Murakoshi, Kazushi; Mizuno, Junya
2004-11-01
In order to rapidly follow unexpected environmental changes, we propose a parameter control method in reinforcement learning that changes each of learning parameters in appropriate directions. We determine each appropriate direction on the basis of relationships between behaviors and neuromodulators by considering an emergency as a key word. Computer experiments show that the agents using our proposed method could rapidly respond to unexpected environmental changes, not depending on either two reinforcement learning algorithms (Q-learning and actor-critic (AC) architecture) or two learning problems (discontinuous and continuous state-action problems).
Key Parameters for Operator Diagnosis of BWR Plant Condition during a Severe Accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clayton, Dwight A.; Poore, III, Willis P.
2015-01-01
The objective of this research is to examine the key information needed from nuclear power plant instrumentation to guide severe accident management and mitigation for boiling water reactor (BWR) designs (specifically, a BWR/4-Mark I), estimate environmental conditions that the instrumentation will experience during a severe accident, and identify potential gaps in existing instrumentation that may require further research and development. This report notes the key parameters that instrumentation needs to measure to help operators respond to severe accidents. A follow-up report will assess severe accident environmental conditions as estimated by severe accident simulation model analysis for a specific US BWR/4-Markmore » I plant for those instrumentation systems considered most important for accident management purposes.« less
Conceptual Design of Future Undersea Unmanned Vehicle (UUV) System for Mine Disposal
2012-01-01
disproportionate effect of a single mine strike might be enough to threaten mission accomplishment of combat forces. Some potential impacts of enemy mining...parameters, which include vehicle conditions, hotel power, payload conditions, and environmental conditions. The vehicle configuration options are...transit, execution of mission, return transit, and recovery. Each of them is defined by key mission and environmental parameters such as range
Monitoring population and environmental parameters of invasive mosquito species in Europe
2014-01-01
To enable a better understanding of the overwhelming alterations in the invasive mosquito species (IMS), methodical insight into the population and environmental factors that govern the IMS and pathogen adaptations are essential. There are numerous ways of estimating mosquito populations, and usually these describe developmental and life-history parameters. The key population parameters that should be considered during the surveillance of invasive mosquito species are: (1) population size and dynamics during the season, (2) longevity, (3) biting behaviour, and (4) dispersal capacity. Knowledge of these parameters coupled with vector competence may help to determine the vectorial capacity of IMS and basic disease reproduction number (R0) to support mosquito borne disease (MBD) risk assessment. Similarly, environmental factors include availability and type of larval breeding containers, climate change, environmental change, human population density, increased human travel and goods transport, changes in living, agricultural and farming habits (e.g. land use), and reduction of resources in the life cycle of mosquitoes by interventions (e.g. source reduction of aquatic habitats). Human population distributions, urbanisation, and human population movement are the key behavioural factors in most IMS-transmitted diseases. Anthropogenic issues are related to the global spread of MBD such as the introduction, reintroduction, circulation of IMS and increased exposure to humans from infected mosquito bites. This review addresses the population and environmental factors underlying the growing changes in IMS populations in Europe and confers the parameters selected by criteria of their applicability. In addition, overview of the commonly used and newly developed tools for their monitoring is provided. PMID:24739334
Combinatorial influence of environmental parameters on transcription factor activity.
Knijnenburg, T A; Wessels, L F A; Reinders, M J T
2008-07-01
Cells receive a wide variety of environmental signals, which are often processed combinatorially to generate specific genetic responses. Changes in transcript levels, as observed across different environmental conditions, can, to a large extent, be attributed to changes in the activity of transcription factors (TFs). However, in unraveling these transcription regulation networks, the actual environmental signals are often not incorporated into the model, simply because they have not been measured. The unquantified heterogeneity of the environmental parameters across microarray experiments frustrates regulatory network inference. We propose an inference algorithm that models the influence of environmental parameters on gene expression. The approach is based on a yeast microarray compendium of chemostat steady-state experiments. Chemostat cultivation enables the accurate control and measurement of many of the key cultivation parameters, such as nutrient concentrations, growth rate and temperature. The observed transcript levels are explained by inferring the activity of TFs in response to combinations of cultivation parameters. The interplay between activated enhancers and repressors that bind a gene promoter determine the possible up- or downregulation of the gene. The model is translated into a linear integer optimization problem. The resulting regulatory network identifies the combinatorial effects of environmental parameters on TF activity and gene expression. The Matlab code is available from the authors upon request. Supplementary data are available at Bioinformatics online.
Since its amalgamation as a Federal Agency over 30 years ago, the U.S. Environmental Protection Agency (EPA) has undertaken many activities contributing to the international community's collective foundation for modern, multimedia environmental modeling. A key component of its c...
Combinatorial influence of environmental parameters on transcription factor activity
Knijnenburg, T.A.; Wessels, L.F.A.; Reinders, M.J.T.
2008-01-01
Motivation: Cells receive a wide variety of environmental signals, which are often processed combinatorially to generate specific genetic responses. Changes in transcript levels, as observed across different environmental conditions, can, to a large extent, be attributed to changes in the activity of transcription factors (TFs). However, in unraveling these transcription regulation networks, the actual environmental signals are often not incorporated into the model, simply because they have not been measured. The unquantified heterogeneity of the environmental parameters across microarray experiments frustrates regulatory network inference. Results: We propose an inference algorithm that models the influence of environmental parameters on gene expression. The approach is based on a yeast microarray compendium of chemostat steady-state experiments. Chemostat cultivation enables the accurate control and measurement of many of the key cultivation parameters, such as nutrient concentrations, growth rate and temperature. The observed transcript levels are explained by inferring the activity of TFs in response to combinations of cultivation parameters. The interplay between activated enhancers and repressors that bind a gene promoter determine the possible up- or downregulation of the gene. The model is translated into a linear integer optimization problem. The resulting regulatory network identifies the combinatorial effects of environmental parameters on TF activity and gene expression. Availability: The Matlab code is available from the authors upon request. Contact: t.a.knijnenburg@tudelft.nl Supplementary information: Supplementary data are available at Bioinformatics online. PMID:18586711
USDA-ARS?s Scientific Manuscript database
Accurate determination of predicted environmental concentrations (PECs) is a continuing and often elusive goal of pesticide risk assessment. PECs are typically derived using simulation models that depend on laboratory generated data for key input parameters (t1/2, Koc, etc.). Model flexibility in ...
USDA-ARS?s Scientific Manuscript database
Accurate determination of predicted environmental concentrations (PECs) is a continuing and often elusive goal of pesticide risk assessment. PECs are typically derived using simulation models that depend on laboratory generated data for key input parameters (t1/2, Koc, etc.). Model flexibility in ev...
BIOSURFACES AND BIOAVAILABILITY: A NANOSCALE OVERVIEW
Environmentally, contaminant bioavailability is a key parameter in determining exposure assessment and ultimately risk assessment/risk management. Defining bioavailability requires knowledge of the contaminant spatial/temporal disposition and transportability and the thermodyna...
From LCAs to simplified models: a generic methodology applied to wind power electricity.
Padey, Pierryves; Girard, Robin; le Boulch, Denis; Blanc, Isabelle
2013-02-05
This study presents a generic methodology to produce simplified models able to provide a comprehensive life cycle impact assessment of energy pathways. The methodology relies on the application of global sensitivity analysis to identify key parameters explaining the impact variability of systems over their life cycle. Simplified models are built upon the identification of such key parameters. The methodology is applied to one energy pathway: onshore wind turbines of medium size considering a large sample of possible configurations representative of European conditions. Among several technological, geographical, and methodological parameters, we identified the turbine load factor and the wind turbine lifetime as the most influent parameters. Greenhouse Gas (GHG) performances have been plotted as a function of these key parameters identified. Using these curves, GHG performances of a specific wind turbine can be estimated, thus avoiding the undertaking of an extensive Life Cycle Assessment (LCA). This methodology should be useful for decisions makers, providing them a robust but simple support tool for assessing the environmental performance of energy systems.
Performance comparison: Aluminum electrolytic and solid tantalum capacitor
NASA Technical Reports Server (NTRS)
Hawthornthwaite, B. G.; Piper, J.; Holland, H. W.
1981-01-01
Several key electrical and environmental parameters of latest technology aluminum electrolytic and solid tantalum capacitors were evaluated in terms of price fluctuations of tantalum metal. Performance differences between solid tantalums and aluminum electrolytics are examined.
Ba, Kamarel; Thiaw, Modou; Lazar, Najih; Sarr, Alassane; Brochier, Timothée; Ndiaye, Ismaïla; Faye, Alioune; Sadio, Oumar; Panfili, Jacques; Thiaw, Omar Thiom; Brehmer, Patrice
2016-01-01
The stock of the Senegalese flat sardinella, Sardinella maderensis, is highly exploited in Senegal, West Africa. Its growth and reproduction parameters are key biological indicators for improving fisheries management. This study reviewed these parameters using landing data from small-scale fisheries in Senegal and literature information dated back more than 25 years. Age was estimated using length-frequency data to calculate growth parameters and assess the growth performance index. With global climate change there has been an increase in the average sea surface temperature along the Senegalese coast but the length-weight parameters, sex ratio, size at first sexual maturity, period of reproduction and condition factor of S. maderensis have not changed significantly. The above parameters of S. maderensis have hardly changed, despite high exploitation and fluctuations in environmental conditions that affect the early development phases of small pelagic fish in West Africa. This lack of plasticity of the species regarding of the biological parameters studied should be considered when planning relevant fishery management plans.
Seasonal microbial and environmental parameters at Crocker Reef, Florida Keys, 2014–2015
Kellogg, Christina A.; Yates, Kimberly K.; Lawler, Stephanie N.; Moore, Christopher S.; Smiley, Nathan A.
2015-11-04
Microbial measurements included enumeration of total bacteria, enumeration of virus-like particles, and plate counts of Vibrio spp. colony-forming units (CFU). These measurements were intended to give a sense of any seasonal changes in the total microbial load and to provide an indication of water quality. Additional environmental parameters measured included water temperature, salinity, dissolved oxygen, and pH. Four sites (table 1) were intensively sampled for periods of approximately 48 hours during summer (July 2014) and winter (January–February 2015), during which water samples were collected every 4 hours for analysis, except when prevented by weather conditions.
Faisal, Kamil; Shaker, Ahmed
2017-03-07
Urban Environmental Quality (UEQ) can be treated as a generic indicator that objectively represents the physical and socio-economic condition of the urban and built environment. The value of UEQ illustrates a sense of satisfaction to its population through assessing different environmental, urban and socio-economic parameters. This paper elucidates the use of the Geographic Information System (GIS), Principal Component Analysis (PCA) and Geographically-Weighted Regression (GWR) techniques to integrate various parameters and estimate the UEQ of two major cities in Ontario, Canada. Remote sensing, GIS and census data were first obtained to derive various environmental, urban and socio-economic parameters. The aforementioned techniques were used to integrate all of these environmental, urban and socio-economic parameters. Three key indicators, including family income, higher level of education and land value, were used as a reference to validate the outcomes derived from the integration techniques. The results were evaluated by assessing the relationship between the extracted UEQ results and the reference layers. Initial findings showed that the GWR with the spatial lag model represents an improved precision and accuracy by up to 20% with respect to those derived by using GIS overlay and PCA techniques for the City of Toronto and the City of Ottawa. The findings of the research can help the authorities and decision makers to understand the empirical relationships among environmental factors, urban morphology and real estate and decide for more environmental justice.
Faisal, Kamil; Shaker, Ahmed
2017-01-01
Urban Environmental Quality (UEQ) can be treated as a generic indicator that objectively represents the physical and socio-economic condition of the urban and built environment. The value of UEQ illustrates a sense of satisfaction to its population through assessing different environmental, urban and socio-economic parameters. This paper elucidates the use of the Geographic Information System (GIS), Principal Component Analysis (PCA) and Geographically-Weighted Regression (GWR) techniques to integrate various parameters and estimate the UEQ of two major cities in Ontario, Canada. Remote sensing, GIS and census data were first obtained to derive various environmental, urban and socio-economic parameters. The aforementioned techniques were used to integrate all of these environmental, urban and socio-economic parameters. Three key indicators, including family income, higher level of education and land value, were used as a reference to validate the outcomes derived from the integration techniques. The results were evaluated by assessing the relationship between the extracted UEQ results and the reference layers. Initial findings showed that the GWR with the spatial lag model represents an improved precision and accuracy by up to 20% with respect to those derived by using GIS overlay and PCA techniques for the City of Toronto and the City of Ottawa. The findings of the research can help the authorities and decision makers to understand the empirical relationships among environmental factors, urban morphology and real estate and decide for more environmental justice. PMID:28272334
RESIDENTIAL WOOD COMBUSTION TECHNOLOGY REVIEW VOLUME 1. TECHNICAL REPORT
This report gives results of a review of the current state-of-the-art of residential wood combustion (RWC). The key environmental parameter of concern was the air emission of particles. The technological status of all major RWC categories -- cordwood stoves, fireplaces, masonry h...
RESIDENTIAL WOOD COMBUSTION TECHNOLOGY REVIEW - VOLUME 2. APPENDICES
The report gives results of a review of the current state-of-the-art of residential wood combustion (RWC). The key environmental parameter of concern was the air emission of particles. The technological status of all major RWC categories--cordwood stoves, fireplaces, masonry heat...
NASA Astrophysics Data System (ADS)
Hina, A.
2017-12-01
Although Thar coal is recognized to be one of the most abundant fossil fuel that could meet the need to combat energy crisis of Pakistan, but there still remains a challenge to tackle the associated environmental and socio-ecological changes and its linkage to the provision of ecosystem services of the region. The study highlights the importance of considering Ecosystem service assessment to be undertaken in all strategic Environmental and Social Assessments of Thar coal field projects. The three-step approach has been formulated to link the project impacts to the provision of important ecosystem services; 1) Identification of impact indicators and parameters by analyzing the environmental and social impacts of surface mining in Thar Coal field through field investigation, literature review and stakeholder consultations; 2) Ranking of parameters and criteria alternatives using Multi-criteria Decision Analysis(MCDA) tool: (AHP method); 3) Using ranked parameters as a proxy to prioritize important ecosystem services of the region; The ecosystem services that were prioritized because of both high significance of project impact and high project dependence are highlighted as: Water is a key ecosystem service to be addressed and valued due to its high dependency in the area for livestock, human wellbeing, agriculture and other purposes. Crop production related to agricultural services, in association with supply services such as soil quality, fertility, and nutrient recycling and water retention need to be valued. Cultural services affected in terms of land use change and resettlement and rehabilitation factors are recommended to be addressed. The results of the analysis outline a framework of identifying these linkages as key constraints to foster the emergence of green growth and development in Pakistan. The practicality of implementing these assessments requires policy instruments and strategies to support human well-being and social inclusion while minimizing environmental degradation and loss of ecosystem services. Keywords Ecosystem service assessment; Environmental and Social Impact Assessment; coal mining; Thar Coal Field; Sustainable development
Shared environmental influences on personality: A combined twin and adoption approach
Matteson, Lindsay K.; McGue, Matt; Iacono, William G.
2013-01-01
In the past, shared environmental influences on personality traits have been found to be negligible in behavior genetic studies (e.g., Bouchard & McGue, 2003). However, most studies have been based on biometrical modeling of twins only. Failure to meet key assumptions of the classical twin design could lead to biased estimates of shared environmental effects. Alternative approaches to the etiology of personality are needed. In the current study we estimated the impact of shared environmental factors on adolescent personality by simultaneously modeling both twin and adoption data. We found evidence for significant shared environmental influences on Multidimensional Personality Questionnaire (MPQ) Absorption (15% variance explained), Alienation (10%), Harm Avoidance (14%), and Traditionalism (26%) scales. Additionally, we found that in most cases biometrical models constraining parameter estimates to be equal across study type (twins versus adoptees) fit no worse than models allowing these parameters to vary; this suggests that results converge across study design despite the potential (sometimes opposite) biases of twin and adoption studies. Thus, we can be more confident that our findings represent the true contribution of shared environmental variance to personality development. PMID:24065564
Wearable Environmental and Physiological Sensing Unit
NASA Technical Reports Server (NTRS)
Spremo, Stevan; Ahlman, Jim; Stricker, Ed; Santos, Elmer
2007-01-01
The wearable environmental and physiological sensing unit (WEPS) is a prototype of systems to be worn by emergency workers (e.g., firefighters and members of hazardous-material response teams) to increase their level of safety. The WEPS includes sensors that measure a few key physiological and environmental parameters, a microcontroller unit that processes the digitized outputs of the sensors, and a radio transmitter that sends the processed sensor signals to a computer in a mobile command center for monitoring by a supervisor. The monitored parameters serve as real-time indications of the wearer s physical condition and level of activity, and of the degree and type of danger posed by the wearer s environment. The supervisor could use these indications to determine, for example, whether the wearer should withdraw in the face of an increasing hazard or whether the wearer should be rescued.
U.S. EPA/ORD LARGE BUILDINGS STUDY: RESULTS OF THE INITIAL SURVEY OF RANDOMLY SELECTED GSA BUILDINGS
The Atmospheric Research and Exposure Assessment Laboratory (AREAL), Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), is initiating a research program to connect fundamental information on the key parameters and factors that influence indoor a...
In our previous research, we showed that robust Bayesian methods can be used in environmental modeling to define a set of probability distributions for key parameters that captures the effects of expert disagreement, ambiguity, or ignorance. This entire set can then be update...
Chronic fish toxicity is a key parameter for hazard classification and environmental risk assessment of chemicals, and the OECD 210 fish early life-stage (FELS) test is the primary guideline test used for various international regulatory programs. There exists a need to develop ...
Propagation regimes and populations of internal waves in the Mediterranean Sea basin
NASA Astrophysics Data System (ADS)
Kurkina, Oxana; Rouvinskaya, Ekaterina; Talipova, Tatiana; Soomere, Tarmo
2017-02-01
The geographical and seasonal distributions of kinematic and nonlinear parameters of long internal waves are derived from the Generalized Digital Environmental Model (GDEM) climatology for the Mediterranean Sea region, including the Black Sea. The considered parameters are phase speed of long internal waves and the coefficients at the dispersion, quadratic and cubic terms of the weakly-nonlinear Korteweg-de Vries-type models (in particular, the Gardner model). These parameters govern the possible polarities and shapes of solitary internal waves, their limiting amplitudes and propagation speeds. The key outcome is an express estimate of the expected parameters of internal waves for different regions of the Mediterranean basin.
Patin, Etienne; Hasan, Milena; Bergstedt, Jacob; Rouilly, Vincent; Libri, Valentina; Urrutia, Alejandra; Alanio, Cécile; Scepanovic, Petar; Hammer, Christian; Jönsson, Friederike; Beitz, Benoît; Quach, Hélène; Lim, Yoong Wearn; Hunkapiller, Julie; Zepeda, Magge; Green, Cherie; Piasecka, Barbara; Leloup, Claire; Rogge, Lars; Huetz, François; Peguillet, Isabelle; Lantz, Olivier; Fontes, Magnus; Di Santo, James P; Thomas, Stéphanie; Fellay, Jacques; Duffy, Darragh; Quintana-Murci, Lluís; Albert, Matthew L
2018-03-01
The quantification and characterization of circulating immune cells provide key indicators of human health and disease. To identify the relative effects of environmental and genetic factors on variation in the parameters of innate and adaptive immune cells in homeostatic conditions, we combined standardized flow cytometry of blood leukocytes and genome-wide DNA genotyping of 1,000 healthy, unrelated people of Western European ancestry. We found that smoking, together with age, sex and latent infection with cytomegalovirus, were the main non-genetic factors that affected variation in parameters of human immune cells. Genome-wide association studies of 166 immunophenotypes identified 15 loci that showed enrichment for disease-associated variants. Finally, we demonstrated that the parameters of innate cells were more strongly controlled by genetic variation than were those of adaptive cells, which were driven by mainly environmental exposure. Our data establish a resource that will generate new hypotheses in immunology and highlight the role of innate immunity in susceptibility to common autoimmune diseases.
Wang, Yuxin; Lai, Adelene; Latino, Diogo; Fenner, Kathrin; Helbling, Damian E
2018-06-14
Aerobic biodegradation half-lives (half-lives) are key parameters used to evaluate pesticide persistence in soil. However, half-life estimates for individual pesticides often span several orders of magnitude, reflecting the impact that various environmental or experimental parameters have on half-lives in soil. In this work, we collected literature-reported half-lives for eleven pesticides along with associated metadata describing the environmental or experimental conditions under which they were derived. We then developed a multivariable framework to discover relationships between the half-lives and associated metadata. We first compared data for the herbicide atrazine collected from 95 laboratory and 65 field studies. We discovered that atrazine application history and soil texture were the parameters that have the largest influence on the observed half-lives in both types of studies. We then extended the analysis to include ten additional pesticides with data collected exclusively from laboratory studies. We found that, when data were available, pesticide application history and biomass concentrations were always positively associated with half-lives. The relevance of other parameters varied among the pesticides, but in some cases the variability could be explained by the physicochemical properties of the pesticides. For example, we found that the relative significance of the organic carbon content of soil for determining half-lives depends on the relative solubility of the pesticide. Altogether, our analyses highlight the reciprocal influence of both environmental parameters and intrinsic physicochemical properties for determining half-lives in soil. Copyright © 2018 Elsevier Ltd. All rights reserved.
Null Environmental Effects of the Cosmic Web on Dark Matter Halo Properties
NASA Astrophysics Data System (ADS)
Goh, Tze; Primack, Joel; Aragon-Calvo, Miguel; Hellinger, Doug; Rodriguez-Puebla, Aldo; Lee, Christoph; Eckleholm, Elliot; Johnston, Kathryn
2018-01-01
We study the effects of the cosmic web environment (filaments, voids and walls) and environmental density on key properties of dark matter halos at redshift z = 0 using the Bolshoi-Planck ΛCDM. The z=0 Bolshoi-Planck simulation is analysed into filaments, voids and walls using the SpineWeb method, as well as VIDE method, both of which use Voronoi tessellation and the watershed transform. The key halo properties that we study are the mass accretion rate, spin parameter, concentration, prolateness, scale factor of the last major merger, and scale factor when the halo had half of its z=0 mass. For all these properties, we find that there is no discernible difference between the halo properties in filaments, walls or voids when compared at the same environmental density. As a result, we conclude that environmental density is the core attribute that affects these properties. This conclusion is in line with recent findings that properties of galaxies in redshift surveys are independent of their cosmic web environment at the same environmental density. We also find that the local web environment of the Milky Way and the Andromeda galaxy near the centre of a cosmic wall does not appear to have any effect on the key properties of these galaxies' dark matter halos, although we find that it is rather rare to have such massive halos near the centre of a relatively small cosmic wall.
Peilong Liu; Lu Hao; Cen Pan; Decheng Zhou; Yongqiang Liu; Ge Sun
2017-01-01
Leaf area index (LAI) is a key parameter to characterize vegetation dynamics and ecosystemstructure that determines the ecosystem functions and services such as cleanwater supply and carbon sequestration in awatershed. However, linking LAI dynamics and environmental controls (i.e., coupling biosphere, atmosphere, and anthroposphere) remains challenging and such type of...
NASA Astrophysics Data System (ADS)
Gogina, Mayya; Glockzin, Michael; Zettler, Michael L.
2010-01-01
In this study we relate patterns in the spatial distribution of macrofaunal communities to patterns in near-bottom environmental parameters, analysing the data observed in a limited area in the western Baltic Sea. The data used represents 208 stations, sampled during the years 2000 to 2007 simultaneously for benthic macrofauna, associated sediment and near-bottom environmental characteristics, in a depth range from 7.5 to 30 m. Only one degree of longitude wide, the study area is geographically bounded by the eastern part of the Mecklenburg Bight and the southwestern Darss Sill Area. Spatial distribution of benthic macrofauna is related to near-bottom environmental patterns by means of various statistical methods (e.g. rank correlation, hierarchical clustering, nMDS, BIO-ENV, CCA). Thus, key environmental descriptors were disclosed. Within the area of investigation, these were: water depth, regarded as a proxy for other environmental factors, and total organic content. Distinct benthic assemblages are defined and discriminated by particular species ( Hydrobia ulvae-Scoloplos armiger, Lagis koreni-Mysella bidentata and Capitella capitata-Halicryptus spinulosus). Each assemblage is related to different spatial subarea and characterised by a certain variability of environmental factors. This study represents a basis for the predictive modeling of species distribution in the selected study area.
Systems Analysis of the Hydrogen Transition with HyTrans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leiby, Paul Newsome; Greene, David L; Bowman, David Charles
2007-01-01
The U.S. Federal government is carefully considering the merits and long-term prospects of hydrogen-fueled vehicles. NAS (1) has called for the careful application of systems analysis tools to structure the complex assessment required. Others, raising cautionary notes, question whether a consistent and plausible transition to hydrogen light-duty vehicles can identified (2) and whether that transition would, on balance, be environmentally preferred. Modeling the market transition to hydrogen-powered vehicles is an inherently complex process, encompassing hydrogen production, delivery and retailing, vehicle manufacturing, and vehicle choice and use. We describe the integration of key technological and market factors in a dynamic transitionmore » model, HyTrans. The usefulness of HyTrans and its predictions depends on three key factors: (1) the validity of the economic theories that underpin the model, (2) the authenticity with which the key processes are represented, and (3) the accuracy of specific parameter values used in the process representations. This paper summarizes the theoretical basis of HyTrans, and highlights the implications of key parameter specifications with sensitivity analysis.« less
Hadjisolomou, Ekaterini; Stefanidis, Konstantinos; Papatheodorou, George; Papastergiadou, Evanthia
2018-03-19
During the last decades, Mediterranean freshwater ecosystems, especially lakes, have been under severe pressure due to increasing eutrophication and water quality deterioration. In this article, we compared the effectiveness of different data analysis methods by assessing the contribution of environmental parameters to eutrophication processes. For this purpose, principal components analysis (PCA), cluster analysis, and a self-organizing map (SOM) were applied, using water quality data from two transboundary lakes of North Greece. SOM is considered as an advanced and powerful data analysis tool because of its ability to represent complex and nonlinear relationships among multivariate data sets. The results of PCA and cluster analysis agreed with the SOM results, although the latter provided more information because of the visualization abilities regarding the parameters' relationships. Besides nutrients that were found to be a key factor for controlling chlorophyll-a (Chl - a), water temperature was related positively with algal production, while the Secchi disk depth parameter was found to be highly important and negatively related toeutrophic conditions. In general, the SOM results were more specific and allowed direct associations between the water quality variables. Our work showed that SOMs can be used effectively in limnological studies to produce robust and interpretable results, aiding scientists and managers to cope with environmental problems such as eutrophication.
Psychoacoustical evaluation of natural and urban sounds in soundscapes.
Yang, Ming; Kang, Jian
2013-07-01
Among various sounds in the environment, natural sounds, such as water sounds and birdsongs, have proven to be highly preferred by humans, but the reasons for these preferences have not been thoroughly researched. This paper explores differences between various natural and urban environmental sounds from the viewpoint of objective measures, especially psychoacoustical parameters. The sound samples used in this study include the recordings of single sound source categories of water, wind, birdsongs, and urban sounds including street music, mechanical sounds, and traffic noise. The samples are analyzed with a number of existing psychoacoustical parameter algorithmic models. Based on hierarchical cluster and principal components analyses of the calculated results, a series of differences has been shown among different sound types in terms of key psychoacoustical parameters. While different sound categories cannot be identified using any single acoustical and psychoacoustical parameter, identification can be made with a group of parameters, as analyzed with artificial neural networks and discriminant functions in this paper. For artificial neural networks, correlations between network predictions and targets using the average and standard deviation data of psychoacoustical parameters as inputs are above 0.95 for the three natural sound categories and above 0.90 for the urban sound category. For sound identification/classification, key parameters are fluctuation strength, loudness, and sharpness.
NASA Astrophysics Data System (ADS)
Price, M. A.; Murphy, A.; Butterfield, J.; McCool, R.; Fleck, R.
2011-05-01
The predictive methods currently used for material specification, component design and the development of manufacturing processes, need to evolve beyond the current `metal centric' state of the art, if advanced composites are to realise their potential in delivering sustainable transport solutions. There are however, significant technical challenges associated with this process. Deteriorating environmental, political, economic and social conditions across the globe have resulted in unprecedented pressures to improve the operational efficiency of the manufacturing sector generally and to change perceptions regarding the environmental credentials of transport systems in particular. There is a need to apply new technologies and develop new capabilities to ensure commercial sustainability in the face of twenty first century economic and climatic conditions as well as transport market demands. A major technology gap exists between design, analysis and manufacturing processes in both the OEMs, and the smaller companies that make up the SME based supply chain. As regulatory requirements align with environmental needs, manufacturers are increasingly responsible for the broader lifecycle aspects of vehicle performance. These include not only manufacture and supply but disposal and re-use or re-cycling. In order to make advances in the reduction of emissions coupled with improved economic efficiency through the provision of advanced lightweight vehicles, four key challenges are identified as follows: Material systems, Manufacturing systems, Integrated design methods using digital manufacturing tools and Validation systems. This paper presents a project which has been designed to address these four key issues, using at its core, a digital framework for the creation and management of key parameters related to the lifecycle performance of thermoplastic composite parts and structures. It aims to provide capability for the proposition, definition, evaluation and demonstration of advanced lightweight structures for new generation vehicles in the context of whole life performance parameters.
Transmission line design for the lunar environment
NASA Technical Reports Server (NTRS)
Gaustad, Krista L.; Gordon, Lloyd B.
1990-01-01
How the mass, operating temperature, and efficiency of a transmission line operating on the moon are affected by its operating parameters, the lunar environment, and the choice of materials is examined. The key transmission line parameters which have an effect on mass, operating temperature, and efficiency are voltage, power loss, and waveform. The choice of waveform for transmission will be influenced by the waveform of the source and load, and therefore an analysis of both DC and AC transmission is necessary for a complete understanding of lunar power transmission. The data presented are for the DC case only; however, the discussion of the environmental effects and of material selection is pertinent to both AC and DC transmission. The operating voltage is shown to be a key parameter in transmission line design. The role efficiency plays in transmission line design is also examined. The analyses include above- and below-the-surface operation for both a vacuum-insulated, two-wire, transmission line, and a solid-dielectric-insulated, coaxial, transmission line.
Experimental evidence of a pathogen invasion threshold
Krkošek, Martin
2018-01-01
Host density thresholds to pathogen invasion separate regions of parameter space corresponding to endemic and disease-free states. The host density threshold is a central concept in theoretical epidemiology and a common target of human and wildlife disease control programmes, but there is mixed evidence supporting the existence of thresholds, especially in wildlife populations or for pathogens with complex transmission modes (e.g. environmental transmission). Here, we demonstrate the existence of a host density threshold for an environmentally transmitted pathogen by combining an epidemiological model with a microcosm experiment. Experimental epidemics consisted of replicate populations of naive crustacean zooplankton (Daphnia dentifera) hosts across a range of host densities (20–640 hosts l−1) that were exposed to an environmentally transmitted fungal pathogen (Metschnikowia bicuspidata). Epidemiological model simulations, parametrized independently of the experiment, qualitatively predicted experimental pathogen invasion thresholds. Variability in parameter estimates did not strongly influence outcomes, though systematic changes to key parameters have the potential to shift pathogen invasion thresholds. In summary, we provide one of the first clear experimental demonstrations of pathogen invasion thresholds in a replicated experimental system, and provide evidence that such thresholds may be predictable using independently constructed epidemiological models. PMID:29410876
Yulong Zhang; Conghe Song; Ge Sun; Lawrence E. Band; Asko Noormets; Quanfa Zhang
2015-01-01
Light use efficiency (LUE) is a key biophysical parameter characterizing the ability of plants to convert absorbed light to carbohydrate. However, the environmental regulations on LUE, especially moisture stress, are poorly understood, leading to large uncertainties in primary productivity estimated by LUE models. The objective of this study is to investigate the...
NASA Astrophysics Data System (ADS)
You, Y.; Wang, S.; Yang, Q.; Shen, M.; Chen, G.
2017-12-01
Alpine river water environment on the Plateau (such as Tibetan Plateau, China) is a key indicator for water security and environmental security in China. Due to the complex terrain and various surface eco-environment, it is a very difficult to monitor the water environment over the complex land surface of the plateau. The increasing availability of remote sensing techniques with appropriate spatiotemporal resolutions, broad coverage and low costs allows for effective monitoring river water environment on the Plateau, particularly in remote and inaccessible areas where are lack of in situ observations. In this study, we propose a remote sense-based monitoring model by using multi-platform remote sensing data for monitoring alpine river environment. In this study some parameterization methodologies based on satellite remote sensing data and field observations have been proposed for monitoring the water environmental parameters (including chlorophyll-a concentration (Chl-a), water turbidity (WT) or water clarity (SD), total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC)) over the china's southwest highland rivers, such as the Brahmaputra. First, because most sensors do not collect multiple observations of a target in a single pass, data from multiple orbits or acquisition times may be used, and varying atmospheric and irradiance effects must be reconciled. So based on various types of satellite data, at first we developed the techniques of multi-sensor data correction, atmospheric correction. Second, we also built the inversion spectral database derived from long-term remote sensing data and field sampling data. Then we have studied and developed a high-precision inversion model over the southwest highland river backed by inversion spectral database through using the techniques of multi-sensor remote sensing information optimization and collaboration. Third, take the middle reaches of the Brahmaputra river as the study area, we validated the key water environmental parameters and further improved the inversion model. The results indicate that our proposed water environment inversion model can be a good inversion for alpine water environmental parameters, and can improve the monitoring and warning ability for the alpine river water environment in the future.
Soleimani-Ahmadi, Moussa; Vatandoost, Hassan; Hanafi-Bojd, Ahmad-Ali; Zare, Mehdi; Safari, Reza; Mojahedi, Abdolrasul; Poorahmad-Garbandi, Fatemeh
2013-07-01
To determine the effects of environmental parameters of larval habitats on distribution and abundance of anopheline mosquitoes in Rudan county of Iran. This cross-sectional study was conducted during the mosquito breeding season from February 2010 to October 2011. The anopheline larvae were collected using the standard dipping method. The specimens were identified using a morphological-based key. Simultaneously with larval collection, environmental parameters of the larval habitats including water current and turbidity, sunlight situation, and substrate type of habitats were recorded. Water samples were taken from breeding sites during larval collection. Before collection of samples, the water temperature was measured. The water samples were analysed for turbidity, conductivity, total alkalinity, total dissolved solid, pH and ions including chloride, sulphate, calcium, and magnesium. Statistical correlation analysis and ANOVA test were used to analyze the association between environmental parameters and larval mosquito abundance. In total 2 973 larvae of the genus Anopheles were collected from 25 larval habitats and identified using morphological characters. They comprised of six species: An. dthali (53.21%), An. stephensi (24.22%), An. culicifacies (14.06%), An. superpictus (4.07%), An. turkhudi (3.30%), and An. apoci (1.14%). The most abundant species was An. dthali which were collected from all of the study areas. Larvae of two malaria vectors, An. dthali and An. stephensi, co-existed and collected in a wide range of habitats with different physico-chemical parameters. The most common larval habitats were man-made sites such as sand mining pools with clean and still water. The anopheline mosquitoes also preferred permanent habitats in sunlight with sandy substrates. The results indicated that there was a significant relationship between mean physico-chemical parameters such as water temperature, conductivity, total alkalinity, sulphate, chloride, and mosquito distribution and abundance. The results of this study showed a correlation between certain environmental parameters and mosquito larvae abundance, and these parameters should be considered in planning and implementing larval control programs. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Landscape structure affects distribution of potential disease vectors (Diptera: Culicidae).
Zittra, Carina; Vitecek, Simon; Obwaller, Adelheid G; Rossiter, Heidemarie; Eigner, Barbara; Zechmeister, Thomas; Waringer, Johann; Fuehrer, Hans-Peter
2017-04-26
Vector-pathogen dynamics are controlled by fluctuations of potential vector communities, such as the Culicidae. Assessment of mosquito community diversity and, in particular, identification of environmental parameters shaping these communities is therefore of key importance for the design of adequate surveillance approaches. In this study, we assess effects of climatic parameters and habitat structure on mosquito communities in eastern Austria to deliver these highly relevant baseline data. Female mosquitoes were sampled twice a month from April to October 2014 and 2015 at 35 permanent and 23 non-permanent trapping sites using carbon dioxide-baited traps. Differences in spatial and seasonal abundance patterns of Culicidae taxa were identified using likelihood ratio tests; possible effects of environmental parameters on seasonal and spatial mosquito distribution were analysed using multivariate statistical methods. We assessed community responses to environmental parameters based on 14-day-average values that affect ontogenesis. Altogether 29,734 female mosquitoes were collected, and 21 of 42 native as well as two of four non-native mosquito species were reconfirmed in eastern Austria. Statistical analyses revealed significant differences in mosquito abundance between sampling years and provinces. Incidence and abundance patterns were found to be linked to 14-day mean sunshine duration, humidity, water-level maxima and the amount of precipitation. However, land cover classes were found to be the most important factor, effectively assigning both indigenous and non-native mosquito species to various communities, which responded differentially to environmental variables. These findings thus underline the significance of non-climatic variables for future mosquito prediction models and the necessity to consider these in mosquito surveillance programmes.
NASA Astrophysics Data System (ADS)
Yamashita, Youhei; Boyer, Joseph N.; Jaffé, Rudolf
2013-09-01
The coastal zone of the Florida Keys features the only living coral reef in the continental United States and as such represents a unique regional environmental resource. Anthropogenic pressures combined with climate disturbances such as hurricanes can affect the biogeochemistry of the region and threaten the health of this unique ecosystem. As such, water quality monitoring has historically been implemented in the Florida Keys, and six spatially distinct zones have been identified. In these studies however, dissolved organic matter (DOM) has only been studied as a quantitative parameter, and DOM composition can be a valuable biogeochemical parameter in assessing environmental change in coastal regions. Here we report the first data of its kind on the application of optical properties of DOM, in particular excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC), throughout these six Florida Keys regions in an attempt to assess spatial differences in DOM sources. Our data suggests that while DOM in the Florida Keys can be influenced by distant terrestrial environments such as the Everglades, spatial differences in DOM distribution were also controlled in part by local surface runoff/fringe mangroves, contributions from seasgrass communities, as well as the reefs and waters from the Florida Current. Application of principal component analysis (PCA) of the relative abundance of EEM-PARAFAC components allowed for a clear distinction between the sources of DOM (allochthonous vs. autochthonous), between different autochthonous sources and/or the diagenetic status of DOM, and further clarified contribution of terrestrial DOM in zones where levels of DOM were low in abundance. The combination between EEM-PARAFAC and PCA proved to be ideally suited to discern DOM composition and source differences in coastal zones with complex hydrology and multiple DOM sources.
Assessing environmental correlates of fish movement on a coral reef
NASA Astrophysics Data System (ADS)
Currey, Leanne M.; Heupel, Michelle R.; Simpfendorfer, Colin A.; Williams, Ashley J.
2015-12-01
Variation in dispersal and movement patterns of coral reef fishes is likely linked to changes in environmental conditions. Monitoring in situ environmental parameters on coral reefs in conjunction with the movements of fishes can help explain the relationship between exploited populations and their environment. Sixty adult Lethrinus miniatus were acoustically tagged and monitored along a coral reef slope for up to 1 yr. Individuals occurred more often on the reef slope during days of cooler temperatures, suggesting a thermal tolerance threshold may exist. Results indicate that individuals responded to elevated temperatures by moving away from the reef slope to deeper adjacent habitats, thus shifting their position in the water column to remain at a preferred temperature. Space use within the water column (vertical activity space) was not influenced by environmental parameters or fish size, but this result was possibly influenced by use of deeper habitat outside the acoustic array that was not monitored. With elevation of ocean temperature, L. miniatus may need to adapt to warmer waters or disperse into cooler habitats, by either shifting their distribution deeper or towards higher latitudes. Identifying key environmental drivers that affect the distribution of reef fishes is important, and may allow managers to predict the effect of these changes on exploited species.
Key parameters controlling the performance of catalytic motors.
Esplandiu, Maria J; Afshar Farniya, Ali; Reguera, David
2016-03-28
The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential and the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.
Jennings, T A; Scheer, A; Emodi, A; Puderbach, L; King, S; Norton, T
1996-01-01
The principle objectives of this paper are (a), to develop the rationale for conducting an inspection qualification (IQ) and operational qualification (OQ) of a vacuum freeze-dryer; (b), to identify the key elements that require verification for completion of the IQ; and (c), to establish the necessary environmental and operational parameters necessary for the OQ of the vacuum freeze-dryer.
NASA Astrophysics Data System (ADS)
Ciriello, V.; Lauriola, I.; Bonvicini, S.; Cozzani, V.; Di Federico, V.; Tartakovsky, Daniel M.
2017-11-01
Ubiquitous hydrogeological uncertainty undermines the veracity of quantitative predictions of soil and groundwater contamination due to accidental hydrocarbon spills from onshore pipelines. Such predictions, therefore, must be accompanied by quantification of predictive uncertainty, especially when they are used for environmental risk assessment. We quantify the impact of parametric uncertainty on quantitative forecasting of temporal evolution of two key risk indices, volumes of unsaturated and saturated soil contaminated by a surface spill of light nonaqueous-phase liquids. This is accomplished by treating the relevant uncertain parameters as random variables and deploying two alternative probabilistic models to estimate their effect on predictive uncertainty. A physics-based model is solved with a stochastic collocation method and is supplemented by a global sensitivity analysis. A second model represents the quantities of interest as polynomials of random inputs and has a virtually negligible computational cost, which enables one to explore any number of risk-related contamination scenarios. For a typical oil-spill scenario, our method can be used to identify key flow and transport parameters affecting the risk indices, to elucidate texture-dependent behavior of different soils, and to evaluate, with a degree of confidence specified by the decision-maker, the extent of contamination and the correspondent remediation costs.
Gallego-Schmid, Alejandro; Jeswani, Harish Kumar; Mendoza, Joan Manuel F; Azapagic, Adisa
2018-06-01
Between 117 and 200 million kettles are used in the European Union (EU) every year. However, the full environmental impacts of kettles remain largely unknown. This paper presents a comprehensive life cycle assessment of conventional plastic and metallic kettles in comparison with eco-kettles. The results show that the use stage contributes 80% to the impacts. For this reason, the eco-kettle has over 30% lower environmental impacts due to a greater water efficiency and related lower energy consumption. These results have been extrapolated to the EU level to consider the implications for proposed eco-design regulations. For these purposes, the effects on the impacts of durability of kettles and improvements in their energy and water efficiency have been assessed as they have been identified as two key parameters in the proposed regulations. The results suggest that increasing the current average durability from 4.4 to seven years would reduce the impacts by less than 5%. Thus, improving durability is not a key issue for improving the environmental performance of kettles and does not justify the need for an eco-design regulation based exclusively on it. However, improvements in water and energy efficiency through eco-design can bring relevant environmental savings. Boiling the exact amount of water needed would reduce the impacts by around a third and using water temperature control by further 2%-5%. The study has also considered the effects of reducing significantly the number of kettles in use after the UK (large user of kettles) leaves the EU and reducing the excess water typically boiled by the consumer. Even under these circumstances, the environmental savings justify the development of a specific EU eco-design regulation for kettles. However, consumer engagement will be key to the implementation and achievement of the expected environmental benefits. Copyright © 2017 Elsevier B.V. All rights reserved.
Voids and the Cosmic Web: cosmic depression & spatial complexity
NASA Astrophysics Data System (ADS)
van de Weygaert, Rien
2016-10-01
Voids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do theyrepresent a key constituent of the Cosmic Web, they also are one of the cleanest probesand measures of global cosmological parameters. The shape and evolution of voids are highly sensitive tothe nature of dark energy, while their substructure and galaxy population provides a direct key to thenature of dark matter. Also, the pristine environment of void interiors is an important testing groundfor our understanding of environmental influences on galaxy formation and evolution. In this paper, we reviewthe key aspects of the structure and dynamics ofvoids, with a particular focus on the hierarchical evolution of the void population. We demonstratehow the rich structural pattern of the Cosmic Web is related to the complex evolution and buildupof voids.
A Decision Support Framework for Evaluation of Engineered ...
Engineered nanomaterials (ENM) are currently being developed and applied at rates that far exceed our ability to evaluate their potential for environmental or human health risks. The gap between material development and capacity for assessment grows wider every day. Transformative approaches are required that enhance our ability to forecast potential exposure and adverse health risks based on limited information such as the physical and chemical parameters of ENM, their proposed uses, and functional assays reflective of key ENM - environmental interactions. We are developing a framework that encompasses the potential for release of nanomaterials across a product life cycle, environmental transport, transformations and fate, exposure to sensitive species, including humans, and the potential for causing adverse effects. Each component of the framework is conceive of as a sequential segmented model depicting the movement, transformations and actions of ENM through environmental or biological compartments, and along which targeted functional assays can be developed that are indicative of projected rates of ENM movement or action. The eventual goal is to allow simple predictive models to be built that incorporate the data from key functional assays and thereby allow rapid screening of the projected margin of exposure for proposed applications of ENM enabled products. In this way, cases where a substantially safe margin of exposure is forecast can be reduced in
NASA Astrophysics Data System (ADS)
Arhonditsis, George B.; Papantou, Dimitra; Zhang, Weitao; Perhar, Gurbir; Massos, Evangelia; Shi, Molu
2008-09-01
Aquatic biogeochemical models have been an indispensable tool for addressing pressing environmental issues, e.g., understanding oceanic response to climate change, elucidation of the interplay between plankton dynamics and atmospheric CO 2 levels, and examination of alternative management schemes for eutrophication control. Their ability to form the scientific basis for environmental management decisions can be undermined by the underlying structural and parametric uncertainty. In this study, we outline how we can attain realistic predictive links between management actions and ecosystem response through a probabilistic framework that accommodates rigorous uncertainty analysis of a variety of error sources, i.e., measurement error, parameter uncertainty, discrepancy between model and natural system. Because model uncertainty analysis essentially aims to quantify the joint probability distribution of model parameters and to make inference about this distribution, we believe that the iterative nature of Bayes' Theorem is a logical means to incorporate existing knowledge and update the joint distribution as new information becomes available. The statistical methodology begins with the characterization of parameter uncertainty in the form of probability distributions, then water quality data are used to update the distributions, and yield posterior parameter estimates along with predictive uncertainty bounds. Our illustration is based on a six state variable (nitrate, ammonium, dissolved organic nitrogen, phytoplankton, zooplankton, and bacteria) ecological model developed for gaining insight into the mechanisms that drive plankton dynamics in a coastal embayment; the Gulf of Gera, Island of Lesvos, Greece. The lack of analytical expressions for the posterior parameter distributions was overcome using Markov chain Monte Carlo simulations; a convenient way to obtain representative samples of parameter values. The Bayesian calibration resulted in realistic reproduction of the key temporal patterns of the system, offered insights into the degree of information the data contain about model inputs, and also allowed the quantification of the dependence structure among the parameter estimates. Finally, our study uses two synthetic datasets to examine the ability of the updated model to provide estimates of predictive uncertainty for water quality variables of environmental management interest.
Key parameters controlling the performance of catalytic motors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esplandiu, Maria J.; Afshar Farniya, Ali; Reguera, David, E-mail: dreguera@ub.edu
2016-03-28
The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential andmore » the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.« less
Feasibility Study of a Satellite Solar Power Station
NASA Technical Reports Server (NTRS)
Glaser, P. E.; Maynard, O. E.; Mackovciak, J. J. R.; Ralph, E. I.
1974-01-01
A feasibility study of a satellite solar power station (SSPS) was conducted to: (1) explore how an SSPS could be flown and controlled in orbit; (2) determine the techniques needed to avoid radio frequency interference (RFI); and (3) determine the key environmental, technological, and economic issues involved. Structural and dynamic analyses of the SSPS structure were performed, and deflections and internal member loads were determined. Desirable material characteristics were assessed and technology developments identified. Flight control performance of the SSPS baseline design was evaluated and parametric sizing studies were performed. The study of RFI avoidance techniques covered (1) optimization of the microwave transmission system; (2) device design and expected RFI; and (3) SSPS RFI effects. The identification of key issues involved (1) microwave generation, transmissions, and rectification and solar energy conversion; (2) environmental-ecological impact and biological effects; and (3) economic issues, i.e., costs and benefits associated with the SSPS. The feasibility of the SSPS based on the parameters of the study was established.
Remais, Justin V; Xiao, Ning; Akullian, Adam; Qiu, Dongchuan; Blair, David
2011-04-01
For many pathogens with environmental stages, or those carried by vectors or intermediate hosts, disease transmission is strongly influenced by pathogen, host, and vector movements across complex landscapes, and thus quantitative measures of movement rate and direction can reveal new opportunities for disease management and intervention. Genetic assignment methods are a set of powerful statistical approaches useful for establishing population membership of individuals. Recent theoretical improvements allow these techniques to be used to cost-effectively estimate the magnitude and direction of key movements in infectious disease systems, revealing important ecological and environmental features that facilitate or limit transmission. Here, we review the theory, statistical framework, and molecular markers that underlie assignment methods, and we critically examine recent applications of assignment tests in infectious disease epidemiology. Research directions that capitalize on use of the techniques are discussed, focusing on key parameters needing study for improved understanding of patterns of disease.
NASA Technical Reports Server (NTRS)
Cross, Cynthia D.; Lewis, John F.; Barido, Richard A.; Carrasquillo, Robyn; Rains, George E.
2011-01-01
Recent changes in the overall NASA vision has resulted in further cost and schedule challenges for the Orion program. As a result, additional scrutiny has been focused on the use of new developments for hardware in the environmental control and life support systems. This paper will examine the Orion architecture as it is envisioned to support missions to the International Space Station and future exploration missions and determine what if any functions can be satisfied through the use of existing, heritage hardware designs. An initial evaluation of each component is included and where a heritage component was deemed likely further details are examined. Key technical parameters, mass, volume and vibration loads are a few of the specific items that are evaluated. Where heritage hardware has been identified that may be substituted in the Orion architecture a discussion of key requirement changes that may need to be made as well as recommendation to further evaluate applicability are noted.
Monitoring Diffuse Impacts: Australian Tourism Developments.
Warnken; Buckley
2000-04-01
/ The scientific quality of monitoring for diffuse environmental impacts has rarely been quantified. This paper presents an analysis of all formal environmental monitoring programs for Australian tourism developments over a 15-year period from 1980 to 1995. The tourism sector provides a good test bed for this study because tourism developments are (1) often adjacent to or even within conservation reserves and other relatively undisturbed natural environments, and (2) often clustered, with resulting cumulative impacts that require detection at an early stage. Here we analyze the precision and reliability with which monitoring programs as actually implemented can detect diffuse environmental impacts against natural variation. Of 175 Australian tourism developments subject to EIA from 1980 to 1993 inclusive, only 13 were subject to formal monitoring. Only 44 individual parameters, in total, were monitored for all these developments together. No baseline monitoring was conducted for nine of the 44 parameters. For the remaining 35, only one was monitored for a full year. Before, after, control, impact, paired sampling (BACIP) monitoring designs were used for 24 of the 44 parameters, and power analysis in 10. The scientific quality of monitoring was significantly better for developments subject to control by the Great Barrier Reef Marine Park Authority (GBRMPA). The key factor appears to be the way in which GBRMPA uses external referees and manages external consultants. The GBRMPA model merits wider adoption.
Plant Invasions in China – Challenges and Chances
Axmacher, Jan C.; Sang, Weiguo
2013-01-01
Invasive species cause serious environmental and economic harm and threaten global biodiversity. We set out to investigate how quickly invasive plant species are currently spreading in China and how their resulting distribution patterns are linked to socio-economic and environmental conditions. A comparison of the invasive plant species density (log species/log area) reported in 2008 with current data shows that invasive species were originally highly concentrated in the wealthy, southeastern coastal provinces of China, but they are currently rapidly spreading inland. Linear regression models based on the species density and turnover of invasive plants as dependent parameters and principal components representing key socio-economic and environmental parameters as predictors indicate strong positive links between invasive plant density and the overall phytodiversity and associated climatic parameters. Principal components representing socio-economic factors and endemic plant density also show significant positive links with invasive plant density. Urgent control and eradication measures are needed in China's coastal provinces to counteract the rapid inland spread of invasive plants. Strict controls of imports through seaports need to be accompanied by similarly strict controls of the developing horticultural trade and underpinned by awareness campaigns for China's increasingly affluent population to limit the arrival of new invaders. Furthermore, China needs to fully utilize its substantial native phytodiversity, rather than relying on exotics, in current large-scale afforestation projects and in the creation of urban green spaces. PMID:23691164
Carrer, Marco; von Arx, Georg; Castagneri, Daniele; Petit, Giai
2015-01-01
Trees are among the best natural archives of past environmental information. Xylem anatomy preserves information related to tree allometry and ecophysiological performance, which is not available from the more customary ring-width or wood-density proxy parameters. Recent technological advances make tree-ring anatomy very attractive because time frames of many centuries can now be covered. This calls for the proper treatment of time series of xylem anatomical attributes. In this article, we synthesize current knowledge on the biophysical and physiological mechanisms influencing the short- to long-term variation in the most widely used wood-anatomical feature, namely conduit size. We also clarify the strong mechanistic link between conduit-lumen size, tree hydraulic architecture and height growth. Among the key consequences of these biophysical constraints is the pervasive, increasing trend of conduit size during ontogeny. Such knowledge is required to process time series of anatomical parameters correctly in order to obtain the information of interest. An appropriate standardization procedure is fundamental when analysing long tree-ring-related chronologies. When dealing with wood-anatomical parameters, this is even more critical. Only an interdisciplinary approach involving ecophysiology, wood anatomy and dendrochronology will help to distill the valuable information about tree height growth and past environmental variability correctly. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Stefanidis, Konstantinos; Papatheodorou, George
2018-01-01
During the last decades, Mediterranean freshwater ecosystems, especially lakes, have been under severe pressure due to increasing eutrophication and water quality deterioration. In this article, we compared the effectiveness of different data analysis methods by assessing the contribution of environmental parameters to eutrophication processes. For this purpose, principal components analysis (PCA), cluster analysis, and a self-organizing map (SOM) were applied, using water quality data from two transboundary lakes of North Greece. SOM is considered as an advanced and powerful data analysis tool because of its ability to represent complex and nonlinear relationships among multivariate data sets. The results of PCA and cluster analysis agreed with the SOM results, although the latter provided more information because of the visualization abilities regarding the parameters’ relationships. Besides nutrients that were found to be a key factor for controlling chlorophyll-a (Chl-a), water temperature was related positively with algal production, while the Secchi disk depth parameter was found to be highly important and negatively related toeutrophic conditions. In general, the SOM results were more specific and allowed direct associations between the water quality variables. Our work showed that SOMs can be used effectively in limnological studies to produce robust and interpretable results, aiding scientists and managers to cope with environmental problems such as eutrophication. PMID:29562675
Jergenson, Abigail M; Miller, David A W; Neuman-Lee, Lorin A; Warner, Daniel A; Janzen, Fredric J
2014-03-01
Extreme environmental events (EEEs) are likely to exert deleterious effects on populations. From 1996 to 2012 we studied the nesting dynamics of a riverine population of painted turtles (Chrysemys picta) that experienced seven years with significantly definable spring floods. We used capture-mark-recapture methods to estimate the relationships between more than 5 m and more than 6 m flood events and population parameters. Contrary to expectations, flooding was not associated with annual differences in survival, recruitment or annual population growth rates of the adult female segment of the population. These findings suggest that female C. picta exhibit resiliency to key EEE, which are expected to increase in frequency under climate change.
Husby, Arild; Visser, Marcel E.; Kruuk, Loeske E. B.
2011-01-01
The amount of genetic variance underlying a phenotypic trait and the strength of selection acting on that trait are two key parameters that determine any evolutionary response to selection. Despite substantial evidence that, in natural populations, both parameters may vary across environmental conditions, very little is known about the extent to which they may covary in response to environmental heterogeneity. Here we show that, in a wild population of great tits (Parus major), the strength of the directional selection gradients on timing of breeding increased with increasing spring temperatures, and that genotype-by-environment interactions also predicted an increase in additive genetic variance, and heritability, of timing of breeding with increasing spring temperature. Consequently, we therefore tested for an association between the annual selection gradients and levels of additive genetic variance expressed each year; this association was positive, but non-significant. However, there was a significant positive association between the annual selection differentials and the corresponding heritability. Such associations could potentially speed up the rate of micro-evolution and offer a largely ignored mechanism by which natural populations may adapt to environmental changes. PMID:21408101
Parametric Mass Modeling for Mars Entry, Descent and Landing System Analysis Study
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.; Komar, D. R.
2011-01-01
This paper provides an overview of the parametric mass models used for the Entry, Descent, and Landing Systems Analysis study conducted by NASA in FY2009-2010. The study examined eight unique exploration class architectures that included elements such as a rigid mid-L/D aeroshell, a lifting hypersonic inflatable decelerator, a drag supersonic inflatable decelerator, a lifting supersonic inflatable decelerator implemented with a skirt, and subsonic/supersonic retro-propulsion. Parametric models used in this study relate the component mass to vehicle dimensions and mission key environmental parameters such as maximum deceleration and total heat load. The use of a parametric mass model allows the simultaneous optimization of trajectory and mass sizing parameters.
Study of high-speed civil transports
NASA Technical Reports Server (NTRS)
1989-01-01
A systems study to identify the economic potential for a high-speed commercial transport (HSCT) has considered technology, market characteristics, airport infrastructure, and environmental issues. Market forecasts indicate a need for HSCT service in the 2000/2010 time frame conditioned on economic viability and environmental acceptability. Design requirements focused on a 300 passenger, 3 class service, and 6500 nautical mile range based on the accelerated growth of the Pacific region. Compatibility with existing airports was an assumed requirement. Mach numbers between 2 and 25 were examined in conjunction with the appropriate propulsion systems, fuels, structural materials, and thermal management systems. Aircraft productivity was a key parameter with aircraft worth, in comparison to aircraft price, being the airline-oriented figure of merit. Aircraft screening led to determination that Mach 3.2 (TSJF) would have superior characteristics to Mach 5.0 (LNG) and the recommendation that the next generation high-speed commercial transport aircraft use a kerosene fuel. The sensitivity of aircraft performance and economics to environmental constraints (e.g., sonic boom, engine emissions, and airport/community noise) was identified together with key technologies. In all, current technology is not adequate to produce viable HSCTs for the world marketplace. Technology advancements must be accomplished to meet environmental requirements (these requirements are as yet undetermined for sonic boom and engine emissions). High priority is assigned to aircraft gross weight reduction which benefits both economics and environmental aspects. Specific technology requirements are identified and national economic benefits are projected.
Hall, Ed K; Schoolmaster, Donald; Amado, A.M; Stets, Edward G.; Lennon, J.T.; Domaine, L.; Cotner, J.B.
2016-01-01
To address how various environmental parameters control or constrain planktonic respiration (PR), we used geometric scaling relationships and established biological scaling laws to derive quantitative predictions for the relationships among key drivers of PR. We then used empirical measurements of PR and environmental (soluble reactive phosphate [SRP], carbon [DOC], chlorophyll a [Chl-a)], and temperature) and landscape parameters (lake area [LA] and watershed area [WA]) from a set of 44 lakes that varied in size and trophic status to test our hypotheses. We found that landscape-level processes affected PR through direct effects on DOC and temperature and indirectly via SRP. In accordance with predictions made from known relationships and scaling laws, scale coefficients (the parameter that describes the shape of a relationship between 2 variables) were found to be negative and have an absolute value 1, others <1). We also found evidence of a significant relationship between temperature and SRP. Because our dataset included measurements of respiration from small pond catchments to the largest body of freshwater on the planet, Lake Superior, these findings should be applicable to controls of PR for the great majority of temperate aquatic ecosystems.
Microbiota and environmental stress: how pollution affects microbial communities in Manila clams.
Milan, M; Carraro, L; Fariselli, P; Martino, M E; Cavalieri, D; Vitali, F; Boffo, L; Patarnello, T; Bargelloni, L; Cardazzo, B
2018-01-01
Given the crucial role of microbiota in host development, health, and environmental interactions, genomic analyses focusing on host-microbiota interactions should certainly be considered in the investigation of the adaptive mechanisms to environmental stress. Recently, several studies suggested that microbiota associated to digestive tract is a key, although still not fully understood, player that must be considered to assess the toxicity of environmental contaminants. Bacteria-dependent metabolism of xenobiotics may indeed modulate the host toxicity. Conversely, environmental variables (including pollution) may alter the microbial community and/or its metabolic activity leading to host physiological alterations that may contribute to their toxicity. Here, 16s rRNA gene amplicon sequencing has been applied to characterize the hepatopancreas microbiota composition of the Manila clam, Ruditapes philippinarum. The animals were collected in the Venice lagoon area, which is subject to different anthropogenic pressures, mainly represented by the industrial activities of Porto Marghera (PM). Seasonal and geographic differences in clam microbiotas were explored and linked to host response to chemical stress identified in a previous study at the transcriptome level, establishing potential interactions among hosts, microbes, and environmental parameters. The obtained results showed the recurrent presence of putatively detoxifying bacterial taxa in PM clams during winter and over-representation of several metabolic pathways involved in xenobiotic degradation, which suggested the potential for host-microbial synergistic detoxifying actions. Strong interaction between seasonal and chemically-induced responses was also observed, which partially obscured such potentially synergistic actions. Seasonal variables and exposure to toxicants were therefore shown to interact and substantially affect clam microbiota, which appeared to mirror host response to environmental variation. It is clear that understanding how animals respond to chemical stress cannot ignore a key component of such response, the microbiota. Copyright © 2017 Elsevier B.V. All rights reserved.
Modeling diurnal land temperature cycles over Los Angeles using downscaled GOES imagery
NASA Astrophysics Data System (ADS)
Weng, Qihao; Fu, Peng
2014-11-01
Land surface temperature is a key parameter for monitoring urban heat islands, assessing heat related risks, and estimating building energy consumption. These environmental issues are characterized by high temporal variability. A possible solution from the remote sensing perspective is to utilize geostationary satellites images, for instance, images from Geostationary Operational Environmental System (GOES) and Meteosat Second Generation (MSG). These satellite systems, however, with coarse spatial but high temporal resolution (sub-hourly imagery at 3-10 km resolution), often limit their usage to meteorological forecasting and global climate modeling. Therefore, how to develop efficient and effective methods to disaggregate these coarse resolution images to a proper scale suitable for regional and local studies need be explored. In this study, we propose a least square support vector machine (LSSVM) method to achieve the goal of downscaling of GOES image data to half-hourly 1-km LSTs by fusing it with MODIS data products and Shuttle Radar Topography Mission (SRTM) digital elevation data. The result of downscaling suggests that the proposed method successfully disaggregated GOES images to half-hourly 1-km LSTs with accuracy of approximately 2.5 K when validated against with MODIS LSTs at the same over-passing time. The synthetic LST datasets were further explored for monitoring of surface urban heat island (UHI) in the Los Angeles region by extracting key diurnal temperature cycle (DTC) parameters. It is found that the datasets and DTC derived parameters were more suitable for monitoring of daytime- other than nighttime-UHI. With the downscaled GOES 1-km LSTs, the diurnal temperature variations can well be characterized. An accuracy of about 2.5 K was achieved in terms of the fitted results at both 1 km and 5 km resolutions.
1984-04-01
800OF and afterburner temperatures below 112000F. Explosives were detected in the combustion gases leaving the primary chamber for one test burn (i.e... combustion chamber. (c) Temperature in the secondary combustion chamber. l These key parameters were selected since they directly re- late to the...4523A 5.4 Heat exchanger (waste heat boiler) . The f lue gases discharged from the secondary combustion chamber were directed, via refractory-lined duct
Wang, Zuowei; Xia, Siqing; Xu, Xiaoyin; Wang, Chenhui
2016-02-01
In this study, a one-dimensional multispecies model (ODMSM) was utilized to simulate NO3(-)-N and ClO4(-) reduction performances in two kinds of H2-based membrane-aeration biofilm reactors (H2-MBfR) within different operating conditions (e.g., NO3(-)-N/ClO4(-) loading rates, H2 partial pressure, etc.). Before the simulation process, we conducted the sensitivity analysis of some key parameters which would fluctuate in different environmental conditions, then we used the experimental data to calibrate the more sensitive parameters μ1 and μ2 (maximum specific growth rates of denitrification bacteria and perchlorate reduction bacteria) in two H2-MBfRs, and the diversity of the two key parameters' values in two types of reactors may be resulted from the different carbon source fed in the reactors. From the simulation results of six different operating conditions (four in H2-MBfR 1 and two in H2-MBfR 2), the applicability of the model was approved, and the variation of the removal tendency in different operating conditions could be well simulated. Besides, the rationality of operating parameters (H2 partial pressure, etc.) could be judged especially in condition of high nutrients' loading rates. To a certain degree, the model could provide theoretical guidance to determine the operating parameters on some specific conditions in practical application.
Correlated seed failure as an environmental veto to synchronize reproduction of masting plants.
Bogdziewicz, Michał; Steele, Michael A; Marino, Shealyn; Crone, Elizabeth E
2018-07-01
Variable, synchronized seed production, called masting, is a widespread reproductive strategy in plants. Resource dynamics, pollination success, and, as described here, environmental veto are possible proximate mechanisms driving masting. We explored the environmental veto hypothesis, which assumes that reproductive synchrony is driven by external factors preventing reproduction in some years, by extending the resource budget model of masting with correlated reproductive failure. We ran this model across its parameter space to explore how key parameters interact to drive seeding dynamics. Next, we parameterized the model based on 16 yr of seed production data for populations of red (Quercus rubra) and white (Quercus alba) oaks. We used these empirical models to simulate seeding dynamics, and compared simulated time series with patterns observed in the field. Simulations showed that resource dynamics and reproduction failure can produce masting even in the absence of pollen coupling. In concordance with this, in both oaks, among-year variation in resource gain and correlated reproductive failure were necessary and sufficient to reproduce masting, whereas pollen coupling, although present, was not necessary. Reproductive failure caused by environmental veto may drive large-scale synchronization without density-dependent pollen limitation. Reproduction-inhibiting weather events are prevalent in ecosystems, making described mechanisms likely to operate in many systems. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.
Environmental perverse incentives in coastal monitoring.
Gibbs, Mark T
2013-08-15
It can be argued that the intensity of monitoring of coastal marine environments lags behind the equivalent terrestrial environments. This results in a paucity of long-term time series of key environmental parameters such as turbidity. This lack of management information of the sources and sinks, and causes and impacts of stressors to the coastal marine environment, along with a lack of co-ordination of information collection is compromising the ability of environmental impact assessments of major coastal developments to discriminate between local and remote anthropogenic impacts, and natural or background processes. In particular, the quasi outsourcing of the collection of coastal information can lead to a perverse incentive whereby in many cases nobody is actively or consistently monitoring the coastal marine environment effectively. This is particularly the case with regards to the collection of long-term and whole-of-system scale data. This lack of effective monitoring can act to incentivise poor environmental performance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Guo, M; Trzcinski, A P; Stuckey, D C; Murphy, R J
2011-12-01
The digestibility of a starch-polyvinyl alcohol (PVOH) biopolymer insulated cardboard coolbox was investigated under a defined anaerobic digestion (AD) system with key parameters characterized. Laboratory results were combined with industrial operational data to develop a site-specific life cycle assessment (LCA) model. Inoculated with active bacterial trophic groups, the anaerobic biodegradability of three starch-PVOH biopolymers achieved 58-62%. The LCA modeling showed that the environmental burdens of the starch-PVOH biopolymer packaging under AD conditions on acidification, eutrophication, global warming and photochemical oxidation potential were dominated by atmospheric emissions released from substrate degradation and fuel combustion, whereas energy consumption and infrastructure requirements were the causes of abiotic depletion, ozone depletion and toxic impacts. Nevertheless, for this bio-packaging, AD of the starch-PVOH biopolymer combined with recycling of the cardboard emerged as the environmentally superior option and optimization of the energy utilization system could bring further environmental benefits to the AD process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Review of concrete biodeterioration in relation to nuclear waste.
Turick, Charles E; Berry, Christopher J
2016-01-01
Storage of radioactive waste in concrete structures is a means of containing wastes and related radionuclides generated from nuclear operations in many countries. Previous efforts related to microbial impacts on concrete structures that are used to contain radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete structures used to store or dispose of radioactive waste. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources such as components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The microbial contribution to degradation of the concrete structures containing radioactive waste is a constant possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Parameters to focus on for modeling activities and possible options for mitigation that would minimize concrete biodegradation are discussed and include key conditions that drive microbial activity on concrete surfaces. Copyright © 2015. Published by Elsevier Ltd.
The Anthropocene concept in ecology and conservation.
Corlett, Richard T
2015-01-01
The term 'Anthropocene' was first used in the year 2000 to refer to the current time period in which human impacts are at least as important as natural processes. It is currently being considered as a potential geological epoch, following on from the Holocene. While most environmental scientists accept that many key environmental parameters are now outside their Holocene ranges, there is no agreement on when the Anthropocene started, with plausible dates ranging from the Late Pleistocene megafaunal extinctions to the recent globalization of industrial impacts. In ecology, the Anthropocene concept has focused attention on human-dominated habitats and novel ecosystems, while in conservation biology it has sparked a divisive debate on the continued relevance of the traditional biocentric aims. Copyright © 2014 Elsevier Ltd. All rights reserved.
Swimming against the tide: resilience of a riverine turtle to recurrent extreme environmental events
Jergenson, Abigail M.; Miller, David A. W.; Neuman-Lee, Lorin A.; Warner, Daniel A.; Janzen, Fredric J.
2014-01-01
Extreme environmental events (EEEs) are likely to exert deleterious effects on populations. From 1996 to 2012 we studied the nesting dynamics of a riverine population of painted turtles (Chrysemys picta) that experienced seven years with significantly definable spring floods. We used capture–mark–recapture methods to estimate the relationships between more than 5 m and more than 6 m flood events and population parameters. Contrary to expectations, flooding was not associated with annual differences in survival, recruitment or annual population growth rates of the adult female segment of the population. These findings suggest that female C. picta exhibit resiliency to key EEE, which are expected to increase in frequency under climate change. PMID:24621555
Norms and values in sociohydrological models
NASA Astrophysics Data System (ADS)
Roobavannan, Mahendran; van Emmerik, Tim H. M.; Elshafei, Yasmina; Kandasamy, Jaya; Sanderson, Matthew R.; Vigneswaran, Saravanamuthu; Pande, Saket; Sivapalan, Murugesu
2018-02-01
Sustainable water resources management relies on understanding how societies and water systems coevolve. Many place-based sociohydrology (SH) modeling studies use proxies, such as environmental degradation, to capture key elements of the social component of system dynamics. Parameters of assumed relationships between environmental degradation and the human response to it are usually obtained through calibration. Since these relationships are not yet underpinned by social-science theories, confidence in the predictive power of such place-based sociohydrologic models remains low. The generalizability of SH models therefore requires major advances in incorporating more realistic relationships, underpinned by appropriate hydrological and social-science data and theories. The latter is a critical input, since human culture - especially values and norms arising from it - influences behavior and the consequences of behaviors. This paper reviews a key social-science theory that links cultural factors to environmental decision-making, assesses how to better incorporate social-science insights to enhance SH models, and raises important questions to be addressed in moving forward. This is done in the context of recent progress in sociohydrological studies and the gaps that remain to be filled. The paper concludes with a discussion of challenges and opportunities in terms of generalization of SH models and the use of available data to allow future prediction and model transfer to ungauged basins.
NASA Technical Reports Server (NTRS)
Kiang, Richard K.; Adimi, Farida; Soika, Valerii; Nigro, Joseph
2007-01-01
These slides address the use of remote sensing in a public health application. Specifically, this discussion focuses on the of remote sensing to detect larval habitats to predict current and future endemicity and identify key factors that sustain or promote transmission of malaria in a targeted geographic area (Thailand). In the Malaria Modeling and Surveillance Project, which is part of the NASA Applied Sciences Public Health Applications Program, we have been developing techniques to enhance public health's decision capability for malaria risk assessments and controls. The main objectives are: 1) identification of the potential breeding sites for major vector species; 2) implementation of a risk algorithm to predict the occurrence of malaria and its transmission intensity; 3) implementation of a dynamic transmission model to identify the key factors that sustain or intensify malaria transmission. The potential benefits are: 1) increased warning time for public health organizations to respond to malaria outbreaks; 2) optimized utilization of pesticide and chemoprophylaxis; 3) reduced likelihood of pesticide and drug resistance; and 4) reduced damage to environment. !> Environmental parameters important to malaria transmission include temperature, relative humidity, precipitation, and vegetation conditions. The NASA Earth science data sets that have been used for malaria surveillance and risk assessment include AVHRR Pathfinder, TRMM, MODIS, NSIPP, and SIESIP. Textural-contextual classifications are used to identify small larval habitats. Neural network methods are used to model malaria cases as a function of the remotely sensed parameters. Hindcastings based on these environmental parameters have shown good agreement to epidemiological records. Discrete event simulations are used for modeling the detailed interactions among the vector life cycle, sporogonic cycle and human infection cycle, under the explicit influences of selected extrinsic and intrinsic factors. The output of the model includes the individual infection status and the quantities normally observed in field studies, such as mosquito biting rates, sporozoite infection rates, gametocyte prevalence and incidence. Results are in good agreement with mosquito vector and human malaria data acquired by Coleman et al. over 4.5 years in Kong Mong Tha, a remote village in western Thailand. Application of our models is not restricted to the Greater Mekong Subregion. Our models have been applied to malaria in Indonesia, Korea, and other regions in the world with similar success.
NASA Astrophysics Data System (ADS)
Petropoulos, George; Wooster, Martin J.; Carlson, Toby N.; Drake, Nick
2010-05-01
Accurate information on spatially explicit distributed estimates of key land-atmosphere fluxes and related land surface parameters is of key importance in a range of disciplines including hydrology, meteorology, agriculture and ecology. Estimation of those parameters from remote sensing frequently employs the integration of such data with mathematical representations of the transfers of energy, mass and radiation between soil, vegetation and atmosphere continuum, known as Soil Vegetation Atmosphere Transfer (SVAT) models. The ability of one such inversion modelling scheme to resolve for key surface energy fluxes and of soil surface moisture content is examined here using data from a multispectral high spatial resolution imaging instrument, the Advanced Spaceborne Thermal Emission and Reflection Scanning Radiometer (ASTER) and SimSphere one-dimensional SVAT model. Accuracy of the investigated methodology, so-called as the "triangle" method, is verified using validated ground observations obtained from selected days collected from nine CARBOEUROPE IP sites representing a variety of climatic, topographic and environmental conditions. Subsequently, a new framework is suggested for the retrieval of two additional parameters by the investigated method, namely the Evaporative (EF) and the Non-Evaporative (NEF) Fractions. Results indicated a close agreement between the inverted surface fluxes and surface moisture availability maps as well as of the EF and NEF parameters with the observations both spatially and temporally with accuracies comparable to those obtained in similar experiments with high spatial resolution data. Inspection of the inverted surface fluxes maps regionally, showed an explainable distribution in the range of the inverted parameters in relation with the surface heterogeneity. Overall performance of the "triangle" inversion methodology was found to be affected predominantly by the SVAT model "correct" initialisation representative of the test site environment, most importantly the atmospheric conditions required in the SVAT model initial conditions. This study represents the first comprehensive evaluation of the performance of this particular methodological implementation at a European setting using the SimSphere SVAT with the ASTER data. The present work is also very timely in that, a variation of this specific inversion methodology has been proposed for the operational retrieval of the soil surface moisture content by National Polar-orbiting Operational Environmental Satellite System (NPOESS), in a series of satellite platforms that are due to be launched in the next 12 years starting from 2012. KEYWORDS: micrometeorology, surface heat fluxes, soil moisture content, ASTER, triangle method, SimSphere, CarboEurope IP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, Peter
2012-10-01
This musical composition was created from data of microbes (bacteria, algae and other microorganisms) sampled in the English Channel. Argonne National Laboratory biologist Peter Larsen created the songs as a unique way to present and comprehend large datasets. This composition highlights seasonal patterns in marine physical parameters at the L4 Station. The chords are generated from seasonal changes in photosynthetically active radiation. The melody of each measure is comprised of eight notes, each mapped to a physical environmental parameter, in the following order: temperature, soluble reactive phosphate, nitrate, nitrite, saline, silicate and chlorophyll A concentrations. More information at http://www.anl.gov/articles/songs-key... Photomore » of cyanobacteria colonies is courtesy Specious Reasons (http://www.flickr.com/photos/28594931...) at Flickr via Creative Commons.« less
Energy efficiency in membrane bioreactors.
Barillon, B; Martin Ruel, S; Langlais, C; Lazarova, V
2013-01-01
Energy consumption remains the key factor for the optimisation of the performance of membrane bioreactors (MBRs). This paper presents the results of the detailed energy audits of six full-scale MBRs operated by Suez Environnement in France, Spain and the USA based on on-site energy measurement and analysis of plant operation parameters and treatment performance. Specific energy consumption is compared for two different MBR configurations (flat sheet and hollow fibre membranes) and for plants with different design, loads and operation parameters. The aim of this project was to understand how the energy is consumed in MBR facilities and under which operating conditions, in order to finally provide guidelines and recommended practices for optimisation of MBR operation and design to reduce energy consumption and environmental impacts.
Biodegradation of marine oil spills in the Arctic with a Greenland perspective.
Vergeynst, Leendert; Wegeberg, Susse; Aamand, Jens; Lassen, Pia; Gosewinkel, Ulrich; Fritt-Rasmussen, Janne; Gustavson, Kim; Mosbech, Anders
2018-06-01
New economic developments in the Arctic, such as shipping and oil exploitation, bring along unprecedented risks of marine oil spills. Microorganisms have played a central role in degrading and reducing the impact of the spilled oil during past oil disasters. However, in the Arctic, and in particular in its pristine areas, the self-cleaning capacity and biodegradation potential of the natural microbial communities have yet to be uncovered. This review compiles and investigates the current knowledge with respect to environmental parameters and biochemical constraints that control oil biodegradation in the Arctic. Hereby, seawaters off Greenland are considered as a case study. Key factors for biodegradation include the bioavailability of hydrocarbons, the presence of hydrocarbon-degrading bacteria and the availability of nutrients. We show how these key factors may be influenced by the physical oceanographic conditions in seawaters off Greenland and other environmental parameters including low temperature, sea ice, sunlight regime, suspended sediment plumes and phytoplankton blooms that characterize the Arctic. Based on the acquired insights, a first qualitative assessment of the biodegradation potential in seawaters off Greenland is presented. In addition to the most apparent Arctic characteristics, such as low temperature and sea ice, the impact of typical Arctic features such as the oligotrophic environment, poor microbial adaptation to hydrocarbon degradation, mixing of stratified water masses, and massive phytoplankton blooms and suspended sediment plumes merit to be topics of future investigation. Copyright © 2018 Elsevier B.V. All rights reserved.
An investigation of the key parameters for predicting PV soiling losses
Micheli, Leonardo; Muller, Matthew
2017-01-25
One hundred and two environmental and meteorological parameters have been investigated and compared with the performance of 20 soiling stations installed in the USA, in order to determine their ability to predict the soiling losses occurring on PV systems. The results of this investigation showed that the annual average of the daily mean particulate matter values recorded by monitoring stations deployed near the PV systems are the best soiling predictors, with coefficients of determination ( R 2) as high as 0.82. The precipitation pattern was also found to be relevant: among the different meteorological parameters, the average length of drymore » periods had the best correlation with the soiling ratio. Lastly, a preliminary investigation of two-variable regressions was attempted and resulted in an adjusted R 2 of 0.90 when a combination of PM 2.5 and a binary classification for the average length of the dry period was introduced.« less
Poole, Anthony M.; Sjöberg, Britt-Marie; Sjöling, Sara
2013-01-01
The Baltic Sea is characterized by hyposaline surface waters, hypoxic and anoxic deep waters and sediments. These conditions, which in turn lead to a steep oxygen gradient, are particularly evident at Landsort Deep in the Baltic Proper. Given these substantial differences in environmental parameters at Landsort Deep, we performed a metagenomic census spanning surface to sediment to establish whether the microbial communities at this site are as stratified as the physical environment. We report strong stratification across a depth transect for both functional capacity and taxonomic affiliation, with functional capacity corresponding most closely to key environmental parameters of oxygen, salinity and temperature. We report similarities in functional capacity between the hypoxic community and hadal zone communities, underscoring the substantial degree of eutrophication in the Baltic Proper. Reconstruction of the nitrogen cycle at Landsort deep shows potential for syntrophy between archaeal ammonium oxidizers and bacterial denitrification at anoxic depths, while anaerobic ammonium oxidation genes are absent, despite substantial ammonium levels below the chemocline. Our census also reveals enrichment in genetic prerequisites for a copiotrophic lifestyle and resistance mechanisms reflecting adaptation to prevalent eutrophic conditions and the accumulation of environmental pollutants resulting from ongoing anthropogenic pressures in the Baltic Sea. PMID:24086414
Essential amino acids: master regulators of nutrition and environmental footprint?
Tessari, Paolo; Lante, Anna; Mosca, Giuliano
2016-01-01
The environmental footprint of animal food production is considered several-fold greater than that of crops cultivation. Therefore, the choice between animal and vegetarian diets may have a relevant environmental impact. In such comparisons however, an often neglected issue is the nutritional value of foods. Previous estimates of nutrients’ environmental footprint had predominantly been based on either food raw weight or caloric content, not in respect to human requirements. Essential amino acids (EAAs) are key parameters in food quality assessment. We re-evaluated here the environmental footprint (expressed both as land use for production and as Green House Gas Emission (GHGE), of some animal and vegetal foods, titrated to provide EAAs amounts in respect to human requirements. Production of high-quality animal proteins, in amounts sufficient to match the Recommended Daily Allowances of all the EAAs, would require a land use and a GHGE approximately equal, greater o smaller (by only ±1-fold), than that necessary to produce vegetal proteins, except for soybeans, that exhibited the smallest footprint. This new analysis downsizes the common concept of a large advantage, in respect to environmental footprint, of crops vs. animal foods production, when human requirements of EAAs are used for reference. PMID:27221394
Essential amino acids: master regulators of nutrition and environmental footprint?
Tessari, Paolo; Lante, Anna; Mosca, Giuliano
2016-05-25
The environmental footprint of animal food production is considered several-fold greater than that of crops cultivation. Therefore, the choice between animal and vegetarian diets may have a relevant environmental impact. In such comparisons however, an often neglected issue is the nutritional value of foods. Previous estimates of nutrients' environmental footprint had predominantly been based on either food raw weight or caloric content, not in respect to human requirements. Essential amino acids (EAAs) are key parameters in food quality assessment. We re-evaluated here the environmental footprint (expressed both as land use for production and as Green House Gas Emission (GHGE), of some animal and vegetal foods, titrated to provide EAAs amounts in respect to human requirements. Production of high-quality animal proteins, in amounts sufficient to match the Recommended Daily Allowances of all the EAAs, would require a land use and a GHGE approximately equal, greater o smaller (by only ±1-fold), than that necessary to produce vegetal proteins, except for soybeans, that exhibited the smallest footprint. This new analysis downsizes the common concept of a large advantage, in respect to environmental footprint, of crops vs. animal foods production, when human requirements of EAAs are used for reference.
reefs in North America, supporting complex ecosystems of marine life that have thrived generation after Key West at the Dr. Nancy Foster Environmental Complex in Key West. Credit: Craig Wanous, Florida Keys Environmental Complex in Key West. Credit: Craig Wanous, Florida Keys National Marine Sanctuary. The National
The effect of thermal processing on microstructure and mechanical properties in a nickel-iron alloy
NASA Astrophysics Data System (ADS)
Yang, Ling
The correlation between processing conditions, resulted microstructure and mechanical properties is of interest in the field of metallurgy for centuries. In this work, we investigated the effect of thermal processing parameters on microstructure, and key mechanical properties to turbine rotor design: tensile yield strength and crack growth resistance, for a nickel-iron based superalloy Inconel 706. The first step of the designing of experiments is to find parameter ranges for thermal processing. Physical metallurgy on superalloys was combined with finite element analysis to estimate variations in thermal histories for a large Alloy 706 forging, and the results were adopted for designing of experiments. Through the systematic study, correlation was found between the processing parameters and the microstructure. Five different types of grain boundaries were identified by optical metallography, fractography, and transmission electron microscopy, and they were found to be associated with eta precipitation at the grain boundaries. Proportions of types of boundaries, eta size, spacing and angle respect to the grain boundary were found to be dependent on processing parameters. Differences in grain interior precipitates were also identified, and correlated with processing conditions. Further, a strong correlation between microstructure and mechanical properties was identified. The grain boundary precipitates affect the time dependent crack propagation resistance, and different types of boundaries have different levels of resistance. Grain interior precipitates were correlated with tensile yield strength. It was also found that there is a strong environmental effect on time dependent crack propagation resistance, and the sensitivity to environmental damage is microstructure dependent. The microstructure with eta decorated on grain boundaries by controlled processing parameters is more resistant to environmental damage through oxygen embrittlement than material without eta phase on grain boundaries. Effort was made to explore the mechanisms of improving the time dependent crack propagation resistance through thermal processing, several mechanisms were identified in both environment dependent and environment independent category, and they were ranked based on their contributions in affecting crack propagation.
Parameterisation of Biome BGC to assess forest ecosystems in Africa
NASA Astrophysics Data System (ADS)
Gautam, Sishir; Pietsch, Stephan A.
2010-05-01
African forest ecosystems are an important environmental and economic resource. Several studies show that tropical forests are critical to society as economic, environmental and societal resources. Tropical forests are carbon dense and thus play a key role in climate change mitigation. Unfortunately, the response of tropical forests to environmental change is largely unknown owing to insufficient spatially extensive observations. Developing regions like Africa where records of forest management for long periods are unavailable the process-based ecosystem simulation model - BIOME BGC could be a suitable tool to explain forest ecosystem dynamics. This ecosystem simulation model uses descriptive input parameters to establish the physiology, biochemistry, structure, and allocation patterns within vegetation functional types, or biomes. Undocumented parameters for larger-resolution simulations are currently the major limitations to regional modelling in African forest ecosystems. This study was conducted to document input parameters for BIOME-BGC for major natural tropical forests in the Congo basin. Based on available literature and field measurements updated values for turnover and mortality, allometry, carbon to nitrogen ratios, allocation of plant material to labile, cellulose, and lignin pools, tree morphology and other relevant factors were assigned. Daily climate input data for the model applications were generated using the statistical weather generator MarkSim. The forest was inventoried at various sites and soil samples of corresponding stands across Gabon were collected. Carbon and nitrogen in the collected soil samples were determined from soil analysis. The observed tree volume, soil carbon and soil nitrogen were then compared with the simulated model outputs to evaluate the model performance. Furthermore, the simulation using Congo Basin specific parameters and generalised BIOME BGC parameters for tropical evergreen broadleaved tree species were also executed and the simulated results compared. Once the model was optimised for forests in the Congo basin it was validated against observed tree volume, soil carbon and soil nitrogen from a set of independent plots.
Gooday, Andrew J
2003-01-01
Foraminiferal research lies at the border between geology and biology. Benthic foraminifera are a major component of marine communities, highly sensitive to environmental influences, and the most abundant benthic organisms preserved in the deep-sea fossil record. These characteristics make them important tools for reconstructing ancient oceans. Much of the recent work concerns the search for palaeoceanographic proxies, particularly for the key parameters of surface primary productivity and bottom-water oxygenation. At small spatial scales, organic flux and pore-water oxygen profiles are believed to control the depths at which species live within the sediment (their 'microhabitats'). Epifaunal/shallow infaunal species require oxygen and labile food and prefer relatively oligotrophic settings. Some deep infaunal species can tolerate anoxia and are closely linked to redox fronts within the sediment; they consume more refractory organic matter, and flourish in relatively eutrophic environments. Food and oxygen availability are also key factors at large (i.e. regional) spatial scales. Organic flux to the sea floor, and its seasonality, strongly influences faunal densities, species compositions and diversity parameters. Species tend to be associated with higher or lower flux rates and the annual flux range of 2-3 g Corg m-2 appears to mark an important faunal boundary. The oxygen requirements of benthic foraminifera are not well understood. It has been proposed that species distributions reflect oxygen concentrations up to fairly high values (3 ml l-1 or more). Other evidence suggests that oxygen only begins to affect community parameters at concentrations < 0.5 ml l-1. Different species clearly have different thresholds, however, creating species successions along oxygen gradients. Other factors such as sediment type, hydrostatic pressure and attributes of bottom-water masses (particularly carbonate undersaturation and current flow) influence foraminiferal distributions, particularly on continental margins where strong seafloor environmental gradients exist. Epifaunal species living on elevated substrata are directly exposed to bottom-water masses and flourish where suspended food particles are advected by strong currents. Biological interactions, e.g. predation and competition, must also play a role, although this is poorly understood and difficult to quantify. Despite often clear qualitative links between environmental and faunal parameters, the development of quantitative foraminiferal proxies remains problematic. Many of these difficulties arise because species can tolerate a wide range of non-optimal conditions and do not exhibit simple relationships with particular parameters. Some progress has been made, however, in formulating proxies for organic fluxes and bottom-water oxygenation. Flux proxies are based on the Benthic Foraminiferal Accumulation Rate and multivariate analyses of species data. Oxygen proxies utilise the relative proportions of epifaunal (oxyphilic) and deep infaunal (low-oxygen tolerant) species. Yet many problems remain, particularly those concerning the calibration of proxies, the closely interwoven effects of oxygen and food availability, and the relationship between living assemblages and those preserved in the permanent sediment record.
Trade Spaces in Crewed Spacecraft Atmosphere Revitalization System Development
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Bagdigian, Robert M.; Carrasquillo, Robyn L.
2010-01-01
Developing the technological response to realizing an efficient atmosphere revitalization system for future crewed spacecraft and space habitats requires identifying and describing functional trade spaces. Mission concepts and requirements dictate the necessary functions; however, the combination and sequence of those functions possess significant flexibility. Us-ing a closed loop environmental control and life support (ECLS) system architecture as a starting basis, a functional unit operations approach is developed to identify trade spaces. Generalized technological responses to each trade space are discussed. Key performance parameters that apply to functional areas are described.
Research at a European Planetary Simulation Facility
NASA Astrophysics Data System (ADS)
Merrison, J.; Iversen, J. J.; Alois, S.; Rasmussen, K. R.
2015-10-01
This unique environmental simulation facility is capable of re-creating extreme terrestrial, Martian and other planetary environments. It is supported by EU activities including Europlanet RI and a volcanology network VERTIGO. It is also used as a test facility by ESA for the forthcoming ExoMars 2018 mission. Specifically it is capable of recreating the key physical parameters such as temperature, pressure (gas composition), wind flow and importantly the suspension/transport of dust or sand particulates. This facility is available both to the scientific and Industrial community. The latest research and networking activities will be presented.
NASA Astrophysics Data System (ADS)
Chen, Yanling; Gong, Adu; Li, Jing; Wang, Jingmei
2017-04-01
Accurate crop growth monitoring and yield predictive information are significant to improve the sustainable development of agriculture and ensure the security of national food. Remote sensing observation and crop growth simulation models are two new technologies, which have highly potential applications in crop growth monitoring and yield forecasting in recent years. However, both of them have limitations in mechanism or regional application respectively. Remote sensing information can not reveal crop growth and development, inner mechanism of yield formation and the affection of environmental meteorological conditions. Crop growth simulation models have difficulties in obtaining data and parameterization from single-point to regional application. In order to make good use of the advantages of these two technologies, the coupling technique of remote sensing information and crop growth simulation models has been studied. Filtering and optimizing model parameters are key to yield estimation by remote sensing and crop model based on regional crop assimilation. Winter wheat of GaoCheng was selected as the experiment object in this paper. And then the essential data was collected, such as biochemical data and farmland environmental data and meteorological data about several critical growing periods. Meanwhile, the image of environmental mitigation small satellite HJ-CCD was obtained. In this paper, research work and major conclusions are as follows. (1) Seven vegetation indexes were selected to retrieve LAI, and then linear regression model was built up between each of these indexes and the measured LAI. The result shows that the accuracy of EVI model was the highest (R2=0.964 at anthesis stage and R2=0.920 at filling stage). Thus, EVI as the most optimal vegetation index to predict LAI in this paper. (2) EFAST method was adopted in this paper to conduct the sensitive analysis to the 26 initial parameters of the WOFOST model and then a sensitivity index was constructed to evaluate the influence of each parameter mentioned above on the winter wheat yield formation. Finally, six parameters that sensitivity index more than 0.1 as sensitivity factors were chose, which are TSUM1, SLATB1, SLATB2, SPAN, EFFTB3 and TMPF4. To other parameters, we confirmed them via practical measurement and calculation, available literature or WOFOST default. Eventually, we completed the regulation of WOFOST parameters. (3) Look-up table algorithm was used to realize single-point yield estimation through the assimilation of the WOFOST model and the retrieval LAI. This simulation achieved a high accuracy which perfectly meet the purpose of assimilation (R2=0.941 and RMSE=194.58kg/hm2). In this paper, the optimum value of sensitivity parameters were confirmed and the estimation of single-point yield were finished. Key words: yield estimation of winter wheat, LAI, WOFOST crop growth model, assimilation
Tziavos, Ilias N; Alexandridis, Thomas K; Aleksandrov, Borys; Andrianopoulos, Agamemnon; Doukas, Ioannis D; Grigoras, Ion; Grigoriadis, Vassilios N; Papadopoulou, Ioanna D; Savvaidis, Paraskevas; Stergioudis, Argyrios; Teodorof, Liliana; Vergos, Georgios S; Vorobyova, Lyudmila; Zalidis, Georgios C
2016-08-01
In this paper, the development of a Web-based GIS system for the monitoring and assessment of the Black Sea is presented. The integrated multilevel system is based on the combination of terrestrial and satellite Earth observation data through the technological assets provided by innovative information tools and facilities. The key component of the system is a unified, easy to update geodatabase including a wide range of appropriately selected environmental parameters. The collection procedure of current and historical data along with the methods employed for their processing in three test areas of the current study are extensively discussed, and special attention is given to the overall design and structure of the developed geodatabase. Furthermore, the information system includes a decision support component (DSC) which allows assessment and effective management of a wide range of heterogeneous data and environmental parameters within an appropriately designed and well-tested methodology. The DSC provides simplified and straightforward results based on a classification procedure, thus contributing to a monitoring system not only for experts but for auxiliary staff as well. The examples of the system's functionality that are presented highlight its usability as well as the assistance that is provided to the decision maker. The given examples emphasize on the Danube Delta area; however, the information layers of the integrated system can be expanded in the future to cover other regions, thus contributing to the development of an environmental monitoring system for the entire Black Sea.
NASA Technical Reports Server (NTRS)
Kiang, R.; Adimi, F.; Nigro, J.
2007-01-01
Meteorological and environmental parameters important to malaria transmission include temperature, relative humidity, precipitation, and vegetation conditions. These parameters can most conveniently be obtained using remote sensing. Selected provinces and districts in Thailand and Indonesia are used to illustrate how remotely sensed meteorological and environmental parameters may enhance the capabilities for malaria surveillance and control. Hindcastings based on these environmental parameters have shown good agreement to epidemiological records.
Gleim, A V; Egorov, V I; Nazarov, Yu V; Smirnov, S V; Chistyakov, V V; Bannik, O I; Anisimov, A A; Kynev, S M; Ivanova, A E; Collins, R J; Kozlov, S A; Buller, G S
2016-02-08
A quantum key distribution system based on the subcarrier wave modulation method has been demonstrated which employs the BB84 protocol with a strong reference to generate secure bits at a rate of 16.5 kbit/s with an error of 0.5% over an optical channel of 10 dB loss, and 18 bits/s with an error of 0.75% over 25 dB of channel loss. To the best of our knowledge, these results represent the highest channel loss reported for secure quantum key distribution using the subcarrier wave approach. A passive unidirectional scheme has been used to compensate for the polarization dependence of the phase modulators in the receiver module, which resulted in a high visibility of 98.8%. The system is thus fully insensitive to polarization fluctuations and robust to environmental changes, making the approach promising for use in optical telecommunication networks. Further improvements in secure key rate and transmission distance can be achieved by implementing the decoy states protocol or by optimizing the mean photon number used in line with experimental parameters.
Hu, Meng; Krauss, Martin; Brack, Werner; Schulze, Tobias
2016-11-01
Liquid chromatography-high resolution mass spectrometry (LC-HRMS) is a well-established technique for nontarget screening of contaminants in complex environmental samples. Automatic peak detection is essential, but its performance has only rarely been assessed and optimized so far. With the aim to fill this gap, we used pristine water extracts spiked with 78 contaminants as a test case to evaluate and optimize chromatogram and spectral data processing. To assess whether data acquisition strategies have a significant impact on peak detection, three values of MS cycle time (CT) of an LTQ Orbitrap instrument were tested. Furthermore, the key parameter settings of the data processing software MZmine 2 were optimized to detect the maximum number of target peaks from the samples by the design of experiments (DoE) approach and compared to a manual evaluation. The results indicate that short CT significantly improves the quality of automatic peak detection, which means that full scan acquisition without additional MS 2 experiments is suggested for nontarget screening. MZmine 2 detected 75-100 % of the peaks compared to manual peak detection at an intensity level of 10 5 in a validation dataset on both spiked and real water samples under optimal parameter settings. Finally, we provide an optimization workflow of MZmine 2 for LC-HRMS data processing that is applicable for environmental samples for nontarget screening. The results also show that the DoE approach is useful and effort-saving for optimizing data processing parameters. Graphical Abstract ᅟ.
Lobach, Iryna; Mallick, Bani; Carroll, Raymond J
2011-01-01
Case-control studies are widely used to detect gene-environment interactions in the etiology of complex diseases. Many variables that are of interest to biomedical researchers are difficult to measure on an individual level, e.g. nutrient intake, cigarette smoking exposure, long-term toxic exposure. Measurement error causes bias in parameter estimates, thus masking key features of data and leading to loss of power and spurious/masked associations. We develop a Bayesian methodology for analysis of case-control studies for the case when measurement error is present in an environmental covariate and the genetic variable has missing data. This approach offers several advantages. It allows prior information to enter the model to make estimation and inference more precise. The environmental covariates measured exactly are modeled completely nonparametrically. Further, information about the probability of disease can be incorporated in the estimation procedure to improve quality of parameter estimates, what cannot be done in conventional case-control studies. A unique feature of the procedure under investigation is that the analysis is based on a pseudo-likelihood function therefore conventional Bayesian techniques may not be technically correct. We propose an approach using Markov Chain Monte Carlo sampling as well as a computationally simple method based on an asymptotic posterior distribution. Simulation experiments demonstrated that our method produced parameter estimates that are nearly unbiased even for small sample sizes. An application of our method is illustrated using a population-based case-control study of the association between calcium intake with the risk of colorectal adenoma development.
Meneses, M; Torres, C M; Castells, F
2016-08-15
Sustainability in agriculture and food processing is an issue with a clear growing interest; especially in products were consumers have particular awareness regarding its environmental profile. This is the case of wine industry depending on grape production, winemaking and bottling. Also viticulture and generally agricultural production is significantly affected by climate variations. The aim of this article is to determine the environmental load of an aged red wine from a winery in Catalonia, Spain, over its entire life cycle, including sensitivity analysis of the main parameters related to the cultivation, vinification and bottling. The life cycle assessment (LCA) methodology is used for the environmental analysis. In a first step, life cycle inventory (LCI) data were collected by questionnaires and interviews with the winemaker, all data are actual operating data and all the stages involved in the production have been taken into account (viticulture, vinification, bottling and the disposal subsystem). Data were then used to determine the environmental profile by a life cycle impact assessment using the ReCiPe method. Annual variability in environmental performance, stresses the importance of including timeline analysis in the wine sector. Because of that this study is accompanied with a sensitivity analysis carried out by a Monte Carlo simulation that takes into account the uncertainty and variability of the parameters used. In this manner, the results are presented with confidence intervals to provide a wider view of the environmental issues derived from the activities of the studied wine estate regardless of the eventualities of a specific harvesting year. Since the beverage packaging has an important influence in this case, a dataset for the production of green glass was adapted to reflect the actual recycling situation in Spain. Furthermore, a hypothetical variation of the glass-recycling rate in the glass production completes this article, as a key variable of sensitivity analysis, in order… in order to show the potential reduction of total greenhouse gas emissions. It was found that in almost all categories the production of the glass bottles has the highest environmental impact (10%-80% depending on the impact category) followed by the viticulture stage, i.e. the agricultural activities (17%-84% depending on the impact category). The vinification step, i.e. the winemaking itself, has an almost negligible effect on the overall load (1%-5%). The sensitivity analysis showed that the results do not differ by more than ±4% from the expected values except for the water depletion indicator. With the variation of the recycling rate, it could be shown that an increase in the rate from 60% to 85% allows for a reduction of 102gCO2eq. per bottle (-11.1%). The results show that glass production causes the highest environmental load. The key parameters that determine the impact are the recycling rate and the bottle weight. A glass container deposit legislation might be a promising way to enhance the glass recycling. Lightweight bottles and alternative packaging should also be considered. Copyright © 2016 Elsevier B.V. All rights reserved.
Westenbroek, Stephen M.; Doherty, John; Walker, John F.; Kelson, Victor A.; Hunt, Randall J.; Cera, Timothy B.
2012-01-01
The TSPROC (Time Series PROCessor) computer software uses a simple scripting language to process and analyze time series. It was developed primarily to assist in the calibration of environmental models. The software is designed to perform calculations on time-series data commonly associated with surface-water models, including calculation of flow volumes, transformation by means of basic arithmetic operations, and generation of seasonal and annual statistics and hydrologic indices. TSPROC can also be used to generate some of the key input files required to perform parameter optimization by means of the PEST (Parameter ESTimation) computer software. Through the use of TSPROC, the objective function for use in the model-calibration process can be focused on specific components of a hydrograph.
Impact of signal scattering and parametric uncertainties on receiver operating characteristics
NASA Astrophysics Data System (ADS)
Wilson, D. Keith; Breton, Daniel J.; Hart, Carl R.; Pettit, Chris L.
2017-05-01
The receiver operating characteristic (ROC curve), which is a plot of the probability of detection as a function of the probability of false alarm, plays a key role in the classical analysis of detector performance. However, meaningful characterization of the ROC curve is challenging when practically important complications such as variations in source emissions, environmental impacts on the signal propagation, uncertainties in the sensor response, and multiple sources of interference are considered. In this paper, a relatively simple but realistic model for scattered signals is employed to explore how parametric uncertainties impact the ROC curve. In particular, we show that parametric uncertainties in the mean signal and noise power substantially raise the tails of the distributions; since receiver operation with a very low probability of false alarm and a high probability of detection is normally desired, these tails lead to severely degraded performance. Because full a priori knowledge of such parametric uncertainties is rarely available in practice, analyses must typically be based on a finite sample of environmental states, which only partially characterize the range of parameter variations. We show how this effect can lead to misleading assessments of system performance. For the cases considered, approximately 64 or more statistically independent samples of the uncertain parameters are needed to accurately predict the probabilities of detection and false alarm. A connection is also described between selection of suitable distributions for the uncertain parameters, and Bayesian adaptive methods for inferring the parameters.
Inverse modeling of geochemical and mechanical compaction in sedimentary basins
NASA Astrophysics Data System (ADS)
Colombo, Ivo; Porta, Giovanni Michele; Guadagnini, Alberto
2015-04-01
We study key phenomena driving the feedback between sediment compaction processes and fluid flow in stratified sedimentary basins formed through lithification of sand and clay sediments after deposition. Processes we consider are mechanic compaction of the host rock and the geochemical compaction due to quartz cementation in sandstones. Key objectives of our study include (i) the quantification of the influence of the uncertainty of the model input parameters on the model output and (ii) the application of an inverse modeling technique to field scale data. Proper accounting of the feedback between sediment compaction processes and fluid flow in the subsurface is key to quantify a wide set of environmentally and industrially relevant phenomena. These include, e.g., compaction-driven brine and/or saltwater flow at deep locations and its influence on (a) tracer concentrations observed in shallow sediments, (b) build up of fluid overpressure, (c) hydrocarbon generation and migration, (d) subsidence due to groundwater and/or hydrocarbons withdrawal, and (e) formation of ore deposits. Main processes driving the diagenesis of sediments after deposition are mechanical compaction due to overburden and precipitation/dissolution associated with reactive transport. The natural evolution of sedimentary basins is characterized by geological time scales, thus preventing direct and exhaustive measurement of the system dynamical changes. The outputs of compaction models are plagued by uncertainty because of the incomplete knowledge of the models and parameters governing diagenesis. Development of robust methodologies for inverse modeling and parameter estimation under uncertainty is therefore crucial to the quantification of natural compaction phenomena. We employ a numerical methodology based on three building blocks: (i) space-time discretization of the compaction process; (ii) representation of target output variables through a Polynomial Chaos Expansion (PCE); and (iii) model inversion (parameter estimation) within a maximum likelihood framework. In this context, the PCE-based surrogate model enables one to (i) minimize the computational cost associated with the (forward and inverse) modeling procedures leading to uncertainty quantification and parameter estimation, and (ii) compute the full set of Sobol indices quantifying the contribution of each uncertain parameter to the variability of target state variables. Results are illustrated through the simulation of one-dimensional test cases. The analyses focuses on the calibration of model parameters through literature field cases. The quality of parameter estimates is then analyzed as a function of number, type and location of data.
Yee, Susan Harrell; Barron, Mace G
2010-02-01
Coral reefs have experienced extensive mortality over the past few decades as a result of temperature-induced mass bleaching events. There is an increasing realization that other environmental factors, including water mixing, solar radiation, water depth, and water clarity, interact with temperature to either exacerbate bleaching or protect coral from mass bleaching. The relative contribution of these factors to variability in mass bleaching at a global scale has not been quantified, but can provide insights when making large-scale predictions of mass bleaching events. Using data from 708 bleaching surveys across the globe, a framework was developed to predict the probability of moderate or severe bleaching as a function of key environmental variables derived from global-scale remote-sensing data. The ability of models to explain spatial and temporal variability in mass bleaching events was quantified. Results indicated approximately 20% improved accuracy of predictions of bleaching when solar radiation and water mixing, in addition to elevated temperature, were incorporated into models, but predictive accuracy was variable among regions. Results provide insights into the effects of environmental parameters on bleaching at a global scale.
Effects of Raindrop Shape Parameter on the Simulation of Plum Rains
NASA Astrophysics Data System (ADS)
Mei, H.; Zhou, L.; Li, X.; Huang, X.; Guo, W.
2017-12-01
The raindrop shape parameter of particle distribution is generally set as constant in a Double-moment Bulk Microphysics Scheme (DBMS) using Gama distribution function though which suggest huge differences in time and space according to observations. Based on Milbrandt 2-mon(MY) DBMS, four cases during Plum Rains season are simulated coupled with four empirical relationships between shape parameter (μr) and slope parameter of raindrop which have been concluded from observations of raindrop distributions. The analysis of model results suggest that μr have some influences on rainfall. Introducing the diagnostic formulas of μr may have some improvement on systematic biases of 24h accumulated rainfall and show some correction ability on local characteristics of rainfall distribution. Besides,the tendency to improve strong rainfall could be sensitive to μr. With the improvement of the diagnosis of μr using the empirically diagnostic formulas, μr increases generally in the middle- and lower-troposphere and decreases with the stronger rainfall. Its conclued that, the decline in raindrop water content and the increased raindrop mass-weighted average terminal velocity directly related to μr are the direct reasons of variations in the precipitation.On the other side, the environmental conditions including relative humidity and dynamical parameters are the key indirectly causes which has close relationships with the changes in cloud particles and rainfall distributions.Furthermore,the differences in the scale of improvement between the weak and heavy rainfall mainly come from the distinctions of response features about their variable fields respectively. The extent of variation in the features of cloud particles in warm clouds of heavy rainfall differs greatly from that of weak rainfall, though they share the same trend of variation. On the conditions of weak rainfall, the response of physical characteristics to μr performed consistent trends and some linear features. However, environmental conditions of relative humidity and dynamical parameters perform strong and vertically deep adjustments in the heavy precipitation with vigorous cloud systems. In this case, the microphysical processes and environmental conditions experience complex interactions with each other and no significant laws could be concluded.
Evaluating Status Change of Soil Potassium from Path Model
He, Wenming; Chen, Fang
2013-01-01
The purpose of this study is to determine critical environmental parameters of soil K availability and to quantify those contributors by using a proposed path model. In this study, plot experiments were designed into different treatments, and soil samples were collected and further analyzed in laboratory to investigate soil properties influence on soil potassium forms (water soluble K, exchangeable K, non-exchangeable K). Furthermore, path analysis based on proposed path model was carried out to evaluate the relationship between potassium forms and soil properties. Research findings were achieved as followings. Firstly, key direct factors were soil S, ratio of sodium-potassium (Na/K), the chemical index of alteration (CIA), Soil Organic Matter in soil solution (SOM), Na and total nitrogen in soil solution (TN), and key indirect factors were Carbonate (CO3), Mg, pH, Na, S, and SOM. Secondly, path model can effectively determine direction and quantities of potassium status changes between Exchangeable potassium (eK), Non-exchangeable potassium (neK) and water-soluble potassium (wsK) under influences of specific environmental parameters. In reversible equilibrium state of , K balance state was inclined to be moved into β and χ directions in treatments of potassium shortage. However in reversible equilibrium of , K balance state was inclined to be moved into θ and λ directions in treatments of water shortage. Results showed that the proposed path model was able to quantitatively disclose moving direction of K status and quantify its equilibrium threshold. It provided a theoretical and practical basis for scientific and effective fertilization in agricultural plants growth. PMID:24204659
Macroeconomic analysis of road vehicles related environmental pollution in Hungary
NASA Astrophysics Data System (ADS)
Török, Árpád; Török, Ádám
2014-06-01
The article aims to examine the relationship between road transport and macro economy, especially the use of fossil energy in transport sector. Nowadays environmental pollution is a key issue on the EU level as well as in Hungary. Lots of effort have been already done in order to decrease emissions in road transport, but a lot more need to be done. The article aims to prove that the only possible solution is technological innovation in order to reach emission reduction target without decline of the GDP. The basic idea is to ensure sustainable development, to decrease environmental pollution in road transport without harming the economy. In the EU and in Hungary road vehicles are powered by fossil fuelled internal combustion engines. This paper aims to analyse the role of the fossil fuel-based road transport sector within the economy with the usage of constant elasticity substitution (CES) production functions. Authors have built CES production function for Hungary. Parameters were calculated based on the validated model.
Definition and test of the electromagnetic immunity of UAS for first responders
NASA Astrophysics Data System (ADS)
Adami, C.; Chmel, S.; Jöster, M.; Pusch, T.; Suhrke, M.
2015-11-01
Recent technological developments considerably lowered the barrier for unmanned aerial systems (UAS) to be employed in a variety of usage scenarios, comprising live video transmission from otherwise inaccessible vantage points. As an example, in the French-German ANCHORS project several UAS guided by swarm intelligence provide aerial views and environmental data of a disaster site while deploying an ad-hoc communication network for first responders. Since being able to operate in harsh environmental conditions is a key feature, the immunity of the UAS against radio frequency (RF) exposure has been studied. Conventional Electromagnetic Compatibility (EMC) applied to commercial and industrial electronics is not sufficient since UAS are airborne and can as such move beyond the bounds within which RF exposure is usually limited by regulatory measures. Therefore, the EMC requirements have been complemented by a set of specific RF test frequencies and parameters where strong sources are expected to interfere in the example project test case of an inland port environment. While no essential malfunctions could be observed up to field strengths of 30 V m-1, a sophisticated, more exhaustive approach for testing against potential sources of interference in key scenarios of UAS usage should be derived from our present findings.
Cerchio, Salvatore; Zerbini, Alexandre N.; Geyer, Ygor; Mayer, François-Xavier; Jung, Jean-Luc; Hervé, Maxime R.; Pous, Stephane; Sallée, Jean-Baptiste; Rosenbaum, Howard C.; Adam, Olivier; Charrassin, Jean-Benoit
2016-01-01
Assessing the movement patterns and key habitat features of breeding humpback whales is a prerequisite for the conservation management of this philopatric species. To investigate the interactions between humpback whale movements and environmental conditions off Madagascar, we deployed 25 satellite tags in the northeast and southwest coast of Madagascar. For each recorded position, we collated estimates of environmental variables and computed two behavioural metrics: behavioural state of ‘transiting’ (consistent/directional) versus ‘localized’ (variable/non-directional), and active swimming speed (i.e. speed relative to the current). On coastal habitats (i.e. bathymetry < 200 m and in adjacent areas), females showed localized behaviour in deep waters (191 ± 20 m) and at large distances (14 ± 0.6 km) from shore, suggesting that their breeding habitat extends beyond the shallowest waters available close to the coastline. Males' active swimming speed decreased in shallow waters, but environmental parameters did not influence their likelihood to exhibit localized movements, which was probably dominated by social factors instead. In oceanic habitats, both males and females showed localized behaviours in shallow waters and favoured high chlorophyll-a concentrations. Active swimming speed accounts for a large proportion of observed movement speed; however, breeding humpback whales probably exploit prevailing ocean currents to maximize displacement. This study provides evidence that coastal areas, generally subject to strong human pressure, remain the core habitat of humpback whales off Madagascar. Our results expand the knowledge of humpback whale habitat use in oceanic habitat and response to variability of environmental factors such as oceanic current and chlorophyll level. PMID:28083104
Trudelle, Laurène; Cerchio, Salvatore; Zerbini, Alexandre N; Geyer, Ygor; Mayer, François-Xavier; Jung, Jean-Luc; Hervé, Maxime R; Pous, Stephane; Sallée, Jean-Baptiste; Rosenbaum, Howard C; Adam, Olivier; Charrassin, Jean-Benoit
2016-12-01
Assessing the movement patterns and key habitat features of breeding humpback whales is a prerequisite for the conservation management of this philopatric species. To investigate the interactions between humpback whale movements and environmental conditions off Madagascar, we deployed 25 satellite tags in the northeast and southwest coast of Madagascar. For each recorded position, we collated estimates of environmental variables and computed two behavioural metrics: behavioural state of 'transiting' (consistent/directional) versus 'localized' (variable/non-directional), and active swimming speed (i.e. speed relative to the current). On coastal habitats (i.e. bathymetry < 200 m and in adjacent areas), females showed localized behaviour in deep waters (191 ± 20 m) and at large distances (14 ± 0.6 km) from shore, suggesting that their breeding habitat extends beyond the shallowest waters available close to the coastline. Males' active swimming speed decreased in shallow waters, but environmental parameters did not influence their likelihood to exhibit localized movements, which was probably dominated by social factors instead. In oceanic habitats, both males and females showed localized behaviours in shallow waters and favoured high chlorophyll- a concentrations. Active swimming speed accounts for a large proportion of observed movement speed; however, breeding humpback whales probably exploit prevailing ocean currents to maximize displacement. This study provides evidence that coastal areas, generally subject to strong human pressure, remain the core habitat of humpback whales off Madagascar. Our results expand the knowledge of humpback whale habitat use in oceanic habitat and response to variability of environmental factors such as oceanic current and chlorophyll level.
Prioritizing Risks and Uncertainties from Intentional Release of Selected Category A Pathogens
Hong, Tao; Gurian, Patrick L.; Huang, Yin; Haas, Charles N.
2012-01-01
This paper synthesizes available information on five Category A pathogens (Bacillus anthracis, Yersinia pestis, Francisella tularensis, Variola major and Lassa) to develop quantitative guidelines for how environmental pathogen concentrations may be related to human health risk in an indoor environment. An integrated model of environmental transport and human health exposure to biological pathogens is constructed which 1) includes the effects of environmental attenuation, 2) considers fomite contact exposure as well as inhalational exposure, and 3) includes an uncertainty analysis to identify key input uncertainties, which may inform future research directions. The findings provide a framework for developing the many different environmental standards that are needed for making risk-informed response decisions, such as when prophylactic antibiotics should be distributed, and whether or not a contaminated area should be cleaned up. The approach is based on the assumption of uniform mixing in environmental compartments and is thus applicable to areas sufficiently removed in time and space from the initial release that mixing has produced relatively uniform concentrations. Results indicate that when pathogens are released into the air, risk from inhalation is the main component of the overall risk, while risk from ingestion (dermal contact for B. anthracis) is the main component of the overall risk when pathogens are present on surfaces. Concentrations sampled from untracked floor, walls and the filter of heating ventilation and air conditioning (HVAC) system are proposed as indicators of previous exposure risk, while samples taken from touched surfaces are proposed as indicators of future risk if the building is reoccupied. A Monte Carlo uncertainty analysis is conducted and input-output correlations used to identify important parameter uncertainties. An approach is proposed for integrating these quantitative assessments of parameter uncertainty with broader, qualitative considerations to identify future research priorities. PMID:22412915
Yin, Yongguang; Yang, Xiaoya; Zhou, Xiaoxia; Wang, Weidong; Yu, Sujuan; Liu, Jingfu; Jiang, Guibin
2015-08-01
The inevitable release of engineered silver nanoparticles (AgNPs) into aquatic environments has drawn great concerns about its environmental toxicity and safety. Although aggregation and transformation play crucial roles in the transport and toxicity of AgNPs, how the water chemistry of environmental waters influences the aggregation and transformation of engineered AgNPs is still not well understood. In this study, the aggregation of polyvinylpyrrolidone (PVP) coated AgNPs was investigated in eight typical environmental water samples (with different ionic strengths, hardness, and dissolved organic matter (DOM) concentrations) by using UV-visible spectroscopy and dynamic light scattering. Raman spectroscopy was applied to probe the interaction of DOM with the surface of AgNPs. Further, the photo-transformation and morphology changes of AgNPs in environmental waters were studied by UV-visible spectroscopy, inductively coupled plasma mass spectrometry, and transmission electron microscopy. The results suggested that both electrolytes (especially Ca(2+) and Mg(2+)) and DOM in the surface waters are key parameters for AgNP aggregation, and sunlight could accelerate the morphology change, aggregation, and further sedimentation of AgNPs. This water chemistry controlled aggregation and photo-transformation should have significant environmental impacts on the transport and toxicity of AgNPs in the aquatic environments. Copyright © 2015. Published by Elsevier B.V.
Neuner, B; Berger, K
2010-11-01
Apart from individual resources and individual risk factors, environmental socioeconomic factors are determinants of individual health and illness. The aim of this investigation was to evaluate the association of small-area environmental socioeconomic parameters (proportion of 14-year-old and younger population, proportion of married citizens, proportion of unemployed, and the number of private cars per inhabitant) with individual socioeconomic parameters (education, income, unemployment, social class and the country of origin) in Dortmund, a major city in Germany. After splitting the small-area environmental socioeconomic parameters of 62 statistical administration units into quintiles, differences in the distribution of individual social parameters were evaluated using adjusted tests for trend. Overall, 1,312 study participants (mean age 53.6 years, 52.9% women) were included. Independently of age and gender, individual social parameters were unequally distributed across areas with different small-area environmental socioeconomic parameters. A place of birth abroad and social class were significantly associated with all small-area environmental socioeconomic parameters. If the impact of environmental socioeconomic parameters on individual health or illness is determined, the unequal small-area distribution of individual social parameters should be considered. © Georg Thieme Verlag KG Stuttgart · New York.
Manufacturing and process optimization of porous rice straw board
NASA Astrophysics Data System (ADS)
Liu, Dejun; Dong, Bing; Bai, Xuewei; Gao, Wei; Gong, Yuanjuan
2018-03-01
Development and utilization of straw resources and the production of straw board can dramatically reduce straw waste and environmental pollution associated with straw burning in China. However, the straw board production faces several challenges, such as improving the physical and mechanical properties, as well as eliminating its formaldehyde content. The recent research was to develop a new straw board compound adhesive containing both inorganic (MgSO4, MgCO3, active silicon and ALSiO4) and organic (bean gum and modified Methyl DiphenylDiisocyanate, MDI) gelling materials, to devise a new high frequency straw board hot pressing technique and to optimize the straw board production parameters. The results indicated that the key hot pressing parameters leading to porous straw board with optimal physical and mechanical properties. These parameters are as follows: an adhesive containing a 4:1 ratio of inorganic-to-organic gelled material, the percentage of adhesive in the total mass of preload straw materials is 40%, a hot-pressing temperature in the range of 120 °C to 140 °C, and a high frequency hot pressing for 10 times at a pressure of 30 MPa. Finally, the present work demonstrated that porous straw board fabricated under optimal manufacturing condition is an environmentally friendly and renewable materials, thereby meeting national standard of medium density fiberboard (MDF) with potential applications in the building industry.
Vandenhove, H; Gil-García, C; Rigol, A; Vidal, M
2009-09-01
Predicting the transfer of radionuclides in the environment for normal release, accidental, disposal or remediation scenarios in order to assess exposure requires the availability of an important number of generic parameter values. One of the key parameters in environmental assessment is the solid liquid distribution coefficient, K(d), which is used to predict radionuclide-soil interaction and subsequent radionuclide transport in the soil column. This article presents a review of K(d) values for uranium, radium, lead, polonium and thorium based on an extensive literature survey, including recent publications. The K(d) estimates were presented per soil groups defined by their texture and organic matter content (Sand, Loam, Clay and Organic), although the texture class seemed not to significantly affect K(d). Where relevant, other K(d) classification systems are proposed and correlations with soil parameters are highlighted. The K(d) values obtained in this compilation are compared with earlier review data.
DEPOT: A Database of Environmental Parameters, Organizations and Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
CARSON,SUSAN D.; HUNTER,REGINA LEE; MALCZYNSKI,LEONARD A.
2000-12-19
The Database of Environmental Parameters, Organizations, and Tools (DEPOT) has been developed by the Department of Energy (DOE) as a central warehouse for access to data essential for environmental risk assessment analyses. Initial efforts have concentrated on groundwater and vadose zone transport data and bioaccumulation factors. DEPOT seeks to provide a source of referenced data that, wherever possible, includes the level of uncertainty associated with these parameters. Based on the amount of data available for a particular parameter, uncertainty is expressed as a standard deviation or a distribution function. DEPOT also provides DOE site-specific performance assessment data, pathway-specific transport data,more » and links to environmental regulations, disposal site waste acceptance criteria, other environmental parameter databases, and environmental risk assessment models.« less
Khan, Md Mohib-Ul-Haque; Jain, Siddharth; Vaezi, Mahdi; Kumar, Amit
2016-02-01
Economic competitiveness is one of the key factors in making decisions towards the development of waste conversion facilities and devising a sustainable waste management strategy. The goal of this study is to develop a framework, as well as to develop and demonstrate a comprehensive techno-economic model to help county and municipal decision makers in establishing waste conversion facilities. The user-friendly data-intensive model, called the FUNdamental ENgineering PrinciplEs-based ModeL for Estimation of Cost of Energy and Fuels from MSW (FUNNEL-Cost-MSW), compares nine different waste management scenarios, including landfilling and composting, in terms of economic parameters such as gate fees and return on investment. In addition, a geographic information system (GIS) model was developed to determine suitable locations for waste conversion facilities and landfill sites based on integration of environmental, social, and economic factors. Finally, a case study on Parkland County and its surrounding counties in the province of Alberta, Canada, was conducted and a sensitivity analysis was performed to assess the influence of the key technical and economic parameters on the calculated results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Removal of Methylene Blue from aqueous solution using spent bleaching earth
NASA Astrophysics Data System (ADS)
Saputra, E.; Saputra, R.; Nugraha, M. W.; Irianty, R. S.; Utama, P. S.
2018-04-01
The waste from industrial textile waste is one of the environmental problems, it is required effective and efficient processing. In this study spent bleaching earth was used as absorbent. It was found that the absorbent was effective to remove methylene blue from aqueous solution with removal efficiency 99.97 % in 120 min. Several parameters such as pH, amount of absorbent loading, stirring speed are found as key factor influencing removal of methylene blue. The mechanism of adsorption was also studied, and it was found that Langmuir isotherm fitted to data of experiment with adsorption capacity 0.5 mg/g.
Tapered slot antenna design for vehicular GPR applications
NASA Astrophysics Data System (ADS)
Bıçak, Emrullah; Yeǧin, Korkut; Nazlı, Hakki; Daǧ, Mahmut
2014-05-01
Vehicular applications of UWB GPR demand multiple GPR sensors operating in a harsh environment. One of the key elements of in the sensor is its UWB antenna which has minimal inter-element coupling, low group delay, high directivity and less prone to environmental conditions. Tapered slot antennas (TSA's) provide good impedance match, but they need to be modified for above specifications. Parasitic slot loaded TSA with balanced feed is proposed and a multi-channel antenna array structure is formed. Structural parameters are numerically analyzed and a prototype is built. Measurements show good performance for UWB GPR applications.
Scientific guidelines for preservation of samples collected from Mars
NASA Technical Reports Server (NTRS)
Gooding, James L. (Editor)
1990-01-01
The maximum scientific value of Martian geologic and atmospheric samples is retained when the samples are preserved in the conditions that applied prior to their collection. Any sample degradation equates to loss of information. Based on detailed review of pertinent scientific literature, and advice from experts in planetary sample analysis, number values are recommended for key parameters in the environmental control of collected samples with respect to material contamination, temperature, head-space gas pressure, ionizing radiation, magnetic fields, and acceleration/shock. Parametric values recommended for the most sensitive geologic samples should also be adequate to preserve any biogenic compounds or exobiological relics.
Deep ocean corrosion research in support of Oman India gas pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, F.W.; McKeehan, D.S.
1995-12-01
The increasing interest in deepwater exploration and production has motivated the development of technologies required to accomplish tasks heretofore possible only onshore and in shallow water. The tremendous expense of technology development and the cost of specialized equipment has created concerns that the design life of these facilities may be compromised by corrosion. The requirements to develop and prove design parameters to meet these demands will require an ongoing environmental testing and materials evaluation and development program. This paper describes a two-fold corrosion testing program involving: (1) the installation of two corrosion test devices installed in-situ, and (2) a laboratorymore » test conducted in simulated site-specific seawater. These tests are expected to qualify key parameters necessary to design a cathodic protection system to protect the Oman-to-India pipeline.« less
An optical fiber spool for laser stabilization with reduced acceleration sensitivity to 10-12/g
NASA Astrophysics Data System (ADS)
Hu, Yong-Qi; Dong, Jing; Huang, Jun-Chao; Li, Tang; Liu, Liang
2015-10-01
Environmental vibration causes mechanical deformation in optical fibers, which induces excess frequency noise in fiber-stabilized lasers. In order to solve such a problem, we propose an ultralow acceleration sensitivity fiber spool with symmetrically mounted structure. By numerical analysis with the finite element method, we obtain the optimal geometry parameters of the spool with which the horizontal and vertical acceleration sensitivity can be reduced to 3.25 × 10-12/g and 5.38 × 10-12/g respectively. Moreover, the structure features the insensitivity to the variation of geometry parameters, which will minimize the influence from numerical simulation error and manufacture tolerance. Project supported by the National Natural Science Foundation of China (Grant Nos. 11034008 and 11274324) and the Key Research Program of the Chinese Academy of Sciences (Grant No. KJZD-EW-W02).
Need for Cost Optimization of Space Life Support Systems
NASA Technical Reports Server (NTRS)
Jones, Harry W.; Anderson, Grant
2017-01-01
As the nation plans manned missions that go far beyond Earth orbit to Mars, there is an urgent need for a robust, disciplined systems engineering methodology that can identify an optimized Environmental Control and Life Support (ECLSS) architecture for long duration deep space missions. But unlike the previously used Equivalent System Mass (ESM), the method must be inclusive of all driving parameters and emphasize the economic analysis of life support system design. The key parameter for this analysis is Life Cycle Cost (LCC). LCC takes into account the cost for development and qualification of the system, launch costs, operational costs, maintenance costs and all other relevant and associated costs. Additionally, an effective methodology must consider system technical performance, safety, reliability, maintainability, crew time, and other factors that could affect the overall merit of the life support system.
Lathouri, Maria; Korre, Anna
2015-12-15
Although significant progress has been made in understanding how environmental factors modify the speciation, bioavailability and toxicity of metals such as copper in aquatic environments, the current methods used to establish water quality standards do not necessarily consider the different geological and geochemical characteristics of a given site and the factors that affect copper fate, bioavailability potential and toxicity. In addition, the temporal variation in the concentration and bioavailable metal fraction is also important in freshwater systems. The work presented in this paper illustrates the temporal and seasonal variability of a range of water quality parameters, and Cu speciation, bioavailability and toxicity at four freshwaters sites in the UK. Rivers Coquet, Cree, Lower Clyde and Eden (Kent) were selected to cover a broad range of different geochemical environments and site characteristics. The monitoring data used covered a period of around six years at almost monthly intervals. Chemical equilibrium modelling was used to study temporal variations in Cu speciation and was combined with acute toxicity modelling to assess Cu bioavailability for two aquatic species, Daphnia magna and Daphnia pulex. The estimated copper bioavailability, toxicity levels and the corresponding ecosystem risks were analysed in relation to key water quality parameters (alkalinity, pH and DOC). Although copper concentrations did not vary much during the sampling period or between the seasons at the different sites; copper bioavailability varied markedly. In addition, through the chronic-Cu BLM-based on the voluntary risk assessment approach, the potential environmental risk in terms of the chronic toxicity was assessed. A much higher likelihood of toxicity effects was found during the cold period at all sites. It is suggested that besides the metal (copper) concentration in the surface water environment, the variability and seasonality of other important water quality parameters should be considered in setting appropriately protective environmental quality standards for metals. Copyright © 2015 Elsevier B.V. All rights reserved.
Robust Design of Biological Circuits: Evolutionary Systems Biology Approach
Chen, Bor-Sen; Hsu, Chih-Yuan; Liou, Jing-Jia
2011-01-01
Artificial gene circuits have been proposed to be embedded into microbial cells that function as switches, timers, oscillators, and the Boolean logic gates. Building more complex systems from these basic gene circuit components is one key advance for biologic circuit design and synthetic biology. However, the behavior of bioengineered gene circuits remains unstable and uncertain. In this study, a nonlinear stochastic system is proposed to model the biological systems with intrinsic parameter fluctuations and environmental molecular noise from the cellular context in the host cell. Based on evolutionary systems biology algorithm, the design parameters of target gene circuits can evolve to specific values in order to robustly track a desired biologic function in spite of intrinsic and environmental noise. The fitness function is selected to be inversely proportional to the tracking error so that the evolutionary biological circuit can achieve the optimal tracking mimicking the evolutionary process of a gene circuit. Finally, several design examples are given in silico with the Monte Carlo simulation to illustrate the design procedure and to confirm the robust performance of the proposed design method. The result shows that the designed gene circuits can robustly track desired behaviors with minimal errors even with nontrivial intrinsic and external noise. PMID:22187523
FISHER'S GEOMETRIC MODEL WITH A MOVING OPTIMUM
Matuszewski, Sebastian; Hermisson, Joachim; Kopp, Michael
2014-01-01
Fisher's geometric model has been widely used to study the effects of pleiotropy and organismic complexity on phenotypic adaptation. Here, we study a version of Fisher's model in which a population adapts to a gradually moving optimum. Key parameters are the rate of environmental change, the dimensionality of phenotype space, and the patterns of mutational and selectional correlations. We focus on the distribution of adaptive substitutions, that is, the multivariate distribution of the phenotypic effects of fixed beneficial mutations. Our main results are based on an “adaptive-walk approximation,” which is checked against individual-based simulations. We find that (1) the distribution of adaptive substitutions is strongly affected by the ecological dynamics and largely depends on a single composite parameter γ, which scales the rate of environmental change by the “adaptive potential” of the population; (2) the distribution of adaptive substitution reflects the shape of the fitness landscape if the environment changes slowly, whereas it mirrors the distribution of new mutations if the environment changes fast; (3) in contrast to classical models of adaptation assuming a constant optimum, with a moving optimum, more complex organisms evolve via larger adaptive steps. PMID:24898080
Robust design of biological circuits: evolutionary systems biology approach.
Chen, Bor-Sen; Hsu, Chih-Yuan; Liou, Jing-Jia
2011-01-01
Artificial gene circuits have been proposed to be embedded into microbial cells that function as switches, timers, oscillators, and the Boolean logic gates. Building more complex systems from these basic gene circuit components is one key advance for biologic circuit design and synthetic biology. However, the behavior of bioengineered gene circuits remains unstable and uncertain. In this study, a nonlinear stochastic system is proposed to model the biological systems with intrinsic parameter fluctuations and environmental molecular noise from the cellular context in the host cell. Based on evolutionary systems biology algorithm, the design parameters of target gene circuits can evolve to specific values in order to robustly track a desired biologic function in spite of intrinsic and environmental noise. The fitness function is selected to be inversely proportional to the tracking error so that the evolutionary biological circuit can achieve the optimal tracking mimicking the evolutionary process of a gene circuit. Finally, several design examples are given in silico with the Monte Carlo simulation to illustrate the design procedure and to confirm the robust performance of the proposed design method. The result shows that the designed gene circuits can robustly track desired behaviors with minimal errors even with nontrivial intrinsic and external noise.
Cellura, Maurizio; Ardente, Fulvio; Longo, Sonia
2012-01-01
In the present study, Life Cycle Assessment (LCA) methodology was applied to evaluate the energy consumption and environmental burdens associated with the production of protected crops in an agricultural district in the Mediterranean region. In this study, LCA was used as a 'support tool', to address local policies for sustainable production and consumption patterns, and to create a 'knowledge base' for environmental assessment of an extended agricultural production area. The proposed approach combines organisation-specific tools, such as Environmental Management Systems and Environmental Product Declarations, with the environmental management of the district. Questionnaires were distributed to producers to determine the life cycle of different protected crops (tomatoes, cherry tomatoes, peppers, melons and zucchinis), and obtain information on greenhouse usage (e.g. tunnel vs. pavilion). Ecoprofiles of products in the district were also estimated, to identify supply chain elements with the highest impact in terms of global energy requirements, greenhouse gas emissions, eutrophication, water consumption and waste production. These results of this study enable selection of the 'best practices' and ecodesign solutions, to reduce the environmental impact of these products. Finally, sensitivity analysis of key LCA issues was performed, to assess the variability associated with different parameters: vegetable production; water usage; fertiliser and pesticide usage; shared greenhouse use; substitution of plastics coverings; and waste recycling. Copyright © 2011 Elsevier Ltd. All rights reserved.
Assessing Malaria Risks in Greater Mekong Subregion based on Environmental Parameters
NASA Technical Reports Server (NTRS)
Kiang, Richard; Soika, Valerii; Adimi, Farida; Nigro, Joseph
2005-01-01
At 4,200 km, the Mekong River is the tenth longest river in the world. It directly and indirectly influences the lives of hundreds of millions of inhabitants in its basin. The riparian countries - Thailand, Myanmar, Cambodia, Laos, Vietnam, and a small part of China - form the Greater Mekong Subregion (GMS). This geographical region has the misfortune of being the world's epicenter of falciparum malaria, which is the most severe form of malaria caused by Plasmodium falciparum. Depending on the country, approximately 50 to 90% of all malaria cases are due to this species. In the Malaria Modeling and Surveillance Project, we have been developing techniques to enhance public health s decision capability for malaria risk assessments and controls. The main objectives are: 1) identifying the potential breeding sites for major vector species; 2) implementing a malaria transmission model to identify the key factors that sustain or intensify malaria transmission; and 3) implementing a risk algorithm to predict the occurrence of malaria and its transmission intensity. The potential benefits are: 1) increased warning time for public health organizations to respond to malaria outbreaks; 2) optimized utilization of pesticide and chemoprophylaxis; 3) reduced likelihood of pesticide and drug resistance; and 4) reduced damage to environment. Environmental parameters important to malaria transmission include temperature, relative humidity, precipitation, and vegetation conditions. The NASA Earth science data sets that have been used for malaria surveillance and risk assessment include AVHRR Pathfinder, TRMM, MODIS, NSIPP, and SIESIP. Hindcastings based on these environmental parameters have shown good agreement to epidemiological records. Socioeconomic factors that may influence malaria transmissions will also be incorporated into the predictive models.
NASA Astrophysics Data System (ADS)
Du, Jinyang; Kimball, John S.; Jones, Lucas A.; Kim, Youngwook; Glassy, Joseph; Watts, Jennifer D.
2017-11-01
Spaceborne microwave remote sensing is widely used to monitor global environmental changes for understanding hydrological, ecological, and climate processes. A new global land parameter data record (LPDR) was generated using similar calibrated, multifrequency brightness temperature (Tb) retrievals from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and the Advanced Microwave Scanning Radiometer 2 (AMSR2). The resulting LPDR provides a long-term (June 2002-December 2015) global record of key environmental observations at a 25 km grid cell resolution, including surface fractional open water (FW) cover, atmosphere precipitable water vapor (PWV), daily maximum and minimum surface air temperatures (Tmx and Tmn), vegetation optical depth (VOD), and surface volumetric soil moisture (VSM). Global mapping of the land parameter climatology means and seasonal variability over the full-year records from AMSR-E (2003-2010) and AMSR2 (2013-2015) observation periods is consistent with characteristic global climate and vegetation patterns. Quantitative comparisons with independent observations indicated favorable LPDR performance for FW (R ≥ 0.75; RMSE ≤ 0.06), PWV (R ≥ 0.91; RMSE ≤ 4.94 mm), Tmx and Tmn (R ≥ 0.90; RMSE ≤ 3.48 °C), and VSM (0.63 ≤ R ≤ 0.84; bias-corrected RMSE ≤ 0.06 cm3 cm-3). The LPDR-derived global VOD record is also proportional to satellite-observed NDVI (GIMMS3g) seasonality (R ≥ 0.88) due to the synergy between canopy biomass structure and photosynthetic greenness. Statistical analysis shows overall LPDR consistency but with small biases between AMSR-E and AMSR2 retrievals that should be considered when evaluating long-term environmental trends. The resulting LPDR and potential updates from continuing AMSR2 operations provide for effective global monitoring of environmental parameters related to vegetation activity, terrestrial water storage, and mobility and are suitable for climate and ecosystem studies. The LPDR dataset is publicly available at http://files.ntsg.umt.edu/data/LPDR_v2/.<
Needs for Robotic Assessments of Nuclear Disasters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Victor Walker; Derek Wadsworth
Following the nuclear disaster at the Fukushima nuclear reactor plant in Japan, the need for systems which can assist in dynamic high-radiation environments such as nuclear incidents has become more apparent. The INL participated in delivering robotic technologies to Japan and has identified key components which are needed for success and obstacles to their deployment. In addition, we are proposing new work and methods to improve assessments and reactions to such events in the future. Robotics needs in disaster situations include phases such as: Assessment, Remediation, and Recovery Our particular interest is in the initial assessment activities. In assessment wemore » need collection of environmental parameters, determination of conditions, and physical sample collection. Each phase would require key tools and efforts to develop. This includes study of necessary sensors and their deployment methods, the effects of radiation on sensors and deployment, and the development of training and execution systems.« less
Denitrification in Agricultural Soils: Integrated control and Modelling at various scales (DASIM)
NASA Astrophysics Data System (ADS)
Müller, Christoph; Well, Reinhard; Böttcher, Jürgen; Butterbach-Bahl, Klaus; Dannenmann, Michael; Deppe, Marianna; Dittert, Klaus; Dörsch, Peter; Horn, Marcus; Ippisch, Olaf; Mikutta, Robert; Senbayram, Mehmet; Vogel, Hans-Jörg; Wrage-Mönnig, Nicole; Müller, Carsten
2016-04-01
The new research unit DASIM brings together the expertise of 11 working groups to study the process of denitrification at unprecedented spatial and temporal resolution. Based on state-of-the art analytical techniques our aim is to develop improved denitrification models ranging from the microscale to the field/plot scale. Denitrification, the process of nitrate reduction allowing microbes to sustain respiration under anaerobic conditions, is the key process returning reactive nitrogen as N2to the atmosphere. Actively denitrifying communities in soil show distinct regulatory phenotypes (DRP) with characteristic controls on the single reaction steps and end-products. It is unresolved whether DRPs are anchored in the taxonomic composition of denitrifier communities and how environmental conditions shape them. Despite being intensively studied for more than 100 years, denitrification rates and emissions of its gaseous products can still not be satisfactorily predicted. While the impact of single environmental parameters is well understood, the complexity of the process itself with its intricate cellular regulation in response to highly variable factors in the soil matrix prevents robust prediction of gaseous emissions. Key parameters in soil are pO2, organic matter content and quality, pH and the microbial community structure, which in turn are affected by the soil structure, chemistry and soil-plant interactions. In the DASIM research unit, we aim at the quantitative prediction of denitrification rates as a function of microscale soil structure, organic matter quality, DRPs and atmospheric boundary conditions via a combination of state-of-the-art experimental and analytical tools (X-ray μCT, 15N tracing, NanoSIMS, microsensors, advanced flux detection, NMR spectroscopy, and molecular methods including next generation sequencing of functional gene transcripts). We actively seek collaboration with researchers working in the field of denitrification.
Environmental Aspects of Use of Recycled Carbon Fiber Composites in Automotive Applications.
Meng, Fanran; McKechnie, Jon; Turner, Thomas; Wong, Kok H; Pickering, Stephen J
2017-11-07
The high cost and energy intensity of virgin carbon fiber manufacture provides an opportunity to recover substantial value from carbon fiber reinforced plastic wastes. In this study, we assess the life cycle environmental implications of recovering carbon fiber and producing composite materials as substitutes for conventional and proposed lightweight materials in automotive applications (e.g., steel, aluminum, virgin carbon fiber). Key parameters for the recycled carbon fiber materials, including fiber volume fraction and fiber alignment, are investigated to identify beneficial uses of recycled carbon fiber in the automotive sector. Recycled carbon fiber components can achieve the lowest life cycle environmental impacts of all materials considered, although the actual impact is highly dependent on the design criteria (λ value) of the specific component. Low production impacts associated with recycled carbon fiber components are observed relative to lightweight competitor materials (e.g., aluminum, virgin carbon fiber reinforced plastic). In addition, recycled carbon fiber components have low in-use energy use due to mass reductions and associated reduction in mass-induced fuel consumption. The results demonstrate environmental feasibility of the CFRP recycling materials, supporting the emerging commercialization of CF recycling technologies and identifying significant potential market opportunities in the automotive sector.
Comparison of municipal solid waste treatment technologies from a life cycle perspective in China.
Dong, Jun; Chi, Yong; Zou, Daoan; Fu, Chao; Huang, Qunxing; Ni, Mingjiang
2014-01-01
China has endured the increasing generation of municipal solid waste; hence, environmental analysis of current waste management systems is of crucial importance. This article presents a comprehensive life cycle assessment of three waste treatment technologies practiced in Hangzhou, China: landfill with and without energy recovery, and incineration with waste-to-energy. Adopting region-specific data, the study covers various environmental impacts, such as global warming, acidification, nutrient enrichment, photochemical ozone formation, human toxicity and ecotoxicity. The results show that energy recovery poses a positive effect in environmental savings. Environmental impacts decrease significantly in landfill with the utilization of biogas owing to combined effects by emission reduction and electricity generation. Incineration is preferable to landfill, but toxicity-related impacts also need to be improved. Furthermore, sensitivity analysis shows that the benefit of carbon sequestration will noticeably decrease global warming potential of both landfill scenarios. Gas collection efficiency is also a key parameter influencing the performance of landfill. Based on the results, improvement methods are proposed. Energy recovery is recommended both in landfill and incineration. For landfill, gas collection systems should be upgraded effectively; for incineration, great efforts should be made to reduce heavy metals and dioxin emissions.
Wind Power Electricity: The Bigger the Turbine, The Greener the Electricity?
2012-01-01
Wind energy is a fast-growing and promising renewable energy source. The investment costs of wind turbines have decreased over the years, making wind energy economically competitive to conventionally produced electricity. Size scaling in the form of a power law, experience curves and progress rates are used to estimate the cost development of ever-larger turbines. In life cycle assessment, scaling and progress rates are seldom applied to estimate the environmental impacts of wind energy. This study quantifies whether the trend toward larger turbines affects the environmental profile of the generated electricity. Previously published life cycle inventories were combined with an engineering-based scaling approach as well as European wind power statistics. The results showed that the larger the turbine is, the greener the electricity becomes. This effect was caused by pure size effects of the turbine (micro level) as well as learning and experience with the technology over time (macro level). The environmental progress rate was 86%, indicating that for every cumulative production doubling, the global warming potential per kWh was reduced by 14%. The parameters, hub height and rotor diameter were identified as Environmental Key Performance Indicators that can be used to estimate the environmental impacts for a generic turbine. PMID:22475003
Wind power electricity: the bigger the turbine, the greener the electricity?
Caduff, Marloes; Huijbregts, Mark A J; Althaus, Hans-Joerg; Koehler, Annette; Hellweg, Stefanie
2012-05-01
Wind energy is a fast-growing and promising renewable energy source. The investment costs of wind turbines have decreased over the years, making wind energy economically competitive to conventionally produced electricity. Size scaling in the form of a power law, experience curves and progress rates are used to estimate the cost development of ever-larger turbines. In life cycle assessment, scaling and progress rates are seldom applied to estimate the environmental impacts of wind energy. This study quantifies whether the trend toward larger turbines affects the environmental profile of the generated electricity. Previously published life cycle inventories were combined with an engineering-based scaling approach as well as European wind power statistics. The results showed that the larger the turbine is, the greener the electricity becomes. This effect was caused by pure size effects of the turbine (micro level) as well as learning and experience with the technology over time (macro level). The environmental progress rate was 86%, indicating that for every cumulative production doubling, the global warming potential per kWh was reduced by 14%. The parameters, hub height and rotor diameter were identified as Environmental Key Performance Indicators that can be used to estimate the environmental impacts for a generic turbine. © 2012 American Chemical Society
Long-term monitoring on environmental disasters using multi-source remote sensing technique
NASA Astrophysics Data System (ADS)
Kuo, Y. C.; Chen, C. F.
2017-12-01
Environmental disasters are extreme events within the earth's system that cause deaths and injuries to humans, as well as causing damages and losses of valuable assets, such as buildings, communication systems, farmlands, forest and etc. In disaster management, a large amount of multi-temporal spatial data is required. Multi-source remote sensing data with different spatial, spectral and temporal resolutions is widely applied on environmental disaster monitoring. With multi-source and multi-temporal high resolution images, we conduct rapid, systematic and seriate observations regarding to economic damages and environmental disasters on earth. It is based on three monitoring platforms: remote sensing, UAS (Unmanned Aircraft Systems) and ground investigation. The advantages of using UAS technology include great mobility and availability in real-time rapid and more flexible weather conditions. The system can produce long-term spatial distribution information from environmental disasters, obtaining high-resolution remote sensing data and field verification data in key monitoring areas. It also supports the prevention and control on ocean pollutions, illegally disposed wastes and pine pests in different scales. Meanwhile, digital photogrammetry can be applied on the camera inside and outside the position parameters to produce Digital Surface Model (DSM) data. The latest terrain environment information is simulated by using DSM data, and can be used as references in disaster recovery in the future.
Natural Environmental Service Support to NASA Vehicle, Technology, and Sensor Development Programs
NASA Technical Reports Server (NTRS)
1993-01-01
The research performed under this contract involved definition of the natural environmental parameters affecting the design, development, and operation of space and launch vehicles. The Universities Space Research Association (USRA) provided the manpower and resources to accomplish the following tasks: defining environmental parameters critical for design, development, and operation of launch vehicles; defining environmental forecasts required to assure optimal utilization of launch vehicles; and defining orbital environments of operation and developing models on environmental parameters affecting launch vehicle operations.
Environmental conditions regulate the impact of plants on cloud formation
Zhao, D. F.; Buchholz, A.; Tillmann, R.; Kleist, E.; Wu, C.; Rubach, F.; Kiendler-Scharr, A.; Rudich, Y.; Wildt, J.; Mentel, Th. F.
2017-01-01
The terrestrial vegetation emits large amounts of volatile organic compounds (VOC) into the atmosphere, which on oxidation produce secondary organic aerosol (SOA). By acting as cloud condensation nuclei (CCN), SOA influences cloud formation and climate. In a warming climate, changes in environmental factors can cause stresses to plants, inducing changes of the emitted VOC. These can modify particle size and composition. Here we report how induced emissions eventually affect CCN activity of SOA, a key parameter in cloud formation. For boreal forest tree species, insect infestation by aphids causes additional VOC emissions which modifies SOA composition thus hygroscopicity and CCN activity. Moderate heat increases the total amount of constitutive VOC, which has a minor effect on hygroscopicity, but affects CCN activity by increasing the particles' size. The coupling of plant stresses, VOC composition and CCN activity points to an important impact of induced plant emissions on cloud formation and climate. PMID:28218253
Environmental conditions regulate the impact of plants on cloud formation.
Zhao, D F; Buchholz, A; Tillmann, R; Kleist, E; Wu, C; Rubach, F; Kiendler-Scharr, A; Rudich, Y; Wildt, J; Mentel, Th F
2017-02-20
The terrestrial vegetation emits large amounts of volatile organic compounds (VOC) into the atmosphere, which on oxidation produce secondary organic aerosol (SOA). By acting as cloud condensation nuclei (CCN), SOA influences cloud formation and climate. In a warming climate, changes in environmental factors can cause stresses to plants, inducing changes of the emitted VOC. These can modify particle size and composition. Here we report how induced emissions eventually affect CCN activity of SOA, a key parameter in cloud formation. For boreal forest tree species, insect infestation by aphids causes additional VOC emissions which modifies SOA composition thus hygroscopicity and CCN activity. Moderate heat increases the total amount of constitutive VOC, which has a minor effect on hygroscopicity, but affects CCN activity by increasing the particles' size. The coupling of plant stresses, VOC composition and CCN activity points to an important impact of induced plant emissions on cloud formation and climate.
Courcoul, Aurélie; Monod, Hervé; Nielen, Mirjam; Klinkenberg, Don; Hogerwerf, Lenny; Beaudeau, François; Vergu, Elisabeta
2011-09-07
Coxiella burnetii is the bacterium responsible for Q fever, a worldwide zoonosis. Ruminants, especially cattle, are recognized as the most important source of human infections. Although a great heterogeneity between shedder cows has been described, no previous studies have determined which features such as shedding route and duration or the quantity of bacteria shed have the strongest impact on the environmental contamination and thus on the zoonotic risk. Our objective was to identify key parameters whose variation highly influences C. burnetii spread within a dairy cattle herd, especially those related to the heterogeneity of shedding. To compare the impact of epidemiological parameters on different dynamical aspects of C. burnetii infection, we performed a sensitivity analysis on an original stochastic model describing the bacterium spread and representing the individual variability of the shedding duration, routes and intensity as well as herd demography. This sensitivity analysis consisted of a principal component analysis followed by an ANOVA. Our findings show that the most influential parameters are the probability distribution governing the levels of shedding, especially in vaginal mucus and faeces, the characteristics of the bacterium in the environment (i.e. its survival and the fraction of bacteria shed reaching the environment), and some physiological parameters related to the intermittency of shedding (transition probability from a non-shedding infected state to a shedding state) or to the transition from one type of shedder to another one (transition probability from a seronegative shedding state to a seropositive shedding state). Our study is crucial for the understanding of the dynamics of C. burnetii infection and optimization of control measures. Indeed, as control measures should impact the parameters influencing the bacterium spread most, our model can now be used to assess the effectiveness of different control strategies of Q fever within dairy cattle herds. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bonet, John T.; Schellenger, Harvey G.; Rawdon, Blaine K.; Elmer, Kevin R.; Wakayama, Sean R.; Brown, Derrell L.; Guo, Yueping
2011-01-01
NASA has set demanding goals for technology developments to meet national needs to improve fuel efficiency concurrent with improving the environment to enable air transportation growth. A figure shows NASA's subsonic transport system metrics. The results of Boeing ERA N+2 Advanced Vehicle Concept Study show that the Blended Wing Body (BWB) vehicle, with ultra high bypass propulsion systems have the potential to meet the combined NASA ERA N+2 goals. This study had 3 main activities. 1) The development of an advanced vehicle concepts that can meet the NASA system level metrics. 2) Identification of key enabling technologies and the development of technology roadmaps and maturation plans. 3) The development of a subscale test vehicle that can demonstrate and mature the key enabling technologies needed to meet the NASA system level metrics. Technology maturation plans are presented and include key performance parameters and technical performance measures. The plans describe the risks that will be reduced with technology development and the expected progression of technical maturity.
Almansa, Carmen; Martínez-Paz, José M
2011-03-01
Cost-benefit analysis is a standard methodological platform for public investment evaluation. In high environmental impact projects, with a long-term effect on future generations, the choice of discount rate and time horizon is of particular relevance, because it can lead to very different profitability assessments. This paper describes some recent approaches to environmental discounting and applies them, together with a number of classical procedures, to the economic evaluation of a plant for the desalination of irrigation return water from intensive farming, aimed at halting the degradation of an area of great ecological value, the Mar Menor, in South Eastern Spain. A Monte Carlo procedure is used in four CBA approaches and three time horizons to carry out a probabilistic sensitivity analysis designed to integrate the views of an international panel of experts in environmental discounting with the uncertainty affecting the market price of the project's main output, i.e., irrigation water for a water-deprived area. The results show which discounting scenarios most accurately estimate the socio-environmental profitability of the project while also considering the risk associated with these two key parameters. The analysis also provides some methodological findings regarding ways of assessing financial and environmental profitability in decisions concerning public investment in the environment. Copyright © 2010 Elsevier B.V. All rights reserved.
Test methods for environment-assisted cracking
NASA Astrophysics Data System (ADS)
Turnbull, A.
1992-03-01
The test methods for assessing environment assisted cracking of metals in aqueous solution are described. The advantages and disadvantages are examined and the interrelationship between results from different test methods is discussed. The source of differences in susceptibility to cracking occasionally observed from the varied mechanical test methods arises often from the variation between environmental parameters in the different test conditions and the lack of adequate specification, monitoring, and control of environmental variables. Time is also a significant factor when comparing results from short term tests with long exposure tests. In addition to these factors, the intrinsic difference in the important mechanical variables, such as strain rate, associated with the various mechanical tests methods can change the apparent sensitivity of the material to stress corrosion cracking. The increasing economic pressure for more accelerated testing is in conflict with the characteristic time dependence of corrosion processes. Unreliable results may be inevitable in some cases but improved understanding of mechanisms and the development of mechanistically based models of environment assisted cracking which incorporate the key mechanical, material, and environmental variables can provide the framework for a more realistic interpretation of short term data.
NPOESS Preparatory Project Validation Program for the Cross-track Infrared Sounder
NASA Astrophysics Data System (ADS)
Barnet, C.; Gu, D.; Nalli, N. R.
2009-12-01
The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Program, in partnership with National Aeronautical Space Administration (NASA), will launch the NPOESS Preparatory Project (NPP), a risk reduction and data continuity mission, prior to the first operational NPOESS launch. The NPOESS Program, in partnership with Northrop Grumman Aerospace Systems, will execute the NPP Calibration and Validation (Cal/Val) program to ensure the data products comply with the requirements of the sponsoring agencies. The Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) are two of the instruments that make up the suite of sensors on NPP. Together, CrIS and ATMS will produce three Environmental Data Records (EDRs) including the Atmospheric Vertical Temperature Profile (AVTP), Atmospheric Vertical Moisture Profile (AVMP), and the Atmospheric Vertical Pressure Profile (AVPP). The AVTP and the AVMP are both NPOESS Key Performance Parameters (KPPs). The validation plans establish science and user community leadership and participation, and demonstrated, cost-effective Cal/Val approaches. This presentation will provide an overview of the collaborative data, techniques, and schedule for the validation of the NPP CrIS and ATMS environmental data products.
NASA Astrophysics Data System (ADS)
Goodkin, N.; Tanzil, J.; Murty, S. A.; Ramos, R.; Pullen, J. D.
2016-12-01
The Maritime Continent (MC) is a region of highly complex oceanography, encompassing a majority of the Coral Triangle, the most important region for coral biodiversity and cover. Intricate coastal processes including water body mixing, resulting from reversing monsoon winds and internal waves, expose corals to a wide variety of physical conditions. However, the pressures of climate change, overfishing, ocean acidification, and coastal development, to name a few, are significant in this region and threaten to challenge reefs over the next several decades. In order to predict and study how to facilitate reef recovery in the MC region, it is crucial to understand the environmental parameters for coral success. In this presentation, we will provide an overview of oceanographic processes on the maritime continent that drive seasonal variability in the waters of the MC, including changes to sea surface temperature, salinity, pH, turbidity, productivity and nutrients. Each of these parameters is known to have impacts on calcification rates and thus coral reef formation. Environmental conditions and currents can combine to facilitate larval dispersion or to exacerbate coral disease and predation, including crown of thorns outbreaks. Internal waves may protect against coral bleaching by lowering temperatures with the delivery of deeper water. Drawing on previously published and unpublished results, we will evaluate the parameters that may be impacting reef growth rates, biodiversity and resilience in a changing world in an effort to help plan for key measurements in the year of the MC.
Malaria Modeling and Surveillance for the Greater Mekong Subregion
NASA Technical Reports Server (NTRS)
Kiang, Richard; Adimi, Farida; Soika, Valerii; Nigro, Joseph
2005-01-01
At 4,200 km, the Mekong River is the tenth longest river in the world. It directly and indirectly influences the lives of hundreds of millions of inhabitants in its basin. The riparian countries - Thailand, Myanmar, Cambodia, Laos, Vietnam, and a small part of China - form the Greater Mekong Subregion (GMS). This geographical region has the misfortune of being the world's epicenter of falciparum malaria, which is the most severe form of malaria caused by Plasmodium falciparum. Depending on the country, approximately 50 to 90% of all malaria cases are due to this species. In the Malaria Modeling and Surveillance Project, we have been developing techniques to enhance public health's decision capability for malaria risk assessments and controls. The main objectives are: 1) Identifying the potential breeding sites for major vector species; 2) Implementing a malaria transmission model to identify the key factors that sustain or intensify malaria transmission; and 3) Implementing a risk algorithm to predict the occurrence of malaria and its transmission intensity. The potential benefits are: 1) Increased warning time for public health organizations to respond to malaria outbreaks; 2) Optimized utilization of pesticide and chemoprophylaxis; 3) Reduced likelihood of pesticide and drug resistance; and 4) Reduced damage to environment. Environmental parameters important to malaria transmission include temperature, relative humidity, precipitation, and vegetation conditions. These parameters are extracted from NASA Earth science data sets. Hindcastings based on these environmental parameters have shown good agreement to epidemiological records.
Global sustainability and key needs in future automotive design.
McAuley, John W
2003-12-01
The number of light vehicle registrations is forecast to increase worldwide by a factor of 3-5 over the next 50 years. This will dramatically increase environmental impacts worldwide of automobiles and light trucks. If light vehicles are to be environmentally sustainable globally, the automotive industry must implement fundamental changes in future automotive design. Important factors in assessing automobile design needs include fuel economy and reduced emissions. Many design parameters can impact vehicle air emissions and energy consumption including alternative fuel or engine technologies, rolling resistance, aerodynamics, drive train design, friction, and vehicle weight. Of these, vehicle weight is key and will translate into reduced energy demand across all energy distribution elements. A new class of vehicles is needed that combines ultra-light design with a likely hybrid or fuel cell engine technology. This could increase efficiency by a factor of 3-5 and reduce air emissions as well. Advanced lightweight materials, such as plastics or composites, will need to overtake the present metal-based infrastructure. Incorporating design features to facilitate end-of-life recycling and recovery is also important. The trend will be towards fewer materials and parts in vehicle design, combined with ease of disassembly. Mono-material construction can create vehicle design with improved recyclability as well as reduced numbers of parts and weight.
NASA Astrophysics Data System (ADS)
Wun, S. R.; Huang, T. Y.; Hsu, B. M.; Fan, C. W.
2017-12-01
We aimed to study the effects of physical factors on the relative abundance of bacteria and their preferential admissions of autotrophic CO2 fixation pathways after subjected to environmental long-term influence. The Narrow-Sky located in upper part of Takangshan is a small gulch of Pleistocene coralline limestone formation in southern Taiwan. The physical parameters such as illumination, humidity, and temperature were varied largely in habitats around the gulch, namely on the limestone wall at the opening of gulch, on the coordinate ground soil, on the wall inside the gulch, and the water drip from limestone wall. The total organic carbon was measured in solid samples to evaluate the biomass of the habitats. A metagenomic approach was carried out to reveal their microbial community structure. After the metagenomic library of operational taxonomic units (OTUs) was constructed, a BLAST search by "nomenclature of bacteria" instead of sequences between the OTU libraries and KEGG database was carried out to generate libraries of "model microbial communities", which the complete genomes of the entire bacterial populations were available. Our results showed the biomass of habitats in the opening of gulch was twice higher than the inside, suggesting the illumination played an important role in biosynthesis. In quantitative comparison in key enzymes of CO2 fixation pathways by model communities, 70% to 90% of bacteria possessed key enzymes of Fuchs-Holo cycle, while only 5% to 20% of bacteria contained key enzymes of Calvin-Benson cycle. The key enzymes for hydroxypropionate/ hydroxybutyrate and dicarboxylate/ 4-hydroxybutyrate cycles were not found in this study. In the water sample, approximate 10% of bacteria consisted of the key enzyme for Arnon-Buchanan cycle. Less than 2% of bacteria in all habitats take the reductive acetyl-CoA cycle for CO2 fixation. This study provides a novel method to study biosynthetic process of microbial communities in natural habitats.
Zhou, Jin; Song, Xiao; Zhang, Chun-Yun; Chen, Guo-Fu; Lao, Yong-Min; Jin, Hui; Cai, Zhong-Hua
2018-02-14
A central goal in marine microecology is to understand the ecological factors shaping spatiotemporal microbial patterns and the underlying processes. We hypothesized that abiotic and/or biotic interactions are probably more important for explaining the distribution patterns of marine bacterioplankton than environmental filtering. In this study, surface seawater samples were collected about 7000 miles from the Mediterranean Sea, transecting the North Atlantic Ocean, to the Brazilian marginal sea. In bacterial biosphere, SAR11, SAR86, Rhodobacteraceae, and Rhodospiriaceae were predominant in the Mediterranean Sea; Prochlorococcus was more frequent in Atlantic Ocean; whereas in the Brazilian coastal sea, the main bacterial members were Synechococcus and SAR11. With respect to archaea, Euryarchaeota were predominant in the Atlantic Ocean and Thaumarchaeota in the Mediterranean Sea. With respect to the eukaryotes, Syndiniales, Spumellaria, Cryomonadida, and Chlorodendrales were predominant in the open ocean, while diatoms and microzooplankton were dominant in the coastal sea. Distinct clusters of prokaryotes and eukaryotes displayed clear spatial heterogeneity. Among the environmental parameters measured, temperature and salinity were key factors controlling bacterial and archaeal community structure, respectively, whereas N/P/Si contributed to eukaryotic variation. The relative contribution of environmental parameters to the microbial distribution pattern was 45.2%. Interaction analysis showed that Gammaproteobacteria, Alphaproteobacteria, and Flavobacteriia were the keystone taxa within the positive-correlation network, while Thermoplasmata was the main contributor in the negative-correlation network. Our study demonstrated that microbial communities are co-governed by environmental filtering and biotic interactions, which are the main deterministic driving factors modulating the spatiotemporal patterns of marine plankton synergistically at the regional or global levels.
Said another way: stroke, evolution, and the rainforests: an ancient approach to modern health care.
Collins, Christopher
2007-01-01
The relatively new discipline of evolutionary medicine. To raise awareness among healthcare professionals that our modern view of illness and health care might be flawed. Published literature in CINAHL, MEDLINE, Cochrane databases, and EMBASE. Our modern lifestyles and healthcare paradigms (using stroke as example), may be at odds with our palaeolithic genome. The dietary regimes of remaining hunter-gatherer communities merit attention and study in this regard. Time is running out as the rainforests dwindle and hunter-gatherer communities are acculturated. The selective forces that resulted in the evolution of the human species were mainly environmental. Our metabolism, physiology, and genome, therefore, are geared towards survival under certain environmental parameters. With the advent of agriculture, almost 11,000 years ago, those parameters changed. Our ancestors' lifestyles transformed from wandering hunter-gatherers to sedentary consumers of more than they needed to survive. Many studies link today's prevalence of metabolic syndrome (diabetes, obesity, and cardio- and cerebrovascular diseases) in developed countries with this historic change in human behavior. If this is a valid correlation to make, then the few remaining hunter-gatherer communities in today's rainforests must surely hold the key to human health. Certainly, physiological parameters in these people are impressive, but trends are worrying. There is clear derangement of these parameters when exposed to any degree of acculturated lifestyle. In addition, the natural homelands of these communities, the rainforests, are dwindling at an alarming rate in order to maintain our acculturated norms. The race is on, therefore, to learn what we can about diet, exercise, and natural medicine from the last few humans who live lifestyles that might be closest to our natural state.
NASA Astrophysics Data System (ADS)
Lupo, Cosmo; Ottaviani, Carlo; Papanastasiou, Panagiotis; Pirandola, Stefano
2018-06-01
One crucial step in any quantum key distribution (QKD) scheme is parameter estimation. In a typical QKD protocol the users have to sacrifice part of their raw data to estimate the parameters of the communication channel as, for example, the error rate. This introduces a trade-off between the secret key rate and the accuracy of parameter estimation in the finite-size regime. Here we show that continuous-variable QKD is not subject to this constraint as the whole raw keys can be used for both parameter estimation and secret key generation, without compromising the security. First, we show that this property holds for measurement-device-independent (MDI) protocols, as a consequence of the fact that in a MDI protocol the correlations between Alice and Bob are postselected by the measurement performed by an untrusted relay. This result is then extended beyond the MDI framework by exploiting the fact that MDI protocols can simulate device-dependent one-way QKD with arbitrarily high precision.
Augustaitis, Algirdas; Jasineviciene, Dalia; Girgzdiene, Rasele; Kliucius, Almantas; Marozas, Vitas
2012-01-01
The present study aimed to detect sensitivity of beech trees (Fagus sylvatica L.) to meteorological parameters and air pollution by acidifying species as well as to surface ozone outside their north-eastern distribution range. Data set since 1981 of Preila EMEP station enabled to establish that hot Summers, cold dormant, and dry and cold first-half of vegetation periods resulted in beech tree growth reduction. These meteorological parameters explained 57% variation in beech tree ring widths. Acidifying species had no significant effect on beech tree growth. Only ozone was among key factors contributing to beech stand productivity. Phytotoxic effect of this pollutant increased explanation rate of beech tree ring variation by 18%, that is, up to 75%. However, due to climate changes the warmer dormant periods alone are not the basis ensuring favourable conditions for beech tree growth. Increase in air temperature in June-August and decrease in precipitation amount in the first half of vegetation period should result in beech tree radial increment reduction. Despite the fact that phytotoxic effect of surface ozone should not increase due to stabilization in its concentration, it is rather problematic to expect better environmental conditions for beech tree growth at northern latitude of their pervasion. PMID:22649321
3D Printed Reversible Shape Changing Components with Stimuli Responsive Materials
Mao, Yiqi; Ding, Zhen; Yuan, Chao; Ai, Shigang; Isakov, Michael; Wu, Jiangtao; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry
2016-01-01
The creation of reversibly-actuating components that alter their shapes in a controllable manner in response to environmental stimuli is a grand challenge in active materials, structures, and robotics. Here we demonstrate a new reversible shape-changing component design concept enabled by 3D printing two stimuli responsive polymers—shape memory polymers and hydrogels—in prescribed 3D architectures. This approach uses the swelling of a hydrogel as the driving force for the shape change, and the temperature-dependent modulus of a shape memory polymer to regulate the time of such shape change. Controlling the temperature and aqueous environment allows switching between two stable configurations – the structures are relatively stiff and can carry load in each – without any mechanical loading and unloading. Specific shape changing scenarios, e.g., based on bending, or twisting in prescribed directions, are enabled via the controlled interplay between the active materials and the 3D printed architectures. The physical phenomena are complex and nonintuitive, and so to help understand the interplay of geometric, material, and environmental stimuli parameters we develop 3D nonlinear finite element models. Finally, we create several 2D and 3D shape changing components that demonstrate the role of key parameters and illustrate the broad application potential of the proposed approach. PMID:27109063
3D Printed Reversible Shape Changing Components with Stimuli Responsive Materials
NASA Astrophysics Data System (ADS)
Mao, Yiqi; Ding, Zhen; Yuan, Chao; Ai, Shigang; Isakov, Michael; Wu, Jiangtao; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry
2016-04-01
The creation of reversibly-actuating components that alter their shapes in a controllable manner in response to environmental stimuli is a grand challenge in active materials, structures, and robotics. Here we demonstrate a new reversible shape-changing component design concept enabled by 3D printing two stimuli responsive polymers—shape memory polymers and hydrogels—in prescribed 3D architectures. This approach uses the swelling of a hydrogel as the driving force for the shape change, and the temperature-dependent modulus of a shape memory polymer to regulate the time of such shape change. Controlling the temperature and aqueous environment allows switching between two stable configurations - the structures are relatively stiff and can carry load in each - without any mechanical loading and unloading. Specific shape changing scenarios, e.g., based on bending, or twisting in prescribed directions, are enabled via the controlled interplay between the active materials and the 3D printed architectures. The physical phenomena are complex and nonintuitive, and so to help understand the interplay of geometric, material, and environmental stimuli parameters we develop 3D nonlinear finite element models. Finally, we create several 2D and 3D shape changing components that demonstrate the role of key parameters and illustrate the broad application potential of the proposed approach.
Cui, Lei; Lu, Xinxin; Dong, Yuelei; Cen, Jingyi; Cao, Rongbo; Pan, Lin; Lu, Songhui; Ou, Linjian
2018-05-03
The picoplanktonic pelagophyte Aureococcus anophagefferens could trigger harmful algal blooms (HABs) to discolor water in brown, known as brown tide. Since 2009, large-scale brown tides, caused by A. anophagefferens, had been occurred in early summer for three consecutive years in the coastal waters of Qinhuangdao, China and resulted considerable deleterious effects on the scallop mariculture industry. The causes for the occurrence of brown tides were not fully understood. Therefore, we conducted a one-year survey from June 2013 to May 2014 to study the seasonal succession of the phytoplankton community, including A. anophagefferens and its relationship with environmental variables in the area. The results revealed that the population dynamics of the phytoplankton community were significant variation with seasonal succession, in which A. anophagefferens played an important role during the entire year. The trend of the whole diversity index indicated that the community structure became more stable in winter. The results of principle component analysis (PCA) applied to the environmental factors indicated four major seasonal groups in the environmental variables. The water temperature, silicate and total nitrogen were contributed to the environment in summer, autumn and spring, respectively. In addition, a few another environmental factors commonly contributed to the winter waterbody, indicated that the aquatic environment is more complex in the cold season. The result revealed that the phytoplankton community structure and its variation were mainly affected by the hydrological factors, by using the redundancy analysis (RDA) for the relationship between dominant species and the environment. Furthermore, we inferred Chaetoceros decipiens as a potential species for the breakout of harmful algae blooms (HABs) by RDA ordination. We concluded that the key factor for the seasonal variations in the dynamics of phytoplankton community could be the hydrological parameters in Qinghuangdao coastal area. This research may provide more insight into the occurrence mechanism of brown tide. Copyright © 2018 Elsevier Inc. All rights reserved.
Developing micro-level urban ecosystem indicators for sustainability assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dizdaroglu, Didem, E-mail: dizdaroglu@bilkent.edu.tr
Sustainability assessment is increasingly being viewed as an important tool to aid in the shift towards sustainable urban ecosystems. An urban ecosystem is a dynamic system and requires regular monitoring and assessment through a set of relevant indicators. An indicator is a parameter which provides information about the state of the environment by producing a quantitative value. Indicator-based sustainability assessment needs to be considered on all spatial scales to provide efficient information of urban ecosystem sustainability. The detailed data is necessary to assess environmental change in urban ecosystems at local scale and easily transfer this information to the national andmore » global scales. This paper proposes a set of key micro-level urban ecosystem indicators for monitoring the sustainability of residential developments. The proposed indicator framework measures the sustainability performance of urban ecosystem in 3 main categories including: natural environment, built environment, and socio-economic environment which are made up of 9 sub-categories, consisting of 23 indicators. This paper also describes theoretical foundations for the selection of each indicator with reference to the literature [Turkish] Highlights: • As the impacts of environmental problems have multi-scale characteristics, sustainability assessment needs to be considered on all scales. • The detailed data is necessary to assess local environmental change in urban ecosystems to provide insights into the national and global scales. • This paper proposes a set of key micro-level urban ecosystem indicators for monitoring the sustainability of residential developments. • This paper also describes theoretical foundations for the selection of each indicator with reference to the literature.« less
Discrete Event Simulation Modeling and Analysis of Key Leader Engagements
2012-06-01
to offer. GreenPlayer agents require four parameters, pC, pKLK, pTK, and pRK , which give probabilities for being corrupt, having key leader...HandleMessageRequest component. The same parameter constraints apply to these four parameters. The parameter pRK is the same parameter from the CreatePlayers component...whether the local Green player has resource critical knowledge by using the parameter pRK . It schedules an EndResourceKnowledgeRequest event, passing
NASA Technical Reports Server (NTRS)
Nickerson, Cheryl A.; Ott, C. Mark; Wilson, James W.; Ramamurthy, Rajee; LeBlanc, Carly L.; Honer zu Bentrup, Kerstin; Hammond, Timothy; Pierson, Duane L.
2003-01-01
Bacteria inhabit an impressive variety of ecological niches and must adapt constantly to changing environmental conditions. While numerous environmental signals have been examined for their effect on bacteria, the effects of mechanical forces such as shear stress and gravity have only been investigated to a limited extent. However, several important studies have demonstrated a key role for the environmental signals of low shear and/or microgravity in the regulation of bacterial gene expression, physiology, and pathogenesis [Chem. Rec. 1 (2001) 333; Appl. Microbiol. Biotechnol. 54 (2000) 33; Appl. Environ. Microbiol. 63 (1997) 4090; J. Ind. Microbiol. 18 (1997) 22; Curr. Microbiol. 34(4) (1997) 199; Appl. Microbiol. Biotechnol. 56(3-4) (2001) 384; Infect Immun. 68(6) (2000) 3147; Cell 109(7) (2002) 913; Appl. Environ. Microbiol. 68(11) (2002) 5408; Proc. Natl. Acad. Sci. U. S. A. 99(21) (2002) 13807]. The response of bacteria to these environmental signals, which are similar to those encountered during prokaryotic life cycles, may provide insight into bacterial adaptations to physiologically relevant conditions. This review focuses on the current and potential future research trends aimed at understanding the effect of the mechanical forces of low shear and microgravity analogues on different bacterial parameters. In addition, this review also discusses the use of microgravity technology to generate physiologically relevant human tissue models for research in bacterial pathogenesis.
Schmidt, Kerstin; Schmidtke, Jörg; Mast, Yvonne; Waldvogel, Eva; Wohlleben, Wolfgang; Klemke, Friederike; Lockau, Wolfgang; Hausmann, Tina; Hühns, Maja; Broer, Inge
2017-08-01
Potatoes are a promising system for industrial production of the biopolymer cyanophycin as a second compound in addition to starch. To assess the efficiency in the field, we analysed the stability of the system, specifically its sensitivity to environmental factors. Field and greenhouse trials with transgenic potatoes (two independent events) were carried out for three years. The influence of environmental factors was measured and target compounds in the transgenic plants (cyanophycin, amino acids) were analysed for differences to control plants. Furthermore, non-target parameters (starch content, number, weight and size of tubers) were analysed for equivalence with control plants. The huge amount of data received was handled using modern statistical approaches to model the correlation between influencing environmental factors (year of cultivation, nitrogen fertilization, origin of plants, greenhouse or field cultivation) and key components (starch, amino acids, cyanophycin) and agronomic characteristics. General linear models were used for modelling, and standard effect sizes were applied to compare conventional and genetically modified plants. Altogether, the field trials prove that significant cyanophycin production is possible without reduction of starch content. Non-target compound composition seems to be equivalent under varying environmental conditions. Additionally, a quick test to measure cyanophycin content gives similar results compared to the extensive enzymatic test. This work facilitates the commercial cultivation of cyanophycin potatoes.
Jacox, Michael G.; Hazen, Elliott L.; Bograd, Steven J.
2016-01-01
In Eastern Boundary Current systems, wind-driven upwelling drives nutrient-rich water to the ocean surface, making these regions among the most productive on Earth. Regulation of productivity by changing wind and/or nutrient conditions can dramatically impact ecosystem functioning, though the mechanisms are not well understood beyond broad-scale relationships. Here, we explore bottom-up controls during the California Current System (CCS) upwelling season by quantifying the dependence of phytoplankton biomass (as indicated by satellite chlorophyll estimates) on two key environmental parameters: subsurface nitrate concentration and surface wind stress. In general, moderate winds and high nitrate concentrations yield maximal biomass near shore, while offshore biomass is positively correlated with subsurface nitrate concentration. However, due to nonlinear interactions between the influences of wind and nitrate, bottom-up control of phytoplankton cannot be described by either one alone, nor by a combined metric such as nitrate flux. We quantify optimal environmental conditions for phytoplankton, defined as the wind/nitrate space that maximizes chlorophyll concentration, and present a framework for evaluating ecosystem change relative to environmental drivers. The utility of this framework is demonstrated by (i) elucidating anomalous CCS responses in 1998–1999, 2002, and 2005, and (ii) providing a basis for assessing potential biological impacts of projected climate change. PMID:27278260
NASA Astrophysics Data System (ADS)
Faivre, R.; Colin, J.; Menenti, M.; Lindenbergh, R.; Van Den Bergh, L.; Yu, H.; Jia, L.; Xin, L.
2010-10-01
Improving the understanding and the monitoring of high elevation regions hydrology is of major relevance from both societal and environmental points of view for many Asian countries, in particular in terms of flood and drought, but also in terms of food security in a chang- ing environment. Satellite and airborne remote sensing technologies are of utmost for such a challenge. Exist- ing imaging spectro-radiometers, radars, microwave ra- diometers and backscatter LIDAR provide a very com- prehensive suite of measurements over a wide rage of wavelengths, time frequencies and spatial resolu- tions. It is however needed to devise new algorithms to convert these radiometric measurements into useful eco-hydrological quantitative parameters for hydrologi- cal modeling and water management. The DRAGON II project entitled Key Eco-Hydrological Parameters Re- trieval and Land Data Assimilation System Development in a Typical Inland River Basin of Chinas Arid Region (ID 5322) aims at improving the monitoring, understand- ing, and predictability of hydrological and ecological pro- cesses at catchment scale, and promote the applicability of quantitative remote sensing in watershed science. Ex- isting Earth Observation platforms provided by the Euro- pean Space Agency as well as prototype airborne systems developed in China - ENVISAT/AATSR, ALOS/PRISM and PALSAR, Airborne LIDAR - are used and combined to retrieve advanced land surface physical properties over high elevation arid regions of China. The existing syn- ergies between this project, the CEOP-AEGIS project (FP7) and the WATER project (CAS) provide incentives for innovative studies. The investigations presented in the following report focus on the development of advanced and innovative methodologies and algorithms to monitor both the state and the trend of key eco-hydrological vari- ables: 3D vegetation properties, land surface evaporation, glacier mass balance and drought indicators.
ERIC Educational Resources Information Center
Beachler, Judith
This document is the second in a series of summary reports outlining Key Issues for Planning useful to staff throughout the Los Rios Community College District (CA) for the 1999-2000 academic year and beyond. The 1999 Environmental Scan of Greater Sacramento provides a comprehensive look at the external environment. It outlines changes in the…
Fantin, Valentina; Scalbi, Simona; Ottaviano, Giuseppe; Masoni, Paolo
2014-04-01
The purpose of this study is to propose a method for harmonising Life Cycle Assessment (LCA) literature studies on the same product or on different products fulfilling the same function for a reliable and meaningful comparison of their life-cycle environmental impacts. The method is divided in six main steps which aim to rationalize and quicken the efforts needed to carry out the comparison. The steps include: 1) a clear definition of the goal and scope of the review; 2) critical review of the references; 3) identification of significant parameters that have to be harmonised; 4) harmonisation of the parameters; 5) statistical analysis to support the comparison; 6) results and discussion. This approach was then applied to the comparative analysis of the published LCA studies on tap and bottled water production, focussing on Global Warming Potential (GWP) results, with the aim to identify the environmental preferable alternative. A statistical analysis with Wilcoxon's test confirmed that the difference between harmonised GWP values of tap and bottled water was significant. The results obtained from the comparison of the harmonised mean GWP results showed that tap water always has the best environmental performance, even in case of high energy-consuming technologies for drinking water treatments. The strength of the method is that it enables both performing a deep analysis of the LCA literature and obtaining more consistent comparisons across the published LCAs. For these reasons, it can be a valuable tool which provides useful information for both practitioners and decision makers. Finally, its application to the case study allowed both to supply a description of systems variability and to evaluate the importance of several key parameters for tap and bottled water production. The comparative review of LCA studies, with the inclusion of a statistical decision test, can validate and strengthen the final statements of the comparison. Copyright © 2014 Elsevier B.V. All rights reserved.
Otárola, Mauricio Fernández; Avalos, Gerardo
2014-06-01
• Premise of the study: Environmental heterogeneity is a strong selective force shaping adaptation and population dynamics across temporal and spatial scales. Natural and anthropogenic gradients influence the variation of environmental and biotic factors, which determine population demography and dynamics. Successional gradients are expected to influence demographic parameters, but the relationship between these gradients and the species life history, habitat requirements, and degree of variation in demographic traits remains elusive.• Methods: We used the palm Euterpe precatoria to test the effect of successional stage on plant demography within a continuous population. We calculated demographic parameters for size stages and performed matrix analyses to investigate the demographic variation within primary and secondary forests of La Selva, Costa Rica.• Key results: We observed differences in mortality and recruitment of small juveniles between primary and secondary forests. Matrix models described satisfactorily the chronosequence of population changes, which were characterized by high population growth rate in disturbed areas, and decreased growth rate in old successional forests until reaching stability.• Conclusions: Different demographic parameters can be expressed in contiguous subpopulations along a gradient of successional stages with important consequences for population dynamics. Demographic variation superimposed on these gradients contributes to generate subpopulations with different demographic composition, density, and ecological properties. Therefore, the effects of spatial variation must be reconsidered in the design of demographic analyses of tropical palms, which are prime examples of subtle local adaptation. These considerations are crucial in the implementation of management plans for palm species within spatially complex and heterogeneous tropical landscapes. © 2014 Botanical Society of America, Inc.
Carrizo, Daniel; Domeño, Celia; Nerín, Isabel; Alfaro, Pilar; Nerín, Cristina
2015-01-01
A new screening and semi-quantitative approach has been developed for direct analysis of polycyclic aromatic hydrocarbons (PAHs) and their nitro and oxo derivatives in environmental and biological matrices using atmospheric pressure solid analysis probe (ASAP) quadrupole-time of flight mass spectrometry (Q-TOF-MS). The instrumental parameters were optimized for the analysis of all these compounds, without previous sample treatment, in soil, motor oil, atmospheric particles (ashes) and biological samples such as urine and saliva of smokers and non-smokers. Ion source parameters in the MS were found to be the key parameters, with little variation within PAHs families. The optimized corona current was 4 µA, sample cone voltage 80 V for PAHs, nitro-PAHs and oxo-PAHs, while the desolvation temperatures varied from 300°C to 500°C. The analytical method performance was checked using a certified reference material. Two deuterated compounds were used as internal standards for semi-quantitative purposes together with the pure individual standard for each compound and the corresponding calibration plot. The compounds nitro PAH 9-nitroanthracene and oxo-PAH 1,4-naphthalenedione, were found in saliva and urine in a range below 1 µg/g while the range of PAHs in these samples was below 2 µg/g. Environmental samples provided higher concentration of all pollutants than urine and saliva. Copyright © 2014 Elsevier B.V. All rights reserved.
Feng, Shi-Jin; Cao, Ben-Yi; Xie, Hai-Jian
2017-10-01
Leachate recirculation in municipal solid waste (MSW) landfills operated as bioreactors offers significant economic and environmental benefits. Combined drainage blanket (DB)-horizontal trench (HT) systems can be an alternative to single conventional recirculation approaches and can have competitive advantages. The key objectives of this study are to investigate combined drainage blanket -horizontal trench systems, to analyze the effects of applying two recirculation systems on the leachate migration in landfills, and to estimate some key design parameters (e.g., the steady-state flow rate, the influence width, and the cumulative leachate volume). It was determined that an effective recirculation model should consist of a moderate horizontal trench injection pressure head and supplementary leachate recirculated through drainage blanket, with an objective of increasing the horizontal unsaturated hydraulic conductivity and thereby allowing more leachate to flow from the horizontal trench system in a horizontal direction. In addition, design charts for engineering application were established using a dimensionless variable formulation.
Compilation and Review of Supersonic Business Jet Studies from 1963 through 1995
NASA Technical Reports Server (NTRS)
Maglieri, Domenic J.
2011-01-01
This document provides a compilation of all known supersonic business jet studies/activities conducted from 1963 through 1995 by university, industry and the NASA. First, an overview is provided which chronologically displays all known supersonic business jet studies/activities conducted by universities, industry, and the NASA along with the key features of the study vehicles relative to configuration, planform, operation parameters, and the source of study. This is followed by a brief description of each study along with some comments on the study. Mention will be made as to whether the studies addressed cost, market needs, and the environmental issues of airport-community noise, sonic boom, and ozone.
[Research advances in water quality monitoring technology based on UV-Vis spectrum analysis].
Wei, Kang-Lin; Wen, Zhi-yu; Wu, Xin; Zhang, Zhong-Wei; Zeng, Tian-Ling
2011-04-01
The application of spectral analysis to water quality monitoring is an important developing trend in the field of modern environment monitoring technology. The principle and characteristic of water quality monitoring technology based on UV-Vis spectrum analysis are briefly reviewed. And the research status and advances are introduced from two aspects, on-line monitoring and in-situ monitoring. Moreover, the existent key technical problems are put forward. Finally, the technology trends of multi-parameter water quality monitoring microsystem and microsystem networks based on microspectrometer are prospected, which has certain reference value for the research and development of environmental monitoring technology and modern scientific instrument in the authors' country.
2013-06-01
1 18th ICCRTS Using a Functional Simulation of Crisis Management to Test the C2 Agility Model Parameters on Key Performance Variables...AND SUBTITLE Using a Functional Simulation of Crisis Management to Test the C2 Agility Model Parameters on Key Performance Variables 5a. CONTRACT...command in crisis management. C2 Agility Model Agility can be conceptualized at a number of different levels; for instance at the team
Parameters for assessing the aquatic environmental impact of cosmetic products.
Vita, N A; Brohem, C A; Canavez, A D P M; Oliveira, C F S; Kruger, O; Lorencini, M; Carvalho, C M
2018-05-01
The cosmetic industry's growing concern about the impact of its supply chain on the environment, sustainability of raw materials, and biodiversity increases the need to ensure that the final product has a lower environmental impact. The objective of this review is to summarize and compare the information available from international organizations and legislation regarding the main criteria used to assess raw materials for aquatic toxicity, as well as the most suitable alternative methods for obtaining assessment parameters. Using the literature available in databases, a review of the scientific literature and international legislation, this work discusses and compares the parameters established by international organizations such as the Environmental Protection Agency (EPA) and Cradle to Cradle (C2C), as well as European legislation, namely, European Regulation 1272/2008, for assessing environmental impact. Defining the ecotoxicity parameters of the main classes of raw materials in rinse-off cosmetic products can enable the development of products that are more environmentally sustainable, prioritizing substances with less environmental impact. Copyright © 2018 Elsevier B.V. All rights reserved.
Impacts of environmental conditions on product formation and morphology of Yarrowia lipolytica.
Timoumi, Asma; Guillouet, Stéphane E; Molina-Jouve, Carole; Fillaudeau, Luc; Gorret, Nathalie
2018-05-01
The yeast Yarrowia lipolytica is an industrially important microorganism with distinctive physiological and metabolic characteristics. A variety of external factors (e.g., pH, temperature, and nutrient availability) influences the behavior of the yeast and may act as stress conditions which the cells must withstand and adapt. In this mini review, the impacts of environmental factors on the morphology and metabolite production by Y. lipolytica are summarized. In this regard, detailed insights into the effectors involved in the dimorphic transition of Y. lipolytica, the cultivation conditions employed, as well as the methods applied for the morphological characterization are highlighted. Concerning the metabolism products, a special focus is addressed on lipid and citric acid metabolites which have attracted significant attention in recent years. The dependence of lipid and citric acid productivity on key process parameters, such as media composition and physico-chemical variables, is thoroughly discussed. This review attempts to provide a recent update on the topic and will serve as a meaningful resource for researchers working in the field.
Estrada, José M; Kraakman, N J R; Lebrero, R; Muñoz, R
2015-11-01
Traditional physical/chemical end-of-the-pipe technologies for odor abatement are relatively expensive and present high environmental impacts. On the other hand, biotechnologies have recently emerged as cost-effective and environmentally friendly alternatives but are still limited by their investment costs and land requirements. A more desirable approach to odor control is the prevention of odorant formation before being released to the atmosphere, but limited information is available beyond good design and operational practices of the wastewater treatment process. The present paper reviews two widely applicable and economic alternatives for odor control, Activated Sludge Recycling (ASR) and Oxidized Ammonium Recycling (OAR), by discussing their fundamentals, key operating parameters and experience from the available pilot and field studies. Both technologies present high application potential using readily available plant by-products with a minimum plant upgrading, and low investment and operating costs, contributing to the sustainability and economic efficiency of odor control at wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.
Focal adhesion kinase (FAK) perspectives in mechanobiology: implications for cell behaviour.
Tomakidi, Pascal; Schulz, Simon; Proksch, Susanne; Weber, Wilfried; Steinberg, Thorsten
2014-09-01
Mechanobiology is a scientific interface discipline emerging from engineering and biology. With regard to tissue-regenerative cell-based strategies, mechanobiological concepts, including biomechanics as a target for cell and human mesenchymal stem cell behaviour, are on the march. Based on the periodontium as a paradigm, this mini-review discusses the key role of focal-adhesion kinase (FAK) in mechanobiology, since it is involved in mediating the transformation of environmental biomechanical signals into cell behavioural responses via mechanotransducing signalling cascades. These processes enable cells to adjust quickly to environmental cues, whereas adjustment itself relies on the specific intramolecular phosphorylation of FAK tyrosine residues and the multiple interactions of FAK with distinct partners. Furthermore, interaction-triggered mechanotransducing pathways govern the dynamics of focal adhesion sites and cell behaviour. Facets of behaviour not only include cell spreading and motility, but also proliferation, differentiation and apoptosis. In translational terms, identified and characterized biomechanical parameters can be incorporated into innovative concepts of cell- and tissue-tailored clinically applied biomaterials controlling cell behaviour as desired.
Daré, Joyce K; Silva, Cristina F; Freitas, Matheus P
2017-10-01
Soil sorption of insecticides employed in agriculture is an important parameter to probe the environmental fate of organic chemicals. Therefore, methods for the prediction of soil sorption of new agrochemical candidates, as well as for the rationalization of the molecular characteristics responsible for a given sorption profile, are extremely beneficial for the environment. A quantitative structure-property relationship method based on chemical structure images as molecular descriptors provided a reliable model for the soil sorption prediction of 24 widely used organophosphorus insecticides. By means of contour maps obtained from the partial least squares regression coefficients and the variable importance in projection scores, key molecular moieties were targeted for possible structural modification, in order to obtain novel and more environmentally friendly insecticide candidates. The image-based descriptors applied encode molecular arrangement, atoms connectivity, groups size, and polarity; consequently, the findings in this work cannot be achieved by a simple relationship with hydrophobicity, usually described by the octanol-water partition coefficient. Copyright © 2017 Elsevier Inc. All rights reserved.
Biofuels: balancing risks and rewards.
Thornley, Patricia; Gilbert, Paul
2013-02-06
This paper describes a framework that can be used to evaluate the environmental risks and benefits associated with biofuel production. It uses the example of biodiesel produced from Argentinean soy to show how such a framework can be used to conceptualize trade-offs between different environmental, social and economic impacts of biofuel production. Results showing the greenhouse-gas savings and overall life-cycle impact of different 'soy-biodiesel' production methods are presented. These impacts and the significance of uncertainty in overall assessments of key parameters, such as greenhouse-gas savings, are discussed. It is shown that, even where sufficient knowledge exists to be able to quantify these impacts, the sustainability of supply of a particular biofuel is inextricably linked to values and ethical judgements. However, tailoring certification efforts to the issues that are most likely to make a significant difference to the overall sustainability could improve the effectiveness of certification efforts. The potential for a framework to guide and focus certification efforts is discussed and future research and policy priorities suggested.
NASA Astrophysics Data System (ADS)
Rodrigo-Ilarri, Javier; Rodrigo-Clavero, María Elena
2016-04-01
According to the current EU environmental legislation, groundwater protection is one of the key issues to be addressed when new industrial activities have to be authorised. This work shows a simple methodology that could be used by local and environmental authorities in order to analyse the potential risk caused by an industrial spill on a natural environment. The methodology leads to the determination of the protection area around an extraction well system using the information given by: i) a set of local piezometers, ii) the chemical nature of the industrial spill and iii) the hydrogeological parameters of the local aquifer. The exact location of the contaminant source is not needed for the analysis. The flow equation is afterwards solved using a finite-difference approximation scheme under stationary conditions. Finally, the capture zones for different times are computed by a simple upstream advective transport model. Results on the determination of the perimeter protection area definition of a water supply system in the municipality of L'Alcora (Castellón) in Spain are shown.
Life cycle assessment of energy from waste via anaerobic digestion: a UK case study.
Evangelisti, Sara; Lettieri, Paola; Borello, Domenico; Clift, Roland
2014-01-01
Particularly in the UK, there is potential for use of large-scale anaerobic digestion (AD) plants to treat food waste, possibly along with other organic wastes, to produce biogas. This paper presents the results of a life cycle assessment to compare the environmental impacts of AD with energy and organic fertiliser production against two alternative approaches: incineration with energy production by CHP and landfill with electricity production. In particular the paper investigates the dependency of the results on some specific assumptions and key process parameters. The input Life Cycle Inventory data are specific to the Greater London area, UK. Anaerobic digestion emerges as the best treatment option in terms of total CO2 and total SO2 saved, when energy and organic fertiliser substitute non-renewable electricity, heat and inorganic fertiliser. For photochemical ozone and nutrient enrichment potentials, AD is the second option while incineration is shown to be the most environmentally friendly solution. The robustness of the model is investigated with a sensitivity analysis. The most critical assumption concerns the quantity and quality of the energy substituted by the biogas production. Two key issues affect the development and deployment of future anaerobic digestion plants: maximising the electricity produced by the CHP unit fuelled by biogas and to defining the future energy scenario in which the plant will be embedded. Copyright © 2013 Elsevier Ltd. All rights reserved.
Testing contamination risk assessment methods for toxic elements from mine waste sites
NASA Astrophysics Data System (ADS)
Abdaal, A.; Jordan, G.; Szilassi, P.; Kiss, J.; Detzky, G.
2012-04-01
Major incidents involving mine waste facilities and poor environmental management practices have left a legacy of thousands of contaminated sites like in the historic mining areas in the Carpathian Basin. Associated environmental risks have triggered the development of new EU environmental legislation to prevent and minimize the effects of such incidents. The Mine Waste Directive requires the risk-based inventory of all mine waste sites in Europe by May 2012. In order to address the mining problems a standard risk-based Pre-selection protocol has been developed by the EU Commission. This paper discusses the heavy metal contamination in acid mine drainage (AMD) for risk assessment (RA) along the Source-Pathway-Receptor chain using decision support methods which are intended to aid national and regional organizations in the inventory and assessment of potentially contaminated mine waste sites. Several recognized methods such as the European Environmental Agency (EEA) standard PRAMS model for soil contamination, US EPA-based AIMSS and Irish HMS-IRC models for RA of abandoned sites are reviewed, compared and tested for the mining waste environment. In total 145 ore mine waste sites have been selected for scientific testing using the EU Pre-selection protocol as a case study from Hungary. The proportion of uncertain to certain responses for a site and for the total number of sites may give an insight of specific and overall uncertainty in the data we use. The Pre-selection questions are efficiently linked to a GIS system as database inquiries using digital spatial data to directly generate answers. Key parameters such as distance to the nearest surface and ground water bodies, to settlements and protected areas are calculated and statistically evaluated using STATGRAPHICS® in order to calibrate the RA models. According to our scientific research results, of the 145 sites 11 sites are the most risky having foundation slope >20o, 57 sites are within distance <500m to the nearest surface water bodies, and 33 sites are within distance <680m to the nearest settlements. Moreover 25 sites lie directly above the 'poor status' ground water bodies and 91 sites are located in the protected Natura2000 sites (distance =0). Analysis of the total score of all sites was performed, resulting in six risk classes, as follows: <21 (class I, 4 sites), 21-31 (class II, 16 sites), 31-42 (class III, 27 sites), 42-54 (class II, 38 sites), 54-66 (class V, 40 sites) and >66 (class VI, 20 sites). The total risk scores and key parameters are provided in separate tables and GIS maps, in order to facilitate interpretation and comparison. Results of the Pre-selection protocol are consistent with those of the screening PRAMS model. KEY WORDS contamination risk assessment, Mine Waste Directive, Pre-selection Protocol, PRA.MS, AIMSS, abandoned mine sites, GIS
Estes, Tammara L; Pai, Naresh; Winchell, Michael F
2016-06-01
A key factor in the human health risk assessment process for the registration of pesticides by the US Environmental Protection Agency (EPA) is an estimate of pesticide concentrations in groundwater used for drinking water. From 1997 to 2011, these estimates were obtained from the EPA empirical model SCI-GROW. Since 2012, these estimates have been obtained from the EPA deterministic model PRZM-GW, which has resulted in a significant increase in estimated groundwater concentrations for many pesticides. Historical groundwater monitoring data from the National Ambient Water Quality Assessment (NAWQA) Program (1991-2014) were compared with predicted groundwater concentrations from both SCI-GROW (v.2.3) and PRZM-GW (v.1.07) for 66 different pesticides of varying environmental fate properties. The pesticide environmental fate parameters associated with over- and underprediction of groundwater concentrations by the two models were evaluated. In general, SCI-GROW2.3 predicted groundwater concentrations were close to maximum historically observed groundwater concentrations. However, for pesticides with soil organic carbon content values below 1000 L kg(-1) and no simulated hydrolysis, PRZM-GW overpredicted, often by greater than 100 ppb. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jinsong
2013-05-01
Development of a hierarchical Bayesian model to estimate the spatiotemporal distribution of aqueous geochemical parameters associated with in-situ bioremediation using surface spectral induced polarization (SIP) data and borehole geochemical measurements collected during a bioremediation experiment at a uranium-contaminated site near Rifle, Colorado. The SIP data are first inverted for Cole-Cole parameters including chargeability, time constant, resistivity at the DC frequency and dependence factor, at each pixel of two-dimensional grids using a previously developed stochastic method. Correlations between the inverted Cole-Cole parameters and the wellbore-based groundwater chemistry measurements indicative of key metabolic processes within the aquifer (e.g. ferrous iron, sulfate, uranium)more » were established and used as a basis for petrophysical model development. The developed Bayesian model consists of three levels of statistical sub-models: 1) data model, providing links between geochemical and geophysical attributes, 2) process model, describing the spatial and temporal variability of geochemical properties in the subsurface system, and 3) parameter model, describing prior distributions of various parameters and initial conditions. The unknown parameters are estimated using Markov chain Monte Carlo methods. By combining the temporally distributed geochemical data with the spatially distributed geophysical data, we obtain the spatio-temporal distribution of ferrous iron, sulfate and sulfide, and their associated uncertainity information. The obtained results can be used to assess the efficacy of the bioremediation treatment over space and time and to constrain reactive transport models.« less
Optimisation study of a vehicle bumper subsystem with fuzzy parameters
NASA Astrophysics Data System (ADS)
Farkas, L.; Moens, D.; Donders, S.; Vandepitte, D.
2012-10-01
This paper deals with the design and optimisation for crashworthiness of a vehicle bumper subsystem, which is a key scenario for vehicle component design. The automotive manufacturers and suppliers have to find optimal design solutions for such subsystems that comply with the conflicting requirements of the regulatory bodies regarding functional performance (safety and repairability) and regarding the environmental impact (mass). For the bumper design challenge, an integrated methodology for multi-attribute design engineering of mechanical structures is set up. The integrated process captures the various tasks that are usually performed manually, this way facilitating the automated design iterations for optimisation. Subsequently, an optimisation process is applied that takes the effect of parametric uncertainties into account, such that the system level of failure possibility is acceptable. This optimisation process is referred to as possibility-based design optimisation and integrates the fuzzy FE analysis applied for the uncertainty treatment in crash simulations. This process is the counterpart of the reliability-based design optimisation used in a probabilistic context with statistically defined parameters (variabilities).
One-Cell Doubling Evaluation by Living Arrays of Yeast, ODELAY!
Herricks, Thurston; Dilworth, David J.; Mast, Fred D.; ...
2016-11-16
Cell growth is a complex phenotype widely used in systems biology to gauge the impact of genetic and environmental perturbations. Due to the magnitude of genome-wide studies, resolution is often sacrificed in favor of throughput, creating a demand for scalable, time-resolved, quantitative methods of growth assessment. We present ODELAY (One-cell Doubling Evaluation by Living Arrays of Yeast), an automated and scalable growth analysis platform. High measurement density and single-cell resolution provide a powerful tool for large-scale multiparameter growth analysis based on the modeling of microcolony expansion on solid media. Pioneered in yeast but applicable to other colony forming organisms, ODELAYmore » extracts the three key growth parameters (lag time, doubling time, and carrying capacity) that define microcolony expansion from single cells, simultaneously permitting the assessment of population heterogeneity. The utility of ODELAY is illustrated using yeast mutants, revealing a spectrum of phenotypes arising from single and combinatorial growth parameter perturbations.« less
One-Cell Doubling Evaluation by Living Arrays of Yeast, ODELAY!
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herricks, Thurston; Dilworth, David J.; Mast, Fred D.
Cell growth is a complex phenotype widely used in systems biology to gauge the impact of genetic and environmental perturbations. Due to the magnitude of genome-wide studies, resolution is often sacrificed in favor of throughput, creating a demand for scalable, time-resolved, quantitative methods of growth assessment. We present ODELAY (One-cell Doubling Evaluation by Living Arrays of Yeast), an automated and scalable growth analysis platform. High measurement density and single-cell resolution provide a powerful tool for large-scale multiparameter growth analysis based on the modeling of microcolony expansion on solid media. Pioneered in yeast but applicable to other colony forming organisms, ODELAYmore » extracts the three key growth parameters (lag time, doubling time, and carrying capacity) that define microcolony expansion from single cells, simultaneously permitting the assessment of population heterogeneity. The utility of ODELAY is illustrated using yeast mutants, revealing a spectrum of phenotypes arising from single and combinatorial growth parameter perturbations.« less
Schuwirth, Nele; Reichert, Peter
2013-02-01
For the first time, we combine concepts of theoretical food web modeling, the metabolic theory of ecology, and ecological stoichiometry with the use of functional trait databases to predict the coexistence of invertebrate taxa in streams. We developed a mechanistic model that describes growth, death, and respiration of different taxa dependent on various environmental influence factors to estimate survival or extinction. Parameter and input uncertainty is propagated to model results. Such a model is needed to test our current quantitative understanding of ecosystem structure and function and to predict effects of anthropogenic impacts and restoration efforts. The model was tested using macroinvertebrate monitoring data from a catchment of the Swiss Plateau. Even without fitting model parameters, the model is able to represent key patterns of the coexistence structure of invertebrates at sites varying in external conditions (litter input, shading, water quality). This confirms the suitability of the model concept. More comprehensive testing and resulting model adaptations will further increase the predictive accuracy of the model.
Emergent pattern formation in an interstitial biofilm
NASA Astrophysics Data System (ADS)
Zachreson, Cameron; Wolff, Christian; Whitchurch, Cynthia B.; Toth, Milos
2017-01-01
Collective behavior of bacterial colonies plays critical roles in adaptability, survivability, biofilm expansion and infection. We employ an individual-based model of an interstitial biofilm to study emergent pattern formation based on the assumptions that rod-shaped bacteria furrow through a viscous environment and excrete extracellular polymeric substances which bias their rate of motion. Because the bacteria furrow through their environment, the substratum stiffness is a key control parameter behind the formation of distinct morphological patterns. By systematically varying this property (which we quantify with a stiffness coefficient γ ), we show that subtle changes in the substratum stiffness can give rise to a stable state characterized by a high degree of local order and long-range pattern formation. The ordered state exhibits characteristics typically associated with bacterial fitness advantages, even though it is induced by changes in environmental conditions rather than changes in biological parameters. Our findings are applicable to a broad range of biofilms and provide insights into the relationship between bacterial movement and their environment, and basic mechanisms behind self-organization of biophysical systems.
Numerical study on injection parameters optimization of thin wall and biodegradable polymers parts
NASA Astrophysics Data System (ADS)
Santos, C.; Mendes, A.; Carreira, P.; Mateus, A.; Malça, C.
2017-07-01
Nowadays, the molds industry searches new markets, with diversified and added value products. The concept associated to the production of thin walled and biodegradable parts mostly manufactured by injection process has assumed a relevant importance due to environmental and economic factors. The growth of a global consciousness about the harmful effects of the conventional polymers in our life quality associated with the legislation imposed, become key factors for the choice of a particular product by the consumer. The target of this work is to provide an integrated solution for the injection of parts with thin walls and manufactured using biodegradable materials. This integrated solution includes the design and manufacture processes of the mold as well as to find the optimum values for the injection parameters in order to become the process effective and competitive. For this, the Moldflow software was used. It was demonstrated that this computational tool provides an effective responsiveness and it can constitute an important tool in supporting the injection molding of thin-walled and biodegradable parts.
Airborne Hyperspectral Imaging of Seagrass and Coral Reef
NASA Astrophysics Data System (ADS)
Merrill, J.; Pan, Z.; Mewes, T.; Herwitz, S.
2013-12-01
This talk presents the process of project preparation, airborne data collection, data pre-processing and comparative analysis of a series of airborne hyperspectral projects focused on the mapping of seagrass and coral reef communities in the Florida Keys. As part of a series of large collaborative projects funded by the NASA ROSES program and the Florida Fish and Wildlife Conservation Commission and administered by the NASA UAV Collaborative, a series of airborne hyperspectral datasets were collected over six sites in the Florida Keys in May 2012, October 2012 and May 2013 by Galileo Group, Inc. using a manned Cessna 172 and NASA's SIERRA Unmanned Aerial Vehicle. Precise solar and tidal data were used to calculate airborne collection parameters and develop flight plans designed to optimize data quality. Two independent Visible and Near-Infrared (VNIR) hyperspectral imaging systems covering 400-100nm were used to collect imagery over six Areas of Interest (AOIs). Multiple collections were performed over all sites across strict solar windows in the mornings and afternoons. Independently developed pre-processing algorithms were employed to radiometrically correct, synchronize and georectify individual flight lines which were then combined into color balanced mosaics for each Area of Interest. The use of two different hyperspectral sensor as well as environmental variations between each collection allow for the comparative analysis of data quality as well as the iterative refinement of flight planning and collection parameters.
Huang, Shaodan; Xiong, Jianyin; Cai, Chaorui; Xu, Wei; Zhang, Yinping
2016-03-30
Humidity is one of the main environmental factors affecting the emission rate and key parameters of formaldehyde and volatile organic compounds (VOCs) from building materials. Meanwhile, the initial emittable concentration (Cm,0) is proved to be the most sensitive key parameter to the emission behaviours. However, there is no report on the relationship between humidity and Cm,0. In this paper, Cm,0 of formaldehyde and hexaldehyde from a type of medium density fiberboard in absolute humidity (AH) range of 4.6-19.6 g/m(3) at 25 °C were tested by virtue of a C-history method. Experimental results indicate that Cm,0 is dramatically dependent on AH, increased by 10 and 2 times for formaldehyde and hexaldehyde when AH rising from 4.6 g/m(3) to 19.6 g/m(3). A linear relationship between the logarithm of Cm,0 and AH is obtained based on the measured results. In addition, a correlation characterizing the association of emission rate and AH is derived. The effectiveness of the correlation is verified with our experimental results as well as data from literature. With the correlations, the Cm,0 or emission rate different from the test AH conditions can be conveniently obtained. This study should be useful for predicting the emission characteristics of humidity changing scenarios and for source control.
Alligators and crocodiles as indicators for restoration of Everglades ecosystems
Mazzotti, Frank J.; Best, G. Ronnie; Brandt, Laura A.; Cherkiss, Michael S.; Jeffery, Brian M.; Rice, Kenneth G.
2009-01-01
Alligators and crocodiles integrate biological impacts of hydrological operations, affecting them at all life stages through three key aspects of Everglades ecology: (1) food webs, (2) diversity and productivity, and (3) freshwater flow. Responses of crocodilians are directly related to suitability of environmental conditions and hydrologic change. Correlations between biological responses and environmental conditions contribute to an understanding of species' status and trends over time. Positive or negative trends of crocodilian populations relative to hydrologic changes permit assessment of positive or negative trends in restoration. The crocodilian indicator uses monitoring parameters (performance measures) that have been shown to be both effective and efficient in tracking trends. The alligator component uses relative density (reported as an encounter rate), body condition, and occupancy rates of alligator holes; the crocodile component uses juvenile growth and hatchling survival. We hypothesize that these parameters are correlated with hydrologic conditions including depth, duration, timing, spatial extent and water quality. Salinity is a critical parameter in estuarine habitats. Assessments of parameters defined for crocodilian performance measures support these hypotheses. Alligators and crocodiles are the charismatic megafauna of the Everglades. They are both keystone and flagship species to which the public can relate. In addition, the parameters used to track trends are easy to understand. They provide answers to the following questions: How has the number of alligators or crocodiles changed? Are the animals fatter or thinner than they should be? Are the animals in the places (in terms of habitat and geography) where they should be? As surely as there is no other Everglades, no other single species defines the Everglades as does the American alligator. The Everglades is the only place in the world where both alligators and crocodiles exist. Crocodilians clearly respond to changes in hydrologic parameters of management interest. These relationships are easy to communicate and mean something to managers, decision makers, and the public. Having crocodilians on the list of system-wide, general indicators provides us with one of the most powerful tools we have to communicate progress of ecosystem restoration in Greater Everglades ecosystems to diverse audiences.
NASA Astrophysics Data System (ADS)
Falco, N.; Wainwright, H. M.; Dafflon, B.; Leger, E.; Peterson, J.; Steltzer, H.; Wilmer, C.; Williams, K. H.; Hubbard, S. S.
2017-12-01
Mountainous watershed systems are characterized by extreme heterogeneity in hydrological and pedological properties that influence biotic activities, plant communities and their dynamics. To gain predictive understanding of how ecosystem and watershed system evolve under climate change, it is critical to capture such heterogeneity and to quantify the effect of key environmental variables such as topography, and soil properties. In this study, we exploit advanced geophysical and remote sensing techniques - coupled with machine learning - to better characterize and quantify the interactions between plant communities' distribution and subsurface properties. First, we have developed a remote sensing data fusion framework based on the random forest (RF) classification algorithm to estimate the spatial distribution of plant communities. The framework allows the integration of both plant spectral and structural information, which are derived from multispectral satellite images and airborne LiDAR data. We then use the RF method to evaluate the estimated plant community map, exploiting the subsurface properties (such as bedrock depth, soil moisture and other properties) and geomorphological parameters (such as slope, curvature) as predictors. Datasets include high-resolution geophysical data (electrical resistivity tomography) and LiDAR digital elevation maps. We demonstrate our approach on a mountain hillslope and meadow within the East River watershed in Colorado, which is considered to be a representative headwater catchment in the Upper Colorado Basin. The obtained results show the existence of co-evolution between above and below-ground processes; in particular, dominant shrub communities in wet and flat areas. We show that successful integration of remote sensing data with geophysical measurements allows identifying and quantifying the key environmental controls on plant communities' distribution, and provides insights into their potential changes in the future climate conditions.
Lin, Kuei -Han; Liao, Ben -Yang; Chang, Hao -Wei; ...
2015-12-03
Microbial diversity and community structures in acidic hot springs have been characterized by 16S rRNA gene-based diversity surveys. However, our understanding regarding the interactions among microbes, or between microbes and environmental factors, remains limited. In the present study, a metagenomic approach, followed by bioinformatics analyses, were used to predict interactions within the microbial ecosystem in Shi-Huang-Ping (SHP), an acidic hot spring in northern Taiwan. Characterizing environmental parameters and potential metabolic pathways highlighted the importance of carbon assimilatory pathways. Four distinct carbon assimilatory pathways were identified in five dominant genera of bacteria. Of those dominant carbon fixers, Hydrogenobaculum bacteria outcompeted othermore » carbon assimilators and dominated the SHP, presumably due to their ability to metabolize hydrogen and to withstand an anaerobic environment with fluctuating temperatures. Furthermore, most dominant microbes were capable of metabolizing inorganic sulfur-related compounds (abundant in SHP). However, Acidithiobacillus ferrooxidans was the only species among key rare microbes with the capability to fix nitrogen, suggesting a key role in nitrogen cycling. In addition to potential metabolic interactions, based on the 16S rRNAs gene sequence of Nanoarchaeum-related and its potential host Ignicoccus-related archaea, as well as sequences of viruses and CRISPR arrays, we inferred that there were complex microbe-microbe interactions. In conclusion, our study provided evidence that there were numerous microbe-microbe and microbe-environment interactions within the microbial community in an acidic hot spring. We proposed that Hydrogenobaculum bacteria were the dominant microbial genus, as they were able to metabolize hydrogen, assimilate carbon and live in an anaerobic environment with fluctuating temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Kuei -Han; Liao, Ben -Yang; Chang, Hao -Wei
Microbial diversity and community structures in acidic hot springs have been characterized by 16S rRNA gene-based diversity surveys. However, our understanding regarding the interactions among microbes, or between microbes and environmental factors, remains limited. In the present study, a metagenomic approach, followed by bioinformatics analyses, were used to predict interactions within the microbial ecosystem in Shi-Huang-Ping (SHP), an acidic hot spring in northern Taiwan. Characterizing environmental parameters and potential metabolic pathways highlighted the importance of carbon assimilatory pathways. Four distinct carbon assimilatory pathways were identified in five dominant genera of bacteria. Of those dominant carbon fixers, Hydrogenobaculum bacteria outcompeted othermore » carbon assimilators and dominated the SHP, presumably due to their ability to metabolize hydrogen and to withstand an anaerobic environment with fluctuating temperatures. Furthermore, most dominant microbes were capable of metabolizing inorganic sulfur-related compounds (abundant in SHP). However, Acidithiobacillus ferrooxidans was the only species among key rare microbes with the capability to fix nitrogen, suggesting a key role in nitrogen cycling. In addition to potential metabolic interactions, based on the 16S rRNAs gene sequence of Nanoarchaeum-related and its potential host Ignicoccus-related archaea, as well as sequences of viruses and CRISPR arrays, we inferred that there were complex microbe-microbe interactions. In conclusion, our study provided evidence that there were numerous microbe-microbe and microbe-environment interactions within the microbial community in an acidic hot spring. We proposed that Hydrogenobaculum bacteria were the dominant microbial genus, as they were able to metabolize hydrogen, assimilate carbon and live in an anaerobic environment with fluctuating temperatures.« less
Raine, Kim D; Nykiforuk, Candace I J; Vu-Nguyen, Karen; Nieuwendyk, Laura M; VanSpronsen, Eric; Reed, Shandy; Wild, T Cameron
2014-11-01
As overweight and obesity is a risk factor for chronic diseases, the development of environmental and healthy public policy interventions across multiple sectors has been identified as a key strategy to address this issue. In 2009, a survey was developed to assess the attitudes and beliefs regarding health promotion principles, and the priority and acceptability of policy actions to prevent obesity and chronic diseases, among key policy influencers in Alberta and Manitoba, Canada. Surveys were mailed to 1,765 key influencers from five settings: provincial government, municipal government, school boards, print media companies, and workplaces with greater than 500 employees. A total of 236 surveys were completed with a response rate of 15.0%. Findings indicate nearly unanimous influencer support for individual-focused policy approaches and high support for some environmental policies. Restrictive environmental and economic policies received weakest support. Obesity was comparable to smoking with respect to perceptions as a societal responsibility versus a personal responsibility, boding well for the potential of environmental policy interventions for obesity prevention. This level of influencer support provides a platform for more evidence to be brokered to policy influencers about the effectiveness of environmental policy approaches to obesity prevention. © 2014 The Obesity Society.
Cravo-Laureau, Cristiana; Duran, Robert
2014-01-01
Coastal marine sediments, where important biological processes take place, supply essential ecosystem services. By their location, such ecosystems are particularly exposed to human activities as evidenced by the recent Deepwater Horizon disaster. This catastrophe revealed the importance to better understand the microbial processes involved on hydrocarbon degradation in marine sediments raising strong interests of the scientific community. During the last decade, several studies have shown the key role played by microorganisms in determining the fate of hydrocarbons in oil-polluted sediments but only few have taken into consideration the whole sediment’s complexity. Marine coastal sediment ecosystems are characterized by remarkable heterogeneity, owning high biodiversity and are subjected to fluctuations in environmental conditions, especially to important oxygen oscillations due to tides. Thus, for understanding the fate of hydrocarbons in such environments, it is crucial to study microbial activities, taking into account sediment characteristics, physical-chemical factors (electron acceptors, temperature), nutrients, co-metabolites availability as well as sediment’s reworking due to bioturbation activities. Key information could be collected from in situ studies, which provide an overview of microbial processes, but it is difficult to integrate all parameters involved. Microcosm experiments allow to dissect in-depth some mechanisms involved in hydrocarbon degradation but exclude environmental complexity. To overcome these lacks, strategies have been developed, by creating experiments as close as possible to environmental conditions, for studying natural microbial communities subjected to oil pollution. We present here a review of these approaches, their results and limitation, as well as the promising future of applying “omics” approaches to characterize in-depth microbial communities and metabolic networks involved in hydrocarbon degradation. In addition, we present the main conclusions of our studies in this field. PMID:24575083
Relationships between climate, productivity and vegetation in southern Mongolian drylands
von Wehrden, H.; Wesche, K.
2011-01-01
We assessed the relationship between open-source data on net primary production and precipitation for the southern Mongolian Gobi, and related this information to data obtained from a set of 1418 vegetation relevés sampled in the region. Gradients determining plant community diversity and composition were examined, and the relation between α-diversity and key environmental parameters was tested. The correlation between net primary production and precipitation within our working area was fairly high (r2 = 0.66). The variance of the net primary production was related to the average annual precipitation; at sites with more than ~220 mm/a precipitation the median coefficient of variation in productivity data decreased, indicating a rather gradual shift from a non-equilibrium ecosystem towards an equilibrium ecosystem with increasing moisture. A DCA-ordination showed that the main gradient in plant community composition was closely correlated to environmental variables for altitude, precipitation and net primary production. All three parameters were also significant predictors of the species diversity. The final model, which included an additional quadratic term for longitude, predicted local plant biodiversity at r2 = 0.57. The results can be directly applied to both resource management and nature conservation within the area. For future studies a closer focus on the characterisation of non-equilibrium rangelands based on modelled productivity layers is suggested. PMID:22318349
NASA Astrophysics Data System (ADS)
Zhao, Fengjun; Liu, Junting; Qu, Xiaochao; Xu, Xianhui; Chen, Xueli; Yang, Xiang; Cao, Feng; Liang, Jimin; Tian, Jie
2014-12-01
To solve the multicollinearity issue and unequal contribution of vascular parameters for the quantification of angiogenesis, we developed a quantification evaluation method of vascular parameters for angiogenesis based on in vivo micro-CT imaging of hindlimb ischemic model mice. Taking vascular volume as the ground truth parameter, nine vascular parameters were first assembled into sparse principal components (PCs) to reduce the multicolinearity issue. Aggregated boosted trees (ABTs) were then employed to analyze the importance of vascular parameters for the quantification of angiogenesis via the loadings of sparse PCs. The results demonstrated that vascular volume was mainly characterized by vascular area, vascular junction, connectivity density, segment number and vascular length, which indicated they were the key vascular parameters for the quantification of angiogenesis. The proposed quantitative evaluation method was compared with both the ABTs directly using the nine vascular parameters and Pearson correlation, which were consistent. In contrast to the ABTs directly using the vascular parameters, the proposed method can select all the key vascular parameters simultaneously, because all the key vascular parameters were assembled into the sparse PCs with the highest relative importance.
Wei, Wenjuan; Mandin, Corinne; Ramalho, Olivier
2018-03-01
Semi-volatile organic compounds (SVOCs) in indoor environments can partition among the gas phase, airborne particles, settled dust, and available surfaces. The mass transfer parameters of SVOCs, such as the mass transfer coefficient and the partition coefficient, are influenced by indoor environmental factors. Subsequently, indoor SVOC concentrations and thus occupant exposure can vary depending on environmental factors. In this review, the influence of six environmental factors, i.e., indoor temperature, humidity, ventilation, airborne particle concentration, source loading factor, and reactive chemistry, on the mass transfer parameters and indoor concentrations of SVOCs was analyzed and tentatively quantified. The results show that all mass transfer parameters vary depending on environmental factors. These variations are mostly characterized by empirical equations, particularly for humidity. Theoretical calculations of these parameters based on mass transfer mechanisms are available only for the emission of SVOCs from source surfaces when airborne particles are not present. All mass transfer parameters depend on the temperature. Humidity influences the partition of SVOCs among different phases and is associated with phthalate hydrolysis. Ventilation has a combined effect with the airborne particle concentration on SVOC emission and their mass transfer among different phases. Indoor chemical reactions can produce or eliminate SVOCs slowly. To better model the dynamic SVOC concentration indoors, the present review suggests studying the combined effect of environmental factors in real indoor environments. Moreover, interactions between indoor environmental factors and human activities and their influence on SVOC mass transfer processes should be considered. Copyright © 2017 Elsevier Ltd. All rights reserved.
Understanding the dimensional and mechanical properties of coastal Langmuir Circulations
NASA Astrophysics Data System (ADS)
Shrestha, Kalyan; Kuehl, Joseph; Anderson, William
2017-11-01
Non-linear interaction of surface waves and wind-driven shear instability in the upper ocean mixed layer form counter-rotating vortical structures called Langmuir Circulations. This oceanic microscale turbulence is one of the key contributors of mixing and vertical transport in the upper ocean mixed layer. Langmuir turbulence in the open (deep) ocean has already been the topic of a large research effort. However, coastal Langmuir cells are distinctly different from Langmuir cells in open-ocean regions, where additional bottom-boundary layer shear alters the kinematic properties of Langmuir cells. For this study, we have conducted a wide-ranging numerical study (solving the grid-filtered Craik-Leibovich equations) of coastal Langmuir turbulence, assessing which parameters affect Langmuir cells and defining the parametric hierarchy. The Stokes profile (aggregate velocity due to orbital wave motion) is functionally dependent on Stokes drift velocity and wavenumber of the surface waves. We explain that these parameters, which correspond to the environmental forcing variables, control the horizontal and vertical length scales of Langmuir cell respectively. This result is important in understanding the transport and dispersion of materials in the upper mixed layer of coastal ocean. We argue that wind stress is a parameter governing the strength of Langmuir cells.
Kouamé, Parfait K; Dongo, Kouassi; Nguyen-Viet, Hung; Zurbrügg, Christian; Lüthi, Christoph; Hattendorf, Jan; Utzinger, Jürg; Biémi, Jean; Bonfoh, Bassirou
2014-10-02
Poor waste management is a key driver of ill-health in urban settlements of developing countries. The current study aimed at assessing environmental and human health risks related to urban waste management in Yamoussoukro, the political capital of Côte d'Ivoire. We undertook trans-disciplinary research within an Ecohealth approach, comprised of a participatory workshop with stakeholders and mapping of exposure patterns. A total of 492 randomly selected households participated in a cross-sectional survey. Waste deposit sites were characterised and 108 wastewater samples were subjected to laboratory examinations. The physico-chemical parameters of the surface water (temperature, pH, conductivity, potential oxidise reduction, BOD5, COD, dissolved oxygen, nitrates, ammonia and total Kendal nitrogen) did not comply with World Health Organization standards of surface water quality. Questionnaire results showed that malaria was the most commonly reported disease. Diarrhoea and malaria were associated with poor sanitation. Households having dry latrines had a higher risk of diarrhoea (odds ratio (OR) = 1.8, 95% confidence interval (CI) 1.2-2.7) compared to latrines with septic tanks and also a higher risk for malaria (OR = 1.9, 95% (CI) 1.1-3.3). Our research showed that combining health and environmental assessments enables a deeper understanding of environmental threats and disease burdens linked to poor waste management. Further study should investigate the sanitation strategy aspects that could reduce the environmental and health risks in the study area.
Kouamé, Parfait K.; Dongo, Kouassi; Nguyen-Viet, Hung; Zurbrügg, Christian; Lüthi, Christoph; Hattendorf, Jan; Utzinger, Jürg; Biémi, Jean; Bonfoh, Bassirou
2014-01-01
Poor waste management is a key driver of ill-health in urban settlements of developing countries. The current study aimed at assessing environmental and human health risks related to urban waste management in Yamoussoukro, the political capital of Côte d’Ivoire. We undertook trans-disciplinary research within an Ecohealth approach, comprised of a participatory workshop with stakeholders and mapping of exposure patterns. A total of 492 randomly selected households participated in a cross-sectional survey. Waste deposit sites were characterised and 108 wastewater samples were subjected to laboratory examinations. The physico-chemical parameters of the surface water (temperature, pH, conductivity, potential oxidise reduction, BOD5, COD, dissolved oxygen, nitrates, ammonia and total Kendal nitrogen) did not comply with World Health Organization standards of surface water quality. Questionnaire results showed that malaria was the most commonly reported disease. Diarrhoea and malaria were associated with poor sanitation. Households having dry latrines had a higher risk of diarrhoea (odds ratio (OR) = 1.8, 95% confidence interval (CI) 1.2–2.7) compared to latrines with septic tanks and also a higher risk for malaria (OR = 1.9, 95% (CI) 1.1–3.3). Our research showed that combining health and environmental assessments enables a deeper understanding of environmental threats and disease burdens linked to poor waste management. Further study should investigate the sanitation strategy aspects that could reduce the environmental and health risks in the study area. PMID:25279545
The Role of Deposition in Limiting the Hazard Extent of Dense-Gas Plumes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dillon, M B
2008-05-11
Accidents that involve large (multi-ton) releases of toxic industrial chemicals and form dense-gas clouds often yield far fewer fatalities, casualties and environmental effects than standard assessment and emergency response models predict. This modeling study, which considers both dense-gas turbulence suppression and deposition to environmental objects (e.g. buildings), demonstrates that dry deposition to environmental objects may play a significant role in reducing the distance at which adverse impacts occur - particularly under low-wind, stable atmospheric conditions which are often considered to be the worst-case scenario for these types of releases. The degree to which the released chemical sticks to (or reactsmore » with) environmental surfaces is likely a key parameter controlling hazard extents. In all modeled cases, the deposition to vertical surfaces of environmental objects (e.g. building walls) was more efficient in reducing atmospheric chemical concentrations than deposition to the earth's surface. This study suggests that (1) hazard extents may vary widely by release environment (e.g. grasslands vs. suburbia) and release conditions (e.g. sunlight or humidity may change the rate at which chemicals react with a surface) and (2) greenbelts (or similar structures) may dramatically reduce the impacts of large-scale releases. While these results are demonstrated to be qualitatively consistent with the downwind extent of vegetation damage in two chlorine releases, critical knowledge gaps exist and this study provides recommendations for additional experimental studies.« less
Recurrent seascape units identify key ecological processes along the western Antarctic Peninsula.
Bowman, Jeff S; Kavanaugh, Maria T; Doney, Scott C; Ducklow, Hugh W
2018-04-10
The western Antarctic Peninsula (WAP) is a bellwether of global climate change and natural laboratory for identifying interactions between climate and ecosystems. The Palmer Long-Term Ecological Research (LTER) project has collected data on key ecological and environmental processes along the WAP since 1993. To better understand how key ecological parameters are changing across space and time, we developed a novel seascape classification approach based on in situ temperature, salinity, chlorophyll a, nitrate + nitrite, phosphate, and silicate. We anticipate that this approach will be broadly applicable to other geographical areas. Through the application of self-organizing maps (SOMs), we identified eight recurrent seascape units (SUs) in these data. These SUs have strong fidelity to known regional water masses but with an additional layer of biogeochemical detail, allowing us to identify multiple distinct nutrient profiles in several water masses. To identify the temporal and spatial distribution of these SUs, we mapped them across the Palmer LTER sampling grid via objective mapping of the original parameters. Analysis of the abundance and distribution of SUs since 1993 suggests two year types characterized by the partitioning of chlorophyll a into SUs with different spatial characteristics. By developing generalized linear models for correlated, time-lagged external drivers, we conclude that early spring sea ice conditions exert a strong influence on the distribution of chlorophyll a and nutrients along the WAP, but not necessarily the total chlorophyll a inventory. Because the distribution and density of phytoplankton biomass can have an impact on biomass transfer to the upper trophic levels, these results highlight anticipated links between the WAP marine ecosystem and climate. © 2018 John Wiley & Sons Ltd.
40 CFR 8.9 - Measures to assess and verify environmental impacts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... environmental impacts. 8.9 Section 8.9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL ENVIRONMENTAL IMPACT ASSESSMENT OF NONGOVERNMENTAL ACTIVITIES IN ANTARCTICA § 8.9 Measures to assess and verify environmental impacts. (a) The operator shall conduct appropriate monitoring of key environmental indicators as...
Photosynthetic parameters in the Beaufort Sea in relation to the phytoplankton community structure
NASA Astrophysics Data System (ADS)
Huot, Y.; Babin, M.; Bruyant, F.
2013-05-01
To model phytoplankton primary production from remotely sensed data, a method to estimate photosynthetic parameters describing the photosynthetic rates per unit biomass is required. Variability in these parameters must be related to environmental variables that are measurable remotely. In the Arctic, a limited number of measurements of photosynthetic parameters have been carried out with the concurrent environmental variables needed. Such measurements and their relationship to environmental variables will be required to improve the accuracy of remotely sensed estimates of phytoplankton primary production and our ability to predict future changes. During the MALINA cruise, a large dataset of these parameters was obtained. Together with previously published datasets, we use environmental and trophic variables to provide functional relationships for these parameters. In particular, we describe several specific aspects: the maximum rate of photosynthesis (Pmaxchl) normalized to chlorophyll decreases with depth and is higher for communities composed of large cells; the saturation parameter (Ek) decreases with depth but is independent of the community structure; and the initial slope of the photosynthesis versus irradiance curve (αchl) normalized to chlorophyll is independent of depth but is higher for communities composed of larger cells. The photosynthetic parameters were not influenced by temperature over the range encountered during the cruise (-2 to 8 °C).
Photosynthetic parameters in the Beaufort Sea in relation to the phytoplankton community structure
NASA Astrophysics Data System (ADS)
Huot, Y.; Babin, M.; Bruyant, F.
2013-01-01
To model phytoplankton primary production from remotely sensed data a method to estimate photosynthetic parameters describing the photosynthetic rates per unit biomass is required. Variability in these parameters must be related to environmental variables that are measurable remotely. In the Arctic, a limited number of measurements of photosynthetic parameter have been carried out with the concurrent environmental variables needed. Therefore, to improve the accuracy of remote estimates of phytoplankton primary production as well as our ability to predict changes in the future such measurements and relationship to environmental variables are required. During the MALINA cruise, a large dataset of these parameters were obtained. Together with previously published datasets, we use environmental and trophic variables to provide functional relationships for these parameters. In particular, we describe several specific aspects: the maximum rate of photosynthesis (Pmaxchl) normalized to chlorophyll decreases with depth and is higher for communities composed of large cells; the saturation parameter (Ek) decreases with depth but is independent of the community structure; and the initial slope of the photosynthesis versus irradiance curve (αchl) normalized to chlorophyll is independent of depth but is higher for communities composed of larger cells. The photosynthetic parameters were not influenced by temperature over the range encountered during the cruise (-2 to 8 °C).
Zhu, Ying; Price, Oliver R; Tao, Shu; Jones, Kevin C; Sweetman, Andy J
2014-08-01
We present a new multimedia chemical fate model (SESAMe) which was developed to assess chemical fate and behaviour across China. We apply the model to quantify the influence of environmental parameters on chemical overall persistence (POV) and long-range transport potential (LRTP) in China, which has extreme diversity in environmental conditions. Sobol sensitivity analysis was used to identify the relative importance of input parameters. Physicochemical properties were identified as more influential than environmental parameters on model output. Interactive effects of environmental parameters on POV and LRTP occur mainly in combination with chemical properties. Hypothetical chemicals and emission data were used to model POV and LRTP for neutral and acidic chemicals with different KOW/DOW, vapour pressure and pKa under different precipitation, wind speed, temperature and soil organic carbon contents (fOC). Generally for POV, precipitation was more influential than the other environmental parameters, whilst temperature and wind speed did not contribute significantly to POV variation; for LRTP, wind speed was more influential than the other environmental parameters, whilst the effects of other environmental parameters relied on specific chemical properties. fOC had a slight effect on POV and LRTP, and higher fOC always increased POV and decreased LRTP. Example case studies were performed on real test chemicals using SESAMe to explore the spatial variability of model output and how environmental properties affect POV and LRTP. Dibenzofuran released to multiple media had higher POV in northwest of Xinjiang, part of Gansu, northeast of Inner Mongolia, Heilongjiang and Jilin. Benzo[a]pyrene released to the air had higher LRTP in south Xinjiang and west Inner Mongolia, whilst acenaphthene had higher LRTP in Tibet and west Inner Mongolia. TCS released into water had higher LRTP in Yellow River and Yangtze River catchments. The initial case studies demonstrated that SESAMe performed well on comparing POV and LRTP of chemicals in different regions across China in order to potentially identify the most sensitive regions. This model should not only be used to estimate POV and LRTP for screening and risk assessments of chemicals, but could potentially be used to help design chemical monitoring programmes across China in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.
Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo
2015-01-01
The Indoor Environmental Quality (IEQ) refers to the quality of the environment in relation to the health and well-being of the occupants. It is a holistic concept, which considers several categories, each related to a specific environmental parameter. This article describes a low-cost and open-source hardware architecture able to detect the indoor variables necessary for the IEQ calculation as an alternative to the traditional hardware used for this purpose. The system consists of some sensors and an Arduino board. One of the key strengths of Arduino is the possibility it affords of loading the script into the board’s memory and letting it run without interfacing with computers, thus granting complete independence, portability and accuracy. Recent works have demonstrated that the cost of scientific equipment can be reduced by applying open-source principles to their design using a combination of the Arduino platform and a 3D printer. The evolution of the 3D printer has provided a new means of open design capable of accelerating self-directed development. The proposed nano Environmental Monitoring System (nEMoS) instrument is shown to have good reliability and it provides the foundation for a more critical approach to the use of professional sensors as well as for conceiving new scenarios and potential applications. PMID:26053749
Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo
2015-06-04
The Indoor Environmental Quality (IEQ) refers to the quality of the environment in relation to the health and well-being of the occupants. It is a holistic concept, which considers several categories, each related to a specific environmental parameter. This article describes a low-cost and open-source hardware architecture able to detect the indoor variables necessary for the IEQ calculation as an alternative to the traditional hardware used for this purpose. The system consists of some sensors and an Arduino board. One of the key strengths of Arduino is the possibility it affords of loading the script into the board's memory and letting it run without interfacing with computers, thus granting complete independence, portability and accuracy. Recent works have demonstrated that the cost of scientific equipment can be reduced by applying open-source principles to their design using a combination of the Arduino platform and a 3D printer. The evolution of the 3D printer has provided a new means of open design capable of accelerating self-directed development. The proposed nano Environmental Monitoring System (nEMoS) instrument is shown to have good reliability and it provides the foundation for a more critical approach to the use of professional sensors as well as for conceiving new scenarios and potential applications.
Poulos, Helen M; Camp, Ann E
2010-04-01
The abundance and distribution of species reflect how the niche requirements of species and the dynamics of populations interact with spatial and temporal variation in the environment. This study investigated the influence of geographical variation in environmental site conditions on tree dominance and diversity patterns in three topographically dissected mountain ranges in west Texas, USA, and northern Mexico. We measured tree abundance and basal area using a systematic sampling design across the forested areas of three mountain ranges and related these data to a suite of environmental parameters derived from field and digital elevation model data. We employed cluster analysis, classification and regression trees (CART), and rarefaction to identify (1) the dominant forest cover types across the three study sites and (2) environmental influences on tree distribution and diversity patterns. Elevation, topographic position, and incident solar radiation were the major influences on tree dominance and diversity. Mesic valley bottoms hosted high-diversity vegetation types, while hotter and drier mid-slopes and ridgetops supported lower tree diversity. Valley bottoms and other topographic positions shared few species, indicating high species turnover at the landscape scale. Mountain ranges with high topographic complexity also had higher species richness, suggesting that geographical variability in environmental conditions was a major influence on tree diversity. This study stressed the importance of landscape- and regional-scale topographic variability as a key factor controlling vegetation pattern and diversity in southwestern North America.
Fristoe, Trevor S; Burger, Joseph R; Balk, Meghan A; Khaliq, Imran; Hof, Christian; Brown, James H
2015-12-29
The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander-Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals.
Community Environmental Education as a Model for Effective Environmental Programmes
ERIC Educational Resources Information Center
Blair, Morag
2008-01-01
The benefits of community environmental education outlined in environmental education literature are supported by the findings and implications of a research study undertaken in New Zealand. Evidence from a two-case case study suggests that environmental programmes guided by the key principles and practices of community environmental education,…
Environmental Education and Small Business Environmental Activity
ERIC Educational Resources Information Center
Redmond, Janice; Walker, Beth
2011-01-01
Environmental education is seen as a key driver of small business environmental management, yet little is known about the activities small business owner-managers are undertaking to reduce their environmental impact or in what areas they may need education. Therefore, research that can identify environmental management activities being undertaken…
Fan, Zhaosheng; Neff, Jason C.; Wieder, William R.
2016-02-10
We investigated several key limiting factors that control alpine tundra productivity by developing an ecosystem biogeochemistry model. The model simulates the coupled cycling of carbon (C), nitrogen (N), and phosphorus (P) and their interactions with gross primary production (GPP). It was parameterized with field observations from an alpine dry meadow ecosystem using a global optimization strategy to estimate the unknown parameters. The model, along with the estimated parameters, was first validated against independent data and then used to examine the environmental controls over plant productivity. Our results show that air temperature is the strongest limiting factor to GPP in themore » early growing season, N availability becomes important during the middle portion of the growing season, and soil moisture is the strongest limiting factors by late in the growing season. Overall, the controls over GPP during the growing season, from strongest to weakest, are soil moisture content, air temperature, N availability, and P availability. This simulation provides testable predictions of the shifting nature of physical and nutrient limitations on plant growth. The model also indicates that changing environmental conditions in the alpine will likely lead to changes in productivity. For example, warming eliminates the control of P availability on GPP and makes N availability surpass air temperature to become the second strongest limiting factor. In contrast, an increase in atmospheric nutrient deposition eliminates the control of N availability and enhances the importance of P availability. Furthermore, these analyses provide a quantitative and conceptual framework that can be used to test predictions and refine ecological analyses at this long-term ecological research site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Zhaosheng; Neff, Jason C.; Wieder, William R.
We investigated several key limiting factors that control alpine tundra productivity by developing an ecosystem biogeochemistry model. The model simulates the coupled cycling of carbon (C), nitrogen (N), and phosphorus (P) and their interactions with gross primary production (GPP). It was parameterized with field observations from an alpine dry meadow ecosystem using a global optimization strategy to estimate the unknown parameters. The model, along with the estimated parameters, was first validated against independent data and then used to examine the environmental controls over plant productivity. Our results show that air temperature is the strongest limiting factor to GPP in themore » early growing season, N availability becomes important during the middle portion of the growing season, and soil moisture is the strongest limiting factors by late in the growing season. Overall, the controls over GPP during the growing season, from strongest to weakest, are soil moisture content, air temperature, N availability, and P availability. This simulation provides testable predictions of the shifting nature of physical and nutrient limitations on plant growth. The model also indicates that changing environmental conditions in the alpine will likely lead to changes in productivity. For example, warming eliminates the control of P availability on GPP and makes N availability surpass air temperature to become the second strongest limiting factor. In contrast, an increase in atmospheric nutrient deposition eliminates the control of N availability and enhances the importance of P availability. Furthermore, these analyses provide a quantitative and conceptual framework that can be used to test predictions and refine ecological analyses at this long-term ecological research site.« less
Patiño-García, Daniel; Cruz-Fernandes, Leonor; Buñay, Julio; Palomino, Jaime; Moreno, Ricardo D
2018-02-01
Endocrine-disrupting chemicals (EDCs) are exogenous compounds that modify hormone biosynthesis, causing adverse effects to human health. Among them, phthalates and alkylphenols are important due to their wide use in plastics, detergents, personal care products, cosmetics, and food packaging. However, their conjoint effects over reproductive female health have not been addressed. The aim of this work was to test the effect of chronically exposed female mice to a mixture of three phthalates [bis (2-ethylhexyl), dibutyl, and benzyl butyl] and two alkylphenols (4-nonylphenol and 4-tert-octylphenol) from conception to adulthood at environmentally relevant doses. These EDCs were administered in two doses: one below the minimal risk dose to cause adverse effects on human development and reproduction [1 mg/kg body weight (BW)/d of the total mixture] and the other one based on the reference value close to occupational exposure in humans (10 mg/kg BW/d of the total mixture). Our results show that both doses had similar effects regarding the uterus and ovary relative weight, estrous cyclicity, serum levels of progesterone and 17β-estradiol, and expression of key elements in the steroidogenesis pathway (acute steroidogenic regulatory protein and CYP19A1). However, only the 1-mg/kg BW/d dose delayed the onset of puberty and the transition from preantral to antral follicles, whereas the 10-mg/kg BW/d dose decreased the number of antral follicles and gonadotropin receptor expression. In addition, we observed changes in several fertility parameters in exposed females and in their progeny (F2 generation). In conclusion, our results indicate that chronic exposure to a complex EDC mixture, at environmentally relevant doses, modifies reproductive parameters in female mice. Copyright © 2018 Endocrine Society.
The Earth Microbiome Project and modeling the planets microbial potential (Invited)
NASA Astrophysics Data System (ADS)
Gilbert, J. A.
2013-12-01
The understanding of Earth's climate and ecology requires multiscale observations of the biosphere, of which microbial life are a major component. However, to acquire and process physical samples of soil, water and air that comprise the appropriate spatial and temporal resolution to capture the immense variation in microbial dynamics, would require a herculean effort and immense financial resources dwarfing even the most ambitious projects to date. To overcome this hurdle we created the Earth Microbiome Project, a crowd-sourced effort to acquire physical samples from researchers around the world that are, importantly, contextualized with physical, chemical and biological data detailing the environmental properties of that sample in the location and time it was acquired. The EMP leverages these existing efforts to target a systematic analysis of microbial taxonomic and functional dynamics across a vast array of environmental parameter gradients. The EMP captures the environmental gradients, location, time and sampling protocol information about every sample donated by our valued collaborators. Physical samples are then processed using a standardized DNA extraction, PCR, and shotgun sequencing protocol to generate comparable data regarding the microbial community structure and function in each sample. To date we have processed >17,000 samples from 40 different biomes. One of the key goals of the EMP is to map the spatiotemporal variability of microbial communities to capture the changes in important functional processes that need to be appropriately expressed in models to provide reliable forecasts of ecosystem phenotype across our changing planet. This is essential if we are to develop economically sound strategies to be good stewards of our Earth. The EMP recognizes that environments are comprised of complex sets of interdependent parameters and that the development of useful predictive computational models of both terrestrial and atmospheric systems requires recognition and accommodation of sources of uncertainty.
Controlled Vocabulary Service Application for Environmental Data Store
NASA Astrophysics Data System (ADS)
Ji, P.; Piasecki, M.; Lovell, R.
2013-12-01
In this paper we present a controlled vocabulary service application for Environmental Data Store (EDS). The purpose for such application is to help researchers and investigators to archive, manage, share, search, and retrieve data efficiently in EDS. The Simple Knowledge Organization System (SKOS) is used in the application for the representation of the controlled vocabularies coming from EDS. The controlled vocabularies of EDS are created by collecting, comparing, choosing and merging controlled vocabularies, taxonomies and ontologies widely used and recognized in geoscience/environmental informatics community, such as Environment ontology (EnvO), Semantic Web for Earth and Environmental Terminology (SWEET) ontology, CUAHSI Hydrologic Ontology and ODM Controlled Vocabulary, National Environmental Methods Index (NEMI), National Water Information System (NWIS) codes, EPSG Geodetic Parameter Data Set, WQX domain value etc. TemaTres, an open-source, web -based thesaurus management package is employed and extended to create and manage controlled vocabularies of EDS in the application. TemaTresView and VisualVocabulary that work well with TemaTres, are also integrated in the application to provide tree view and graphical view of the structure of vocabularies. The Open Source Edition of Virtuoso Universal Server is set up to provide a Web interface to make SPARQL queries against controlled vocabularies hosted on the Environmental Data Store. The replicas of some of the key vocabularies commonly used in the community, are also maintained as part of the application, such as General Multilingual Environmental Thesaurus (GEMET), NetCDF Climate and Forecast (CF) Standard Names, etc.. The application has now been deployed as an elementary and experimental prototype that provides management, search and download controlled vocabularies of EDS under SKOS framework.
NASA Astrophysics Data System (ADS)
Hamada, Aulia; Rosyidi, Cucuk Nur; Jauhari, Wakhid Ahmad
2017-11-01
Minimizing processing time in a production system can increase the efficiency of a manufacturing company. Processing time are influenced by application of modern technology and machining parameter. Application of modern technology can be apply by use of CNC machining, one of the machining process can be done with a CNC machining is turning. However, the machining parameters not only affect the processing time but also affect the environmental impact. Hence, optimization model is needed to optimize the machining parameters to minimize the processing time and environmental impact. This research developed a multi-objective optimization to minimize the processing time and environmental impact in CNC turning process which will result in optimal decision variables of cutting speed and feed rate. Environmental impact is converted from environmental burden through the use of eco-indicator 99. The model were solved by using OptQuest optimization software from Oracle Crystal Ball.
ERIC Educational Resources Information Center
Uetake, Tetsuya
2015-01-01
Purpose: Large-scale collective action is necessary when managing agricultural natural resources such as biodiversity and water quality. This paper determines the key factors to the success of such action. Design/Methodology/Approach: This paper analyses four large-scale collective actions used to manage agri-environmental resources in Canada and…
Environmental Scan: Literacy Work in Canada. Summary Report
ERIC Educational Resources Information Center
Movement for Canadian Literacy, 2007
2007-01-01
During the fall of 2007, Movement for Canadian Literacy (MCL) conducted an environmental scan of the Anglophone literacy field in Canada. Data was gathered through the use of key informant interviews (19) and a literature review. A cross-national working group guided the development of the scan. Interviews with key informants for the scan revealed…
State profiles in environmental education
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruskey, A.
1995-12-31
An awareness and appreciation of their natural and built environment; knowledge of natural systems and ecological concepts; understanding of the range of current environmental issues; and the ability to use investigative, critical-thinking, and problem-solving skills toward the resolution of environmental issues: these are key traits of an environmentally literate citizenry. It follows that they are the key objectives of environmental education. Nearly every state in the country currently has an environmental education program in some form. However, few states have comprehensive programs of the sort that can foster widespread environmental literacy in the populace. Comprehensive programs infuse environmental education intomore » most or all subject areas and grade levels through curriculum requirements, subject-area frameworks, pre-service and in-service teacher training, opportunities for small grants for teachers and schools, resource guides and networks, statewide advisory councils, interagency networks, and more.« less
Review of Concrete Biodeterioration in Relation to Buried Nuclear Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turick, C; Berry, C.
Long-term storage of low level radioactive material in below ground concrete disposal units (DUs) (Saltstone Disposal Facility) is a means of depositing wastes generated from nuclear operations of the U.S. Department of Energy. Based on the currently modeled degradation mechanisms, possible microbial induced effects on the structural integrity of buried low level wastes must be addressed. Previous international efforts related to microbial impacts on concrete structures that house low level radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the recent research in thismore » field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete vaults housing stored wastes and the wastes themselves. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources like components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The results of this review suggest that microbial activity in Saltstone, (grouted low level radioactive waste) is unlikely due to very high pH and osmotic pressure. Biodegradation of the concrete vaults housing the radioactive waste however, is a possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Results from this review point to parameters to focus on for modeling activities and also, possible options for mitigation that would minimize concrete biodegradation. In addition, key chemical components that drive microbial activity on concrete surfaces are discussed.« less
Marchi, S; Bonora, M; Patergnani, S; Giorgi, C; Pinton, P
2017-01-01
It is widely acknowledged that mitochondria are highly active structures that rapidly respond to cellular and environmental perturbations by changing their shape, number, and distribution. Mitochondrial remodeling is a key component of diverse biological processes, ranging from cell cycle progression to autophagy. In this chapter, we describe different methodologies for the morphological study of the mitochondrial network. Instructions are given for the preparation of samples for fluorescent microscopy, based on genetically encoded strategies or the employment of synthetic fluorescent dyes. We also propose detailed protocols to analyze mitochondrial morphometric parameters from both three-dimensional and bidimensional datasets. Finally, we describe a protocol for the visualization and quantification of mitochondrial structures through electron microscopy. © 2017 Elsevier Inc. All rights reserved.
Atomic switch networks as complex adaptive systems
NASA Astrophysics Data System (ADS)
Scharnhorst, Kelsey S.; Carbajal, Juan P.; Aguilera, Renato C.; Sandouk, Eric J.; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.
2018-03-01
Complexity is an increasingly crucial aspect of societal, environmental and biological phenomena. Using a dense unorganized network of synthetic synapses it is shown that a complex adaptive system can be physically created on a microchip built especially for complex problems. These neuro-inspired atomic switch networks (ASNs) are a dynamic system with inherent and distributed memory, recurrent pathways, and up to a billion interacting elements. We demonstrate key parameters describing self-organized behavior such as non-linearity, power law dynamics, and multistate switching regimes. Device dynamics are then investigated using a feedback loop which provides control over current and voltage power-law behavior. Wide ranging prospective applications include understanding and eventually predicting future events that display complex emergent behavior in the critical regime.
Key Tasks of Science in Improving Effectiveness of Hard Coal Production in Poland
NASA Astrophysics Data System (ADS)
Dubiński, Józef; Prusek, Stanisław; Turek, Marian
2017-09-01
The article presents an array of specific issues regarding the employed technology and operational efficiency of mining activities, which could and should become the subject of conducted scientific research. Given the circumstances of strong market competition and increasing requirements concerning environmental conditions, both in terms of conducted mining activities and produced coal quality parameters, it is imperative to develop and implement innovative solutions regarding the employed production technology, the safety of work conducted under the conditions of increasing natural hazards, as well as the mining enterprise management systems that enable its effective functioning. The article content pertains to the last group of issues in the most detailed way, particularly in terms of the possibility for rational conducted operation cost reduction.
Research on the application of vehicle network in optimization of automobile supply supply chain
NASA Astrophysics Data System (ADS)
Jing, Xuelei; Jia, Baoxian
2017-09-01
The four key areas of the development of Internet-connected (intelligent transportation) with great potential for development,environmental monitoring, goods tracking, and the development of smart grid are the core supporting technologies of many applications. In order to improve the adaptability of data distribution, so that it can be used in urban, rural or highway and other different car networking scenarios, the study test and hypothetical test of the technical means to accurately estimate the different car network scene parameters indicators, and then different scenarios take different distribution strategies. Taking into account the limited nature of the data distribution of the Internet network data, the paper uses the idea of a customer to optimize the simulation
Research at a European Planetary Simulation Facility
NASA Astrophysics Data System (ADS)
Merrison, Jonathan; Alois, Stefano; Iversen, Jens Jacob
2016-04-01
A unique environmental simulation facility will be presented which is capable of re-creating extreme terrestrial or other planetary environments. It is supported by EU activities including a volcanology network VERTIGO and a planetology network Europlanet 2020 RI. It is also used as a test facility by ESA for the forthcoming ExoMars 2018 mission. Specifically it is capable of recreating the key physical parameters such as temperature, pressure (gas composition), wind flow and importantly the suspension/transport of dust or sand particulates. This facility is available both to the scientific and industrial community. Details of this laboratory facility will be presented and some of the most recent activities will be summarized. For information on access to this facility please contact the author.
Genetic and environmental pathways to complex diseases.
Gohlke, Julia M; Thomas, Reuben; Zhang, Yonqing; Rosenstein, Michael C; Davis, Allan P; Murphy, Cynthia; Becker, Kevin G; Mattingly, Carolyn J; Portier, Christopher J
2009-05-05
Pathogenesis of complex diseases involves the integration of genetic and environmental factors over time, making it particularly difficult to tease apart relationships between phenotype, genotype, and environmental factors using traditional experimental approaches. Using gene-centered databases, we have developed a network of complex diseases and environmental factors through the identification of key molecular pathways associated with both genetic and environmental contributions. Comparison with known chemical disease relationships and analysis of transcriptional regulation from gene expression datasets for several environmental factors and phenotypes clustered in a metabolic syndrome and neuropsychiatric subnetwork supports our network hypotheses. This analysis identifies natural and synthetic retinoids, antipsychotic medications, Omega 3 fatty acids, and pyrethroid pesticides as potential environmental modulators of metabolic syndrome phenotypes through PPAR and adipocytokine signaling and organophosphate pesticides as potential environmental modulators of neuropsychiatric phenotypes. Identification of key regulatory pathways that integrate genetic and environmental modulators define disease associated targets that will allow for efficient screening of large numbers of environmental factors, screening that could set priorities for further research and guide public health decisions.
NASA Astrophysics Data System (ADS)
Doudrick, Kyle
Nitrate is the most prevalent water pollutant limiting the use of groundwater as a potable water source. The overarching goal of this dissertation was to leverage advances in nanotechnology to improve nitrate photocatalysis and transition treatment to the full-scale. The research objectives were to (1) examine commercial and synthesized photocatalysts, (2) determine the effect of water quality parameters (e.g., pH), (3) conduct responsible engineering by ensuring detection methods were in place for novel materials, and (4) develop a conceptual framework for designing nitrate-specific photocatalysts. The key issues for implementing photocatalysis for nitrate drinking water treatment were efficient nitrate removal at neutral pH and by-product selectivity toward nitrogen gases, rather than by-products that pose a human health concern (e.g., nitrite). Photocatalytic nitrate reduction was found to follow a series of proton-coupled electron transfers. The nitrate reduction rate was limited by the electron-hole recombination rate, and the addition of an electron donor (e.g., formate) was necessary to reduce the recombination rate and achieve efficient nitrate removal. Nano-sized photocatalysts with high surface areas mitigated the negative effects of competing aqueous anions. The key water quality parameter impacting by-product selectivity was pH. For pH < 4, the by-product selectivity was mostly N-gas with some NH4 +, but this shifted to NO2- above pH = 4, which suggests the need for proton localization to move beyond NO2 -. Co-catalysts that form a Schottky barrier, allowing for localization of electrons, were best for nitrate reduction. Silver was optimal in heterogeneous systems because of its ability to improve nitrate reduction activity and N-gas by-product selectivity, and graphene was optimal in two-electrode systems because of its ability to shuttle electrons to the working electrode. "Environmentally responsible use of nanomaterials" is to ensure that detection methods are in place for the nanomaterials tested. While methods exist for the metals and metal oxides examined, there are currently none for carbon nanotubes (CNTs) and graphene. Acknowledging that risk assessment encompasses dose-response and exposure, new analytical methods were developed for extracting and detecting CNTs and graphene in complex organic environmental (e.g., urban air) and biological matrices (e.g. rat lungs).
[The maternal effect in infantile autism: elevated DNA damage degree in patients and their mothers].
Porokhovnik, L N; Kostyuk, S V; Ershova, E S; Stukalov, S M; Veiko, N N; Korovina, N Yu; Gorbachevskaya, N L; Sorokin, A B; Lyapunova, N A
2016-05-01
Infantile autism is a common disorder of mental development, which is characterized by impairments in the communicative, cognitive and speech spheres and obsessional stereotyped behaviour. Although in most cases, pathogenic factors remain unclear, infantile autism has a significant hereditary component, however, its etiology is also under the influence of environmental factors, including the condition of the mother's body during pregnancy ("maternal effect"). Oxidative stress is assumed to play a key role in the pathogenesis of infantile autism. It is known that oxidative stress has a prominent genotoxic effect, which is realized through inducing single and double strand breaks of the nuclear DNA. We evaluated the degree of DNA damage in patients with infantile autism and their mothers using DNA comet assay. The comet tail moment and DNA per cent ratio in the tail were assessed for each individual. The two parameters appeared to be strongly correlated (r=0.90). Mean and median values of both parameters were considerably higher in the sample of autistic children, than in age-matching healthy controls. Interestingly, these parameters were also elevated in healthy mothers of autistic children, with no difference from the values in the group of autistic children. The control group of healthy women of reproductive age, who had no children with autism, differed by the DNA comet tail moment from the group of mothers of autistic children, but did not differ significantly from the control group of healthy children. The results suggest that there are genotoxic factors in mentally healthy mothers of autistic children, which can determine the pathological process in the foeti via environmental "maternal effect" during gestation.
Lande, Russell; Engen, Steinar; Sæther, Bernt-Erik
2017-10-31
We analyze the stochastic demography and evolution of a density-dependent age- (or stage-) structured population in a fluctuating environment. A positive linear combination of age classes (e.g., weighted by body mass) is assumed to act as the single variable of population size, [Formula: see text], exerting density dependence on age-specific vital rates through an increasing function of population size. The environment fluctuates in a stationary distribution with no autocorrelation. We show by analysis and simulation of age structure, under assumptions often met by vertebrate populations, that the stochastic dynamics of population size can be accurately approximated by a univariate model governed by three key demographic parameters: the intrinsic rate of increase and carrying capacity in the average environment, [Formula: see text] and [Formula: see text], and the environmental variance in population growth rate, [Formula: see text] Allowing these parameters to be genetically variable and to evolve, but assuming that a fourth parameter, [Formula: see text], measuring the nonlinearity of density dependence, remains constant, the expected evolution maximizes [Formula: see text] This shows that the magnitude of environmental stochasticity governs the classical trade-off between selection for higher [Formula: see text] versus higher [Formula: see text] However, selection also acts to decrease [Formula: see text], so the simple life-history trade-off between [Formula: see text]- and [Formula: see text]-selection may be obscured by additional trade-offs between them and [Formula: see text] Under the classical logistic model of population growth with linear density dependence ([Formula: see text]), life-history evolution in a fluctuating environment tends to maximize the average population size. Published under the PNAS license.
NASA Astrophysics Data System (ADS)
Sgouridis, Fotis; Ullah, Sami
2017-10-01
Natural and seminatural terrestrial ecosystems (unmanaged peatlands and forests and extensive and intensive grasslands) have been under-represented in the UK greenhouse gas (GHG) inventory. Mechanistic studies of GHG fluxes and their controls can improve the prediction of the currently uncertain GHG annual emission estimates. The source apportionment of N2O emissions can further inform management plans for GHG mitigation. We have measured in situ GHG fluxes monthly in two replicated UK catchments and evaluated their environmental controlling factors. An adapted 15N-gas flux method with low addition of 15N tracer (0.03-0.5 kg 15N ha-1) was used to quantify the relative contribution of denitrification to net N2O production. Total N2O fluxes were 40 times higher in the intensive grasslands than in the peatlands (range: -1.32 to 312.3 μg N m-2 h-1). The contribution of denitrification to net N2O emission varied across the land use types and ranged from 9 to 60%. Soil moisture was the key parameter regulating the partitioning of N2O sources (r2 = 0.46). Total N2O fluxes were explained by a simple model (r2 = 0.83) including parameters such as total dissolved nitrogen, organic carbon, and water content. A parsimonious model with the soil moisture content as a single scalar parameter explained 84% of methane flux variability across land uses. The assumption that 1% of the atmospherically deposited N on natural ecosystems is emitted as N2O could be overestimated or underestimated (0.3-1.6%). The use of land use-specific N2O emission factors and further information on N2O source partitioning should help constrain this uncertainty.
The marketing activities of hospitals: environmental, organizational, and managerial influences.
Myrtle, R C; Martinez, C F
1991-03-01
This article reports the results of a study designed to examine the relationship of environmental, organizational and structural factors, perceptions of key decision makers about competitive conditions, and changes in operational performance with the level of the marketing activities engaged in by 145 California hospitals. Measures assessing the impact of environmental conditions and the perception of the key decision makers were found to be related to the marketing activities of the organization. However, the relationship between measures which examined the structural and performance impacts on the marketing activities did not demonstrate the same predictive ability. The results suggest that marketing activities were affected by the key decision maker's assessment of the competitive nature of the environment, influence of key stakeholders, and tangible changes in the organization's task environment. Performance and other measures were not found to be as influential in determining these activities.
Lo, Brian K; Morgan, Emily H; Folta, Sara C; Graham, Meredith L; Paul, Lynn C; Nelson, Miriam E; Jew, Nicolette V; Moffat, Laurel F; Seguin, Rebecca A
2017-10-04
Rural populations in the United States have lower physical activity levels and are at a higher risk of being overweight and suffering from obesity than their urban counterparts. This paper aimed to understand the environmental factors that influence physical activity among rural adults in Montana. Eight built environment audits, 15 resident focus groups, and 24 key informant interviews were conducted between August and December 2014. Themes were triangulated and summarized into five categories of environmental factors: built, social, organizational, policy, and natural environments. Although the existence of active living features was documented by environmental audits, residents and key informants agreed that additional indoor recreation facilities and more well-maintained and conveniently located options were needed. Residents and key informants also agreed on the importance of age-specific, well-promoted, and structured physical activity programs, offered in socially supportive environments, as facilitators to physical activity. Key informants, however, noted that funding constraints and limited political will were barriers to developing these opportunities. Since building new recreational facilities and structures to support active transportation pose resource challenges, especially for rural communities, our results suggest that enhancing existing features, making small improvements, and involving stakeholders in the city planning process would be more fruitful to build momentum towards larger changes.
The Shuttle Environment Workshop
NASA Technical Reports Server (NTRS)
Lehmann, J.; Tanner, S. G. (Editor); Wilkerson, T. (Editor)
1983-01-01
Results of shuttle environmental measurement programs were presented. The implications for plasma, infrared and ultraviolet experiments were discussed. The prelaunch environmental conditions, results of key environmental measurements made during the flights of STS 1, 2, 3, 4, and postlanding environmental conditions were covered.
Adaptive Multichannel Radiation Sensors for Plant Parameter Monitoring
NASA Astrophysics Data System (ADS)
Mollenhauer, Hannes; Remmler, Paul; Schuhmann, Gudrun; Lausch, Angela; Merbach, Ines; Assing, Martin; Mollenhauer, Olaf; Dietrich, Peter; Bumberger, Jan
2016-04-01
Nutrients such as nitrogen are playing a key role in the plant life cycle. They are much needed for chlorophyll production and other plant cell components. Therefore, the crop yield is strongly affected by plant nutrient status. Due to the spatial and temporal variability of soil characteristics or swaying agricultural inputs the plant development varies within a field. Thus, the determination of these fluctuations in the plant development is valuable for a detection of stress conditions and optimization of fertilisation due to its high environmental and economic impact. Plant parameters play crucial roles in plant growth estimation and prediction since they are used as indicators of plant performance. Especially indices derived out of remote sensing techniques provide quantitative information about agricultural crops instantaneously, and above all, non-destructively. Due to the specific absorption of certain plant pigments, a characteristic spectral signature can be seen in the visible and IR part of the electromagnetic spectrum, known as narrow-band peaks. In an analogous manner, the presence and concentration of different nutrients cause a characteristic spectral signature. To this end, an adequate remote sensing monitoring concept is needed, considering heterogeneity and dynamic of the plant population and economical aspects. This work will present the development and field investigations of an inexpensive multichannel radiation sensor to observe the incoming and reflected specific parts or rather distinct wavelengths of the solar light spectrum on the crop and facilitate the determination of different plant indices. Based on the selected sensor wavelengths, the sensing device allows the detection of specific parameters, e.g. plant vitality, chlorophyll content or nitrogen content. Besides the improvement of the sensor characteristic, the simple wavelength adaption, and the price-performance ratio, the achievement of appropriate energy efficiency as well as a suitable protection against disturbances and environmental influences are key challenges of this work. The multichannel sensors were tested in a mobile wireless sensor network in the frame of the Static Fertilisation Experiment in Bad Lauchstädt, Germany. The sensor nodes were permanently installed for one crop cycle on three different spring barley plots with diverse nitrogen fertilisation levels. In addition, weekly surveys of field spectrometer and chlorophyll meter measurements as well as tissue analyses of plant samples were implemented. The results of this experiment show a strong correlation of chlorophyll and nitrogen content indices in comparison to the simultaneously running commercial radiation transmittance or reflectance sensors.
Hydrolytic microbial communities in terrestrial ecosystems
NASA Astrophysics Data System (ADS)
Manucharova, Natalia; Chernov, Timofey; Kolcova, Ekaterina; Zelezova, Alena; Lukacheva, Euhenia; Zenova, Galina
2014-05-01
Hydrolytic microbial communities in terrestrial ecosystems Manucharova N.A., Chernov T.I., Kolcova E.M., Zelezova A.D., Lukacheva E.G. Lomonosov Moscow State University, Russia Vertical differentiation of terrestrial biogeocenoses is conditioned by the formation of vertical tiers that differ considerably in the composition and structure of microbial communities. All the three tiers, phylloplane, litter and soil, are united by a single flow of organic matter, and are spatially separated successional stages of decomposition of organic substances. Decomposition of organic matter is mainly due to the activity of microorganisms producing enzymes - hydrolase and lyase - which destroy complex organic compounds. Application of molecular biological techniques (FISH) in environmental studies provides a more complete information concerning the taxonomic diversity and potential hydrolytic activity of microbial complexes of terrestrial ecosystems that exist in a wide range of environmental factors (moisture, temperature, redox potential, organic matter). The combination of two molecular biological techniques (FISH and DGGE-analysis of fragments of gene 16S rRNA total amplificate) enables an informative assessment of the differences in the structure of dominant and minor components of hydrolytic complexes formed in different tiers of terrestrial ecosystems. The functional activity of hydrolytic microbial complexes of terrestrial ecosystems is determined by the activity of dominant and minor components, which also have a high gross enzymatic activity. Degradation of biopolymers in the phylloplane is mainly due to the representatives of the Proteobacteria phylogenetic group (classes alpha and beta). In mineral soil horizons, the role of hydrolytic representatives of Firmicutes and Actinobacteria increases. Among the key environmental parameters that determine the functional activity of the hydrolytic (chitinolytic) complex of soil layer (moisture, nutrient supply, successional time), the most significant one is moisture. Moisture levels providing maximum activity of a hydrolytic microbial complex depend on the soil type. Development of a hydrolytic microbial complex occurs in a very wide moisture range - from values close to field capacity to those close to the wilting moisture point. The functional role of mycelial actinobacteria in the metabolism of chitin consists, on the one hand, in active decomposition of this biopolymer, and on the other hand, in the regulation of microbial hydrolytic complex activity through the production of biologically active regulatory metabolites, which occurs in a wide range of environmental parameters (moisture, temperature, organic matter, successional time). Experimental design is applicable to identify in situ optimal values of environmental factors that considerably affect the functional parameters of hydrolytic microbial complexes.
Environmental Monitoring of Microbe Metabolic Transformation
NASA Technical Reports Server (NTRS)
Bebout, Brad (Inventor); Fleming, Erich (Inventor); Piccini, Matthew (Inventor); Beasley, Christopher (Inventor); Bebout, Leslie (Inventor)
2013-01-01
Mobile system and method for monitoring environmental parameters involved in growth or metabolic transformation of algae in a liquid. Each of one or more mobile apparati, suspended or partly or wholly submerged in the liquid, includes at least first and second environmental sensors that sense and transmit distinct first and second environmental, growth or transformation parameter values, such as liquid temperature, temperature of gas adjacent to and above the exposed surface, liquid pH, liquid salinity, liquid turbidity, O.sub.2 dissolved in the liquid, CO.sub.2 contained in the liquid, oxidization and reduction potential of the liquid, nutrient concentrations in the liquid, nitrate concentration in the liquid, ammonium concentration in the liquid, bicarbonate concentration in the liquid, phosphate concentration in the liquid, light intensity at the liquid surface, electrical conductivity of the liquid, and a parameter.alpha.(alga) associated with growth stage of the alga, using PAM fluorometry or other suitable parameter measurements.
Low-profile wireless passive resonators for sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Xun; An, Linan
A resonator for sensing a physical or an environmental parameter includes a support having a top surface that provides a ground plane, and a polymer-derived ceramic (PDC) element positioned on the top surface including a PDC layer, and a metal patch on the PDC layer. The metal patch is electrically isolated from all surrounding structure, and the resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessly sensing a physical or environmental parameter includes at least one resonator and a wireless RF reader located remotely from the resonator for transmittingmore » a wide-band RF interrogation signal that excites the resonator. The wireless RF reader detects a sensing signal retransmitted by the resonator and includes a processor for determining the physical or environmental parameter at the location of the resonator from the sensing signal.« less
NASA Astrophysics Data System (ADS)
Keating, Elizabeth H.; Doherty, John; Vrugt, Jasper A.; Kang, Qinjun
2010-10-01
Highly parameterized and CPU-intensive groundwater models are increasingly being used to understand and predict flow and transport through aquifers. Despite their frequent use, these models pose significant challenges for parameter estimation and predictive uncertainty analysis algorithms, particularly global methods which usually require very large numbers of forward runs. Here we present a general methodology for parameter estimation and uncertainty analysis that can be utilized in these situations. Our proposed method includes extraction of a surrogate model that mimics key characteristics of a full process model, followed by testing and implementation of a pragmatic uncertainty analysis technique, called null-space Monte Carlo (NSMC), that merges the strengths of gradient-based search and parameter dimensionality reduction. As part of the surrogate model analysis, the results of NSMC are compared with a formal Bayesian approach using the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm. Such a comparison has never been accomplished before, especially in the context of high parameter dimensionality. Despite the highly nonlinear nature of the inverse problem, the existence of multiple local minima, and the relatively large parameter dimensionality, both methods performed well and results compare favorably with each other. Experiences gained from the surrogate model analysis are then transferred to calibrate the full highly parameterized and CPU intensive groundwater model and to explore predictive uncertainty of predictions made by that model. The methodology presented here is generally applicable to any highly parameterized and CPU-intensive environmental model, where efficient methods such as NSMC provide the only practical means for conducting predictive uncertainty analysis.
Sanabria, Eduardo Alfredo; Quiroga, Lorena Beatriz; Martino, Adolfo Ludovico
2012-03-01
We studied the variation of thermal parameters of Odontophrynus occidentalis between season (wet and dry) in the Monte desert (Argentina). We measured body temperatures, microhabitat temperatures, and operative temperatures; while in the laboratory, we measured the selected body temperatures. Our results show a change in the thermal parameters of O. occidentalis that is related to environmental constraints of their thermal niche. Environmental thermal constraints are present in both seasons (dry and wet), showing variations in thermal parameters studied. Apparently imposed environmental restrictions, the toads in nature always show body temperatures below the set point. Acclimatization is an advantage for toads because it allows them to bring more frequent body temperatures to the set point. The selected body temperature has seasonal intraindividual variability. These variations can be due to thermo-sensitivity of toads and life histories of individuals that limits their allocation and acquisition of resources. Possibly the range of variation found in selected body temperature is a consequence of the thermal environmental variation along the year. These variations of thermal parameters are commonly found in deserts and thermal bodies of nocturnal ectotherms. The plasticity of selected body temperature allows O. occidentales to have longer periods of activity for foraging and reproduction, while maintaining reasonable high performance at different temperatures. The plasticity in seasonal variation of the thermal parameters has been poorly studied, and is greatly advantageous to desert species during changes in both seasonal and daily temperature, as these environments are known for their high environmental variability. © 2012 WILEY PERIODICALS, INC.
NASA Astrophysics Data System (ADS)
Sampath, D. M. R.; Boski, T.
2018-05-01
Large-scale geomorphological evolution of an estuarine system was simulated by means of a hybrid estuarine sedimentation model (HESM) applied to the Guadiana Estuary, in Southwest Iberia. The model simulates the decadal-scale morphodynamics of the system under environmental forcing, using a set of analytical solutions to simplified equations of tidal wave propagation in shallow waters, constrained by empirical knowledge of estuarine sedimentary dynamics and topography. The key controlling parameters of the model are bed friction (f), current velocity power of the erosion rate function (N), and sea-level rise rate. An assessment of sensitivity of the simulated sediment surface elevation (SSE) change to these controlling parameters was performed. The model predicted the spatial differentiation of accretion and erosion, the latter especially marked in the mudflats within mean sea level and low tide level and accretion was mainly in a subtidal channel. The average SSE change mutually depended on both the friction coefficient and power of the current velocity. Analysis of the average annual SSE change suggests that the state of intertidal and subtidal compartments of the estuarine system vary differently according to the dominant processes (erosion and accretion). As the Guadiana estuarine system shows dominant erosional behaviour in the context of sea-level rise and sediment supply reduction after the closure of the Alqueva Dam, the most plausible sets of parameter values for the Guadiana Estuary are N = 1.8 and f = 0.8f0, or N = 2 and f = f0, where f0 is the empirically estimated value. For these sets of parameter values, the relative errors in SSE change did not exceed ±20% in 73% of simulation cells in the studied area. Such a limit of accuracy can be acceptable for an idealized modelling of coastal evolution in response to uncertain sea-level rise scenarios in the context of reduced sediment supply due to flow regulation. Therefore, the idealized but cost-effective HESM model will be suitable for estimating the morphological impacts of sea-level rise on estuarine systems on a decadal timescale.
40 CFR 8.9 - Measures to assess and verify environmental impacts.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ENVIRONMENTAL IMPACT ASSESSMENT OF NONGOVERNMENTAL ACTIVITIES IN ANTARCTICA § 8.9 Measures to assess and verify environmental impacts. (a) The operator shall conduct appropriate monitoring of key environmental indicators as proposed in the CEE to assess and verify the potential environmental impacts of activities which are the...
Teubner, Diana; Paulus, Martin; Veith, Michael; Klein, Roland
2015-02-01
Piscifaunal health depends upon the state and quality of the aquatic environment. Variations in physical condition of fish may therefore be attributed to changes in environmental quality. Based on time series of up to 20 years of biometric data of bream from multiple sampling sites of the German environmental specimen bank (ESB), this study assessed whether changes in biometric parameters are able to indicate long-term alterations in fish health and environmental quality. Evaluated biometric parameters of fish health comprised length and weight of individuals of a defined age class, the condition factor, lipid content and hepatosomatic index (HSI). Although there are negative trends of the HSI, the overall development of health parameters can be interpreted as positive. This seems to suggest that health parameters conclusively mirror the long-term improvement of water quality in the selected rivers. However, the applicability of the condition factor as well as lipid content as indicators for fish health remained subject to restrictions. Altogether, the results from the ESB confirmed the high value of biometric parameters for monitoring of long-term changes in state and quality of aquatic ecosystems.
Environmental Quality and the U.S. Power Sector: Air Quality, Land Use and Environmental Justice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massetti, Emanuele; Brown, Marilyn Ann; Lapsa, Melissa Voss
This baseline report summarizes key environmental quality issues associated with electricity generation, transmission, distribution, and end use in the United States. Its scope includes non-greenhouse gas air pollution (i.e., sulfur dioxide, nitrogen oxides, particulate matter and hazardous air pollutants), land use, water pollution, ecological impacts, human health, and environmental justice. The discussion characterizes both current impacts and recent trends, as well as assessments of key drivers of change. For example, the air emissions section includes a quantitative decomposition analysis of the drivers of change in sulfur dioxide emissions reductions from coal-fired power plants. The report is divided into four topicalmore » sections: air emissions, land use and ecology, water quality, and environmental justice.« less
NASA Technical Reports Server (NTRS)
Barnes, G. D.
1982-01-01
The feasibility of a polygeneration plant at Kennedy Space Center was studied. Liquid hydrogen and gaseous nitrogen are the two principal products in consideration. Environmental parameters (air quality, water quality, biological diversity and hazardous waste disposal) necessary for the feasibility study were investigated. A National Environmental Policy Act (NEPA) project flow sheet was to be formulated for the environmental impact statement. Water quality criteria for Florida waters were to be established.
NASA Astrophysics Data System (ADS)
Widhiarso, Wahyu; Rosyidi, Cucuk Nur
2018-02-01
Minimizing production cost in a manufacturing company will increase the profit of the company. The cutting parameters will affect total processing time which then will affect the production cost of machining process. Besides affecting the production cost and processing time, the cutting parameters will also affect the environment. An optimization model is needed to determine the optimum cutting parameters. In this paper, we develop an optimization model to minimize the production cost and the environmental impact in CNC turning process. The model is used a multi objective optimization. Cutting speed and feed rate are served as the decision variables. Constraints considered are cutting speed, feed rate, cutting force, output power, and surface roughness. The environmental impact is converted from the environmental burden by using eco-indicator 99. Numerical example is given to show the implementation of the model and solved using OptQuest of Oracle Crystal Ball software. The results of optimization indicate that the model can be used to optimize the cutting parameters to minimize the production cost and the environmental impact.
Zhang, G; Spickett, J; Rumchev, K; Lee, A H; Stick, S
2006-02-01
To investigate indoor environmental quality in classrooms, assessments were undertaken in a 'low allergen' school and three standard primary schools in Western Australia. Dust allergens, air pollutants and physical parameters were monitored in the four schools at four times (summer school term, autumn holiday, winter school term and winter holiday) in 2002. The levels of particulate matter (PM(10)) and volatile organic compounds were similar between the four primary schools. Although slightly decreased levels of dust-mite and cat allergens were observed in the 'low allergen' school, the reductions were not statistically significant and the allergen levels in all schools were much lower than the recommended sensitizing thresholds. However, significantly lower levels of relative humidity and formaldehyde level during summer-term were recorded in the 'low allergen' school. In conclusion, the evidence here suggests that the 'low allergen' school did not significantly improve the indoor environmental quality in classrooms. Practical Implications School is an important environment for children in terms of exposure to pollutants and allergens. By assessing the levels of key pollutants and allergens in a low allergen school and three standard primary schools in Western Australia, this study provides useful information for implementation of healthy building design that can improve the indoor environment in schools.
Leempoel, Kevin; Parisod, Christian; Geiser, Céline; Joost, Stéphane
2018-02-01
Plant species are known to adapt locally to their environment, particularly in mountainous areas where conditions can vary drastically over short distances. The climate of such landscapes being largely influenced by topography, using fine-scale models to evaluate environmental heterogeneity may help detecting adaptation to micro-habitats. Here, we applied a multiscale landscape genomic approach to detect evidence of local adaptation in the alpine plant Biscutella laevigata . The two gene pools identified, experiencing limited gene flow along a 1-km ridge, were different in regard to several habitat features derived from a very high resolution (VHR) digital elevation model (DEM). A correlative approach detected signatures of selection along environmental gradients such as altitude, wind exposure, and solar radiation, indicating adaptive pressures likely driven by fine-scale topography. Using a large panel of DEM-derived variables as ecologically relevant proxies, our results highlighted the critical role of spatial resolution. These high-resolution multiscale variables indeed indicate that the robustness of associations between genetic loci and environmental features depends on spatial parameters that are poorly documented. We argue that the scale issue is critical in landscape genomics and that multiscale ecological variables are key to improve our understanding of local adaptation in highly heterogeneous landscapes.
NASA Astrophysics Data System (ADS)
Teh, Su Yean; Koh, Hock Lye; Lee, Elizabeth; Woo, Wing Thye; Tan, Wai Kiat
2017-11-01
The Medini Iskandar Development is a 2300-acre multi-purpose urban development comprising residential, commercial, educational, business and recreational areas. The developer applied to the Department of Environment (DOE) Johor in July 2008 for approval of the environmental impact assessment (EIA) report for the overall Medini development. A conditional approval of the EIA report was granted by the DOE subject to some conditions, one of which stipulated that sewage effluent from the centralized sewage treatment plant (STP) is not permitted to be discharged into Sungai Pendas. A suitable location for the discharge of sewage into the Selat Johor is to be identified, based on a hydraulic and water quality modelling investigation. This modelling investigation aims to assess the impact of the discharge of treated sewage effluent on the marine water quality and on aquatic life in the Selat Johor. The supplementary EIA report was submitted to the DOE. Approval was granted in December 2011 for the construction of the marine sewage outfall and its operations. This paper presents the sampling and simulation results for key hydraulic and environmental parameters suitable for sustaining acceptable faecal coliform criteria in Selat Johor. Simulation models used include WASP7 developed by USEPA and AQUASEA developed by Vatnaskil Consulting Engineers.
Implantable Sensors for Regenerative Medicine
Klosterhoff, Brett S.; Tsang, Melissa; She, Didi; Ong, Keat Ghee; Allen, Mark G.; Willett, Nick J.; Guldberg, Robert E.
2017-01-01
The translation of many tissue engineering/regenerative medicine (TE/RM) therapies that demonstrate promise in vitro are delayed or abandoned due to reduced and inconsistent efficacy when implemented in more complex and clinically relevant preclinical in vivo models. Determining mechanistic reasons for impaired treatment efficacy is challenging after a regenerative therapy is implanted due to technical limitations in longitudinally measuring the progression of key environmental cues in vivo. The ability to acquire real-time measurements of environmental parameters of interest including strain, pressure, pH, temperature, oxygen tension, and specific biomarkers within the regenerative niche in situ would significantly enhance the information available to tissue engineers to monitor and evaluate mechanisms of functional healing or lack thereof. Continued advancements in material and fabrication technologies utilized by microelectromechanical systems (MEMSs) and the unique physical characteristics of passive magnetoelastic sensor platforms have created an opportunity to implant small, flexible, low-power sensors into preclinical in vivo models, and quantitatively measure environmental cues throughout healing. In this perspective article, we discuss the need for longitudinal measurements in TE/RM research, technical progress in MEMS and magnetoelastic approaches to implantable sensors, the potential application of implantable sensors to benefit preclinical TE/RM research, and the future directions of collaborative efforts at the intersection of these two important fields. PMID:27987300
Improving ASR Recovery Efficiency by Partially-penetrating Wells in Brackish Aquifers
NASA Astrophysics Data System (ADS)
Chen, Y.
2015-12-01
Aquifer storage and recovery (ASR) is a proven cost-effective powerful technology for environmental protection and water resources optimization. The recovery efficiency (RE) is regarded as the key criteria for evaluating the ASR performance. In this study, a particular ASR scheme with the fully-penetrating well (FPW) for injection and the partially-penetrating well (PPW) for recovery is proposed to improve the RE for ASR schemes implemented in brackish aquifers. This design appreciates the tilting shape of the interface with underlying heavier salt water. For the FPW, recovery has to be terminated as soon as the interface toe reaches the well, while the toe can be pulled up to the PPW for recovery termination, resulting in later breakthrough of salt water into the pumping well, more recoverable water extracted from the shallow layers, and a higher RE. Key hydrogeological and operational parameters affecting the RE were investigated by numerical simulations. Results demonstrated the effectiveness and efficiency of the new ASR scheme and provided practical guidance for designing such a scheme in various hydrogeological conditions.
Bi-directional exchange of ammonia in a pine forest ecosystem - a model sensitivity analysis
NASA Astrophysics Data System (ADS)
Moravek, Alexander; Hrdina, Amy; Murphy, Jennifer
2016-04-01
Ammonia (NH3) is a key component in the global nitrogen cycle and of great importance for atmospheric chemistry, neutralizing atmospheric acids and leading to the formation of aerosol particles. For understanding the role of NH3 in both natural and anthropogenically influenced environments, the knowledge of processes regulating its exchange between ecosystems and the atmosphere is essential. A two-layer canopy compensation point model is used to evaluate the NH3 exchange in a pine forest in the Colorado Rocky Mountains. The net flux comprises the NH3 exchange of leaf stomata, its deposition to leaf cuticles and exchange with the forest ground. As key parameters the model uses in-canopy NH3 mixing ratios as well as leaf and soil emission potentials measured at the site in summer 2015. A sensitivity analysis is performed to evaluate the major exchange pathways as well as the model's constraints. In addition, the NH3 exchange is examined for an extended range of environmental conditions, such as droughts or varying concentrations of atmospheric pollutants, in order to investigate their influence on the overall net exchange.
NASA Technical Reports Server (NTRS)
Parker, C. D.; Tommerdahl, J. B.
1972-01-01
The instrumentation requirements for a regenerative life support systems were studied to provide the earliest possible indication of a malfunction that will permit degradation of the environment. Four categories of parameters were investigated: environmental parameters that directly and immediately influence the health and safety of the cabin crew; subsystems' inputs to the cabin that directly maintain the cabin environmental parameters; indications for maintenance or repair; and parameters useful as diagnostic indicators. A data averager concept is introduced which provides a moving average of parameter values that is not influenced by spurious changes, and is convenient for detecting parameter rates of change. A system is included to provide alarms at preselected parameter levels.
Huang, Shaodan; Xiong, Jianyin; Cai, Chaorui; Xu, Wei; Zhang, Yinping
2016-01-01
Humidity is one of the main environmental factors affecting the emission rate and key parameters of formaldehyde and volatile organic compounds (VOCs) from building materials. Meanwhile, the initial emittable concentration (Cm,0) is proved to be the most sensitive key parameter to the emission behaviours. However, there is no report on the relationship between humidity and Cm,0. In this paper, Cm,0 of formaldehyde and hexaldehyde from a type of medium density fiberboard in absolute humidity (AH) range of 4.6–19.6 g/m3 at 25 °C were tested by virtue of a C-history method. Experimental results indicate that Cm,0 is dramatically dependent on AH, increased by 10 and 2 times for formaldehyde and hexaldehyde when AH rising from 4.6 g/m3 to 19.6 g/m3. A linear relationship between the logarithm of Cm,0 and AH is obtained based on the measured results. In addition, a correlation characterizing the association of emission rate and AH is derived. The effectiveness of the correlation is verified with our experimental results as well as data from literature. With the correlations, the Cm,0 or emission rate different from the test AH conditions can be conveniently obtained. This study should be useful for predicting the emission characteristics of humidity changing scenarios and for source control. PMID:27025353
Optical fiber extrinsic Fabry-Perot interferometric (EFPI)-based biosensors
NASA Astrophysics Data System (ADS)
Elster, Jennifer L.; Jones, Mark E.; Evans, Mishell K.; Lenahan, Shannon M.; Boyce, Christopher A.; Velander, William H.; VanTassell, Roger
2000-05-01
A novel system incorporating optical fiber extrinsic Fabry- Perot interferometric (EFPI)-based sensors for rapid detection of biological targets is presented. With the appropriate configuration, the EFPI senor is able to measure key environmental parameters by monitoring the interferometric fringes resulting from an optical path differences of reflected signals. The optical fiber EFPI sensor has been demonstrated for strain, pressure, and temperature measurements and can be readily modified for refractive index measurements by allowing solutions to flow into an open cavity. The sensor allows for highly sensitive, real-time, refractive index measurements and by applying affinity coatings containing ligands within this cavity, specific binding of target molecules can be accomplished. As target molecules bind to the coating, there is an increased density within the film, causing a measurable refractive index change that correlates to the concentration of detected target molecules. This sensor platform offers enhanced sensing capabilities for clinical diagnostics, pharmaceutical screening, environmental monitoring, food pathogen detection, biological warfare agent detection, and industrial bioprocessing. Promising applications also exist for process monitoring within the food/beverage, petroleum, and chemical industry.
Matern, Katrin; Weigand, Harald; Singh, Abhas; Mansfeldt, Tim
2017-02-01
Chromite ore processing residue (COPR) is generated by the roasting of chromite ores for the extraction of chromium. Leaching of carcinogenic hexavalent chromium (Cr(VI)) from COPR dumpsites and contamination of groundwater is a key environmental risk. The objective of the study was to evaluate Cr(VI) contamination in groundwater in the vicinity of three COPR disposal sites in Uttar Pradesh, India, in the pre-monsoon and monsoon seasons. Groundwater samples (n = 57 pre-monsoon, n = 70 monsoon) were taken in 2014 and analyzed for Cr(VI) and relevant hydrochemical parameters. The site-specific ranges of Cr(VI) concentrations in groundwater were <0.005 to 34.8 mg L -1 (Rania), <0.005 to 115 mg L -1 (Chhiwali), and <0.005 to 2.0 mg L -1 (Godhrauli). Maximum levels of Cr(VI) were found close to the COPR dumpsites and significantly exceeded safe drinking water limits (0.05 mg L -1 ). No significant dependence of Cr(VI) concentration on monsoons was observed.
A network-based approach to disturbance transmission through microbial interactions
Hunt, Dana E.; Ward, Christopher S.
2015-01-01
Microbes numerically dominate aquatic ecosystems and play key roles in the biogeochemistry and the health of these environments. Due to their short generations times and high diversity, microbial communities are among the first responders to environmental changes, including natural and anthropogenic disturbances such as storms, pollutant releases, and upwelling. These disturbances affect members of the microbial communities both directly and indirectly through interactions with impacted community members. Thus, interactions can influence disturbance propagation through the microbial community by either expanding the range of organisms affected or buffering the influence of disturbance. For example, interactions may expand the number of disturbance-affected taxa by favoring a competitor or buffer the impacts of disturbance when a potentially disturbance-responsive clade’s growth is limited by an essential microbial partner. Here, we discuss the potential to use inferred ecological association networks to examine how disturbances propagate through microbial communities focusing on a case study of a coastal community’s response to a storm. This approach will offer greater insight into how disturbances can produce community-wide impacts on aquatic environments following transient changes in environmental parameters. PMID:26579091
On the precision of aero-thermal simulations for TMT
NASA Astrophysics Data System (ADS)
Vogiatzis, Konstantinos; Thompson, Hugh
2016-08-01
Environmental effects on the Image Quality (IQ) of the Thirty Meter Telescope (TMT) are estimated by aero-thermal numerical simulations. These simulations utilize Computational Fluid Dynamics (CFD) to estimate, among others, thermal (dome and mirror) seeing as well as wind jitter and blur. As the design matures, guidance obtained from these numerical experiments can influence significant cost-performance trade-offs and even component survivability. The stochastic nature of environmental conditions results in the generation of a large computational solution matrix in order to statistically predict Observatory Performance. Moreover, the relative contribution of selected key subcomponents to IQ increases the parameter space and thus computational cost, while dictating a reduced prediction error bar. The current study presents the strategy followed to minimize prediction time and computational resources, the subsequent physical and numerical limitations and finally the approach to mitigate the issues experienced. In particular, the paper describes a mesh-independence study, the effect of interpolation of CFD results on the TMT IQ metric, and an analysis of the sensitivity of IQ to certain important heat sources and geometric features.
Development of weighting value for ecodrainage implementation assessment criteria
NASA Astrophysics Data System (ADS)
Andajani, S.; Hidayat, D. P. A.; Yuwono, B. E.
2018-01-01
This research aim to generate weighting value for each factor and find out the most influential factor for identify implementation of ecodrain concept using loading factor and Cronbach Alpha. The drainage problem especially in urban areas are getting more complex and need to be handled as soon as possible. Flood and drought problem can’t be solved by the conventional paradigm of drainage (to drain runoff flow as faster as possible to the nearest drainage area). The new paradigm of drainage that based on environmental approach called “ecodrain” can solve both of flood and drought problems. For getting the optimal result, ecodrain should be applied in smallest scale (domestic scale), until the biggest scale (city areas). It is necessary to identify drainage condition based on environmental approach. This research implement ecodrain concept by a guidelines that consist of parameters and assessment criteria. It was generating the 2 variables, 7 indicators and 63 key factors from previous research and related regulations. the conclusion of the research is the most influential indicator on technical management variable is storage system, while on non-technical management variable is government role.
NASA Astrophysics Data System (ADS)
Samsonov, Andrey; Gordeev, Evgeny; Sergeev, Victor
2017-04-01
As it was recently suggested (e.g., Gordeev et al., 2015), the global magnetospheric configuration can be characterized by a set of key parameters, such as the magnetopause distance at the subsolar point and on the terminator plane, the magnetic field in the magnetotail lobe and the plasma sheet thermal pressure, the cross polar cap electric potential drop and the total field-aligned current. For given solar wind conditions, the values of these parameters can be obtained from both empirical models and global MHD simulations. We validate the recently developed global MHD code SPSU-16 using the key magnetospheric parameters mentioned above. The code SPSU-16 can calculate both the isotropic and anisotropic MHD equations. In the anisotropic version, we use the modified double-adiabatic equations in which the T⊥/T∥ (the ratio of perpendicular to parallel thermal pressures) has been bounded from above by the mirror and ion-cyclotron thresholds and from below by the firehose threshold. The results of validation for the SPSU-16 code well agree with the previously published results of other global codes. Some key parameters coincide in the isotropic and anisotropic MHD simulations, but some are different.
What Do People Know about Key Environmental Issues? A Review of Environmental Knowledge Surveys
ERIC Educational Resources Information Center
Robelia, Beth; Murphy, Tony
2012-01-01
This paper presents results from 15 little publicized state and national environmental surveys in the US that used similar questions. Our analysis reveals trends in adult understanding of environmental issues. These trends indicate that many may have difficulty making informed decisions about environmental policy as citizens, voters, and…
1996-04-22
to the development of new ARPA program efforts in Environmental Science , and to assess the potential for integration of environmental concerns in the...government in the area of environmental science ; (b) investigation of key methods being attempted by industrial concerns to incorporate environmental
ZHONG, BO; CARLTON, ELIZABETH J.; SPEAR, ROBERT C.
2009-01-01
The environmental determinants of vector- and host-borne diseases include time-varying components that modify key transmission parameters, resulting in transient couplings between environmental phenomena and transmission processes. While some time-varying drivers are periodic in nature, some are aperiodic, such as those that involve episodic events or complex patterns of human behavior. Understanding these couplings can allow for prediction of periods of peak infection risk, and ultimately presents opportunities for optimizing intervention selection and timing. Schistosome macroparasites of humans exhibit multiple free-living stages as well as intermediate hosts, and are thus model organisms for illustrating the influence of environmental forcing on transmission. Time-varying environmental factors, termed gating functions, for schistosomes include larval response to temperature and rainfall, seasonal water contact patterns and snail population dynamics driven by weather variables. The biological bases for these modifiers are reviewed, and their values are estimated and incorporated into a transmission model that simulates a multi-year period in two schistosomiasis endemic regions. Modeling results combined with a scale dependent correlation analysis indicate the end effect of these site-specific gating functions is to strongly govern worm burden in these communities, in a manner particularly sensitive to the hydrological differences between sites. Two classes of gating functions were identified, those that act in concert to modify human infection (and determine worm acquisition late in the season), and those that act on snail infection (and determine early season worm acquisition). The importance of these factors for control programs and surveillance is discussed. PMID:20454601
Beyond allostatic load: rethinking the role of stress in regulating human development.
Ellis, Bruce J; Del Giudice, Marco
2014-02-01
How do exposures to stress affect biobehavioral development and, through it, psychiatric and biomedical disorder? In the health sciences, the allostatic load model provides a widely accepted answer to this question: stress responses, while essential for survival, have negative long-term effects that promote illness. Thus, the benefits of mounting repeated biological responses to threat are traded off against costs to mental and physical health. The adaptive calibration model, an evolutionary-developmental theory of stress-health relations, extends this logic by conceptualizing these trade-offs as decision nodes in allocation of resources. Each decision node influences the next in a chain of resource allocations that become instantiated in the regulatory parameters of stress response systems. Over development, these parameters filter and embed information about key dimensions of environmental stress and support, mediating the organism's openness to environmental inputs, and function to regulate life history strategies to match those dimensions. Drawing on the adaptive calibration model, we propose that consideration of biological fitness trade-offs, as delineated by life history theory, is needed to more fully explain the complex relations between developmental exposures to stress, stress responsivity, behavioral strategies, and health. We conclude that the adaptive calibration model and allostatic load model are only partially complementary and, in some cases, support different approaches to intervention. In the long run, the field may be better served by a model informed by life history theory that addresses the adaptive role of stress response systems in regulating alternative developmental pathways.
Environmental effects on underwater optical transmission
NASA Astrophysics Data System (ADS)
Chu, Peter C.; Breshears, Brian F.; Cullen, Alexander J.; Hammerer, Ross F.; Martinez, Ramon P.; Phung, Thai Q.; Margolina, Tetyana; Fan, Chenwu
2017-05-01
Optical communication/detection systems have potential to get around some limitations of current acoustic communications and detection systems especially increased fleet and port security in noisy littoral waters. Identification of environmental effects on underwater optical transmission is the key to the success of using optics for underwater communication and detection. This paper is to answer the question "What are the transfer and correlation functions that relate measurements of hydrographic to optical parameters?" Hydrographic and optical data have been collected from the Naval Oceanographic Office survey ships with the High Intake Defined Excitation (HIDEX) photometer and sea gliders with optical back scattering sensor in various Navy interested areas such as the Arabian Gulf, Gulf of Oman, east Asian marginal seas, and Adriatic Sea. The data include temperature, salinity, bioluminescence, chlorophyll-a fluorescence, transmissivity at two different wavelengths (TRed at 670 nm, TBlue at 490 nm), and back scattering coefficient (bRed at 700 nm, bBlue at 470 nm). Transfer and correlation functions between the hydrographic and optical parameters are obtained. Bioluminescence and fluorescence maxima, transmissivity minimum with their corresponding depths, red and blue laser beam peak attenuation coefficients are identified from the optical profiles. Evident correlations are found between the ocean mixed layer depth and the blue and red laser beam peak attenuation coefficients, bioluminescence and fluorescence maxima in the Adriatic Sea, Arabian Gulf, Gulf of Oman, and Philippine Sea. Based on the observational data, an effective algorithm is recommended for solving the radiative transfer equation (RTE) for predicting underwater laser radiance.
research on child care environmental health issues, identify key state and regional healthy child care organizations for partnerships, and see how other states are addressing child care environmental health issues.
Metagenomic covariation along densely sampled environmental gradients in the Red Sea
Thompson, Luke R; Williams, Gareth J; Haroon, Mohamed F; Shibl, Ahmed; Larsen, Peter; Shorenstein, Joshua; Knight, Rob; Stingl, Ulrich
2017-01-01
Oceanic microbial diversity covaries with physicochemical parameters. Temperature, for example, explains approximately half of global variation in surface taxonomic abundance. It is unknown, however, whether covariation patterns hold over narrower parameter gradients and spatial scales, and extending to mesopelagic depths. We collected and sequenced 45 epipelagic and mesopelagic microbial metagenomes on a meridional transect through the eastern Red Sea. We asked which environmental parameters explain the most variation in relative abundances of taxonomic groups, gene ortholog groups, and pathways—at a spatial scale of <2000 km, along narrow but well-defined latitudinal and depth-dependent gradients. We also asked how microbes are adapted to gradients and extremes in irradiance, temperature, salinity, and nutrients, examining the responses of individual gene ortholog groups to these parameters. Functional and taxonomic metrics were equally well explained (75–79%) by environmental parameters. However, only functional and not taxonomic covariation patterns were conserved when comparing with an intruding water mass with different physicochemical properties. Temperature explained the most variation in each metric, followed by nitrate, chlorophyll, phosphate, and salinity. That nitrate explained more variation than phosphate suggested nitrogen limitation, consistent with low surface N:P ratios. Covariation of gene ortholog groups with environmental parameters revealed patterns of functional adaptation to the challenging Red Sea environment: high irradiance, temperature, salinity, and low nutrients. Nutrient-acquisition gene ortholog groups were anti-correlated with concentrations of their respective nutrient species, recapturing trends previously observed across much larger distances and environmental gradients. This dataset of metagenomic covariation along densely sampled environmental gradients includes online data exploration supplements, serving as a community resource for marine microbial ecology. PMID:27420030
2017-05-01
ER D C/ EL T R- 17 -7 Environmental Security Technology Certification Program (ESTCP) Evaluation of Uncertainty in Constituent Input...Environmental Security Technology Certification Program (ESTCP) ERDC/EL TR-17-7 May 2017 Evaluation of Uncertainty in Constituent Input Parameters...Environmental Evaluation and Characterization Sys- tem (TREECS™) was applied to a groundwater site and a surface water site to evaluate the sensitivity
An Image Encryption Algorithm Utilizing Julia Sets and Hilbert Curves
Sun, Yuanyuan; Chen, Lina; Xu, Rudan; Kong, Ruiqing
2014-01-01
Image encryption is an important and effective technique to protect image security. In this paper, a novel image encryption algorithm combining Julia sets and Hilbert curves is proposed. The algorithm utilizes Julia sets’ parameters to generate a random sequence as the initial keys and gets the final encryption keys by scrambling the initial keys through the Hilbert curve. The final cipher image is obtained by modulo arithmetic and diffuse operation. In this method, it needs only a few parameters for the key generation, which greatly reduces the storage space. Moreover, because of the Julia sets’ properties, such as infiniteness and chaotic characteristics, the keys have high sensitivity even to a tiny perturbation. The experimental results indicate that the algorithm has large key space, good statistical property, high sensitivity for the keys, and effective resistance to the chosen-plaintext attack. PMID:24404181
Lang, Jun
2012-01-30
In this paper, we propose a novel secure image sharing scheme based on Shamir's three-pass protocol and the multiple-parameter fractional Fourier transform (MPFRFT), which can safely exchange information with no advance distribution of either secret keys or public keys between users. The image is encrypted directly by the MPFRFT spectrum without the use of phase keys, and information can be shared by transmitting the encrypted image (or message) three times between users. Numerical simulation results are given to verify the performance of the proposed algorithm.
Adolescents’ Food Choice and the Place of Plant-Based Foods
Ensaff, Hannah; Coan, Susan; Sahota, Pinki; Braybrook, Debbie; Akter, Humaira; McLeod, Helen
2015-01-01
A diet dominated by plant foods, with limited amounts of refined processed foods and animal products conveys substantial health benefits. This study sought to explore adolescents’ attitudes and perceptions towards plant-based foods. Semi-structured focus group interviews were conducted with adolescents (age 14–15 years) (n = 29) attending an inner city school in Yorkshire, UK. Using a grounded theory methodology, data analysis provided four main categories and related concepts revolving around adolescents’ perspectives on plant-based foods: food choice parameters; perceived drivers and benefits of plant-based foods; environmental food cues; barriers to plant-based food choice. In the emergent grounded theory, a clear disconnect between plant-based foods and the parameters that adolescents use to make food choices, is highlighted. Further, key barriers to adolescents adopting a plant-based diet are differentiated and considered with respect to practice and policy. The analysis offers a framework to remodel and re-present plant-based foods. In this way, it is proposed that a closer connection is possible, with consequent shifts in adolescents’ dietary behaviour towards a more plant-based diet and associated health benefits. PMID:26066012
NASA Astrophysics Data System (ADS)
Bezminabadi, Sina Norouzi; Ramezanzadeh, Ahmad; Esmaeil Jalali, Seyed-Mohammad; Tokhmechi, Behzad; Roustaei, Abbas
2017-03-01
Rate of penetration (ROP) is one of the key indicators of drilling operation performance. The estimation of ROP in drilling engineering is very important in terms of more accurate assessment of drilling time which affects operation costs. Hence, estimation of a ROP model using operational and environmental parameters is crucial. For this purpose, firstly physical and mechanical properties of rock were derived from well logs. Correlation between the pair data were determined to find influential parameters on ROP. A new ROP model has been developed in one of the Azadegan oil field wells in southwest of Iran. The model has been simulated using Multiple Nonlinear Regression (MNR) and Artificial Neural Network (ANN). By adding the rock properties, the estimation of the models were precisely improved. The results of simulation using MNR and ANN methods showed correlation coefficients of 0.62 and 0.87, respectively. It was concluded that the performance of ANN model in ROP prediction is fairly better than MNR method.
Adolescents' Food Choice and the Place of Plant-Based Foods.
Ensaff, Hannah; Coan, Susan; Sahota, Pinki; Braybrook, Debbie; Akter, Humaira; McLeod, Helen
2015-06-09
A diet dominated by plant foods, with limited amounts of refined processed foods and animal products conveys substantial health benefits. This study sought to explore adolescents' attitudes and perceptions towards plant-based foods. Semi-structured focus group interviews were conducted with adolescents (age 14-15 years) (n = 29) attending an inner city school in Yorkshire, UK. Using a grounded theory methodology, data analysis provided four main categories and related concepts revolving around adolescents' perspectives on plant-based foods: food choice parameters; perceived drivers and benefits of plant-based foods; environmental food cues; barriers to plant-based food choice. In the emergent grounded theory, a clear disconnect between plant-based foods and the parameters that adolescents use to make food choices, is highlighted. Further, key barriers to adolescents adopting a plant-based diet are differentiated and considered with respect to practice and policy. The analysis offers a framework to remodel and re-present plant-based foods. In this way, it is proposed that a closer connection is possible, with consequent shifts in adolescents' dietary behaviour towards a more plant-based diet and associated health benefits.
Reuning, Gretchen A; Bauerle, William L; Mullen, Jack L; McKay, John K
2015-04-01
Transpiration is controlled by evaporative demand and stomatal conductance (gs ), and there can be substantial genetic variation in gs . A key parameter in empirical models of transpiration is minimum stomatal conductance (g0 ), a trait that can be measured and has a large effect on gs and transpiration. In Arabidopsis thaliana, g0 exhibits both environmental and genetic variation, and quantitative trait loci (QTL) have been mapped. We used this information to create a genetically parameterized empirical model to predict transpiration of genotypes. For the parental lines, this worked well. However, in a recombinant inbred population, the predictions proved less accurate. When based only upon their genotype at a single g0 QTL, genotypes were less distinct than our model predicted. Follow-up experiments indicated that both genotype by environment interaction and a polygenic inheritance complicate the application of genetic effects into physiological models. The use of ecophysiological or 'crop' models for predicting transpiration of novel genetic lines will benefit from incorporating further knowledge of the genetic control and degree of independence of core traits/parameters underlying gs variation. © 2014 John Wiley & Sons Ltd.
Retrieving relevant time-course experiments: a study on Arabidopsis microarrays.
Şener, Duygu Dede; Oğul, Hasan
2016-06-01
Understanding time-course regulation of genes in response to a stimulus is a major concern in current systems biology. The problem is usually approached by computational methods to model the gene behaviour or its networked interactions with the others by a set of latent parameters. The model parameters can be estimated through a meta-analysis of available data obtained from other relevant experiments. The key question here is how to find the relevant experiments which are potentially useful in analysing current data. In this study, the authors address this problem in the context of time-course gene expression experiments from an information retrieval perspective. To this end, they introduce a computational framework that takes a time-course experiment as a query and reports a list of relevant experiments retrieved from a given repository. These retrieved experiments can then be used to associate the environmental factors of query experiment with the findings previously reported. The model is tested using a set of time-course Arabidopsis microarrays. The experimental results show that relevant experiments can be successfully retrieved based on content similarity.
Environmental impact assessment of coal power plants in operation
NASA Astrophysics Data System (ADS)
Bartan, Ayfer; Kucukali, Serhat; Ar, Irfan
2017-11-01
Coal power plants constitute an important component of the energy mix in many countries. However, coal power plants can cause several environmental risks such as: climate change and biodiversity loss. In this study, a tool has been proposed to calculate the environmental impact of a coal-fired thermal power plant in operation by using multi-criteria scoring and fuzzy logic method. We take into account the following environmental parameters in our tool: CO, SO2, NOx, particulate matter, fly ash, bottom ash, the cooling water intake impact on aquatic biota, and the thermal pollution. In the proposed tool, the boundaries of the fuzzy logic membership functions were established taking into account the threshold values of the environmental parameters which were defined in the environmental legislation. Scoring of these environmental parameters were done with the statistical analysis of the environmental monitoring data of the power plant and by using the documented evidences that were obtained during the site visits. The proposed method estimates each environmental impact factor level separately and then aggregates them by calculating the Environmental Impact Score (EIS). The proposed method uses environmental monitoring data and documented evidence instead of using simulation models. The proposed method has been applied to the 4 coal-fired power plants that have been operation in Turkey. The Environmental Impact Score was obtained for each power plant and their environmental performances were compared. It is expected that those environmental impact assessments will contribute to the decision-making process for environmental investments to those plants. The main advantage of the proposed method is its flexibility and ease of use.
A Probabilistic Approach to Predict Thermal Fatigue Life for Ball Grid Array Solder Joints
NASA Astrophysics Data System (ADS)
Wei, Helin; Wang, Kuisheng
2011-11-01
Numerous studies of the reliability of solder joints have been performed. Most life prediction models are limited to a deterministic approach. However, manufacturing induces uncertainty in the geometry parameters of solder joints, and the environmental temperature varies widely due to end-user diversity, creating uncertainties in the reliability of solder joints. In this study, a methodology for accounting for variation in the lifetime prediction for lead-free solder joints of ball grid array packages (PBGA) is demonstrated. The key aspects of the solder joint parameters and the cyclic temperature range related to reliability are involved. Probabilistic solutions of the inelastic strain range and thermal fatigue life based on the Engelmaier model are developed to determine the probability of solder joint failure. The results indicate that the standard deviation increases significantly when more random variations are involved. Using the probabilistic method, the influence of each variable on the thermal fatigue life is quantified. This information can be used to optimize product design and process validation acceptance criteria. The probabilistic approach creates the opportunity to identify the root causes of failed samples from product fatigue tests and field returns. The method can be applied to better understand how variation affects parameters of interest in an electronic package design with area array interconnections.
Analysis of the variation of range parameters of thermal cameras
NASA Astrophysics Data System (ADS)
Bareła, Jarosław; Kastek, Mariusz; Firmanty, Krzysztof; Krupiński, Michał
2016-10-01
Measured range characteristics may vary considerably (up to several dozen percent) between different samples of the same camera type. The question is whether the manufacturing process somehow lacks repeatability or the commonly used measurement procedures themselves need improvement. The presented paper attempts to deal with the aforementioned question. The measurement method has been thoroughly analyzed as well as the measurement test bed. Camera components (such as detector and optics) have also been analyzed and their key parameters have been measured, including noise figures of the entire system. Laboratory measurements are the most precise method used to determine range parameters of a thermal camera. However, in order to obtain reliable results several important conditions have to be fulfilled. One must have the test equipment capable of measurement accuracy (uncertainty) significantly better than the magnitudes of measured quantities. The measurements must be performed in a controlled environment thus excluding the influence of varying environmental conditions. The personnel must be well-trained, experienced in testing the thermal imaging devices and familiar with the applied measurement procedures. The measurement data recorded for several dozen of cooled thermal cameras (from one of leading camera manufacturers) have been the basis of the presented analysis. The measurements were conducted in the accredited research laboratory of Institute of Optoelectronics (Military University of Technology).
Environmental confounding in gene-environment interaction studies.
Vanderweele, Tyler J; Ko, Yi-An; Mukherjee, Bhramar
2013-07-01
We show that, in the presence of uncontrolled environmental confounding, joint tests for the presence of a main genetic effect and gene-environment interaction will be biased if the genetic and environmental factors are correlated, even if there is no effect of either the genetic factor or the environmental factor on the disease. When environmental confounding is ignored, such tests will in fact reject the joint null of no genetic effect with a probability that tends to 1 as the sample size increases. This problem with the joint test vanishes under gene-environment independence, but it still persists if estimating the gene-environment interaction parameter itself is of interest. Uncontrolled environmental confounding will bias estimates of gene-environment interaction parameters even under gene-environment independence, but it will not do so if the unmeasured confounding variable itself does not interact with the genetic factor. Under gene-environment independence, if the interaction parameter without controlling for the environmental confounder is nonzero, then there is gene-environment interaction either between the genetic factor and the environmental factor of interest or between the genetic factor and the unmeasured environmental confounder. We evaluate several recently proposed joint tests in a simulation study and discuss the implications of these results for the conduct of gene-environment interaction studies.
NASA Astrophysics Data System (ADS)
Harikrishnan, K. P.
2018-02-01
We consider the simplest model in the family of discrete predator-prey system and introduce for the first time an environmental factor in the evolution of the system by periodically modulating the natural death rate of the predator. We show that with the introduction of environmental modulation, the bifurcation structure becomes much more complex with bubble structure and inverse period doubling bifurcation. The model also displays the peculiar phenomenon of coexistence of multiple limit cycles in the domain of attraction for a given parameter value that combine and finally gets transformed into a single strange attractor as the control parameter is increased. To identify the chaotic regime in the parameter plane of the model, we apply the recently proposed scheme based on the correlation dimension analysis. We show that the environmental modulation is more favourable for the stable coexistence of the predator and the prey as the regions of fixed point and limit cycle in the parameter plane increase at the expense of chaotic domain.
Age differences in genetic and environmental influences on weight and shape concerns.
Klump, Kelly L; Burt, S Alexandra; Spanos, Alexia; McGue, Matt; Iacono, William G; Wade, Tracey D
2010-12-01
Previous research has shown important developmental shifts ingenetic and environmental influences for disordered eating. However, little research has examined age differences for weight/shape concerns, two key components of eating disorders. The goal of this study was to investigate these age differences in preadolescent, adolescent, young adult, and mid-adult twins. Participants included 2,618 female twins (ages of 10-41 years) from three large twin registries. Shape and weight concerns were assessed with the Eating Disorders Examination Questionnaire. Genetic influences were modest in preadolescent twins, but significant from early-adolescence through middle adulthood. Shared environmental factors showed the opposite pattern, with the largest shared environmental contributions occurring in the youngest age group. Nonshared environmental effects remained relatively constant across age. Findings highlight the importance of age differences in genetic and environmental influences. Possible mechanisms include gene x environment interactions and biological changes associated with key developmental stages. © 2009 by Wiley Periodicals, Inc.
Equation-free mechanistic ecosystem forecasting using empirical dynamic modeling
Ye, Hao; Beamish, Richard J.; Glaser, Sarah M.; Grant, Sue C. H.; Hsieh, Chih-hao; Richards, Laura J.; Schnute, Jon T.; Sugihara, George
2015-01-01
It is well known that current equilibrium-based models fall short as predictive descriptions of natural ecosystems, and particularly of fisheries systems that exhibit nonlinear dynamics. For example, model parameters assumed to be fixed constants may actually vary in time, models may fit well to existing data but lack out-of-sample predictive skill, and key driving variables may be misidentified due to transient (mirage) correlations that are common in nonlinear systems. With these frailties, it is somewhat surprising that static equilibrium models continue to be widely used. Here, we examine empirical dynamic modeling (EDM) as an alternative to imposed model equations and that accommodates both nonequilibrium dynamics and nonlinearity. Using time series from nine stocks of sockeye salmon (Oncorhynchus nerka) from the Fraser River system in British Columbia, Canada, we perform, for the the first time to our knowledge, real-data comparison of contemporary fisheries models with equivalent EDM formulations that explicitly use spawning stock and environmental variables to forecast recruitment. We find that EDM models produce more accurate and precise forecasts, and unlike extensions of the classic Ricker spawner–recruit equation, they show significant improvements when environmental factors are included. Our analysis demonstrates the strategic utility of EDM for incorporating environmental influences into fisheries forecasts and, more generally, for providing insight into how environmental factors can operate in forecast models, thus paving the way for equation-free mechanistic forecasting to be applied in management contexts. PMID:25733874
Fristoe, Trevor S.; Burger, Joseph R.; Balk, Meghan A.; Khaliq, Imran; Hof, Christian; Brown, James H.
2015-01-01
The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander–Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals. PMID:26668359
Microbial Response to Microgravity and Other Low Shear Environments
NASA Technical Reports Server (NTRS)
Nickerson, C.; Ott, C. Mark; Wilson, James W.; Ramamurthy, Rajee; Pierson, Duane L.
2004-01-01
Microbial existence and survival requires the ability to sense and respond to environmental changes, including changes in physical forces. This is because microbes inhabit an amazingly diverse range of ecological niches and therefore must constantly adapt to a wide variety of changing environmental conditions, including alterations in temperature, pH, nutrient availability, oxygen levels, and osmotic pressure gradients. Microbes sense their environment through a variety of sensors and receptors which serve to integrate the different signals into the appropriate cellular response(s) that is optimal for survival. While numerous environmental stimuli have been examined for their effect on microorganisms, effects due to changes in mechanical and/or physical forces are also becoming increasingly apparent. Recently, several important studies have demonstrated a key role for microgravity and the low fluid shear dynamics associated with microgravity in the regulation of microbial gene expression, physiology and pathogenesis. The mechanosensory response of microorganisms to these environmental signals, which are relevant to those encountered during microbial life cycles on Earth, may provide insight into their adaptations to physiologically relevant conditions and may ultimately lead to eludicidation of the mechanisms important for mechanosensory transduction in living cells. This review summarizes the recent and potential future research trends aimed at understanding the effect of changes in mechanical forces that occur in microgravity and other low shear environments on different microbial parameters. The results of these studies provide an important step towards understanding how microbes integrate information from multiple mechanical stimuli to an appropriate physiological response.
Effect of high environmental temperature on semen parameters among fertile men.
Momen, M Nabil; Ananian, Fredrick B; Fahmy, Ibrahim M; Mostafa, Taymour
2010-04-01
To evaluate the effect of high environmental occupational temperature on semen parameters of fertile men. Prospective. Steel-casting plant. Ninety fertile workers exposed to a high temperature compared with 40 fertile workers working under ordinary conditions as control subjects. Measurement of scrotal temperature by invagination thermometry, air temperature, relative humidity by aspirated psychrometer, radiant heat by globe thermometer, air velocity by light vane anemometer, and semen analysis. Scrotal temperature and semen analysis. Nonsignificant difference was found between the two groups regarding their scrotal temperature. Also, nonsignificant differences were demonstrated regarding semen analysis parameters being in the normozoospermic range. Under high environmental temperature, semen parameters were within normozoospermic levels owing to body acclimatization mechanisms. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Aslan, Alper; Destek, Mehmet Akif; Okumus, Ilyas
2018-01-01
This study aims to examine the validity of inverted U-shaped Environmental Kuznets Curve by investigating the relationship between economic growth and environmental pollution for the period from 1966 to 2013 in the USA. Previous studies based on the assumption of parameter stability and obtained parameters do not change over the full sample. This study uses bootstrap rolling window estimation method to detect the possible changes in causal relations and also obtain the parameters for sub-sample periods. The results show that the parameter of economic growth has increasing trend in 1982-1996 sub-sample periods, and it has decreasing trend in 1996-2013 sub-sample periods. Therefore, the existence of inverted U-shaped Environmental Kuznets Curve is confirmed in the USA.
Pérez-López, Paula; Montazeri, Mahdokht; Feijoo, Gumersindo; Moreira, María Teresa; Eckelman, Matthew J
2018-06-01
The economic and environmental performance of microalgal processes has been widely analyzed in recent years. However, few studies propose an integrated process-based approach to evaluate economic and environmental indicators simultaneously. Biodiesel is usually the single product and the effect of environmental benefits of co-products obtained in the process is rarely discussed. In addition, there is wide variation of the results due to inherent variability of some parameters as well as different assumptions in the models and limited knowledge about the processes. In this study, two standardized models were combined to provide an integrated simulation tool allowing the simultaneous estimation of economic and environmental indicators from a unique set of input parameters. First, a harmonized scenario was assessed to validate the joint environmental and techno-economic model. The findings were consistent with previous assessments. In a second stage, a Monte Carlo simulation was applied to evaluate the influence of variable and uncertain parameters in the model output, as well as the correlations between the different outputs. The simulation showed a high probability of achieving favorable environmental performance for the evaluated categories and a minimum selling price ranging from $11gal -1 to $106gal -1 . Greenhouse gas emissions and minimum selling price were found to have the strongest positive linear relationship, whereas eutrophication showed weak correlations with the other indicators (namely greenhouse gas emissions, cumulative energy demand and minimum selling price). Process parameters (especially biomass productivity and lipid content) were the main source of variation, whereas uncertainties linked to the characterization methods and economic parameters had limited effect on the results. Copyright © 2018 Elsevier B.V. All rights reserved.
Environmental Art as an Innovative Medium for Environmental Education in Biosphere Reserves
ERIC Educational Resources Information Center
Marks, M.; Chandler, L.; Baldwin, C.
2017-01-01
A key goal of Biosphere Reserves (BR) is to foster environmental education for sustainable development. In this study we systematically analyse two cases in which environmental art is used as a mechanism to engage communities in "building environmental understanding", in Noosa BR in Australia and North Devon BR in the United Kingdom.…
Key parameters design of an aerial target detection system on a space-based platform
NASA Astrophysics Data System (ADS)
Zhu, Hanlu; Li, Yejin; Hu, Tingliang; Rao, Peng
2018-02-01
To ensure flight safety of an aerial aircraft and avoid recurrence of aircraft collisions, a method of multi-information fusion is proposed to design the key parameter to realize aircraft target detection on a space-based platform. The key parameters of a detection wave band and spatial resolution using the target-background absolute contrast, target-background relative contrast, and signal-to-clutter ratio were determined. This study also presented the signal-to-interference ratio for analyzing system performance. Key parameters are obtained through the simulation of a specific aircraft. And the simulation results show that the boundary ground sampling distance is 30 and 35 m in the mid- wavelength infrared (MWIR) and long-wavelength infrared (LWIR) bands for most aircraft detection, and the most reasonable detection wavebands is 3.4 to 4.2 μm and 4.35 to 4.5 μm in the MWIR bands, and 9.2 to 9.8 μm in the LWIR bands. We also found that the direction of detection has a great impact on the detection efficiency, especially in MWIR bands.
Novel image encryption algorithm based on multiple-parameter discrete fractional random transform
NASA Astrophysics Data System (ADS)
Zhou, Nanrun; Dong, Taiji; Wu, Jianhua
2010-08-01
A new method of digital image encryption is presented by utilizing a new multiple-parameter discrete fractional random transform. Image encryption and decryption are performed based on the index additivity and multiple parameters of the multiple-parameter fractional random transform. The plaintext and ciphertext are respectively in the spatial domain and in the fractional domain determined by the encryption keys. The proposed algorithm can resist statistic analyses effectively. The computer simulation results show that the proposed encryption algorithm is sensitive to the multiple keys, and that it has considerable robustness, noise immunity and security.
Calus, Mario PL; Bijma, Piter; Veerkamp, Roel F
2004-01-01
Covariance functions have been proposed to predict breeding values and genetic (co)variances as a function of phenotypic within herd-year averages (environmental parameters) to include genotype by environment interaction. The objective of this paper was to investigate the influence of definition of environmental parameters and non-random use of sires on expected breeding values and estimated genetic variances across environments. Breeding values were simulated as a linear function of simulated herd effects. The definition of environmental parameters hardly influenced the results. In situations with random use of sires, estimated genetic correlations between the trait expressed in different environments were 0.93, 0.93 and 0.97 while simulated at 0.89 and estimated genetic variances deviated up to 30% from the simulated values. Non random use of sires, poor genetic connectedness and small herd size had a large impact on the estimated covariance functions, expected breeding values and calculated environmental parameters. Estimated genetic correlations between a trait expressed in different environments were biased upwards and breeding values were more biased when genetic connectedness became poorer and herd composition more diverse. The best possible solution at this stage is to use environmental parameters combining large numbers of animals per herd, while losing some information on genotype by environment interaction in the data. PMID:15339629
MONITORING, ASSESSMENT, AND ENVIRONMENTAL POLICY
This overview chapter examines the roles that environmental monitoring and assessment can play in the development of environmental policy. It takes a case study approach, focusing on the key roles played by monitoring data in policy formulation in acid deposition, stratospheric...
NASA Astrophysics Data System (ADS)
Bernstein, Jennifer M.
This dissertation explored the attitudes, values, and beliefs underlying the contemporary environmental movement. At present, the most widely used means of measuring environmental attitudes is the New Environmental Paradigm (NEP) Scale. This dissertation chronicles the development and establishment of the NEP and the important role it has played in social science research. It also reviews key empirical and theoretical critiques of the scale, arguing that the worldview embodied by the NEP is representative of a narrow understanding of pro-environmental thought and that there remains the need for a new scale built using the core dimensions underlying contemporary environmentalism's diversity. Based on an assessment of contemporary environmental discourse, it was theorized that the key areas in which environmentalists diverge are with respect to nature, technology, and scale of societal response. To test this assertion, this project deeply explored a small sample of carefully selected participants with strong environmental identities and diverse attitudes and values. Quantitative and qualitative data was collected using survey question items and in-depth Repertory Grid interviews. Foremost, analysis showed that the sample of environmentalists studied were far from ideologically homogenous. While they agreed with respect to certain issues, such as the seriousness of environmental problems and the inability of the earth to accommodate unlimited resource demands, they also disagreed in key areas, such as the ability of technology to solve environmental problems and the scale at which effective change occurs. With respect to effective environmental problem solving, respondents mentioned green technologies, reducing resource consumption, and policy changes, and they differentiated between these solutions based on cost, the type of social change needed to bring these solutions to fruition, and how difficult they would be to enact. Demographic differences were also assessed: younger respondents were more likely to mention green technology and alternative transportation while older respondents discussed individual political engagement and education and awareness. Respondents were also clustered on the basis of their shared worldviews, which suggested that participants formed four key ideologically coherent groups. Analysis of the attitudes, values, and worldviews of each group and its members showed both internal cohesiveness as well as heterogeneity. The conclusion suggests the components of the NEP that should be retained, points to topical and theoretical additions, and establishes a framework for future research at the population level.
Tong, Xuming; Chen, Jinghang; Miao, Hongyu; Li, Tingting; Zhang, Le
2015-01-01
Agent-based models (ABM) and differential equations (DE) are two commonly used methods for immune system simulation. However, it is difficult for ABM to estimate key parameters of the model by incorporating experimental data, whereas the differential equation model is incapable of describing the complicated immune system in detail. To overcome these problems, we developed an integrated ABM regression model (IABMR). It can combine the advantages of ABM and DE by employing ABM to mimic the multi-scale immune system with various phenotypes and types of cells as well as using the input and output of ABM to build up the Loess regression for key parameter estimation. Next, we employed the greedy algorithm to estimate the key parameters of the ABM with respect to the same experimental data set and used ABM to describe a 3D immune system similar to previous studies that employed the DE model. These results indicate that IABMR not only has the potential to simulate the immune system at various scales, phenotypes and cell types, but can also accurately infer the key parameters like DE model. Therefore, this study innovatively developed a complex system development mechanism that could simulate the complicated immune system in detail like ABM and validate the reliability and efficiency of model like DE by fitting the experimental data. PMID:26535589
NASA Astrophysics Data System (ADS)
Alekseeva, Nina; Arshinova, Marina; Milanova, Elena
2017-04-01
Systems of global environmental rankings have emerged as a result of the escalating need for revealing the trends of ecological development for the world and for certain countries and regions. Both the environmental indicators and indexes and the ratings made on their basis are important for the assessment and forecast of the ecological situation in order to tackle the global and regional problems of sustainable development and help to translate the research findings into policy developments. Data sources for the global environmental ratings are most often the statistical information accumulated in databases of the international organizations (World Bank, World Resources Institute, FAO, WHO, etc.) These data are highly reliable and well-comparable that makes the ratings very objective. There are also good examples of using data of sociological polls, information from social networks, etc. The global environmental ratings are produced by the international organizations (World Bank, World Resources Institute, the UN Environment Program), non-governmental associations (WWF, Climate Action Network Europe (CAN-E), Germanwatch Nord-Süd-Initiative, Friends of the Earth, World Development Movement), research structures (scientific centers of the Yale and Colombian universities, the Oak-Ridge National Laboratory, the New Economic Foundation), and also individual experts, news agencies, etc. Thematic (sectoral) ratings cover various spheres from availability of resources and anthropogenic impact on environment components to nature protection policies and perception of environmental problems. The environmental indicators cover all parameters important for understanding the current ecological situation and the trajectories of its development (the DPSIR model, i.e. drivers, pressures, state, impact and response). Complex (integral) ratings are based on environmental indexes which are combined measurement tools using a complex of aggregated indicators based on a wide range of primary data allowing to record and measure various environmental phenomena and characteristics. The main difficulty of information aggregation into environmental indexes is the weighting of initial data. The principal requirement to such measuring system is its informational completeness and adequacy of parameters for the representation of economic, environmental and social components of sustainable development. The analysis of indexes and systems of ecological ratings showed their efficiency, so the application of indicators and integral indexes can become a basis for scheduling the strategic changes in natural and socio-economic systems. Indicators provide an objective picture of the state of various spheres of economic activities and allow understanding the key environmental, economic and social problems and planning for their solution, thus paving the way to introduce scientific developments and public perception into policy-making. The comparative analysis of the ranks of Russia in global ecological ratings showed that in terms of the per capita potential of biocapacity and availability of resources Russia advances many countries of the world. Among the environmental problems the most actual are the development of low-carbon power production and the use of renewable energy full in line with the SDG 7 (Affordable and Clean Energy). It will not only reduce the environment pollution, but also contribute to slowing the rates of climate change (the SDG 13 Climate Action).
Coastal microbial quality of surface sediments in different environments along the Italian coast.
Chiaretti, G; Onorati, F; Borrello, P; Orasi, A; Mugnai, C
2014-09-20
In order to improve sediment handling following dredging operations, this study aims to statistically derive ranges of distribution for certain microbiological parameters, according to four environmental types inspired by Italian legislation on seaports: ports of international/national importance, ports of regional importance, port channels in brackish environments, and marine coastal areas. A national database was developed using microbiological data from technical reports available at the Italian Ministry of Environment and National Institute of Environmental Protection and Research (ISPRA) for the period 1990-2008. The parameters considered were total coliform bacteria, faecal coliform bacteria, Escherichia coli, enterococci, sulfite-reducing clostridia (SRC), total bacterial counts at 22 °C and at 37 °C, and fungi. The data were statistically analyzed: (1) to verify the correspondence with the identified environmental types and rank them according to the concentration gradient and (2) to describe the data distribution in order to obtain reference ranges typical for each parameter/environmental type. The four environmental types considered were clearly different for enterococci, SRC, and fungi, highlighting a correspondence with Italian legislation. For the remaining parameters, at least two environmental types were merged. In general, the less contaminated environments were small ports and relatively unimpacted coastal areas. The ranges defined for relatively clean coastal areas can be considered a target for other areas both from an environmental point of view and for the sediment management implications. These values could be used as a comparison in environmental surveys addressing marine or brackish sediment handling and may represent a future line of evidence for the assessment of overall sediment quality.
Key issues concerning environmental enrichment for laboratory-held fish species.
Williams, T D; Readman, G D; Owen, S F
2009-04-01
An improved knowledge and understanding of the fundamental biological requirements is needed for many of the species of fish held in captivity and, without this knowledge it is difficult to determine the optimal conditions for laboratory culture. The aim of this paper is to review the key issues concerning environmental enrichment for laboratory-held fish species and identify where improvements are required. It provides background information on environmental enrichment, describes enrichment techniques currently used in aquatic ecotoxicology studies, identifies potential restrictions in their use and discusses why more detailed and species-specific guidance is needed.
GloboLakes: A global observatory of lake responses to environmental change.
NASA Astrophysics Data System (ADS)
Groom, Steve; Tyler, Andrew; Hunter, Peter; Spyrakos, Evangelos; Martinez-Vicente, Victor; Merchant, Chris; Cutler, Mark; Rowan, John; Dawson, Terry; Maberly, Stephen; Cavalho, Laurence; Elliot, Alex; Thackery, Stephen; Miller, Claire; Scott, Marian
2014-05-01
The world's freshwater ecosystems are vital components of the global biosphere, yet are vulnerable to climate and other human-induced change. There is increasing recognition that lakes play an important role in global biogeochemical cycling and provide key ecosystem services. However, our understanding of how lakes respond to environmental change at a global scale, and how this impacts on their status and function, is hampered by limited information on their chemical, physical and ecological condition. There are estimated to be over 300 million lakes globally, of which over 17,000 are greater than 10 km2 in surface area. These numbers have limited the systematic study of lake ecosystems. GloboLakes is a five-year UK research programme investigating the state of lakes and their response to climatic and other environmental drivers of change. It will establish a satellite-based observatory with archive and near-real time data processing to produce a time series of observed biogeochemical parameters and lake temperature for over 1000 lakes globally. This will be supported by linked ancillary data on climate and catchment land-use. The ability to monitor a large number of lakes consistently at high frequency and globally will facilitate a paradigm shift in our understanding of how lakes respond to environmental change at different spatial and temporal scales. A key requirement is to validate satellite retrieval algorithms and test the time-series of resulting lake properties such as chlorophyll-a by comparison with in situ data. To support the former extensive bio-optical and constituent data were taken in year 1 of the project in a number of UK lakes with a variety of trophic states. Furthermore, for wider validation activities GloboLakes has established the LIMNADES initiative to create a centralised database of ground bio-optical measurements of worldwide lakes through voluntary cooperation across the international scientific community. This presentation will introduce the GloboLakes project including its scientific ambitions for the next 4 years, present initial results, focussing on in-water optical data and describe the LIMNADES database.
The Nature and Nurture of Melody: A Twin Study of Musical Pitch and Rhythm Perception.
Seesjärvi, Erik; Särkämö, Teppo; Vuoksimaa, Eero; Tervaniemi, Mari; Peretz, Isabelle; Kaprio, Jaakko
2016-07-01
Both genetic and environmental factors are known to play a role in our ability to perceive music, but the degree to which they influence different aspects of music cognition is still unclear. We investigated the relative contribution of genetic and environmental effects on melody perception in 384 young adult twins [69 full monozygotic (MZ) twin pairs, 44 full dizygotic (DZ) twin pairs, 70 MZ twins without a co-twin, and 88 DZ twins without a co-twin]. The participants performed three online music tests requiring the detection of pitch changes in a two-melody comparison task (Scale) and key and rhythm incongruities in single-melody perception tasks (Out-of-key, Off-beat). The results showed predominantly additive genetic effects in the Scale task (58 %, 95 % CI 42-70 %), shared environmental effects in the Out-of-key task (61 %, 49-70 %), and non-shared environmental effects in the Off-beat task (82 %, 61-100 %). This highly different pattern of effects suggests that the contribution of genetic and environmental factors on music perception depends on the degree to which it calls for acquired knowledge of musical tonal and metric structures.
Mulder, Han A; Rönnegård, Lars; Fikse, W Freddy; Veerkamp, Roel F; Strandberg, Erling
2013-07-04
Genetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike's information criterion using h-likelihood to select the best fitting model. We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike's information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters. Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike's information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed. The algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring.
Modular life cycle assessment of municipal solid waste management.
Haupt, M; Kägi, T; Hellweg, S
2018-05-31
Life cycle assessment (LCA) is commonly applied to examine the environmental performance of waste management systems. The system boundaries are, however, often limited to either one tonne of material or to specific waste treatments and are, therefore, lacking a systems perspective. Here, a framework is proposed to assess complete waste management systems based on actual waste flows, assessed with a detailed material flow analysis (MFA) in a modular MFA/LCA approach. The transformation of the MFA into a product-process-matrix facilitates a direct link between MFA and LCA, therefore allowing for the assessment of variations in flows. To allow for an up-to-date and geographically specific assessment, 190 LCA modules were set up based on primary industrial data and the ecoinvent database. The LCA modules show where there have been improvements in different recycling processes over the past years (e.g. for paper recycling) and highlight that, from an environmental perspective, closed-loop recycling is not always preferable to open-loop recycling. In a case study, the Swiss municipal solid waste management system, of which there is already a detailed MFA, was modeled using the new LCA modules and applying the modular MFA/LCA approach. Five different mass flow distribution scenarios for the Swiss municipal solid waste management system were assessed to show the environmental impact of political measures and to test the sensitivity of the results to key parameters. The results of the case study highlight the importance of the dominant fractions in the overall environmental impacts assessment; while the metal fraction has the highest impact on a per kilogram basis, paper, cardboard, glass and mixed municipal solid waste were found to dominate the environmental impacts of the Swiss waste management system due to their mass. The scenarios also highlight the importance of the energy efficiency of municipal solid waste incineration plants and the credits from material substitution as key variables. In countries with advanced waste management systems such as Switzerland, there is limited improvement potential with further increases in recycling rates. In these cases, the focus of political measures should be laid on (i) the utilization of secondary materials in applications where they replace high-impact primary production, and (ii) an increased recovery of energy in waste-to-energy plants. Copyright © 2018. Published by Elsevier Ltd.
Environmental Values related to fish and wildlife lands
David N. Bengston
2000-01-01
THe purpose of this paper is to provide an overview of key concepts related to environmental values and their importance for public land managers. The following section defines environmental values and discusses their relationship to environmnetal attitudes and beliefs. This is followed by presentation of a broad system for classifying environmental values and...
Environmental Awareness Raising through Universities--City Authorities' Cooperation
ERIC Educational Resources Information Center
Shelest, Ksenia D.; Ionov, Victor V.; Tikhomirov, Leonid Y.
2017-01-01
Purpose: This paper aims to the environmental awareness raising as a key issue of education for sustainable development. Youth Environmental Volunteers Movement in the area of coastal oil response operations in St. Petersburg is presented in this paper as a successful initiative in the field of environmental awareness through universities and city…
ERIC Educational Resources Information Center
Cheng, Yuh-Ming; Lou, Shi-Jer; Kuo, Sheng-Huang; Shih, Ru-Chu
2013-01-01
In order to improve and promote students' environmental knowledge, attitudes, and behaviour, integrating environmental education into the primary education curriculum has become a key issue for environmental education. For this reason, this study aimed to investigate elementary school students' acceptance of technology applying digital game-based…
ERIC Educational Resources Information Center
Dyehouse, Melissa; Weber, Nicole; Fang, Jun; Harris, Constance; David, Ray; Hua, Inez; Strobel, Johannes
2017-01-01
Engineering professional associations identified environmental sustainability as a key responsibility of the educated engineer. Data from national surveys of the general public demonstrate low environmental knowledge levels and a high level of resistance when it comes to environmental behavior. The purpose of this study was to examine the…
Life cycle assessment of electronic waste treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Jinglan, E-mail: hongjing@sdu.edu.cn; Shandong University Climate Change and Health Center, Public Health School, Shandong University, Jinan 250012; Shi, Wenxiao
Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies havemore » a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)« less
Microwave moisture sensing of seedcotton: Part 1: Seedcotton microwave material properties
USDA-ARS?s Scientific Manuscript database
Moisture content at harvest is a key parameter that impacts quality and how well the cotton crop can be stored without degrading before processing. It is also a key parameter of interest for harvest time field trials as it can directly influence the quality of the harvested crop as well as alter the...
Microwave moisture sensing of seedcotton: Part 1: Seedcotton microwave material properties
USDA-ARS?s Scientific Manuscript database
Moisture content at harvest is a key parameter that impacts quality and how well the cotton crop can be stored without degrading before processing. It is also a key parameter of interest for harvest time field trials as it can directly influence the quality of the harvested crop as well as skew the...
NASA Astrophysics Data System (ADS)
Goswami, B. B.; Khouider, B.; Phani, R.; Mukhopadhyay, P.; Majda, A. J.
2017-07-01
A comparative analysis of fourteen 5 year long climate simulations produced by the National Centers for Environmental Predictions (NCEP) Climate Forecast System version 2 (CFSv2), in which a stochastic multicloud (SMCM) cumulus parameterization is implemented, is presented here. These 5 year runs are made with different sets of parameters in order to figure out the best model configuration based on a suite of state-of-the-art metrics. This analysis is also a systematic attempt to understand the model sensitivity to the SMCM parameters. The model is found to be resilient to minor changes in the parameters used implying robustness of the SMCM formulation. The model is found to be most sensitive to the midtropospheric dryness parameter (MTD) and to the stratiform cloud decay timescale (τ30). MTD is more effective in controlling the global mean precipitation and its distribution while τ30 has more effect on the organization of convection as noticed in the simulation of the Madden-Julian oscillation (MJO). This is consistent with the fact that in the SMCM formulation, midtropospheric humidity controls the deepening of convection and stratiform clouds control the backward tilt of tropospheric heating and the strength of unsaturated downdrafts which cool and dry the boundary layer and trigger the propagation of organized convection. Many other studies have also found midtropospheric humidity to be a key factor in the capacity of a global climate model to simulate organized convection on the synoptic and intraseasonal scales.
40 CFR 370.3 - Which section contains the definitions of the key words used in this part?
Code of Federal Regulations, 2010 CFR
2010-07-01
... of the key words used in this part? 370.3 Section 370.3 Protection of Environment ENVIRONMENTAL... definitions of the key words used in this part? The definitions of key words used in this part are in § 370.66. It is important to read the definitions for key words because the definition explains the word's...
Whiley, Robert A.; Fleming, Emily V.; Makhija, Ridhima; Waite, Richard D.
2015-01-01
Cystic fibrosis (CF) patient airways harbour diverse microbial consortia that, in addition to the recognized principal pathogen Pseudomonas aeruginosa, include other bacteria commonly regarded as commensals. The latter include the oral (viridans) streptococci, which recent evidence indicates play an active role during infection of this environmentally diverse niche. As the interactions between inhabitants of the CF airway can potentially alter disease progression, it is important to identify key cooperators/competitors and environmental influences if therapeutic intervention is to be improved and pulmonary decline arrested. Importantly, we recently showed that virulence of the P. aeruginosa Liverpool Epidemic Strain (LES) could be potentiated by the Anginosus-group of streptococci (AGS). In the present study we explored the relationships between other viridans streptococci (Streptococcus oralis, Streptococcus mitis, Streptococcus gordonii and Streptococcus sanguinis) and the LES and observed that co-culture outcome was dependent upon inoculation sequence and environment. All four streptococcal species were shown to potentiate LES virulence factor production in co-culture biofilms. However, in the case of S. oralis interactions were environmentally determined; in air cooperation within a high cell density co-culture biofilm occurred together with stimulation of LES virulence factor production, while in an atmosphere containing added CO2 this species became a competitor antagonising LES growth through hydrogen peroxide (H2O2) production, significantly altering biofilm population dynamics and appearance. Streptococcus mitis, S. gordonii and S. sanguinis were also capable of H2O2 mediated inhibition of P. aeruginosa growth, but this was only visible when inoculated as a primary coloniser prior to introduction of the LES. Therefore, these observations, which are made in conditions relevant to the biology of CF disease pathogenesis, show that the pathogenic and colonisation potential of P. aeruginosa isolates can be modulated positively and negatively by the presence of oral commensal streptococci. PMID:25710466
Evaluation of Environmental Effects of Wave Energy Convertor Arrays
NASA Astrophysics Data System (ADS)
Jones, C. A.
2015-12-01
Stakeholders and regulators in the U.S. are generally uncertain as to the potential environmental impacts posed by deployments of marine and hydrokinetic (MHK) devices, and in particular wave energy conversion (WEC) devices, in coastal waters. The first pilot-scale WEC deployments in the U.S. have had to absorb unsustainable costs and delays associated with permitting to get devices in the water. As such, there is an urgent industry need to streamline the technical activities and processes used to assess potential environmental impacts. To enable regulators and stakeholders to become more comfortable and confident with developing effective MHK environmental assessments, a better understanding of the potential environmental effects induced by arrays of WEC devices is needed. A key challenge in developing this understanding is that the assessment of the WEC effects must come prior to deployment. A typical approach in similar environmental assessments is to use numerical models to simulate the WEC devices and array layouts so that the appropriate environmental stressors and receptors can be identified and assessed. Sandia National Laboratories (SNL) and the U.S. Department of Energy are fulfilling the industry-wide need to develop "WEC-friendly" open-source numerical modeling tools capable of assessing potential changes to the physical environment caused by the operation of WEC arrays. Studies using these tools will advance the nation's general knowledge of the interrelationships among the number, size, efficiency, and configuration of MHK arrays and the subsequent effects these relationships may have on the deployment environment. By better understanding these relationships, industry, stakeholders, and regulators will be able to work together to optimize WEC deployments such that environmental impacts are minimized while power output is maximized. The present work outlines the initial effort in coupling the SNL WEC-friendly tools with the environmental assessment process. The development of the initial phases of a WEC case study in the offshore waters of Newport, Oregon will be presented. Examples of the quantitative evaluation of changes to important parameters that mau constitute an environmental stressors will be presented.
NASA Astrophysics Data System (ADS)
Reyes, J. J.; Adam, J. C.; Tague, C.
2016-12-01
Grasslands play an important role in agricultural production as forage for livestock; they also provide a diverse set of ecosystem services including soil carbon (C) storage. The partitioning of C between above and belowground plant compartments (i.e. allocation) is influenced by both plant characteristics and environmental conditions. The objectives of this study are to 1) develop and evaluate a hybrid C allocation strategy suitable for grasslands, and 2) apply this strategy to examine the importance of various parameters related to biogeochemical cycling, photosynthesis, allocation, and soil water drainage on above and belowground biomass. We include allocation as an important process in quantifying the model parameter uncertainty, which identifies the most influential parameters and what processes may require further refinement. For this, we use the Regional Hydro-ecologic Simulation System, a mechanistic model that simulates coupled water and biogeochemical processes. A Latin hypercube sampling scheme was used to develop parameter sets for calibration and evaluation of allocation strategies, as well as parameter uncertainty analysis. We developed the hybrid allocation strategy to integrate both growth-based and resource-limited allocation mechanisms. When evaluating the new strategy simultaneously for above and belowground biomass, it produced a larger number of less biased parameter sets: 16% more compared to resource-limited and 9% more compared to growth-based. This also demonstrates its flexible application across diverse plant types and environmental conditions. We found that higher parameter importance corresponded to sub- or supra-optimal resource availability (i.e. water, nutrients) and temperature ranges (i.e. too hot or cold). For example, photosynthesis-related parameters were more important at sites warmer than the theoretical optimal growth temperature. Therefore, larger values of parameter importance indicate greater relative sensitivity in adequately representing the relevant process to capture limiting resources or manage atypical environmental conditions. These results may inform future experimental work by focusing efforts on quantifying specific parameters under various environmental conditions or across diverse plant functional types.
14 CFR 431.93 - Environmental information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the parameters of existing environmental impact statements covering that site; (d) A proposed payload that may have significant environmental impacts in the event of a reentry accident; and (e) Other factors as necessary to comply with the National Environmental Policy Act. ...
14 CFR 431.93 - Environmental information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the parameters of existing environmental impact statements covering that site; (d) A proposed payload that may have significant environmental impacts in the event of a reentry accident; and (e) Other factors as necessary to comply with the National Environmental Policy Act. ...
14 CFR 431.93 - Environmental information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the parameters of existing environmental impact statements covering that site; (d) A proposed payload that may have significant environmental impacts in the event of a reentry accident; and (e) Other factors as necessary to comply with the National Environmental Policy Act. ...
14 CFR 431.93 - Environmental information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the parameters of existing environmental impact statements covering that site; (d) A proposed payload that may have significant environmental impacts in the event of a reentry accident; and (e) Other factors as necessary to comply with the National Environmental Policy Act. ...
Cao, Shixiong; Chen, Li; Liu, Zhande
2009-02-01
China is the world's most populous country and has one of the largest territories. As such, Chinese attitudes and behavior with regard to environmental issues are key factors in protecting the world's natural resources and environment. In this study, we surveyed a random sample of 5000 citizens from six Chinese provinces (Beijing, Shanghai, Hubei, Hunan, Henan, and Shaanxi) to understand their environmental attitudes, contrasts between the attitudes of citizens in different demographic groups, and their willingness to invest in environmental conservation. The results indicated that policymakers and the public increasingly recognize the key role that environmental restoration plays in protecting the overall health of the environment. In total, 91% of the interviewees believed that the environment had deteriorated severely during the past decade, compared with 44% in a 1999 survey. In addition, 78% of the interviewees supported their government's investment of more than 300 billion RMB (approximately 10% of total government revenues in 2004) in the "Grain for Green Project", which discouraged unsustainable land use by compensating farmers and herders for abandoning farming and grazing on marginal land. There was a strong correlation between environmental attitudes and net income and education levels, and other differences were based on the respondents' age, gender, job, and location. Net income and education level were the key factors that affected environmental attitudes. Based on these results, we propose that successful environmental restoration projects must include both an education component and an economic development component.
Bacenetti, Jacopo; Bava, Luciana; Zucali, Maddalena; Lovarelli, Daniela; Sandrucci, Anna; Tamburini, Alberto; Fiala, Marco
2016-01-01
The aim of the study was to assess, through a cradle to farm gate Life Cycle Assessment, different mitigation strategies of the potential environmental impacts of milk production at farm level. The environmental performances of a conventional intensive dairy farm in Northern Italy (baseline scenario) were compared with the results obtained: from the introduction of the third daily milking and from the adoption of anaerobic digestion (AD) of animal slurry in a consortium AD plant. The AD plant, fed only with animal slurries coming also from nearby farms. Key parameters concerning on-farm activities (forage production, energy consumptions, agricultural machines maintenance, manure and livestock management), off-farm activities (production of fertilizers, pesticides, bedding materials, purchased forages, purchased concentrate feed, replacement animals, agricultural machines manufacturing, electricity, fuel) and transportation were considered. The functional unit was 1kg fat and protein corrected milk (FPCM) leaving the farm gate. The selected environmental impact categories were: global warming potential, acidification, eutrophication, photochemical oxidation and non-renewable energy use. The production of 1kg of FPCM caused, in the baseline scenario, the following environmental impact potentials: global warming potential 1.12kg CO2 eq; acidification 15.5g SO2 eq; eutrophication 5.62g PO4(3-) eq; photochemical oxidation 0.87g C2H4 eq/kg FPCM; energy use 4.66MJeq. The increase of milking frequency improved environmental performances for all impact categories in comparison with the baseline scenario; in particular acidification and eutrophication potentials showed the largest reductions (-11 and -12%, respectively). In anaerobic digestion scenario, compared to the baseline one, most of the impact potentials were strongly reduced. In particular the most important advantages were in terms of acidification (-29%), global warming (-22%) and eutrophication potential (-18%). The AD of cow slurry is confirmed as an effective strategy to mitigate the environmental impact of milk production at farm level. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stucchi Boschi, Raquel; Qin, Mingming; Gimenez, Daniel; Cooper, Miguel
2016-04-01
Modeling is an important tool for better understanding and assessing land use impacts on landscape processes. A key point for environmental modeling is the knowledge of soil hydraulic properties. However, direct determination of soil hydraulic properties is difficult and costly, particularly in vast and remote regions such as one constituting the Amazon Biome. One way to overcome this problem is to extrapolate accurately estimated data to pedologically similar sites. The van Genuchten (VG) parametric equation is the most commonly used for modeling SWRC. The use of a Bayesian approach in combination with the Markov chain Monte Carlo to estimate the VG parameters has several advantages compared to the widely used global optimization techniques. The Bayesian approach provides posterior distributions of parameters that are independent from the initial values and allow for uncertainty analyses. The main objectives of this study were: i) to estimate hydraulic parameters from data of pasture and forest sites by the Bayesian inverse modeling approach; and ii) to investigate the extrapolation of the estimated VG parameters to a nearby toposequence with pedologically similar soils to those used for its estimate. The parameters were estimated from volumetric water content and tension observations obtained after rainfall events during a 207-day period from pasture and forest sites located in the southeastern Amazon region. These data were used to run HYDRUS-1D under a Differential Evolution Adaptive Metropolis (DREAM) scheme 10,000 times, and only the last 2,500 times were used to calculate the posterior distributions of each hydraulic parameter along with 95% confidence intervals (CI) of volumetric water content and tension time series. Then, the posterior distributions were used to generate hydraulic parameters for two nearby toposequences composed by six soil profiles, three are under forest and three are under pasture. The parameters of the nearby site were accepted when the predicted tension time series were within the 95% CI which is derived from the calibration site using DREAM scheme.
Liang, Yuzhen; Kuo, Dave T F; Allen, Herbert E; Di Toro, Dominic M
2016-10-01
There is concern about the environmental fate and effects of munition constituents (MCs). Polyparameter linear free energy relationships (pp-LFERs) that employ Abraham solute parameters can aid in evaluating the risk of MCs to the environment. However, poor predictions using pp-LFERs and ABSOLV estimated Abraham solute parameters are found for some key physico-chemical properties. In this work, the Abraham solute parameters are determined using experimental partition coefficients in various solvent-water systems. The compounds investigated include hexahydro-1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX), hexahydro-1,3-dinitroso-5- nitro-1,3,5-triazine (DNX), 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB), and 4-nitroanisole. The solvents in the solvent-water systems are hexane, dichloromethane, trichloromethane, octanol, and toluene. The only available reported solvent-water partition coefficients are for octanol-water for some of the investigated compounds and they are in good agreement with the experimental measurements from this study. Solvent-water partition coefficients fitted using experimentally derived solute parameters from this study have significantly smaller root mean square errors (RMSE = 0.38) than predictions using ABSOLV estimated solute parameters (RMSE = 3.56) for the investigated compounds. Additionally, the predictions for various physico-chemical properties using the experimentally derived solute parameters agree with available literature reported values with prediction errors within 0.79 log units except for water solubility of RDX and HMX with errors of 1.48 and 2.16 log units respectively. However, predictions using ABSOLV estimated solute parameters have larger prediction errors of up to 7.68 log units. This large discrepancy is probably due to the missing R2NNO2 and R2NNO2 functional groups in the ABSOLV fragment database. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Li, Mingxu; Peng, Changhui; Wang, Meng; Yang, Yanzheng; Zhang, Kerou; Li, Peng; Yang, Yan; Ni, Jian; Zhu, Qiuan
2017-07-01
The leaf carbon isotope ratio (δ13C) is a useful parameter for predicting a plant's water use efficiency, as an indicator for plant classification, and even in the reconstruction of paleoclimatic environments. In this study, we investigated the spatial pattern of leaf δ13C values and its relationship with plant functional groups and environmental factors throughout China. The high leaf δ13C in the database appeared in central and western China, and the averaged leaf δ13C was -27.15‰, with a range from -21.05‰ to -31.5‰. The order of the averaged δ13C for plant life forms from most positive to most negative was subshrubs > herbs = shrubs > trees > subtrees. Leaf δ13C is also influenced by some environmental factors, such as mean annual precipitation, relative humidity, mean annual temperature, solar hours, and altitude, although the overall influences are still relatively weak, in particular the influence of MAT and altitude. And we further found that plant functional types are dominant factors that regulate the magnitude of leaf δ13C for an individual site, whereas environmental conditions are key to understanding spatial patterns of leaf δ13C when we consider China as a whole. Ultimately, we conducted a multiple regression model of leaf δ13C with environmental factors and mapped the spatial distribution of leaf δ13C in China by using this model. However, this partial least squares model overestimated leaf δ13C for most life forms, especially for deciduous trees, evergreen shrubs, and subtrees, and thus need more improvement in the future.
NASA Astrophysics Data System (ADS)
Lavaud, Romain; Thébault, Julien; Lorrain, Anne; van der Geest, Matthijs; Chauvaud, Laurent
2013-02-01
Environmental archives are useful tools for describing past and current climate variations and they provide an opportunity to assess the anthropogenic contribution in coastal ecological changes. Along the West African coast, few studies have focused on such archives in coastal ecosystems. The bloody cockle Senilia senilis, an intertidal bivalve mollusk species, is widely distributed from Western Sahara to Angola, and has been harvested by humans over thousands of years. Therefore, this species appears to be a good candidate for assessing past variations of key environmental parameters such as temperature, primary production, and Saharan dust advection within West African coastal ecosystems. In the present paper, we focused (i) on the identification of growth rhythms of S. senilis shells in Mauritania (Banc d'Arguin), and (ii) on the potential of these shells as (paleo-)environmental archives. The method we used combined environmental survey, sclerochronology, and geochemical analyses of aragonite samples. We showed that microgrowth line formation was controlled by a tidal forcing, leading to the formation of two lines per lunar day. Brightness and thickness of these microgrowth lines progressively decreased from spring to neap tides (fortnightly cycle). Lunar daily growth rates displayed strong seasonal variations, with highest values (> 300 μm per lunar day) recorded in summer. The oxygen isotope composition of S. senilis shells (δ18Oaragonite) accurately tracked seawater temperature seasonal variations, with a precision of 0.8 °C. Finally, we discussed the opportunity to use Ba:Ca ratio in shells as a proxy for primary production or for Saharan dust transport. We also hypothesized that either Canary Currentvariations or, more probably, massive aerosol transfers from Sahara to the Atlantic Ocean could control uranium availability in coastal waters and explain the occurrence of U:Ca peaks within S. senilis shells.
Analysis and application of ichnofabrics
NASA Astrophysics Data System (ADS)
Taylor, Andrew; Goldring, Roland; Gowland, Stuart
2003-02-01
Bioturbation at all scales, which tends to replace the primary fabric of a sediment by the ichnofabric (the overall fabric of a sediment that has been bioturbated), is now recognised as playing a major role in facies interpretation. The manner in which the substrate may be colonized, and the physical, chemical and ecological controls (grainsize, sedimentation rate, oxygenation, nutrition, salinity, ethology, community structure and succession), together with the several ways in which the substrate is tiered by bioturbators, are the factors and processes that determine the nature of the ichnofabric. Eleven main styles of substrate tiering are described, ranging from single, pioneer colonization to complex tiering under equilibria, their modification under environmental deterioration and amelioration, and diagenetic enhancement or obscuration. Ichnofabrics may be assessed by four attributes: primary sedimentary factors, Bioturbation Index (BI), burrow size and frequency, and ichnological diversity. Construction of tier and ichnofabric constituent diagrams aid visualization and comparison. The breaks or changes in colonization and style of tiering at key stratal surfaces accentuate the surfaces, and many reflect a major environmental shift of the trace-forming biota due to change in hydrodynamic regime (leading to non-deposition and/or erosion and/or lithification), change in salinity regime, or subaerial exposure. The succession of gradational or abrupt changes in ichnofabric through genetically related successions, together with changes in colonization and tiering across event beds, may also be interpreted in terms of changes in environmental parameters. It is not the ichnotaxa per se that are important in discriminating between ichnofabrics, but rather the environmental conditions that determine the overall style of colonization. Fabrics composed of different ichnotaxa (and different taphonomies) but similar tier structure and ichnoguild may form in similar environments of different age or different latitude. Appreciation of colonization and tiering styles places ancient ichnofabrics on a sound process-related basis for environmental interpretation.
Sensitivity studies for a space-based methane lidar mission
NASA Astrophysics Data System (ADS)
Kiemle, C.; Quatrevalet, M.; Ehret, G.; Amediek, A.; Fix, A.; Wirth, M.
2011-10-01
Methane is the third most important greenhouse gas in the atmosphere after water vapour and carbon dioxide. A major handicap to quantify the emissions at the Earth's surface in order to better understand biosphere-atmosphere exchange processes and potential climate feedbacks is the lack of accurate and global observations of methane. Space-based integrated path differential absorption (IPDA) lidar has potential to fill this gap, and a Methane Remote Lidar Mission (MERLIN) on a small satellite in polar orbit was proposed by DLR and CNES in the frame of a German-French climate monitoring initiative. System simulations are used to identify key performance parameters and to find an advantageous instrument configuration, given the environmental, technological, and budget constraints. The sensitivity studies use representative averages of the atmospheric and surface state to estimate the measurement precision, i.e. the random uncertainty due to instrument noise. Key performance parameters for MERLIN are average laser power, telescope size, orbit height, surface reflectance, and detector noise. A modest-size lidar instrument with 0.45 W average laser power and 0.55 m telescope diameter on a 506 km orbit could provide 50-km averaged methane column measurement along the sub-satellite track with a precision of about 1% over vegetation. The use of a methane absorption trough at 1.65 μm improves the near-surface measurement sensitivity and vastly relaxes the wavelength stability requirement that was identified as one of the major technological risks in the pre-phase A studies for A-SCOPE, a space-based IPDA lidar for carbon dioxide at the European Space Agency. Minimal humidity and temperature sensitivity at this wavelength position will enable accurate measurements in tropical wetlands, key regions with largely uncertain methane emissions. In contrast to actual passive remote sensors, measurements in Polar Regions will be possible and biases due to aerosol layers and thin ice clouds will be minimised.
Sensitivity studies for a space-based methane lidar mission
NASA Astrophysics Data System (ADS)
Kiemle, C.; Quatrevalet, M.; Ehret, G.; Amediek, A.; Fix, A.; Wirth, M.
2011-06-01
Methane is the third most important greenhouse gas in the atmosphere after water vapour and carbon dioxide. A major handicap to quantify the emissions at the Earth's surface in order to better understand biosphere-atmosphere exchange processes and potential climate feedbacks is the lack of accurate and global observations of methane. Space-based integrated path differential absorption (IPDA) lidar has potential to fill this gap, and a Methane Remote Lidar Mission (MERLIN) on a small satellite in Polar orbit was proposed by DLR and CNES in the frame of a German-French climate monitoring initiative. System simulations are used to identify key performance parameters and to find an advantageous instrument configuration, given the environmental, technological, and budget constraints. The sensitivity studies use representative averages of the atmospheric and surface state to estimate the measurement precision, i.e. the random uncertainty due to instrument noise. Key performance parameters for MERLIN are average laser power, telescope size, orbit height, surface reflectance, and detector noise. A modest-size lidar instrument with 0.45 W average laser power and 0.55 m telescope diameter on a 506 km orbit could provide 50-km averaged methane column measurement along the sub-satellite track with a precision of about 1 % over vegetation. The use of a methane absorption trough at 1.65 μm improves the near-surface measurement sensitivity and vastly relaxes the wavelength stability requirement that was identified as one of the major technological risks in the pre-phase A studies for A-SCOPE, a space-based IPDA lidar for carbon dioxide at the European Space Agency. Minimal humidity and temperature sensitivity at this wavelength position will enable accurate measurements in tropical wetlands, key regions with largely uncertain methane emissions. In contrast to actual passive remote sensors, measurements in Polar Regions will be possible and biases due to aerosol layers and thin ice clouds will be minimised.
Environmental availability of chlorinated organics, explosives, and metals in soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, W.C.; Loehr, R.C.; Smith, B.P.
1999-08-01
Environmental availability is key to defining the extent of remediation required. Nationally recognized experts summarize what is known about the environmental availability of chlorinated organics (Perry McCarty), explosives (Judith Pennington), and metals (Rufus Chaney). It also summarizes the current use of environmental availability to set cleanup goals for petroleum hydrocarbons and identifies essential research needed to expand the knowledge base for environmental availability.
NASA Astrophysics Data System (ADS)
Ubertini, Filippo; Comanducci, Gabriele; Cavalagli, Nicola; Laura Pisello, Anna; Luigi Materazzi, Annibale; Cotana, Franco
2017-01-01
Continuously identified natural frequencies of vibration can provide unique information for low-cost automated condition assessment of civil constructions and infrastructures. However, the effects of changes in environmental parameters, such as temperature and humidity, need to be effectively investigated and accurately removed from identified frequency data for an effective performance assessment. This task is particularly challenging in the case of historical constructions that are typically massive and heterogeneous masonry structures characterized by complex variations of materials' properties with varying environmental parameters and by a differential heat conduction process where thermal capacity plays a major role. While there is abundance of documented monitoring data highlighting correlations between environmental parameters and natural frequencies in the case of new structures, such as long-span bridges, similar studies for historical constructions are still missing, with only a few literature works occasionally reporting increments in natural frequencies with increasing temperature of construction materials due to the closure of internal micro-cracks in the mortar layers caused by thermal expansion. In order to gain some knowledge on the effects of changes in temperature and humidity on the natural frequencies of slender masonry buildings, the paper focuses on the case study of an Italian monumental bell tower that has been monitored by the authors for more than nine months. Correlations between natural frequencies and environmental parameters are investigated in detail and the predictive capabilities of linear statistical regressive models based on the use of several environmental continuous monitoring sensors are assessed. At the end, three basic mechanisms governing environmentally-induced changes in the dynamic behavior of the tower are identified and essential information is achieved on the optimal location and minimum number of environmental sensors that are necessary in a structural health monitoring perspective.
NASA Astrophysics Data System (ADS)
Uglyanitca, Andrey; Solonin, Kirill
2017-11-01
The environmentally friendly technology for filling the vertical mine workings with autoclaved slag-concrete, prefabricated on the surface of the mine is presented in the article; the optimal parameters of filling technology are proposed. The developed technology for filling the abandoned vertical mine workings allows ensuring the environmental safety of the territories adjacent to the abandoned mine, utilizing slag dumps and providing the possibility of shaft recovery, if necessary, with minimal labor and material costs.
Aptamer based electrochemical sensors for emerging environmental pollutants
Hayat, Akhtar; Marty, Jean L.
2014-01-01
Environmental contaminants monitoring is one of the key issues in understanding and managing hazards to human health and ecosystems. In this context, aptamer based electrochemical sensors have achieved intense significance because of their capability to resolve a potentially large number of problems and challenges in environmental contamination. An aptasensor is a compact analytical device incorporating an aptamer (oligonulceotide) as the sensing element either integrated within or intimately associated with a physiochemical transducer surface. Nucleic acid is well known for the function of carrying and passing genetic information, however, it has found a key role in analytical monitoring during recent years. Aptamer based sensors represent a novelty in environmental analytical science and there are great expectations for their promising performance as alternative to conventional analytical tools. This review paper focuses on the recent advances in the development of aptamer based electrochemical sensors for environmental applications with special emphasis on emerging pollutants. PMID:25019067
Aptamer based electrochemical sensors for emerging environmental pollutants
NASA Astrophysics Data System (ADS)
Hayat, Akhtar; Marty, Jean Louis
2014-06-01
Environmental contaminants monitoring is one of the key issues in understanding and managing hazards to human health and ecosystems. In this context, aptamer based electrochemical sensors have achieved intense significance because of their capability to resolve a potentially large number of problems and challenges in environmental contamination. An aptasensor is a compact analytical device incorporating an aptamer (oligonulceotide) as the sensing element either integrated within or intimately associated with a physiochemical transducer surface. Nucleic acid is well known for the function of carrying and passing genetic information, however, it has found a key role in analytical monitoring during recent years. Aptamer based sensors represent a novelty in environmental analytical science and there are great expectations for their promising performance as alternative to conventional analytical tools. This review paper focuses on the recent advances in the development of aptamer based electrochemical sensors for environmental applications with special emphasis on emerging pollutants.
Key global environmental impacts of genetically modified (GM) crop use 1996–2012
Barfoot, Peter; Brookes, Graham
2014-01-01
Against the background of increasing awareness and appreciation of issues such as global warming and the impact of mankind’s activities such as agriculture on the global environment, this paper updates previous assessments of some key environmental impacts that crop biotechnology has had on global agriculture. It focuses on the environmental impacts associated with changes in pesticide use and greenhouse gas emissions arising from the use of GM crops. The adoption of the technology has reduced pesticide spraying by 503 million kg (-8.8%) and, as a result, decreased the environmental impact associated with herbicide and insecticide use on these crops (as measured by the indicator the Environmental Impact Quotient [EIQ]) by 18.7%. The technology has also facilitated a significant reduction in the release of greenhouse gas emissions from this cropping area, which, in 2012, was equivalent to removing 11.88 million cars from the roads. PMID:24637726
NASA Astrophysics Data System (ADS)
Scherwath, M.; Riedel, M.; Roemer, M.; Heesemann, M.; Chun, J. H.; Moran, K.; Spence, G.; Thomsen, L.
2016-12-01
The key for a scientific understanding of natural environments and the determination of baselines is the long-term monitoring of environmental factors. For seafloor environments including gas hydrate systems, cabled ocean observatories are important platforms for the remote acquisition of a comprehensive suite of datasets. This is particularly critical for those datasets that are difficult to acquire with autonomous, battery-powered systems, such as cameras or high-bandwidth sonar because cable connections provide continuous power and communication from shore to the seafloor. Ocean Networks Canada is operating the NEPTUNE cabled undersea observatory in the Northeast Pacific with two nodes at gas hydrate sites, Barkley Canyon and Clayoquot Slope. With up to seven years of continuous data from these locations we are now beginning to understand the dynamics of the natural systems and are able to classify the variations within the gas hydrate system. For example, the long-term monitoring of gas vent activity has allowed us to classify phases of low, intermittent and high activity that seem to reoccur periodically. Or, by recording the speeds of bacterial mat growth or detecting periods of increased productivity of flora and fauna at hydrates sites we can start to classify benthic activity and relate that to outside environmental parameters. This will eventually allow us to do enhanced environmental monitoring, establish baselines, and potentially detect anthropogenic variations or events for example during gas hydrate production.
Technology innovation clusters are geographic concentrations of interconnected companies, universities, and other organizations with a focus on environmental technology. They play a key role in addressing the nation’s pressing environmental problems.
Regnery, J; Wing, A D; Alidina, M; Drewes, J E
2015-08-01
This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory-scale soil column experiments simulating MAR. The results revealed that MAR performance in terms of TOrC attenuation is primarily determined by key environmental parameters (i.e., redox, primary substrate). Soil columns with suboxic and anoxic conditions performed poorly (i.e., less than 30% attenuation of moderately degradable TOrC) in comparison to oxic conditions (on average between 70-100% attenuation for the same compounds) within a residence time of three days. Given this dependency on redox conditions, it was investigated if key parameter-dependent rate constants are more suitable for contaminant transport modeling to properly capture the dynamic TOrC attenuation under field-scale conditions. Laboratory-derived first-order removal kinetics were determined for 19 TOrC under three different redox conditions and rate constants were applied to MAR field data. Our findings suggest that simplified first-order rate constants will most likely not provide any meaningful results if the target compounds exhibit redox dependent biotransformation behavior or if the intention is to exactly capture the decline in concentration over time and distance at field-scale MAR. However, if the intention is to calculate the percent removal after an extended time period and subsurface travel distance, simplified first-order rate constants seem to be sufficient to provide a first estimate on TOrC attenuation during MAR. Copyright © 2015 Elsevier B.V. All rights reserved.
Cloud Macro- and Microphysical Properties Derived from GOES over the ARM SGP Domain
NASA Technical Reports Server (NTRS)
Minnis, P.; Smith, W. L., Jr.; Young, D. F.
2001-01-01
Cloud macrophysical properties like fractional coverage and height Z(sub c) and microphysical parameters such as cloud liquid water path (LWP), effective droplet radius r(sub e), and cloud phase, are key factors affecting both the radiation budget and the hydrological cycle. Satellite data have been used to complement surface observations from Atmospheric Radiation Measurements (ARM) by providing additional spatial coverage and top-of-atmosphere boundary conditions of these key parameters. Since 1994, the Geostationary Operational Environmental Satellite (GOES) has been used for deriving at each half-hour over the ARM Southern Great Plains (SGP) domain: cloud amounts, altitudes, temperatures, and optical depths as well as broadband shortwave (SW) albedo and outgoing longwave radiation at the top of the atmosphere. A new operational algorithm has been implemented to increase the number of value-added products to include cloud particle phase and effective size (r(sub e) or effective ice diameter D(sub e)) as well as LWP and ice water path. Similar analyses have been performed on the data from the Visible Infrared Scanner (VIRS) on the Tropical Rainfall Measuring Mission satellite as part of the Clouds and Earth's Radiant Energy System project. This larger suite of cloud properties will enhance our knowledge of cloud processes and further constrain the mesoscale and single column models using ARM data as a validation/initialization resource. This paper presents the results of applying this new algorithm to GOES-8 data taken during 1998 and 2000. The global VIRS results are compared to the GOES SGP results to provide appropriate context and to test consistency.
Robotic vision techniques for space operations
NASA Technical Reports Server (NTRS)
Krishen, Kumar
1994-01-01
Automation and robotics for space applications are being pursued for increased productivity, enhanced reliability, increased flexibility, higher safety, and for the automation of time-consuming tasks and those activities which are beyond the capacity of the crew. One of the key functional elements of an automated robotic system is sensing and perception. As the robotics era dawns in space, vision systems will be required to provide the key sensory data needed for multifaceted intelligent operations. In general, the three-dimensional scene/object description, along with location, orientation, and motion parameters will be needed. In space, the absence of diffused lighting due to a lack of atmosphere gives rise to: (a) high dynamic range (10(exp 8)) of scattered sunlight intensities, resulting in very high contrast between shadowed and specular portions of the scene; (b) intense specular reflections causing target/scene bloom; and (c) loss of portions of the image due to shadowing and presence of stars, Earth, Moon, and other space objects in the scene. In this work, developments for combating the adverse effects described earlier and for enhancing scene definition are discussed. Both active and passive sensors are used. The algorithm for selecting appropriate wavelength, polarization, look angle of vision sensors is based on environmental factors as well as the properties of the target/scene which are to be perceived. The environment is characterized on the basis of sunlight and other illumination incident on the target/scene and the temperature profiles estimated on the basis of the incident illumination. The unknown geometrical and physical parameters are then derived from the fusion of the active and passive microwave, infrared, laser, and optical data.
Binary logistic regression-Instrument for assessing museum indoor air impact on exhibits.
Bucur, Elena; Danet, Andrei Florin; Lehr, Carol Blaziu; Lehr, Elena; Nita-Lazar, Mihai
2017-04-01
This paper presents a new way to assess the environmental impact on historical artifacts using binary logistic regression. The prediction of the impact on the exhibits during certain pollution scenarios (environmental impact) was calculated by a mathematical model based on the binary logistic regression; it allows the identification of those environmental parameters from a multitude of possible parameters with a significant impact on exhibitions and ranks them according to their severity effect. Air quality (NO 2 , SO 2 , O 3 and PM 2.5 ) and microclimate parameters (temperature, humidity) monitoring data from a case study conducted within exhibition and storage spaces of the Romanian National Aviation Museum Bucharest have been used for developing and validating the binary logistic regression method and the mathematical model. The logistic regression analysis was used on 794 data combinations (715 to develop of the model and 79 to validate it) by a Statistical Package for Social Sciences (SPSS 20.0). The results from the binary logistic regression analysis demonstrated that from six parameters taken into consideration, four of them present a significant effect upon exhibits in the following order: O 3 >PM 2.5 >NO 2 >humidity followed at a significant distance by the effects of SO 2 and temperature. The mathematical model, developed in this study, correctly predicted 95.1 % of the cumulated effect of the environmental parameters upon the exhibits. Moreover, this model could also be used in the decisional process regarding the preventive preservation measures that should be implemented within the exhibition space. The paper presents a new way to assess the environmental impact on historical artifacts using binary logistic regression. The mathematical model developed on the environmental parameters analyzed by the binary logistic regression method could be useful in a decision-making process establishing the best measures for pollution reduction and preventive preservation of exhibits.
Environmental Hazards: What You Need To Know.
ERIC Educational Resources Information Center
DiNardo, Cathy
1996-01-01
Discusses what school business officials should know concerning environmental hazards in educational facilities, particularly bloodborne pathogens (Human Immunodeficiency Virus and Hepatitis B), lead in paint and water, and asbestos. The keys to managing environmental hazards are education and a knowledgeable inhouse employee or outside consultant…
Teaching Science or Cultivating Values? Conservation NGOs and Environmental Education in Costa Rica
ERIC Educational Resources Information Center
Blum, Nicole
2009-01-01
A key ongoing debate in environmental education practice and its research relates to the content and goals of environmental education programmes. Specifically, there is a long history of debate between advocates of educational perspectives that emphasise the teaching of science concepts and those that seek to more actively link environmental and…
ERIC Educational Resources Information Center
Navajo Health Authority, Window Rock, AZ.
The Indian Health Committee met with key staff of the Indian Health Service (IHS) Area Office to review the environmental health services provided on the Navajo Reservation and make recommendations for improvement or expansion of current programs, if needed. Recommendations were made regarding environmental health and institutional personnel,…
ERIC Educational Resources Information Center
Beachler, Judith
This document summarizes both the 2000 External Environmental Scan and the 2000 Internal Environmental Scan Report Card for the Los Rios Community College District (LRCCD) (California). LRCCD consists of American River College (ARC), Consummes River College (CRC), and Sacramento City College (SCC). Report highlights include: (1) total headcount…
A Study on the Teachers' Professional Knowledge and Competence in Environmental Education
ERIC Educational Resources Information Center
Yuan, Kuo-Shu; Wu, Tung-Ju; Chen, Hui-Bing; Li, Yi-Bin
2017-01-01
The rapid development of technology and economy has largely enhanced the quality of life. Nevertheless, various social and environmental problems have emerged. It would be the key solution to develop environmental education in order to have people present the environmental knowledge and the attitudes and value to concern about the environment and…
NASA Astrophysics Data System (ADS)
Lee, M. J.; Oh, K. Y.; Joung-ho, L.
2016-12-01
Recently there are many research about analysing the interaction between entities by text-mining analysis in various fields. In this paper, we aimed to quantitatively analyse research-trends in the area of environmental research relating either spatial information or ICT (Information and Communications Technology) by Text-mining analysis. To do this, we applied low-dimensional embedding method, clustering analysis, and association rule to find meaningful associative patterns of key words frequently appeared in the articles. As the authors suppose that KCI (Korea Citation Index) articles reflect academic demands, total 1228 KCI articles that have been published from 1996 to 2015 were reviewed and analysed by Text-mining method. First, we derived KCI articles from NDSL(National Discovery for Science Leaders) site. And then we pre-processed their key-words elected from abstract and then classified those in separable sectors. We investigated the appearance rates and association rule of key-words for articles in the two fields: spatial-information and ICT. In order to detect historic trends, analysis was conducted separately for the four periods: 1996-2000, 2001-2005, 2006-2010, 2011-2015. These analysis were conducted with the usage of R-software. As a result, we conformed that environmental research relating spatial information mainly focused upon such fields as `GIS(35%)', `Remote-Sensing(25%)', `environmental theme map(15.7%)'. Next, `ICT technology(23.6%)', `ICT service(5.4%)', `mobile(24%)', `big data(10%)', `AI(7%)' are primarily emerging from environmental research relating ICT. Thus, from the analysis results, this paper asserts that research trends and academic progresses are well-structured to review recent spatial information and ICT technology and the outcomes of the analysis can be an adequate guidelines to establish environment policies and strategies. KEY WORDS: Big data, Test-mining, Environmental research, Spatial-information, ICT Acknowledgements: The authors appreciate the support that this study has received from `Building application frame of environmental issues, to respond to the latest ICT trends'.
Monolithically compatible impedance measurement
Ericson, Milton Nance; Holcomb, David Eugene
2002-01-01
A monolithic sensor includes a reference channel and at least one sensing channel. Each sensing channel has an oscillator and a counter driven by the oscillator. The reference channel and the at least one sensing channel being formed integrally with a substrate and intimately nested with one another on the substrate. Thus, the oscillator and the counter have matched component values and temperature coefficients. A frequency determining component of the sensing oscillator is formed integrally with the substrate and has an impedance parameter which varies with an environmental parameter to be measured by the sensor. A gating control is responsive to an output signal generated by the reference channel, for terminating counting in the at least one sensing channel at an output count, whereby the output count is indicative of the environmental parameter, and successive ones of the output counts are indicative of changes in the environmental parameter.
James, Kevin R; Dowling, David R
2008-09-01
In underwater acoustics, the accuracy of computational field predictions is commonly limited by uncertainty in environmental parameters. An approximate technique for determining the probability density function (PDF) of computed field amplitude, A, from known environmental uncertainties is presented here. The technique can be applied to several, N, uncertain parameters simultaneously, requires N+1 field calculations, and can be used with any acoustic field model. The technique implicitly assumes independent input parameters and is based on finding the optimum spatial shift between field calculations completed at two different values of each uncertain parameter. This shift information is used to convert uncertain-environmental-parameter distributions into PDF(A). The technique's accuracy is good when the shifted fields match well. Its accuracy is evaluated in range-independent underwater sound channels via an L(1) error-norm defined between approximate and numerically converged results for PDF(A). In 50-m- and 100-m-deep sound channels with 0.5% uncertainty in depth (N=1) at frequencies between 100 and 800 Hz, and for ranges from 1 to 8 km, 95% of the approximate field-amplitude distributions generated L(1) values less than 0.52 using only two field calculations. Obtaining comparable accuracy from traditional methods requires of order 10 field calculations and up to 10(N) when N>1.
Reproducibility of geochemical and climatic signals in the Atlantic coral Montastraea faveolata
Smith, Joseph M.; Quinn, T.M.; Helmle, K.P.; Halley, R.B.
2006-01-01
Monthly resolved, 41-year-long stable isotopic and elemental ratio time series were generated from two separate heads of Montastraea faveolata from Looe Key, Florida, to assess the fidelity of using geochemical variations in Montastraea, the dominant reef-building coral of the Atlantic, to reconstruct sea surface environmental conditions at this site. The stable isotope time series of the two corals replicate well; mean values of ??18O and ??13C are indistinguishable between cores (compare 0.70??? versus 0.68??? for ??13C and -3.90??? versus - 3.94??? for ??18O). Mean values from the Sr/Ca time series differ by 0.037 mmol/mol, which is outside of analytical error and indicates that nonenvironmental factors are influencing the coral Sr/ Ca records at Looe Key. We have generated significant ?? 18O-sea surface temperature (SST) (R = -0.84) and Sr/ Ca-SST (R = -0.86) calibration equations at Looe Key; however, these equations are different from previously published equations for Montastraea. Variations in growth parameters or kinetic effects are not sufficient to explain either the observed differences in the mean offset between Sr/Ca time series or the disagreement between previous calibrations and our calculated ??18O-SST and Sr/Ca-SST relationships. Calibration differences are most likely due to variations in seawater chemistry in the continentally influenced waters at Looe Key. Additional geochemical replication studies of Montastraea are needed and should include multiple coral heads from open ocean localities complemented whenever possible by seawater chemistry determinations. Copyright 2006 by the American Geophysical Union.
Numerical Simulation Of Cratering Effects In Adobe
2013-07-01
DEVELOPMENT OF MATERIAL PARAMETERS .........................................................7 PROBLEM SETUP...37 PARAMETER ADJUSTMENTS ......................................................................................38 GLOSSARY...dependent yield surface with the Geological Yield Surface (GEO) modeled in CTH using well characterized adobe. By identifying key parameters that
NASA Astrophysics Data System (ADS)
Stockton, T. B.; Black, P. K.; Catlett, K. M.; Tauxe, J. D.
2002-05-01
Environmental modeling is an essential component in the evaluation of regulatory compliance of radioactive waste management sites (RWMSs) at the Nevada Test Site in southern Nevada, USA. For those sites that are currently operating, further goals are to support integrated decision analysis for the development of acceptance criteria for future wastes, as well as site maintenance, closure, and monitoring. At these RWMSs, the principal pathways for release of contamination to the environment are upward towards the ground surface rather than downwards towards the deep water table. Biotic processes, such as burrow excavation and plant uptake and turnover, dominate this upward transport. A combined multi-pathway contaminant transport and risk assessment model was constructed using the GoldSim modeling platform. This platform facilitates probabilistic analysis of environmental systems, and is especially well suited for assessments involving radionuclide decay chains. The model employs probabilistic definitions of key parameters governing contaminant transport, with the goals of quantifying cumulative uncertainty in the estimation of performance measures and providing information necessary to perform sensitivity analyses. This modeling differs from previous radiological performance assessments (PAs) in that the modeling parameters are intended to be representative of the current knowledge, and the uncertainty in that knowledge, of parameter values rather than reflective of a conservative assessment approach. While a conservative PA may be sufficient to demonstrate regulatory compliance, a parametrically honest PA can also be used for more general site decision-making. In particular, a parametrically honest probabilistic modeling approach allows both uncertainty and sensitivity analyses to be explicitly coupled to the decision framework using a single set of model realizations. For example, sensitivity analysis provides a guide for analyzing the value of collecting more information by quantifying the relative importance of each input parameter in predicting the model response. However, in these complex, high dimensional eco-system models, represented by the RWMS model, the dynamics of the systems can act in a non-linear manner. Quantitatively assessing the importance of input variables becomes more difficult as the dimensionality, the non-linearities, and the non-monotonicities of the model increase. Methods from data mining such as Multivariate Adaptive Regression Splines (MARS) and the Fourier Amplitude Sensitivity Test (FAST) provide tools that can be used in global sensitivity analysis in these high dimensional, non-linear situations. The enhanced interpretability of model output provided by the quantitative measures estimated by these global sensitivity analysis tools will be demonstrated using the RWMS model.
Understanding uncertainty in temperature effects on vector-borne disease: a Bayesian approach
Johnson, Leah R.; Ben-Horin, Tal; Lafferty, Kevin D.; McNally, Amy; Mordecai, Erin A.; Paaijmans, Krijn P.; Pawar, Samraat; Ryan, Sadie J.
2015-01-01
Extrinsic environmental factors influence the distribution and population dynamics of many organisms, including insects that are of concern for human health and agriculture. This is particularly true for vector-borne infectious diseases like malaria, which is a major source of morbidity and mortality in humans. Understanding the mechanistic links between environment and population processes for these diseases is key to predicting the consequences of climate change on transmission and for developing effective interventions. An important measure of the intensity of disease transmission is the reproductive number R0. However, understanding the mechanisms linking R0 and temperature, an environmental factor driving disease risk, can be challenging because the data available for parameterization are often poor. To address this, we show how a Bayesian approach can help identify critical uncertainties in components of R0 and how this uncertainty is propagated into the estimate of R0. Most notably, we find that different parameters dominate the uncertainty at different temperature regimes: bite rate from 15°C to 25°C; fecundity across all temperatures, but especially ~25–32°C; mortality from 20°C to 30°C; parasite development rate at ~15–16°C and again at ~33–35°C. Focusing empirical studies on these parameters and corresponding temperature ranges would be the most efficient way to improve estimates of R0. While we focus on malaria, our methods apply to improving process-based models more generally, including epidemiological, physiological niche, and species distribution models.
Terminology supported archiving and publication of environmental science data in PANGAEA.
Diepenbroek, Michael; Schindler, Uwe; Huber, Robert; Pesant, Stéphane; Stocker, Markus; Felden, Janine; Buss, Melanie; Weinrebe, Matthias
2017-11-10
Exemplified on the information system PANGAEA, we describe the application of terminologies for archiving and publishing environmental science data. A terminology catalogue (TC) was embedded into the system, with interfaces allowing to replicate and to manually work on terminologies. For data ingest and archiving, we show how the TC can improve structuring and harmonizing lineage and content descriptions of data sets. Key is the conceptualization of measurement and observation types (parameters) and methods, for which we have implemented a basic syntax and rule set. For data access and dissemination, we have improved findability of data through enrichment of metadata with TC terms. Semantic annotations, e.g. adding term concepts (including synonyms and hierarchies) or mapped terms of different terminologies, facilitate comprehensive data retrievals. The PANGAEA thesaurus of classifying terms, which is part of the TC is used as an umbrella vocabulary that links the various domains and allows drill downs and side drills with various facets. Furthermore, we describe how TC terms can be linked to nominal data values. This improves data harmonization and facilitates structural transformation of heterogeneous data sets to a common schema. Technical developments are complemented by work on the metadata content. Over the last 20 years, more than 100 new parameters have been defined on average per week. Recently, PANGAEA has increasingly been submitting new terms to various terminology services. Matching terms from terminology services with our parameter or method strings is supported programmatically. However, the process ultimately needs manual input by domain experts. The quality of terminology services is an additional limiting factor, and varies with respect to content, editorial, interoperability, and sustainability. Good quality terminology services are the building blocks for the conceptualization of parameters and methods. In our view, they are essential for data interoperability and arguably the most difficult hurdle for data integration. In summary, the application of terminologies has a mutual positive effect for terminology services and information systems such as PANGAEA. On both sides, the application of terminologies improves content, reliability and interoperability. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Laser-induced damage of coatings on Yb:YAG crystals at cryogenic condition
NASA Astrophysics Data System (ADS)
Wang, He; Zhang, Weili; Chen, Shunli; Zhu, Meiping; He, Hongbo; Fan, Zhengxiu
2011-12-01
As large amounts of heat need to be dissipated during laser operation, some diode pumped solid state lasers (DPSSL), especially Yb:YAG laser, operate at cryogenic condition. This work investigated the laser induced damage of coatings (high-reflective and anti-reflective coatings) on Yb:YAG crystals at cryogenic temperature and room temperature. The results show that the damage threshold of coatings at cryogenic temperature is lower than the one at room temperature. Field-emission scanning electron microscopy (FESEM), optical profiler, step profiler and Atomic force microscope (AFM) were used to obtain the damage morphology, size and depth. Taking alteration of physical parameters, microstructure of coatings and the environmental pollution into consideration, we analyzed the key factor of lowering the coating damage threshold at cryogenic conditions. The results are important to understand the mechanisms leading to damage at cryogenic condition.
Medical group management: a marketing orientation.
Bopp, K D; Allcorn, S
1986-09-01
This article considers the pragmatic aspects of conducting a situation/marketing audit for group medical practices. This audit is a key component in the formulation of a competitive strategy and the development of a marketing program. Given are a series of questions that may be used by medical groups to guide assessment of the opportunities and threats present in the environment as well as the strengths and weaknesses of the organization in meeting the environmental challenges. Furthermore, the article provides a framework for thinking about strategy and the variables that should be considered and aligned to achieve effective implementation of strategy. Finally, the parameters are outlined for deciding on a marketing program: the mix of marketing tools (service design, distribution channels, pricing and promotion) that should be employed to offensively and/or defensively position the medical group in the competitive marketplace.
Impact of walkability with regard to physical activity in the prevention of diabetes.
Mena, Carlos; Sepúlveda, César; Ormazábal, Yony; Fuentes, Eduardo; Palomo, Iván
2017-11-03
Walkability, a component of urban design intended to facilitate pedestrian traffic, depends on parameters associated with the connectivity of routes, population density and availability of destinations in the neighbourhood. The aim is to achieve levels of physical activity related to the prevention of risk factors associated with diseases, such as diabetes and the improvement of glycaemia control. It is important to consider that the effects of walkability depend on its relation with other variables present in the neighbourhood, e.g., environmental and socioeconomic factors. Considering this, improving walkability levels could be an effective strategy to reduce disease, the prevalence of diabetes in particular, in the population and thus reduce public spending. To investigate these relationships, PUBMED and ScienceDirect databases were searched using the following key words: Diabetes, Walkability and Physical activity.
Cost-effective conservation of amphibian ecology and evolution
Campos, Felipe S.; Lourenço-de-Moraes, Ricardo; Llorente, Gustavo A.; Solé, Mirco
2017-01-01
Habitat loss is the most important threat to species survival, and the efficient selection of priority areas is fundamental for good systematic conservation planning. Using amphibians as a conservation target, we designed an innovative assessment strategy, showing that prioritization models focused on functional, phylogenetic, and taxonomic diversity can include cost-effectiveness–based assessments of land values. We report new key conservation sites within the Brazilian Atlantic Forest hot spot, revealing a congruence of ecological and evolutionary patterns. We suggest payment for ecosystem services through environmental set-asides on private land, establishing potential trade-offs for ecological and evolutionary processes. Our findings introduce additional effective area-based conservation parameters that set new priorities for biodiversity assessment in the Atlantic Forest, validating the usefulness of a novel approach to cost-effectiveness–based assessments of conservation value for other species-rich regions. PMID:28691084
Fabian, P; Adamkiewicz, G; Levy, J I
2012-02-01
Residents of low-income multifamily housing can have elevated exposures to multiple environmental pollutants known to influence asthma. Simulation models can characterize the health implications of changing indoor concentrations, but quantifying the influence of interventions on concentrations is challenging given complex airflow and source characteristics. In this study, we simulated concentrations in a prototype multifamily building using CONTAM, a multizone airflow and contaminant transport program. Contaminants modeled included PM(2.5) and NO(2) , and parameters included stove use, presence and operability of exhaust fans, smoking, unit level, and building leakiness. We developed regression models to explain variability in CONTAM outputs for individual sources, in a manner that could be utilized in simulation modeling of health outcomes. To evaluate our models, we generated a database of 1000 simulated households with characteristics consistent with Boston public housing developments and residents and compared the predicted levels of NO(2) and PM(2.5) and their correlates with the literature. Our analyses demonstrated that CONTAM outputs could be readily explained by available parameters (R(2) between 0.89 and 0.98 across models), but that one-compartment box models would mischaracterize concentrations and source contributions. Our study quantifies the key drivers for indoor concentrations in multifamily housing and helps to identify opportunities for interventions. Many low-income urban asthmatics live in multifamily housing that may be amenable to ventilation-related interventions such as weatherization or air sealing, wall and ceiling hole repairs, and exhaust fan installation or repair, but such interventions must be designed carefully given their cost and their offsetting effects on energy savings as well as indoor and outdoor pollutants. We developed models to take into account the complex behavior of airflow patterns in multifamily buildings, which can be used to identify and evaluate environmental and non-environmental interventions targeting indoor air pollutants which can trigger asthma exacerbations. © 2011 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Zhu, Jian-Rong; Li, Jian; Zhang, Chun-Mei; Wang, Qin
2017-10-01
The decoy-state method has been widely used in commercial quantum key distribution (QKD) systems. In view of the practical decoy-state QKD with both source errors and statistical fluctuations, we propose a universal model of full parameter optimization in biased decoy-state QKD with phase-randomized sources. Besides, we adopt this model to carry out simulations of two widely used sources: weak coherent source (WCS) and heralded single-photon source (HSPS). Results show that full parameter optimization can significantly improve not only the secure transmission distance but also the final key generation rate. And when taking source errors and statistical fluctuations into account, the performance of decoy-state QKD using HSPS suffered less than that of decoy-state QKD using WCS.
14 CFR 415.203 - Environmental information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... parameters of any existing environmental impact statement that applies to that site; (d) A proposed payload that may have significant environmental impacts in the event of a mishap; and (e) Other factors as...
14 CFR 415.203 - Environmental information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... parameters of any existing environmental impact statement that applies to that site; (d) A proposed payload that may have significant environmental impacts in the event of a mishap; and (e) Other factors as...
14 CFR 415.203 - Environmental information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... parameters of any existing environmental impact statement that applies to that site; (d) A proposed payload that may have significant environmental impacts in the event of a mishap; and (e) Other factors as...
14 CFR 415.203 - Environmental information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... parameters of any existing environmental impact statement that applies to that site; (d) A proposed payload that may have significant environmental impacts in the event of a mishap; and (e) Other factors as...
40 CFR 355.3 - Which section contains the definitions of the key words used in this part?
Code of Federal Regulations, 2010 CFR
2010-07-01
... of the key words used in this part? 355.3 Section 355.3 Protection of Environment ENVIRONMENTAL... words used in this part? The definitions of key words used in this part are in § 355.61. It is important to read the definitions for these key words because the definition explains the word's specific...
Environmental Education Research: To What Ends?
ERIC Educational Resources Information Center
Jickling, Bob
2009-01-01
This paper engages questions about ends in environmental education research. In doing so, I argue that such questions are essentially normative, and that normative questions are underrepresented in this field. After cautioning about perils of prescribing research agendas, I gently suggest that in environmental education key normative questions…
Understanding the spatial distribution of environmental amenities requires consideration of social and biogeophysical factors, and how they interact to produce patterns of environmental justice or injustice. In this study, we explicitly account for terrain, a key local environmen...
The role of imagination in experiencing natural environments
Herbert Schroeder
2010-01-01
The experience of natural environments and places is multifaceted, involving psychological functions such as perception, cognition, memory, emotion, and imagination. Environmental perception and cognition were key topics in early research in environmental psychology. More recently, attention has also been directed to affective dimensions of environmental experience,...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-27
... alternative data sets. II. Information Available for Public Comment The 2011 Emissions Modeling Platform... Assessment. The EPA has placed key information related to the 2011 emissions modeling platform into the... the Environmental Protection Agency's 2011 Emissions Modeling Platform AGENCY: Environmental...
Secure and Efficient Signature Scheme Based on NTRU for Mobile Payment
NASA Astrophysics Data System (ADS)
Xia, Yunhao; You, Lirong; Sun, Zhe; Sun, Zhixin
2017-10-01
Mobile payment becomes more and more popular, however the traditional public-key encryption algorithm has higher requirements for hardware which is not suitable for mobile terminals of limited computing resources. In addition, these public-key encryption algorithms do not have the ability of anti-quantum computing. This paper researches public-key encryption algorithm NTRU for quantum computation through analyzing the influence of parameter q and k on the probability of generating reasonable signature value. Two methods are proposed to improve the probability of generating reasonable signature value. Firstly, increase the value of parameter q. Secondly, add the authentication condition that meet the reasonable signature requirements during the signature phase. Experimental results show that the proposed signature scheme can realize the zero leakage of the private key information of the signature value, and increase the probability of generating the reasonable signature value. It also improve rate of the signature, and avoid the invalid signature propagation in the network, but the scheme for parameter selection has certain restrictions.
Gariano, John; Neifeld, Mark; Djordjevic, Ivan
2017-01-20
Here, we present the engineering trade studies of a free-space optical communication system operating over a 30 km maritime channel for the months of January and July. The system under study follows the BB84 protocol with the following assumptions: a weak coherent source is used, Eve is performing the intercept resend attack and photon number splitting attack, prior knowledge of Eve's location is known, and Eve is allowed to know a small percentage of the final key. In this system, we examine the effect of changing several parameters in the following areas: the implementation of the BB84 protocol over the public channel, the technology in the receiver, and our assumptions about Eve. For each parameter, we examine how different values impact the secure key rate for a constant brightness. Additionally, we will optimize the brightness of the source for each parameter to study the improvement in the secure key rate.
An International Workshop on Uncertainty, Sensitivity, and Parameter Estimation for Multimedia Environmental Modeling was held August 1921, 2003, at the U.S. Nuclear Regulatory Commission Headquarters in Rockville, Maryland, USA. The workshop was organized and convened by the Fe...
Using Monte Carlo Simulation to Prioritize Key Maritime Environmental Impacts of Port Infrastructure
NASA Astrophysics Data System (ADS)
Perez Lespier, L. M.; Long, S.; Shoberg, T.
2016-12-01
This study creates a Monte Carlo simulation model to prioritize key indicators of environmental impacts resulting from maritime port infrastructure. Data inputs are derived from LandSat imagery, government databases, and industry reports to create the simulation. Results are validated using subject matter experts and compared with those returned from time-series regression to determine goodness of fit. The Port of Prince Rupert, Canada is used as the location for the study.
Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems
NASA Astrophysics Data System (ADS)
Ghaffari, Azad
Power map and Maximum Power Point (MPP) of Photovoltaic (PV) and Wind Energy Conversion Systems (WECS) highly depend on system dynamics and environmental parameters, e.g., solar irradiance, temperature, and wind speed. Power optimization algorithms for PV systems and WECS are collectively known as Maximum Power Point Tracking (MPPT) algorithm. Gradient-based Extremum Seeking (ES), as a non-model-based MPPT algorithm, governs the system to its peak point on the steepest descent curve regardless of changes of the system dynamics and variations of the environmental parameters. Since the power map shape defines the gradient vector, then a close estimate of the power map shape is needed to create user assignable transients in the MPPT algorithm. The Hessian gives a precise estimate of the power map in a neighborhood around the MPP. The estimate of the inverse of the Hessian in combination with the estimate of the gradient vector are the key parts to implement the Newton-based ES algorithm. Hence, we generate an estimate of the Hessian using our proposed perturbation matrix. Also, we introduce a dynamic estimator to calculate the inverse of the Hessian which is an essential part of our algorithm. We present various simulations and experiments on the micro-converter PV systems to verify the validity of our proposed algorithm. The ES scheme can also be used in combination with other control algorithms to achieve desired closed-loop performance. The WECS dynamics is slow which causes even slower response time for the MPPT based on the ES. Hence, we present a control scheme, extended from Field-Oriented Control (FOC), in combination with feedback linearization to reduce the convergence time of the closed-loop system. Furthermore, the nonlinear control prevents magnetic saturation of the stator of the Induction Generator (IG). The proposed control algorithm in combination with the ES guarantees the closed-loop system robustness with respect to high level parameter uncertainty in the IG dynamics. The simulation results verify the effectiveness of the proposed algorithm.
Potential of Sentinel Satellites for Schistosomiasis Monitoring
NASA Astrophysics Data System (ADS)
Li, C.-R.; Tang, L.-L.; Niu, H.-B.; Zhou, X.-N.; Liu, Z.-Y.; Ma, L.-L.; Zhou, Y.-S.
2012-04-01
Schistosomiasis is a parasitic disease that menaces human health. In terms of impact this disease is second only to malaria as the most devastating parasitic disease. Oncomelania hupensis is the unique intermediate host of Schistosoma, and hence monitoring and controlling of the number of oncomelania is key to reduce the risk of schistosomiasis transmission. Remote sensing technology can real-timely access the large-scale environmental factors related to oncomelania breeding and reproduction, such as temperature, moisture, vegetation, soil, and rainfall, and can also provide the efficient information to determine the location, area, and spread tendency of oncomelania. Many studies show that the correlation coefficient between oncomelania densities and remote sensing environmental factors depends largely on suitable and high quality remote sensing data used in retrieve environmental factors. Research achievements on retrieving environmental factors (which are related to the living, multiplying and transmission of oncomelania) by multi-source remote data are shown firstly, including: (a) Vegetation information (e.g., Modified Soil-Adjusted Vegetation Index, Normalized Difference Moisture Index, Fractional Vegetation Cover) extracted from optical remote sensing data, such as Landsat TM, HJ-1A/HSI image; (b) Surface temperature retrieval from Thermal Infrared (TIR) and passive-microwave remote sensing data; (c) Water region, soil moisture, forest height retrieval from synthetic aperture radar data, such as Envisat SAR, DLR's ESAR image. Base on which, the requirements of environmental factor accuracy for schistosomiasis monitoring will be analyzed and summarized. Our work on applying remote sensing technique to schistosomiasis monitoring is then presented. The fuzzy information theory is employed to analyze the sensitivity and feasibility relation between oncomelania densities and environmental factors. Then a mechanism model of predicting oncomelania distribution and densities is developed. The new model is validated with field data of Dongting Lake and the dynamic monitoring of schistosomiasis breeding in Dongting Lake region is presented. Finally, emphasis are placed on analyzing the potential of Sentinel satellites for schistosomiasis monitoring. The requirements of optical high resolution data on spectral resolution, spatial resolution, radiometric resolution/accuracy, as well as the requirements of synthetic aperture radar data on operation frequency, spatial resolution, polarization, radiometric accuracy, repeat cycle are presented and then compared with the parameters of Sentinel satellites. The parameters of Sentinel satellites are also compared with those of available remote satellites, such as Envisat, Landsat, whose data are being used for schistosomiasis monitoring. The application potential of Sentinel satellites for the schistosomiasis monitoring will be concluded in the end, which will benefit for the mission operation, model development, etc.
2013-01-01
Background Genetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike’s information criterion using h-likelihood to select the best fitting model. Methods We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike’s information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters. Results Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike’s information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed. Conclusion The algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring. PMID:23827014
Avanasi, Raghavendhran; Shin, Hyeong-Moo; Vieira, Veronica M; Bartell, Scott M
2016-04-01
We recently utilized a suite of environmental fate and transport models and an integrated exposure and pharmacokinetic model to estimate individual perfluorooctanoate (PFOA) serum concentrations, and also assessed the association of those concentrations with preeclampsia for participants in the C8 Health Project (a cross-sectional study of over 69,000 people who were environmentally exposed to PFOA near a major U.S. fluoropolymer production facility located in West Virginia). However, the exposure estimates from this integrated model relied on default values for key independent exposure parameters including water ingestion rates, the serum PFOA half-life, and the volume of distribution for PFOA. The aim of the present study is to assess the impact of inter-individual variability and epistemic uncertainty in these parameters on the exposure estimates and subsequently, the epidemiological association between PFOA exposure and preeclampsia. We used Monte Carlo simulation to propagate inter-individual variability/epistemic uncertainty in the exposure assessment and reanalyzed the epidemiological association. Inter-individual variability in these parameters mildly impacted the serum PFOA concentration predictions (the lowest mean rank correlation between the estimated serum concentrations in our study and the original predicted serum concentrations was 0.95) and there was a negligible impact on the epidemiological association with preeclampsia (no change in the mean adjusted odds ratio (AOR) and the contribution of exposure uncertainty to the total uncertainty including sampling variability was 7%). However, when epistemic uncertainty was added along with the inter-individual variability, serum PFOA concentration predictions and their association with preeclampsia were moderately impacted (the mean AOR of preeclampsia occurrence was reduced from 1.12 to 1.09, and the contribution of exposure uncertainty to the total uncertainty was increased up to 33%). In conclusion, our study shows that the change of the rank exposure among the study participants due to variability and epistemic uncertainty in the independent exposure parameters was large enough to cause a 25% bias towards the null. This suggests that the true AOR of the association between PFOA and preeclampsia in this population might be higher than the originally reported AOR and has more uncertainty than indicated by the originally reported confidence interval. Copyright © 2016 Elsevier Inc. All rights reserved.
Bourget, Philippe; Amin, Alexandre; Vidal, Fabrice; Merlette, Christophe; Troude, Pénélope; Baillet-Guffroy, Arlette
2014-08-15
The purpose of the study was to perform a comparative analysis of the technical performance, respective costs and environmental effect of two invasive analytical methods (HPLC and UV/visible-FTIR) as compared to a new non-invasive analytical technique (Raman spectroscopy). Three pharmacotherapeutic models were used to compare the analytical performances of the three analytical techniques. Statistical inter-method correlation analysis was performed using non-parametric correlation rank tests. The study's economic component combined calculations relative to the depreciation of the equipment and the estimated cost of an AQC unit of work. In any case, analytical validation parameters of the three techniques were satisfactory, and strong correlations between the two spectroscopic techniques vs. HPLC were found. In addition, Raman spectroscopy was found to be superior as compared to the other techniques for numerous key criteria including a complete safety for operators and their occupational environment, a non-invasive procedure, no need for consumables, and a low operating cost. Finally, Raman spectroscopy appears superior for technical, economic and environmental objectives, as compared with the other invasive analytical methods. Copyright © 2014 Elsevier B.V. All rights reserved.
Environmental Drivers of West Nile Fever Epidemiology in Europe and Western Asia—A Review
Paz, Shlomit; Semenza, Jan C.
2013-01-01
Abiotic and biotic conditions are both important determinants of West Nile Fever (WNF) epidemiology. Ambient temperature plays an important role in the growth rates of vector populations, the interval between blood meals, viral replication rates and transmission of West Nile Virus (WNV). The contribution of precipitation is more complex and less well understood. In this paper we discuss impacts of climatic parameters (temperature, relative humidity, precipitation) and other environmental drivers (such as bird migration, land use) on WNV transmission in Europe. WNV recently became established in southeastern Europe, with a large outbreak in the summer of 2010 and recurrent outbreaks in 2011 and 2012. Abundant competent mosquito vectors, bridge vectors, infected (viremic) migrating and local (amplifying) birds are all important characteristics of WNV transmission. In addition, certain key climatic factors, such as increased ambient temperatures, and by extension climate change, may also favor WNF transmission, and they should be taken into account when evaluating the risk of disease spread in the coming years. Monitoring epidemic precursors of WNF, such as significant temperature deviations in high risk areas, could be used to trigger vector control programs and public education campaigns. PMID:23939389
Optimal Resting-Growth Strategies of Microbial Populations in Fluctuating Environments
Geisel, Nico; Vilar, Jose M. G.; Rubi, J. Miguel
2011-01-01
Bacteria spend most of their lifetime in non-growing states which allow them to survive extended periods of stress and starvation. When environments improve, they must quickly resume growth to maximize their share of limited nutrients. Cells with higher stress resistance often survive longer stress durations at the cost of needing more time to resume growth, a strong disadvantage in competitive environments. Here we analyze the basis of optimal strategies that microorganisms can use to cope with this tradeoff. We explicitly show that the prototypical inverse relation between stress resistance and growth rate can explain much of the different types of behavior observed in stressed microbial populations. Using analytical mathematical methods, we determine the environmental parameters that decide whether cells should remain vegetative upon stress exposure, downregulate their metabolism to an intermediate optimum level, or become dormant. We find that cell-cell variability, or intercellular noise, is consistently beneficial in the presence of extreme environmental fluctuations, and that it provides an efficient population-level mechanism for adaption in a deteriorating environment. Our results reveal key novel aspects of responsive phenotype switching and its role as an adaptive strategy in changing environments. PMID:21525975
A model system to mimic environmentally active surface film roughness and hydrophobicity.
Grant, Jacob S; Shaw, Scott K
2017-10-01
This work presents the development and initial assessment of a laboratory platform to allow quantitative studies on model urban films. The platform consists of stearic acid and eicosane mixtures that are solution deposited from hexanes onto smooth, solid substrates. We show that this model has distinctive capabilities to better mimic a naturally occurring film's morphology and hydrophobicity, two important parameters that have not previously been incorporated into model film systems. The physical and chemical properties of the model films are assessed using a variety of analytical instruments. The film thickness and roughness are probed via atomic force microscopy while the film composition, wettability, and water uptake are analyzed by Fourier transform infrared spectroscopy, contact angle goniometry, and quartz crystal microbalance, respectively. Simulated environmental maturation is achieved by exposing the film to regulated amounts of UV/ozone. Ultimately, oxidation of the film is monitored by the analytical techniques mentioned above and proceeds as expected to produce a utile model film system. Including variable roughness and tunable surface coverage results in several key advantages over prior model systems, and will more accurately represent native urban film behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.
Physical and JIT Model Based Hybrid Modeling Approach for Building Thermal Load Prediction
NASA Astrophysics Data System (ADS)
Iino, Yutaka; Murai, Masahiko; Murayama, Dai; Motoyama, Ichiro
Energy conservation in building fields is one of the key issues in environmental point of view as well as that of industrial, transportation and residential fields. The half of the total energy consumption in a building is occupied by HVAC (Heating, Ventilating and Air Conditioning) systems. In order to realize energy conservation of HVAC system, a thermal load prediction model for building is required. This paper propose a hybrid modeling approach with physical and Just-in-Time (JIT) model for building thermal load prediction. The proposed method has features and benefits such as, (1) it is applicable to the case in which past operation data for load prediction model learning is poor, (2) it has a self checking function, which always supervises if the data driven load prediction and the physical based one are consistent or not, so it can find if something is wrong in load prediction procedure, (3) it has ability to adjust load prediction in real-time against sudden change of model parameters and environmental conditions. The proposed method is evaluated with real operation data of an existing building, and the improvement of load prediction performance is illustrated.
Abadie, Eric; Chiantella, Claude; Crottier, Anaïs; Rhodes, Lesley; Masseret, Estelle; Berteaux, Tom; Laabir, Mohamed
2018-05-01
Vulcanodinium rugosum, a dinoflagellate developing in Ingril Lagoon (Mediterranean, France) is responsible for shellfish intoxications due to the neurotoxin pinnatoxin G. A one year survey (March 2012-April 2013) was conducted in this oligotrophic shallow lagoon and key environmental parameters were recorded (temperature, salinity and nutrients). The spatio-temporal distribution of V. rugosum in water column and on macrophytes was also determined. Planktonic cells of V. rugosum were observed at all sampling stations, but in relatively low concentrations (maximum of 1000 cell/L). The highest abundances were observed from June to September 2012. There was a positive correlation between cell densities and both temperature and salinity. Non-motile cells were detected on macrophytes, with a maximum concentration of 6300 cells/g wet weight. Nitrite and ammonium were negatively related to V. rugosum abundance whereas total nitrogen, total phosphorus and phosphates showed a positive correlation. Altogether, in situ results suggest that V. rugosum is rather thermophilic and that organic nutrients should be considered when studying the nutrition requirements for this noxious expanding dinoflagellate. Copyright © 2018 Elsevier B.V. All rights reserved.
Importance of precipitation systems to control the climate in Tibetan Plateau
NASA Astrophysics Data System (ADS)
Ueno, K.; Sugimoto, S.
2012-12-01
Kenichi UENO kenueno@sakura.cc.tsukuba.ac.jp Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan Shiori SUGIMOTO shioris@ees.hokudai.ac.jp Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan Precipitation over the Tibetan Plateau (TP) play a crucial rule to control the atmosphere-land interaction, mass balance of glacier, vegetation growth, and significantly affects the life and society in the surrounding areas by means of causing heavy rain or drought. Key issues regarding to the precipitation mechanisms at three domains, such as 1) southern moisture entrance areas facing Indian monsoon and westerlies trough over the Himalayas, 2) active convections with longitudinal soil moisture and vegetation gradient over the plateau, and 3) leeward areas with convergences between the monsoon and northwesterly dry air mass to cause severe weathers, are summarized. To assess the sub-grid scale precipitation variability, satellite measurements with downscaling of numerical simulations are expected. Especially, precipitation type, such as snow or rain, is a critical parameter to model albedo changes and accumulation of snow. Pilot studies of discrimination precipitation types at the mountainous site in Japan are also introduced.; t;
Keys to efficient development of useful environmental documents
DOT National Transportation Integrated Search
2007-09-01
National Environmental Policy Act (NEPA) documentsenvironmental impact statements and assessmentsinform agency : decisionmaking and let the public know about anticipated effects of a proposed Federal action. The fundamental purposes and : princ...
FIT: statistical modeling tool for transcriptome dynamics under fluctuating field conditions
Iwayama, Koji; Aisaka, Yuri; Kutsuna, Natsumaro
2017-01-01
Abstract Motivation: Considerable attention has been given to the quantification of environmental effects on organisms. In natural conditions, environmental factors are continuously changing in a complex manner. To reveal the effects of such environmental variations on organisms, transcriptome data in field environments have been collected and analyzed. Nagano et al. proposed a model that describes the relationship between transcriptomic variation and environmental conditions and demonstrated the capability to predict transcriptome variation in rice plants. However, the computational cost of parameter optimization has prevented its wide application. Results: We propose a new statistical model and efficient parameter optimization based on the previous study. We developed and released FIT, an R package that offers functions for parameter optimization and transcriptome prediction. The proposed method achieves comparable or better prediction performance within a shorter computational time than the previous method. The package will facilitate the study of the environmental effects on transcriptomic variation in field conditions. Availability and Implementation: Freely available from CRAN (https://cran.r-project.org/web/packages/FIT/). Contact: anagano@agr.ryukoku.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online PMID:28158396
1984-11-01
Port Royal Road, Springfield, Virginia 22161. 19. KEY WORDS (Conltinue an, reverse olde It necessemy and Identify by block imbr) Bank protection (WES...20. AmT-RAcT (cothwe areyee &M ffneeeeiny ge Identify by block nmmber) This report provides guidance for incorporating environmental consid- erations...Environmental Effects ....................... 16 * PART IV: STRUCTURAL DESIGNS ..................... 24 4 Composite Revetment ........................ 249
ERIC Educational Resources Information Center
Wheeler, Gilda; Thumlert, Colleen; Glaser, Lise; Schoellhamer, Matt; Bartosh, Oksana
2007-01-01
This study examined reports and programs from across the state, the nation and from international sources to gather a broad selection of published and unpublished environmental education research. A variety of sources were used, such as the internet, interviews with key informants and experts in the field of environmental and sustainability…
NASA Astrophysics Data System (ADS)
Weisz, Elisabeth; Smith, William L.; Smith, Nadia
2013-06-01
The dual-regression (DR) method retrieves information about the Earth surface and vertical atmospheric conditions from measurements made by any high-spectral resolution infrared sounder in space. The retrieved information includes temperature and atmospheric gases (such as water vapor, ozone, and carbon species) as well as surface and cloud top parameters. The algorithm was designed to produce a high-quality product with low latency and has been demonstrated to yield accurate results in real-time environments. The speed of the retrieval is achieved through linear regression, while accuracy is achieved through a series of classification schemes and decision-making steps. These steps are necessary to account for the nonlinearity of hyperspectral retrievals. In this work, we detail the key steps that have been developed in the DR method to advance accuracy in the retrieval of nonlinear parameters, specifically cloud top pressure. The steps and their impact on retrieval results are discussed in-depth and illustrated through relevant case studies. In addition to discussing and demonstrating advances made in addressing nonlinearity in a linear geophysical retrieval method, advances toward multi-instrument geophysical analysis by applying the DR to three different operational sounders in polar orbit are also noted. For any area on the globe, the DR method achieves consistent accuracy and precision, making it potentially very valuable to both the meteorological and environmental user communities.
Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning.
He, Zhili; Zhang, Ping; Wu, Linwei; Rocha, Andrea M; Tu, Qichao; Shi, Zhou; Wu, Bo; Qin, Yujia; Wang, Jianjun; Yan, Qingyun; Curtis, Daniel; Ning, Daliang; Van Nostrand, Joy D; Wu, Liyou; Yang, Yunfeng; Elias, Dwayne A; Watson, David B; Adams, Michael W W; Fields, Matthew W; Alm, Eric J; Hazen, Terry C; Adams, Paul D; Arkin, Adam P; Zhou, Jizhong
2018-02-20
Contamination from anthropogenic activities has significantly impacted Earth's biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly ( P < 0.05) as uranium or nitrate increased, and their changes could be used to successfully predict uranium and nitrate contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning. IMPORTANCE Disentangling the relationships between biodiversity and ecosystem functioning is an important but poorly understood topic in ecology. Predicting ecosystem functioning on the basis of biodiversity is even more difficult, particularly with microbial biomarkers. As an exploratory effort, this study used key microbial functional genes as biomarkers to provide predictive understanding of environmental contamination and ecosystem functioning. The results indicated that the overall functional gene richness/diversity decreased as uranium increased in groundwater, while specific key microbial guilds increased significantly as uranium or nitrate increased. These key microbial functional genes could be used to successfully predict environmental contamination and ecosystem functioning. This study represents a significant advance in using functional gene markers to predict the spatial distribution of environmental contaminants and ecosystem functioning toward predictive microbial ecology, which is an ultimate goal of microbial ecology. Copyright © 2018 He et al.
Field spectrometer (S191H) preprocessor tape quality test program design document
NASA Technical Reports Server (NTRS)
Campbell, H. M.
1976-01-01
Program QA191H performs quality assurance tests on field spectrometer data recorded on 9-track magnetic tape. The quality testing involves the comparison of key housekeeping and data parameters with historic and predetermined tolerance limits. Samples of key parameters are processed during the calibration period and wavelength cal period, and the results are printed out and recorded on an historical file tape.
Assessing Cumulative Impact and Risk - Approaches at the U.S. Environmental Protection Agency
The U.S. Environmental Protection Agency (EPA) has a mission and regulatory mandate to protect human health and the environment. EPA’s primary role is to implement environmental laws by developing and enforcing national regulation. Cogent to the goals of this workshop, key envi...
Core List for an Environmental Reference Collection.
ERIC Educational Resources Information Center
Environmental Protection Agency, Washington, DC. Office of Information and Resources Management.
This bibliography identifies key books, reports, and documents for research in the areas of environmental protection, management, and science. The titles included are those used most frequently by librarians and their staffs working in Environmental Protection Agency libraries in support of the Agency's mission. Recommended titles are listed under…
Analyzing Key Success Factors of Green Brands for Enterprises in Taiwan
ERIC Educational Resources Information Center
Tu, Jui-Che; Tu, Ya-Wen; Jhangr, Yun-Sian
2016-01-01
During the last decade, environmental issues have become a global concern. According to a report by the Taiwan Environmental Protection Administration, more than 95% of consumers prioritize purchasing green products. Therefore, enterprises should consider environmental concerns in their operational strategies. This study identified how enterprises…
The "Natural Start Alliance": Building Collective Impact for Early Childhood Environmental Education
ERIC Educational Resources Information Center
Merrick, Christy
2014-01-01
Last year, the North American Association for Environmental Education launched the "Natural Start Alliance," a new initiative to advance environmental education for infants, toddlers, and preschoolers. Natural Start provides an opportunity for key players to convene, share ideas and resources, and move together toward shared goals. This…
Improving the representation of Arctic photosynthesis in Earth System Models
NASA Astrophysics Data System (ADS)
Rogers, A.; Serbin, S.; Sloan, V. L.; Norby, R. J.; Wullschleger, S. D.
2014-12-01
The primary goal of Earth System Models (ESMs) is to improve understanding and projection of future global change. In order to do this models must accurately represent the terrestrial carbon cycle. Although Arctic carbon fluxes are small relative to global carbon fluxes, uncertainty is large. Photosynthetic CO2 uptake is well described by the Farquhar, von Caemmerer and Berry (FvCB) model of photosynthesis and most ESMs use a derivation of the FvCB model to calculate gross primary productivity. Two key parameters required by the FvCB model are an estimate of the maximum rate of carboxylation by the enzyme Rubisco (Vc,max) and the maximum rate of electron transport (Jmax). In ESMs the parameter Vc,max is typically fixed for a given plant functional type (PFT). Only four ESMs currently have an explicit Arctic PFT and the data used to derive Vc,max in these models relies on small data sets and unjustified assumptions. We examined the derivation of Vc,max and Jmax in current Arctic PFTs and estimated Vc,max and Jmax for a range of Arctic PFTs growing on the Barrow Environmental Observatory, Barrow, AK. We found that the values of Vc,max currently used to represent Arctic plants in ESMs are 70% lower than the values we measured, and contemporary temperature response functions for Vc,max also appear to underestimate Vc,max at low temperature. ESMs typically use a single multiplier (JVratio) to convert Vc,max to Jmax, however we found that the JVratio of Arctic plants is higher than current estimates suggesting that Arctic PFTs will be more responsive to rising carbon dioxide than currently projected. In addition we are exploring remotely sensed methods to scale up key biochemical (e.g. leaf N, leaf mass area) and physiological (e.g. Vc,max and Jmax) properties that drive model representation of photosynthesis in the Arctic. Our data suggest that the Arctic tundra has a much greater capacity for CO2 uptake, particularly at low temperature, and will be more CO2 responsive than is currently represented in ESMs. As we build robust relationships between physiology and spectral signatures we hope to provide spatially and temporally resolved trait maps of key model parameters that can be ingested by new model frameworks, or used to validate emergent model properties.
USDA-ARS?s Scientific Manuscript database
Soil is a diverse natural material characterized by solid, liquid, and gas phases that impart unique chemical, physical, and biological properties. Soil provides many key functions, including supporting plant growth and providing environmental remediation. Monitoring key soil properties and processe...
Pelagic Habitat Analysis Module (PHAM) for GIS Based Fisheries Decision Support
NASA Technical Reports Server (NTRS)
Kiefer, D. A.; Armstrong, Edward M.; Harrison, D. P.; Hinton, M. G.; Kohin, S.; Snyder, S.; O'Brien, F. J.
2011-01-01
We have assembled a system that integrates satellite and model output with fisheries data We have developed tools that allow analysis of the interaction between species and key environmental variables Demonstrated the capacity to accurately map habitat of Thresher Sharks Alopias vulpinus & pelagicus. Their seasonal migration along the California Current is at least partly driven by the seasonal migration of sardine, key prey of the sharks.We have assembled a system that integrates satellite and model output with fisheries data We have developed tools that allow analysis of the interaction between species and key environmental variables Demonstrated the capacity to accurately map habitat of Thresher Sharks Alopias vulpinus nd pelagicus. Their seasonal migration along the California Current is at least partly driven by the seasonal migration of sardine, key prey of the sharks.
Developing population models with data from marked individuals
Hae Yeong Ryu,; Kevin T. Shoemaker,; Eva Kneip,; Anna Pidgeon,; Patricia Heglund,; Brooke Bateman,; Thogmartin, Wayne E.; Reşit Akçakaya,
2016-01-01
Population viability analysis (PVA) is a powerful tool for biodiversity assessments, but its use has been limited because of the requirements for fully specified population models such as demographic structure, density-dependence, environmental stochasticity, and specification of uncertainties. Developing a fully specified population model from commonly available data sources – notably, mark–recapture studies – remains complicated due to lack of practical methods for estimating fecundity, true survival (as opposed to apparent survival), natural temporal variability in both survival and fecundity, density-dependence in the demographic parameters, and uncertainty in model parameters. We present a general method that estimates all the key parameters required to specify a stochastic, matrix-based population model, constructed using a long-term mark–recapture dataset. Unlike standard mark–recapture analyses, our approach provides estimates of true survival rates and fecundities, their respective natural temporal variabilities, and density-dependence functions, making it possible to construct a population model for long-term projection of population dynamics. Furthermore, our method includes a formal quantification of parameter uncertainty for global (multivariate) sensitivity analysis. We apply this approach to 9 bird species and demonstrate the feasibility of using data from the Monitoring Avian Productivity and Survivorship (MAPS) program. Bias-correction factors for raw estimates of survival and fecundity derived from mark–recapture data (apparent survival and juvenile:adult ratio, respectively) were non-negligible, and corrected parameters were generally more biologically reasonable than their uncorrected counterparts. Our method allows the development of fully specified stochastic population models using a single, widely available data source, substantially reducing the barriers that have until now limited the widespread application of PVA. This method is expected to greatly enhance our understanding of the processes underlying population dynamics and our ability to analyze viability and project trends for species of conservation concern.
NASA Astrophysics Data System (ADS)
Chen, Shuo; Lin, Xiaoqian; Zhu, Caigang; Liu, Quan
2014-12-01
Key tissue parameters, e.g., total hemoglobin concentration and tissue oxygenation, are important biomarkers in clinical diagnosis for various diseases. Although point measurement techniques based on diffuse reflectance spectroscopy can accurately recover these tissue parameters, they are not suitable for the examination of a large tissue region due to slow data acquisition. The previous imaging studies have shown that hemoglobin concentration and oxygenation can be estimated from color measurements with the assumption of known scattering properties, which is impractical in clinical applications. To overcome this limitation and speed-up image processing, we propose a method of sequential weighted Wiener estimation (WE) to quickly extract key tissue parameters, including total hemoglobin concentration (CtHb), hemoglobin oxygenation (StO2), scatterer density (α), and scattering power (β), from wide-band color measurements. This method takes advantage of the fact that each parameter is sensitive to the color measurements in a different way and attempts to maximize the contribution of those color measurements likely to generate correct results in WE. The method was evaluated on skin phantoms with varying CtHb, StO2, and scattering properties. The results demonstrate excellent agreement between the estimated tissue parameters and the corresponding reference values. Compared with traditional WE, the sequential weighted WE shows significant improvement in the estimation accuracy. This method could be used to monitor tissue parameters in an imaging setup in real time.
Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.
2016-01-01
The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.
Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements
NASA Technical Reports Server (NTRS)
Jansen, Ralph; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.
2015-01-01
The purpose of this presentation is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.
Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.
2015-01-01
The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.
Okeyo, Allisen N; Nontongana, Nolonwabo; Fadare, Taiwo O; Okoh, Anthony I
2018-06-15
Wastewater treatment facilities in South Africa are obliged to make provision for wastewater effluent quality management, with the aim of securing the integrity of the surrounding watersheds and environments. The Department of Water Affairs has documented regulatory parameters that have, over the years, served as a guideline for quality monitoring/management purposes. However, these guidelines have not been regularly updated and this may have contributed to some of the water quality anomalies. Studies have shown that promoting the monitoring of the current routinely monitored parameters (both microbial and physicochemical) may not be sufficient. Organisms causing illnesses or even outbreaks, such as Vibrio pathogens with their characteristic environmental resilience, are not included in the guidelines. In South Africa, studies that have been conducted on the occurrence of Vibrio pathogens in domestic and wastewater effluent have made it apparent that these pathogens should also be monitored. The importance of effective wastewater management as one of the key aspects towards protecting surrounding environments and receiving watersheds, as well as protecting public health, is highlighted in this review. Emphasis on the significance of the Vibrio pathogen in wastewater is a particular focus.
Decrease of tropical cyclone genesis frequency in the western North Pacific since 1960s
NASA Astrophysics Data System (ADS)
Hu, Feng; Li, Tim; Liu, Jia; Bi, Mingyu; Peng, Melinda
2018-03-01
Tropical cyclone (TC) genesis frequency in the western North Pacific (WNP) during 1960-2014 shows a step-by-step decrease on interdecadal timescale, in accordance to the phase of the Interdecadal Pacific Oscillation (IPO). The environmental parameters responsible for the interdecadal change of TC genesis frequency were investigated. It was found that vertical wind shear especially the zonal wind shear plays a critical role, while other parameters such as sea surface temperature (SST), vertical velocity, divergence, humidity and maximum potential intensity cannot explain the step-by-step decrease of TC genesis frequency. A further diagnosis shows that the interdecadal change of vertical wind shear is caused by SST and associated rainfall pattern changes across the Indo-Pacific Ocean. A stronger warming in the Indian Ocean/western Pacific from 1960-1976 to 1977-1998 led to enhanced convection over the Maritime Continent and thus strengthened vertical shear over the key TC genesis region in the WNP. A La Nina-like SST pattern change from 1977-1998 to 1999-2014 led to a strengthened Walker circulation in the tropical Pacific, which further enhanced the vertical shear and decreased TC genesis frequency in the WNP.
Emperor penguins and climate change.
Barbraud, C; Weimerskirch, H
2001-05-10
Variations in ocean-atmosphere coupling over time in the Southern Ocean have dominant effects on sea-ice extent and ecosystem structure, but the ultimate consequences of such environmental changes for large marine predators cannot be accurately predicted because of the absence of long-term data series on key demographic parameters. Here, we use the longest time series available on demographic parameters of an Antarctic large predator breeding on fast ice and relying on food resources from the Southern Ocean. We show that over the past 50 years, the population of emperor penguins (Aptenodytes forsteri) in Terre Adélie has declined by 50% because of a decrease in adult survival during the late 1970s. At this time there was a prolonged abnormally warm period with reduced sea-ice extent. Mortality rates increased when warm sea-surface temperatures occurred in the foraging area and when annual sea-ice extent was reduced, and were higher for males than for females. In contrast with survival, emperor penguins hatched fewer eggs when winter sea-ice was extended. These results indicate strong and contrasting effects of large-scale oceanographic processes and sea-ice extent on the demography of emperor penguins, and their potential high susceptibility to climate change.
Circadian Rhythms Differ between Sexes and Closely Related Species of Nasonia Wasps
Bertossa, Rinaldo C.; van Dijk, Jeroen; Diao, Wenwen; Saunders, David; Beukeboom, Leo W.; Beersma, Domien G. M.
2013-01-01
Activity rhythms in 24 h light-dark cycles, constant darkness, and constant light conditions were analyzed in four different Nasonia species for each sex separately. Besides similarities, clear differences are evident among and within Nasonia species as well as between sexes. In all species, activity in a light-dark cycle is concentrated in the photophase, typical for diurnal organisms. Contrary to most diurnal insect species so far studied, Nasonia follows Aschoff's rule by displaying long (>24 h) internal rhythms in constant darkness but short (<24 h) in constant light. In constant light, N. vitripennis males display robust circadian activity rhythms, whereas females are usually arrhythmic. In contrast to other Nasonia species, N. longicornis males display anticipatory activity, i.e. activity shortly before light-on in a light-dark cycle. As expected, N. oneida shows activity patterns similar to those of N. giraulti but with important differences in key circadian parameters. Differences in circadian activity patterns and parameters between species may reflect synchronization of specific life-history traits to environmental conditions. Scheduling mating or dispersion to a specific time of the day could be a strategy to avoid interspecific hybridization in Nasonia species that live in sympatry. PMID:23555911
Zhu, Weimo; Nedovic-Budic, Zorica; Olshansky, Robert B; Marti, Jed; Gao, Yong; Park, Youngsik; McAuley, Edward; Chodzko-Zajko, Wojciech
2013-03-01
To introduce Agent-Based Model (ABM) to physical activity (PA) research and, using data from a study of neighborhood walkability and walking behavior, to illustrate parameters for an ABM of walking behavior. The concept, brief history, mechanism, major components, key steps, advantages, and limitations of ABM were first introduced. For illustration, 10 participants (age in years: mean = 68, SD = 8) were recruited from a walkable and a nonwalkable neighborhood. They wore AMP 331 triaxial accelerometers and GeoLogger GPA tracking devices for 21 days. Data were analyzed using conventional statistics and highresolution geographic image analysis, which focused on a) path length, b) path duration, c) number of GPS reporting points, and d) interaction between distances and time. Average steps by subjects ranged from 1810-10,453 steps per day (mean = 6899, SD = 3823). No statistical difference in walking behavior was found between neighborhoods (Walkable = 6710 ± 2781, Nonwalkable = 7096 ± 4674). Three environment parameters (ie, sidewalk, crosswalk, and path) were identified for future ABM simulation. ABM should provide a better understanding of PA behavior's interaction with the environment, as illustrated using a real-life example. PA field should take advantage of ABM in future research.
Geographical variation in oligochaete density and biomass in subtropical mangrove wetlands of China
NASA Astrophysics Data System (ADS)
Chen, Xinwei; Cai, Lizhe; Zhou, Xiping; Rao, Yiyong
2017-10-01
Oligochaetes play an important role in nutrient cycling and energy flow in benthic food webs as well as in mangrove wetlands. However, they have not been as extensively studied as other macrofaunal groups such as polychaetes, gastropods, bivalves, and crustaceans. Under the assumption that oligochaete density and biomass obey specific geographical distribution patterns in subtropical mangrove wetlands of China, we investigated these two parameters in the Luoyang Estuary of Quanzhou Bay, Zhangjiang Estuary and Gaoqiao mangrove wetlands. A geographical gradient in oligochaete density was present in Aegiceras corniculatum and Kandelia obovata habitats, whereby it decreased from lower latitudes to higher latitudes. Further, ANOVA tests on oligochaete distribution revealed that both oligochaete density and biomass were significantly influenced by region, season and region × season at the A. corniculatum and K. obovata habitats. The annual average oligochaete density and biomass at the A. corniculatum habitat were higher than that at the K. obovata habitat, in both the Luoyang and Zhangjiang estuaries. There were significant correlations between oligochaete density and biomass and sediment particle size parameters, confirming that sand, silt, and clay contents were the key environmental factors affecting oligochaete distribution.
Model based estimation of sediment erosion in groyne fields along the River Elbe
NASA Astrophysics Data System (ADS)
Prohaska, Sandra; Jancke, Thomas; Westrich, Bernhard
2008-11-01
River water quality is still a vital environmental issue, even though ongoing emissions of contaminants are being reduced in several European rivers. The mobility of historically contaminated deposits is key issue in sediment management strategy and remediation planning. Resuspension of contaminated sediments impacts the water quality and thus, it is important for river engineering and ecological rehabilitation. The erodibility of the sediments and associated contaminants is difficult to predict due to complex time depended physical, chemical, and biological processes, as well as due to the lack of information. Therefore, in engineering practice the values for erosion parameters are usually assumed to be constant despite their high spatial and temporal variability, which leads to a large uncertainty of the erosion parameters. The goal of presented study is to compare the deterministic approach assuming constant critical erosion shear stress and an innovative approach which takes the critical erosion shear stress as a random variable. Furthermore, quantification of the effective value of the critical erosion shear stress, its applicability in numerical models, and erosion probability will be estimated. The results presented here are based on field measurements and numerical modelling of the River Elbe groyne fields.
Phosphatidylcholine Membrane Fusion Is pH-Dependent.
Akimov, Sergey A; Polynkin, Michael A; Jiménez-Munguía, Irene; Pavlov, Konstantin V; Batishchev, Oleg V
2018-05-03
Membrane fusion mediates multiple vital processes in cell life. Specialized proteins mediate the fusion process, and a substantial part of their energy is used for topological rearrangement of the membrane lipid matrix. Therefore, the elastic parameters of lipid bilayers are of crucial importance for fusion processes and for determination of the energy barriers that have to be crossed for the process to take place. In the case of fusion of enveloped viruses (e.g., influenza) with endosomal membrane, the interacting membranes are in an acidic environment, which can affect the membrane's mechanical properties. This factor is often neglected in the analysis of virus-induced membrane fusion. In the present work, we demonstrate that even for membranes composed of zwitterionic lipids, changes of the environmental pH in the physiologically relevant range of 4.0 to 7.5 can affect the rate of the membrane fusion notably. Using a continual model, we demonstrated that the key factor defining the height of the energy barrier is the spontaneous curvature of the lipid monolayer. Changes of this parameter are likely to be caused by rearrangements of the polar part of lipid molecules in response to changes of the pH of the aqueous solution bathing the membrane.
Money, Eric S; Barton, Lauren E; Dawson, Joseph; Reckhow, Kenneth H; Wiesner, Mark R
2014-03-01
The adaptive nature of the Forecasting the Impacts of Nanomaterials in the Environment (FINE) Bayesian network is explored. We create an updated FINE model (FINEAgNP-2) for predicting aquatic exposure concentrations of silver nanoparticles (AgNP) by combining the expert-based parameters from the baseline model established in previous work with literature data related to particle behavior, exposure, and nano-ecotoxicology via parameter learning. We validate the AgNP forecast from the updated model using mesocosm-scale field data and determine the sensitivity of several key variables to changes in environmental conditions, particle characteristics, and particle fate. Results show that the prediction accuracy of the FINEAgNP-2 model increased approximately 70% over the baseline model, with an error rate of only 20%, suggesting that FINE is a reliable tool to predict aquatic concentrations of nano-silver. Sensitivity analysis suggests that fractal dimension, particle diameter, conductivity, time, and particle fate have the most influence on aquatic exposure given the current knowledge; however, numerous knowledge gaps can be identified to suggest further research efforts that will reduce the uncertainty in subsequent exposure and risk forecasts. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrer, I.; GIRO Technological Center, Rambla Pompeu Fabra 1, 08100 Mollet del Valles, Barcelona; Gamiz, M.
Parque Porcino de Ventanilla has an extension of 840 ha with 2200 farmers dedicated to pig production. There is a lack of services in the area (i.e., water supply, electricity, or waste collection). Anaerobic treatment of pig manure would replace current dumping and incineration, reducing environmental pollution and hazards to public health, as well as providing an organic fertilizer and biogas. The objective of the present work was to study the viability of ambient temperature anaerobic digestion of pig manure diluted in urine, by means of on-site pilot scale reactors. The final goal was to establish design parameters for anaerobicmore » digesters to be implemented; since it was part of a project to improve life conditions for the farmers through the incorporation of better management techniques. Experiments were carried out in a low-cost pilot plant, which consists of three anaerobic digesters (225 L total volume), without heating or agitation, placed in a greenhouse. The start-up of the digestion process was performed with a mixture of temperature adapted pig manure-sludge and fresh rumen, and showed a good performance regardless of the dilution of pig manure with water or urine, which is a key parameter due to the scarcity of water in the area under study.« less
NASA Technical Reports Server (NTRS)
Fountain T.; Tilak, S.; Shin, P.; Hubbard, P.; Freudinger, L.
2009-01-01
The Open Source DataTurbine Initiative is an international community of scientists and engineers sharing a common interest in real-time streaming data middleware and applications. The technology base of the OSDT Initiative is the DataTurbine open source middleware. Key applications of DataTurbine include coral reef monitoring, lake monitoring and limnology, biodiversity and animal tracking, structural health monitoring and earthquake engineering, airborne environmental monitoring, and environmental sustainability. DataTurbine software emerged as a commercial product in the 1990 s from collaborations between NASA and private industry. In October 2007, a grant from the USA National Science Foundation (NSF) Office of Cyberinfrastructure allowed us to transition DataTurbine from a proprietary software product into an open source software initiative. This paper describes the DataTurbine software and highlights key applications in environmental monitoring.
NASA Technical Reports Server (NTRS)
Sharp, John R.; McConnaughey, Paul K. (Technical Monitor)
2002-01-01
The natural thermal environmental parameters used on the Space Station Program (SSP 30425) were generated by the Space Environmental Effects Branch at NASA's Marshall Space Flight Center (MSFC) utilizing extensive data from the Earth Radiation Budget Experiment (ERBE), a series of satellites which measured low earth orbit (LEO) albedo and outgoing long-wave radiation. Later, this temporal data was presented as a function of averaging times and orbital inclination for use by thermal engineers in NASA Technical Memorandum TM 4527. The data was not presented in a fashion readily usable by thermal engineering modeling tools and required knowledge of the thermal time constants and infrared versus solar spectrum sensitivity of the hardware being analyzed to be used properly. Another TM was recently issued as a guideline for utilizing these environments (NASA/TM-2001-211221) with more insight into the utilization by thermal analysts. This paper gives a top-level overview of the environmental parameters presented in the TM and a study of the effects of implementing these environments on an ongoing MSFC project, the Propulsive Small Expendable Deployer System (ProSEDS), compared to conventional orbital parameters that had been historically used.
Management of physical health in patients with schizophrenia: practical recommendations.
Heald, A; Montejo, A L; Millar, H; De Hert, M; McCrae, J; Correll, C U
2010-06-01
Improved physical health care is a pressing need for patients with schizophrenia. It can be achieved by means of a multidisciplinary team led by the psychiatrist. Key priorities should include: selection of antipsychotic therapy with a low risk of weight gain and metabolic adverse effects; routine assessment, recording and longitudinal tracking of key physical health parameters, ideally by electronic spreadsheets; and intervention to control CVD risk following the same principles as for the general population. A few simple tools to assess and record key physical parameters, combined with lifestyle intervention and pharmacological treatment as indicated, could significantly improve physical outcomes. Effective implementation of strategies to optimise physical health parameters in patients with severe enduring mental illness requires engagement and communication between psychiatrists and primary care in most health settings. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.
Channel-parameter estimation for satellite-to-submarine continuous-variable quantum key distribution
NASA Astrophysics Data System (ADS)
Guo, Ying; Xie, Cailang; Huang, Peng; Li, Jiawei; Zhang, Ling; Huang, Duan; Zeng, Guihua
2018-05-01
This paper deals with a channel-parameter estimation for continuous-variable quantum key distribution (CV-QKD) over a satellite-to-submarine link. In particular, we focus on the channel transmittances and the excess noise which are affected by atmospheric turbulence, surface roughness, zenith angle of the satellite, wind speed, submarine depth, etc. The estimation method is based on proposed algorithms and is applied to low-Earth orbits using the Monte Carlo approach. For light at 550 nm with a repetition frequency of 1 MHz, the effects of the estimated parameters on the performance of the CV-QKD system are assessed by a simulation by comparing the secret key bit rate in the daytime and at night. Our results show the feasibility of satellite-to-submarine CV-QKD, providing an unconditionally secure approach to achieve global networks for underwater communications.
Investigating malaria risk in the northern region of Nigeria using satellite imagery
NASA Astrophysics Data System (ADS)
Emetere, M. E.; Nikouravan, Bijan; Olawole, O. F.
2015-08-01
The dynamics of infectious diseases are dependent on salient environment and climate factors which are directly proportional to its transmission. Malaria is a common disease of typical tropics of the West African sub-region. The influences of malaria transmission via meteorological and environmental parameters were examined. Remotely sensed parameters i.e. skin temperature, sensible heat flux, latent heat flux and total precipitation were obtained from the NASA-MERRA. The results show that the meteorological and environmental parameters of northern Nigeria favour the long malaria dominance.
Keys To The Kansas Environment. 4-H School Enrichment Program.
ERIC Educational Resources Information Center
Kansas State Univ., Manhattan. Extension Service.
The 4-H Club packet for preschool and elementary school children contains nine "keys", or short learning exercises, designed to enrich science and environmental education both in and out of the classroom. Each "key" includes the purpose of the activity, the intended audience, the best time of the year for the activity,…
Fast Simulation of the Impact Parameter Calculation of Electrons through Pair Production
NASA Astrophysics Data System (ADS)
Bang, Hyesun; Kweon, MinJung; Huh, Kyoung Bum; Pachmayer, Yvonne
2018-05-01
A fast simulation method is introduced that reduces tremendously the time required for the impact parameter calculation, a key observable in physics analyses of high energy physics experiments and detector optimisation studies. The impact parameter of electrons produced through pair production was calculated considering key related processes using the Bethe-Heitler formula, the Tsai formula and a simple geometric model. The calculations were performed at various conditions and the results were compared with those from full GEANT4 simulations. The computation time using this fast simulation method is 104 times shorter than that of the full GEANT4 simulation.
Parameter as a Switch Between Dynamical States of a Network in Population Decoding.
Yu, Jiali; Mao, Hua; Yi, Zhang
2017-04-01
Population coding is a method to represent stimuli using the collective activities of a number of neurons. Nevertheless, it is difficult to extract information from these population codes with the noise inherent in neuronal responses. Moreover, it is a challenge to identify the right parameter of the decoding model, which plays a key role for convergence. To address the problem, a population decoding model is proposed for parameter selection. Our method successfully identified the key conditions for a nonzero continuous attractor. Both the theoretical analysis and the application studies demonstrate the correctness and effectiveness of this strategy.
NASA Astrophysics Data System (ADS)
Marchetto, P. M.; Hofmeister, K.; Walter, M. T.
2015-12-01
In the age of the Internet, data is inherently portable. Given the shrinking numbers of stream gauges in the US under the banner of the USGS and the lack of collocation of sensors for environmental parameters, it is clear the only way to collect these data is with near real-time, multi-parameters sensing stations. We are designing a system that can be built and deployed for under $300 by community groups interested in learning more about the land that they are protecting, such as conservation groups, or groups interested in the basic science behind sensing and ecology, such as makerspaces. Sensing stations like these will enable a greater diversity of data collection while increasing public awareness of environmental issues and the research process.
Monitoring the tobacco use epidemic V: The environment: factors that influence tobacco use.
Farrelly, Matthew C
2009-01-01
This environment paper (V of V) summarizes important surveillance and evaluation systems that monitor influences on tobacco use such as smoke-free laws and other legislation, excise taxes, mass media, and a broad range of tobacco control activities, discusses their strengths and weaknesses, and makes recommendations for enhancement. We summarize and expand on the recommendations from the Environment Working Group of the National Tobacco Monitoring, Research, and Evaluation Workshop prioritized surveillance needs. This group rank-ordered surveillance needs various environmental influences, considering both the perceived importance of each environmental influence and the adequacy of the current surveillance systems. Based on this ranking and subsequent discussion, the group identified key priorities for enhancement. The group arrived at two key priorities: (1) develop and implement a national system for local tobacco control ordinance surveillance, and (2) develop and implement a comprehensive program monitoring system that is used by all states and supported by all funding agencies. Other environmental influences recommended for priority monitoring include cigarette prices and tobacco countermarketing. Systematic surveillance and monitoring of key program inputs and outputs and environmental influences is central to understand the effectiveness and cost-effectiveness of tobacco control efforts.
Controlling Ethylene for Extended Preservation of Fresh Fruits and Vegetables
2008-12-01
into a process simulation to determine the effects of key design parameters on the overall performance of the system. Integrating process simulation...High Decay [Asian Pears High High Decay [ Avocados High High Decay lBananas Moderate ~igh Decay Cantaloupe High Moderate Decay Cherimoya Very High High...ozonolysis. Process simulation was subsequently used to understand the effect of key system parameters on EEU performance. Using this modeling work
NASA Astrophysics Data System (ADS)
Zhang, Xiao-bo; Wang, Zhi-xue; Li, Jian-xin; Ma, Jian-hui; Li, Yang; Li, Yan-qiang
In order to facilitate Bluetooth function realization and information can be effectively tracked in the process of production, the vehicle Bluetooth hands-free devices need to download such key parameters as Bluetooth address, CVC license and base plate numbers, etc. Therefore, it is the aim to search simple and effective methods to download parameters for each vehicle Bluetooth hands-free device, and to control and record the use of parameters. In this paper, by means of Bluetooth Serial Peripheral Interface programmer device, the parallel port is switched to SPI. The first step is to download parameters is simulating SPI with the parallel port. To perform SPI function, operating the parallel port in accordance with the SPI timing. The next step is to achieve SPI data transceiver functions according to the programming parameters of options. Utilizing the new method, downloading parameters is fast and accurate. It fully meets vehicle Bluetooth hands-free devices production requirements. In the production line, it has played a large role.
Wang, Xueqin; Cui, Hongyang; Shi, Jianhong; Zhao, Xinyu; Zhao, Yue; Wei, Zimin
2015-12-01
The aim of this study was to compare the bacterial structure of seven different composts. The primary environmental factors affecting bacterial species were identified, and a strategy to enhance the abundance of uncultured bacteria through controlling relevant environmental parameters was proposed. The results showed that the physical-chemical parameters of each different pile changed in its own manner during composting, which affected the structure and succession of bacteria in different ways. DGGE profiles showed that there were 10 prominent species during composting. Among them, four species existed in all compost types, two species existed in several piles and four species were detected in a single material. Redundancy analysis results showed that bacterial species compositions were significantly influenced by C/N and moisture (p<0.05). The optimal range of C/N was 14-27. Based on these results, the primary environmental factors affecting a certain species were further identified as a potential control of bacterial diversity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evaluating the Environmental Health Work Force. Final Report.
ERIC Educational Resources Information Center
Levine Associates, Inc., Rockville, MD.
This report contains all materials pertinent to an intensive evaluation of the environmental health work force conducted in 1986 and 1987. The materials relate to a workshop that was one of the key tools used in conducting the study to estimate environmental health personnel supply, demand, and need. The report begins with an overview and…
Developing a Volunteer Program for Public Environmental Education.
ERIC Educational Resources Information Center
Meehan, Donald B.; Berta, Susan
Volunteers can serve as a means to educate the public about environmental issues and increase stewardship ethic. This booklet is designed to provide much of the key information about designing and managing environmental volunteer programs to educate the general public. The booklet is based on the experiences of a volunteer program called Island…
The Roots and Routes of Environmental and Sustainability Education Policy Research
ERIC Educational Resources Information Center
Van Poeck, Katrien; Lysgaard, Jonas A.
2016-01-01
"Environmental Education Research" has developed a Virtual Special Issue (VSI) (http://explore.tandfonline.com/content/ed/ceer-vsi) focusing on studies of environmental and sustainability education (ESE) policy. The VSI draws on key examples of research on this topic published in the Journal from the past two decades, for three reasons.…
A new hypervolume approach for assessing environmental risks
Denys Yemshanov; Frank H. Koch; Bo Lu; Ronald Fournier; Gericke Cook; Jean J. Turgeon
2017-01-01
Assessing risks of uncertain but potentially damaging events, such as environmental disturbances, disease outbreaks and pest invasions, is a key analytical step that informs subsequent decisions about how to respond to these events. We present a continuous risk measure that can be used to assess and prioritize environmental risks from uncertain data in a geographical...
Signaling Network of Environmental Sensing and Adaptation in Plants:. Key Roles of Calcium Ion
NASA Astrophysics Data System (ADS)
Kurusu, Takamitsu; Kuchitsu, Kazuyuki
2011-01-01
Considering the important issues concerning food, environment, and energy that humans are facing in the 21st century, humans mostly depend on plants. Unlike animals which move from an inappropriate environment, plants do not move, but rapidly sense diverse environmental changes or invasion by other organisms such as pathogens and insects in the place they root, and adapt themselves by changing their own bodies, through which they developed adaptability. Whole genetic information corresponding to the blueprints of many biological systems has recently been analyzed, and comparative genomic studies facilitated tracing strategies of each organism in their evolutional processes. Comparison of factors involved in intracellular signal transduction between animals and plants indicated diversification of different gene sets. Reversible binding of Ca2+ to sensor proteins play key roles as a molecular switch both in animals and plants. Molecular mechanisms for signaling network of environmental sensing and adaptation in plants will be discussed with special reference to Ca2+ as a key element in information processing.
NASA Astrophysics Data System (ADS)
Bingsheng, Xu
2017-04-01
Considering the large quantities of wastewater generated from iron and steel enterprises in China, this paper is aimed to research the common methods applied for evaluating the integrated wastewater treatment effect of iron and steel enterprises. Based on survey results on environmental protection performance, technological economy, resource & energy consumption, services and management, an indicator system for evaluating the operation effect of integrated wastewater treatment facilities is set up. By discussing the standards and industrial policies in and out of China, 27 key secondary indicators are further defined on the basis of investigation on main equipment and key processes for wastewater treatment, so as to determine the method for setting key quantitative and qualitative indicators for evaluation indicator system. It is also expected to satisfy the basic requirements of reasonable resource allocation, environmental protection and sustainable economic development, further improve the integrated wastewater treatment effect of iron and steel enterprises, and reduce the emission of hazardous substances and environmental impact.
Environmental Variability in the Florida Keys: Impacts on Coral Reef Resilience and Health
NASA Astrophysics Data System (ADS)
Soto, I. M.; Muller-Karger, F. E.
2005-12-01
Environmental variability contributes to both mass mortality and resilience in tropical coral reef communities. We assess variations in sea surface temperature (SST) and ocean color in the Florida Keys using satellite imagery, and provide insight into how this variability is associated with locations of resilient coral communities (those unaffected by or able to recover from major events). The project tests the hypothesis that areas with historically low environmental variability promote lower levels of coral reef resilience. Time series of SST from the Advanced Very High Resolution Radiometer (AVHRR) sensors and ocean color derived quantities (e.g., turbidity and chlorophyll) from the Sea-viewing Wide Field of View Sensor (SeaWiFS) are being constructed over the entire Florida Keys region for a period of twelve and nine years, respectively. These data will be compared with historical coral cover data derived from Landsat imagery (1984-2002). Improved understanding of the causes of coral reef decline or resilience will help protect and manage these natural treasures.
Transcriptomic resources for environmental risk assessment: a case study in the Venice lagoon.
Milan, M; Pauletto, M; Boffo, L; Carrer, C; Sorrentino, F; Ferrari, G; Pavan, L; Patarnello, T; Bargelloni, L
2015-02-01
The development of new resources to evaluate the environmental status is becoming increasingly important representing a key challenge for ocean and coastal management. Recently, the employment of transcriptomics in aquatic toxicology has led to increasing initiatives proposing to integrate eco-toxicogenomics in the evaluation of marine ecosystem health. However, several technical issues need to be addressed before introducing genomics as a reliable tool in regulatory ecotoxicology. The Venice lagoon constitutes an excellent case, in which the assessment of environmental risks derived from the nearby industrial activities represents a crucial task. In this context, the potential role of genomics to assist environmental monitoring was investigated through the definition of reliable gene expression markers associated to chemical contamination in Manila clams, and their subsequent employment for the classification of Venice lagoon areas. Overall, the present study addresses key issues to evaluate the future outlooks of genomics in the environmental monitoring and risk assessment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Validated predictive modelling of the environmental resistome
Amos, Gregory CA; Gozzard, Emma; Carter, Charlotte E; Mead, Andrew; Bowes, Mike J; Hawkey, Peter M; Zhang, Lihong; Singer, Andrew C; Gaze, William H; Wellington, Elizabeth M H
2015-01-01
Multi-drug-resistant bacteria pose a significant threat to public health. The role of the environment in the overall rise in antibiotic-resistant infections and risk to humans is largely unknown. This study aimed to evaluate drivers of antibiotic-resistance levels across the River Thames catchment, model key biotic, spatial and chemical variables and produce predictive models for future risk assessment. Sediment samples from 13 sites across the River Thames basin were taken at four time points across 2011 and 2012. Samples were analysed for class 1 integron prevalence and enumeration of third-generation cephalosporin-resistant bacteria. Class 1 integron prevalence was validated as a molecular marker of antibiotic resistance; levels of resistance showed significant geospatial and temporal variation. The main explanatory variables of resistance levels at each sample site were the number, proximity, size and type of surrounding wastewater-treatment plants. Model 1 revealed treatment plants accounted for 49.5% of the variance in resistance levels. Other contributing factors were extent of different surrounding land cover types (for example, Neutral Grassland), temporal patterns and prior rainfall; when modelling all variables the resulting model (Model 2) could explain 82.9% of variations in resistance levels in the whole catchment. Chemical analyses correlated with key indicators of treatment plant effluent and a model (Model 3) was generated based on water quality parameters (contaminant and macro- and micro-nutrient levels). Model 2 was beta tested on independent sites and explained over 78% of the variation in integron prevalence showing a significant predictive ability. We believe all models in this study are highly useful tools for informing and prioritising mitigation strategies to reduce the environmental resistome. PMID:25679532
NASA Astrophysics Data System (ADS)
Oertel, D.; Haschberger, P.; Tank, V.; Lanzl, F.; Zhukov, B.; Jahn, H.; Briess, K.; Lorenz, E.; Roeser, H.-P.; Ginati, A.; Tobehn, C.; Schulte in den Bäumen, J.; Christmann, U.
1999-01-01
Current and planned operational space-borne Earth observation systems provide spatially, radiometrically or temporally crude data for the detection and monitoring of high temperature phenomena on the surface of our planet. High Temperature Events (HTE) very often cause environmental disasters. Such HTE are forest and savannah fires, fires of open coal mines, volcanic activities and others (e.g. fires of oil wells, pipelines etc.). A simultaneous co-registration of a combination of infrared (IR) and visible (VIS) channels is the key for a reliable autonomous on-board detection of High Temperature Events (HTE) on Earth surface, such as vegetation fires and volcano eruptions. This is the main feature of the FOCUS experiment. Furthermore there are ecology-oriented objectives of the FOCUS experiment mainly related to spectrometric/imaging remote inspection and parameter extraction of selected HTEs, and to the assessment of some ecological consequences of HTEs, such as aerosol and gas emission. Based on own experimental work and supported by Co-Investigators from Italy, Greece, France, Spain, Russia and Germany, DLR proposed in 1997 to use the International Space Station (ISS) in its early utilization phase as a platform and test-bed for an Intelligent Infrared Sensor prototype FOCUS of a future Environmental Disaster Recognition Satellite System. FOCUS is considered by ESA as an important mission combining a number of proven technologies and observation techniques to provide the scientific and operational user community with key data for the classification and monitoring of forest fires. FOCUS was selected as one of five European ``Groupings'' to be flown as an externally mounted payload during the early utilisation phase of the ISS. The FOCUS Phase A Study will be performed by OHB-System, DLR and Zeiss from September 1998 until May 1999.
Validated predictive modelling of the environmental resistome.
Amos, Gregory C A; Gozzard, Emma; Carter, Charlotte E; Mead, Andrew; Bowes, Mike J; Hawkey, Peter M; Zhang, Lihong; Singer, Andrew C; Gaze, William H; Wellington, Elizabeth M H
2015-06-01
Multi-drug-resistant bacteria pose a significant threat to public health. The role of the environment in the overall rise in antibiotic-resistant infections and risk to humans is largely unknown. This study aimed to evaluate drivers of antibiotic-resistance levels across the River Thames catchment, model key biotic, spatial and chemical variables and produce predictive models for future risk assessment. Sediment samples from 13 sites across the River Thames basin were taken at four time points across 2011 and 2012. Samples were analysed for class 1 integron prevalence and enumeration of third-generation cephalosporin-resistant bacteria. Class 1 integron prevalence was validated as a molecular marker of antibiotic resistance; levels of resistance showed significant geospatial and temporal variation. The main explanatory variables of resistance levels at each sample site were the number, proximity, size and type of surrounding wastewater-treatment plants. Model 1 revealed treatment plants accounted for 49.5% of the variance in resistance levels. Other contributing factors were extent of different surrounding land cover types (for example, Neutral Grassland), temporal patterns and prior rainfall; when modelling all variables the resulting model (Model 2) could explain 82.9% of variations in resistance levels in the whole catchment. Chemical analyses correlated with key indicators of treatment plant effluent and a model (Model 3) was generated based on water quality parameters (contaminant and macro- and micro-nutrient levels). Model 2 was beta tested on independent sites and explained over 78% of the variation in integron prevalence showing a significant predictive ability. We believe all models in this study are highly useful tools for informing and prioritising mitigation strategies to reduce the environmental resistome.
Assessment of eco-environmental quality of Western Taiwan Straits Economic Zone.
Ma, He; Shi, Longyu
2016-05-01
Regional eco-environmental quality is the key and foundation to the sustainable socio-economic development of a region. Eco-environmental quality assessment can reveal the capacity of sustainable socio-economic development in a region and the degree of coordination between social production and the living environment. As part of a new development strategy for Fujian Province, the Western Taiwan Straits Economic Zone (hereafter referred to as the Economic Zone) provides an important guarantee for the development of China's southeastern coastal area. Based on ecological and remote sensing data on the Economic Zone obtained in 2000, 2005, and 2010, this study investigated county-level administrative regions with a comprehensive index of eco-environmental indicators. An objective weighting method was used to determine the importance of each indicator. This led to the development of an indicator system to assess the eco-environmental quality of the economic zone. ArcGIS software was used to assess the eco-environmental quality of the economic zone based on each indicator. The eco-environmental quality index (EQI) of the county-level administrative regions was calculated. The overall eco-environmental quality of the Economic Zone during the period studied is described and analyzed. The results show that the overall eco-environmental quality of the Economic Zone is satisfactory, but significant intraregional differences still exist. The key to improving the overall eco-environmental quality of this area is to restore vegetation and preserve biodiversity.
Parameters of Technological Growth
ERIC Educational Resources Information Center
Starr, Chauncey; Rudman, Richard
1973-01-01
Examines the factors involved in technological growth and identifies the key parameters as societal resources and societal expectations. Concludes that quality of life can only be maintained by reducing population growth, since this parameter is the product of material levels, overcrowding, food, and pollution. (JR)
Chen, Bor-Sen; Lin, Ying-Po
2013-01-01
Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties that are observed in biological systems at many different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be large enough to confer: intrinsic robustness for tolerating intrinsic parameter fluctuations; genetic robustness for buffering genetic variations; and environmental robustness for resisting environmental disturbances. Network robustness is needed so phenotype stability of biological network can be maintained, guaranteeing phenotype robustness. Synthetic biology is foreseen to have important applications in biotechnology and medicine; it is expected to contribute significantly to a better understanding of functioning of complex biological systems. This paper presents a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation for synthetic gene networks in synthetic biology. Further, from the unifying mathematical framework, we found that the phenotype robustness criterion for synthetic gene networks is the following: if intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness, then the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in synthetic biology can also be investigated through corresponding phenotype robustness criteria from the systematic point of view. Finally, a robust synthetic design that involves network evolution algorithms with desired behavior under intrinsic parameter fluctuations, genetic variations, and environmental disturbances, is also proposed, together with a simulation example. PMID:23515190
Chen, Bor-Sen; Lin, Ying-Po
2013-01-01
Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties that are observed in biological systems at many different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be large enough to confer: intrinsic robustness for tolerating intrinsic parameter fluctuations; genetic robustness for buffering genetic variations; and environmental robustness for resisting environmental disturbances. Network robustness is needed so phenotype stability of biological network can be maintained, guaranteeing phenotype robustness. Synthetic biology is foreseen to have important applications in biotechnology and medicine; it is expected to contribute significantly to a better understanding of functioning of complex biological systems. This paper presents a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation for synthetic gene networks in synthetic biology. Further, from the unifying mathematical framework, we found that the phenotype robustness criterion for synthetic gene networks is the following: if intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness, then the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in synthetic biology can also be investigated through corresponding phenotype robustness criteria from the systematic point of view. Finally, a robust synthetic design that involves network evolution algorithms with desired behavior under intrinsic parameter fluctuations, genetic variations, and environmental disturbances, is also proposed, together with a simulation example.
NASA Astrophysics Data System (ADS)
Giammanco, S.; Ferrera, E.; Cannata, A.; Montalto, P.; Neri, M.
2013-12-01
From November 2009 to April 2011 soil radon activity was continuously monitored using a Barasol probe located on the upper NE flank of Mt. Etna volcano (Italy), close both to the Piano Provenzana fault and to the NE-Rift. Seismic, volcanological and radon data were analysed together with data on environmental parameters, such as air and soil temperature, barometric pressure, snow and rain fall. In order to find possible correlations among the above parameters, and hence to reveal possible anomalous trends in the radon time-series, we used different statistical methods: i) multivariate linear regression; ii) cross-correlation; iii) coherence analysis through wavelet transform. Multivariate regression indicated a modest influence on soil radon from environmental parameters (R2 = 0.31). When using 100-day time windows, the R2 values showed wide variations in time, reaching their maxima (~0.63-0.66) during summer. Cross-correlation analysis over 100-day moving averages showed that, similar to multivariate linear regression analysis, the summer period was characterised by the best correlation between radon data and environmental parameters. Lastly, the wavelet coherence analysis allowed a multi-resolution coherence analysis of the time series acquired. This approach allowed to study the relations among different signals either in the time or in the frequency domain. It confirmed the results of the previous methods, but also allowed to recognize correlations between radon and environmental parameters at different observation scales (e.g., radon activity changed during strong precipitations, but also during anomalous variations of soil temperature uncorrelated with seasonal fluctuations). Using the above analysis, two periods were recognized when radon variations were significantly correlated with marked soil temperature changes and also with local seismic or volcanic activity. This allowed to produce two different physical models of soil gas transport that explain the observed anomalies. Our work suggests that in order to make an accurate analysis of the relations among different signals it is necessary to use different techniques that give complementary analytical information. In particular, the wavelet analysis showed to be the most effective in discriminating radon changes due to environmental influences from those correlated with impending seismic or volcanic events.
Determining Aerosol Plume Height from Two GEO Imagers: Lessons from MISR and GOES
NASA Technical Reports Server (NTRS)
Wu, Dong L.
2012-01-01
Aerosol plume height is a key parameter to determine impacts of particulate matters generated from biomass burning, wind-blowing dust, and volcano eruption. Retrieving cloud top height from stereo imageries from two GOES (Geostationary Operational Environmental Satellites) have been demonstrated since 1970's and the principle should work for aerosol plumes if they are optically thick. The stereo technique has also been used by MISR (Multiangle Imaging SpectroRadiometer) since 2000 that has nine look angles along track to provide aerosol height measurements. Knowing the height of volcano aerosol layers is as important as tracking the ash plume flow for aviation safety. Lack of knowledge about ash plume height during the 2010 Eyja'rjallajokull eruption resulted in the largest air-traffic shutdown in Europe since World War II. We will discuss potential applications of Asian GEO satellites to make stereo measurements for dust and volcano plumes.
Arroyo, Paula; Sáenz de Miera, Luis E; Ansola, Gemma
2015-02-15
Bacteria are key players in wetland ecosystems, however many essential aspects regarding the ecology of wetland bacterial communities remain unknown. The present study characterizes soil bacterial communities from natural and constructed wetlands through the pyrosequencing of 16S rDNA genes in order to evaluate the influence of wetland variables on bacterial community composition and structure. The results show that the composition of soil bacterial communities was significantly associated with the wetland type (natural or constructed wetland), the type of environment (lagoon, Typha or Salix) and three continuous parameters (SOM, COD and TKN). However, no clear associations were observed with soil pH. Bacterial diversity values were significantly lower in the constructed wetland with the highest inlet nutrient concentrations. The abundances of particular metabolic groups were also related to wetland characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.
Squid as nutrient vectors linking Southwest Atlantic marine ecosystems
NASA Astrophysics Data System (ADS)
Arkhipkin, Alexander I.
2013-10-01
Long-term investigations of three abundant nektonic squid species from the Southwest Atlantic, Illex argentinus, Doryteuthis gahi and Onykia ingens, permitted to estimate important population parameters including individual growth rates, duration of ontogenetic phases and mortalities. Using production model, the productivity of squid populations at different phases of their life cycle was assessed and the amount of biomass they convey between marine ecosystems as a result of their ontogenetic migrations was quantified. It was found that squid are major nutrient vectors and play a key role as transient 'biological pumps' linking spatially distinct marine ecosystems. I. argentinus has the largest impact in all three ecosystems it encounters due to its high abundance and productivity. The variable nature of squid populations increases the vulnerability of these biological conveyers to overfishing and environmental change. Failure of these critical biological pathways may induce irreversible long-term consequences for biodiversity, resource abundance and spatial availability in the world ocean.
Plant synthetic biology for molecular engineering of signalling and development.
Nemhauser, Jennifer L; Torii, Keiko U
2016-03-02
Molecular genetic studies of model plants in the past few decades have identified many key genes and pathways controlling development, metabolism and environmental responses. Recent technological and informatics advances have led to unprecedented volumes of data that may uncover underlying principles of plants as biological systems. The newly emerged discipline of synthetic biology and related molecular engineering approaches is built on this strong foundation. Today, plant regulatory pathways can be reconstituted in heterologous organisms to identify and manipulate parameters influencing signalling outputs. Moreover, regulatory circuits that include receptors, ligands, signal transduction components, epigenetic machinery and molecular motors can be engineered and introduced into plants to create novel traits in a predictive manner. Here, we provide a brief history of plant synthetic biology and significant recent examples of this approach, focusing on how knowledge generated by the reference plant Arabidopsis thaliana has contributed to the rapid rise of this new discipline, and discuss potential future directions.
Panarchy and environmental policy
Environmental law plays a key role in shaping policy for sustainability. In particular, the types of legal instruments, institutions, and the response of law to the inherent variability in socio-ecological systems is critical. Sustainability likely must occur via the institutions...
SMALL COMMUNITY WASTEWATER SYSTEMS
This brochure is part of a series of information packages prepared by the United States Environmental Protection Agency (EPA). Aimed at the international community, the packages focus on key environmental and public health issues being investigated by EPA. The products highlight...
Green Infrastructure Fact Sheet
We briefly describe the environmental issues associated with stormwater runoff, describe the purpose of green infrastructure and key techniques used. We also highlight environmental and economic benefits of green infrastructure through text and tables, as well as provide US wate...
Resilience and environmental management
Environmental law plays a key role in shaping policy for sustainability. In particular, the types of legal instruments, institutions, and the response of law to the inherent variability in socio-ecological systems is critical. Sustainability likely must occur via the institutions...
This brochure is part of a series of information packages prepared by the United States Environmental Protection Agency (EPA). Aimed at the international community, the packages focus on key environmental and public health issues being investigated by EPA. The products highlighte...
Sanfo, Safiétou; Fonta, M William; Boubacar, Ibrahim; Lamers, P A John
2016-12-01
This article describes two datasets generated from various sources in south western Burkina Faso to identify the key climate and environmental drivers that cause farmers to migrate. The survey sampling is random but reasoned and rational. The first dataset from 367 farm households contains data on farmers' perception of climate change risks or hazards, their impacts on farmland productivity and farm households' risk management strategies. The second dataset from 58 farm households contains data on agricultural practices, environmental changes, and environmental migration. Three supplemental Excel sheets show the results of the surveys. Details on the sample as well as further interpretation and discussion of the surveys are available in the associated research article ('Field Facts for Crop Insurance Design: Empirical Evidence from South Western Burkina Faso' (W. M. Fonta, S. Sanfo, B. Ibrahim, B. Barry, 2015) [1]).
Continuous Variable Quantum Key Distribution Using Polarized Coherent States
NASA Astrophysics Data System (ADS)
Vidiella-Barranco, A.; Borelli, L. F. M.
We discuss a continuous variables method of quantum key distribution employing strongly polarized coherent states of light. The key encoding is performed using the variables known as Stokes parameters, rather than the field quadratures. Their quantum counterpart, the Stokes operators Ŝi (i=1,2,3), constitute a set of non-commuting operators, being the precision of simultaneous measurements of a pair of them limited by an uncertainty-like relation. Alice transmits a conveniently modulated two-mode coherent state, and Bob randomly measures one of the Stokes parameters of the incoming beam. After performing reconciliation and privacy amplification procedures, it is possible to distill a secret common key. We also consider a non-ideal situation, in which coherent states with thermal noise, instead of pure coherent states, are used for encoding.
User's design handbook for a Standardized Control Module (SCM) for DC to DC Converters, volume 2
NASA Technical Reports Server (NTRS)
Lee, F. C.
1980-01-01
A unified design procedure is presented for selecting the key SCM control parameters for an arbitrarily given power stage configuration and parameter values, such that all regulator performance specifications can be met and optimized concurrently in a single design attempt. All key results and performance indices, for buck, boost, and buck/boost switching regulators which are relevant to SCM design considerations are included to facilitate frequent references.
Vizzari, Marco; Modica, Giuseppe
2013-10-01
Environmental issues related to swine production are still a major concern for the general public and represent a key challenge for the swine industry. The environmental impact of higher livestock concentration is particularly significant where it coincides with weaker policy standards and poor manure management. Effective tools for environmental monitoring of the swine sewage management process become essential for verifying the environmental compatibility of farming facilities and for defining suitable policies aimed at increasing swine production sustainability. This research aims at the development and application of a model for a quick assessment of the environmental effectiveness of the pig farming sewage management process. In order to define the model, multicriteria techniques, and in particular, Saaty's analytic hierarchy process, were used to develop an iterative process in which the various key factors influencing the process under investigation were analyzed. The model, named EASE (Environmental Assessment of Sewages management Effectiveness), was optimized and applied to the Lake Trasimeno basin (Umbria, Italy), an area of high natural, environmental and aesthetic value. In this context, inadequate disposal of pig sewage represents a potential source of very considerable pollution. The results have demonstrated how the multicriteria model can represent a very effective and adaptable tool also in those decision-making processes aimed at the sustainable management of livestock production.
NASA Astrophysics Data System (ADS)
Vizzari, Marco; Modica, Giuseppe
2013-10-01
Environmental issues related to swine production are still a major concern for the general public and represent a key challenge for the swine industry. The environmental impact of higher livestock concentration is particularly significant where it coincides with weaker policy standards and poor manure management. Effective tools for environmental monitoring of the swine sewage management process become essential for verifying the environmental compatibility of farming facilities and for defining suitable policies aimed at increasing swine production sustainability. This research aims at the development and application of a model for a quick assessment of the environmental effectiveness of the pig farming sewage management process. In order to define the model, multicriteria techniques, and in particular, Saaty's analytic hierarchy process, were used to develop an iterative process in which the various key factors influencing the process under investigation were analyzed. The model, named EASE (Environmental Assessment of Sewages management Effectiveness), was optimized and applied to the Lake Trasimeno basin (Umbria, Italy), an area of high natural, environmental and aesthetic value. In this context, inadequate disposal of pig sewage represents a potential source of very considerable pollution. The results have demonstrated how the multicriteria model can represent a very effective and adaptable tool also in those decision-making processes aimed at the sustainable management of livestock production.
Cleary-Gaffney, Michael; Coogan, Andrew N
2018-05-15
Circadian rhythms are recurring patterns in a range of behavioural, physiological and molecular parameters that display periods of near 24 h, and are underpinned by an endogenous biological timekeeping system. Circadian clocks are increasingly recognised as being key for health. Environmental light is the key stimulus that synchronises the internal circadian system with the external time cues. There are emergent health concerns regarding increasing worldwide prevalence of electric lighting, especially man-made light-at-night, and light's impact on the circadian system may be central to these effects. A number of previous studies have demonstrated increased depression-like behaviour in various rodent experimental models exposed to dim light-at-night. In this study we set out to study the impact of dim light-at-night on circadian and affective behaviours in C57Bl/6 mice. We set out specifically to examine the impact of sex on light at night's effects, as well as the impact of housing conditions. We report minimal impact of light-at-night on circadian and affective behaviours, as measured by the tail suspension test, the forced swim test, the sucrose preference test and the elevated plus maze. Light-at-night was also not associated with an increase in body weight, but was associated with a decrease in the cell proliferation marker Ki-67 in the dentate gyrus. In summary, we conclude that experimental contextual factors, such as model species or strain, may be considerable importance in the investigation of the impact of light at night on mood-related parameters. Copyright © 2018 Elsevier Inc. All rights reserved.
In Situ Detection of Macronutrients and Chloride in Seawater by Submersible Electrochemical Sensors.
Cuartero, Maria; Crespo, Gaston; Cherubini, Thomas; Pankratova, Nadezda; Confalonieri, Fabio; Massa, Francesco; Tercier-Waeber, Mary-Lou; Abdou, Melina; Schäfer, Jörg; Bakker, Eric
2018-04-03
A new submersible probe for the in situ detection of nitrate, nitrite, and chloride in seawater is presented. Inline coupling of a desalination unit, an acidification unit, and a sensing flow cell containing all-solid-state membrane electrodes allows for the potentiometric detection of nitrate and nitrite after removal of the key interfering ions in seawater, chloride and hydroxide. Thus, the electrodes exhibited attractive analytical performances for the potentiometric detection of nitrate and nitrite in desalinated and acidified seawater: fast response time ( t 95 < 12 s), excellent stability (long-term drifts of <0.5 mV h -1 ), good reproducibility (calibration parameter deviation of <3%), and satisfactory accuracy (uncertainties <8%Diff compared to reference technique). The desalination cell, which can be repetitively used for about 30 times, may additionally be used as an exhaustive, and therefore calibration-free, electrochemical sensor for chloride and indirect salinity detection. The detection of these two parameters together with nitrate and nitrite may be useful for the correlation of relative changes in macronutrient levels with salinity cycles, which is of special interest in recessed coastal water bodies. The system is capable of autonomous operation during deployment, with routines for repetitive measurements (every 2 h), data storage and management, and computer visualization of the data in real time. In situ temporal profiles observed in the Arcachon Bay (France) showed valuable environmental information concerning tide-dependent cycles of nitrate and chloride levels in the lagoon, which are here observed for the first time using direct in situ measurements. The submersible probe based on membrane electrodes presented herein may facilitate the study of biogeochemical processes occurring in marine ecosystems by the direct monitoring of nitrate and nitrite levels, which are key chemical targets in coastal waters.
Kwicklis, Edward M.; Wolfsberg, Andrew V.; Stauffer, Philip H.; Walvoord, Michelle Ann; Sully, Michael J.
2006-01-01
Multiphase, multicomponent numerical models of long-term unsaturated-zone liquid and vapor movement were created for a thick alluvial basin at the Nevada Test Site to predict present-day liquid and vapor fluxes. The numerical models are based on recently developed conceptual models of unsaturated-zone moisture movement in thick alluvium that explain present-day water potential and tracer profiles in terms of major climate and vegetation transitions that have occurred during the past 10 000 yr or more. The numerical models were calibrated using borehole hydrologic and environmental tracer data available from a low-level radioactive waste management site located in a former nuclear weapons testing area. The environmental tracer data used in the model calibration includes tracers that migrate in both the liquid and vapor phases (??D, ??18O) and tracers that migrate solely as dissolved solutes (Cl), thus enabling the estimation of some gas-phase as well as liquid-phase transport parameters. Parameter uncertainties and correlations identified during model calibration were used to generate parameter combinations for a set of Monte Carlo simulations to more fully characterize the uncertainty in liquid and vapor fluxes. The calculated background liquid and vapor fluxes decrease as the estimated time since the transition to the present-day arid climate increases. However, on the whole, the estimated fluxes display relatively little variability because correlations among parameters tend to create parameter sets for which changes in some parameters offset the effects of others in the set. Independent estimates on the timing since the climate transition established from packrat midden data were essential for constraining the model calibration results. The study demonstrates the utility of environmental tracer data in developing numerical models of liquid- and gas-phase moisture movement and the importance of considering parameter correlations when using Monte Carlo analysis to characterize the uncertainty in moisture fluxes. ?? Soil Science Society of America.
Liu, Cheng; Liao, Yingmin; Huang, Xiaojia
2017-11-17
This work prepared a new poly (ionic liquid)-functionalized magnetic adsorbent (PFMA) for the extraction of triazole fungicides (TFs) in environmental waters prior to determination by high performance liquid chromatography/diode array detection (HPLC-DAD). A polymerizable ionic liquid, 1-methyl-3-allylimidazolium bis(trifluoromethylsulfonyl)imide was employed to copolymerize with divinylbenzene on the surface of modified magnetite to fabricate the PFMA. The morphology, spectroscopic and magnetic properties of the new adsorbent were investigated by different techniques. A series of key parameters that influence the extraction performance including the amount of PFMA, desorption solvent, adsorption and desorption time, sample pH value and ionic strength were optimized in detail. Under the optimum conditions, the prepared PFMA could extract targeted TFs effectively and quickly under the format of magnetic solid-phase extraction (MSPE). Satisfactory linearities were achieved in the range of 0.1-200.0μg/L for triadimenol and 0.05-200.0μg/L for other TFs with good coefficients of determination above 0.99 for all analytes. The limits of detection (S/N=3) and limits of quantification (S/N=10) for TFs were in the range of 0.0050-0.0078μg/L and 0.017-0.026μg/L, respectively. Environmental waters including lake, river and well waters were used to demonstrate the applicability of developed MSPE-HPLC-DAD method, and satisfactory recoveries and repeatability were obtained. Copyright © 2017 Elsevier B.V. All rights reserved.
Does plant-Microbe interaction confer stress tolerance in plants: A review?
Kumar, Akhilesh; Verma, Jay Prakash
2018-03-01
The biotic and abiotic stresses are major constraints for crop yield, food quality and global food security. A number of parameters such as physiological, biochemical, molecular of plants are affected under stress condition. Since the use of inorganic fertilizers and pesticides in agriculture practices cause degradation of soil fertility and environmental pollutions. Hence it is necessary to develop safer and sustainable means for agriculture production. The application of plant growth promoting microbes (PGPM) and mycorrhizal fungi enhance plant growth, under such conditions. It offers an economically fascinating and ecologically sound ways for protecting plants against stress condition. PGPM may promote plant growth by regulating plant hormones, improve nutrition acquisition, siderophore production and enhance the antioxidant system. While acquired systemic resistance (ASR) and induced systemic resistance (ISR) effectively deal with biotic stress. Arbuscular mycorrhiza (AM) enhance the supply of nutrients and water during stress condition and increase tolerance to stress. This plant-microbe interaction is vital for sustainable agriculture and industrial purpose, because it depends on biological processes and replaces conventional agriculture practices. Therefore, microbes may play a key role as an ecological engineer to solve environmental stress problems. So, it is a feasible and potential technology in future to feed global population at available resources with reduced impact on environmental quality. In this review, we have attempted to explore about abiotic and biotic stress tolerant beneficial microorganisms and their modes of action to enhance the sustainable agricultural production. Copyright © 2017 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fields, Matthew
Currently, coal bed methane (CBM) wells have a limited lifetime since the rate of methane removal via the installed wells is much faster than the in situ methane production rates. Along with water issues created by large amounts of CBM production water, the short life span of CBM wells is a huge deterrent to the environmental and economic feasibility of CBM production. The process of biogenic methanogenesis can be enhanced via the stimulation of the associated microbial communities that can convert the organic fractions of coal to methane. This process is termed Microbially-Enhanced Coal Bed Methane (MECBM). However, the ratesmore » of methane production are still limited and long incubation times are necessary. We hypothesized that the elucidation of chemical and biological parameters that limited MECBM together with thermodynamic considerations would inform strategies to optimize the process under flow conditions. We incorporated microbiological, physicochemical, and engineering processes to develop a more sustainable CBM production scheme with native coal and native microorganisms. The proposed combination of microbial ecology and physiology as well as optimized engineering principles minimized key constraints that impact microbial coal conversion to methane under environmentally relevant conditions. The combined approach for bench-scale tests resulted in more effective and less environmentally burdensome coal-dependent methane production with the potential for H 2O and CO 2 management.« less
Response of benthic algae to environmental gradients in an agriculturally dominated landscape
Munn, M.D.; Black, R.W.; Gruber, S.J.
2002-01-01
Benthic algal communities were assessed in an agriculturally dominated landscape in the Central Columbia Plateau, Washington, to determine which environmental variables best explained species distributions, and whether algae species optima models were useful in predicting specific water-quality parameters. Land uses in the study area included forest, range, urban, and agriculture. Most of the streams in this region can be characterized as open-channel systems influenced by intensive dryland (nonirrigated) and irrigated agriculture. Algal communities in forested streams were dominated by blue-green algae, with communities in urban and range streams dominated by diatoms. The predominance of either blue-greens or diatoms in agricultural streams varied greatly depending on the specific site. Canonical correspondence analysis (CCA) indicated a strong gradient effect of several key environmental variables on benthic algal community composition. Conductivity and % agriculture were the dominant explanatory variables when all sites (n = 24) were included in the CCA; water velocity replaced conductivity when the CCA included only agricultural and urban sites. Other significant explanatory variables included dissolved inorganic nitrogen (DIN), orthophosphate (OP), discharge, and precipitation. Regression and calibration models accurately predicted conductivity based on benthic algal communities, with OP having slightly lower predictability. The model for DIN was poor, and therefore may be less useful in this system. Thirty-four algal taxa were identified as potential indicators of conductivity and nutrient conditions, with most indicators being diatoms except for the blue-greens Anabaenasp. and Lyngbya sp.
Research and design of photovoltaic power monitoring system based on Zig Bee
NASA Astrophysics Data System (ADS)
Zhu, Lijuan; Yun, Zhonghua; Bianbawangdui; Bianbaciren
2018-01-01
In order to monitor and study the impact of environmental parameters on photovoltaic cells, a photovoltaic cell monitoring system based on ZigBee is designed. The system uses ZigBee wireless communication technology to achieve real-time acquisition of P-I-V curves and environmental parameters of terminal nodes, and transfer the data to the coordinator, the coordinator communicates with the STM32 through the serial port. In addition, STM32 uses the serial port to transfer data to the host computer written by LabVIEW, and the collected data is displayed in real time, as well as stored in the background database. The experimental results show that the system has a stable performance, accurate measurement, high sensitivity, high reliability, can better realize real-time collection of photovoltaic cell characteristics and environmental parameters.
Migration in Deltas: An Integrated Analysis
NASA Astrophysics Data System (ADS)
Nicholls, Robert J.; Hutton, Craig W.; Lazar, Attila; Adger, W. Neil; Allan, Andrew; Arto, Inaki; Vincent, Katharine; Rahman, Munsur; Salehin, Mashfiqus; Sugata, Hazra; Ghosh, Tuhin; Codjoe, Sam; Appeaning-Addo, Kwasi
2017-04-01
Deltas and low-lying coastal regions have long been perceived as vulnerable to global sea-level rise, with the potential for mass displacement of exposed populations. The assumption of mass displacement of populations in deltas requires a comprehensive reassessment in the light of present and future migration in deltas, including the potential role of adaptation to influence these decisions. At present, deltas are subject to multiple drivers of environmental change and often have high population densities as they are accessible and productive ecosystems. Climate change, catchment management, subsidence and land cover change drive environmental change across all deltas. Populations in deltas are also highly mobile, with significant urbanization trends and the growth of large cities and mega-cities within or adjacent to deltas across Asia and Africa. Such migration is driven primarily by economic opportunity, yet environmental change in general, and climate change in particular, are likely to play an increasing direct and indirect role in future migration trends. The policy challenges centre on the role of migration within regional adaptation strategies to climate change; the protection of vulnerable populations; and the future of urban settlements within deltas. This paper reviews current knowledge on migration and adaptation to environmental change to discern specific issues pertinent to delta regions. It develops a new integrated methodology to assess present and future migration in deltas using the Volta delta in Ghana, Mahanadi delta in India and Ganges-Brahmaputra-Meghna delta across India and Bangladesh. The integrated method focuses on: biophysical changes and spatial distribution of vulnerability; demographic changes and migration decision-making using multiple methods and data; macro-economic trends and scenarios in the deltas; and the policies and governance structures that constrain and enable adaptation. The analysis is facilitated by a range of consistent scenarios from global to delta scales, developed in consultation with major stakeholders. Initial results suggest that migration decision-making strongly interacts with diverse measures for adaptation of land, water and agricultural management. A key normative challenge is to identify the parameters of successful migration and adaptation across delta regions, to inform policy analysis and formulation. Key words: Deltas, sea-level rise, migration and adaptation Acknowledgement: DECCMA (Deltas, Vulnerability & Climate Change: Migration & Adaptation) project is part of the Collaborative ADAPTATION Research Initiative in Africa and Asia (CARIAA), with financial support from the UK Government's Department for International Development (DFID) and the International Development Research Centre (IDRC), Canada.
NASA Astrophysics Data System (ADS)
Lührs, Nikolas; Jager, Nicolas W.; Challies, Edward; Newig, Jens
2018-02-01
Public participation is potentially useful to improve public environmental decision-making and management processes. In corporate management, the Vroom-Yetton-Jago normative decision-making model has served as a tool to help managers choose appropriate degrees of subordinate participation for effective decision-making given varying decision-making contexts. But does the model recommend participatory mechanisms that would actually benefit environmental management? This study empirically tests the improved Vroom-Jago version of the model in the public environmental decision-making context. To this end, the key variables of the Vroom-Jago model are operationalized and adapted to a public environmental governance context. The model is tested using data from a meta-analysis of 241 published cases of public environmental decision-making, yielding three main sets of findings: (1) The Vroom-Jago model proves limited in its applicability to public environmental governance due to limited variance in its recommendations. We show that adjustments to key model equations make it more likely to produce meaningful recommendations. (2) We find that in most of the studied cases, public environmental managers (implicitly) employ levels of participation close to those that would have been recommended by the model. (3) An ANOVA revealed that such cases, which conform to model recommendations, generally perform better on stakeholder acceptance and environmental standards of outputs than those that diverge from the model. Public environmental management thus benefits from carefully selected and context-sensitive modes of participation.
Lührs, Nikolas; Jager, Nicolas W; Challies, Edward; Newig, Jens
2018-02-01
Public participation is potentially useful to improve public environmental decision-making and management processes. In corporate management, the Vroom-Yetton-Jago normative decision-making model has served as a tool to help managers choose appropriate degrees of subordinate participation for effective decision-making given varying decision-making contexts. But does the model recommend participatory mechanisms that would actually benefit environmental management? This study empirically tests the improved Vroom-Jago version of the model in the public environmental decision-making context. To this end, the key variables of the Vroom-Jago model are operationalized and adapted to a public environmental governance context. The model is tested using data from a meta-analysis of 241 published cases of public environmental decision-making, yielding three main sets of findings: (1) The Vroom-Jago model proves limited in its applicability to public environmental governance due to limited variance in its recommendations. We show that adjustments to key model equations make it more likely to produce meaningful recommendations. (2) We find that in most of the studied cases, public environmental managers (implicitly) employ levels of participation close to those that would have been recommended by the model. (3) An ANOVA revealed that such cases, which conform to model recommendations, generally perform better on stakeholder acceptance and environmental standards of outputs than those that diverge from the model. Public environmental management thus benefits from carefully selected and context-sensitive modes of participation.
Forest environmental investments and implications for climate change mitigation.
Ralph J. Alig; Lucas S. Bair
2006-01-01
Forest environmental conditions are affected by climate change, but investments in forest environmental quality can be used as part of the climate change mitigation strategy. A key question involving the potential use of forests to store more carbon as part of climate change mitigation is the impact of forest investments on the timing and quantity of forest volumes...
Environmental Education in High Schools in Kosovo--A Teacher's Perspective
ERIC Educational Resources Information Center
Hyseni Spahiu, Mimoza; Korca, Bardha; Lindemann-Matthies, Petra
2014-01-01
The integration of education for sustainable development (ESD) into all levels of education is a key priority in Kosovo's environmental action plan. However, at present it is not even known how environmental education (EE) is integrated in the country's educational system. With the help of a written questionnaire and in-depth interviews with 18…
Low-dose extrapolation model selection for evaluating the health effects of environmental pollutants is a key component of the risk assessment process. At a workshop held in Baltimore, MD, on April 23-24, 2007, and sponsored by U.S. Environmental Protection Agency (EPA) and Johns...
ERIC Educational Resources Information Center
Dalelo, Aklilu
2009-01-01
It is believed that the possibilities of integrating environmental issues into the formal and nonformal education programs depend on the capacity of teachers who put such programs into effect. A pilot project, aimed at building the capacity of schools in Ethiopia to address key environmental issues, was initiated in 2004. Among the major…
NASA Technical Reports Server (NTRS)
Smith, C. C.; Warner, D. B.; Dajani, J. S.
1977-01-01
The technical, economic, and environmental problems restricting commercial helicopter passenger operations are reviewed. The key considerations for effective assessment procedures are outlined and a preliminary model for the environmental analysis of helicopters is developed. It is recommended that this model, or some similar approach, be used as a common base for the development of comprehensive environmental assessment methods for each of the federal agencies concerned with helicopters. A description of the critical environmental research issues applicable to helicopters is also presented.
Semantic technologies improving the recall and precision of the Mercury metadata search engine
NASA Astrophysics Data System (ADS)
Pouchard, L. C.; Cook, R. B.; Green, J.; Palanisamy, G.; Noy, N.
2011-12-01
The Mercury federated metadata system [1] was developed at the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC), a NASA-sponsored effort holding datasets about biogeochemical dynamics, ecological data, and environmental processes. Mercury currently indexes over 100,000 records from several data providers conforming to community standards, e.g. EML, FGDC, FGDC Biological Profile, ISO 19115 and DIF. With the breadth of sciences represented in Mercury, the potential exists to address some key interdisciplinary scientific challenges related to climate change, its environmental and ecological impacts, and mitigation of these impacts. However, this wealth of metadata also hinders pinpointing datasets relevant to a particular inquiry. We implemented a semantic solution after concluding that traditional search approaches cannot improve the accuracy of the search results in this domain because: a) unlike everyday queries, scientific queries seek to return specific datasets with numerous parameters that may or may not be exposed to search (Deep Web queries); b) the relevance of a dataset cannot be judged by its popularity, as each scientific inquiry tends to be unique; and c)each domain science has its own terminology, more or less curated, consensual, and standardized depending on the domain. The same terms may refer to different concepts across domains (homonyms), but different terms mean the same thing (synonyms). Interdisciplinary research is arduous because an expert in a domain must become fluent in the language of another, just to find relevant datasets. Thus, we decided to use scientific ontologies because they can provide a context for a free-text search, in a way that string-based keywords never will. With added context, relevant datasets are more easily discoverable. To enable search and programmatic access to ontology entities in Mercury, we are using an instance of the BioPortal ontology repository. Mercury accesses ontology entities using the BioPortal REST API by passing a search parameter to BioPortal that may return domain context, parameter attribute, or entity annotations depending on the entity's associated ontological relationships. As Mercury's facetted search is popular with users, the results are displayed as facets. Unlike a facetted search however, the ontology-based solution implements both restrictions (improving precision) and expansions (improving recall) on the results of the initial search. For instance, "carbon" acquires a scientific context and additional key terms or phrases for discovering domain-specific datasets. A limitation of our solution is that the user must perform an additional step. Another limitation is that the quality of the newly discovered metadata is contingent upon the quality of the ontologies we use. Our solution leverages Mercury's federated capabilities to collect records from heterogeneous domains, and BioPortal's storage, curation and access capabilities for ontology entities. With minimal additional development, our approach builds on two mature systems for finding relevant datasets for interdisciplinary inquiries. We thus indicate a path forward for linking environmental, ecological and biological sciences. References: [1] Devarakonda, R., Palanisamy, G., Wilson, B. E., & Green, J. M. (2010). Mercury: reusable metadata management, data discovery and access system. Earth Science Informatics, 3(1-2), 87-94.
Fish bioaccumulation and biomarkers in environmental risk assessment: a review.
van der Oost, Ron; Beyer, Jonny; Vermeulen, Nico P E
2003-02-01
In this review, a wide array of bioaccumulation markers and biomarkers, used to demonstrate exposure to and effects of environmental contaminants, has been discussed in relation to their feasibility in environmental risk assessment (ERA). Fish bioaccumulation markers may be applied in order to elucidate the aquatic behavior of environmental contaminants, as bioconcentrators to identify certain substances with low water levels and to assess exposure of aquatic organisms. Since it is virtually impossible to predict the fate of xenobiotic substances with simple partitioning models, the complexity of bioaccumulation should be considered, including toxicokinetics, metabolism, biota-sediment accumulation factors (BSAFs), organ-specific bioaccumulation and bound residues. Since it remains hard to accurately predict bioaccumulation in fish, even with highly sophisticated models, analyses of tissue levels are required. The most promising fish bioaccumulation markers are body burdens of persistent organic pollutants, like PCBs and DDTs. Since PCDD and PCDF levels in fish tissues are very low as compared with the sediment levels, their value as bioaccumulation markers remains questionable. Easily biodegradable compounds, such as PAHs and chlorinated phenols, do not tend to accumulate in fish tissues in quantities that reflect the exposure. Semipermeable membrane devices (SPMDs) have been successfully used to mimic bioaccumulation of hydrophobic organic substances in aquatic organisms. In order to assess exposure to or effects of environmental pollutants on aquatic ecosystems, the following suite of fish biomarkers may be examined: biotransformation enzymes (phase I and II), oxidative stress parameters, biotransformation products, stress proteins, metallothioneins (MTs), MXR proteins, hematological parameters, immunological parameters, reproductive and endocrine parameters, genotoxic parameters, neuromuscular parameters, physiological, histological and morphological parameters. All fish biomarkers are evaluated for their potential use in ERA programs, based upon six criteria that have been proposed in the present paper. This evaluation demonstrates that phase I enzymes (e.g. hepatic EROD and CYP1A), biotransformation products (e.g. biliary PAH metabolites), reproductive parameters (e.g. plasma VTG) and genotoxic parameters (e.g. hepatic DNA adducts) are currently the most valuable fish biomarkers for ERA. The use of biomonitoring methods in the control strategies for chemical pollution has several advantages over chemical monitoring. Many of the biological measurements form the only way of integrating effects on a large number of individual and interactive processes in aquatic organisms. Moreover, biological and biochemical effects may link the bioavailability of the compounds of interest with their concentration at target organs and intrinsic toxicity. The limitations of biomonitoring, such as confounding factors that are not related to pollution, should be carefully considered when interpreting biomarker data. Based upon this overview there is little doubt that measurements of bioaccumulation and biomarker responses in fish from contaminated sites offer great promises for providing information that can contribute to environmental monitoring programs designed for various aspects of ERA.
NASA Astrophysics Data System (ADS)
Prucha, R. H.; Dayton, C. S.; Hawley, C. M.
2002-12-01
The Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado, a former Department of Energy nuclear weapons manufacturing facility, is currently undergoing closure. The natural semi-arid interaction between surface and subsurface flow at RFETS is complex and complicated by the industrial modifications to the flow system. Using a substantial site data set, a distributed parameter, fully-integrated hydrologic model was developed to assess the hydrologic impact of different hypothetical site closure configurations on the current flow system and to better understand the integrated hydrologic behavior of the system. An integrated model with this level of detail has not been previously developed in a semi-arid area, and a unique, but comprehensive, approach was required to calibrate and validate the model. Several hypothetical scenarios were developed to simulate hydrologic effects of modifying different aspects of the site. For example, some of the simulated modifications included regrading the current land surface, changing the existing surface channel network, removing subsurface trenches and gravity drain flow systems, installing a slurry wall and geotechnical cover, changing the current vegetative cover, and converting existing buildings and pavement to permeable soil areas. The integrated flow model was developed using a rigorous physically-based code so that realistic design parameters can simulate these changes. This code also permitted evaluation of changes to complex integrated hydrologic system responses that included channelized and overland flow, pond levels, unsaturated zone storage, groundwater heads and flow directions, and integrated water balances for key areas. Results generally show that channel flow offsite decreases substantially for different scenarios, while groundwater heads generally increase within the reconfigured industrial area most of which is then discharged as evapotranspiration. These changes have significant implications to site closure and operation.
Frisk, Mikael; Jonsson, Annie; Sellman, Stefan; Flisberg, Patrik; Rönnqvist, Mikael; Wennergren, Uno
2018-01-01
Each year, more than three million animals are transported from farms to abattoirs in Sweden. Animal transport is related to economic and environmental costs and a negative impact on animal welfare. Time and the number of pick-up stops between farms and abattoirs are two key parameters for animal welfare. Both are highly dependent on efficient and qualitative transportation planning, which may be difficult if done manually. We have examined the benefits of using route optimization in cattle transportation planning. To simulate the effects of various planning time windows and transportation time regulations and number of pick-up stops along each route, we have used data that represent one year of cattle transport. Our optimization model is a development of a model used in forestry transport that solves a general pick-up and delivery vehicle routing problem. The objective is to minimize transportation costs. We have shown that the length of the planning time window has a significant impact on the animal transport time, the total driving time and the total distance driven; these parameters that will not only affect animal welfare but also affect the economy and environment in the pre-slaughter logistic chain. In addition, we have shown that changes in animal transportation regulations, such as minimizing the number of allowed pick-up stops on each route or minimizing animal transportation time, will have positive effects on animal welfare measured in transportation hours and number of pick-up stops. However, this leads to an increase in working time and driven distances, leading to higher transportation costs for the transport and negative environmental impact.
2018-01-01
Each year, more than three million animals are transported from farms to abattoirs in Sweden. Animal transport is related to economic and environmental costs and a negative impact on animal welfare. Time and the number of pick-up stops between farms and abattoirs are two key parameters for animal welfare. Both are highly dependent on efficient and qualitative transportation planning, which may be difficult if done manually. We have examined the benefits of using route optimization in cattle transportation planning. To simulate the effects of various planning time windows and transportation time regulations and number of pick-up stops along each route, we have used data that represent one year of cattle transport. Our optimization model is a development of a model used in forestry transport that solves a general pick-up and delivery vehicle routing problem. The objective is to minimize transportation costs. We have shown that the length of the planning time window has a significant impact on the animal transport time, the total driving time and the total distance driven; these parameters that will not only affect animal welfare but also affect the economy and environment in the pre-slaughter logistic chain. In addition, we have shown that changes in animal transportation regulations, such as minimizing the number of allowed pick-up stops on each route or minimizing animal transportation time, will have positive effects on animal welfare measured in transportation hours and number of pick-up stops. However, this leads to an increase in working time and driven distances, leading to higher transportation costs for the transport and negative environmental impact. PMID:29513704
A critical evaluation of phosphate retardation and leaching in Hapludults
NASA Astrophysics Data System (ADS)
Dao, Thanh
2016-04-01
Nutrients used in production agriculture, in particular bioactive phosphorus (P), continue to present challenges in trying to reverse the degradation of fragile aquatic ecosystems. Soils treated with large amounts of nutrient-enriched animal manure have elevated P levels in regions of intensive animal agriculture and the residual effects of past large P additions were found to be long-lived. Mathematical models are increasingly used in the evaluation and development of mitigation strategies and sustainable management practices. A large number of predictive tools are currently used in the U.S. for simulating phosphorus environmental fate, including models such AGNPS (Agricultural Non-Point Source), FHANTM Field Hydrologic And Nutrient Transport Model (Field Hydrologic And Nutrient Transport Model), SWAT (Soil & Water Assessment Tool), or APEX (Agric. Policy/Environmental EXtender). The P routines in these models have had limited changes in spite of the advances in our understanding of speciation and transport of various P forms in soil and water systems that have occurred over the last three decades. We conducted soil sorption isotherm experiments that yielded basic information for estimating the Phosphorus Sorption coefficient (PSP) a key parameter used to allocate mineral P into soil labile, active, and stable pools. We compare these coefficients to parameters derived from breakthrough curves (BTC) for determining the extent of retardation and transport of phosphate supplied as KH2PO4 under a constant hydraulic head. Sigmoidal and multi-reaction rate models were observed in the BTCs of the anion, which undermine the rationale for using an overall simple partition coefficient to describe the transport and dispersal of phosphate in soil. Minimizing such generalities used in estimating nutrient availability and transport gives a more accurate picture of status of P in soil to conserve nutrients and minimize loss of excess P inputs to the environment.
Early stage of weathering of medieval-like potash-lime model glass: evaluation of key factors.
Gentaz, Lucile; Lombardo, Tiziana; Loisel, Claudine; Chabas, Anne; Vallotto, Marta
2011-02-01
Throughout history, a consequent part of the medieval stained glass windows have been lost, mostly because of deliberate or accidental mechanic destruction during war or revolution, but, in some cases, did not withstand the test of time simply because of their low durability. Indeed, the glasses that remain nowadays are for many in a poor state of conservation and are heavily deteriorated. Under general exposure conditions, stained glass windows undergo different kinds of weathering processes that modify their optical properties, chemistry, and structure: congruent dissolution, leaching, and particle deposition (the combination of those two leading together to the formation of neocrystallisations and eventually crusts). Previous research has studied the weathering forms and the mechanisms from which they are originated, some others identified the main environmental parameters responsible for the deterioration and highlighted that both intrinsic (glass composition) and extrinsic (environmental parameters) factors influence glass degradation. Nevertheless, a clear quantification of the impact of the different deterioration extrinsic factors has not been performed. By analysing the results obtained with model glass (durable and nondurable) exposed in the field, this paper proposes a simple mathematical computation evaluating the contribution of the different weathering factors for the early stages of exposure of the stained glasses. In the case of non durable glass, water runoff was identified as the main factor inducing the leaching (83.4 ± 2.6% contribution), followed by gas (6.4 ± 1.5%) and particle deposition (6.8 ± 2.2%) and adsorbed water (3.4 ± 0.6%). Moreover, it was shown that the extrinsic stimuli superimposes with the impact of glass composition to the weathering. Those results show that the role played by dry deposition, even if less important than that of the wet deposition, cannot be neglected.
Environmental Effects on the Photophysics of Organic-Inorganic Halide Perovskites.
Galisteo-López, Juan F; Anaya, M; Calvo, M E; Míguez, H
2015-06-18
The photophysical properties of films of organic-inorganic lead halide perovskites under different ambient conditions are herein reported. We demonstrate that their luminescent properties are determined by the interplay between photoinduced activation and darkening processes, which strongly depend on the atmosphere surrounding the samples. We have isolated oxygen and moisture as the key elements in each process, activation and darkening, both of which involve the interaction with photogenerated carriers. These findings show that environmental factors play a key role in the performance of lead halide perovskites as efficient luminescent materials.
Environmental Effects on the Photophysics of Organic–Inorganic Halide Perovskites
2015-01-01
The photophysical properties of films of organic–inorganic lead halide perovskites under different ambient conditions are herein reported. We demonstrate that their luminescent properties are determined by the interplay between photoinduced activation and darkening processes, which strongly depend on the atmosphere surrounding the samples. We have isolated oxygen and moisture as the key elements in each process, activation and darkening, both of which involve the interaction with photogenerated carriers. These findings show that environmental factors play a key role in the performance of lead halide perovskites as efficient luminescent materials. PMID:26266592
THE USE AND LIMITATIONS OF DETECTION AND QUANTITATION LIMITS IN ENVIRONMENTAL ANALYSIS
Site assessment, remediation and compliance monitoring require the routine determination of the concentration of regulated substances in environmental samples. Each measurement methodology providing the concentration determinations, is required to specify key data quality elemen...
Panarchy, adaptive management and environmental policy
Environmental law plays a key role in shaping policy for sustainability. In particular, the types of legal instruments, institutions, and the response of law to the inherent variability in socio-ecological systems is critical. Sustainability likely must occur via the institutions...
High Throughput Screening For Hazard and Risk of Environmental Contaminants
High throughput toxicity testing provides detailed mechanistic information on the concentration response of environmental contaminants in numerous potential toxicity pathways. High throughput screening (HTS) has several key advantages: (1) expense orders of magnitude less than an...
FISH ASSEMBLAGES AS INDICATORS OF LAKE SUPERIOR COASTAL WETLAND CONDITION
Fish assemblages associated with coastal wetlands in Lake Superior are poorly described. Understanding the environmental factors structuring the biota in these habitats is essential to developing robust indicators of their condition. To identify key environmental influences struc...
ERIC Educational Resources Information Center
Wagner, Stacey
2001-01-01
Describes the training at the Idaho National Engineering and Environmental Laboratory, the foremost nuclear energy and environmental laboratory in the United States. Suggests that the key to assurance is getting workers, most of whom are unionized, involved in their own safety training. (JOW)
Currylow, Andrea F T; Mandimbihasina, Angelo; Gibbons, Paul; Bekarany, Ernest; Stanford, Craig B; Louis, Edward E; Crocker, Daniel E
2017-01-01
Captive breeding is a vital conservation tool for many endangered species programs. It is often a last resort when wild animal population numbers drop to below critical minimums for natural reproduction. However, critical ecophysiological information of wild counterparts may not be well documented or understood, leading to years of minimal breeding successes. We collected endocrine and associated ecological data on a critically endangered ectotherm concurrently in the wild and in captivity over several years. We tracked plasma concentrations of steroid stress and reproductive hormones, body condition, activity, and environmental parameters in three populations (one wild and two geographically distinct captive) of ploughshare tortoise (Astrochelys yniphora). Hormone profiles along with environmental and behavioral data are presented and compared. We show that animals have particular seasonal environmental requirements that can affect annual reproduction, captivity affects reproductive state, and sociality may be required at certain times of the year for breeding to be successful. Our data suggest that changes in climatic conditions experienced by individuals, either due to decades-long shifts or hemispheric differences when translocated from their native range, can stifle breeding success for several years while the animals physiologically acclimatize. We also found that captivity affects stress (plasma corticosterone) and body condition of adults and juveniles differently and seasonally. Our results indicate that phenotypic plasticity in reproduction and behavior is related to environmental cues in long-lived ectotherms, and detailed ecophysiological data should be used when establishing and improving captive husbandry conditions for conservation breeding programs. Further, considering the recent revelation of this tortoises' possible extirpation from the wild, these data are critically opportune and may be key to the survival of this species.
Mandimbihasina, Angelo; Gibbons, Paul; Bekarany, Ernest; Stanford, Craig B.; Louis, Edward E.; Crocker, Daniel E.
2017-01-01
Captive breeding is a vital conservation tool for many endangered species programs. It is often a last resort when wild animal population numbers drop to below critical minimums for natural reproduction. However, critical ecophysiological information of wild counterparts may not be well documented or understood, leading to years of minimal breeding successes. We collected endocrine and associated ecological data on a critically endangered ectotherm concurrently in the wild and in captivity over several years. We tracked plasma concentrations of steroid stress and reproductive hormones, body condition, activity, and environmental parameters in three populations (one wild and two geographically distinct captive) of ploughshare tortoise (Astrochelys yniphora). Hormone profiles along with environmental and behavioral data are presented and compared. We show that animals have particular seasonal environmental requirements that can affect annual reproduction, captivity affects reproductive state, and sociality may be required at certain times of the year for breeding to be successful. Our data suggest that changes in climatic conditions experienced by individuals, either due to decades-long shifts or hemispheric differences when translocated from their native range, can stifle breeding success for several years while the animals physiologically acclimatize. We also found that captivity affects stress (plasma corticosterone) and body condition of adults and juveniles differently and seasonally. Our results indicate that phenotypic plasticity in reproduction and behavior is related to environmental cues in long-lived ectotherms, and detailed ecophysiological data should be used when establishing and improving captive husbandry conditions for conservation breeding programs. Further, considering the recent revelation of this tortoises’ possible extirpation from the wild, these data are critically opportune and may be key to the survival of this species. PMID:28813439
Earth observation in support of malaria control and epidemiology: MALAREO monitoring approaches.
Franke, Jonas; Gebreslasie, Michael; Bauwens, Ides; Deleu, Julie; Siegert, Florian
2015-06-03
Malaria affects about half of the world's population, with the vast majority of cases occuring in Africa. National malaria control programmes aim to reduce the burden of malaria and its negative, socioeconomic effects by using various control strategies (e.g. vector control, environmental management and case tracking). Vector control is the most effective transmission prevention strategy, while environmental factors are the key parameters affecting transmission. Geographic information systems (GIS), earth observation (EO) and spatial modelling are increasingly being recognised as valuable tools for effective management and malaria vector control. Issues previously inhibiting the use of EO in epidemiology and malaria control such as poor satellite sensor performance, high costs and long turnaround times, have since been resolved through modern technology. The core goal of this study was to develop and implement the capabilities of EO data for national malaria control programmes in South Africa, Swaziland and Mozambique. High- and very high resolution (HR and VHR) land cover and wetland maps were generated for the identification of potential vector habitats and human activities, as well as geoinformation on distance to wetlands for malaria risk modelling, population density maps, habitat foci maps and VHR household maps. These products were further used for modelling malaria incidence and the analysis of environmental factors that favour vector breeding. Geoproducts were also transferred to the staff of national malaria control programmes in seven African countries to demonstrate how EO data and GIS can support vector control strategy planning and monitoring. The transferred EO products support better epidemiological understanding of environmental factors related to malaria transmission, and allow for spatio-temporal targeting of malaria control interventions, thereby improving the cost-effectiveness of interventions.
Can Landscape Evolution Models (LEMs) be used to reconstruct palaeo-climate and sea-level histories?
NASA Astrophysics Data System (ADS)
Leyland, J.; Darby, S. E.
2011-12-01
Reconstruction of palaeo-environmental conditions over long time periods is notoriously difficult, especially where there are limited or no proxy records from which to extract data. Application of landscape evolution models (LEMs) for palaeo-environmental reconstruction involves hindcast modeling, in which simulation scenarios are configured with specific model variables and parameters chosen to reflect a specific hypothesis of environmental change. In this form of modeling, the environmental time series utilized are considered credible when modeled and observed landscape metrics converge. Herein we account for the uncertainties involved in evaluating the degree to which the model simulations and observations converge using Monte Carlo analysis of reduced complexity `metamodels'. The technique is applied to a case study focused on a specific set of gullies found on the southwest coast of the Isle of Wight, UK. A key factor controlling the Holocene evolution of these coastal gullies is the balance between rates of sea-cliff retreat (driven by sea-level rise) and headwards incision caused by knickpoint migration (driven by the rate of runoff). We simulate these processes using a version of the GOLEM model that has been modified to represent sea-cliff retreat. A Central Composite Design (CCD) sampling technique was employed, enabling the trajectories of gully response to different combinations of driving conditions to be modeled explicitly. In some of these simulations, where the range of bedrock erodibility (0.03 to 0.04 m0.2 a-1) and rate of sea-level change (0.005 to 0.0059 m a-1) is tightly constrained, modeled gully forms conform closely to those observed in reality, enabling a suite of climate and sea-level change scenarios which plausibly explain the Holocene evolution of the Isle of Wight gullies to be identified.
40 CFR 63.2831 - Where can I find definitions of key words used in this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... words used in this subpart? 63.2831 Section 63.2831 Protection of Environment ENVIRONMENTAL PROTECTION... Vegetable Oil Production What This Subpart Covers § 63.2831 Where can I find definitions of key words used in this subpart? You can find definitions of key words used in this subpart in § 63.2872. ...
Estimation of end point foot clearance points from inertial sensor data.
Santhiranayagam, Braveena K; Lai, Daniel T H; Begg, Rezaul K; Palaniswami, Marimuthu
2011-01-01
Foot clearance parameters provide useful insight into tripping risks during walking. This paper proposes a technique for the estimate of key foot clearance parameters using inertial sensor (accelerometers and gyroscopes) data. Fifteen features were extracted from raw inertial sensor measurements, and a regression model was used to estimate two key foot clearance parameters: First maximum vertical clearance (m x 1) after toe-off and the Minimum Toe Clearance (MTC) of the swing foot. Comparisons are made against measurements obtained using an optoelectronic motion capture system (Optotrak), at 4 different walking speeds. General Regression Neural Networks (GRNN) were used to estimate the desired parameters from the sensor features. Eight subjects foot clearance data were examined and a Leave-one-subject-out (LOSO) method was used to select the best model. The best average Root Mean Square Errors (RMSE) across all subjects obtained using all sensor features at the maximum speed for m x 1 was 5.32 mm and for MTC was 4.04 mm. Further application of a hill-climbing feature selection technique resulted in 0.54-21.93% improvement in RMSE and required fewer input features. The results demonstrated that using raw inertial sensor data with regression models and feature selection could accurately estimate key foot clearance parameters.
Doussoulin Sanhueza, Arlette
2006-01-01
This research was designed to describe the psychomotor development, environmental stimulation, and the socioeconomic condition of preschool children attending three educational institutions in the city of Temuco, Chile. The sample included 81 boys and girls whose age ranged from three to four years. The Test de Desarrollo Psicomotor (The Psychomotor Development Test), or TEPSI, was used to assess psychomotor development; the Home Observation Measurement of the Environment (HOME) Scale was used to evaluate environmental stimulation; and the Socioeconomic Standardization Model was used to categorize children's socioeconomic status. The highest statistical correlation was observed between psychomotor development and environmental stimulation when comparing all three parameters across the sample. Environmental stimulation may be the most relevant parameter in the study of psychomotor development of children. Socioeconomic status alone does not seem to be strongly related to children's psychomotor development in the Temuco region of Chile.
Chen, Bor-Sen; Lin, Ying-Po
2013-01-01
In ecological networks, network robustness should be large enough to confer intrinsic robustness for tolerating intrinsic parameter fluctuations, as well as environmental robustness for resisting environmental disturbances, so that the phenotype stability of ecological networks can be maintained, thus guaranteeing phenotype robustness. However, it is difficult to analyze the network robustness of ecological systems because they are complex nonlinear partial differential stochastic systems. This paper develops a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance sensitivity in ecological networks. We found that the phenotype robustness criterion for ecological networks is that if intrinsic robustness + environmental robustness ≦ network robustness, then the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations and environmental disturbances. These results in robust ecological networks are similar to that in robust gene regulatory networks and evolutionary networks even they have different spatial-time scales. PMID:23515112
Environmental quality of the operating theaters in Campania Region: long lasting monitoring results.
Triassi, M; Novi, C; Nardone, A; Russo, I; Montuori, P
2015-01-01
The health risk level in the operating theaters is directly correlated to the safety level offered by the healthcare facilities. This is the reason why the national Authorities released several regulations in order to monitor better environmental conditions of the operating theaters, to prevent occupational injuries and disease and to optimize working conditions. For the monitoring of environmental quality of the operating theaters following parameters are considered: quantity of supplied gases, anesthetics concentration, operating theatres volume measurement, air change rate, air conditioning system and air filtration. The objective is to minimize the risks in the operating theaters and to provide the optimal environmental working conditions. This paper reports the environmental conditions of operating rooms performed for several years in the public hospitals of the Campania Region. Investigation of environmental conditions of 162 operating theaters in Campania Region from January 2012 till July 2014 was conducted. Monitoring and analysis of physical and chemical parameters was done. The analysis of the results has been made considering specific standards suggested by national and international regulations. The study showed that 75% of the operating theaters presented normal values for microclimatic monitoring, while the 25% of the operating theaters had at least one parameter outside the limits. The monitoring of the anesthetics gases showed that in 9% of measurements of nitrous oxides and 4% of measurements of halogenated was not within the normal values.
Mitochondria, Energetics, Epigenetics, and Cellular Responses to Stress
McAllister, Kimberly; Worth, Leroy; Haugen, Astrid C.; Meyer, Joel N.; Domann, Frederick E.; Van Houten, Bennett; Mostoslavsky, Raul; Bultman, Scott J.; Baccarelli, Andrea A.; Begley, Thomas J.; Sobol, Robert W.; Hirschey, Matthew D.; Ideker, Trey; Santos, Janine H.; Copeland, William C.; Tice, Raymond R.; Balshaw, David M.; Tyson, Frederick L.
2014-01-01
Background: Cells respond to environmental stressors through several key pathways, including response to reactive oxygen species (ROS), nutrient and ATP sensing, DNA damage response (DDR), and epigenetic alterations. Mitochondria play a central role in these pathways not only through energetics and ATP production but also through metabolites generated in the tricarboxylic acid cycle, as well as mitochondria–nuclear signaling related to mitochondria morphology, biogenesis, fission/fusion, mitophagy, apoptosis, and epigenetic regulation. Objectives: We investigated the concept of bidirectional interactions between mitochondria and cellular pathways in response to environmental stress with a focus on epigenetic regulation, and we examined DNA repair and DDR pathways as examples of biological processes that respond to exogenous insults through changes in homeostasis and altered mitochondrial function. Methods: The National Institute of Environmental Health Sciences sponsored the Workshop on Mitochondria, Energetics, Epigenetics, Environment, and DNA Damage Response on 25–26 March 2013. Here, we summarize key points and ideas emerging from this meeting. Discussion: A more comprehensive understanding of signaling mechanisms (cross-talk) between the mitochondria and nucleus is central to elucidating the integration of mitochondrial functions with other cellular response pathways in modulating the effects of environmental agents. Recent studies have highlighted the importance of mitochondrial functions in epigenetic regulation and DDR with environmental stress. Development and application of novel technologies, enhanced experimental models, and a systems-type research approach will help to discern how environmentally induced mitochondrial dysfunction affects key mechanistic pathways. Conclusions: Understanding mitochondria–cell signaling will provide insight into individual responses to environmental hazards, improving prediction of hazard and susceptibility to environmental stressors. Citation: Shaughnessy DT, McAllister K, Worth L, Haugen AC, Meyer JN, Domann FE, Van Houten B, Mostoslavsky R, Bultman SJ, Baccarelli AA, Begley TJ, Sobol RW, Hirschey MD, Ideker T, Santos JH, Copeland WC, Tice RR, Balshaw DM, Tyson FL. 2014. Mitochondria, energetics, epigenetics, and cellular responses to stress. Environ Health Perspect 122:1271–1278; http://dx.doi.org/10.1289/ehp.1408418 PMID:25127496
Dose assessment in environmental radiological protection: State of the art and perspectives.
Stark, Karolina; Goméz-Ros, José M; Vives I Batlle, Jordi; Lindbo Hansen, Elisabeth; Beaugelin-Seiller, Karine; Kapustka, Lawrence A; Wood, Michael D; Bradshaw, Clare; Real, Almudena; McGuire, Corynne; Hinton, Thomas G
2017-09-01
Exposure to radiation is a potential hazard to humans and the environment. The Fukushima accident reminded the world of the importance of a reliable risk management system that incorporates the dose received from radiation exposures. The dose to humans from exposure to radiation can be quantified using a well-defined system; its environmental equivalent, however, is still in a developmental state. Additionally, the results of several papers published over the last decade have been criticized because of poor dosimetry. Therefore, a workshop on environmental dosimetry was organized by the STAR (Strategy for Allied Radioecology) Network of Excellence to review the state of the art in environmental dosimetry and prioritize areas of methodological and guidance development. Herein, we report the key findings from that international workshop, summarise parameters that affect the dose animals and plants receive when exposed to radiation, and identify further research needs. Current dosimetry practices for determining environmental protection are based on simple screening dose assessments using knowledge of fundamental radiation physics, source-target geometry relationships, the influence of organism shape and size, and knowledge of how radionuclide distributions in the body and in the soil profile alter dose. In screening model calculations that estimate whole-body dose to biota the shapes of organisms are simply represented as ellipsoids, while recently developed complex voxel phantom models allow organ-specific dose estimates. We identified several research and guidance development priorities for dosimetry. For external exposures, the uncertainty in dose estimates due to spatially heterogeneous distributions of radionuclide contamination is currently being evaluated. Guidance is needed on the level of dosimetry that is required when screening benchmarks are exceeded and how to report exposure in dose-effect studies, including quantification of uncertainties. Further research is needed to establish whether and how dosimetry should account for differences in tissue physiology, organism life stages, seasonal variability (in ecology, physiology and radiation field), species life span, and the proportion of a population that is actually exposed. We contend that, although major advances have recently been made in environmental radiation protection, substantive improvements are required to reduce uncertainties and increase the reliability of environmental dosimetry. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sperm quality and environment: A retrospective, cohort study in a Northern province of Italy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santi, Daniele, E-mail: santi.daniele@gmail.com; Department of Medicine, Endocrinology, Metabolism and Geriatrics; Vezzani, Silvia
Background: Several studies proposed a relationship between environmental factors and semen quality, as well as the negative effect of air pollution on spermatogenesis and gonadal function. No specific studies evaluated the environmental influence on semen quality in a specific geographical area. Aim: to evaluate the environmental influence on male sperm parameters in a Northern Italian population referred for semen analysis in the National Health System. The objective of the study is the assessment of the relationship of both air pollution and environmental parameters with quality-related sperm variables, during the coldest months of the year when air is usually most polluted,more » due to low ventilation and poor rainfall. Study design: A retrospective, observational, cohort study was carried out in the province of Modena, located in the Emilia-Romagna region of Northern Italy. Methods: Semen analyses (n=406), environmental temperature, air humidity and air particulate matter (PM) measurements from the 1st of November 2014 to the 19th of February 2015 were acquired to the first database. Since spermatogenesis lasts over two months, a second, wider database was arranged, evaluating environmental exposure in the 3 months before semen collection (from August 1st 2014). All data included in the database were registered by geo-coding the residential address of the patients and the site of registration of environmental factors. The geo-codification of parameters was performed using Fusion Tables of Google available at (https://www.google.com/fusiontables/data? dsrcid=implicit), considering the exact time of measurement. Results: Average air temperature was inversely related to sperm concentration and to total sperm number (p<0.001). Semen volume was inversely related only to the minimum (p<0.001) and not to maximum recorded temperature (p=0.110). Air humidity was not related to sperm quantity and quality. PM{sub 2.5} was directly related to total sperm number (p<0.001). PM{sub 10} was directly related to both semen volume (0<0.001), and typical forms (p<0.001), inversely related to atypical forms (p<0.001), but related neither to sperm concentration (p=0.430) nor to sperm motility. The extended analyses considering environmental parameters in the 3 months before semen collection, confirmed the relationship between air temperature and sperm quantity, whereas no influence was found between PM and sperm quality. Conclusion: An influence of environmental temperature on semen quantity is suggested, without a clear effect of air pollution, as assessed through PM{sub 10} levels, on sperm parameter variations.« less
Sperm quality and environment: A retrospective, cohort study in a Northern province of Italy.
Santi, Daniele; Vezzani, Silvia; Granata, Antonio Rm; Roli, Laura; De Santis, Maria Cristina; Ongaro, Chiara; Donati, Federica; Baraldi, Enrica; Trenti, Tommaso; Setti, Monica; Simoni, Manuela
2016-10-01
Several studies proposed a relationship between environmental factors and semen quality, as well as the negative effect of air pollution on spermatogenesis and gonadal function. No specific studies evaluated the environmental influence on semen quality in a specific geographical area. to evaluate the environmental influence on male sperm parameters in a Northern Italian population referred for semen analysis in the National Health System. The objective of the study is the assessment of the relationship of both air pollution and environmental parameters with quality-related sperm variables, during the coldest months of the year when air is usually most polluted, due to low ventilation and poor rainfall. A retrospective, observational, cohort study was carried out in the province of Modena, located in the Emilia-Romagna region of Northern Italy. Semen analyses (n=406), environmental temperature, air humidity and air particulate matter (PM) measurements from the 1st of November 2014 to the 19th of February 2015 were acquired to the first database. Since spermatogenesis lasts over two months, a second, wider database was arranged, evaluating environmental exposure in the 3 months before semen collection (from August 1st 2014). All data included in the database were registered by geo-coding the residential address of the patients and the site of registration of environmental factors. The geo-codification of parameters was performed using Fusion Tables of Google available at https://www.google.com/fusiontables/data? dsrcid=implicit, considering the exact time of measurement. Average air temperature was inversely related to sperm concentration and to total sperm number (p<0.001). Semen volume was inversely related only to the minimum (p<0.001) and not to maximum recorded temperature (p=0.110). Air humidity was not related to sperm quantity and quality. PM2.5 was directly related to total sperm number (p<0.001). PM10 was directly related to both semen volume (0<0.001), and typical forms (p<0.001), inversely related to atypical forms (p<0.001), but related neither to sperm concentration (p=0.430) nor to sperm motility. The extended analyses considering environmental parameters in the 3 months before semen collection, confirmed the relationship between air temperature and sperm quantity, whereas no influence was found between PM and sperm quality. An influence of environmental temperature on semen quantity is suggested, without a clear effect of air pollution, as assessed through PM10 levels, on sperm parameter variations. Copyright © 2016 Elsevier Inc. All rights reserved.
SITE TECHNOLOGY CAPSULE: GIS\\KEY ENVIRONMENTAL DATA MANAGEMENT SYSTEM
GIS/Key™ is a comprehensive environmental database management system that integrates site data and graphics, enabling the user to create geologic cross-sections; boring logs; potentiometric, isopleth, and structure maps; summary tables; and hydrographs. GIS/Key™ is menu-driven an...
Service Area Market Analysis: Environmental Scanning.
ERIC Educational Resources Information Center
Front Range Community Coll., Westminster, CO.
This environmental scanning report presents, in brief, various key indicators: political climate, population demographics, secondary education, postsecondary education, welfare, unemployment, industry, labor, and general conclusions. General conclusions made in this report are as follows: higher education is expected to receive a slight increase…
NASA Astrophysics Data System (ADS)
Traore, Harouna; Crouzet, Olivier; Mamy, Laure; Sireyjol, Christine; Rossard, Virginie; Servien, Remy; Latrille, Eric; Benoit, Pierre
2017-04-01
The understanding of the fate of pesticides and their environmental impacts largely relies on their molecular properties. We recently developed 'TyPol' (Typology of Pollutants), a clustering method based on statistical analyses combining several environmental endpoints (i.e. environmental parameters such as sorption coefficient, degradation half-life) and one ecotoxicological one (bioconcentration factor), and structural molecular descriptors (number of atoms in the molecule, molecular surface, dipole moment, energy of orbitals…). TyPol has been conceived on the available knowledge on QSAR of a wide diversity of organic compounds (Mamy et al., 2015). This approach also allows to focus on transformation products present in different clusters and to infer possible changes in environmental fate consecutively to different degradation processes (Servien et al., 2014; Benoit et al., 2016). The initial version of TyPol did not include any ecotoxicological parameters except the bioconcentration factor (BCF), which informs more on the transfer along the trophic chain rather than on the effects on non-target organisms. The objective was to implement the TyPol database with a data set of ecotoxicological data concerning pesticides and several aquatic and terrestrial organisms, in order to test the possibility to extend TyPol to ecotoxicological effects on various organisms. The data analysis (available literature and databases) revealed that relevant ecotoxicological endpoints for terrestrial organisms such as soil microorganisms and macroinvertebrates are lacking compared to aquatic organisms. We have added seven parameters for acute (EC50, LC50) and chronic (NOEC) toxicological effects for the following organisms: Daphnia, Algae, Lemna and Earthworm. In this new configuration, TyPol was used to classify about 45 pesticides in different behavioural and ecotoxicity clusters. The clustering results were analyzed to reveals relationships between molecular descriptors, environmental parameters and the added toxicological parameters. Some trends between soil adsorption or Kow coefficient and the acute toxicity towards earthworms or algae were highlighted, and discussed on the basis of the concept of contaminant bioavailability. This proof-of-concept study also showed that the in silico clustering method TyPol can successfully address new questions and can be expanded with other parameters of interest. Keywords: pesticides, toxicity, QSAR, clustering, PLS References : Servien R., Mamy L., Li Z., Rossard V., Latrille E., Bessac F., Patureau D., Benoit P., 2014. TyPol - A new methodology for organic compounds clustering based on their molecular characteristics and environmental behavior. Chemosphere, 111, 613-622. Mamy L., Patureau D., Barriuso E., Bedos C., Bessac F., Louchart X., Martin-Laurent F., Miege C., Benoit P., 2015. Prediction of the fate of organic compounds in the environment from their molecular properties: A review. Critical Reviews in Environmental Science and Technology, 45, 12, 1277-1377 (Open access). Benoit P., Mamy L., Servien R., Li Z., Latrille E., Rossard V., Bessac F., Patureau D., Martin-Laurent F. 2017. Categorizing chlordecone potential degradation products to explore their environmental fate. Science of the Total Environment, 574, 781-795.
Exploring the nonlinear cloud and rain equation
NASA Astrophysics Data System (ADS)
Koren, Ilan; Tziperman, Eli; Feingold, Graham
2017-01-01
Marine stratocumulus cloud decks are regarded as the reflectors of the climate system, returning back to space a significant part of the income solar radiation, thus cooling the atmosphere. Such clouds can exist in two stable modes, open and closed cells, for a wide range of environmental conditions. This emergent behavior of the system, and its sensitivity to aerosol and environmental properties, is captured by a set of nonlinear equations. Here, using linear stability analysis, we express the transition from steady to a limit-cycle state analytically, showing how it depends on the model parameters. We show that the control of the droplet concentration (N), the environmental carrying-capacity (H0), and the cloud recovery parameter (τ) can be linked by a single nondimensional parameter (μ=√{N }/(ατH0) ) , suggesting that for deeper clouds the transition from open (oscillating) to closed (stable fixed point) cells will occur for higher droplet concentration (i.e., higher aerosol loading). The analytical calculations of the possible states, and how they are affected by changes in aerosol and the environmental variables, provide an enhanced understanding of the complex interactions of clouds and rain.
Integrated remote sensing for multi-temporal analysis of urban land cover-climate interactions
NASA Astrophysics Data System (ADS)
Savastru, Dan M.; Zoran, Maria A.; Savastru, Roxana S.
2016-08-01
Climate change is considered to be the biggest environmental threat in the future in the South- Eastern part of Europe. In frame of predicted global warming, urban climate is an important issue in scientific research. Surface energy processes have an essential role in urban weather, climate and hydrosphere cycles, as well in urban heat redistribution. This paper investigated the influences of urban growth on thermal environment in relationship with other biophysical variables in Bucharest metropolitan area of Romania. Remote sensing data from Landsat TM/ETM+ and time series MODIS Terra/Aqua sensors have been used to assess urban land cover- climate interactions over period between 2000 and 2015 years. Vegetation abundances and percent impervious surfaces were derived by means of linear spectral mixture model, and a method for effectively enhancing impervious surface has been developed to accurately examine the urban growth. The land surface temperature (Ts), a key parameter for urban thermal characteristics analysis, was also analyzed in relation with the Normalized Difference Vegetation Index (NDVI) at city level. Based on these parameters, the urban growth, and urban heat island effect (UHI) and the relationships of Ts to other biophysical parameters have been analyzed. The correlation analyses revealed that, at the pixel-scale, Ts possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at the regional scale, respectively. This analysis provided an integrated research scheme and the findings can be very useful for urban ecosystem modeling.
Pensieri, Sara; Bozzano, Roberto; Schiano, M Elisabetta; Ntoumas, Manolis; Potiris, Emmanouil; Frangoulis, Constantin; Podaras, Dimitrios; Petihakis, George
2016-05-17
In European seas, ocean monitoring strategies in terms of key parameters, space and time scale vary widely for a range of technical and economic reasons. Nonetheless, the growing interest in the ocean interior promotes the investigation of processes such as oxygen consumption, primary productivity and ocean acidity requiring that close attention is paid to the instruments in terms of measurement setup, configuration, calibration, maintenance procedures and quality assessment. To this aim, two separate hardware and software tools were developed in order to test and simultaneously intercompare several oxygen probes and fluorometers/turbidimeters, respectively in the same environmental conditions, with a configuration as close as possible to real in-situ deployment. The chamber designed to perform chlorophyll-a and turbidity tests allowed for the simultaneous acquisition of analogue and digital signals of several sensors at the same time, so it was sufficiently compact to be used in both laboratory and onboard vessels. Methodologies and best practice committed to the intercomparison of dissolved oxygen sensors and fluorometers/turbidimeters have been used, which aid in the promotion of interoperability to access key infrastructures, such as ocean observatories and calibration facilities. Results from laboratory tests as well as field tests in the Mediterranean Sea are presented.
Akuna: An Open Source User Environment for Managing Subsurface Simulation Workflows
NASA Astrophysics Data System (ADS)
Freedman, V. L.; Agarwal, D.; Bensema, K.; Finsterle, S.; Gable, C. W.; Keating, E. H.; Krishnan, H.; Lansing, C.; Moeglein, W.; Pau, G. S. H.; Porter, E.; Scheibe, T. D.
2014-12-01
The U.S. Department of Energy (DOE) is investing in development of a numerical modeling toolset called ASCEM (Advanced Simulation Capability for Environmental Management) to support modeling analyses at legacy waste sites. ASCEM is an open source and modular computing framework that incorporates new advances and tools for predicting contaminant fate and transport in natural and engineered systems. The ASCEM toolset includes both a Platform with Integrated Toolsets (called Akuna) and a High-Performance Computing multi-process simulator (called Amanzi). The focus of this presentation is on Akuna, an open-source user environment that manages subsurface simulation workflows and associated data and metadata. In this presentation, key elements of Akuna are demonstrated, which includes toolsets for model setup, database management, sensitivity analysis, parameter estimation, uncertainty quantification, and visualization of both model setup and simulation results. A key component of the workflow is in the automated job launching and monitoring capabilities, which allow a user to submit and monitor simulation runs on high-performance, parallel computers. Visualization of large outputs can also be performed without moving data back to local resources. These capabilities make high-performance computing accessible to the users who might not be familiar with batch queue systems and usage protocols on different supercomputers and clusters.