  1. Assessing the protection function of Alpine forest ecosystems using BGC modelling theory

    NASA Astrophysics Data System (ADS)

    Pötzelsberger, E.; Hasenauer, H.; Petritsch, R.; Pietsch, S. A.

    2009-04-01

    The purpose of this study was to assess the protection function of forests in Alpine areas by modelling the flux dynamics (water, carbon, nutrients) within a watershed as they may depend on the vegetation pattern and forest management impacts. The application case for this study was the catchment Schmittenbach, located in the province of Salzburg. Data available covered the hydrology (rainfall measurements from 1981 to 1998 and runoff measurements at the river Schmittenbach from 1981 to 2005), vegetation dynamics (currently 69% forest, predominantly Norway Spruce). The method of simulating the forest growth and water outflow was validated. For simulations of the key ecosystem processes (e.g. photosynthesis, carbon and nitrogen allocation in the different plant parts, litter fall, mineralisation, tree water uptake, transpiration, rainfall interception, evaporation, snow accumulation and snow melt, outflow of spare water) the biogeochemical ecosystem model Biome-BGC was applied. Relevant model extensions were the tree species specific parameter sets and the improved thinning regime. The model is sensitive to site characteristics and needs daily weather data and information on the atmospheric composition, which makes it sensitive to higher CO2-levels and climate change. For model validation 53 plots were selected covering the full range of site quality and stand age. Tree volume and soil was measured and compared with the respective model results. The outflow for the watershed was predicted by combining the simulated forest-outflow (derived from plot-outflow) with the outflow from the non-forest area (calculated with a fixed outflow/rainfall coefficient (OC)). The analysis of production and water related model outputs indicated that mechanistic modelling can be used as a tool to assess the performance of Alpine protection forests. The Water Use Efficiency (WUE), the ratio of Net primary production (NPP) and Transpiration, was found the highest for juvenile stands (

  2. Structure, Behavior, Function as a Framework For Teaching and Learning about Complexity In Ecosystems: Lessons from Middle School Classrooms (Invited)

    NASA Astrophysics Data System (ADS)

    Hmelo-Silver, C.; Gray, S.; Jordan, R.

    2010-12-01

    Complex systems surround us, and as Sabelli (2006) has argued, understanding complex systems is a critical component of science literacy. Understanding natural and designed systems are also prominent in the new draft science standards (NRC, 2010) and therefore of growing importance in the science classroom. Our work has focused on promoting an understanding of one complex natural system, aquatic ecosystems, which given current events, is fast becoming a requisite for informed decision-making as citizens (Jordan et al. 2008). Learners have difficulty understanding many concepts related to complex natural systems (e.g., Hmelo-Silver, Marathe, & Liu, 2007; Jordan, Gray, Liu, Demeter, & Hmelo-Silver, 2009). Studies of how students think about complex ecological systems (e.g; Hmelo-Silver, Marathe, & Liu, 2007; Hogan, 2000, Hogan & Fisherkeller, 1996: Covitt & Gunkel, 2008) have revealed difficulties in thinking beyond linear flow, single causality, and visible structure. Helping students to learn about ecosystems is a complex task that requires providing opportunities for students to not only engage directly with ecosystems but also with resources that provide relevant background knowledge and opportunities for learners to make their thinking visible. Both tasks can be difficult given the large spatial and temporal scales on which ecosystems operate. Additionally, visible components interact with often invisible components which can obscure ecosystem processes for students. Working in the context of aquatic ecosystems, we sought to provide learners with representations and simulations that make salient the relationship between system components. In particular, we provided learners with opportunities to experience both the micro-level and macro-level phenomena that are key to understanding ecosystems (Hmelo-Silver, Liu, Gray, & Jordan, submitted; Liu & Hmelo-Silver, 2008; Jacobson & Wilensky, 2006). To accomplish this, we needed to help learners make connections across

  3. The functional value of Caribbean coral reef, seagrass and mangrove habitats to ecosystem processes.

    PubMed

    Harborne, Alastair R; Mumby, Peter J; Micheli, Fiorenza; Perry, Christopher T; Dahlgren, Craig P; Holmes, Katherine E; Brumbaugh, Daniel R

    2006-01-01

    Caribbean coral reef habitats, seagrass beds and mangroves provide important goods and services both individually and through functional linkages. A range of anthropogenic factors are threatening the ecological and economic importance of these habitats and it is vital to understand how ecosystem processes vary across seascapes. A greater understanding of processes will facilitate further insight into the effects of disturbances and assist with assessing management options. Despite the need to study processes across whole seascapes, few spatially explicit ecosystem-scale assessments exist. We review the empirical literature to examine the role of different habitat types for a range of processes. The importance of each of 10 generic habitats to each process is defined as its "functional value" (none, low, medium or high), quantitatively derived from published data wherever possible and summarised in a single figure. This summary represents the first time the importance of habitats across an entire Caribbean seascape has been assessed for a range of processes. Furthermore, we review the susceptibility of each habitat to disturbances to investigate spatial patterns that might affect functional values. Habitat types are considered at the scale discriminated by remotely-sensed imagery and we envisage that functional values can be combined with habitat maps to provide spatially explicit information on processes across ecosystems. We provide examples of mapping the functional values of habitats for populations of three commercially important species. The resulting data layers were then used to generate seascape-scale assessments of "hot spots" of functional value that might be considered priorities for conservation. We also provide an example of how the literature reviewed here can be used to parameterise a habitat-specific model investigating reef resilience under different scenarios of herbivory. Finally, we use multidimensional scaling to provide a basic analysis of the

  4. Are Urban Ecosystem Services Useful for a Sustainable City?

    NASA Astrophysics Data System (ADS)

    Jenerette, D.

    2014-12-01

    In meeting the needs of rapidly expanding city residents, ecosystem functioning within the urban boundary may provide several key services ranging from life-sustaining services such as climate regulation and food production to services associated with recreation and aesthetics. In contrast, ecosystem disservices are associated with ecosystem characteristics that have a negative impact on residents and range from potentially injurious components such as increasing pollutant exposure or additional resource requirements such as irrigation water. Identifying trade-offs in both services and disservices is a priority for assessing how ecosystem functioning influences urban residents. Such assessments require a baseline understanding of their rates of production and acutely need expanded monitoring and modeling. Recent efforts at quantifying ecosystem services and disservices have relied on combinations of direct field surveys, in-situ environmental sensor networks, and remotely sensed vegetation. While much work has been conducted within single metropolitan regions, expanded efforts are underway to analyze networks of urban sites. Here I highlight recent findings associated with urban ecosystem services associated with variation in urban forests and urban gardens as two contrasting ecosystem types within a city. These research efforts are leading to improved understanding of the variation in the production of and specific desires for ecosystem services and disservices. Initial data across several studies suggests desires for services show sensitivity to both socioeconomic status as suggested by a hierarchy of needs hypothesis and local environmental conditions as suggested by an environmental determinism hypothesis. Consequently, the production of ecosystem services also varies dramatically across socioeconomic and climate gradients. Future projections of the rates of service production are highly uncertain with likely strong nonlinearities in responses to urban

  5. Study of Wetland Ecosystem Vegetation Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Dyukarev, E. A.; Alekseeva, M. N.; Golovatskaya, E. A.

    2017-12-01

    The normalized difference vegetation index (NDVI) is used to estimate the aboveground net production (ANP) of wetland ecosystems for the key area at the South Taiga zone of West Siberia. The vegetation index and aboveground production are related by linear dependence and are specific for each wetland ecosystem. The NDVI grows with an increase in the ANP at wooded oligotrophic ecosystems. Open oligotrophic bogs and eutrophic wetlands are characterized by an opposite relation. Maps of aboveground production for wetland ecosystems are constructed for each study year and for the whole period of studies. The average aboveground production for all wetland ecosystems of the key area, which was estimated with consideration for the area they occupy and using the data of satellite measurements of the vegetation index, is 305 g C/m2/yr. The total annual carbon accumulation in aboveground wetland vegetation in the key area is 794600 t.

  6. Effects of grazing on leaf traits and ecosystem functioning in Inner Mongolia grasslands: scaling from species to community

    NASA Astrophysics Data System (ADS)

    Zheng, S. X.; Ren, H. Y.; Lan, Z. C.; Li, W. H.; Wang, K. B.; Bai, Y. F.

    2010-03-01

    Understanding the mechanistic links between environmental drivers, human disturbance, plant functional traits, and ecosystem properties is a fundamental aspect of biodiversity-ecosystem functioning research. Recent studies have focused mostly on leaf-level traits or community-level weighted traits to predict species responses to grazing and the consequent change in ecosystem functioning. However, studies of leaf-level traits or community-level weighted traits seldom identify the mechanisms linking grazing impact on leaf traits to ecosystem functioning. Here, using a multi-organization-level approach, we examined the effects of grazing on leaf traits (i.e., leaf area, leaf dry mass and specific leaf area) and ecosystem functioning across six communities of three vegetation types along a soil moisture gradient in the Xilin River Basin of Inner Mongolia grassland, China. Our results showed that the effects of grazing on leaf traits differed substantially when scaling up from leaf-level to species, functional group (i.e., life forms and water ecotype types), and community levels; and they also varied with vegetation type or site conditions. The effects of grazing on leaf traits diminished progressively along the hierarchy of organizational levels in the meadow, whereas the impacts were predominantly negative and the magnitude of the effects increased considerably at higher organizational levels in the typical steppe. Soil water and nutrient availability, functional trade-offs between leaf size and number of leaves per individual, and differentiation in avoidance and tolerance strategies among coexisting species are likely to be responsible for the observed responses of leaf traits to grazing at different levels of organization and among vegetation types. Our findings also demonstrate that, at both the functional group and community levels, standing aboveground biomass increased with leaf area and specific leaf area. Compared with the large changes in leaf traits and

  7. Phylogenetic structure of soil bacterial communities predicts ecosystem functioning.

    PubMed

    Pérez-Valera, Eduardo; Goberna, Marta; Verdú, Miguel

    2015-05-01

    Quantifying diversity with phylogeny-informed metrics helps understand the effects of diversity on ecosystem functioning (EF). The sign of these effects remains controversial because phylogenetic diversity and taxonomic identity may interactively influence EF. Positive relationships, traditionally attributed to complementarity effects, seem unimportant in natural soil bacterial communities. Negative relationships could be attributed to fitness differences leading to the overrepresentation of few productive clades, a mechanism recently invoked to assemble soil bacteria communities. We tested in two ecosystems contrasting in terms of environmental heterogeneity whether two metrics of phylogenetic community structure, a simpler measure of phylogenetic diversity (NRI) and a more complex metric incorporating taxonomic identity (PCPS), correctly predict microbially mediated EF. We show that the relationship between phylogenetic diversity and EF depends on the taxonomic identity of the main coexisting lineages. Phylogenetic diversity was negatively related to EF in soils where a marked fertility gradient exists and a single and productive clade (Proteobacteria) outcompete other clades in the most fertile plots. However, phylogenetic diversity was unrelated to EF in soils where the fertility gradient is less marked and Proteobacteria coexist with other abundant lineages. Including the taxonomic identity of bacterial lineages in metrics of phylogenetic community structure allows the prediction of EF in both ecosystems. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Analyzing key ecological functions for transboundary subbasin assessments.

    Treesearch

    B.G Marcot; T.A. O' Neil; J.B. Nyberg; A. MacKinnon; P.J. Paquet; D.H. Johnson

    2007-01-01

    We present an evaluation of the ecological roles ("key ecological functions" or KEFs) of 618 wildlife species as one facet of subbasin assessment in the Columbia River basin (CRB) of the United States and Canada. Using a wildlife-habitat relationships database (IBIS) and geographic information system, we have mapped KEFs as levels of functional redundancy (...

  9. Biodiversity and Ecosystem Functioning: Exploring Principles of Ecology with Agricultural Plants

    ERIC Educational Resources Information Center

    Ruesink, Jennifer; O'Connor, Eileen; Sparks, Grace

    2006-01-01

    To date, little of the ecological research on biological diversity and ecosystem functioning has been carried out in agricultural systems, despite the fact that agriculture is a major contributor to loss of native habitats and species. However, agricultural research has demonstrated that polycultures of multiple crop species can have higher total…

  10. Stable isotope probing to study functional components of complex microbial ecosystems.

    PubMed

    Mazard, Sophie; Schäfer, Hendrik

    2014-01-01

    This protocol presents a method of dissecting the DNA or RNA of key organisms involved in a specific biochemical process within a complex ecosystem. Stable isotope probing (SIP) allows the labelling and separation of nucleic acids from community members that are involved in important biochemical transformations, yet are often not the most numerically abundant members of a community. This pure culture-independent technique circumvents limitations of traditional microbial isolation techniques or data mining from large-scale whole-community metagenomic studies to tease out the identities and genomic repertoires of microorganisms participating in biological nutrient cycles. SIP experiments can be applied to virtually any ecosystem and biochemical pathway under investigation provided a suitable stable isotope substrate is available. This versatile methodology allows a wide range of analyses to be performed, from fatty-acid analyses, community structure and ecology studies, and targeted metagenomics involving nucleic acid sequencing. SIP experiments provide an effective alternative to large-scale whole-community metagenomic studies by specifically targeting the organisms or biochemical transformations of interest, thereby reducing the sequencing effort and time-consuming bioinformatics analyses of large datasets.

  11. Plant-microbe interactions as drivers of ecosystem functions relevant for the biodegradation of organic contaminants.

    PubMed

    Fester, Thomas; Giebler, Julia; Wick, Lukas Y; Schlosser, Dietmar; Kästner, Matthias

    2014-06-01

    The plant organism and associated microbial communities can be seen as a sunlight driven hotspot for the turnover of organic chemicals. In such environments the fate of a chemical will not only depend on its intrinsic structural stability toward (bio-)chemical reactions and its bioavailability but also on the functional effectiveness and stability of natural microbial communities as main drivers of natural attenuation of chemicals. Recent research demonstrates that interactions between plants and microorganisms are crucial for the biotransformation of organic chemicals, for various processes affecting the bioavailability of such compounds, and for the stability of the affected ecosystem. Practical bioremediation approaches, therefore, should encompass integrated measures targeting functional vegetation as well as functional microbial communities. Good examples for a successful practical approach are constructed wetlands, where an artificial, simplified ecosystem is used for the detoxification of organic contaminants. While such systems have considerable practical success, they are often treated as a black box and a sound mechanistic understanding of functional resilience and of the 'reactive power' of such plant-microbe ecosystems is poor. This situation has to change, if progress in the application of bioremediation is to be made. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The resilience and functional role of moss in boreal and arctic ecosystems.

    PubMed

    Turetsky, M R; Bond-Lamberty, B; Euskirchen, E; Talbot, J; Frolking, S; McGuire, A D; Tuittila, E-S

    2012-10-01

    Mosses in northern ecosystems are ubiquitous components of plant communities, and strongly influence nutrient, carbon and water cycling. We use literature review, synthesis and model simulations to explore the role of mosses in ecological stability and resilience. Moss community responses to disturbance showed all possible responses (increases, decreases, no change) within most disturbance categories. Simulations from two process-based models suggest that northern ecosystems would need to experience extreme perturbation before mosses were eliminated. But simulations with two other models suggest that loss of moss will reduce soil carbon accumulation primarily by influencing decomposition rates and soil nitrogen availability. It seems clear that mosses need to be incorporated into models as one or more plant functional types, but more empirical work is needed to determine how to best aggregate species. We highlight several issues that have not been adequately explored in moss communities, such as functional redundancy and singularity, relationships between response and effect traits, and parameter vs conceptual uncertainty in models. Mosses play an important role in several ecosystem processes that play out over centuries - permafrost formation and thaw, peat accumulation, development of microtopography - and there is a need for studies that increase our understanding of slow, long-term dynamical processes. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  13. The resilience and functional role of moss in boreal and arctic ecosystems

    USGS Publications Warehouse

    Turetsky, M.; Bond-Lamberty, B.; Euskirchen, E.S.; Talbot, J. J.; Frolking, S.; McGuire, A.D.; Tuittila, E.S.

    2012-01-01

    Mosses in northern ecosystems are ubiquitous components of plant communities, and strongly influence nutrient, carbon and water cycling. We use literature review, synthesis and model simulations to explore the role of mosses in ecological stability and resilience. Moss community responses to disturbance showed all possible responses (increases, decreases, no change) within most disturbance categories. Simulations from two process-based models suggest that northern ecosystems would need to experience extreme perturbation before mosses were eliminated. But simulations with two other models suggest that loss of moss will reduce soil carbon accumulation primarily by influencing decomposition rates and soil nitrogen availability. It seems clear that mosses need to be incorporated into models as one or more plant functional types, but more empirical work is needed to determine how to best aggregate species. We highlight several issues that have not been adequately explored in moss communities, such as functional redundancy and singularity, relationships between response and effect traits, and parameter vs conceptual uncertainty in models. Mosses play an important role in several ecosystem processes that play out over centuries – permafrost formation and thaw, peat accumulation, development of microtopography – and there is a need for studies that increase our understanding of slow, long-term dynamical processes.

  14. Ecosystem extent and fragmentation

    USGS Publications Warehouse

    Sayre, Roger; Hansen, Matt

    2017-01-01

    One of the candidate essential biodiversity variable (EBV) groups described in the seminal paper by Pereira et al. (2014) concerns Ecosystem Structure. This EBV group is distinguished from another EBV group which encompasses aspects of Ecosystem Function. While the Ecosystem Function EBV treats ecosystem processes like nutrient cycling, primary production, trophic interactions, etc., the Ecosystem Structure EBV relates to the set of biophysical properties of ecosystems that create biophysical environmental context, confer biophysical structure, and occur geographically. The Ecosystem Extent and Fragmentation EBV is one of the EBVs in the Ecosystem Structure EBV group.Ecosystems are understood to exist at multiple scales, from very large areas (macro-ecosystems) like the Arctic tundra, for example, to something as small as a tree in an Amazonian rain forest. As such, ecosystems occupy space and therefore can be mapped across any geography of interest, whether that area of interest be a site, a nation, a region, a continent, or the planet. One of the most obvious and seemingly straightforward EBVs is Ecosystem Extent and Fragmentation. Ecosystem extent refers to the location and geographic distribution of ecosystems across landscapes or in the oceans, while ecosystem fragmentation refers to the spatial pattern and connectivity of ecosystem occurrences on the landscape.

  15. A gradient of nutrient enrichment reveals nonlinear impacts of fertilization on Arctic plant diversity and ecosystem function.

    PubMed

    Prager, Case M; Naeem, Shahid; Boelman, Natalie T; Eitel, Jan U H; Greaves, Heather E; Heskel, Mary A; Magney, Troy S; Menge, Duncan N L; Vierling, Lee A; Griffin, Kevin L

    2017-04-01

    Rapid environmental change at high latitudes is predicted to greatly alter the diversity, structure, and function of plant communities, resulting in changes in the pools and fluxes of nutrients. In Arctic tundra, increased nitrogen (N) and phosphorus (P) availability accompanying warming is known to impact plant diversity and ecosystem function; however, to date, most studies examining Arctic nutrient enrichment focus on the impact of relatively large (>25x estimated naturally occurring N enrichment) doses of nutrients on plant community composition and net primary productivity. To understand the impacts of Arctic nutrient enrichment, we examined plant community composition and the capacity for ecosystem function (net ecosystem exchange, ecosystem respiration, and gross primary production) across a gradient of experimental N and P addition expected to more closely approximate warming-induced fertilization. In addition, we compared our measured ecosystem CO 2 flux data to a widely used Arctic ecosystem exchange model to investigate the ability to predict the capacity for CO 2 exchange with nutrient addition. We observed declines in abundance-weighted plant diversity at low levels of nutrient enrichment, but species richness and the capacity for ecosystem carbon uptake did not change until the highest level of fertilization. When we compared our measured data to the model, we found that the model explained roughly 30%-50% of the variance in the observed data, depending on the flux variable, and the relationship weakened at high levels of enrichment. Our results suggest that while a relatively small amount of nutrient enrichment impacts plant diversity, only relatively large levels of fertilization-over an order of magnitude or more than warming-induced rates-significantly alter the capacity for tundra CO 2 exchange. Overall, our findings highlight the value of measuring and modeling the impacts of a nutrient enrichment gradient, as warming-related nutrient

  16. Topographic Controls on Southern California Ecosystem Function and Post-fire Recovery: a Satellite and Near-surface Remote Sensing Approach

    NASA Astrophysics Data System (ADS)

    Azzari, George

    Southern Californian wildfires can influence climate in a variety of ways, including changes in surface albedo, emission of greenhouse gases and aerosols, and the production of tropospheric ozone. Ecosystem post-fire recovery plays a key role in determining the strength, duration, and relative importance of these climate forcing agents. Southern California's ecosystems vary markedly with topography, creating sharp transitions with elevation, aspect, and slope. Little is known about the ways topography influences ecosystem properties and function, particularly in the context of post-fire recovery. We combined images from the USGS satellite Landsat 5 with flux tower measurements to analyze pre- and post-fire albedo and carbon exchanged by Southern California's ecosystems in the Santa Ana Mountains. We reduced the sources of external variability in Landsat images using several correction methods for topographic and bidirectional effects. We used time series of corrected images to infer the Net Ecosystem Exchange and surface albedo, and calculated the radiative forcing due to CO2 emissions and albedo changes. We analyzed the patterns of recovery and radiative forcing on north- and south-facing slopes, stratified by vegetation classes including grassland, coastal sage scrub, chaparral, and evergreen oak forest. We found that topography strongly influenced post-fire recovery and radiative forcing. Field observations are often limited by the difficulty of collecting ground validation data. Current instrumentation networks do not provide adequate spatial resolution for landscape-level analysis. The deployment of consumer-market technology could reduce the cost of near-surface measurements, allowing the installation of finer-scale instrument networks. We tested the performance of the Microsoft Kinect sensor for measuring vegetation structure. We used Kinect to acquire 3D vegetation point clouds in the field, and used these data to compute plant height, crown diameter, and

  17. [Effects of small hydropower substitute fuel project on forest ecosystem services].

    PubMed

    Yu, Hai Yan; Zha, Tong Gang; Nie, Li Shui; Lyu, Zhi Yuan

    2016-10-01

    Based on the Forest Ecosystem Services Assessment Standards (LY/T 1721-2008) issued by the State Forestry Administration, this paper evaluated four key functions of forest ecosystems, i.e., water conservation, soil conservation, carbon fixation and oxygen release, and nutrient accumulation. Focusing on the project area of Majiang County in Guizhou Province, this study provided some quantitative evidence that the implementation of the small hydropower substituting fuel project had positive effects on the values and material quantities of ecosystem service functions. The results showed that the small hydropower substituting fuel project had a significant effect on the increase of forest ecosystem services. Water conservation quantity of Pinus massoniana and Cupressus funebris plantations inside project area was 20662.04 m 3 ·hm -2 ·a -1 , 20.5% higher than outside project area, with soil conservation quantity of 119.1 t·hm -2 ·a -1 , 29.7% higher than outside project area, carbon fixation and oxygen release of 220.49 t·hm -2 ·a -1 , 40.2% higher than outside project area, and forest tree nutrition accumulation of 3.49 t·hm -2 ·a -1 , 48.5% higher than outside project area. Small hydropower substituting fuel project for increasing the quota of forest ecosystem service function value was in the order of carbon fixation and oxygen release function (71400 yuan·hm -2 ·a -1 ) > water conservation function (60100 yuan·hm -2 ·a -1 ) > tree nutrition accumulation function (13800 yuan·hm -2 ·a -1 ) > soil conservation function (8100 yuan·hm -2 ·a -1 ). Small hydropower substituting fuel project played an important role for improving the forest ecological service function value and realizing the sustainable development of forest.

  18. Too big or too narrow? Disturbance characteristics determine the functional resilience in virtual microbial ecosystems

    NASA Astrophysics Data System (ADS)

    König, Sara; Firle, Anouk-Letizia; Koehnke, Merlin; Banitz, Thomas; Frank, Karin

    2017-04-01

    In general ecology, there is an ongoing debate about the influence of fragmentation on extinction thresholds. Whether this influence is positive or negative depends on the considered type of fragmentation: whereas habitat fragmentation often has a negative influence on population extinction thresholds, spatially fragmented disturbances are observed to have mostly positive effects on the extinction probability. Besides preventing population extinction, in soil systems ecology we are interested in analyzing how ecosystem functions are maintained despite disturbance events. Here, we analyzed the influence of disturbance size and fragmentation on the functional resilience of a microbial soil ecosystem. As soil is a highly heterogeneous environment exposed to disturbances of different spatial configurations, the identification of critical disturbance characteristics for maintaining its functions is crucial. We used the numerical simulation model eColony considering bacterial growth, degradation and dispersal for analyzing the dynamic response of biodegradation examplary for an important microbial ecosystem service to disturbance events of different spatial configurations. We systematically varied the size and the degree of fragmentation of the affected area (disturbance pattern). We found that the influence of the disturbance size on functional recovery and biodegradation performance highly depends on the spatial fragmentation of the disturbance. Generally, biodegradation performance decreases with increasing clumpedness and increasing size of the affected area. After spatially correlated disturbance events, biodegradation performance decreases linear with increasing disturbance size. After spatially fragmented disturbance events, on the other hand, an increase in disturbance size has no influence on the biodegradation performance until a critical disturbance size is reached. Is the affected area bigger than this critical size, the functional performance decreases

  19. Logging cuts the functional importance of invertebrates in tropical rainforest

    PubMed Central

    Ewers, Robert M.; Boyle, Michael J. W.; Gleave, Rosalind A.; Plowman, Nichola S.; Benedick, Suzan; Bernard, Henry; Bishop, Tom R.; Bakhtiar, Effendi Y.; Chey, Vun Khen; Chung, Arthur Y. C.; Davies, Richard G.; Edwards, David P.; Eggleton, Paul; Fayle, Tom M.; Hardwick, Stephen R.; Homathevi, Rahman; Kitching, Roger L.; Khoo, Min Sheng; Luke, Sarah H.; March, Joshua J.; Nilus, Reuben; Pfeifer, Marion; Rao, Sri V.; Sharp, Adam C.; Snaddon, Jake L.; Stork, Nigel E.; Struebig, Matthew J.; Wearn, Oliver R.; Yusah, Kalsum M.; Turner, Edgar C.

    2015-01-01

    Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests. PMID:25865801

  20. Logging cuts the functional importance of invertebrates in tropical rainforest.

    PubMed

    Ewers, Robert M; Boyle, Michael J W; Gleave, Rosalind A; Plowman, Nichola S; Benedick, Suzan; Bernard, Henry; Bishop, Tom R; Bakhtiar, Effendi Y; Chey, Vun Khen; Chung, Arthur Y C; Davies, Richard G; Edwards, David P; Eggleton, Paul; Fayle, Tom M; Hardwick, Stephen R; Homathevi, Rahman; Kitching, Roger L; Khoo, Min Sheng; Luke, Sarah H; March, Joshua J; Nilus, Reuben; Pfeifer, Marion; Rao, Sri V; Sharp, Adam C; Snaddon, Jake L; Stork, Nigel E; Struebig, Matthew J; Wearn, Oliver R; Yusah, Kalsum M; Turner, Edgar C

    2015-04-13

    Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests.

  1. Comparing ecosystem and soil respiration: Review and key challenges of tower-based and soil mesurements

    USDA-ARS?s Scientific Manuscript database

    The net ecosystem exchange (NEE) is the difference between ecosystem CO2 assimilation and CO2 losses to the atmosphere. Ecosystem respiration (Reco), the efflux of CO2 from the ecosystem to the atmosphere, includes the soil-to-atmosphere carbon flux (i.e., soil respiration; Rsoil) and aboveground pl...

  2. Long term prevention of disturbance induces the collapse of a dominant species without altering ecosystem function

    PubMed Central

    Yu, Qiang; Wu, Honghui; Wang, Zhengwen; Flynn, Dan F. B.; Yang, Hao; Lü, Fumei; Smith, Melinda; Han, Xingguo

    2015-01-01

    Limitation of disturbances, such as grazing and fire, is a key tool for nature reserve management and ecological restoration. While the role of these disturbances in shaping ecosystem structure and functioning has been intensively studied, less is known about the consequences of long-term prevention of grazing and fire. Based on a 31-year study, we show that relative biomass of the dominant grass, Leymus chinensis, of grasslands in northern China declined dramatically, but only after 21 years of exclusion of fire and grazing. However, aboveground net primary productivity (ANPP) did not decline accordingly due to compensatory responses of several subdominant grass species. The decline in dominance of L. chinensis was not related to gradually changing climate during the same period, whereas experimentally imposed litter removal (simulating fire), mowing (simulating grazing), fire and moderate grazing enhanced dominance of L. chinensis significantly. Thus, our findings show that disturbances can be critical to maintain the dominance of key grass species in semiarid grassland, but that the collapse of a dominant species does not necessarily result in significant change in ANPP if there are species in the community capable of compensating for loss of a dominant. PMID:26388168

  3. Long term prevention of disturbance induces the collapse of a dominant species without altering ecosystem function.

    PubMed

    Yu, Qiang; Wu, Honghui; Wang, Zhengwen; Flynn, Dan F B; Yang, Hao; Lü, Fumei; Smith, Melinda; Han, Xingguo

    2015-09-21

    Limitation of disturbances, such as grazing and fire, is a key tool for nature reserve management and ecological restoration. While the role of these disturbances in shaping ecosystem structure and functioning has been intensively studied, less is known about the consequences of long-term prevention of grazing and fire. Based on a 31-year study, we show that relative biomass of the dominant grass, Leymus chinensis, of grasslands in northern China declined dramatically, but only after 21 years of exclusion of fire and grazing. However, aboveground net primary productivity (ANPP) did not decline accordingly due to compensatory responses of several subdominant grass species. The decline in dominance of L. chinensis was not related to gradually changing climate during the same period, whereas experimentally imposed litter removal (simulating fire), mowing (simulating grazing), fire and moderate grazing enhanced dominance of L. chinensis significantly. Thus, our findings show that disturbances can be critical to maintain the dominance of key grass species in semiarid grassland, but that the collapse of a dominant species does not necessarily result in significant change in ANPP if there are species in the community capable of compensating for loss of a dominant.

  4. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession.

    PubMed

    Lohbeck, Madelon; Poorter, Lourens; Martínez-Ramos, Miguel; Bongers, Frans

    2015-05-01

    Over half of the world's forests are disturbed, and the rate at which ecosystem processes recover after disturbance is important for the services these forests can provide. We analyze the drivers' underlying changes in rates of key ecosystem processes (biomass productivity, litter productivity, actual litter decomposition, and potential litter decomposition) during secondary succession after shifting cultivation in wet tropical forest of Mexico. We test the importance of three alternative drivers of ecosystem processes: vegetation biomass (vegetation quantity hypothesis), community-weighted trait mean (mass ratio hypothesis), and functional diversity (niche complementarity hypothesis) using structural equation modeling. This allows us to infer the relative importance of different mechanisms underlying ecosystem process recovery. Ecosystem process rates changed during succession, and the strongest driver was aboveground biomass for each of the processes. Productivity of aboveground stem biomass and leaf litter as well as actual litter decomposition increased with initial standing vegetation biomass, whereas potential litter decomposition decreased with standing biomass. Additionally, biomass productivity was positively affected by community-weighted mean of specific leaf area, and potential decomposition was positively affected by functional divergence, and negatively by community-weighted mean of leaf dry matter content. Our empirical results show that functional diversity and community-weighted means are of secondary importance for explaining changes in ecosystem process rates during tropical forest succession. Instead, simply, the amount of vegetation in a site is the major driver of changes, perhaps because there is a steep biomass buildup during succession that overrides more subtle effects of community functional properties on ecosystem processes. We recommend future studies in the field of biodiversity and ecosystem functioning to separate the effects of

  5. Taking a closer look: disentangling effects of functional diversity on ecosystem functions with a trait-based model across hierarchy and time

    PubMed Central

    Holzwarth, Frédéric; Rüger, Nadja; Wirth, Christian

    2015-01-01

    Biodiversity and ecosystem functioning (BEF) research has progressed from the detection of relationships to elucidating their drivers and underlying mechanisms. In this context, replacing taxonomic predictors by trait-based measures of functional composition (FC)—bridging functions of species and of ecosystems—is a widely used approach. The inherent challenge of trait-based approaches is the multi-faceted, dynamic and hierarchical nature of trait influence: (i) traits may act via different facets of their distribution in a community, (ii) their influence may change over time and (iii) traits may influence processes at different levels of the natural hierarchy of organization. Here, we made use of the forest ecosystem model ‘LPJ-GUESS’ parametrized with empirical trait data, which creates output of individual performance, community assembly, stand-level states and processes. To address the three challenges, we resolved the dynamics of the top-level ecosystem function ‘annual biomass change’ hierarchically into its various component processes (growth, leaf and root turnover, recruitment and mortality) and states (stand structures, water stress) and traced the influence of different facets of FC along this hierarchy in a path analysis. We found an independent influence of functional richness, dissimilarity and identity on ecosystem states and processes and hence biomass change. Biodiversity effects were only positive during early succession and later turned negative. Unexpectedly, resource acquisition (growth, recruitment) and conservation (mortality, turnover) played an equally important role throughout the succession. These results add to a mechanistic understanding of biodiversity effects and place a caveat on simplistic approaches omitting hierarchical levels when analysing BEF relationships. They support the view that BEF relationships experience dramatic shifts over successional time that should be acknowledged in mechanistic theories. PMID:26064620

  6. Anthropogenic impacts on tropical forest biodiversity: a network structure and ecosystem functioning perspective

    PubMed Central

    Morris, Rebecca J.

    2010-01-01

    Huge areas of diverse tropical forest are lost or degraded every year with dramatic consequences for biodiversity. Deforestation and fragmentation, over-exploitation, invasive species and climate change are the main drivers of tropical forest biodiversity loss. Most studies investigating these threats have focused on changes in species richness or species diversity. However, if we are to understand the absolute and long-term effects of anthropogenic impacts on tropical forests, we should also consider the interactions between species, how those species are organized in networks, and the function that those species perform. I discuss our current knowledge of network structure and ecosystem functioning, highlighting empirical examples of their response to anthropogenic impacts. I consider the future prospects for tropical forest biodiversity, focusing on biodiversity and ecosystem functioning in secondary forest. Finally, I propose directions for future research to help us better understand the effects of anthropogenic impacts on tropical forest biodiversity. PMID:20980318

  7. A more secure parallel keyed hash function based on chaotic neural network

    NASA Astrophysics Data System (ADS)

    Huang, Zhongquan

    2011-08-01

    Although various hash functions based on chaos or chaotic neural network were proposed, most of them can not work efficiently in parallel computing environment. Recently, an algorithm for parallel keyed hash function construction based on chaotic neural network was proposed [13]. However, there is a strict limitation in this scheme that its secret keys must be nonce numbers. In other words, if the keys are used more than once in this scheme, there will be some potential security flaw. In this paper, we analyze the cause of vulnerability of the original one in detail, and then propose the corresponding enhancement measures, which can remove the limitation on the secret keys. Theoretical analysis and computer simulation indicate that the modified hash function is more secure and practical than the original one. At the same time, it can keep the parallel merit and satisfy the other performance requirements of hash function, such as good statistical properties, high message and key sensitivity, and strong collision resistance, etc.

  8. Towards an integrated understanding of how micro scale processes shape groundwater ecosystem functions.

    PubMed

    Schmidt, Susanne I; Cuthbert, Mark O; Schwientek, Marc

    2017-08-15

    Micro scale processes are expected to have a fundamental role in shaping groundwater ecosystems and yet they remain poorly understood and under-researched. In part, this is due to the fact that sampling is rarely carried out at the scale at which microorganisms, and their grazers and predators, function and thus we lack essential information. While set within a larger scale framework in terms of geochemical features, supply with energy and nutrients, and exchange intensity and dynamics, the micro scale adds variability, by providing heterogeneous zones at the micro scale which enable a wider range of redox reactions. Here we outline how understanding micro scale processes better may lead to improved appreciation of the range of ecosystems functions taking place at all scales. Such processes are relied upon in bioremediation and we demonstrate that ecosystem modelling as well as engineering measures have to take into account, and use, understanding at the micro scale. We discuss the importance of integrating faunal processes and computational appraisals in research, in order to continue to secure sustainable water resources from groundwater. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification

    PubMed Central

    Steffan-Dewenter, Ingolf; Kessler, Michael; Barkmann, Jan; Bos, Merijn M.; Buchori, Damayanti; Erasmi, Stefan; Faust, Heiko; Gerold, Gerhard; Glenk, Klaus; Gradstein, S. Robbert; Guhardja, Edi; Harteveld, Marieke; Hertel, Dietrich; Höhn, Patrick; Kappas, Martin; Köhler, Stefan; Leuschner, Christoph; Maertens, Miet; Marggraf, Rainer; Migge-Kleian, Sonja; Mogea, Johanis; Pitopang, Ramadhaniel; Schaefer, Matthias; Schwarze, Stefan; Sporn, Simone G.; Steingrebe, Andrea; Tjitrosoedirdjo, Sri S.; Tjitrosoemito, Soekisman; Twele, André; Weber, Robert; Woltmann, Lars; Zeller, Manfred; Tscharntke, Teja

    2007-01-01

    Losses of biodiversity and ecosystem functioning due to rainforest destruction and agricultural intensification are prime concerns for science and society alike. Potentially, ecosystems show nonlinear responses to land-use intensification that would open management options with limited ecological losses but satisfying economic gains. However, multidisciplinary studies to quantify ecological losses and socioeconomic tradeoffs under different management options are rare. Here, we evaluate opposing land use strategies in cacao agroforestry in Sulawesi, Indonesia, by using data on species richness of nine plant and animal taxa, six related ecosystem functions, and on socioeconomic drivers of agroforestry expansion. Expansion of cacao cultivation by 230% in the last two decades was triggered not only by economic market mechanisms, but also by rarely considered cultural factors. Transformation from near-primary forest to agroforestry had little effect on overall species richness, but reduced plant biomass and carbon storage by ≈75% and species richness of forest-using species by ≈60%. In contrast, increased land use intensity in cacao agroforestry, coupled with a reduction in shade tree cover from 80% to 40%, caused only minor quantitative changes in biodiversity and maintained high levels of ecosystem functioning while doubling farmers' net income. However, unshaded systems further increased income by ≈40%, implying that current economic incentives and cultural preferences for new intensification practices put shaded systems at risk. We conclude that low-shade agroforestry provides the best available compromise between economic forces and ecological needs. Certification schemes for shade-grown crops may provide a market-based mechanism to slow down current intensification trends. PMID:17360392

  10. Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification.

    PubMed

    Steffan-Dewenter, Ingolf; Kessler, Michael; Barkmann, Jan; Bos, Merijn M; Buchori, Damayanti; Erasmi, Stefan; Faust, Heiko; Gerold, Gerhard; Glenk, Klaus; Gradstein, S Robbert; Guhardja, Edi; Harteveld, Marieke; Hertel, Dietrich; Höhn, Patrick; Kappas, Martin; Köhler, Stefan; Leuschner, Christoph; Maertens, Miet; Marggraf, Rainer; Migge-Kleian, Sonja; Mogea, Johanis; Pitopang, Ramadhaniel; Schaefer, Matthias; Schwarze, Stefan; Sporn, Simone G; Steingrebe, Andrea; Tjitrosoedirdjo, Sri S; Tjitrosoemito, Soekisman; Twele, André; Weber, Robert; Woltmann, Lars; Zeller, Manfred; Tscharntke, Teja

    2007-03-20

    Losses of biodiversity and ecosystem functioning due to rainforest destruction and agricultural intensification are prime concerns for science and society alike. Potentially, ecosystems show nonlinear responses to land-use intensification that would open management options with limited ecological losses but satisfying economic gains. However, multidisciplinary studies to quantify ecological losses and socioeconomic tradeoffs under different management options are rare. Here, we evaluate opposing land use strategies in cacao agroforestry in Sulawesi, Indonesia, by using data on species richness of nine plant and animal taxa, six related ecosystem functions, and on socioeconomic drivers of agroforestry expansion. Expansion of cacao cultivation by 230% in the last two decades was triggered not only by economic market mechanisms, but also by rarely considered cultural factors. Transformation from near-primary forest to agroforestry had little effect on overall species richness, but reduced plant biomass and carbon storage by approximately 75% and species richness of forest-using species by approximately 60%. In contrast, increased land use intensity in cacao agroforestry, coupled with a reduction in shade tree cover from 80% to 40%, caused only minor quantitative changes in biodiversity and maintained high levels of ecosystem functioning while doubling farmers' net income. However, unshaded systems further increased income by approximately 40%, implying that current economic incentives and cultural preferences for new intensification practices put shaded systems at risk. We conclude that low-shade agroforestry provides the best available compromise between economic forces and ecological needs. Certification schemes for shade-grown crops may provide a market-based mechanism to slow down current intensification trends.

  11. Effects of ice storm on forest ecosystem of southern China in 2008 Shaoqiang Wang1, Lei Zhou1, Weimin Ju2, Kun Huang1 1Key Lab of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Beijing, 10010

    NASA Astrophysics Data System (ADS)

    Wang, Shaoqiang

    2014-05-01

    Evidence is mounting that an increase in extreme climate events has begun to occur worldwide during the recent decades, which affect biosphere function and biodiversity. Ecosystems returned to its original structures and functions to maintain its sustainability, which was closely dependent on ecosystem resilience. Understanding the resilience and recovery capacity of ecosystem to extreme climate events is essential to predicting future ecosystem responses to climate change. Given the overwhelming importance of this region in the overall carbon cycle of forest ecosystems in China, south China suffered a destructive ice storm in 2008. In this study, we used the number of freezing day and a process-based model (Boreal Ecosystem Productivity Simulator, BEPS) to characterize the spatial distribution of ice storm region in southeastern China and explore the impacts on carbon cycle of forest ecosystem over the past decade. The ecosystem variables, i.e. Net primary productivity (NPP), Evapotranspiration (ET), and Water use efficiency (WUE, the ratio of NPP to ET) from the outputs of BEPS models were used to detect the resistance and resilience of forest ecosystem in southern China. The pattern of ice storm-induced forest productivity widespread decline was closely related to the number of freezing day during the ice storm period. The NPP of forest area suffered heavy ice storm returned to normal status after five months with high temperature and ample moisture, indicated a high resilience of subtropical forest in China. The long-term changes of forest WUE remain stable, behaving an inherent sensitivity of ecosystem to extreme climate events. In addition, ground visits suggested that the recovery of forest productivity was attributed to rapid growth of understory. Understanding the variability and recovery threshold of ecosystem following extreme climate events help us to better simulate and predict the variability of ecosystem structure and function under current and

  12. Beyond mean functional traits: Influence of functional trait profiles on forest structure, production, and mortality across the eastern US

    Treesearch

    Matthew B. Russell; Christopher W. Woodall; Anthony W. D' Amato; Grant M. Domke; Sassan S. Saatchi

    2014-01-01

    Plant functional traits (PFTs) have increased in popularity in recent years to describe various ecosystems and biological phenomena while advancing general ecological principles. To date, few have investigated distributional attributes of individual PFTs and their relationship with key attributes and processes of forest ecosystems. The objective of this study was to...

  13. Prioritizing conservation effort through the use of biological soil crusts as ecosystem function indicators in an arid region

    USGS Publications Warehouse

    Bowker, M.A.; Miller, M.E.; Belnap, J.; Sisk, T.D.; Johnson, N.C.

    2008-01-01

    Conservation prioritization usually focuses on conservation of rare species or biodiversity, rather than ecological processes. This is partially due to a lack of informative indicators of ecosystem function. Biological soil crusts (BSCs) trap and retain soil and water resources in arid ecosystems and function as major carbon and nitrogen fixers; thus, they may be informative indicators of ecosystem function. We created spatial models of multiple indicators of the diversity and function of BSCs (species richness, evenness, functional diversity, functional redundancy, number of rare species, number of habitat specialists, nitrogen and carbon fixation indices, soil stabilization, and surface roughening) for the 800,000-ha Grand Staircase-Escalante National Monument (Utah, U.S.A.). We then combined the indicators into a single BSC function map and a single BSC biodiversity map (2 alternative types of conservation value) with an unweighted averaging procedure and a weighted procedure derived from validations performance. We also modeled potential degradation with data from a rangeland assessment survey. To determine which areas on the landscape were the highest conservation priorities, we overlaid the function- and diversity-based conservation-value layers on the potential degradation layer. Different methods for ascribing conservation-value and conservation-priority layers all yielded strikingly similar results (r = 0.89-0.99), which suggests that in this case biodiversity and function can be conserved simultaneously. We believe BSCs can be used as indicators of ecosystem function in concert with other indicators (such as plant-community properties) and that such information can be used to prioritize conservation effort in drylands. ?? 2008 Society for Conservation Biology.

  14. Valuing ecosystem services in terms of ecological risks and returns.

    PubMed

    Abson, David J; Termansen, Mette

    2011-04-01

    The economic valuation of ecosystem services is a key policy tool in stemming losses of biological diversity. It is proposed that the loss of ecosystem function and the biological resources within ecosystems is due in part to the failure of markets to recognize the benefits humans derive from ecosystems. Placing monetary values on ecosystem services is often suggested as a necessary step in correcting such market failures. We consider the effects of valuing different types of ecosystem services within an economic framework. We argue that provisioning and regulating ecosystem services are generally produced and consumed in ways that make them amenable to economic valuation. The values associated with cultural ecosystem services lie outside the domain of economic valuation, but their worth may be expressed through noneconomic, deliberative forms of valuation. We argue that supporting ecosystem services are not of direct value and that the losses of such services can be expressed in terms of the effects of their loss on the risk to the provision of the directly valued ecosystem services they support. We propose a heuristic framework that considers the relations between ecological risks and returns in the provision of ecosystem services. The proposed ecosystem-service valuation framework, which allows the expression of the value of all types of ecosystem services, calls for a shift from static, purely monetary valuation toward the consideration of trade-offs between the current flow of benefits from ecosystems and the ability of those ecosystems to provide future flows. ©2010 Society for Conservation Biology.

  15. Integrating landscape system and meta-ecosystem frameworks to advance the understanding of ecosystem function in heterogeneous landscapes: An analysis on the carbon fluxes in the Northern Highlands Lake District (NHLD) of Wisconsin and Michigan.

    PubMed

    Yang, Haile; Chen, Jiakuan

    2018-01-01

    The successful integration of ecosystem ecology with landscape ecology would be conducive to understanding how landscapes function. There have been several attempts at this, with two main approaches: (1) an ecosystem-based approach, such as the meta-ecosystem framework and (2) a landscape-based approach, such as the landscape system framework. These two frameworks are currently disconnected. To integrate these two frameworks, we introduce a protocol, and then demonstrate application of the protocol using a case study. The protocol includes four steps: 1) delineating landscape systems; 2) classifying landscape systems; 3) adjusting landscape systems to meta-ecosystems and 4) integrating landscape system and meta-ecosystem frameworks through meta-ecosystems. The case study is the analyzing of the carbon fluxes in the Northern Highlands Lake District (NHLD) of Wisconsin and Michigan using this protocol. The application of this protocol revealed that one could follow this protocol to construct a meta-ecosystem and analyze it using the integrative framework of landscape system and meta-ecosystem frameworks. That is, one could (1) appropriately describe and analyze the spatial heterogeneity of the meta-ecosystem; (2) understand the emergent properties arising from spatial coupling of local ecosystems in the meta-ecosystem. In conclusion, this protocol is a useful approach for integrating the meta-ecosystem framework and the landscape system framework, which advances the describing and analyzing of the spatial heterogeneity and ecosystem function of interconnected ecosystems.

  16. Revealing turning points in ecosystem functioning over the Northern Eurasian agricultural frontier.

    PubMed

    Horion, Stéphanie; Prishchepov, Alexander V; Verbesselt, Jan; de Beurs, Kirsten; Tagesson, Torbern; Fensholt, Rasmus

    2016-08-01

    The collapse of the Soviet Union in 1991 has been a turning point in the World history that left a unique footprint on the Northern Eurasian ecosystems. Conducting large scale mapping of environmental change and separating between naturogenic and anthropogenic drivers is a difficult endeavor in such highly complex systems. In this research a piece-wise linear regression method was used for breakpoint detection in Rain-Use Efficiency (RUE) time series and a classification of ecosystem response types was produced. Supported by earth observation data, field data, and expert knowledge, this study provides empirical evidence regarding the occurrence of drastic changes in RUE (assessment of the timing, the direction and the significance of these changes) in Northern Eurasian ecosystems between 1982 and 2011. About 36% of the study area (3.4 million km(2) ) showed significant (P < 0.05) trends and/or turning points in RUE during the observation period. A large proportion of detected turning points in RUE occurred around the fall of the Soviet Union in 1991 and in the following years which were attributed to widespread agricultural land abandonment. Our study also showed that recurrent droughts deeply affected vegetation productivity throughout the observation period, with a general worsening of the drought conditions in recent years. Moreover, recent human-induced turning points in ecosystem functioning were detected and attributed to ongoing recultivation and change in irrigation practices in the Volgograd region, and to increased salinization and increased grazing intensity around Lake Balkhash. The ecosystem-state assessment method introduced here proved to be a valuable support that highlighted hotspots of potentially altered ecosystems and allowed for disentangling human from climatic disturbances. © 2016 John Wiley & Sons Ltd.

  17. Intraspecific traits change biodiversity effects on ecosystem functioning under metal stress.

    PubMed

    Fernandes, Isabel; Pascoal, Cláudia; Cássio, Fernanda

    2011-08-01

    Studies investigating the impacts of biodiversity loss on ecosystem processes have often reached different conclusions, probably because insufficient attention has been paid to some aspects including (1) which biodiversity measure (e.g., species number, species identity or trait) better explains ecosystem functioning, (2) the mechanisms underpinning biodiversity effects, and (3) how can environmental context modulates biodiversity effects. Here, we investigated how species number (one to three species) and traits of aquatic fungal decomposers (by replacement of a functional type from an unpolluted site by another from a metal-polluted site) affect fungal production (biomass accumulation) and plant litter decomposition in the presence and absence of metal stress. To examine the putative mechanisms that explain biodiversity effects, we determined the contribution of each fungal species to the total biomass produced in multicultures by real-time PCR. In the absence of metal, positive diversity effects were observed for fungal production and leaf decomposition as a result of species complementarity. Metal stress decreased diversity effects on leaf decomposition in assemblages containing the functional type from the unpolluted site, probably due to competitive interactions between fungi. However, dominance effect maintained positive diversity effects under metal stress in assemblages containing the functional type from the metal-polluted site. These findings emphasize the importance of intraspecific diversity in modulating diversity effects under metal stress, providing evidence that trait-based diversity measures should be incorporated when examining biodiversity effects.

  18. Faunal impact on vegetation structure and ecosystem function in mangrove forests: A review

    USGS Publications Warehouse

    Cannicci, Stefano; Burrows, Damien; Fratini, Sara; Smith, Thomas J.; Offenberg, Joachim; Dahdouh-Guebas, Farid

    2008-01-01

    The last 20 years witnessed a real paradigm shift concerning the impact of biotic factors on ecosystem functions as well as on vegetation structure of mangrove forests. Before this small scientific revolution took place, structural aspects of mangrove forests were viewed to be the result of abiotic processes acting from the bottom-up, while, at ecosystem level, the outwelling hypothesis stated that mangroves primary production was removed via tidal action and carried to adjacent nearshore ecosystems where it fuelled detrital based food-webs. The sesarmid crabs were the first macrofaunal taxon to be considered a main actor in mangrove structuring processes, thanks to a number of studies carried out in the Indo-Pacific forests in the late 1970s and early 1980s. Following these classical papers, a number of studies on Sesarmidae feeding and burrowing ecology were carried out, which leave no doubts about the great importance of these herbivorous crabs in structuring and functioning Old world ecosystems. Although Sesarmidae are still considered very important in shaping mangrove structure and functioning, recent literature emphasizes the significance of other invertebrates. The Ocypodidae have now been shown to have the same role as Sesarmidae in terms of retention of forest products and organic matter processing in New world mangroves. In both New and Old world mangroves, crabs process large amounts of algal primary production, contribute consistently to retention of mangrove production and as ecosystem engineers, change particle size distribution and enhance soil aeration. Our understanding of the strong impact of gastropods, by means of high intake rates of mangrove products and differential consumption of propagules, has changed only recently. The role of insects must also be stressed. It is now clear that older techniques used to assess herbivory rates by insects strongly underestimate their impact, both in case of leaf eating and wood boring species and that

  19. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest.

    PubMed

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-11-18

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest.

  20. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest

    PubMed Central

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-01-01

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest. PMID:27857198

  1. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning

    USGS Publications Warehouse

    Wallenstein, Matthew D.; Hall, Edward K.

    2012-01-01

    As the earth system changes in response to human activities, a critical objective is to predict how biogeochemical process rates (e.g. nitrification, decomposition) and ecosystem function (e.g. net ecosystem productivity) will change under future conditions. A particular challenge is that the microbial communities that drive many of these processes are capable of adapting to environmental change in ways that alter ecosystem functioning. Despite evidence that microbes can adapt to temperature, precipitation regimes, and redox fluctuations, microbial communities are typically not optimally adapted to their local environment. For example, temperature optima for growth and enzyme activity are often greater than in situ temperatures in their environment. Here we discuss fundamental constraints on microbial adaptation and suggest specific environments where microbial adaptation to climate change (or lack thereof) is most likely to alter ecosystem functioning. Our framework is based on two principal assumptions. First, there are fundamental ecological trade-offs in microbial community traits that occur across environmental gradients (in time and space). These trade-offs result in shifting of microbial function (e.g. ability to take up resources at low temperature) in response to adaptation of another trait (e.g. limiting maintenance respiration at high temperature). Second, the mechanism and level of microbial community adaptation to changing environmental parameters is a function of the potential rate of change in community composition relative to the rate of environmental change. Together, this framework provides a basis for developing testable predictions about how the rate and degree of microbial adaptation to climate change will alter biogeochemical processes in aquatic and terrestrial ecosystems across the planet.

  2. The role of recurrent disturbances for ecosystem multifunctionality.

    PubMed

    Villnäs, Anna; Norkko, Joanna; Hietanen, Susanna; Josefson, Alf B; Lukkari, Kaarina; Norkko, Alf

    2013-10-01

    Ecosystem functioning is threatened by an increasing number of anthropogenic stressors, creating a legacy of disturbance that undermines ecosystem resilience. However, few empirical studies have assessed to what extent an ecosystem can tolerate repeated disturbances and sustain its multiple functions. By inducing increasingly recurring hypoxic disturbances to a sedimentary ecosystem, we show that the majority of individual ecosystem functions experience gradual degradation patterns in response to repetitive pulse disturbances. The degradation in overall ecosystem functioning was, however, evident at an earlier stage than for single ecosystem functions and was induced after a short pulse of hypoxia (i.e., three days), which likely reduced ecosystem resistance to further hypoxic perturbations. The increasing number of repeated pulse disturbances gradually moved the system closer to a press response. In addition to the disturbance regime, the changes in benthic trait composition as well as habitat heterogeneity were important for explaining the variability in overall ecosystem functioning. Our results suggest that disturbance-induced responses across multiple ecosystem functions can serve as a warning signal for losses of the adaptive capacity of an ecosystem, and might at an early stage provide information to managers and policy makers when remediation efforts should be initiated.

  3. The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world.

    PubMed

    Griffiths, Jennifer R; Kadin, Martina; Nascimento, Francisco J A; Tamelander, Tobias; Törnroos, Anna; Bonaglia, Stefano; Bonsdorff, Erik; Brüchert, Volker; Gårdmark, Anna; Järnström, Marie; Kotta, Jonne; Lindegren, Martin; Nordström, Marie C; Norkko, Alf; Olsson, Jens; Weigel, Benjamin; Žydelis, Ramunas; Blenckner, Thorsten; Niiranen, Susa; Winder, Monika

    2017-06-01

    Benthic-pelagic coupling is manifested as the exchange of energy, mass, or nutrients between benthic and pelagic habitats. It plays a prominent role in aquatic ecosystems, and it is crucial to functions from nutrient cycling to energy transfer in food webs. Coastal and estuarine ecosystem structure and function are strongly affected by anthropogenic pressures; however, there are large gaps in our understanding of the responses of inorganic nutrient and organic matter fluxes between benthic habitats and the water column. We illustrate the varied nature of physical and biological benthic-pelagic coupling processes and their potential sensitivity to three anthropogenic pressures - climate change, nutrient loading, and fishing - using the Baltic Sea as a case study and summarize current knowledge on the exchange of inorganic nutrients and organic material between habitats. Traditionally measured benthic-pelagic coupling processes (e.g., nutrient exchange and sedimentation of organic material) are to some extent quantifiable, but the magnitude and variability of biological processes are rarely assessed, preventing quantitative comparisons. Changing oxygen conditions will continue to have widespread effects on the processes that govern inorganic and organic matter exchange among habitats while climate change and nutrient load reductions may have large effects on organic matter sedimentation. Many biological processes (predation, bioturbation) are expected to be sensitive to anthropogenic drivers, but the outcomes for ecosystem function are largely unknown. We emphasize how improved empirical and experimental understanding of benthic-pelagic coupling processes and their variability are necessary to inform models that can quantify the feedbacks among processes and ecosystem responses to a changing world. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  4. [Environmental impact assessment of the land use change in china based on ecosystem service value].

    PubMed

    Ran, Sheng-hong; Lü, Chang-he; Jia, Ke-jing; Qi, Yong-hua

    2006-10-01

    The environmental impact of land use change is long-term and cumulative. The ecosystem service change results from land use change. Therefore, the ecosystem service function change is the key object in the environmental impact assessment of land use change. According to the specific situation of China, this paper adjusted the unit ecosystem service value of different land use types. Based on this, the ecosystem service value change of different provinces in China resulted from the land use change since the implementation of the last plan of land use (1997-2010) was analyzed. The results show that the ecosystem service value in China increased 0.91% from 1996 to 2004. Thereinto, Tianjin is the province that the ecosystem service value increased most quickly, which was 5.69% from 1996 to 2004, while Shanghai is the province that the value decreased most quickly, which was 9.79%. Furthermore, the change of 17 types of ecosystem services was analyzed. Among them, the climate regulation function enhanced 3.43% from 1996 to 2004 and the biology resource control was weakened by 2.26% in this period. The results also indicate that the increase of the area of water surface and forest is the main reason for why the ecosystem service value increased in China in that period.

  5. Loss of Rare Fish Species from Tropical Floodplain Food Webs Affects Community Structure and Ecosystem Multifunctionality in a Mesocosm Experiment

    PubMed Central

    Pendleton, Richard M.; Hoeinghaus, David J.; Gomes, Luiz C.; Agostinho, Angelo A.

    2014-01-01

    Experiments with realistic scenarios of species loss from multitrophic ecosystems may improve insight into how biodiversity affects ecosystem functioning. Using 1000 L mesocoms, we examined effects of nonrandom species loss on community structure and ecosystem functioning of experimental food webs based on multitrophic tropical floodplain lagoon ecosystems. Realistic biodiversity scenarios were developed based on long-term field surveys, and experimental assemblages replicated sequential loss of rare species which occurred across all trophic levels of these complex food webs. Response variables represented multiple components of ecosystem functioning, including nutrient cycling, primary and secondary production, organic matter accumulation and whole ecosystem metabolism. Species richness significantly affected ecosystem function, even after statistically controlling for potentially confounding factors such as total biomass and direct trophic interactions. Overall, loss of rare species was generally associated with lower nutrient concentrations, phytoplankton and zooplankton densities, and whole ecosystem metabolism when compared with more diverse assemblages. This pattern was also observed for overall ecosystem multifunctionality, a combined metric representing the ability of an ecosystem to simultaneously maintain multiple functions. One key exception was attributed to time-dependent effects of intraguild predation, which initially increased values for most ecosystem response variables, but resulted in decreases over time likely due to reduced nutrient remineralization by surviving predators. At the same time, loss of species did not result in strong trophic cascades, possibly a result of compensation and complexity of these multitrophic ecosystems along with a dominance of bottom-up effects. Our results indicate that although rare species may comprise minor components of communities, their loss can have profound ecosystem consequences across multiple trophic

  6. The role of palaeoecological records in assessing ecosystem services

    NASA Astrophysics Data System (ADS)

    Jeffers, Elizabeth S.; Nogué, Sandra; Willis, Katherine J.

    2015-03-01

    Biological conservation and environmental management are increasingly focussing on the preservation and restoration of ecosystem services (i.e. the benefits that humans receive from the natural functioning of healthy ecosystems). Over the past decade there has been a rapid increase in the number of palaeoecological studies that have contributed to conservation of biodiversity and management of ecosystem processes; however, there are relatively few instances in which attempts have been made to estimate the continuity of ecosystem goods and services over time. How resistant is an ecosystem service to environmental perturbations? And, if damaged, how long it does it take an ecosystem service to recover? Both questions are highly relevant to conservation and management of landscapes that are important for ecosystem service provision and require an in-depth understanding of the way ecosystems function in space and time. An understanding of time is particularly relevant for those ecosystem services - be they supporting, provisioning, regulating or cultural services that involve processes that vary over a decadal (or longer) timeframe. Most trees, for example, have generation times >50 years. Understanding the response of forested ecosystems to environmental perturbations and therefore the continuity of the ecosystem services they provide for human well-being - be it for example, carbon draw-down (regulating service) or timber (provisioning service) - requires datasets that reflect the typical replacement rates in these systems and the lifecycle of processes that alter their trajectories of change. Therefore, data are required that span decadal to millennial time-scales. Very rarely, however, is this information available from neo-ecological datasets and in many ecosystem service assessments, this lack of a temporal record is acknowledged as a significant information gap. This review aims to address this knowledge gap by examining the type and nature of palaeoecological

  7. Fungal symbiosis and precipitation alter traits and dune building by the ecosystem engineer, Ammophila breviligulata.

    PubMed

    Emery, Sarah M; Bell-Dereske, Lukas; Rudgers, Jennifer A

    2015-04-01

    Ecosystem engineer species influence their community and ecosystem by creating or altering the physical structure of habitats. The function of ecosystem engineers is variable and can depend on both abiotic and biotic factors. Here we make use of a primary successional system to evaluate the direct and interactive effects of climate change (precipitation) and fungal endophyte symbiosis on population traits and ecosystem function of the ecosystem engineering grass species, Ammophila breviligulata. We manipulated endophyte presence in A. breviligulata in combination with rain-out shelters and rainfall additions in a factorial field experiment established in 2010 on Lake Michigan sand dunes. We monitored plant traits, survival, growth, and sexual reproduction of A. breviligulata from 2010-2013, and quantified ecosystem engineering as the sand accumulation rate. Presence of the endophyte in A. breviligulata increased vegetative growth by up to 19%, and reduced sexual reproduction by up to 46% across all precipitation treatments. Precipitation was a less significant factor than endophyte colonization for A. breviligulata growth. Reduced precipitation increased average leaf number per tiller but had no other effects on plant traits. Changes in A. breviligulata traits corresponded to increases in sand accumulation in plots with the endophyte as well as in plots with reduced precipitation. Sand accumulation is a key ecosystem function in these primary successional habitats, and so microbial symbiosis in this ecosystem engineer could lead to direct effects on the value of these dune habitats for humans.

  8. Ecosystem services: developing sustainable management paradigms based on wetland functions and processes

    USGS Publications Warehouse

    Euliss, Ned H.; Mushet, David M.; Smith, Loren M.; Conner, William H.; Burkett, Virginia R.; Wilcox, Douglas A.; Hester, Mark W.; Zheng, Haochi

    2013-01-01

    In the late nineteenth century and twentieth century, there was considerable interest and activity to develop the United States for agricultural, mining, and many other purposes to improve the quality of human life standards and prosperity. Most of the work to support this development was focused along disciplinary lines with little attention focused on ecosystem service trade-offs or synergisms, especially those that transcended boundaries of scientific disciplines and specific interest groups. Concurrently, human population size has increased substantially and its use of ecosystem services has increased more than five-fold over just the past century. Consequently, the contemporary landscape has been highly modified for human use, leaving behind a fragmented landscape where basic ecosystem functions and processes have been broadly altered. Over this period, climate change also interacted with other anthropogenic effects, resulting in modern environmental problems having a complexity that is without historical precedent. The challenge before the scientific community is to develop new science paradigms that integrate relevant scientific disciplines to properly frame and evaluate modern environmental problems in a systems-type approach to better inform the decision-making process. Wetland science is a relatively new discipline that grew out of the conservation movement of the early twentieth century. In the United States, most of the conservation attention in the earlier days was on wildlife, but a growing human awareness of the importance of the environment led to the passage of the National Environmental Policy Act in 1969. Concurrently, there was a broadening interest in conservation science, and the scientific study of wetlands gradually gained acceptance as a scientific discipline. Pioneering wetland scientists became formally organized when they formed The Society of Wetland Scientists in 1980 and established a publication outlet to share wetland research

  9. Large effects of consumer offense on ecosystem structure and function.

    PubMed

    Chislock, Michael F; Sarnelle, Orlando; Olsen, Brianna K; Doster, Enrique; Wilson, Alan E

    2013-11-01

    Study of the role of within-species adaptation in ecological dynamics has focused largely on prey adaptations that reduce consumption risk (prey defense). Few, if any, studies have examined how consumer adaptations to overcome prey defenses (consumer offense) affect ecosystem structure and function. We manipulated two sets of genotypes of a planktonic herbivore (Daphnia pulicaria) in a highly productive ecosystem with abundant toxic prey (cyanobacteria). The two sets of consumer genotypes varied widely in their tolerance of toxic cyanobacteria in the diet (i.e., sensitive vs. tolerant). We found a large effect of tolerant D. pulicaria on phytoplankton biomass and gross primary productivity but no effect of sensitive genotypes, this result stemming from genotype-specific differences in population growth in the presence of toxic prey. The former effect was as large as effects seen in previous Daphnia manipulations at similar productivity levels. Thus, we demonstrated that the effect of consumer genotypes with contrasting offensive adaptations was as large as the effect of consumer presence/absence.

  10. Integrating landscape system and meta-ecosystem frameworks to advance the understanding of ecosystem function in heterogeneous landscapes: An analysis on the carbon fluxes in the Northern Highlands Lake District (NHLD) of Wisconsin and Michigan

    PubMed Central

    Chen, Jiakuan

    2018-01-01

    The successful integration of ecosystem ecology with landscape ecology would be conducive to understanding how landscapes function. There have been several attempts at this, with two main approaches: (1) an ecosystem-based approach, such as the meta-ecosystem framework and (2) a landscape-based approach, such as the landscape system framework. These two frameworks are currently disconnected. To integrate these two frameworks, we introduce a protocol, and then demonstrate application of the protocol using a case study. The protocol includes four steps: 1) delineating landscape systems; 2) classifying landscape systems; 3) adjusting landscape systems to meta-ecosystems and 4) integrating landscape system and meta-ecosystem frameworks through meta-ecosystems. The case study is the analyzing of the carbon fluxes in the Northern Highlands Lake District (NHLD) of Wisconsin and Michigan using this protocol. The application of this protocol revealed that one could follow this protocol to construct a meta-ecosystem and analyze it using the integrative framework of landscape system and meta-ecosystem frameworks. That is, one could (1) appropriately describe and analyze the spatial heterogeneity of the meta-ecosystem; (2) understand the emergent properties arising from spatial coupling of local ecosystems in the meta-ecosystem. In conclusion, this protocol is a useful approach for integrating the meta-ecosystem framework and the landscape system framework, which advances the describing and analyzing of the spatial heterogeneity and ecosystem function of interconnected ecosystems. PMID:29415066

  11. Dynamics of arbuscular mycorrhizal fungal community structure and functioning along a nitrogen enrichment gradient in an alpine meadow ecosystem.

    PubMed

    Jiang, Shengjing; Liu, Yongjun; Luo, Jiajia; Qin, Mingsen; Johnson, Nancy Collins; Öpik, Maarja; Vasar, Martti; Chai, Yuxing; Zhou, Xiaolong; Mao, Lin; Du, Guozhen; An, Lizhe; Feng, Huyuan

    2018-03-30

    Nitrogen (N) availability is increasing dramatically in many ecosystems, but the influence of elevated N on the functioning of arbuscular mycorrhizal (AM) fungi in natural ecosystems is not well understood. We measured AM fungal community structure and mycorrhizal function simultaneously across an experimental N addition gradient in an alpine meadow that is limited by N but not by phosphorus (P). AM fungal communities at both whole-plant-community (mixed roots) and single-plant-species (Elymus nutans roots) scales were described using pyro-sequencing, and the mycorrhizal functioning was quantified using a mycorrhizal-suppression treatment in the field (whole-plant-community scale) and a glasshouse inoculation experiment (single-plant-species scale). Nitrogen enrichment progressively reduced AM fungal abundance, changed AM fungal community composition, and shifted mycorrhizal functioning towards parasitism at both whole-plant-community and E. nutans scales. N-induced shifts in AM fungal community composition were tightly linked to soil N availability and/or plant species richness, whereas the shifts in mycorrhizal function were associated with the communities of specific AM fungal lineages. The observed changes in both AM fungal community structure and functioning across an N enrichment gradient highlight that N enrichment of ecosystems that are not P-limited can induce parasitic mycorrhizal functioning and influence plant community structure and ecosystem sustainability. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  12. Fire and aquatic ecosystems of the Western USA: current knowledge and key questions.

    Treesearch

    P.A. Bisson; B.E. Rieman; C. Luce; P.F. Hessburg; D.C. Lee; J.L. Kershner; G.H. Reeves; R.E. Gresswell

    2003-01-01

    Understanding of the effects of wildland fire and fire management on aquatic and riparian ecosystems is an evolving field, with many questions still to be resolved. Limitations of current knowledge, and the certainty that fire management will continue, underscore the need to summarize available information. Integrating fire and fuels management with aquatic ecosystem...

  13. Uncoupling of microbial community structure and function in decomposing litter across beech forest ecosystems in Central Europe.

    PubMed

    Purahong, Witoon; Schloter, Michael; Pecyna, Marek J; Kapturska, Danuta; Däumlich, Veronika; Mital, Sanchit; Buscot, François; Hofrichter, Martin; Gutknecht, Jessica L M; Krüger, Dirk

    2014-11-12

    The widespread paradigm in ecology that community structure determines function has recently been challenged by the high complexity of microbial communities. Here, we investigate the patterns of and connections between microbial community structure and microbially-mediated ecological function across different forest management practices and temporal changes in leaf litter across beech forest ecosystems in Central Europe. Our results clearly indicate distinct pattern of microbial community structure in response to forest management and time. However, those patterns were not reflected when potential enzymatic activities of microbes were measured. We postulate that in our forest ecosystems, a disconnect between microbial community structure and function may be present due to differences between the drivers of microbial growth and those of microbial function.

  14. Testing a land model in ecosystem functional space via a comparison of observed and modeled ecosystem flux responses to precipitation regimes and associated stresses in a Central U.S. forest: Test Model in Ecosystem Functional Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Lianhong; Pallardy, Stephen G.; Yang, Bai

    Testing complex land surface models has often proceeded by asking the question: does the model prediction agree with the observation? This approach has yet led to high-performance terrestrial models that meet the challenges of climate and ecological studies. Here we test the Community Land Model (CLM) by asking the question: does the model behave like an ecosystem? We pursue its answer by testing CLM in the ecosystem functional space (EFS) at the Missouri Ozark AmeriFlux (MOFLUX) forest site in the Central U.S., focusing on carbon and water flux responses to precipitation regimes and associated stresses. In the observed EFS, precipitationmore » regimes and associated water and heat stresses controlled seasonal and interannual variations of net ecosystem exchange (NEE) of CO 2 and evapotranspiration in this deciduous forest ecosystem. Such controls were exerted more strongly by precipitation variability than by the total precipitation amount per se. A few simply constructed climate variability indices captured these controls, suggesting a high degree of potential predictability. While the interannual fluctuation in NEE was large, a net carbon sink was maintained even during an extreme drought year. Although CLM predicted seasonal and interanual variations in evapotranspiration reasonably well, its predictions of net carbon uptake were too small across the observed range of climate variability. Also, the model systematically underestimated the sensitivities of NEE and evapotranspiration to climate variability and overestimated the coupling strength between carbon and water fluxes. Its suspected that the modeled and observed trajectories of ecosystem fluxes did not overlap in the EFS and the model did not behave like the ecosystem it attempted to simulate. A definitive conclusion will require comprehensive parameter and structural sensitivity tests in a rigorous mathematical framework. We also suggest that future model improvements should focus on better

  15. Testing a land model in ecosystem functional space via a comparison of observed and modeled ecosystem flux responses to precipitation regimes and associated stresses in a Central U.S. forest: Test Model in Ecosystem Functional Space

    DOE PAGES

    Gu, Lianhong; Pallardy, Stephen G.; Yang, Bai; ...

    2016-07-14

    Testing complex land surface models has often proceeded by asking the question: does the model prediction agree with the observation? This approach has yet led to high-performance terrestrial models that meet the challenges of climate and ecological studies. Here we test the Community Land Model (CLM) by asking the question: does the model behave like an ecosystem? We pursue its answer by testing CLM in the ecosystem functional space (EFS) at the Missouri Ozark AmeriFlux (MOFLUX) forest site in the Central U.S., focusing on carbon and water flux responses to precipitation regimes and associated stresses. In the observed EFS, precipitationmore » regimes and associated water and heat stresses controlled seasonal and interannual variations of net ecosystem exchange (NEE) of CO 2 and evapotranspiration in this deciduous forest ecosystem. Such controls were exerted more strongly by precipitation variability than by the total precipitation amount per se. A few simply constructed climate variability indices captured these controls, suggesting a high degree of potential predictability. While the interannual fluctuation in NEE was large, a net carbon sink was maintained even during an extreme drought year. Although CLM predicted seasonal and interanual variations in evapotranspiration reasonably well, its predictions of net carbon uptake were too small across the observed range of climate variability. Also, the model systematically underestimated the sensitivities of NEE and evapotranspiration to climate variability and overestimated the coupling strength between carbon and water fluxes. Its suspected that the modeled and observed trajectories of ecosystem fluxes did not overlap in the EFS and the model did not behave like the ecosystem it attempted to simulate. A definitive conclusion will require comprehensive parameter and structural sensitivity tests in a rigorous mathematical framework. We also suggest that future model improvements should focus on better

  16. A Novel Re-keying Function Protocol (NRFP) For Wireless Sensor Network Security

    PubMed Central

    Abdullah, Maan Younis; Hua, Gui Wei; Alsharabi, Naif

    2008-01-01

    This paper describes a novel re-keying function protocol (NRFP) for wireless sensor network security. A re-keying process management system for sensor networks is designed to support in-network processing. The design of the protocol is motivated by decentralization key management for wireless sensor networks (WSNs), covering key deployment, key refreshment, and key establishment. NRFP supports the establishment of novel administrative functions for sensor nodes that derive/re-derive a session key for each communication session. The protocol proposes direct connection, in-direct connection and hybrid connection. NRFP also includes an efficient protocol for local broadcast authentication based on the use of one-way key chains. A salient feature of the authentication protocol is that it supports source authentication without precluding innetwork processing. Security and performance analysis shows that it is very efficient in computation, communication and storage and, that NRFP is also effective in defending against many sophisticated attacks. PMID:27873963

  17. A Novel Re-keying Function Protocol (NRFP) For Wireless Sensor Network Security.

    PubMed

    Abdullah, Maan Younis; Hua, Gui Wei; Alsharabi, Naif

    2008-12-04

    This paper describes a novel re-keying function protocol (NRFP) for wireless sensor network security. A re-keying process management system for sensor networks is designed to support in-network processing. The design of the protocol is motivated by decentralization key management for wireless sensor networks (WSNs), covering key deployment, key refreshment, and key establishment. NRFP supports the establishment of novel administrative functions for sensor nodes that derive/re-derive a session key for each communication session. The protocol proposes direct connection, in-direct connection and hybrid connection. NRFP also includes an efficient protocol for local broadcast authentication based on the use of one-way key chains. A salient feature of the authentication protocol is that it supports source authentication without precluding in-network processing. Security and performance analysis shows that it is very efficient in computation, communication and storage and, that NRFP is also effective in defending against many sophisticated attacks.

  18. Testing functional trait-based mechanisms underpinning plant responses to grazing and linkages to ecosystem functioning in grasslands

    NASA Astrophysics Data System (ADS)

    Zheng, S. X.; Li, W. H.; Lan, Z. C.; Ren, H. Y.; Wang, K. B.; Bai, Y. F.

    2014-09-01

    Abundant evidence has shown that grazing alters plant functional traits, ecological strategies, community structure, and ecosystem functioning of grasslands. Few studies, however, have examined how plant responses to grazing are mediated by resource availability and functional group identity. We test functional trait-based mechanisms underlying the responses of different life forms to grazing and linkages to ecosystem functioning along a soil moisture gradient in the Inner Mongolia grassland. A principal component analysis (PCA) based on 9 traits × 276 species matrix showed that the plant size spectrum (i.e., individual biomass), leaf economics spectrum (leaf N content and leaf density), and light competition spectrum (height and stem-leaf biomass ratio) distinguished plant species responses to grazing. The three life forms exhibited differential strategies as indicated by trait responses to grazing. The annuals and biennials adopted grazing-tolerant strategies associated with high growth rate, reflected by high leaf N content and specific leaf area. The perennial grasses exhibited grazing-tolerant strategies associated with great regrowth capacity and high palatability scores, whereas perennial forbs showed grazing-avoidant strategies with short stature and low palatability scores. In addition, the dominant perennial bunchgrasses exhibited mixed tolerance-resistance strategies to grazing and mixed acquisitive-conservative strategies in resource utilization. Grazing increased the relative abundance of perennial forbs with low palatability in the wet and fertile meadow, but it promoted perennial grasses with high palatability in the dry and infertile typical steppe. Our findings suggest that the effects of grazing on plant functional traits are dependent on both the abiotic (e.g., soil moisture) and biotic (e.g., plant functional group identity and composition) factors. Grazing-induced shifts in functional group composition are largely dependent on resource

  19. Context-Specific Trophic and Functional Ecology of Fishes of Small Stream Ecosystems in the Ouachita National Forest

    Treesearch

    William J. Matthews; A. Maria Miller-Lemke; Melvin L. Warren; Donna Cobb; Jeffery G. Stewart; Betty Crump; Frances P. Gelwick

    2004-01-01

    Abstract - Fish play diverse and important roles in stream ecosystems, but details about ecosystem effects are poorly known for many freshwater fish species. A requisite first step to understanding functional roles of individual species is information on their trophic ecology in the context of particular environmental settings. Stomach contents were...

  20. Evapotranspiration and soil moisture dynamics in a temperate grassland ecosystem in Inner Mongolia China

    Treesearch

    L. Hao; Ge Sun; Yongqiang Liu; G. S. Zhou; J. H.   Wan;  L. B. Zhang; J. L. Niu; Y. H. Sang;  J. J He

    2015-01-01

    Precipitation, evapotranspiration (ET), and soil moisture are the key controls for the productivity and functioning of temperate grassland ecosystems in Inner Mongolia, northern China. Quantifying the soil moisture dynamics and water balances in the grasslands is essential to sustainable grassland management under global climate change. We...

  1. Monitoring strategies for drill cutting discharge in the vicinity of cold-water coral ecosystems.

    PubMed

    Purser, Autun; Thomsen, Laurenz

    2012-11-01

    Cold-water coral reefs represent some of the most biodiverse and biomass rich ecosystems in the marine environment. Despite this, ecosystem functioning is still poorly understood and the susceptibility of key species to anthropogenic activities and pollutants is unknown. In European waters, cold-water corals are often found in greatest abundance on the continental margin, often in regions rich in hydrocarbon reserves. In this viewpoint paper we discuss some of the current strategies employed in predicting and minimizing exposure of cold-water coral reef ecosystems on the Norwegian margin to waste materials produced during offshore drilling operations by the oil and gas industry. In the light of recent in situ and experimental research conducted with the key reef species Lophelia pertusa, we present some possible improvements to these strategies which may be utilized by industry and managers to further reduce the likelihood of exposure. We further highlight important outstanding research questions in this field. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Freshwater as shared between society and ecosystems: from divided approaches to integrated challenges.

    PubMed Central

    Falkenmark, Malin

    2003-01-01

    The paper has its focus on water's key functions behind ecosystem dynamics and the water-related balancing involved in a catchment-based ecosystem approach. A conceptual framework is being developed to address fundamental trade-offs between humans and ecosystems. This is done by paying attention to society's unavoidable landscape modifications and their unavoidable ecological effects mediated by water processes. Because the coevolution of societal and environmental processes indicates resonance rather than a cause-effect relationship, humanity will have to learn to live with change while securing ecosystem resilience. In view of the partial incompatibility of the social imperative of the millennium goals and its environmental sustainability goal, human activities and ecosystems have to be orchestrated for compatibility. To this end a catchment-based approach has to be taken by integrating water, land use and ecosystems. It is being suggested that ecosystem protection has to be thought of in two scales: site-specific biotic landscape components to be protected for their social value, and a catchment-based ecosystem approach to secure sustainable supply of crucial ecosystem goods and services on which social and economic development depends. PMID:14728797

  3. Freshwater as shared between society and ecosystems: from divided approaches to integrated challenges.

    PubMed

    Falkenmark, Malin

    2003-12-29

    The paper has its focus on water's key functions behind ecosystem dynamics and the water-related balancing involved in a catchment-based ecosystem approach. A conceptual framework is being developed to address fundamental trade-offs between humans and ecosystems. This is done by paying attention to society's unavoidable landscape modifications and their unavoidable ecological effects mediated by water processes. Because the coevolution of societal and environmental processes indicates resonance rather than a cause-effect relationship, humanity will have to learn to live with change while securing ecosystem resilience. In view of the partial incompatibility of the social imperative of the millennium goals and its environmental sustainability goal, human activities and ecosystems have to be orchestrated for compatibility. To this end a catchment-based approach has to be taken by integrating water, land use and ecosystems. It is being suggested that ecosystem protection has to be thought of in two scales: site-specific biotic landscape components to be protected for their social value, and a catchment-based ecosystem approach to secure sustainable supply of crucial ecosystem goods and services on which social and economic development depends.

  4. Structure, functioning, and cumulative stressors of Mediterranean deep-sea ecosystems

    NASA Astrophysics Data System (ADS)

    Tecchio, Samuele; Coll, Marta; Sardà, Francisco

    2015-06-01

    Environmental stressors, such as climate fluctuations, and anthropogenic stressors, such as fishing, are of major concern for the management of deep-sea ecosystems. Deep-water habitats are limited by primary productivity and are mainly dependent on the vertical input of organic matter from the surface. Global change over the latest decades is imparting variations in primary productivity levels across oceans, and thus it has an impact on the amount of organic matter landing on the deep seafloor. In addition, anthropogenic impacts are now reaching the deep ocean. The Mediterranean Sea, the largest enclosed basin on the planet, is not an exception. However, ecosystem-level studies of response to varying food input and anthropogenic stressors on deep-sea ecosystems are still scant. We present here a comparative ecological network analysis of three food webs of the deep Mediterranean Sea, with contrasting trophic structure. After modelling the flows of these food webs with the Ecopath with Ecosim approach, we compared indicators of network structure and functioning. We then developed temporal dynamic simulations varying the organic matter input to evaluate its potential effect. Results show that, following the west-to-east gradient in the Mediterranean Sea of marine snow input, organic matter recycling increases, net production decreases to negative values and trophic organisation is overall reduced. The levels of food-web activity followed the gradient of organic matter availability at the seafloor, confirming that deep-water ecosystems directly depend on marine snow and are therefore influenced by variations of energy input, such as climate-driven changes. In addition, simulations of varying marine snow arrival at the seafloor, combined with the hypothesis of a possible fishery expansion on the lower continental slope in the western basin, evidence that the trawling fishery may pose an impact which could be an order of magnitude stronger than a climate

  5. The Swedish Research Infrastructure for Ecosystem Science - SITES

    NASA Astrophysics Data System (ADS)

    Lindroth, A.; Ahlström, M.; Augner, M.; Erefur, C.; Jansson, G.; Steen Jensen, E.; Klemedtsson, L.; Langenheder, S.; Rosqvist, G. N.; Viklund, J.

    2017-12-01

    The vision of SITES is to promote long-term field-based ecosystem research at a world class level by offering an infrastructure with excellent technical and scientific support and services attracting both national and international researchers. In addition, SITES will make data freely and easily available through an advanced data portal which will add value to the research. During the first funding period, three innovative joint integrating facilities were established through a researcher-driven procedure: SITES Water, SITES Spectral, and SITES AquaNet. These new facilities make it possible to study terrestrial and limnic ecosystem processes across a range of ecosystem types and climatic gradients, with common protocols and similar equipment. In addition, user-driven development at the nine individual stations has resulted in e.g. design of a long-term agricultural systems experiment, and installation of weather stations, flux systems, etc. at various stations. SITES, with its integrative approach and broad coverage of climate and ecosystem types across Sweden, constitutes an excellent platform for state-of-the-art research projects. SITES' support the development of: A better understanding of the way in which key ecosystems function and interact with each other at the landscape level and with the climate system in terms of mass and energy exchanges. A better understanding of the role of different organisms in controlling different processes and ultimately the functioning of ecosystems. New strategies for forest management to better meet the many and varied requirements from nature conservation, climate and wood, fibre, and energy supply points of view. Agricultural systems that better utilize resources and minimize adverse impacts on the environment. Collaboration with other similar infrastructures and networks is a high priority for SITES. This will enable us to make use of each others' experiences, harmonize metadata for easier exchange of data, and support each

  6. Predator and prey biodiversity relationship and its consequences on marine ecosystem functioning-interplay between nanoflagellates and bacterioplankton.

    PubMed

    Yang, Jinny Wu; Wu, Wenxue; Chung, Chih-Ching; Chiang, Kuo-Ping; Gong, Gwo-Ching; Hsieh, Chih-Hao

    2018-06-01

    The importance of biodiversity effects on ecosystem functioning across trophic levels, especially via predatory-prey interactions, is receiving increased recognition. However, this topic has rarely been explored for marine microbes, even though microbial biodiversity contributes significantly to marine ecosystem function and energy flows. Here we examined diversity and biomass of bacteria (prey) and nanoflagellates (predators), as well as their effects on trophic transfer efficiency in the East China Sea. Specifically, we investigated: (i) predator diversity effects on prey biomass and trophic transfer efficiency (using the biomass ratio of predator/prey as a proxy), (ii) prey diversity effects on predator biomass and trophic transfer efficiency, and (iii) the relationship between predator and prey diversity. We found higher prey diversity enhanced both diversity and biomass of predators, as well as trophic transfer efficiency, which may arise from more balanced diet and/or enhanced niche complementarity owing to higher prey diversity. By contrast, no clear effect was detected for predator diversity on prey biomass and transfer efficiency. Notably, we found prey diversity effects on predator-prey interactions; whereas, we found no significant diversity effect on biomass within the same trophic level. Our findings highlight the importance of considering multi-trophic biodiversity effects on ecosystem functioning in natural ecosystems.

  7. Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective.

    PubMed

    García-Palacios, Pablo; Vandegehuchte, Martijn L; Shaw, E Ashley; Dam, Marie; Post, Keith H; Ramirez, Kelly S; Sylvain, Zachary A; de Tomasel, Cecilia Milano; Wall, Diana H

    2015-04-01

    In recent years, there has been an increase in research to understand how global changes' impacts on soil biota translate into altered ecosystem functioning. However, results vary between global change effects, soil taxa, and ecosystem processes studied, and a synthesis of relationships is lacking. Therefore, here we initiate such a synthesis to assess whether the effect size of global change drivers (elevated CO2, N deposition, and warming) on soil microbial abundance is related with the effect size of these drivers on ecosystem functioning (plant biomass, soil C cycle, and soil N cycle) using meta-analysis and structural equation modeling. For N deposition and warming, the global change effect size on soil microbes was positively associated with the global change effect size on ecosystem functioning, and these relationships were consistent across taxa and ecosystem processes. However, for elevated CO2, such links were more taxon and ecosystem process specific. For example, fungal abundance responses to elevated CO2 were positively correlated with those of plant biomass but negatively with those of the N cycle. Our results go beyond previous assessments of the sensitivity of soil microbes and ecosystem processes to global change, and demonstrate the existence of general links between the responses of soil microbial abundance and ecosystem functioning. Further we identify critical areas for future research, specifically altered precipitation, soil fauna, soil community composition, and litter decomposition, that are need to better quantify the ecosystem consequences of global change impacts on soil biodiversity. © 2014 John Wiley & Sons Ltd.

  8. Sediments and flow have mainly independent effects on multitrophic stream communities and ecosystem functions.

    PubMed

    Mustonen, Kaisa-Riikka; Mykrä, Heikki; Louhi, Pauliina; Markkola, Annamari; Tolkkinen, Mikko; Huusko, Ari; Alioravainen, Nico; Lehtinen, Sirkku; Muotka, Timo

    2016-10-01

    Stream ecosystems are affected by multiple abiotic stressors, and species responses to simultaneous stressors may differ from those predicted based on single-stressor responses. Using 12 semi-natural stream channels, we examined the individual and interactive effects of flow level (low or high flow) and addition of fine sediments (grain size <2 mm) on key ecosystem processes (leaf breakdown, algal biomass accrual) and benthic macroinvertebrate and fungal communities. Both stressors had mostly independent effects on biological responses, with sand addition being the more influential of the two. Sand addition decreased algal biomass and microbe-mediated leaf breakdown significantly, whereas invertebrate shredder-mediated breakdown only responded to flow level. Macroinvertebrate community composition responded significantly to both stressors. Fungal biomass decreased and shredder abundance increased when sand was added; thus, organisms at different trophic levels can exhibit highly variable responses to the same stressor. Terrestrial endophytic fungi were abundant in low-flow flumes where leaf mass loss was also highest, indicating that terrestrial endophytes may contribute importantly to leaf decomposition in the aquatic environment. Leaf breakdown rates depended on the identity and abundance of the dominant decomposer species, suggesting that the effects of anthropogenic activities on ecosystem processes may be driven by changes in the abundance of a few key species. The few observed interactive effects were all antagonistic (i.e., less than the sum of the individual effects); for example, increased flow stimulated algal biomass accumulation but this effect was largely cancelled by sand. While our finding that sand and stream flow did not have strong synergistic effects can be considered reassuring for management, future experiments should manipulate these and other human stressors in experiments that run for much longer periods, thus focusing on the long

  9. Warming and top predator loss drive ecosystem multifunctionality.

    PubMed

    Antiqueira, Pablo Augusto P; Petchey, Owen L; Romero, Gustavo Quevedo

    2018-01-01

    Global change affects ecosystem functioning both directly by modifications in physicochemical processes, and indirectly, via changes in biotic metabolism and interactions. Unclear, however, is how multiple anthropogenic drivers affect different components of community structure and the performance of multiple ecosystem functions (ecosystem multifunctionality). We manipulated small natural freshwater ecosystems to investigate how warming and top predator loss affect seven ecosystem functions representing two major dimensions of ecosystem functioning, productivity and metabolism. We investigated their direct and indirect effects on community diversity and standing stock of multitrophic macro and microorganisms. Warming directly increased multifunctional ecosystem productivity and metabolism. In contrast, top predator loss indirectly affected multifunctional ecosystem productivity via changes in the diversity of detritivorous macroinvertebrates, but did not affect ecosystem metabolism. In addition to demonstrating how multiple anthropogenic drivers have different impacts, via different pathways, on ecosystem multifunctionality components, our work should further spur advances in predicting responses of ecosystems to multiple simultaneous environmental changes. © 2017 John Wiley & Sons Ltd/CNRS.

  10. Coral reef habitats as surrogates of species, ecological functions, and ecosystem services.

    PubMed

    Mumby, Peter J; Broad, Kenneth; Brumbaugh, Daniel R; Dahlgren, Craig P; Harborne, Alastair R; Hastings, Alan; Holmes, Katherine E; Kappel, Carrie V; Micheli, Fiorenza; Sanchirico, James N

    2008-08-01

    Habitat maps are often the core spatially consistent data set on which marine reserve networks are designed, but their efficacy as surrogates for species richness and applicability to other conservation measures is poorly understood. Combining an analysis of field survey data, literature review, and expert assessment by a multidisciplinary working group, we examined the degree to which Caribbean coastal habitats provide useful planning information on 4 conservation measures: species richness, the ecological functions of fish species, ecosystem processes, and ecosystem services. Approximately one-quarter to one-third of benthic invertebrate species and fish species (disaggregated by life phase; hereafter fish species) occurred in a single habitat, and Montastraea-dominated forereefs consistently had the highest richness of all species, processes, and services. All 11 habitats were needed to represent all 277 fish species in the seascape, although reducing the conservation target to 95% of species approximately halved the number of habitats required to ensure representation. Species accumulation indices (SAIs) were used to compare the efficacy of surrogates and revealed that fish species were a more appropriate surrogate of benthic species (SAI = 71%) than benthic species were for fishes (SAI = 42%). Species of reef fishes were also distributed more widely across the seascape than invertebrates and therefore their use as a surrogate simultaneously included mangroves, sea grass, and coral reef habitats. Functional classes of fishes served as effective surrogates of fish and benthic species which, given their ease to survey, makes them a particularly useful measure for conservation planning. Ecosystem processes and services exhibited great redundancy among habitats and were ineffective as surrogates of species. Therefore, processes and services in this case were generally unsuitable for a complementarity-based approach to reserve design. In contrast, the representation

  11. The meaning of functional trait composition of food webs for ecosystem functioning.

    PubMed

    Gravel, Dominique; Albouy, Camille; Thuiller, Wilfried

    2016-05-19

    There is a growing interest in using trait-based approaches to characterize the functional structure of animal communities. Quantitative methods have been derived mostly for plant ecology, but it is now common to characterize the functional composition of various systems such as soils, coral reefs, pelagic food webs or terrestrial vertebrate communities. With the ever-increasing availability of distribution and trait data, a quantitative method to represent the different roles of animals in a community promise to find generalities that will facilitate cross-system comparisons. There is, however, currently no theory relating the functional composition of food webs to their dynamics and properties. The intuitive interpretation that more functional diversity leads to higher resource exploitation and better ecosystem functioning was brought from plant ecology and does not apply readily to food webs. Here we appraise whether there are interpretable metrics to describe the functional composition of food webs that could foster a better understanding of their structure and functioning. We first distinguish the various roles that traits have on food web topology, resource extraction (bottom-up effects), trophic regulation (top-down effects), and the ability to keep energy and materials within the community. We then discuss positive effects of functional trait diversity on food webs, such as niche construction and bottom-up effects. We follow with a discussion on the negative effects of functional diversity, such as enhanced competition (both exploitation and apparent) and top-down control. Our review reveals that most of our current understanding of the impact of functional trait diversity on food web properties and functioning comes from an over-simplistic representation of network structure with well-defined levels. We, therefore, conclude with propositions for new research avenues for both theoreticians and empiricists. © 2016 The Author(s).

  12. The meaning of functional trait composition of food webs for ecosystem functioning

    PubMed Central

    Albouy, Camille

    2016-01-01

    There is a growing interest in using trait-based approaches to characterize the functional structure of animal communities. Quantitative methods have been derived mostly for plant ecology, but it is now common to characterize the functional composition of various systems such as soils, coral reefs, pelagic food webs or terrestrial vertebrate communities. With the ever-increasing availability of distribution and trait data, a quantitative method to represent the different roles of animals in a community promise to find generalities that will facilitate cross-system comparisons. There is, however, currently no theory relating the functional composition of food webs to their dynamics and properties. The intuitive interpretation that more functional diversity leads to higher resource exploitation and better ecosystem functioning was brought from plant ecology and does not apply readily to food webs. Here we appraise whether there are interpretable metrics to describe the functional composition of food webs that could foster a better understanding of their structure and functioning. We first distinguish the various roles that traits have on food web topology, resource extraction (bottom-up effects), trophic regulation (top-down effects), and the ability to keep energy and materials within the community. We then discuss positive effects of functional trait diversity on food webs, such as niche construction and bottom-up effects. We follow with a discussion on the negative effects of functional diversity, such as enhanced competition (both exploitation and apparent) and top-down control. Our review reveals that most of our current understanding of the impact of functional trait diversity on food web properties and functioning comes from an over-simplistic representation of network structure with well-defined levels. We, therefore, conclude with propositions for new research avenues for both theoreticians and empiricists. PMID:27114571

  13. Impact of soil moisture deficit on ecosystem function across the United States

    Treesearch

    Susan Moran; Morgan Ross; Mallory Burns

    2016-01-01

    The cumulative effect of recent prolonged warm drought on regional ecosystem function is still uncertain. Large regions of the United States are experiencing new hydroclimatic conditions with extreme variability in climate drivers such as total precipitation, precipitation patterns (e.g., storm size, intensity and frequency), and seasonal temperatures.

  14. Functional Rarity: The Ecology of Outliers.

    PubMed

    Violle, Cyrille; Thuiller, Wilfried; Mouquet, Nicolas; Munoz, François; Kraft, Nathan J B; Cadotte, Marc W; Livingstone, Stuart W; Mouillot, David

    2017-05-01

    Rarity has been a central topic for conservation and evolutionary biologists aiming to determine the species characteristics that cause extinction risk. More recently, beyond the rarity of species, the rarity of functions or functional traits, called functional rarity, has gained momentum in helping to understand the impact of biodiversity decline on ecosystem functioning. However, a conceptual framework for defining and quantifying functional rarity is still lacking. We introduce 12 different forms of functional rarity along gradients of species scarcity and trait distinctiveness. We then highlight the potential key role of functional rarity in the long-term and large-scale maintenance of ecosystem processes, as well as the necessary linkage between functional and evolutionary rarity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Global-change drivers of ecosystem functioning modulated by natural variability and saturating responses.

    PubMed

    Flombaum, Pedro; Yahdjian, Laura; Sala, Osvaldo E

    2017-02-01

    Humans are altering global environment at an unprecedented rate through changes in biodiversity, climate, nitrogen cycle, and land use. To address their effects on ecosystem functioning, experiments most frequently explore one driver at a time and control as many confounding factors as possible. Yet, which driver exerts the largest influence on ecosystem functioning and whether their relative importance changes among systems remain unclear. We analyzed experiments in the Patagonian steppe that evaluated the aboveground net primary production (ANPP) response to manipulated gradients of species richness, precipitation, temperature, nitrogen fertilization (N), and grazing intensity. We compared the effect on ANPP relative to ambient conditions considering intensity and direction of manipulations for each driver. The ranking of responses to drivers with comparable manipulation intensity was as follows: biodiversity>grazing>precipitation>N. For a similar intensity of manipulation, the effect of biodiversity loss was 4.0, 3.6, and 1.5, times larger than N deposition, decreased precipitation, and increased grazing intensity. We interpreted our results considering two hypotheses. First, the response of ANPP to changes in precipitation and biodiversity is saturating, so we expected larger effects when the driver was reduced, relative to ambient conditions, than when it was increased. Experimental manipulations that reduced ambient levels had larger effects than those that increased them. Second, the sensitivity of ANPP to each driver is inversely related to the natural variability of the driver. In Patagonia, the ranking of natural variability of drivers is as follows: precipitation>grazing>temperature>biodiversity>N. So, in general, the ecosystem was most sensitive to drivers that varied the least. Comparable results from Cedar Creek (MN) support both hypotheses and suggest that sensitivity to drivers varies among ecosystem types. Given the importance of understanding

  16. Adaptive governance to promote ecosystem services in urban ...

    EPA Pesticide Factsheets

    Managing urban green space as part of an ongoing social-ecological transformationposes novel governance issues, particularly in post-industrial settings. Urban green spaces operate as small-scale nodes in larger networks of ecological reserves that provide and maintain key ecosystem services such as pollination, water retention and infiltration, and sustainable food production. In an urban mosaic, a myriad of social and ecological components factor into aggregating and managing land to maintain or increase the flow of ecosystem services associated with green spaces. Vacant lots (a form of urban green space) are being repurposed for multiple functions, such as habitat for biodiversity, including arthropods that provide pollination services to other green areas; to capture urban runoff that eases the burden on ageing wastewater systems and other civic infrastructure; and to reduce urban heat island effects. Urban green spaces provide vital ecosystem services at varying degrees, depending on the size, function, and management of these spaces. Governance of linked social-ecological systems to maximize those services poses unique challenges given the uncertainty of ecological responses and the social political complexity of managing ecological resources in an urban context where fiscal and human resources are strained. In North America, many cities are facing fiscal austerity because of shrinkage in manufacturing and industrial sectors and the foreclosure crisis. As

  17. Plankton ecosystem functioning and nitrogen fluxes in the most oligotrophic waters of the Beaufort Sea, Arctic Ocean: a modeling study

    NASA Astrophysics Data System (ADS)

    Le Fouest, V.; Zakardjian, B.; Xie, H.; Raimbault, P.; Joux, F.; Babin, M.

    2012-10-01

    The Arctic Ocean (AO) undergoes profound changes of its physical and biotic environments due to climate change. The greater light exposure and stratification alter its plankton ecosystem structure, functioning and productivity promoting oligotrophy in some areas as the Beaufort Sea. A one-dimension (1-D) physical-biological coupled model based on the large multiparametric database of the Malina project in the Beaufort Sea was used (i) to infer the functioning and nitrogen fluxes within the summer plankton ecosystem and (ii) to assess the model sensitivity to key light-associated processes involved in nutrient recycling and phytoplankton growth. The coupled model suggested that ammonium photochemically produced from photosensitive dissolved organic nitrogen (i.e. photoammonification process) was a necessary nitrogen source to achieve the observed levels of microbial biomass and production. It contributed to ca. two-thirds and one-third of the simulated surface (0-10 m) and depth-integrated primary and bacterial production, respectively. The model also suggested that carbon to chlorophyll ratios for small (< 5 μm) phytoplankton (ca. 15-45 g g-1) lower than those commonly used in biogeochemical models applied to the AO were required to simulate the observed herbivorous versus microbial food web competition and realistic nitrogen fluxes in the Beaufort Sea oligotrophic waters. In face of accelerating Arctic warming, more attention should be paid in the future to the mechanistic processes involved in food webs and functional groups competition, nutrient recycling and primary production in poorly productive waters of the AO as they are expected to expand rapidly.

  18. Bacterial structures and ecosystem functions in glaciated floodplains: contemporary states and potential future shifts.

    PubMed

    Freimann, Remo; Bürgmann, Helmut; Findlay, Stuart E G; Robinson, Christopher T

    2013-12-01

    Glaciated alpine floodplains are responding quickly to climate change through shrinking ice masses. Given the expected future changes in their physicochemical environment, we anticipated variable shifts in structure and ecosystem functioning of hyporheic microbial communities in proglacial alpine streams, depending on present community characteristics and landscape structures. We examined microbial structure and functioning during different hydrologic periods in glacial (kryal) streams and, as contrasting systems, groundwater-fed (krenal) streams. Three catchments were chosen to cover an array of landscape features, including interconnected lakes, differences in local geology and degree of deglaciation. Community structure was assessed by automated ribosomal intergenic spacer analysis and microbial function by potential enzyme activities. We found each catchment to contain a distinct bacterial community structure and different degrees of separation in structure and functioning that were linked to the physicochemical properties of the waters within each catchment. Bacterial communities showed high functional plasticity, although achieved by different strategies in each system. Typical kryal communities showed a strong linkage of structure and function that indicated a major prevalence of specialists, whereas krenal sediments were dominated by generalists. With the rapid retreat of glaciers and therefore altered ecohydrological characteristics, lotic microbial structure and functioning are likely to change substantially in proglacial floodplains in the future. The trajectory of these changes will vary depending on contemporary bacterial community characteristics and landscape structures that ultimately determine the sustainability of ecosystem functioning.

  19. Functional Role of Native and Invasive Filter-Feeders, and the Effect of Parasites: Learning from Hypersaline Ecosystems.

    PubMed

    Sánchez, Marta I; Paredes, Irene; Lebouvier, Marion; Green, Andy J

    2016-01-01

    Filter-feeding organisms are often keystone species with a major influence on the dynamics of aquatic ecosystems. Studies of filtering rates in such taxa are therefore vital in order to understand ecosystem functioning and the impact of natural and anthropogenic stressors such as parasites, climate warming and invasive species. Brine shrimps Artemia spp. are the dominant grazers in hypersaline systems and are a good example of such keystone taxa. Hypersaline ecosystems are relatively simplified environments compared with much more complex freshwater and marine ecosystems, making them suitable model systems to address these questions. The aim of this study was to compare feeding rates at different salinities and temperatures between clonal A. parthenogenetica (native to Eurasia and Africa) and the invasive American brine shrimp A. franciscana, which is excluding native Artemia from many localities. We considered how differences observed in laboratory experiments upscale at the ecosystem level across both spatial and temporal scales (as indicated by chlorophyll-a concentration and turbidity). In laboratory experiments, feeding rates increased at higher temperatures and salinities in both Artemia species and sexes, whilst A. franciscana consistently fed at higher rates. A field study of temporal dynamics revealed significantly higher concentrations of chlorophyll-a in sites occupied by A. parthenogenetica, supporting our experimental findings. Artemia parthenogenetica density and biomass were negatively correlated with chlorophyll-a concentration at the spatial scale. We also tested the effect of cestode parasites, which are highly prevalent in native Artemia but much rarer in the invasive species. The cestodes Flamingolepis liguloides and Anomotaenia tringae decreased feeding rates in native Artemia, whilst Confluaria podicipina had no significant effect. Total parasite prevalence was positively correlated with turbidity. Overall, parasites are likely to reduce

  20. Climate change impacts on ecosystems and ecosystem services in the United States: Process and prospects for sustained assessment

    USGS Publications Warehouse

    Grimm, Nancy B.; Groffman, Peter M; Staudinger, Michelle D.; Tallis, Heather

    2016-01-01

    The third United States National Climate Assessment emphasized an evaluation of not just the impacts of climate change on species and ecosystems, but also the impacts of climate change on the benefits that people derive from nature, known as ecosystem services. The ecosystems, biodiversity, and ecosystem services component of the assessment largely drew upon the findings of a transdisciplinary workshop aimed at developing technical input for the assessment, involving participants from diverse sectors. A small author team distilled and synthesized this and hundreds of other technical input to develop the key findings of the assessment. The process of developing and ranking key findings hinged on identifying impacts that had particular, demonstrable effects on the U.S. public via changes in national ecosystem services. Findings showed that ecosystem services are threatened by the impacts of climate change on water supplies, species distributions and phenology, as well as multiple assaults on ecosystem integrity that, when compounded by climate change, reduce the capacity of ecosystems to buffer against extreme events. As ecosystems change, such benefits as water sustainability and protection from storms that are afforded by intact ecosystems are projected to decline across the continent due to climate change. An ongoing, sustained assessment that focuses on the co-production of actionable climate science will allow scientists from a range of disciplines to ascertain the capability of their forecasting models to project environmental and ecological change and link it to ecosystem services; additionally, an iterative process of evaluation, development of management strategies, monitoring, and reevaluation will increase the applicability and usability of the science by the U.S. public.

  1. Key Generation for Fast Inversion of the Paillier Encryption Function

    NASA Astrophysics Data System (ADS)

    Hirano, Takato; Tanaka, Keisuke

    We study fast inversion of the Paillier encryption function. Especially, we focus only on key generation, and do not modify the Paillier encryption function. We propose three key generation algorithms based on the speeding-up techniques for the RSA encryption function. By using our algorithms, the size of the private CRT exponent is half of that of Paillier-CRT. The first algorithm employs the extended Euclidean algorithm. The second algorithm employs factoring algorithms, and can construct the private CRT exponent with low Hamming weight. The third algorithm is a variant of the second one, and has some advantage such as compression of the private CRT exponent and no requirement for factoring algorithms. We also propose the settings of the parameters for these algorithms and analyze the security of the Paillier encryption function by these algorithms against known attacks. Finally, we give experimental results of our algorithms.

  2. Assessing the impact of edaphic factors on coastal ecosystem functions in a tropical island using electromagnetic-induction

    NASA Astrophysics Data System (ADS)

    Lynch, N. E.; Wuddivira, M.; Oatham, M.

    2013-12-01

    The small islands in the low-lying states of the Caribbean Basin are among the most vulnerable to sea level rise caused by climate change. Bequia, a tropical Grenadine island, is particularly susceptible due to its small land mass, limited natural resources and an economy that is touristic and marine based. Consultation with stakeholders on sustainable livelihoods revealed that degradation of the coastal ecosystem is occurring with progressing time. Consequently, the island is losing its beneficial ecosystem services and its natural attractiveness leading to declining revenue base, increasing food security risk and job losses. We propose that with sea level rise, soil salinity increases further inland leading to degradation of coastal zones and ecosystem functions. Using geophysical techniques and standard sampling procedures we observationally investigated the spatial and temporal impacts of soil salinization due to sea level changes on the ecosystem functions of five coastal areas in the seven square mile island of Bequia. We analyzed soil, tidal, rainfall data and historical aerial imagery to assess the impact of soil salinity on the ecosystem of Bequia. Our results show extreme seasonal salinity variability with increased salinity inland during the dry season months of January to May. This was significantly influenced by the fluctuation of seasonal water content and temperature. A complete time-based analysis ensures the development of adaptation strategies to coastal change for sustainable provisioning of ecosystem services for Bequia and other Caribbean Islands with minimum ecological and economic losses.

  3. Evaluating simulated functional trait patterns and quantifying modelled trait diversity effects on simulated ecosystem fluxes

    NASA Astrophysics Data System (ADS)

    Pavlick, R.; Schimel, D.

    2014-12-01

    Dynamic Global Vegetation Models (DGVMs) typically employ only a small set of Plant Functional Types (PFTs) to represent the vast diversity of observed vegetation forms and functioning. There is growing evidence, however, that this abstraction may not adequately represent the observed variation in plant functional traits, which is thought to play an important role for many ecosystem functions and for ecosystem resilience to environmental change. The geographic distribution of PFTs in these models is also often based on empirical relationships between present-day climate and vegetation patterns. Projections of future climate change, however, point toward the possibility of novel regional climates, which could lead to no-analog vegetation compositions incompatible with the PFT paradigm. Here, we present results from the Jena Diversity-DGVM (JeDi-DGVM), a novel traits-based vegetation model, which simulates a large number of hypothetical plant growth strategies constrained by functional tradeoffs, thereby allowing for a more flexible temporal and spatial representation of the terrestrial biosphere. First, we compare simulated present-day geographical patterns of functional traits with empirical trait observations (in-situ and from airborne imaging spectroscopy). The observed trait patterns are then used to improve the tradeoff parameterizations of JeDi-DGVM. Finally, focusing primarily on the simulated leaf traits, we run the model with various amounts of trait diversity. We quantify the effects of these modeled biodiversity manipulations on simulated ecosystem fluxes and stocks for both present-day conditions and transient climate change scenarios. The simulation results reveal that the coarse treatment of plant functional traits by current PFT-based vegetation models may contribute substantial uncertainty regarding carbon-climate feedbacks. Further development of trait-based models and further investment in global in-situ and spectroscopic plant trait observations

  4. Habitat fragmentation and its lasting impact on Earth’s ecosystems

    PubMed Central

    Haddad, Nick M.; Brudvig, Lars A.; Clobert, Jean; Davies, Kendi F.; Gonzalez, Andrew; Holt, Robert D.; Lovejoy, Thomas E.; Sexton, Joseph O.; Austin, Mike P.; Collins, Cathy D.; Cook, William M.; Damschen, Ellen I.; Ewers, Robert M.; Foster, Bryan L.; Jenkins, Clinton N.; King, Andrew J.; Laurance, William F.; Levey, Douglas J.; Margules, Chris R.; Melbourne, Brett A.; Nicholls, A. O.; Orrock, John L.; Song, Dan-Xia; Townshend, John R.

    2015-01-01

    We conducted an analysis of global forest cover to reveal that 70% of remaining forest is within 1 km of the forest’s edge, subject to the degrading effects of fragmentation. A synthesis of fragmentation experiments spanning multiple biomes and scales, five continents, and 35 years demonstrates that habitat fragmentation reduces biodiversity by 13 to 75% and impairs key ecosystem functions by decreasing biomass and altering nutrient cycles. Effects are greatest in the smallest and most isolated fragments, and they magnify with the passage of time. These findings indicate an urgent need for conservation and restoration measures to improve landscape connectivity, which will reduce extinction rates and help maintain ecosystem services. PMID:26601154

  5. Shifts in plant functional types have time-dependent and regionally variable impacts on dryland ecosystem water balance

    USGS Publications Warehouse

    Bradford, John B.; Schlaepfer, Daniel R.; Lauenroth, William K.; Burke, Ingrid C.

    2014-01-01

    5. Synthesis. This study provides a novel, regional-scale assessment of how plant functional type transitions may impact ecosystem water balance in sagebrush-dominated ecosystems of North America. Results illustrate that the ecohydrological consequences of changing vegetation depend strongly on climate and suggest that decreasing woody plant abundance may have only limited impact on evapotranspiration and water yield.

  6. Remote sensing of Essential Biodiversity Variables: new measurements linking ecosystem structure, function and composition

    NASA Astrophysics Data System (ADS)

    Schimel, D.; Pavlick, R.; Stavros, E. N.; Townsend, P. A.; Ustin, S.; Thompson, D. R.

    2017-12-01

    Remote sensing can inform a wide variety of essential biodiversity variables, including measurements that define primary productivity, forest structure, biome distribution, plant communities, land use-land cover change and climate drivers of change. Emerging remote sensing technologies can add significantly to remote sensing of EBVs, providing new, large scale insights on plant and habitat diversity itself, as well as causes and consequences of biodiversity change. All current biodiversity assessments identify major data gaps, with insufficient coverage in critical regions, limited observations to monitor change over time, with very limited revisit of sample locations, as well as taxon-specific biased biases. Remote sensing cannot fill many of the gaps in global biodiversity observations, but spectroscopic measurements in terrestrial and marine environments can aid in assessing plant/phytoplankton functional diversity and efficiently reveal patterns in space, as well as changes over time, and, by making use of chlorophyll fluorescence, reveal associated patterns in photosynthesis. LIDAR and RADAR measurements quantify ecosystem structure, and can precisely define changes due to growth, disturbance and land use. Current satellite-based EBVs have taken advantage of the extraordinary time series from LANDSAT and MODIS, but new measurements more directly reveal ecosystem structure, function and composition. We will present results from pre-space airborne studies showing the synergistic ability of a suite of new remote observation techniques to quantify biodiversity and ecosystem function and show how it changes during major disturbance events.

  7. Marine biodiversity, ecosystem functioning, and carbon cycles.

    PubMed

    Beaugrand, Grégory; Edwards, Martin; Legendre, Louis

    2010-06-01

    Although recent studies suggest that climate change may substantially accelerate the rate of species loss in the biosphere, only a few studies have focused on the potential consequences of a spatial reorganization of biodiversity with global warming. Here, we show a pronounced latitudinal increase in phytoplanktonic and zooplanktonic biodiversity in the extratropical North Atlantic Ocean in recent decades. We also show that this rise in biodiversity paralleled a decrease in the mean size of zooplanktonic copepods and that the reorganization of the planktonic ecosystem toward dominance by smaller organisms may influence the networks in which carbon flows, with negative effects on the downward biological carbon pump and demersal Atlantic cod (Gadus morhua). Our study suggests that, contrary to the usual interpretation of increasing biodiversity being a positive emergent property promoting the stability/resilience of ecosystems, the parallel decrease in sizes of planktonic organisms could be viewed in the North Atlantic as reducing some of the services provided by marine ecosystems to humans.

  8. Predicting ecosystem vulnerability to biodiversity loss from community composition.

    PubMed

    Heilpern, Sebastian A; Weeks, Brian C; Naeem, Shahid

    2018-05-01

    Ecosystems vary widely in their responses to biodiversity change, with some losing function dramatically while others are highly resilient. However, generalizations about how species- and community-level properties determine these divergent ecosystem responses have been elusive because potential sources of variation (e.g., trophic structure, compensation, functional trait diversity) are rarely evaluated in conjunction. Ecosystem vulnerability, or the likely change in ecosystem function following biodiversity change, is influenced by two types of species traits: response traits that determine species' individual sensitivities to environmental change, and effect traits that determine a species' contribution to ecosystem function. Here we extend the response-effect trait framework to quantify ecosystem vulnerability and show how trophic structure, within-trait variance, and among-trait covariance affect ecosystem vulnerability by linking extinction order and functional compensation. Using in silico trait-based simulations we found that ecosystem vulnerability increased when response and effect traits positively covaried, but this increase was attenuated by decreasing trait variance. Contrary to expectations, in these communities, both functional diversity and trophic structure increased ecosystem vulnerability. In contrast, ecosystem functions were resilient when response and effect traits covaried negatively, and variance had a positive effect on resiliency. Our results suggest that although biodiversity loss is often associated with decreases in ecosystem functions, such effects are conditional on trophic structure, and the variation within and covariation among response and effect traits. Taken together, these three factors can predict when ecosystems are poised to lose or gain function with ongoing biodiversity change. © 2018 by the Ecological Society of America.

  9. Incorporating ecosystem function concept in environmental planning and decision making by means of multi-criteria evaluation: the case-study of Kalloni, Lesbos, Greece.

    PubMed

    Oikonomou, Vera; Dimitrakopoulos, Panayiotis G; Troumbis, Andreas Y

    2011-01-01

    Nature provides life-support services which do not merely constitute the basis for ecosystem integrity but also benefit human societies. The importance of such multiple outputs is often ignored or underestimated in environmental planning and decision making. The economic valuation of ecosystem functions or services has been widely used to make these benefits economically visible and thus address this deficiency. Alternatively, the relative importance of the components of ecosystem value can be identified and compared by means of multi-criteria evaluation. Hereupon, this article proposes a conceptual framework that couples ecosystem function analysis, multi criteria evaluation and social research methodologies for introducing an ecosystem function-based planning and management approach. The framework consists of five steps providing the structure of a participative decision making process which is then tested and ratified, by applying the discrete multi-criteria method NAIADE, in the Kalloni Natura 2000 site, on Lesbos, Greece. Three scenarios were developed and evaluated with regard to their impacts on the different types of ecosystem functions and the social actors' value judgements. A conflict analysis permitted the better elaboration of the different views, outlining the coalitions formed in the local community and shaping the way towards reaching a consensus.

  10. Incorporating Ecosystem Function Concept in Environmental Planning and Decision Making by Means of Multi-Criteria Evaluation: The Case-Study of Kalloni, Lesbos, Greece

    NASA Astrophysics Data System (ADS)

    Oikonomou, Vera; Dimitrakopoulos, Panayiotis G.; Troumbis, Andreas Y.

    2011-01-01

    Nature provides life-support services which do not merely constitute the basis for ecosystem integrity but also benefit human societies. The importance of such multiple outputs is often ignored or underestimated in environmental planning and decision making. The economic valuation of ecosystem functions or services has been widely used to make these benefits economically visible and thus address this deficiency. Alternatively, the relative importance of the components of ecosystem value can be identified and compared by means of multi-criteria evaluation. Hereupon, this article proposes a conceptual framework that couples ecosystem function analysis, multi criteria evaluation and social research methodologies for introducing an ecosystem function-based planning and management approach. The framework consists of five steps providing the structure of a participative decision making process which is then tested and ratified, by applying the discrete multi-criteria method NAIADE, in the Kalloni Natura 2000 site, on Lesbos, Greece. Three scenarios were developed and evaluated with regard to their impacts on the different types of ecosystem functions and the social actors' value judgements. A conflict analysis permitted the better elaboration of the different views, outlining the coalitions formed in the local community and shaping the way towards reaching a consensus.

  11. Bacterial structures and ecosystem functions in glaciated floodplains: contemporary states and potential future shifts

    PubMed Central

    Freimann, Remo; Bürgmann, Helmut; Findlay, Stuart EG; Robinson, Christopher T

    2013-01-01

    Glaciated alpine floodplains are responding quickly to climate change through shrinking ice masses. Given the expected future changes in their physicochemical environment, we anticipated variable shifts in structure and ecosystem functioning of hyporheic microbial communities in proglacial alpine streams, depending on present community characteristics and landscape structures. We examined microbial structure and functioning during different hydrologic periods in glacial (kryal) streams and, as contrasting systems, groundwater-fed (krenal) streams. Three catchments were chosen to cover an array of landscape features, including interconnected lakes, differences in local geology and degree of deglaciation. Community structure was assessed by automated ribosomal intergenic spacer analysis and microbial function by potential enzyme activities. We found each catchment to contain a distinct bacterial community structure and different degrees of separation in structure and functioning that were linked to the physicochemical properties of the waters within each catchment. Bacterial communities showed high functional plasticity, although achieved by different strategies in each system. Typical kryal communities showed a strong linkage of structure and function that indicated a major prevalence of specialists, whereas krenal sediments were dominated by generalists. With the rapid retreat of glaciers and therefore altered ecohydrological characteristics, lotic microbial structure and functioning are likely to change substantially in proglacial floodplains in the future. The trajectory of these changes will vary depending on contemporary bacterial community characteristics and landscape structures that ultimately determine the sustainability of ecosystem functioning. PMID:23842653

  12. Spatial distribution of ammonia-oxidizing bacteria and archaea across a 44-hectare farm related to ecosystem functioning

    PubMed Central

    Wessén, Ella; Söderström, Mats; Stenberg, Maria; Bru, David; Hellman, Maria; Welsh, Allana; Thomsen, Frida; Klemedtson, Leif; Philippot, Laurent; Hallin, Sara

    2011-01-01

    Characterization of spatial patterns of functional microbial communities could facilitate the understanding of the relationships between the ecology of microbial communities, the biogeochemical processes they perform and the corresponding ecosystem functions. Because of the important role the ammonia-oxidizing bacteria (AOB) and archaea (AOA) have in nitrogen cycling and nitrate leaching, we explored the spatial distribution of their activity, abundance and community composition across a 44-ha large farm divided into an organic and an integrated farming system. The spatial patterns were mapped by geostatistical modeling and correlations to soil properties and ecosystem functioning in terms of nitrate leaching were determined. All measured community components for both AOB and AOA exhibited spatial patterns at the hectare scale. The patchy patterns of community structures did not reflect the farming systems, but the AOB community was weakly related to differences in soil pH and moisture, whereas the AOA community to differences in soil pH and clay content. Soil properties related differently to the size of the communities, with soil organic carbon and total nitrogen correlating positively to AOB abundance, while clay content and pH showed a negative correlation to AOA abundance. Contrasting spatial patterns were observed for the abundance distributions of the two groups indicating that the AOB and AOA may occupy different niches in agro-ecosystems. In addition, the two communities correlated differently to community and ecosystem functions. Our results suggest that the AOA, not the AOB, were contributing to nitrate leaching at the site by providing substrate for the nitrite oxidizers. PMID:21228891

  13. Ecosystem development in roadside grasslands: biotic control, plant–soil interactions and dispersal limitations

    PubMed Central

    García-Palacios, Pablo; Bowker, Matthew A.; Maestre, Fernando T.; Soliveres, Santiago; Valladares, Fernando; Papadopoulos, Jorge; Escudero, Adrián

    2015-01-01

    Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant–soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0–2, 7–9 and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts [BSCs], and soil microbial functional diversity [soil microorganisms] affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant–soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: 1) maintain well-conserved natural areas close to roadsides to enhance plant compositional changes towards late

  14. Ecosystem development in roadside grasslands: Biotic control, plant-soil interactions, and dispersal limitations

    USGS Publications Warehouse

    Garcia-Palacios, P.; Bowker, M.A.; Maestre, F.T.; Soliveres, S.; Valladares, F.; Papadopoulos, J.; Escudero, A.

    2011-01-01

    Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant-soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0-2, 7-9, and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts (BSCs), and soil microbial functional diversity (soil microorganisms) affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control, and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant-soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: (1) maintaining wellconserved natural areas close to roadsides to enhance plant compositional changes towards late

  15. Do Behavioral Foraging Responses of Prey to Predators Function Similarly in Restored and Pristine Foodwebs?

    PubMed Central

    Madin, Elizabeth M. P.; Gaines, Steven D.; Madin, Joshua S.; Link, Anne-Katrin; Lubchenco, Peggy J.; Selden, Rebecca L.; Warner, Robert R.

    2012-01-01

    Efforts to restore top predators in human-altered systems raise the question of whether rebounds in predator populations are sufficient to restore pristine foodweb dynamics. Ocean ecosystems provide an ideal system to test this question. Removal of fishing in marine reserves often reverses declines in predator densities and size. However, whether this leads to restoration of key functional characteristics of foodwebs, especially prey foraging behavior, is unclear. The question of whether restored and pristine foodwebs function similarly is nonetheless critically important for management and restoration efforts. We explored this question in light of one important determinant of ecosystem function and structure – herbivorous prey foraging behavior. We compared these responses for two functionally distinct herbivorous prey fishes (the damselfish Plectroglyphidodon dickii and the parrotfish Chlorurus sordidus) within pairs of coral reefs in pristine and restored ecosystems in two regions of these species' biogeographic ranges, allowing us to quantify the magnitude and temporal scale of this key ecosystem variable's recovery. We demonstrate that restoration of top predator abundances also restored prey foraging excursion behaviors to a condition closely resembling those of a pristine ecosystem. Increased understanding of behavioral aspects of ecosystem change will greatly improve our ability to predict the cascading consequences of conservation tools aimed at ecological restoration, such as marine reserves. PMID:22403650

  16. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems.

    PubMed

    Fanin, Nicolas; Gundale, Michael J; Farrell, Mark; Ciobanu, Marcel; Baldock, Jeff A; Nilsson, Marie-Charlotte; Kardol, Paul; Wardle, David A

    2018-02-01

    Understanding how loss of biodiversity affects ecosystem functioning, and thus the delivery of ecosystem goods and services, has become increasingly necessary in a changing world. Considerable recent attention has focused on predicting how biodiversity loss simultaneously impacts multiple ecosystem functions (that is, ecosystem multifunctionality), but the ways in which these effects vary across ecosystems remain unclear. Here, we report the results of two 19-year plant diversity manipulation experiments, each established across a strong environmental gradient. Although the effects of plant and associated fungal diversity loss on individual functions frequently differed among ecosystems, the consequences of biodiversity loss for multifunctionality were relatively invariant. However, the context-dependency of biodiversity effects also worked in opposing directions for different individual functions, meaning that similar multifunctionality values across contrasting ecosystems could potentially mask important differences in the effects of biodiversity on functioning among ecosystems. Our findings highlight that an understanding of the relative contribution of species or functional groups to individual ecosystem functions among contrasting ecosystems and their interactions (that is, complementarity versus competition) is critical for guiding management efforts aimed at maintaining ecosystem multifunctionality and the delivery of multiple ecosystem services.

  17. Review of the ecosystem service implications of mangrove encroachment into salt marshes.

    PubMed

    Kelleway, Jeffrey J; Cavanaugh, Kyle; Rogers, Kerrylee; Feller, Ilka C; Ens, Emilie; Doughty, Cheryl; Saintilan, Neil

    2017-10-01

    Salt marsh and mangrove have been recognized as being among the most valuable ecosystem types globally in terms of their supply of ecosystem services and support for human livelihoods. These coastal ecosystems are also susceptible to the impacts of climate change and rising sea levels, with evidence of global shifts in the distribution of mangroves, including encroachment into salt marshes. The encroachment of woody mangrove shrubs and trees into herbaceous salt marshes may represent a substantial change in ecosystem structure, although resulting impacts on ecosystem functions and service provisions are largely unknown. In this review, we assess changes in ecosystem services associated with mangrove encroachment. While there is quantitative evidence to suggest that mangrove encroachment may enhance carbon storage and the capacity of a wetland to increase surface elevation in response to sea-level rise, for most services there has been no direct assessment of encroachment impact. On the basis of current understanding of ecosystem structure and function, we theorize that mangrove encroachment may increase nutrient storage and improve storm protection, but cause declines in habitat availability for fauna requiring open vegetation structure (such as migratory birds and foraging bats) as well as the recreational and cultural activities associated with this fauna (e.g., birdwatching and/or hunting). Changes to provisional services such as fisheries productivity and cultural services are likely to be site specific and dependent on the species involved. We discuss the need for explicit experimental testing of the effects of encroachment on ecosystem services in order to address key knowledge gaps, and present an overview of the options available to coastal resource managers during a time of environmental change. © 2017 John Wiley & Sons Ltd.

  18. Nematomorph parasites indirectly alter the food web and ecosystem function of streams through behavioural manipulation of their cricket hosts.

    USGS Publications Warehouse

    Sato, T.; Egusa, T.; Fukushima, K.; Oda, T.; Ohte, N.; Tokuchi, Naoko; Watanabe, Katsutoshi; Kanaiwa, Minoru; Murakami, Isaya; Lafferty, Kevin D.

    2012-01-01

    Nematomorph parasites manipulate crickets to enter streams where the parasites reproduce. These manipulated crickets become a substantial food subsidy for stream fishes. We used a field experiment to investigate how this subsidy affects the stream community and ecosystem function. When crickets were available, predatory fish ate fewer benthic invertebrates. The resulting release of the benthic invertebrate community from fish predation indirectly decreased the biomass of benthic algae and slightly increased leaf break-down rate. This is the first experimental demonstration that host manipulation by a parasite can reorganise a community and alter ecosystem function. Nematomorphs are common, and many other parasites have dramatic effects on host phenotypes, suggesting that similar effects of parasites on ecosystems might be widespread.

  19. Assessment of the impact of increased solar ultraviolet radiation upon marine ecosystems

    NASA Technical Reports Server (NTRS)

    Worrest, R. C.; Vandyke, H.

    1978-01-01

    Reduction of the earth's ozone layer, with a resultant increase in transmission of solar ultraviolet radiation in the 290 to 320nm waveband (UV-B), via space shuttle operations through the stratosphere is considered. It is shown that simulated solar ultraviolet radiation can, under experimental conditions, detrimentally affect the marine organisms that form the base of the food web of oceanic and estuarine ecosystems. Whether a small increase in biologically harmful ultraviolet radiation might overwhelm these mechanisms and produce changes that will have damaging consequences to the biosphere is discussed. The potential for irreversible damage to the productivity, structure and/or functioning of a model estuarine ecosystem by increased UV-B radiation and whether these ecosystems are highly stable or amenable to adaptive change is studied. Data are provided to assess the potential impact upon marine ecosystems if space shuttle operations contribute to a reduction of the stratospheric ozone layer and the sensitivity of key community components to increased UV-B radiation is examined.

  20. Novel ecosystems: Theoretical and management aspects of the new ecological world order

    USGS Publications Warehouse

    Hobbs, R.J.; Arico, S.; Aronson, J.; Baron, Jill S.; Bridgewater, P.; Cramer, V.A.; Epstein, P.R.; Ewel, J.J.; Klink, C.A.; Lugo, A.E.; Norton, D.; Ojima, D.; Richardson, D.M.; Sanderson, E.W.; Valladares, F.; Vila, M.; Zamora, R.; Zobel, M.

    2006-01-01

    We explore the issues relevant to those types of ecosystems containing new combinations of species that arise through human action, environmental change, and the impacts of the deliberate and inadvertent introduction of species from other regions. Novel ecosystems (also termed ‘emerging ecosystems’) result when species occur in combinations and relative abundances that have not occurred previously within a given biome. Key characteristics are novelty, in the form of new species combinations and the potential for changes in ecosystem functioning, and human agency, in that these ecosystems are the result of deliberate or inadvertent human action. As more of the Earth becomes transformed by human actions, novel ecosystems increase in importance, but are relatively little studied. Either the degradation or invasion of native or ‘wild’ ecosystems or the abandonment of intensively managed systems can result in the formation of these novel systems. Important considerations are whether these new systems are persistent and what values they may have. It is likely that it may be very difficult or costly to return such systems to their previous state, and hence consideration needs to be given to developing appropriate management goals and approaches.

  1. Differences in plant function in phosphorus- and nitrogen-limited mangrove ecosystems.

    PubMed

    Lovelock, Catherine E; Feller, Ilka C; Ball, Marilyn C; Engelbrecht, Bettina M J; Ewe, Mei Ling

    2006-01-01

    Mangrove ecosystems can be either nitrogen (N) or phosphorus (P) limited and are therefore vulnerable to nutrient pollution. Nutrient enrichment with either N or P may have differing effects on ecosystems because of underlying differences in plant physiological responses to these nutrients in either N- or P-limited settings. Using a common mangrove species, Avicennia germinans, in sites where growth was either N or P limited, we investigated differing physiological responses to N and P limitation and fertilization. We tested the hypothesis that water uptake and transport, and hydraulic architecture, were the main processes limiting productivity at the P-limited site, but that this was not the case at the N-limited site. We found that plants at the P-deficient site had lower leaf water potential, stomatal conductance and photosynthetic carbon-assimilation rates, and less conductive xylem, than those at the N-limited site. These differences were greatly reduced with P fertilization at the P-limited site. By contrast, fertilization with N at the N-limited site had little effect on either photosynthetic or hydraulic traits. We conclude that growth in N- and P-limited sites differentially affect the hydraulic pathways of mangroves. Plants experiencing P limitation appear to be water deficient and undergo more pronounced changes in structure and function with relief of nutrient deficiency than those in N-limited ecosystems.

  2. A practical guide to the application of the IUCN Red List of Ecosystems criteria

    PubMed Central

    Rodríguez, Jon Paul; Keith, David A.; Rodríguez-Clark, Kathryn M.; Murray, Nicholas J.; Nicholson, Emily; Regan, Tracey J.; Miller, Rebecca M.; Barrow, Edmund G.; Bland, Lucie M.; Boe, Kaia; Brooks, Thomas M.; Oliveira-Miranda, María A.; Spalding, Mark; Wit, Piet

    2015-01-01

    The newly developed IUCN Red List of Ecosystems is part of a growing toolbox for assessing risks to biodiversity, which addresses ecosystems and their functioning. The Red List of Ecosystems standard allows systematic assessment of all freshwater, marine, terrestrial and subterranean ecosystem types in terms of their global risk of collapse. In addition, the Red List of Ecosystems categories and criteria provide a technical base for assessments of ecosystem status at the regional, national, or subnational level. While the Red List of Ecosystems criteria were designed to be widely applicable by scientists and practitioners, guidelines are needed to ensure they are implemented in a standardized manner to reduce epistemic uncertainties and allow robust comparisons among ecosystems and over time. We review the intended application of the Red List of Ecosystems assessment process, summarize ‘best-practice’ methods for ecosystem assessments and outline approaches to ensure operational rigour of assessments. The Red List of Ecosystems will inform priority setting for ecosystem types worldwide, and strengthen capacity to report on progress towards the Aichi Targets of the Convention on Biological Diversity. When integrated with other IUCN knowledge products, such as the World Database of Protected Areas/Protected Planet, Key Biodiversity Areas and the IUCN Red List of Threatened Species, the Red List of Ecosystems will contribute to providing the most complete global measure of the status of biodiversity yet achieved. PMID:25561664

  3. Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes

    PubMed Central

    Perkins, Daniel M; Bailey, R A; Dossena, Matteo; Gamfeldt, Lars; Reiss, Julia; Trimmer, Mark; Woodward, Guy

    2015-01-01

    Biodiversity loss is occurring rapidly worldwide, yet it is uncertain whether few or many species are required to sustain ecosystem functioning in the face of environmental change. The importance of biodiversity might be enhanced when multiple ecosystem processes (termed multifunctionality) and environmental contexts are considered, yet no studies have quantified this explicitly to date. We measured five key processes and their combined multifunctionality at three temperatures (5, 10 and 15 °C) in freshwater aquaria containing different animal assemblages (1–4 benthic macroinvertebrate species). For single processes, biodiversity effects were weak and were best predicted by additive-based models, i.e. polyculture performances represented the sum of their monoculture parts. There were, however, significant effects of biodiversity on multifunctionality at the low and the high (but not the intermediate) temperature. Variation in the contribution of species to processes across temperatures meant that greater biodiversity was required to sustain multifunctionality across different temperatures than was the case for single processes. This suggests that previous studies might have underestimated the importance of biodiversity in sustaining ecosystem functioning in a changing environment. PMID:25131335

  4. Low dissolved oxygen and its impact on benthic assemblages and ecosystem function in the Northern Adriatic Sea - an experimental approach

    NASA Astrophysics Data System (ADS)

    Riedel, Bettina; Stachowitsch, Michael; Zuschin, Martin

    2010-05-01

    No other environmental parameter in shallow coastal ecosystems worldwide has changed as dramatically as dissolved oxygen (DO). Nearly 400 hypoxic (<2 ml l-1) and anoxic areas have been identified and the number is expected to increase. Such "dead zones" cause cascading effects from the molecular to the ecosystem level. Ultimately, biodiversity loss and disrupted ecosystem function (e.g. filter- and suspension-feeding capacity, bioturbation) can change structurally complex and diverse benthic and pelagic communities into far simpler, depauperated ones (homogenization). The Northern Adriatic Sea is a recognized case study for repeated seasonal low DO events. The onset and extent of catastrophic events, however, is difficult to predict, hindering full documentation in the field. Present knowledge about the behavioural responses and mortalities of benthic organisms is not commensurate with the crucial role this fauna plays in coastal ecosystems. Our research strives to learn about system function by studying system dysfunction Using a specially developed underwater-chamber (EAGU) - equipped with camera, flashes and a sensor array - we experimentally recreate small-scale anoxias in a community setting. In a first project we focused on the well-developed macroepifauna in the Gulf of Trieste, Northern Adriatic. The in situ experiments successfully mimicked full-scale low DO events and revealed a clear sequence of species-specific behaviours and mortalities correlated to specific oxygen thresholds. The present project will incorporate key representatives of the macroinfauna and meiofauna and will include sediment geochemistry. We will also take the EAGU concept one step further by evaluating post-anoxia developments such as decomposition, scavenging/predation and the recovery of the benthos as a whole. This yield of new details (e.g. never observed behaviours and interactions, i.e. predator-prey interactions), at a finer and more nuanced scale of resolution than ever

  5. The resilience and functional role of moss in boreal and arctic ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turetsky, Merritt; Bond-Lamberty, Benjamin; Euskirchen, Eugenie S.

    2012-08-24

    Mosses in boreal and arctic ecosystems are ubiquitous components of plant communities, represent an important component of plant diversity, and strongly influence the cycling of water, nutrients, energy and carbon. Here we use a literature review and synthesis as well as model simulations to explore the role of moss in ecological stability and resilience. Our literature review of moss community responses to disturbance showed all possible responses (increases, decreases, no change) within most disturbance categories in boreal and arctic regions. Our modeling simulations suggest that loss of moss within northern plant communities will reduce soil carbon accumulation primarily by influencingmore » decomposition rates and soil nitrogen availability. While two models (HPM and STM-TEM) showed a significant effect of moss removal, results from the Biome-BGC and DVM-TEM models suggest that northern, moss-rich ecosystems would need to experience extreme perturbation before mosses were eliminated. We highlight a number of issues that have not been adequately explored in moss communities, such as functional redundancy and singularity, relationships between response and effect traits, phenotypical plasticity in traits, and whether the effects of moss on ecosystem processes scale with local abundance. We also suggest that as more models explore issues related to ecological resilience, issues related to both parameter and conceptual uncertainty should be addressed: are the models more limited by uncertainty in the parameterization of the processes included or by what is not represented in the model at all? It seems clear from our review that mosses need to be incorporated into models as one or more plant functional types, but more empirical work is needed to determine how to best aggregate species.« less

  6. Consumer diversity interacts with prey defenses to drive ecosystem function

    PubMed Central

    Rasher, Douglas B.; Hoey, Andrew S.; Hay, Mark E.

    2013-01-01

    Prey traits linking consumer diversity to ecosystem function remain poorly understood. On tropical coral reefs, herbivores promote coral dominance by suppressing competing macroalgae, but the roles of herbivore identity and diversity, macroalgal defenses, and their interactions in affecting reef resilience and function are unclear. We studied adjacent pairs of no-take marine reserves and fished areas on reefs in Fiji, and found that protected reefs supported 7–17x greater biomass and 2–3x higher species richness of herbivorous fishes, and 3–11x more live coral cover than did fished reefs. In contrast, macroalgae were 27–61x more abundant and 3–4x more species rich on fished reefs. When we transplanted seven common macroalgae from fished reefs into reserves they were rapidly consumed, suggesting that rates of herbivory (ecosystem functioning) differed inside versus outside reserves. We then video recorded feeding activity on the same seven macroalgae when transplanted into reserves, and assessed the functional redundancy versus complementarity of herbivorous fishes consuming these macroalgae. Of 29 species of larger herbivorous fishes on these reefs, only four species accounted for 97% of macroalgal consumption. Two unicornfish consumed a range of brown macroalgae, a parrotfish consumed multiple red algae, and a rabbitfish consumed a green alga, with almost no diet overlap among these groups. The two most chemically rich, allelopathic algae were each consumed by a single, but different, fish species. This striking complementarity resulted from herbivore species differing in their tolerances to macroalgal chemical and structural defenses. A model of assemblage diet breadth based on our feeding observations predicted that high browser diversity would be required for effective control of macroalgae on Fijian reefs. In support of this model, we observed strong, negative relationships between herbivore diversity and macroalgal abundance and diversity across the

  7. Consumer diversity interacts with prey defenses to drive ecosystem function.

    PubMed

    Rasher, Douglas B; Hoey, Andrew S; Hay, Mark E

    2013-06-01

    Prey traits linking consumer diversity to ecosystem function remain poorly understood. On tropical coral reefs, herbivores promote coral dominance by suppressing competing macroalgae, but the roles of herbivore identity and diversity, macroalgal defenses, and their interactions in affecting reef resilience and function are unclear. We studied adjacent pairs of no-take marine reserves and fished areas on reefs in Fiji and found that protected reefs supported 7-17x greater biomass, 2-3x higher species richness of herbivorous fishes, and 3-11x more live coral cover than did fished reefs. In contrast, macroalgae were 27-61x more abundant and 3-4x more species-rich on fished reefs. When we transplanted seven common macroalgae from fished reefs into reserves they were rapidly consumed, suggesting that rates of herbivory (ecosystem functioning) differed inside vs. outside reserves. We then video-recorded feeding activity on the same seven macroalgae when transplanted into reserves, and assessed the functional redundancy vs. complementarity of herbivorous fishes consuming these macroalgae. Of 29 species of larger herbivorous fishes on these reefs, only four species accounted for 97% of macroalgal consumption. Two unicornfish consumed a range of brown macroalgae, a parrotfish consumed multiple red algae, and a rabbitfish consumed a green alga, with almost no diet overlap among these groups. The two most chemically rich, allelopathic algae were each consumed by a single, but different, fish species. This striking complementarity resulted from herbivore species differing in their tolerances to macroalgal chemical and structural defenses. A model of assemblage diet breadth based on our feeding observations predicted that high browser diversity would be required for effective control of macroalgae on Fijian reefs. In support of this model, we observed strong negative relationships between herbivore diversity and macroalgal abundance and diversity across the six study reefs. Our

  8. Scientific Foundations for an IUCN Red List of Ecosystems

    PubMed Central

    Keith, David A.; Rodríguez, Jon Paul; Rodríguez-Clark, Kathryn M.; Nicholson, Emily; Aapala, Kaisu; Alonso, Alfonso; Asmussen, Marianne; Bachman, Steven; Basset, Alberto; Barrow, Edmund G.; Benson, John S.; Bishop, Melanie J.; Bonifacio, Ronald; Brooks, Thomas M.; Burgman, Mark A.; Comer, Patrick; Comín, Francisco A.; Essl, Franz; Faber-Langendoen, Don; Fairweather, Peter G.; Holdaway, Robert J.; Jennings, Michael; Kingsford, Richard T.; Lester, Rebecca E.; Nally, Ralph Mac; McCarthy, Michael A.; Moat, Justin; Oliveira-Miranda, María A.; Pisanu, Phil; Poulin, Brigitte; Regan, Tracey J.; Riecken, Uwe; Spalding, Mark D.; Zambrano-Martínez, Sergio

    2013-01-01

    An understanding of risks to biodiversity is needed for planning action to slow current rates of decline and secure ecosystem services for future human use. Although the IUCN Red List criteria provide an effective assessment protocol for species, a standard global assessment of risks to higher levels of biodiversity is currently limited. In 2008, IUCN initiated development of risk assessment criteria to support a global Red List of ecosystems. We present a new conceptual model for ecosystem risk assessment founded on a synthesis of relevant ecological theories. To support the model, we review key elements of ecosystem definition and introduce the concept of ecosystem collapse, an analogue of species extinction. The model identifies four distributional and functional symptoms of ecosystem risk as a basis for assessment criteria: A) rates of decline in ecosystem distribution; B) restricted distributions with continuing declines or threats; C) rates of environmental (abiotic) degradation; and D) rates of disruption to biotic processes. A fifth criterion, E) quantitative estimates of the risk of ecosystem collapse, enables integrated assessment of multiple processes and provides a conceptual anchor for the other criteria. We present the theoretical rationale for the construction and interpretation of each criterion. The assessment protocol and threat categories mirror those of the IUCN Red List of species. A trial of the protocol on terrestrial, subterranean, freshwater and marine ecosystems from around the world shows that its concepts are workable and its outcomes are robust, that required data are available, and that results are consistent with assessments carried out by local experts and authorities. The new protocol provides a consistent, practical and theoretically grounded framework for establishing a systematic Red List of the world’s ecosystems. This will complement the Red List of species and strengthen global capacity to report on and monitor the status of

  9. Scientific foundations for an IUCN Red List of ecosystems.

    PubMed

    Keith, David A; Rodríguez, Jon Paul; Rodríguez-Clark, Kathryn M; Nicholson, Emily; Aapala, Kaisu; Alonso, Alfonso; Asmussen, Marianne; Bachman, Steven; Basset, Alberto; Barrow, Edmund G; Benson, John S; Bishop, Melanie J; Bonifacio, Ronald; Brooks, Thomas M; Burgman, Mark A; Comer, Patrick; Comín, Francisco A; Essl, Franz; Faber-Langendoen, Don; Fairweather, Peter G; Holdaway, Robert J; Jennings, Michael; Kingsford, Richard T; Lester, Rebecca E; Mac Nally, Ralph; McCarthy, Michael A; Moat, Justin; Oliveira-Miranda, María A; Pisanu, Phil; Poulin, Brigitte; Regan, Tracey J; Riecken, Uwe; Spalding, Mark D; Zambrano-Martínez, Sergio

    2013-01-01

    An understanding of risks to biodiversity is needed for planning action to slow current rates of decline and secure ecosystem services for future human use. Although the IUCN Red List criteria provide an effective assessment protocol for species, a standard global assessment of risks to higher levels of biodiversity is currently limited. In 2008, IUCN initiated development of risk assessment criteria to support a global Red List of ecosystems. We present a new conceptual model for ecosystem risk assessment founded on a synthesis of relevant ecological theories. To support the model, we review key elements of ecosystem definition and introduce the concept of ecosystem collapse, an analogue of species extinction. The model identifies four distributional and functional symptoms of ecosystem risk as a basis for assessment criteria: A) rates of decline in ecosystem distribution; B) restricted distributions with continuing declines or threats; C) rates of environmental (abiotic) degradation; and D) rates of disruption to biotic processes. A fifth criterion, E) quantitative estimates of the risk of ecosystem collapse, enables integrated assessment of multiple processes and provides a conceptual anchor for the other criteria. We present the theoretical rationale for the construction and interpretation of each criterion. The assessment protocol and threat categories mirror those of the IUCN Red List of species. A trial of the protocol on terrestrial, subterranean, freshwater and marine ecosystems from around the world shows that its concepts are workable and its outcomes are robust, that required data are available, and that results are consistent with assessments carried out by local experts and authorities. The new protocol provides a consistent, practical and theoretically grounded framework for establishing a systematic Red List of the world's ecosystems. This will complement the Red List of species and strengthen global capacity to report on and monitor the status of

  10. Modern Microbial Ecosystems are a Key to Understanding Our Biosphere's Early Evolution and its Contributions To The Atmosphere and Rock Record

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The survival of our early biosphere depended upon efficient coordination anion- diverse microbial populations. Microbial mats exhibit a 3.46-billion-year fossil record, thus they are the oldest known ecosystems. Photosynthetic microbial mats were key because, today, sunlight powers more than 99 percent of global primary productivity. Thus photosynthetic ecosystems have affected the atmosphere profoundly and have created the most pervasive, easily-detected fossils. Photosynthetic biospheres elsewhere will be most detectible via telescopes or spacecraft. As a part of the Astrobiology Institute, our Ames Microbial Ecosystems group examines the roles played by ecological processes in the early evolution of our biosphere, as recorded in geologic fossils and in the macromolecules of living cells: (1) We are defining the microbial mat microenvironment, which was an important milieu for early evolution. (2) We are comparing mats in contrasting environments to discern strategies of adaptation and diversification, traits that were key for long-term survival. (3) We have selected sites that mimic key environmental attributes of early Earth and thereby focus upon evolutionary adaptations to long-term changes in the global environment. (4) Our studies of gas exchange contribute to better estimates of biogenic gases in Earth's early atmosphere. This group therefore directly addresses the question: How have the Earth and its biosphere influenced each other over time Our studies strengthen the systematics for interpreting the microbial fossil record and thereby enhance astrobiological studies of martian samples. Our models of biogenic gas emissions will enhance models of atmospheres that might be detected on inhabited extrasolar planets. This work therefore also addresses the question: How can other biospheres be recogniZed" Our choice of field sites helps us explore Earth's evolving early environment. For example, modern mats that occupy thermal springs and certain freshwater

  11. Effects of water flow regulation on ecosystem functioning in a Mediterranean river network assessed by wood decomposition.

    PubMed

    Abril, Meritxell; Muñoz, Isabel; Casas-Ruiz, Joan P; Gómez-Gener, Lluís; Barceló, Milagros; Oliva, Francesc; Menéndez, Margarita

    2015-06-01

    Mediterranean rivers are extensively modified by flow regulation practises along their courses. An important part of the river impoundment in this area is related to the presence of small dams constructed mainly for water abstraction purposes. These projects drastically modified the ecosystem morphology, transforming lotic into lentic reaches and increasing their alternation along the river. Hydro-morphologial differences between these reaches indicate that flow regulation can trigger important changes in the ecosystem functioning. Decomposition of organic matter is an integrative process and this complexity makes it a good indicator of changes in the ecosystem. The aim of this study was to assess the effect caused by flow regulation on ecosystem functioning at the river network scale, using wood decomposition as a functional indicator. We studied the mass loss from wood sticks during three months in different lotic and lentic reaches located along a Mediterranean river basin, in both winter and summer. Additionally, we identified the environmental factors affecting decomposition rates along the river orders. The results revealed differences in decomposition rates between sites in both seasons that were principally related to the differences between stream orders. The rates were mainly related to temperature, nutrient concentrations (NO2(-), NO3(2-)) and water residence time. High-order streams with higher temperature and nutrient concentrations exhibited higher decomposition rates compared with low-order streams. The effect of the flow regulation on the decomposition rates only appeared to be significant in high orders, especially in winter, when the hydrological characteristics of lotic and lentic habitats widely varied. Lotic reaches with lower water residence time exhibited greater decomposition rates compared with lentic reaches probably due to more physical abrasion and differences in the microbial assemblages. Overall, our study revealed that in high orders

  12. Quantifying Ocean Acidification and its Impacts to Coral Reef Ecosystems

    NASA Astrophysics Data System (ADS)

    Manzello, D.; Gledhill, D. K.; Enochs, I.; Andersson, A. J.

    2013-05-01

    Ocean Acidification (OA) describes the uptake of anthropogenic CO2 by the world's oceans and consequent decline in seawater pH and calcium carbonate saturation state. OA is of particular concern for coral reef ecosystems because it is expected to reduce the calcification rates of reef-building corals and other calcifiers, and may simultaneously increase the erosive abilities of key bioeroding taxa. Despite these concerns, we have little understanding of how OA will manifest in the real-world or, if, and how much of the world-wide trajectory of reef decline can be attributed to OA. With this in mind, we will present recommendations for monitoring OA of coral reef waters, as well as its ecosystem impacts over time. Different approaches and metrics, including their individual strengths and weaknesses, will be discussed. The ultimate goal of these efforts is to quantify the effects of OA on coral reef ecosystems in the real-world to robustly predict their structure and function in a high-CO2 world.

  13. Ecosystem responses to biogeochemical fronts in the South Brazil Bight

    NASA Astrophysics Data System (ADS)

    Brandini, Frederico P.; Tura, Pedro M.; Santos, Pedro P. G. M.

    2018-05-01

    Here we described the general hydrography in the South Brazil Bight (23-28°S) with emphasis on frontal processes and their role in the structure and functioning of the regional shelf ecosystem. One of the key roles of fronts for ecosystem dynamics is the injection of nutrients into the euphotic zone increasing primary production. Frontal systems also affect plankton biodiversity and fisheries. Physical mechanisms behind frontogenesis in this region are similar in the analogous western side of oceanic basins; their magnitude and seasonal dynamics, however, may differ due to peculiarities in shelf morphology, wind field, tidal circulation and continental drainage. Here we provide a reassessment of earlier and recent ecological and hydrographic studies for a better evaluation of the spatial and temporal dynamics of fronts and their regional ecological implications. Albeit in a fragmented manner, we give a more detailed conceptual framework about the ecosystem responses to the complex frontal system in the South Brazil Bight.

  14. Modeling plankton ecosystem functioning and nitrogen fluxes in the oligotrophic waters of the Beaufort Sea, Arctic Ocean: a focus on light-driven processes

    NASA Astrophysics Data System (ADS)

    Le Fouest, V.; Zakardjian, B.; Xie, H.; Raimbault, P.; Joux, F.; Babin, M.

    2013-07-01

    The Arctic Ocean (AO) undergoes profound changes of its physical and biotic environments due to climate change. In some areas of the Beaufort Sea, the stronger haline stratification observed in summer alters the plankton ecosystem structure, functioning and productivity, promoting oligotrophy. A one-dimension (1-D) physical-biological coupled model based on the large multiparametric database of the Malina project in the Beaufort Sea was used (i) to infer the plankton ecosystem functioning and related nitrogen fluxes and (ii) to assess the model sensitivity to key light-driven processes involved in nutrient recycling and phytoplankton growth. The coupled model suggested that ammonium photochemically produced from photosensitive dissolved organic nitrogen (i.e., photoammonification process) was a necessary nitrogen source to achieve the observed levels of microbial biomass and production. Photoammonification directly and indirectly (by stimulating the microbial food web activity) contributed to 70% and 18.5% of the 0-10 m and whole water column, respectively, simulated primary production (respectively 66% and 16% for the bacterial production). The model also suggested that variable carbon to chlorophyll ratios were required to simulate the observed herbivorous versus microbial food web competition and realistic nitrogen fluxes in the Beaufort Sea oligotrophic waters. In face of accelerating Arctic warming, more attention should be paid in the future to the mechanistic processes involved in food webs and functional group competition, nutrient recycling and primary production in poorly productive waters of the AO, as they are expected to expand rapidly.

  15. Is restoring an ecosystem good for your health?

    PubMed

    Speldewinde, P C; Slaney, D; Weinstein, P

    2015-01-01

    It is well known that the degradation of ecosystems can have serious impacts on human health. There is currently a knowledge gap on what impact restoring ecosystems has on human health. In restoring ecosystems there is a drive to restore the functionality of ecosystems rather than restoring ecosystems to 'pristine' condition. Even so, the complete restoration of all ecosystem functions is not necessarily possible. Given the uncertain trajectory of the ecosystem during the ecosystem restoration process the impact of the restoration on human health is also uncertain. Even with this uncertainty, the restoration of ecosystems for human health is still a necessity. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Ecosystem Vulnerability Review: Proposal of an Interdisciplinary Ecosystem Assessment Approach

    NASA Astrophysics Data System (ADS)

    Weißhuhn, Peter; Müller, Felix; Wiggering, Hubert

    2018-06-01

    To safeguard the sustainable use of ecosystems and their services, early detection of potentially damaging changes in functional capabilities is needed. To support a proper ecosystem management, the analysis of an ecosystem's vulnerability provide information on its weaknesses as well as on its capacity to recover after suffering an impact. However, the application of the vulnerability concept to ecosystems is still an emerging topic. After providing background on the vulnerability concept, we summarize existing ecosystem vulnerability research on the basis of a systematic literature review with a special focus on ecosystem type, disciplinary background, and more detailed definition of the ecosystem vulnerability components. Using the Web of ScienceTM Core Collection, we overviewed the literature from 1991 onwards but used the 5 years from 2011 to 2015 for an in-depth analysis, including 129 articles. We found that ecosystem vulnerability analysis has been applied most notably in conservation biology, climate change research, and ecological risk assessments, pinpointing a limited spreading across the environmental sciences. It occurred primarily within marine and freshwater ecosystems. To avoid confusion, we recommend using the unambiguous term ecosystem vulnerability rather than ecological, environmental, population, or community vulnerability. Further, common ground has been identified, on which to define the ecosystem vulnerability components exposure, sensitivity, and adaptive capacity. We propose a framework for ecosystem assessments that coherently connects the concepts of vulnerability, resilience, and adaptability as different ecosystem responses. A short outlook on the possible operationalization of the concept by ecosystem vulnerabilty indices, and a conclusion section complete the review.

  17. Ecosystem Vulnerability Review: Proposal of an Interdisciplinary Ecosystem Assessment Approach.

    PubMed

    Weißhuhn, Peter; Müller, Felix; Wiggering, Hubert

    2018-06-01

    To safeguard the sustainable use of ecosystems and their services, early detection of potentially damaging changes in functional capabilities is needed. To support a proper ecosystem management, the analysis of an ecosystem's vulnerability provide information on its weaknesses as well as on its capacity to recover after suffering an impact. However, the application of the vulnerability concept to ecosystems is still an emerging topic. After providing background on the vulnerability concept, we summarize existing ecosystem vulnerability research on the basis of a systematic literature review with a special focus on ecosystem type, disciplinary background, and more detailed definition of the ecosystem vulnerability components. Using the Web of Science TM Core Collection, we overviewed the literature from 1991 onwards but used the 5 years from 2011 to 2015 for an in-depth analysis, including 129 articles. We found that ecosystem vulnerability analysis has been applied most notably in conservation biology, climate change research, and ecological risk assessments, pinpointing a limited spreading across the environmental sciences. It occurred primarily within marine and freshwater ecosystems. To avoid confusion, we recommend using the unambiguous term ecosystem vulnerability rather than ecological, environmental, population, or community vulnerability. Further, common ground has been identified, on which to define the ecosystem vulnerability components exposure, sensitivity, and adaptive capacity. We propose a framework for ecosystem assessments that coherently connects the concepts of vulnerability, resilience, and adaptability as different ecosystem responses. A short outlook on the possible operationalization of the concept by ecosystem vulnerabilty indices, and a conclusion section complete the review.

  18. Nematomorph parasites indirectly alter the food web and ecosystem function of streams through behavioural manipulation of their cricket hosts.

    PubMed

    Sato, Takuya; Egusa, Tomohiro; Fukushima, Keitaro; Oda, Tomoki; Ohte, Nobuhito; Tokuchi, Naoko; Watanabe, Katsutoshi; Kanaiwa, Minoru; Murakami, Isaya; Lafferty, Kevin D

    2012-08-01

    Nematomorph parasites manipulate crickets to enter streams where the parasites reproduce. These manipulated crickets become a substantial food subsidy for stream fishes. We used a field experiment to investigate how this subsidy affects the stream community and ecosystem function. When crickets were available, predatory fish ate fewer benthic invertebrates. The resulting release of the benthic invertebrate community from fish predation indirectly decreased the biomass of benthic algae and slightly increased leaf break-down rate. This is the first experimental demonstration that host manipulation by a parasite can reorganise a community and alter ecosystem function. Nematomorphs are common, and many other parasites have dramatic effects on host phenotypes, suggesting that similar effects of parasites on ecosystems might be widespread. © 2012 Blackwell Publishing Ltd/CNRS.

  19. Global meta-analysis of leaf area index in wetlands indicates uncertainties in understanding of their ecosystem function

    NASA Astrophysics Data System (ADS)

    Dronova, I.; Taddeo, S.; Foster, K.

    2017-12-01

    Projecting ecosystem responses to global change relies on the accurate understanding of properties governing their functions in different environments. An important variable in models of ecosystem function is canopy leaf area index (LAI; leaf area per unit ground area) declared as one of the Essential Climate Variables in the Global Climate Observing System and extensively measured in terrestrial landscapes. However, wetlands have been largely under-represented in these efforts, which globally limits understanding of their contribution to carbon sequestration, climate regulation and resilience to natural and anthropogenic disturbances. This study provides a global synthesis of >350 wetland-specific LAI observations from 182 studies and compares LAI among wetland ecosystem and vegetation types, biomes and measurement approaches. Results indicate that most wetland types and even individual locations show a substantial local dispersion of LAI values (average coefficient of variation 65%) due to heterogeneity of environmental properties and vegetation composition. Such variation indicates that mean LAI values may not sufficiently represent complex wetland environments, and the use of this index in ecosystem function models needs to incorporate within-site variation in canopy properties. Mean LAI did not significantly differ between direct and indirect measurement methods on a pooled global sample; however, within some of the specific biomes and wetland types significant contrasts between these approaches were detected. These contrasts highlight unique aspects of wetland vegetation physiology and canopy structure affecting measurement principles that need to be considered in generalizing canopy properties in ecosystem models. Finally, efforts to assess wetland LAI using remote sensing strongly indicate the promise of this technology for cost-effective regional-scale modeling of canopy properties similar to terrestrial systems. However, such efforts urgently require more

  20. What is Ecosystem Structure?

    Treesearch

    RANDALL W. MYSTER

    2001-01-01

    Ecosystems were originally defined as units of the earth’s surface, that is the whole system including the organisms and the physical factors that form the environment (Tansley, 1935). As the study of ecosystem ecology evolved, ecosystems came to be categorized by their function and structure (Odum, 1953) with an emphasis on integration and indirect interaction (Muller...

  1. Assessing the Effects of Land-use Change on Plant Traits, Communities and Ecosystem Functioning in Grasslands: A Standardized Methodology and Lessons from an Application to 11 European Sites

    PubMed Central

    Garnier, Eric; Lavorel, Sandra; Ansquer, Pauline; Castro, Helena; Cruz, Pablo; Dolezal, Jiri; Eriksson, Ove; Fortunel, Claire; Freitas, Helena; Golodets, Carly; Grigulis, Karl; Jouany, Claire; Kazakou, Elena; Kigel, Jaime; Kleyer, Michael; Lehsten, Veiko; Lepš, Jan; Meier, Tonia; Pakeman, Robin; Papadimitriou, Maria; Papanastasis, Vasilios P.; Quested, Helen; Quétier, Fabien; Robson, Matt; Roumet, Catherine; Rusch, Graciela; Skarpe, Christina; Sternberg, Marcelo; Theau, Jean-Pierre; Thébault, Aurélie; Vile, Denis; Zarovali, Maria P.

    2007-01-01

    Background and Aims A standardized methodology to assess the impacts of land-use changes on vegetation and ecosystem functioning is presented. It assumes that species traits are central to these impacts, and is designed to be applicable in different historical, climatic contexts and local settings. Preliminary results are presented to show its applicability. Methods Eleven sites, representative of various types of land-use changes occurring in marginal agro-ecosystems across Europe and Israel, were selected. Climatic data were obtained at the site level; soil data, disturbance and nutrition indices were described at the plot level within sites. Sixteen traits describing plant stature, leaf characteristics and reproductive phase were recorded on the most abundant species of each treatment. These data were combined with species abundance to calculate trait values weighed by the abundance of species in the communities. The ecosystem properties selected were components of above-ground net primary productivity and decomposition of litter. Key Results The wide variety of land-use systems that characterize marginal landscapes across Europe was reflected by the different disturbance indices, and were also reflected in soil and/or nutrient availability gradients. The trait toolkit allowed us to describe adequately the functional response of vegetation to land-use changes, but we suggest that some traits (vegetative plant height, stem dry matter content) should be omitted in studies involving mainly herbaceous species. Using the example of the relationship between leaf dry matter content and above-ground dead material, we demonstrate how the data collected may be used to analyse direct effects of climate and land use on ecosystem properties vs. indirect effects via changes in plant traits. Conclusions This work shows the applicability of a set of protocols that can be widely applied to assess the impacts of global change drivers on species, communities and ecosystems. PMID

  2. Restoring ecosystem functions and services by overcoming soil threats - The case of Mt. Hekla area in Iceland

    NASA Astrophysics Data System (ADS)

    Thorsson, Johann; Petursdottir, Thorunn

    2015-04-01

    Soils are one of the main fundamental bodies of terrestrial ecosystems. Soil functions contribute substantially to the ecosystem services humans and all other living beings depend on. Current soil threats are in most cases related to anthropogenic impacts and derived environmental pressures. For instance, overexploitation has in many cases damaged ecosystem resilience, affected current equilibrium and caused severe soil degradation. The resulting dysfunctional ecosystems are incapable of providing necessary ecosystem services. In such cases ecosystem restoration is necessary to restore ecosystem functions and ecological succession. The Mt. Hekla area in Iceland is an example of land suffering from accelerated erosion amplified by anthropogenic impacts. The area is 900 km2 located in South Iceland in the vicinity of the volcano Mt. Hekla. Today over 40% of the area is classified as eroded but historical documents indicate that vast part of the area were fertile and vegetated at the time of settlement, 1100 years ago; hence was able to withstand the geological disturbances occurring prior to the arrival of man as is obvious from the pristine woody patches still remaining. Severe soil degradation followed the large-scale deforestation and overgrazing that took place within the area. The initial land degradation event is considered to have occurred in the 11th century, but has been ongoing since then in several episodes. The Þjórsá glacial river flows through the area and carries enormous amounts of sediments every year. After the deforestation, the ecosystem resilience was damaged and the land left exposed to the elements. Eventually large scale wind erosion started, followed with water erosion and increased impact of freeze-thaw processes. The Soil Conservation Service of Iceland started working in the area in the early 20th century and land reclamation operations have been ongoing until this day. Considerable successes have been made as is manifested in the fact

  3. The potential for retreating alpine glaciers to alter alpine ecosystems in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Hall, E.; Baron, J.

    2013-12-01

    Glaciers are retreating at an unprecedented rate. In mid-latitude alpine ecosystems the presence of glaciers and rock glaciers govern rates and ecology of alpine and sub-alpine ecosystems. Changes in the thermal environment due to the loss of isothermal habitat and inputs from glacier melt chemistry are altering alpine ecosystems in unpredictable ways. In particular, glacier may be a source of nitrogen that is altering alpine ecosystem dynamics. Loch Vale Watershed (LVWS) located within Rocky Mountain National Park. LVWS contains a surface glacier (Andrew's glacier) and a rock glacier (Taylor's glacier) at the headwater of each of the two drainages within the watershed. We collected precipitation from a National Atmospheric Deposition Site and surface water from multiple alpine lakes and streams during a particularly high and low snow year in the Colorado Front Range. We also sampled stream and lake sediments at each site to analyze the associated microbial community. Concentrations of nitrate and ammonium, relative abundance of amoA (the gene responsible for a key step in the microbial nitrification pathway), and the dual isotope signal to nitrate all point to snow melt as a key deliverer of nitrogen to ecosystems along the Colorado Front Range. However, late summer surface water chemistry is isotopically similar to the chemistry of glacial ice. This suggests that retreating glacier may be an additional source of N to alpine ecosystems and have the potential to alter microbial community composition, biogeochemical rate processes, and ecosystem function. These dynamics are most likely not unique to the Colorado Front Range and should be globally distributed as glaciers continue to retreat in high altitude ecosystems around the world.

  4. Density of Key-Species Determines Efficiency of Macroalgae Detritus Uptake by Intertidal Benthic Communities

    PubMed Central

    Karlson, Agnes M. L.; Niemand, Clarisse; Savage, Candida; Pilditch, Conrad A

    2016-01-01

    Accumulating evidence shows that increased biodiversity has a positive effect on ecosystem functioning, but the mechanisms that underpin this positive relationship are contentious. Complete extinctions of regional species pools are comparatively rare whereas compositional changes and reductions in abundance and biomass are common, although seldom the focus of biodiversity-ecosystem functioning studies. We use natural, small-scale patchiness in the density of two species of large bivalves with contrasting feeding modes (the suspension-feeding Austrovenus stutchburyi and deposit-feeding Macomona liliana) to examine their influence on the uptake of nitrogen from macroalgae detritus (i.e. measure of ecosystem function and food web efficiency) by other infauna in a 10-d laboratory isotope-tracer experiment. We predicted that densities of these key bivalve species and functional group diversity (calculated as Shannons H, a density-independent measure of community composition) of the intact infaunal community will be critical factors explaining variance in macroalgal per capita uptake rates by the community members and hence determine total uptake by the community. Results show that only two species, M. liliana and a large orbiniid polychaete (Scoloplos cylindrifer) dominated macroalgal nitrogen taken up by the whole community due to their large biomass. However, their densities were mostly not important or negatively influenced per capita uptake by other species. Instead, the density of a head-down deposit-feeder (the capitellid Heteromastus filiformis), scavengers (mainly nemertines and nereids) and species and functional group diversity, best explained per capita uptake rates in community members. Our results demonstrate the importance of species identity, density and large body size for ecosystem functioning and highlight the complex interactions underlying loss of ecological functions with declining biodiversity and compositional changes. PMID:27414032

  5. A comparison of community and trophic structure in five marine ecosystems based on energy budgets and system metrics

    NASA Astrophysics Data System (ADS)

    Gaichas, Sarah; Skaret, Georg; Falk-Petersen, Jannike; Link, Jason S.; Overholtz, William; Megrey, Bernard A.; Gjøsæter, Harald; Stockhausen, William T.; Dommasnes, Are; Friedland, Kevin D.; Aydin, Kerim

    2009-04-01

    Energy budget models for five marine ecosystems were compared to identify differences and similarities in trophic and community structure. We examined the Gulf of Maine and Georges Bank in the northwest Atlantic Ocean, the combined Norwegian/Barents Seas in the northeast Atlantic Ocean, and the eastern Bering Sea and the Gulf of Alaska in the northeast Pacific Ocean. Comparable energy budgets were constructed for each ecosystem by aggregating information for similar species groups into consistent functional groups. Several ecosystem indices (e.g., functional group production, consumption and biomass ratios, cumulative biomass, food web macrodescriptors, and network metrics) were compared for each ecosystem. The comparative approach clearly identified data gaps for each ecosystem, an important outcome of this work. Commonalities across the ecosystems included overall high primary production and energy flow at low trophic levels, high production and consumption by carnivorous zooplankton, and similar proportions of apex predator to lower trophic level biomass. Major differences included distinct biomass ratios of pelagic to demersal fish, ranging from highest in the combined Norwegian/Barents ecosystem to lowest in the Alaskan systems, and notable differences in primary production per unit area, highest in the Alaskan and Georges Bank/Gulf of Maine ecosystems, and lowest in the Norwegian ecosystems. While comparing a disparate group of organisms across a wide range of marine ecosystems is challenging, this work demonstrates that standardized metrics both elucidate properties common to marine ecosystems and identify key distinctions useful for fisheries management.

  6. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2016-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  7. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2015-01-01

    The purpose of this presentation is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  8. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2015-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  9. Consumer-driven nutrient dynamics in freshwater ecosystems: from individuals to ecosystems.

    PubMed

    Atkinson, Carla L; Capps, Krista A; Rugenski, Amanda T; Vanni, Michael J

    2017-11-01

    The role of animals in modulating nutrient cycling [hereafter, consumer-driven nutrient dynamics (CND)] has been accepted as an important influence on both community structure and ecosystem function in aquatic systems. Yet there is great variability in the influence of CND across species and ecosystems, and the causes of this variation are not well understood. Here, we review and synthesize the mechanisms behind CND in fresh waters. We reviewed 131 articles on CND published between 1973 and 1 June 2015. The rate of new publications in CND has increased from 1.4 papers per year during 1973-2002 to 7.3 per year during 2003-2015. The majority of investigations are in North America with many concentrating on fish. More recent studies have focused on animal-mediated nutrient excretion rates relative to nutrient demand and indirect impacts (e.g. decomposition). We identified several mechanisms that influence CND across levels of biological organization. Factors affecting the stoichiometric plasticity of consumers, including body size, feeding history and ontogeny, play an important role in determining the impact of individual consumers on nutrient dynamics and underlie the stoichiometry of CND across time and space. The abiotic characteristics of an ecosystem affect the net impact of consumers on ecosystem processes by influencing consumer metabolic processes (e.g. consumption and excretion/egestion rates), non-CND supply of nutrients and ecosystem nutrient demand. Furthermore, the transformation and transport of elements by populations and communities of consumers also influences the flow of energy and nutrients across ecosystem boundaries. This review highlights that shifts in community composition or biomass of consumers and eco-evolutionary underpinnings can have strong effects on the functional role of consumers in ecosystem processes, yet these are relatively unexplored aspects of CND. Future research should evaluate the value of using species traits and abiotic

  10. Hydrologic dynamics and ecosystem structure.

    PubMed

    Rodríguez-Iturbe, I

    2003-01-01

    Ecohydrology is the science that studies the mutual interaction between the hydrological cycle and ecosystems. Such an interaction is especially intense in water-controlled ecosystems, where water may be a limiting factor, not only because of its scarcity, but also because of its intermittent and unpredictable appearance. Hydrologic dynamics is shown to be a crucial factor for ecological patterns and processes. The probabilistic structure of soil moisture in time and space is presented as the key linkage between soil, climate and vegetation dynamics. Nutrient cycles, vegetation coexistence and plant response to environmental conditions are all intimately linked to the stochastic fluctuation of the hydrologic inputs driving an ecosystem.

  11. Bridging Food Webs, Ecosystem Metabolism, and Biogeochemistry Using Ecological Stoichiometry Theory

    PubMed Central

    Welti, Nina; Striebel, Maren; Ulseth, Amber J.; Cross, Wyatt F.; DeVilbiss, Stephen; Glibert, Patricia M.; Guo, Laodong; Hirst, Andrew G.; Hood, Jim; Kominoski, John S.; MacNeill, Keeley L.; Mehring, Andrew S.; Welter, Jill R.; Hillebrand, Helmut

    2017-01-01

    Although aquatic ecologists and biogeochemists are well aware of the crucial importance of ecosystem functions, i.e., how biota drive biogeochemical processes and vice-versa, linking these fields in conceptual models is still uncommon. Attempts to explain the variability in elemental cycling consequently miss an important biological component and thereby impede a comprehensive understanding of the underlying processes governing energy and matter flow and transformation. The fate of multiple chemical elements in ecosystems is strongly linked by biotic demand and uptake; thus, considering elemental stoichiometry is important for both biogeochemical and ecological research. Nonetheless, assessments of ecological stoichiometry (ES) often focus on the elemental content of biota rather than taking a more holistic view by examining both elemental pools and fluxes (e.g., organismal stoichiometry and ecosystem process rates). ES theory holds the promise to be a unifying concept to link across hierarchical scales of patterns and processes in ecology, but this has not been fully achieved. Therefore, we propose connecting the expertise of aquatic ecologists and biogeochemists with ES theory as a common currency to connect food webs, ecosystem metabolism, and biogeochemistry, as they are inherently concatenated by the transfer of carbon, nitrogen, and phosphorous through biotic and abiotic nutrient transformation and fluxes. Several new studies exist that demonstrate the connections between food web ecology, biogeochemistry, and ecosystem metabolism. In addition to a general introduction into the topic, this paper presents examples of how these fields can be combined with a focus on ES. In this review, a series of concepts have guided the discussion: (1) changing biogeochemistry affects trophic interactions and ecosystem processes by altering the elemental ratios of key species and assemblages; (2) changing trophic dynamics influences the transformation and fluxes of matter

  12. Bridging Food Webs, Ecosystem Metabolism, and Biogeochemistry Using Ecological Stoichiometry Theory.

    PubMed

    Welti, Nina; Striebel, Maren; Ulseth, Amber J; Cross, Wyatt F; DeVilbiss, Stephen; Glibert, Patricia M; Guo, Laodong; Hirst, Andrew G; Hood, Jim; Kominoski, John S; MacNeill, Keeley L; Mehring, Andrew S; Welter, Jill R; Hillebrand, Helmut

    2017-01-01

    Although aquatic ecologists and biogeochemists are well aware of the crucial importance of ecosystem functions, i.e., how biota drive biogeochemical processes and vice-versa, linking these fields in conceptual models is still uncommon. Attempts to explain the variability in elemental cycling consequently miss an important biological component and thereby impede a comprehensive understanding of the underlying processes governing energy and matter flow and transformation. The fate of multiple chemical elements in ecosystems is strongly linked by biotic demand and uptake; thus, considering elemental stoichiometry is important for both biogeochemical and ecological research. Nonetheless, assessments of ecological stoichiometry (ES) often focus on the elemental content of biota rather than taking a more holistic view by examining both elemental pools and fluxes (e.g., organismal stoichiometry and ecosystem process rates). ES theory holds the promise to be a unifying concept to link across hierarchical scales of patterns and processes in ecology, but this has not been fully achieved. Therefore, we propose connecting the expertise of aquatic ecologists and biogeochemists with ES theory as a common currency to connect food webs, ecosystem metabolism, and biogeochemistry, as they are inherently concatenated by the transfer of carbon, nitrogen, and phosphorous through biotic and abiotic nutrient transformation and fluxes. Several new studies exist that demonstrate the connections between food web ecology, biogeochemistry, and ecosystem metabolism. In addition to a general introduction into the topic, this paper presents examples of how these fields can be combined with a focus on ES. In this review, a series of concepts have guided the discussion: (1) changing biogeochemistry affects trophic interactions and ecosystem processes by altering the elemental ratios of key species and assemblages; (2) changing trophic dynamics influences the transformation and fluxes of matter

  13. The biodiversity-dependent ecosystem service debt.

    PubMed

    Isbell, Forest; Tilman, David; Polasky, Stephen; Loreau, Michel

    2015-02-01

    Habitat destruction is driving biodiversity loss in remaining ecosystems, and ecosystem functioning and services often directly depend on biodiversity. Thus, biodiversity loss is likely creating an ecosystem service debt: a gradual loss of biodiversity-dependent benefits that people obtain from remaining fragments of natural ecosystems. Here, we develop an approach for quantifying ecosystem service debts, and illustrate its use to estimate how one anthropogenic driver, habitat destruction, could indirectly diminish one ecosystem service, carbon storage, by creating an extinction debt. We estimate that c. 2-21 Pg C could be gradually emitted globally in remaining ecosystem fragments because of plant species loss caused by nearby habitat destruction. The wide range for this estimate reflects substantial uncertainties in how many plant species will be lost, how much species loss will impact ecosystem functioning and whether plant species loss will decrease soil carbon. Our exploratory analysis suggests that biodiversity-dependent ecosystem service debts can be globally substantial, even when locally small, if they occur diffusely across vast areas of remaining ecosystems. There is substantial value in conserving not only the quantity (area), but also the quality (biodiversity) of natural ecosystems for the sustainable provision of ecosystem services. © 2014 John Wiley & Sons Ltd/CNRS.

  14. A multi-biome gap in understanding of crop and ecosystem responses to elevated CO2.

    PubMed

    Leakey, Andrew D B; Bishop, Kristen A; Ainsworth, Elizabeth A

    2012-06-01

    A key finding from elevated [CO(2)] field experiments is that the impact of elevated [CO(2)] on plant and ecosystem function is highly dependent upon other environmental conditions, namely temperature and the availability of nutrients and soil moisture. In addition, there is significant variation in the response to elevated [CO(2)] among plant functional types, species and crop varieties. However, experimental data on plant and ecosystem responses to elevated [CO(2)] are strongly biased to economically and ecologically important systems in the temperate zone. There is a multi-biome gap in experimental data that is most severe in the tropics and subtropics, but also includes high latitudes. Physiological understanding of the environmental conditions and species found at high and low latitudes suggest they may respond differently to elevated [CO(2)] than well-studied temperate systems. Addressing this knowledge gap should be a high priority as it is vital to understanding 21st century food supply and ecosystem feedbacks on climate change. Published by Elsevier Ltd.

  15. A practical guide to the application of the IUCN Red List of Ecosystems criteria.

    PubMed

    Rodríguez, Jon Paul; Keith, David A; Rodríguez-Clark, Kathryn M; Murray, Nicholas J; Nicholson, Emily; Regan, Tracey J; Miller, Rebecca M; Barrow, Edmund G; Bland, Lucie M; Boe, Kaia; Brooks, Thomas M; Oliveira-Miranda, María A; Spalding, Mark; Wit, Piet

    2015-02-19

    The newly developed IUCN Red List of Ecosystems is part of a growing toolbox for assessing risks to biodiversity, which addresses ecosystems and their functioning. The Red List of Ecosystems standard allows systematic assessment of all freshwater, marine, terrestrial and subterranean ecosystem types in terms of their global risk of collapse. In addition, the Red List of Ecosystems categories and criteria provide a technical base for assessments of ecosystem status at the regional, national, or subnational level. While the Red List of Ecosystems criteria were designed to be widely applicable by scientists and practitioners, guidelines are needed to ensure they are implemented in a standardized manner to reduce epistemic uncertainties and allow robust comparisons among ecosystems and over time. We review the intended application of the Red List of Ecosystems assessment process, summarize 'best-practice' methods for ecosystem assessments and outline approaches to ensure operational rigour of assessments. The Red List of Ecosystems will inform priority setting for ecosystem types worldwide, and strengthen capacity to report on progress towards the Aichi Targets of the Convention on Biological Diversity. When integrated with other IUCN knowledge products, such as the World Database of Protected Areas/Protected Planet, Key Biodiversity Areas and the IUCN Red List of Threatened Species, the Red List of Ecosystems will contribute to providing the most complete global measure of the status of biodiversity yet achieved. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Use of descriptors of ecosystem functioning for monitoring a national park network: a remote sensing approach.

    PubMed

    Alcaraz-Segura, Domingo; Cabello, Javier; Paruelo, José M; Delibes, Miguel

    2009-01-01

    Baseline assessments and monitoring of protected areas are essential for making management decisions, evaluating the effectiveness of management practices, and tracking the effects of global changes. For these purposes, the analysis of functional attributes of ecosystems (i.e., different aspects of the exchange of matter and energy) has advantages over the traditional use of structural attributes, like a quicker response to disturbances and the fact that they are easily monitored through remote sensing. In this study, we described the spatiotemporal patterns of different aspects of the ecosystem functioning of the Spanish national parks and their response to environmental changes between 1982 and 2006. To do so, we used the NOAA/AVHRR-GIMMS dataset of the Normalized Difference Vegetation Index (NDVI), a linear estimator of the fraction of photosynthetic active radiation intercepted by vegetation, which is the main control of carbon gains. Nearly all parks have significantly changed during the last 25 years: The radiation interception has increased, the contrast between the growing and nongrowing seasons has diminished, and the dates of maximum and minimum interception have advanced. Some parks concentrated more changes than others and the degree of change varied depending on their different environmental conditions, management, and conservation histories. Our approach identified reference conditions and temporal changes for different aspects of ecosystem functioning, which can be used for management purposes of protected areas in response to global changes.

  17. Are trait-growth models transferable? Predicting multi-species growth trajectories between ecosystems using plant functional traits

    PubMed Central

    Vesk, Peter A.

    2017-01-01

    Plant functional traits are increasingly used to generalize across species, however few examples exist of predictions from trait-based models being evaluated in new species or new places. Can we use functional traits to predict growth of unknown species in different areas? We used three independently collected datasets, each containing data on heights of individuals from non-resprouting species over a chronosquence of time-since-fire sites from three ecosystems in south-eastern Australia. We examined the influence of specific leaf area, woody density, seed size and leaf nitrogen content on three aspects of plant growth; maximum relative growth rate, age at maximum growth and asymptotic height. We tested our capacity to perform out-of-sample prediction of growth trajectories between ecosystems using species functional traits. We found strong trait-growth relationships in one of the datasets; whereby species with low SLA achieved the greatest asymptotic heights, species with high leaf-nitrogen content achieved relatively fast growth rates, and species with low seed mass reached their time of maximum growth early. However these same growth-trait relationships did not hold across the two other datasets, making accurate prediction from one dataset to another unachievable. We believe there is evidence to suggest that growth trajectories themselves may be fundamentally different between ecosystems and that trait-height-growth relationships may change over environmental gradients. PMID:28486535

  18. Ecosystem carbon stocks of micronesian mangrove forests

    Treesearch

    J. Boone Kauffman; Chris Heider; Thomas G. Cole; Kathleen A. Dwire; Daniel C. Donato

    2011-01-01

    Among the least studied ecosystem services of mangroves is their value as global carbon (C) stocks. This is significant as mangroves are subject to rapid rates of deforestation and therefore could be significant sources of atmospheric emissions. Mangroves could be key ecosystems in strategies addressing the mitigation of climate change though reduced deforestation. We...

  19. Ecosystem-Based Management and the Sustainable Delivery of Marine Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Fogarty, M.; Schwing, F. B.

    2016-12-01

    Ecosystem-Based Management can provide an essential framework for the sustainable delivery of a broad spectrum of marine Ecosystem Services (ES) essential to human well being. Key elements of the approach involve the specification of clearly articulated goals for EBM; the development of an accompanying Marine Ecosystem Services Assessment (MESA) designed to evaluate the status of delivery of these services; and strategies for the implementation of management options designed to achieve the stated goals of the program. The specification of goals is the purview of managers. In the United States under the provisions of the National Ocean Policy, Regional Planning Bodies are charged with the responsibility of articulating goals and developing strategies to meet these goals. Government agencies, in concert with the broader scientific community, hold the responsibility for assessing the status of the delivery of ecosystem services in relation to designated objectives and advising on appropriate management strategies. In this presentation, I will illustrate the specification of a MESA for the Northwest U.S Continental Shelf Large Marine Ecosystem (NES LME). The approach focuses on the evaluation of ES indicators and additional metrics related to threats and impacts to the sustainable delivery of these services. Results are combined into an overall index of status of the NES LME.

  20. Microbial eukaryotic distributions and diversity patterns in a deep-sea methane seep ecosystem.

    PubMed

    Pasulka, Alexis L; Levin, Lisa A; Steele, Josh A; Case, David H; Landry, Michael R; Orphan, Victoria J

    2016-09-01

    Although chemosynthetic ecosystems are known to support diverse assemblages of microorganisms, the ecological and environmental factors that structure microbial eukaryotes (heterotrophic protists and fungi) are poorly characterized. In this study, we examined the geographic, geochemical and ecological factors that influence microbial eukaryotic composition and distribution patterns within Hydrate Ridge, a methane seep ecosystem off the coast of Oregon using a combination of high-throughput 18S rRNA tag sequencing, terminal restriction fragment length polymorphism fingerprinting, and cloning and sequencing of full-length 18S rRNA genes. Microbial eukaryotic composition and diversity varied as a function of substrate (carbonate versus sediment), activity (low activity versus active seep sites), sulfide concentration, and region (North versus South Hydrate Ridge). Sulfide concentration was correlated with changes in microbial eukaryotic composition and richness. This work also revealed the influence of oxygen content in the overlying water column and water depth on microbial eukaryotic composition and diversity, and identified distinct patterns from those previously observed for bacteria, archaea and macrofauna in methane seep ecosystems. Characterizing the structure of microbial eukaryotic communities in response to environmental variability is a key step towards understanding if and how microbial eukaryotes influence seep ecosystem structure and function. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. The importance of ecological memory for trophic rewilding as an ecosystem restoration approach.

    PubMed

    Schweiger, Andreas H; Boulangeat, Isabelle; Conradi, Timo; Davis, Matt; Svenning, Jens-Christian

    2018-06-06

    Increasing human pressure on strongly defaunated ecosystems is characteristic of the Anthropocene and calls for proactive restoration approaches that promote self-sustaining, functioning ecosystems. However, the suitability of novel restoration concepts such as trophic rewilding is still under discussion given fragmentary empirical data and limited theory development. Here, we develop a theoretical framework that integrates the concept of 'ecological memory' into trophic rewilding. The ecological memory of an ecosystem is defined as an ecosystem's accumulated abiotic and biotic material and information legacies from past dynamics. By summarising existing knowledge about the ecological effects of megafauna extinction and rewilding across a large range of spatial and temporal scales, we identify two key drivers of ecosystem responses to trophic rewilding: (i) impact potential of (re)introduced megafauna, and (ii) ecological memory characterising the focal ecosystem. The impact potential of (re)introduced megafauna species can be estimated from species properties such as lifetime per capita engineering capacity, population density, home range size and niche overlap with resident species. The importance of ecological memory characterising the focal ecosystem depends on (i) the absolute time since megafauna loss, (ii) the speed of abiotic and biotic turnover, (iii) the strength of species interactions characterising the focal ecosystem, and (iv) the compensatory capacity of surrounding source ecosystems. These properties related to the focal and surrounding ecosystems mediate material and information legacies (its ecological memory) and modulate the net ecosystem impact of (re)introduced megafauna species. We provide practical advice about how to quantify all these properties while highlighting the strong link between ecological memory and historically contingent ecosystem trajectories. With this newly established ecological memory-rewilding framework, we hope to guide

  2. Ecosystem Modeling of Biological Processes to Global Budgets

    NASA Technical Reports Server (NTRS)

    Christopher, Potter S.; Condon, Estelle (Technical Monitor)

    2000-01-01

    From an ecological perspective, the search for life on distant planets begins from several key assumptions. The first of these is that, viewed from a remote location in space, the signature of life on a distant planet will be the result of net gas exchange of organisms with their environment. On the basis of extensive biogeochemical measurements and biogenic trace gas fluxes in modem Earth environments, it is probable that certain groups of organisms both produce and consume the same trace gas(es) within a single bioprofile of Solid (porous) substrate or surface water. The net gas exchange rate with the atmosphere measured at the living surface is frequently the result of competing metabolic reactions, which may carried out by different functional groups of organisms located at dissimilar 'climatic' or chemical microsites within the same bioprofile. Biogenic gases produced at one (deep) level of a bioprofile may be consumed by another functional group of organisms located closer to the level of surface exchange with the atmosphere. A second key assumption is that the net biogenic fluxes of atmospheric gases on Earth can be used to infer relative abundance and functional composition of the major organisms on a distant planet. Examples of this principle include the presence of methanogenic microorganisms abundant today in freshwater ecosystems worldwide, which are major source of atmospheric methane and its seasonal variability in Earth's atmosphere. A third assumption is that scaling up biogenic gas fluxes from a single biological community to the planetary level requires flux measurements at the whole ecosystem level. This implies that measurements of biogenic gas exchange with the global atmosphere cannot be easily inferred from measurements of gas production rates of single organisms, which may have been isolated in some manner from the setting of their native ecosystem. Hence, the unit of biological organization used in modern Earth Science for scaling up to

  3. Stocktype and grass suppression accelerate the restoration trajectory of Acacia koa in Hawaiian montane ecosystems

    Treesearch

    Jeremy Pinto; Anthony S. Davis; James J. K. Leary; Matthew M. Aghai

    2015-01-01

    Restoring degraded mesic-montane forests represents a major challenge in maintaining functioning ecosystems throughout the tropics. A key example of this lies in Hawai‘i, where restoring native koa (Acacia koa, A. Gray) forests are a top conservation and forestry priority because of the critical habitat and high-value timber products that they provide. Efforts...

  4. Conversion of woodlands changes soil related ecosystem services in Subsaharan Africa

    NASA Astrophysics Data System (ADS)

    Groengroeft, Alexander; Landschreiber, Lars; Luther-Mosebach, Jona; Masamba, Wellington; Zimmermann, Ibo; Eschenbach, Annette

    2015-04-01

    distribution. At nine selected sites, soil water contents and pressure heads are logged throughout the year with a 12 hour resolution in depth of 10 to 160 cm. This monitoring gives information about soil water dynamics at point scale and the database is used to evaluate model outputs of soil water balances later on. To derive point scale soil water balances for each landscape unit the one dimensional and physically based model SWAP 3.2 is applied. The presentation will demonstrate the conceptual framework, exemplary results and will discuss, if the ecosystem service approach can help to avoid future land degradation. Key word: Okavango catchment, soil functions, conceptual approach

  5. Soil ecosystem function under native and exotic plant assemblages as alternative states of successional grasslands

    NASA Astrophysics Data System (ADS)

    Spirito, Florencia; Yahdjian, Laura; Tognetti, Pedro M.; Chaneton, Enrique J.

    2014-01-01

    Old fields often become dominated by exotic plants establishing persistent community states. Ecosystem functioning may differ widely between such novel communities and the native-dominated counterparts. We evaluated soil ecosystem attributes in native and exotic (synthetic) grass assemblages established on a newly abandoned field, and in remnants of native grassland in the Inland Pampa, Argentina. We asked whether exotic species alter soil functioning through the quality of the litter they shed or by changing the decomposition environment. Litter decomposition of the exotic dominant Festuca arundinacea in exotic assemblages was faster than that of the native dominant Paspalum quadrifarium in native assemblages and remnant grasslands. Decomposition of a standard litter (Triticum aestivum) was also faster in exotic assemblages than in native assemblages and remnant grasslands. In a common garden, F. arundinacea showed higher decay rates than P. quadrifarium, which reflected the higher N content and lower C:N of the exotic grass litter. Soil respiration rates were higher in the exotic than in the native assemblages and remnant grasslands. Yet there were no significant differences in soil N availability or net N mineralization between exotic and native assemblages. Our results suggest that exotic grass dominance affected ecosystem function by producing a more decomposable leaf litter and by increasing soil decomposer activity. These changes might contribute to the extended dominance of fast-growing exotic grasses during old-field succession. Further, increased organic matter turnover under novel, exotic communities could reduce the carbon storage capacity of the system in the long term.

  6. Alternative states of a semiarid grassland ecosystem: implications for ecosystem services

    USGS Publications Warehouse

    Miller, Mark E.; Belote, R. Travis; Bowker, Matthew A.; Garman, Steven L.

    2011-01-01

    Ecosystems can shift between alternative states characterized by persistent differences in structure, function, and capacity to provide ecosystem services valued by society. We examined empirical evidence for alternative states in a semiarid grassland ecosystem where topographic complexity and contrasting management regimes have led to spatial variations in levels of livestock grazing. Using an inventory data set, we found that plots (n = 72) cluster into three groups corresponding to generalized alternative states identified in an a priori conceptual model. One cluster (biocrust) is notable for high coverage of a biological soil crust functional group in addition to vascular plants. Another (grass-bare) lacks biological crust but retains perennial grasses at levels similar to the biocrust cluster. A third (annualized-bare) is dominated by invasive annual plants. Occurrence of grass-bare and annualized-bare conditions in areas where livestock have been excluded for over 30 years demonstrates the persistence of these states. Significant differences among all three clusters were found for percent bare ground, percent total live cover, and functional group richness. Using data for vegetation structure and soil erodibility, we also found large among-cluster differences in average levels of dust emissions predicted by a wind-erosion model. Predicted emissions were highest for the annualized-bare cluster and lowest for the biocrust cluster, which was characterized by zero or minimal emissions even under conditions of extreme wind. Results illustrate potential trade-offs among ecosystem services including livestock production, soil retention, carbon storage, and biodiversity conservation. Improved understanding of these trade-offs may assist ecosystem managers when evaluating alternative management strategies.

  7. Maintaining ecosystem resilience: functional responses of tree cavity nesters to logging in temperate forests of the Americas.

    PubMed

    Ibarra, José Tomás; Martin, Michaela; Cockle, Kristina L; Martin, Kathy

    2017-06-30

    Logging often reduces taxonomic diversity in forest communities, but little is known about how this biodiversity loss affects the resilience of ecosystem functions. We examined how partial logging and clearcutting of temperate forests influenced functional diversity of birds that nest in tree cavities. We used point-counts in a before-after-control-impact design to examine the effects of logging on the value, range, and density of functional traits in bird communities in Canada (21 species) and Chile (16 species). Clearcutting, but not partial logging, reduced diversity in both systems. The effect was much more pronounced in Chile, where logging operations removed critical nesting resources (large decaying trees), than in Canada, where decaying aspen Populus tremuloides were retained on site. In Chile, logging was accompanied by declines in species richness, functional richness (amount of functional niche occupied by species), community-weighted body mass (average mass, weighted by species densities), and functional divergence (degree of maximization of divergence in occupied functional niche). In Canada, clearcutting did not affect species richness but nevertheless reduced functional richness and community-weighted body mass. Although some cavity-nesting birds can persist under intensive logging operations, their ecosystem functions may be severely compromised unless future nest trees can be retained on logged sites.

  8. Adaptation, acclimation, and assembly: How optimality principles govern the scaling of form, function, and diversity of ecosystem function in the light of climate change.

    NASA Astrophysics Data System (ADS)

    Enquist, B. J.

    2016-12-01

    The link between variation in species-specific traits - due to acclimation, adaptation, and how ecological communities assemble in time and space - and larger scale ecosystem processes is an important focus for global change research. Understanding such linkages requires synthesis of evolutionary, biogeograpahic, and biogeochemical approaches. Recent observations reveal several paradoxical patterns across ecosystems. Optimality principles provide a novel framework for generating numerous predictions for how ecosystems have and will reorganize and respond to climate change. Tropical elevation gradients are natural laboratories to assess how changing climate can ramify to influence tropical forest diversity and ecosystem functioning. We tested several new predictions from trait- and metabolic scaling theories by assessing the covariation between climate, traits, biomass and gross and net primary productivity (GPP and NPP) across tropical forest plots spanning elevation gradients. We measured multiple leaf physiological, morphological, and stoichiometric traits linked to variation in tree growth. Consistent with theory, observed decreases in NPP and GPP with temperature were best predicted by forest biomass, and scaled allometrically as predicted by theory but the effect of temperature was much less, characterized by a kinetic response much lower ( 0.1eV) than predicted ( 0.65eV). This is likely due to an observed exponential increase in the mean community leaf P:N ratio and photosynthetic nutrient use efficiency with decreases in temperature. Our results are consistent with predictions from Trait Driver Theory, where adaptive/acclamatory shifts in plant traits compensate for the kinetic effects of temperature on tree growth. Further, most of the traits measured showed significantly skewed trait distributions consistent with recent observations that observed shifts in species composition. The development of trait-based scaling theory provides a robust basis to predict

  9. Hydrolytic microbial communities in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Manucharova, Natalia; Chernov, Timofey; Kolcova, Ekaterina; Zelezova, Alena; Lukacheva, Euhenia; Zenova, Galina

    2014-05-01

    Hydrolytic microbial communities in terrestrial ecosystems Manucharova N.A., Chernov T.I., Kolcova E.M., Zelezova A.D., Lukacheva E.G. Lomonosov Moscow State University, Russia Vertical differentiation of terrestrial biogeocenoses is conditioned by the formation of vertical tiers that differ considerably in the composition and structure of microbial communities. All the three tiers, phylloplane, litter and soil, are united by a single flow of organic matter, and are spatially separated successional stages of decomposition of organic substances. Decomposition of organic matter is mainly due to the activity of microorganisms producing enzymes - hydrolase and lyase - which destroy complex organic compounds. Application of molecular biological techniques (FISH) in environmental studies provides a more complete information concerning the taxonomic diversity and potential hydrolytic activity of microbial complexes of terrestrial ecosystems that exist in a wide range of environmental factors (moisture, temperature, redox potential, organic matter). The combination of two molecular biological techniques (FISH and DGGE-analysis of fragments of gene 16S rRNA total amplificate) enables an informative assessment of the differences in the structure of dominant and minor components of hydrolytic complexes formed in different tiers of terrestrial ecosystems. The functional activity of hydrolytic microbial complexes of terrestrial ecosystems is determined by the activity of dominant and minor components, which also have a high gross enzymatic activity. Degradation of biopolymers in the phylloplane is mainly due to the representatives of the Proteobacteria phylogenetic group (classes alpha and beta). In mineral soil horizons, the role of hydrolytic representatives of Firmicutes and Actinobacteria increases. Among the key environmental parameters that determine the functional activity of the hydrolytic (chitinolytic) complex of soil layer (moisture, nutrient supply, successional

  10. Assimilation of Ocean-Color Plankton Functional Types to Improve Marine Ecosystem Simulations

    NASA Astrophysics Data System (ADS)

    Ciavatta, S.; Brewin, R. J. W.; Skákala, J.; Polimene, L.; de Mora, L.; Artioli, Y.; Allen, J. I.

    2018-02-01

    We assimilated phytoplankton functional types (PFTs) derived from ocean color into a marine ecosystem model, to improve the simulation of biogeochemical indicators and emerging properties in a shelf sea. Error-characterized chlorophyll concentrations of four PFTs (diatoms, dinoflagellates, nanoplankton, and picoplankton), as well as total chlorophyll for comparison, were assimilated into a physical-biogeochemical model of the North East Atlantic, applying a localized Ensemble Kalman filter. The reanalysis simulations spanned the years 1998-2003. The skill of the reference and reanalysis simulations in estimating ocean color and in situ biogeochemical data were compared by using robust statistics. The reanalysis outperformed both the reference and the assimilation of total chlorophyll in estimating the ocean-color PFTs (except nanoplankton), as well as the not-assimilated total chlorophyll, leading the model to simulate better the plankton community structure. Crucially, the reanalysis improved the estimates of not-assimilated in situ data of PFTs, as well as of phosphate and pCO2, impacting the simulation of the air-sea carbon flux. However, the reanalysis increased further the model overestimation of nitrate, in spite of increases in plankton nitrate uptake. The method proposed here is easily adaptable for use with other ecosystem models that simulate PFTs, for, e.g., reanalysis of carbon fluxes in the global ocean and for operational forecasts of biogeochemical indicators in shelf-sea ecosystems.

  11. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification.

    PubMed

    Peng, Jian; Tian, Lu; Liu, Yanxu; Zhao, Mingyue; Hu, Yi'na; Wu, Jiansheng

    2017-12-31

    Ecosystem service is the key comprehensive indicator for measuring the ecological effects of urbanization. Although various studies have found a causal relationship between urbanization and ecosystem services degradation, the linear or non-linear characteristics are still unclear, especially identifying the impact thresholds in this relationship. This study quantified four ecosystem services (i.e. soil conservation, carbon sequestration and oxygen production, water yield, and food production) and total ecosystem services (TES), and then identified multiple advantageous area of ecosystem services in the peri-urban area of Beijing City. Using piecewise linear regression, the response of TES to urbanization (i.e., population density, GDP density, and construction land proportion) and its thresholds were detected. The results showed that, the TES was high in the north and west and low in the southeast, and there were seven multiple advantageous areas (distributed in the new urban development zone and ecological conservation zone), one single advantageous area (distributed in the ecological conservation zone), and six disadvantageous areas (mainly distributed in the urban function extended zone). TES response to population and economic urbanization each had a threshold (229personkm -2 and 107.15millionyuankm -2 , respectively), above which TES decreased rapidly with intensifying urbanization. However, there was a negative linear relationship between land urbanization and TES, which indicated that the impact of land urbanization on ecosystem services was more direct and effective than that of population and economic urbanization. It was also found that the negative impact of urbanization on TES was highest in the urban function extended zone, followed in descending order by that in the new urban development zone and ecological conservation zone. According to the detected relationships between urbanization and TES, the economic and population urbanization should be

  12. Nutrient foraging by mycorrhizas: From species functional traits to ecosystem processes

    DOE PAGES

    Chen, Weile; Koide, Roger T.; Eissenstat, David M.

    2018-01-09

    1. Plant roots and the associated mycorrhizal fungal hyphae often selectively proliferate into patchily distributed soil nutrient hotspots, but interactions between these two components of a mycorrhizal root system are usually ignored or experimentally isolated in nutrient foraging studies. 2. From studies in which both roots and mycorrhizal hyphae had access to nutrient hotspots, we compiled data on root foraging precision (increase in roots in nutrient hotspots relative to outside hotspots) of plant species from different ecosystems, ranging from temperate grasslands to subtropical forests. We found that root for- aging precision across the wide range of plant species was stronglymore » influenced by root morphology and mycorrhizal type. 3. The precision of root nutrient foraging, as a plant functional trait, may coordinate with other root traits that are related to the economics of nutrient acquisition. High foraging precision is expected to associate with the strategy of fast return on the investment in roots, such as low construction cost, high metabolic rate and rapid turnover. 4. Nutrient foraging by mycorrhizal fungi alone may be influenced by functional traits such as hyphal exploration distance, hyphal turnover, and hyphal uptake capacity and efficiency, but such data are limited to a small portion of mycorrhizal fungal species. 5. We propose a conceptual framework in which to simulate nitrogen and phosphorus acquisition from both nutrient hotspots and outside hotspots in mixed-species plant communities. Simulation outputs suggest that plant species with varying root morphology and mycorrhizal type can be adaptive to a range of nutrient heterogeneity. 6. Although there are still knowledge gaps related to nutrient foraging, as well as many unexplored plant and fungal species, we suggest that scaling nutrient foraging from individual plants to communities would advance understanding of plant species interactions and below-ground ecosystem function.« less

  13. Nutrient foraging by mycorrhizas: From species functional traits to ecosystem processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Weile; Koide, Roger T.; Eissenstat, David M.

    1. Plant roots and the associated mycorrhizal fungal hyphae often selectively proliferate into patchily distributed soil nutrient hotspots, but interactions between these two components of a mycorrhizal root system are usually ignored or experimentally isolated in nutrient foraging studies. 2. From studies in which both roots and mycorrhizal hyphae had access to nutrient hotspots, we compiled data on root foraging precision (increase in roots in nutrient hotspots relative to outside hotspots) of plant species from different ecosystems, ranging from temperate grasslands to subtropical forests. We found that root for- aging precision across the wide range of plant species was stronglymore » influenced by root morphology and mycorrhizal type. 3. The precision of root nutrient foraging, as a plant functional trait, may coordinate with other root traits that are related to the economics of nutrient acquisition. High foraging precision is expected to associate with the strategy of fast return on the investment in roots, such as low construction cost, high metabolic rate and rapid turnover. 4. Nutrient foraging by mycorrhizal fungi alone may be influenced by functional traits such as hyphal exploration distance, hyphal turnover, and hyphal uptake capacity and efficiency, but such data are limited to a small portion of mycorrhizal fungal species. 5. We propose a conceptual framework in which to simulate nitrogen and phosphorus acquisition from both nutrient hotspots and outside hotspots in mixed-species plant communities. Simulation outputs suggest that plant species with varying root morphology and mycorrhizal type can be adaptive to a range of nutrient heterogeneity. 6. Although there are still knowledge gaps related to nutrient foraging, as well as many unexplored plant and fungal species, we suggest that scaling nutrient foraging from individual plants to communities would advance understanding of plant species interactions and below-ground ecosystem function.« less

  14. Phosphorus-mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems

    PubMed Central

    Lambers, Hans; Bishop, John G.; Hopper, Stephen D.; Laliberté, Etienne; Zúñiga-Feest, Alejandra

    2012-01-01

    Background Carboxylate-releasing cluster roots of Proteaceae play a key role in acquiring phosphorus (P) from ancient nutrient-impoverished soils in Australia. However, cluster roots are also found in Proteaceae on young, P-rich soils in Chile where they allow P acquisition from soils that strongly sorb P. Scope Unlike Proteaceae in Australia that tend to proficiently remobilize P from senescent leaves, Chilean Proteaceae produce leaf litter rich in P. Consequently, they may act as ecosystem engineers, providing P for plants without specialized roots to access sorbed P. We propose a similar ecosystem-engineering role for species that release large amounts of carboxylates in other relatively young, strongly P-sorbing substrates, e.g. young acidic volcanic deposits and calcareous dunes. Many of these species also fix atmospheric nitrogen and release nutrient-rich litter, but their role as ecosystem engineers is commonly ascribed only to their diazotrophic nature. Conclusions We propose that the P-mobilizing capacity of Proteaceae on young soils, which contain an abundance of P, but where P is poorly available, in combination with inefficient nutrient remobilization from senescing leaves allows these species to function as ecosystem engineers. We suggest that diazotrophic species that colonize young soils with strong P-sorption potential should be considered for their positive effect on P availability, as well as their widely accepted role in nitrogen fixation. Their P-mobilizing activity possibly also enhances their nitrogen-fixing capacity. These diazotrophic species may therefore facilitate the establishment and growth of species with less-efficient P-uptake strategies on more-developed soils with low P availability through similar mechanisms. We argue that the significance of cluster roots and high carboxylate exudation in the development of young ecosystems is probably far more important than has been envisaged thus far. PMID:22700940

  15. Phosphorus-mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems.

    PubMed

    Lambers, Hans; Bishop, John G; Hopper, Stephen D; Laliberté, Etienne; Zúñiga-Feest, Alejandra

    2012-07-01

    Carboxylate-releasing cluster roots of Proteaceae play a key role in acquiring phosphorus (P) from ancient nutrient-impoverished soils in Australia. However, cluster roots are also found in Proteaceae on young, P-rich soils in Chile where they allow P acquisition from soils that strongly sorb P. Unlike Proteaceae in Australia that tend to proficiently remobilize P from senescent leaves, Chilean Proteaceae produce leaf litter rich in P. Consequently, they may act as ecosystem engineers, providing P for plants without specialized roots to access sorbed P. We propose a similar ecosystem-engineering role for species that release large amounts of carboxylates in other relatively young, strongly P-sorbing substrates, e.g. young acidic volcanic deposits and calcareous dunes. Many of these species also fix atmospheric nitrogen and release nutrient-rich litter, but their role as ecosystem engineers is commonly ascribed only to their diazotrophic nature. We propose that the P-mobilizing capacity of Proteaceae on young soils, which contain an abundance of P, but where P is poorly available, in combination with inefficient nutrient remobilization from senescing leaves allows these species to function as ecosystem engineers. We suggest that diazotrophic species that colonize young soils with strong P-sorption potential should be considered for their positive effect on P availability, as well as their widely accepted role in nitrogen fixation. Their P-mobilizing activity possibly also enhances their nitrogen-fixing capacity. These diazotrophic species may therefore facilitate the establishment and growth of species with less-efficient P-uptake strategies on more-developed soils with low P availability through similar mechanisms. We argue that the significance of cluster roots and high carboxylate exudation in the development of young ecosystems is probably far more important than has been envisaged thus far.

  16. Dominance, biomass and extinction resistance determine the consequences of biodiversity loss for multiple coastal ecosystem processes.

    PubMed

    Davies, Thomas W; Jenkins, Stuart R; Kingham, Rachel; Kenworthy, Joseph; Hawkins, Stephen J; Hiddink, Jan G

    2011-01-01

    Key ecosystem processes such as carbon and nutrient cycling could be deteriorating as a result of biodiversity loss. However, currently we lack the ability to predict the consequences of realistic species loss on ecosystem processes. The aim of this study was to test whether species contributions to community biomass can be used as surrogate measures of their contribution to ecosystem processes. These were gross community productivity in a salt marsh plant assemblage and an intertidal macroalgae assemblage; community clearance of microalgae in sessile suspension feeding invertebrate assemblage; and nutrient uptake in an intertidal macroalgae assemblage. We conducted a series of biodiversity manipulations that represented realistic species extinction sequences in each of the three contrasting assemblages. Species were removed in a subtractive fashion so that biomass was allowed to vary with each species removal, and key ecosystem processes were measured at each stage of community disassembly. The functional contribution of species was directly proportional to their contribution to community biomass in a 1:1 ratio, a relationship that was consistent across three contrasting marine ecosystems and three ecosystem processes. This suggests that the biomass contributed by a species to an assemblage can be used to approximately predict the proportional decline in an ecosystem process when that species is lost. Such predictions represent "worst case scenarios" because, over time, extinction resilient species can offset the loss of biomass associated with the extinction of competitors. We also modelled a "best case scenario" that accounts for compensatory responses by the extant species with the highest per capita contribution to ecosystem processes. These worst and best case scenarios could be used to predict the minimum and maximum species required to sustain threshold values of ecosystem processes in the future.

  17. Dominance, Biomass and Extinction Resistance Determine the Consequences of Biodiversity Loss for Multiple Coastal Ecosystem Processes

    PubMed Central

    Davies, Thomas W.; Jenkins, Stuart R.; Kingham, Rachel; Kenworthy, Joseph; Hawkins, Stephen J.; Hiddink, Jan G.

    2011-01-01

    Key ecosystem processes such as carbon and nutrient cycling could be deteriorating as a result of biodiversity loss. However, currently we lack the ability to predict the consequences of realistic species loss on ecosystem processes. The aim of this study was to test whether species contributions to community biomass can be used as surrogate measures of their contribution to ecosystem processes. These were gross community productivity in a salt marsh plant assemblage and an intertidal macroalgae assemblage; community clearance of microalgae in sessile suspension feeding invertebrate assemblage; and nutrient uptake in an intertidal macroalgae assemblage. We conducted a series of biodiversity manipulations that represented realistic species extinction sequences in each of the three contrasting assemblages. Species were removed in a subtractive fashion so that biomass was allowed to vary with each species removal, and key ecosystem processes were measured at each stage of community disassembly. The functional contribution of species was directly proportional to their contribution to community biomass in a 1∶1 ratio, a relationship that was consistent across three contrasting marine ecosystems and three ecosystem processes. This suggests that the biomass contributed by a species to an assemblage can be used to approximately predict the proportional decline in an ecosystem process when that species is lost. Such predictions represent “worst case scenarios” because, over time, extinction resilient species can offset the loss of biomass associated with the extinction of competitors. We also modelled a “best case scenario” that accounts for compensatory responses by the extant species with the highest per capita contribution to ecosystem processes. These worst and best case scenarios could be used to predict the minimum and maximum species required to sustain threshold values of ecosystem processes in the future. PMID:22163297

  18. Hypercarnivorous apex predator could provide ecosystem services by dispersing seeds.

    PubMed

    Sarasola, José Hernán; Zanón-Martínez, Juan Ignacio; Costán, Andrea Silvina; Ripple, William J

    2016-01-21

    Large "hypercarnivorous" felids are recognized for their role as apex predators and hence as key elements in food webs and ecosystem functioning through competition and depredation. Here we show that cougars (Puma concolor), one of the largest and the most widely ranging apex felid predators with a strictly carnivorous diet, could also be effective secondary long distance seed dispersers, potentially establishing direct and non-herbivore mediated interactions with plant species at the bottom of the food web. Cougars accidently ingest and disseminate large amounts of seeds (31,678 seeds in 123 scats) of plant species initially consumed by their main prey, the Eared Dove Zenaida auriculata. The germination potential of seeds for the three plant species most abundantly found in cougar scats (19,570 seeds) was not significantly different from that observed in seeds obtained from dove gizzards, indicating that seed passage through cougar guts did not affect seed germination. Considering the estimated cougar density in our study area, dispersal of seeds by cougars could allow a mean, annual seed spread of ~5,000 seeds per km(2). Our results demonstrate that strictly carnivorous, felid predators could have broad and overlooked ecological functions related to ecosystem structuring and functioning.

  19. Trophic models: What do we learn about Celtic Sea and Bay of Biscay ecosystems?

    NASA Astrophysics Data System (ADS)

    Moullec, Fabien; Gascuel, Didier; Bentorcha, Karim; Guénette, Sylvie; Robert, Marianne

    2017-08-01

    Trophic models are key tools to go beyond the single-species approaches used in stock assessments to adopt a more holistic view and implement the Ecosystem Approach to Fisheries Management (EAFM). This study aims to: (i) analyse the trophic functioning of the Celtic Sea and the Bay of Biscay, (ii) investigate ecosystem changes over the 1980-2013 period and, (iii) explore the response to management measures at the food web scale. Ecopath models were built for each ecosystem for years 1980 and 2013, and Ecosim models were fitted to time series data of biomass and catches. EcoTroph diagnosis showed that in both ecosystems, fishing pressure focuses on high trophic levels (TLs) and, to a lesser extent, on intermediate TLs. However, the interplay between local environmental conditions, species composition and ecosystem functioning could explain the different responses to fisheries management observed between these two contiguous ecosystems. Indeed, over the study period, the ecosystem's exploitation status has improved in the Bay of Biscay but not in the Celtic Sea. This improvement does not seem to be sufficient to achieve the objectives of an EAFM, as high trophic levels were still overexploited in 2013 and simulations conducted with Ecosim in the Bay of Biscay indicate that at current fishing effort the biomass will not be rebuilt by 2030. The ecosystem's response to a reduction in fishing mortality depends on which trophic levels receive protection. Reducing fishing mortality on pelagic fish, instead of on demersal fish, appears more efficient at maximising catch and total biomass and at conserving both top-predator and intermediate TLs. Such advice-oriented trophic models should be used on a regular basis to monitor the health status of marine food webs and analyse the trade-offs between multiple objectives in an ecosystem-based fisheries management context.

  20. Diversity and Function of Microbial Community in Chinese Strong-Flavor Baijiu Ecosystem: A Review

    PubMed Central

    Zou, Wei; Zhao, Changqing; Luo, Huibo

    2018-01-01

    Strong flavor baijiu (SFB), also called Luzhou-flavor liquor, is the most popular Chinese baijiu. It is manufactured via solid fermentation, with daqu as the starter. Microbial diversity of the SFB ecosystem and the synergistic effects of the enzymes and compounds produced by them are responsible for the special flavor and mouthfeel of SFB. The present review covers research studies focused on microbial community analysis of the SFB ecosystem, including the culturable microorganisms, their metabolic functions, microbial community diversity and their interactions. The review specifically emphasizes on the most recently conducted culture-independent analysis of SFB microbial community diversity. Furthermore, the possible application of systems biology approaches for elucidating the molecular mechanisms of SFB production were also reviewed and prospected. PMID:29686656

  1. Ecosystem services sustainability in the Mediterranean Sea: assessment of status and trends using multiple modelling approaches

    NASA Astrophysics Data System (ADS)

    Liquete, Camino; Piroddi, Chiara; Macías, Diego; Druon, Jean-Noël; Zulian, Grazia

    2016-09-01

    Mediterranean ecosystems support important processes and functions that bring direct benefits to human society. Yet, marine ecosystem services are usually overlooked due to the challenges in identifying and quantifying them. This paper proposes the application of several biophysical and ecosystem modelling approaches to assess spatially and temporally the sustainable use and supply of selected marine ecosystem services. Such services include food provision, water purification, coastal protection, lifecycle maintenance and recreation, focusing on the Mediterranean region. Overall, our study found a higher number of decreasing than increasing trends in the natural capacity of the ecosystems to provide marine and coastal services, while in contrast the opposite was observed to be true for the realised flow of services to humans. Such a study paves the way towards an effective support for Blue Growth and the European maritime policies, although little attention is paid to the quantification of marine ecosystem services in this context. We identify a key challenge of integrating biophysical and socio-economic models as a necessary step to further this research.

  2. Ecosystem services sustainability in the Mediterranean Sea: assessment of status and trends using multiple modelling approaches

    PubMed Central

    Liquete, Camino; Piroddi, Chiara; Macías, Diego; Druon, Jean-Noël; Zulian, Grazia

    2016-01-01

    Mediterranean ecosystems support important processes and functions that bring direct benefits to human society. Yet, marine ecosystem services are usually overlooked due to the challenges in identifying and quantifying them. This paper proposes the application of several biophysical and ecosystem modelling approaches to assess spatially and temporally the sustainable use and supply of selected marine ecosystem services. Such services include food provision, water purification, coastal protection, lifecycle maintenance and recreation, focusing on the Mediterranean region. Overall, our study found a higher number of decreasing than increasing trends in the natural capacity of the ecosystems to provide marine and coastal services, while in contrast the opposite was observed to be true for the realised flow of services to humans. Such a study paves the way towards an effective support for Blue Growth and the European maritime policies, although little attention is paid to the quantification of marine ecosystem services in this context. We identify a key challenge of integrating biophysical and socio-economic models as a necessary step to further this research. PMID:27686533

  3. Seagrass ecosystem services - What's next?

    PubMed

    Nordlund, Lina Mtwana; Jackson, Emma L; Nakaoka, Masahiro; Samper-Villarreal, Jimena; Beca-Carretero, Pedro; Creed, Joel C

    2017-09-20

    Seagrasses, marine flowering plants, provide a wide range of ecosystem services, defined here as natural processes and components that directly or indirectly benefit human needs. Recent research has shown that there are still many gaps in our comprehension of seagrass ecosystem service provision. Furthermore, there seems to be little public knowledge of seagrasses in general and the benefits they provide. This begs the questions: how do we move forward with the information we have? What other information do we need and what actions do we need to take in order to improve the situation and appreciation for seagrass? Based on the outcomes from an international expert knowledge eliciting workshop, three key areas to advance seagrass ecosystem service research were identified: 1) Variability of ecosystem services within seagrass meadows and among different meadows; 2) Seagrass ecosystem services in relation to, and their connection with, other coastal habitats; and 3) Improvement in the communication of seagrass ecosystem services to the public. Here we present ways forward to advance seagrass ecosystem service research in order to raise the profile of seagrass globally, as a means to establish more effective conservation and restoration of these important coastal habitats around the world. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Beyond diversity: how nested predator effects control ecosystem functions.

    PubMed

    Schneider, Florian Dirk; Brose, Ulrich

    2013-01-01

    The global decline in biodiversity is especially evident in higher trophic levels as predators display higher sensitivity to environmental change than organisms from lower trophic levels. This is even more alarming given the paucity of knowledge about the role of individual predator species in sustaining ecosystem functioning. The effect of predator diversity on lower trophic level prey is often driven by the increasing chance of including the most influential species. Furthermore, intraguild predation can cause trophic cascades with net positive effects on basal prey. As a consequence, the effects of losing a predator species appear to be idiosyncratic and it becomes unpredictable how the community's net effect on lower trophic levels changes when species number is declining. We performed a full factorial microcosm experiment with litter layer arthropods to measure the effects of predator diversity and context-dependent identity effects on a detritivore population and microbial biomass. We show that major parts of the observed diversity effect can be assigned to the increasing likelihood of including the most influential predator. Further, the presence of a second predator feeding on the first predator dampens this dominant effect. Including this intraguild predator on top of the first predator is more likely with increasing predator diversity as well. Thus, the overall pattern can be explained by a second identity effect, which is nested into the first. When losing a predator from the community, the response of the lower trophic level is highly dependent on the remaining predator species. We mechanistically explain the net effects of the predator community on lower trophic levels by nested effects of predator identities. These identity effects become predictable when taking the species' body masses into account. This provides a new mechanistic perspective describing ecosystem functioning as a consequence of species composition and yields an understanding beyond

  5. Impacts of climate change on biodiversity, ecosystems, and ecosystem services: technical input to the 2013 National Climate Assessment

    USGS Publications Warehouse

    Staudinger, Michelle D.; Grimm, Nancy B.; Staudt, Amanda; Carter, Shawn L.; Stuart, F. Stuart; Kareiva, Peter; Ruckelshaus, Mary; Stein, Bruce A.

    2012-01-01

    second cross-cutting topic is the rapidly advancing field of climate adaptation, where there has been significant progress in developing the conceptual framework, planning approaches, and strategies for safeguarding biodiversity and other ecological resources. At the same time, ecosystem-based adaptation is becoming more prominent as a way to utilize ecosystem services to help human systems adapt to climate change. In this summary, we present key findings of the technical input, focusing on themes that can be found throughout the report. Thus, this summary takes a more integrated look at the question of how climate change is affecting our ecological resources, the implications for humans, and possible response strategies. This integrated approach better reflects the impacts of climate in the real world, where changes in ecosystem structure or function will alter the viability of different species and the efficacy of ecosystem services. Likewise, adaptation to climate change will simultaneously address a range of conservation goals. Case studies are used to illustrate this complete picture throughout the report; a snapshot of one case study, 2011 Las Conchas, New Mexico Fire, is included in this summary.

  6. The superior effect of nature based solutions in land management for enhancing ecosystem services.

    PubMed

    Keesstra, Saskia; Nunes, Joao; Novara, Agata; Finger, David; Avelar, David; Kalantari, Zahra; Cerdà, Artemi

    2018-01-01

    The rehabilitation and restoration of land is a key strategy to recover services -goods and resources- ecosystems offer to the humankind. This paper reviews key examples to understand the superior effect of nature based solutions to enhance the sustainability of catchment systems by promoting desirable soil and landscape functions. The use of concepts such as connectivity and the theory of system thinking framework allowed to review coastal and river management as a guide to evaluate other strategies to achieve sustainability. In land management NBSs are not mainstream management. Through a set of case studies: organic farming in Spain; rewilding in Slovenia; land restoration in Iceland, sediment trapping in Ethiopia and wetland construction in Sweden, we show the potential of Nature based solutions (NBSs) as a cost-effective long term solution for hydrological risks and land degradation. NBSs can be divided into two main groups of strategies: soil solutions and landscape solutions. Soil solutions aim to enhance the soil health and soil functions through which local eco-system services will be maintained or restored. Landscape solutions mainly focus on the concept of connectivity. Making the landscape less connected, facilitating less rainfall to be transformed into runoff and therefore reducing flood risk, increasing soil moisture and reducing droughts and soil erosion we can achieve the sustainability. The enhanced eco-system services directly feed into the realization of the Sustainable Development Goals of the United Nations. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Mediterranean-type ecosystems: the influence of biodiversity on their functioning

    USGS Publications Warehouse

    Davis, George W.; Richardson, David M.; Keeley, Jon E.; Hobbs, Richard J.; Mooney, H.A.; Cushman, J.H.; Medina, E.; Sala, O.E.; Schulze, E.-D.

    1996-01-01

    Ecosystems in the Mediterranean-climate regions of the world have served as a unit for comparative ecological studies for over two decades. The cohesiveness of research in this set of widely distributed regions rests on the similarity of the climates where they occur, and the identifiable convergence in elements of their vegetation structure (Di Castri and Mooney 1973). In this chapter we review functional aspects of what have come to be known as Mediterranean-type ecosystems (METs) in the context of a concerned global interest in the sustainability of the human environment and its dependence on biological diversity. The approach we adopt here is to look for evidence that this biodiversity, for which some MTEs are renowned (Cowling, 1992; Hobbs, 1992), has an influence on processes which are important both for the maintenance of natural systems, and for providing "ecosystem services" with human utility. Almost a century ago, Schimper (1903) recognized the biological similarities between five widely separated regions characterized by Mediterranean-type climates, and much comparative work has been done on that basis since. These regions comprise the Mediterranean basin itself, a major portion of California, central Chile, the southwestern and southern extremities of South Africa, and parts of southwestern and southern Australia (Figure 7.1). The first attention paid to MTEs in terms of quantitative ecological research arose out of the International Biological Programme (IBP) of the 1960s and 1970s. Those efforts focused on comparisons between the Chilean and Californian systems (Mooney 1977), and dealt with parallel models of ecosystem processes, especially water flux (Fuentes et al 1995). Because of the already perceived similarities between vegetation in these and the other three regions, the project was soon extended to include all five regions. The first broad comparative overview was published as an anthology which considered the origins and the convergent

  8. The belowground frontier is key to understanding terrestrial ecosystem responses to global change

    NASA Astrophysics Data System (ADS)

    Mackay, D. S.; Grossiord, C.; Johnson, D. M.; McDowell, N. G.; Savoy, P.; Sperry, J.

    2017-12-01

    Terrestrial ecosystems adapt and acclimate to global change in part because plasticity of traits helps define how individuals respond to thresholds. A threshold could be a tipping point where a small change in a forcing brings about a big change in system response, or a critical transition that shifts the system into an alternative stable or steady state. For instance, a dimorphic root system offers an individual plant the ability to use shallow water during wet periods and deeper water during dry periods. During drought this system imparts on the ecosystem a stable state as opposed to shifting to an alternative state of fewer surviving woody species. We tested this systems view within TREES, a biophysical model that integrates abiotic and biotic drivers of ecosystem response by coupling whole-plant (rhizosphere to leaf) hydraulics to carbon allocation, root-rhizosphere expansion/contraction and rhizosphere-root centric microbe-plant nitrogen dynamics. We simulated ecosystem responses to (1) seasonal drought in a blue oak woodland, (2) an unusually protracted drought in a mixed species woodland, and (3) an experimentally imposed drought with and without warming in a juniper-pinon woodland. For the blue oak, access to deep groundwater was critical for the timing of drought deciduousness. For the mixed species woodland, deeper roots reduced the risk of mortality via rhizosphere hydraulic failure. Drought induced relatively greater water uptake from bedrock water sources in both juniper and pinon, while heat promoted greater bedrock water uptake by juniper. Higher temperature forced the microbial N and plant NSC cycles to new steady states that were unfavorable for allocation of carbon to canopy and fine roots, and higher respiration costs in roots resulted in a decline in root-to-leaf area and consequent greater loss of hydraulic conductance. The results justify a deeper understanding of the belowground frontier that bridges hydrology, plant hydraulics, and

  9. The quest for a mechanistic understanding of biodiversity–ecosystem services relationships

    PubMed Central

    Duncan, Clare; Thompson, Julian R.; Pettorelli, Nathalie

    2015-01-01

    Ecosystem services (ES) approaches to biodiversity conservation are currently high on the ecological research and policy agendas. However, despite a wealth of studies into biodiversity's role in maintaining ES (B–ES relationships) across landscapes, we still lack generalities in the nature and strengths of these linkages. Reasons for this are manifold, but can largely be attributed to (i) a lack of adherence to definitions and thus a confusion between final ES and the ecosystem functions (EFs) underpinning them, (ii) a focus on uninformative biodiversity indices and singular hypotheses and (iii) top-down analyses across large spatial scales and overlooking of context-dependency. The biodiversity–ecosystem functioning (B–EF) field provides an alternate context for examining biodiversity's mechanistic role in shaping ES, focusing on species' characteristics that may drive EFs via multiple mechanisms across contexts. Despite acknowledgements of a need for B–ES research to look towards underlying B–EF linkages, the connections between these areas of research remains weak. With this review, we pull together recent B–EF findings to identify key areas for future developments in B–ES research. We highlight a means by which B–ES research may begin to identify how and when multiple underlying B–EF relationships may scale to final ES delivery and trade-offs. PMID:26468240

  10. The quest for a mechanistic understanding of biodiversity-ecosystem services relationships.

    PubMed

    Duncan, Clare; Thompson, Julian R; Pettorelli, Nathalie

    2015-10-22

    Ecosystem services (ES) approaches to biodiversity conservation are currently high on the ecological research and policy agendas. However, despite a wealth of studies into biodiversity's role in maintaining ES (B-ES relationships) across landscapes, we still lack generalities in the nature and strengths of these linkages. Reasons for this are manifold, but can largely be attributed to (i) a lack of adherence to definitions and thus a confusion between final ES and the ecosystem functions (EFs) underpinning them, (ii) a focus on uninformative biodiversity indices and singular hypotheses and (iii) top-down analyses across large spatial scales and overlooking of context-dependency. The biodiversity-ecosystem functioning (B-EF) field provides an alternate context for examining biodiversity's mechanistic role in shaping ES, focusing on species' characteristics that may drive EFs via multiple mechanisms across contexts. Despite acknowledgements of a need for B-ES research to look towards underlying B-EF linkages, the connections between these areas of research remains weak. With this review, we pull together recent B-EF findings to identify key areas for future developments in B-ES research. We highlight a means by which B-ES research may begin to identify how and when multiple underlying B-EF relationships may scale to final ES delivery and trade-offs. © 2015 The Author(s).

  11. Detecting Below-Ground Processes, Diversity, and Ecosystem Function in a Savanna Ecosystem Using Spectroscopy Across Different Vegetation Layers

    NASA Astrophysics Data System (ADS)

    Cavender-Bares, J.; Schweiger, A. K.; Madritch, M. D.; Gamon, J. A.; Hobbie, S. E.; Montgomery, R.; Townsend, P. A.

    2017-12-01

    Above-and below-ground plant traits are important for substrate input to the rhizosphere. The substrate composition of the rhizosphere, in turn, affects the diversity of soil organisms, influences soil biochemistry, and water content, and resource availability for plant growth. This has substantial consequences for ecosystem functions, such as above-ground productivity and stability. Above-ground plant chemical and structural traits can be linked to the characteristics of other plant organs, including roots. Airborne imaging spectroscopy has been successfully used to model and predict chemical and structural traits of the above-ground vegetation. However, remotely sensed images capture, almost exclusively, signals from the top of the canopy, providing limited direct information about understory vegetation. Here, we use a data set collected in a savanna ecosystem consisting of spectral measurements gathered at the leaf, the whole plant, and vegetation canopy level to test for hypothesized linkages between above- and below-ground processes that influence root biomass, soil biochemistry, and the diversity of the soil community. In this environment, consisting of herbaceous vegetation intermixed with shrubs and trees growing at variable densities, we investigate the contribution of different vegetation strata to soil characteristics and test the ability of imaging spectroscopy to detect these in plant communities with contrasting vertical structure.

  12. Linking ecosystem characteristics to final ecosystem services for public policy

    PubMed Central

    Wong, Christina P; Jiang, Bo; Kinzig, Ann P; Lee, Kai N; Ouyang, Zhiyun

    2015-01-01

    Governments worldwide are recognising ecosystem services as an approach to address sustainability challenges. Decision-makers need credible and legitimate measurements of ecosystem services to evaluate decisions for trade-offs to make wise choices. Managers lack these measurements because of a data gap linking ecosystem characteristics to final ecosystem services. The dominant method to address the data gap is benefit transfer using ecological data from one location to estimate ecosystem services at other locations with similar land cover. However, benefit transfer is only valid once the data gap is adequately resolved. Disciplinary frames separating ecology from economics and policy have resulted in confusion on concepts and methods preventing progress on the data gap. In this study, we present a 10-step approach to unify concepts, methods and data from the disparate disciplines to offer guidance on overcoming the data gap. We suggest: (1) estimate ecosystem characteristics using biophysical models, (2) identify final ecosystem services using endpoints and (3) connect them using ecological production functions to quantify biophysical trade-offs. The guidance is strategic for public policy because analysts need to be: (1) realistic when setting priorities, (2) attentive to timelines to acquire relevant data, given resources and (3) responsive to the needs of decision-makers. PMID:25394857

  13. Drought impacts on ecosystem functions of the U.S. National Forests and Grasslands: Part II assessment results and management implications

    Treesearch

    Shanlei Sun; Ge Sun; Peter Caldwell; Steve McNulty; Erika Cohen; Jingfeng Xiao; Yang Zhang

    2015-01-01

    The 781,000 km2 (193 million acre) United States National Forests and Grasslands system (NF) provides important ecosystem services such as clean water supply, timber production, wildlife habitat, and recreation opportunities to the American public. Quantifying the historical impacts of climate change and drought on ecosystem functions at the national scale is essential...

  14. Ecosystem functioning and maximum entropy production: a quantitative test of hypotheses.

    PubMed

    Meysman, Filip J R; Bruers, Stijn

    2010-05-12

    The idea that entropy production puts a constraint on ecosystem functioning is quite popular in ecological thermodynamics. Yet, until now, such claims have received little quantitative verification. Here, we examine three 'entropy production' hypotheses that have been forwarded in the past. The first states that increased entropy production serves as a fingerprint of living systems. The other two hypotheses invoke stronger constraints. The state selection hypothesis states that when a system can attain multiple steady states, the stable state will show the highest entropy production rate. The gradient response principle requires that when the thermodynamic gradient increases, the system's new stable state should always be accompanied by a higher entropy production rate. We test these three hypotheses by applying them to a set of conventional food web models. Each time, we calculate the entropy production rate associated with the stable state of the ecosystem. This analysis shows that the first hypothesis holds for all the food webs tested: the living state shows always an increased entropy production over the abiotic state. In contrast, the state selection and gradient response hypotheses break down when the food web incorporates more than one trophic level, indicating that they are not generally valid.

  15. Trends in ecosystem water use efficiency are potentially amplified by plasticity in plant functional traits

    NASA Astrophysics Data System (ADS)

    Mastrotheodoros, Theodoros; Pappas, Christoforos; Molnar, Peter; Burlando, Paolo; Keenan, Trevor F.; Gentine, Pierre; Fatichi, Simone

    2017-04-01

    Increasing atmospheric carbon dioxide concentrations stimulate photosynthesis and reduce stomatal conductance, modifying plant water use efficiency. We analyzed eddy covariance flux tower observations from 20 forested ecosystems across the Northern Hemisphere. For these sites, a previous study showed an increase in inherent water use efficiency (IWUE) five times greater than expectations. We used an updated dataset and robust uncertainty quantification to analyze these contemporary trends in IWUE. We found that IWUE increased in the last 15-20 years by roughly 1.4% yr-1, which is less than previously reported, but still 2.8 times greater than theoretical expectations. Numerical simulations by means of an ecosystem model based on temporally static plant functional traits (i.e. model parameters) do not reproduce this increase. We tested the hypothesis that the observed increase in IWUE could be attributed to changes in plant functional traits, potentially triggered by environmental changes. Simulation results accounting for trait plasticity (i.e. by changing model parameters such as specific leaf area and maximum Rubisco capacity) match the observed trends in IWUE, with an increase in both leaf internal CO2 concentration and gross ecosystem production (GEP), and with a negligible trend in evapotranspiration (ET). This supports the hypothesis that changes in plant functional traits of about 1.0% yr-1 can explain the observed IWUE trends and are consistent with observed trends of GEP and ET at larger scales. Our results highlight that at decadal or longer time scales trait plasticity can considerably influence the water, carbon and energy fluxes with implications for both the monitoring of temporal changes in plant traits and their representation in Earth system models.

  16. Stochastic simulations of a synthetic bacteria-yeast ecosystem

    PubMed Central

    2012-01-01

    Background The field of synthetic biology has greatly evolved and numerous functions can now be implemented by artificially engineered cells carrying the appropriate genetic information. However, in order for the cells to robustly perform complex or multiple tasks, co-operation between them may be necessary. Therefore, various synthetic biological systems whose functionality requires cell-cell communication are being designed. These systems, microbial consortia, are composed of engineered cells and exhibit a wide range of behaviors. These include yeast cells whose growth is dependent on one another, or bacteria that kill or rescue each other, synchronize, behave as predator-prey ecosystems or invade cancer cells. Results In this paper, we study a synthetic ecosystem comprising of bacteria and yeast that communicate with and benefit from each other using small diffusible molecules. We explore the behavior of this heterogeneous microbial consortium, composed of Saccharomyces cerevisiae and Escherichia coli cells, using stochastic modeling. The stochastic model captures the relevant intra-cellular and inter-cellular interactions taking place in and between the eukaryotic and prokaryotic cells. Integration of well-characterized molecular regulatory elements into these two microbes allows for communication through quorum sensing. A gene controlling growth in yeast is induced by bacteria via chemical signals and vice versa. Interesting dynamics that are common in natural ecosystems, such as obligatory and facultative mutualism, extinction, commensalism and predator-prey like dynamics are observed. We investigate and report on the conditions under which the two species can successfully communicate and rescue each other. Conclusions This study explores the various behaviors exhibited by the cohabitation of engineered yeast and bacterial cells. The way that the model is built allows for studying the dynamics of any system consisting of two species communicating with one

  17. Assessing the consequences of nonnative trout in headwater ecosystems in western North America

    Treesearch

    Jason B. Dunham; David S. Pilliod; Michael K. Young

    2004-01-01

    Intentional introductions of nonnative trout into headwater lakes and streams can have numerous effects on the receiving ecosystems, potentially threatening native species and disrupting key ecological processes. In this perspective, we focus on seven key issues for assessing the biological and economic consequences of nonnative trout in headwater ecosystems: (1)...

  18. Potential effects of restoration on biogeochemical functions of bottom land hardwood ecosystems

    Treesearch

    Graeme Lockaby; John A. Stanturf

    2000-01-01

    The concept of wetland restoration carries multiple meanings and implications. The scientific usage of the term connotes re-establishment of wetland functions, and often it is the functions, which society deems most valuable, that receive highest focus. Arguably, among key wetland functions, the highest societal value may be linked with the biogeochemical...

  19. Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers.

    PubMed

    Edwards, Arwyn; Mur, Luis A J; Girdwood, Susan E; Anesio, Alexandre M; Stibal, Marek; Rassner, Sara M E; Hell, Katherina; Pachebat, Justin A; Post, Barbara; Bussell, Jennifer S; Cameron, Simon J S; Griffith, Gareth Wyn; Hodson, Andrew J; Sattler, Birgit

    2014-08-01

    Cryoconite holes are known as foci of microbial diversity and activity on polar glacier surfaces, but are virtually unexplored microbial habitats in alpine regions. In addition, whether cryoconite community structure reflects ecosystem functionality is poorly understood. Terminal restriction fragment length polymorphism and Fourier transform infrared metabolite fingerprinting of cryoconite from glaciers in Austria, Greenland and Svalbard demonstrated cryoconite bacterial communities are closely correlated with cognate metabolite fingerprints. The influence of bacterial-associated fatty acids and polysaccharides was inferred, underlining the importance of bacterial community structure in the properties of cryoconite. Thus, combined application of T-RFLP and FT-IR metabolite fingerprinting promises high throughput, and hence, rapid assessment of community structure-function relationships. Pyrosequencing revealed Proteobacteria were particularly abundant, with Cyanobacteria likely acting as ecosystem engineers in both alpine and Arctic cryoconite communities. However, despite these generalities, significant differences in bacterial community structures, compositions and metabolomes are found between alpine and Arctic cryoconite habitats, reflecting the impact of local and regional conditions on the challenges of thriving in glacial ecosystems. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Emergence of modern marine ecosystems.

    PubMed

    Hull, Pincelli M

    2017-06-05

    The structure and function of marine ecosystems are not fixed. Instead, major innovations - from the origin of oxygenic photosynthesis, to the evolution of reefs or of deep bioturbation, to the rise of pelagic calcifiers - have changed biogeochemical cycles and ecosystem dynamics. As a result, modern marine ecosystems are fundamentally different from those in the distant past. Copyright © 2017 Elsevier Ltd. All rights reserved.