Sample records for key enzyme activities

  1. Study on the Correlation between Gene Expression and Enzyme Activity of Seven Key Enzymes and Ginsenoside Content in Ginseng in Over Time in Ji'an, China.

    PubMed

    Yin, Juxin; Zhang, Daihui; Zhuang, Jianjian; Huang, Yi; Mu, Ying; Lv, Shaowu

    2017-12-11

    Panax ginseng is a traditional medicine. Fresh ginseng is one of the most important industries related to ginseng development, and fresh ginseng of varying ages has different medicinal properties. Previous research has not systematically reported the correlation between changes in key enzyme activity with changes in ginsenoside content in fresh ginseng over time. In this study, for the first time, we use ginseng samples of varying ages in Ji'an and systematically reported the changes in the activity of seven key enzymes (HMGR, FPS, SS, SE, DS, CYP450, and GT). We investigated the content of ginsenoside and gene expression of these key enzymes. Ginsenoside content was measured using HPLC. HPLC, GC-MS, and LC-MS were combined to measure the enzyme activity of the key enzymes. Quantitative PCR was used in the investigation of gene expression. By analyzing the correlation between the enzyme activity and the transcription level of the key enzymes with ginsenoside content, we found that DS and GT enzyme activities are significantly correlated with the ginsenoside content in different ages of ginseng. Our findings might provide a new strategy to discriminate between ginseng of different years. Meanwhile, this research provides important information for the in-depth study of ginsenoside biosynthesis.

  2. Development of radiometric assays for quantification of enzyme activities of the key enzymes of thyroid hormones metabolism.

    PubMed

    Pavelka, S

    2014-01-01

    We newly elaborated and adapted several radiometric enzyme assays for the determination of activities of the key enzymes engaged in the biosynthesis (thyroid peroxidase, TPO) and metabolic transformations (conjugating enzymes and iodothyronine deiodinases, IDs) of thyroid hormones (THs) in the thyroid gland and in peripheral tissues, especially in white adipose tissue (WAT). We also elaborated novel, reliable radiometric methods for extremely sensitive determination of enzyme activities of IDs of types 1, 2 and 3 in microsomal fractions of different rat and human tissues, as well as in homogenates of cultured mammalian cells. The use of optimized TLC separation of radioactive products from the unconsumed substrates and film-less autoradiography of radiochromatograms, taking advantage of storage phosphor screens, enabled us to determine IDs enzyme activities as low as 10(-18) katals. In studies of the interaction of fluoxetine (Fluox) with the metabolism of THs, we applied adapted radiometric enzyme assays for iodothyronine sulfotransferases (ST) and uridine 5'-diphospho-glucuronyltransferase (UDP-GT). Fluox is the most frequently used representative of a new group of non-tricyclic antidepressant drugs--selective serotonin re-uptake inhibitors. We used the elaborated assays for quantification the effects of Fluox and for the assessment of the degree of potential induction of rat liver ST and/or UDP-GT enzyme activities by Fluox alone or in combination with T(3). Furthermore, we studied possible changes in IDs activities in murine adipose tissue under the conditions that promoted either tissue hypertrophy (obesogenic treatment) or involution (caloric restriction), and in response to leptin, using our newly developed radiometric enzyme assays for IDs. Our results suggest that deiodinase D1 has a functional role in WAT, with D1 possibly being involved in the control of adipose tissue metabolism and/or accumulation of the tissue. Significant positive correlation between

  3. Parvoviruses Cause Nuclear Envelope Breakdown by Activating Key Enzymes of Mitosis

    PubMed Central

    Porwal, Manvi; Cohen, Sarah; Snoussi, Kenza; Popa-Wagner, Ruth; Anderson, Fenja; Dugot-Senant, Nathalie; Wodrich, Harald; Dinsart, Christiane; Kleinschmidt, Jürgen A.; Panté, Nelly; Kann, Michael

    2013-01-01

    Disassembly of the nuclear lamina is essential in mitosis and apoptosis requiring multiple coordinated enzymatic activities in nucleus and cytoplasm. Activation and coordination of the different activities is poorly understood and moreover complicated as some factors translocate between cytoplasm and nucleus in preparatory phases. Here we used the ability of parvoviruses to induce nuclear membrane breakdown to understand the triggers of key mitotic enzymes. Nuclear envelope disintegration was shown upon infection, microinjection but also upon their application to permeabilized cells. The latter technique also showed that nuclear envelope disintegration was independent upon soluble cytoplasmic factors. Using time-lapse microscopy, we observed that nuclear disassembly exhibited mitosis-like kinetics and occurred suddenly, implying a catastrophic event irrespective of cell- or type of parvovirus used. Analyzing the order of the processes allowed us to propose a model starting with direct binding of parvoviruses to distinct proteins of the nuclear pore causing structural rearrangement of the parvoviruses. The resulting exposure of domains comprising amphipathic helices was required for nuclear envelope disintegration, which comprised disruption of inner and outer nuclear membrane as shown by electron microscopy. Consistent with Ca++ efflux from the lumen between inner and outer nuclear membrane we found that Ca++ was essential for nuclear disassembly by activating PKC. PKC activation then triggered activation of cdk-2, which became further activated by caspase-3. Collectively our study shows a unique interaction of a virus with the nuclear envelope, provides evidence that a nuclear pool of executing enzymes is sufficient for nuclear disassembly in quiescent cells, and demonstrates that nuclear disassembly can be uncoupled from initial phases of mitosis. PMID:24204256

  4. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes

    NASA Technical Reports Server (NTRS)

    Winter, H.; Huber, S. C.; Brown, C. S. (Principal Investigator)

    2000-01-01

    Sucrose (Suc) plays a central role in plant growth and development. It is a major end product of photosynthesis and functions as a primary transport sugar and in some cases as a direct or indirect regulator of gene expression. Research during the last 2 decades has identified the pathways involved and which enzymes contribute to the control of flux. Availability of metabolites for Suc synthesis and 'demand' for products of sucrose degradation are important factors, but this review specifically focuses on the biosynthetic enzyme sucrose-phosphate synthase (SPS), and the degradative enzymes, sucrose synthase (SuSy), and the invertases. Recent progress has included the cloning of genes encoding these enzymes and the elucidation of posttranslational regulatory mechanisms. Protein phosphorylation is emerging as an important mechanism controlling SPS activity in response to various environmental and endogenous signals. In terms of Suc degradation, invertase-catalyzed hydrolysis generally has been associated with cell expansion, whereas SuSy-catalyzed metabolism has been linked with biosynthetic processes (e.g., cell wall or storage products). Recent results indicate that SuSy may be localized in multiple cellular compartments: (1) as a soluble enzyme in the cytosol (as traditionally assumed); (2) associated with the plasma membrane; and (3) associated with the actin cytoskeleton. Phosphorylation of SuSy has been shown to occur and may be one of the factors controlling localization of the enzyme. The purpose of this review is to summarize some of the recent developments relating to regulation of activity and localization of key enzymes involved in sucrose metabolism in plants.

  5. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay].

    PubMed

    Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin

    2015-09-01

    Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.

  6. Effects of gas periodic stimulation on key enzyme activity in gas double-dynamic solid state fermentation (GDD-SSF).

    PubMed

    Chen, Hongzhang; Shao, Meixue; Li, Hongqiang

    2014-03-05

    The heat and mass transfer have been proved to be the important factors in air pressure pulsation for cellulase production. However, as process of enzyme secretion, the cellulase formation has not been studied in the view of microorganism metabolism and metabolic key enzyme activity under air pressure pulsation condition. Two fermentation methods in ATPase activity, cellulase productivity, weight lose rate and membrane permeability were systematically compared. Results indicated that gas double-dynamic solid state fermentation had no obviously effect on cell membrane permeability. However, the relation between ATPase activity and weight loss rate was linearly dependent with r=0.9784. Meanwhile, the results also implied that gas periodic stimulation had apparently strengthened microbial metabolism through increasing ATPase activity during gas double-dynamic solid state fermentation, resulting in motivating the production of cellulase by Trichoderma reesei YG3. Therefore, the increase of ATPase activity would be another crucial factor to strengthen fermentation process for cellulase production under gas double-dynamic solid state fermentation. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Inhibitory activity on type 2 diabetes and hypertension key-enzymes, and antioxidant capacity of Veronica persica phenolic-rich extracts.

    PubMed

    Sharifi-Rad, M; Tayeboon, G S; Sharifi-Rad, J; Iriti, M; Varoni, E M; Razazi, S

    2016-05-30

    Veronica genus (Plantaginaceae) is broadly distributed in different habitats. In this study, the inhibitory activity of free soluble and conjugated phenolic extracts of Veronica persica on key enzymes associated to type 2 diabetes (α-glucosidase and α-amylase) and hypertension (angiotensin I converting enzyme, ACE) was assessed, as well as their antioxidant power. Our results showed that both the extracts inhibited α-amylase, α-glucosidase and ACE in a dose-dependent manner. In particular, free phenolic extract significantly (P<0.05) inhibited α-glucosidase (IC50 532.97 µg/mL), whereas conjugated phenolic extract significantly (P<0.05) inhibited α-amylase (IC50 489.73 µg/mL) and ACE (290.06 µg/mL). The enzyme inhibitory activities of the extracts were not associated with their phenolic content. Anyway, the inhibition of α-amylase, α-glucosidase and ACE, along with the antioxidant capacity of the phenolic-rich extracts, could represent a putative mechanism through which V. persica exerts its antidiabetes and antihypertension effects.

  8. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    PubMed

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  9. Carbohydrate-active enzymes in Trichoderma harzianum: a bioinformatic analysis bioprospecting for key enzymes for the biofuels industry.

    PubMed

    Ferreira Filho, Jaire Alves; Horta, Maria Augusta Crivelente; Beloti, Lilian Luzia; Dos Santos, Clelton Aparecido; de Souza, Anete Pereira

    2017-10-12

    Trichoderma harzianum is used in biotechnology applications due to its ability to produce powerful enzymes for the conversion of lignocellulosic substrates into soluble sugars. Active enzymes involved in carbohydrate metabolism are defined as carbohydrate-active enzymes (CAZymes), and the most abundant family in the CAZy database is the glycoside hydrolases. The enzymes of this family play a fundamental role in the decomposition of plant biomass. In this study, the CAZymes of T. harzianum were identified and classified using bioinformatic approaches after which the expression profiles of all annotated CAZymes were assessed via RNA-Seq, and a phylogenetic analysis was performed. A total of 430 CAZymes (3.7% of the total proteins for this organism) were annotated in T. harzianum, including 259 glycoside hydrolases (GHs), 101 glycosyl transferases (GTs), 6 polysaccharide lyases (PLs), 22 carbohydrate esterases (CEs), 42 auxiliary activities (AAs) and 46 carbohydrate-binding modules (CBMs). Among the identified T. harzianum CAZymes, 47% were predicted to harbor a signal peptide sequence and were therefore classified as secreted proteins. The GH families were the CAZyme class with the greatest number of expressed genes, including GH18 (23 genes), GH3 (17 genes), GH16 (16 genes), GH2 (13 genes) and GH5 (12 genes). A phylogenetic analysis of the proteins in the AA9/GH61, CE5 and GH55 families showed high functional variation among the proteins. Identifying the main proteins used by T. harzianum for biomass degradation can ensure new advances in the biofuel production field. Herein, we annotated and characterized the expression levels of all of the CAZymes from T. harzianum, which may contribute to future studies focusing on the functional and structural characterization of the identified proteins.

  10. Analysis of the key enzymes of butyric and acetic acid fermentation in biogas reactors

    PubMed Central

    Gabris, Christina; Bengelsdorf, Frank R; Dürre, Peter

    2015-01-01

    This study aimed at the investigation of the mechanisms of acidogenesis, which is a key process during anaerobic digestion. To expose possible bottlenecks, specific activities of the key enzymes of acidification, such as acetate kinase (Ack, 0.23–0.99 U mg−1 protein), butyrate kinase (Buk, < 0.03 U mg−1 protein) and butyryl-CoA:acetate-CoA transferase (But, 3.24–7.64 U mg−1 protein), were determined in cell free extracts of biogas reactor content from three different biogas reactors. Furthermore, the detection of Ack was successful via Western blot analysis. Quantification of corresponding functional genes encoding Buk (buk) and But (but) was not feasible, although an amplification was possible. Thus, phylogenetic trees were constructed based on respective gene fragments. Four new clades of possible butyrate-producing bacteria were postulated, as well as bacteria of the genera Roseburia or Clostridium identified. The low Buk activity was in contrast to the high specific But activity in the analysed samples. Butyrate formation via Buk activity does barely occur in the investigated biogas reactor. Specific enzyme activities (Ack, Buk and But) in samples drawn from three different biogas reactors correlated with ammonia and ammonium concentrations (NH3 and NH4+-N), and a negative dependency can be postulated. Thus, high concentrations of NH3 and NH4+-N may lead to a bottleneck in acidogenesis due to decreased specific acidogenic enzyme activities. PMID:26086956

  11. Copper stress and filamentous fungus Humicola lutea 103 - ultrastructural changes and activities of key metabolic enzymes.

    PubMed

    Krumova, Ekaterina Ts; Stoitsova, Stoyanka R; Paunova-Krasteva, Tsvetelina S; Pashova, Svetlana B; Angelova, Maria B

    2012-12-01

    Humicola lutea 103 is a copper-tolerant fungal strain able to grow in the presence of 300 μg·mL(-1) Cu(2+) under submerged cultivation. To prevent the consequences of copper overload, microorganisms have evolved molecular mechanisms that regulate its uptake, intracellular traffic, storage, and efflux. In spite of this avoidance strategy, high heavy-metal concentrations caused distinct and widespread ultrastructural alterations in H. lutea. The mitochondria were the first and main target of the toxic action. The effect of copper on activities of the key enzymes (hexokinase, glucose-6-phosphate dehydrogenase, malate dehydrogenase, and isocitrate dehydrogenase) included in the 3 main metabolic pathways, glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle, was investigated. High metal concentrations exhibited a dramatic negative effect on hexokinase, while the other 3 enzymes showed a significant and dose-dependent stimulation. On the basis of the present and previous results we concluded that the copper-induced oxidative stress plays an important role in the fungal tolerance to high Cu (2+) concentrations.

  12. Dioxygen Binding, Activation, and Reduction to H2O by Cu Enzymes.

    PubMed

    Solomon, Edward I

    2016-07-05

    Oxygen intermediates in copper enzymes exhibit unique spectroscopic features that reflect novel geometric and electronic structures that are key to reactivity. This perspective will describe: (1) the bonding origin of the unique spectroscopic features of the coupled binuclear copper enzymes and how this overcomes the spin forbiddenness of O2 binding and activates monooxygenase activity, (2) how the difference in exchange coupling in the non-coupled binuclear Cu enzymes controls the reaction mechanism, and (3) how the trinuclear Cu cluster present in the multicopper oxidases leads to a major structure/function difference in enabling the irreversible reductive cleavage of the O-O bond with little overpotential and generating a fully oxidized intermediate, different from the resting enzyme studied by crystallography, that is key in enabling fast PCET in the reductive half of the catalytic cycle.

  13. Enzyme activities by indicator of quality in organic soil

    NASA Astrophysics Data System (ADS)

    Raigon Jiménez, Mo; Fita, Ana Delores; Rodriguez Burruezo, Adrián

    2016-04-01

    The analytical determination of biochemical parameters, as soil enzyme activities and those related to the microbial biomass is growing importance by biological indicator in soil science studies. The metabolic activity in soil is responsible of important processes such as mineralization and humification of organic matter. These biological reactions will affect other key processes involved with elements like carbon, nitrogen and phosphorus , and all transformations related in soil microbial biomass. The determination of biochemical parameters is useful in studies carried out on organic soil where microbial processes that are key to their conservation can be analyzed through parameters of the metabolic activity of these soils. The main objective of this work is to apply analytical methodologies of enzyme activities in soil collections of different physicochemical characteristics. There have been selective sampling of natural soils, organic farming soils, conventional farming soils and urban soils. The soils have been properly identified conserved at 4 ° C until analysis. The enzyme activities determinations have been: catalase, urease, cellulase, dehydrogenase and alkaline phosphatase, which bring together a representative group of biological transformations that occur in the soil environment. The results indicate that for natural and agronomic soil collections, the values of the enzymatic activities are within the ranges established for forestry and agricultural soils. Organic soils are generally higher level of enzymatic, regardless activity of the enzyme involved. Soil near an urban area, levels of activities have been significantly reduced. The vegetation cover applied to organic soils, results in greater enzymatic activity. So the quality of these soils, defined as the ability to maintain their biological productivity is increased with the use of cover crops, whether or spontaneous species. The practice of cover based on legumes could be used as an ideal choice

  14. Rhodanese Functions as Sulfur Supplier for Key Enzymes in Sulfur Energy Metabolism

    PubMed Central

    Aussignargues, Clément; Giuliani, Marie-Cécile; Infossi, Pascale; Lojou, Elisabeth; Guiral, Marianne; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne

    2012-01-01

    How microorganisms obtain energy is a challenging topic, and there have been numerous studies on the mechanisms involved. Here, we focus on the energy substrate traffic in the hyperthermophilic bacterium Aquifex aeolicus. This bacterium can use insoluble sulfur as an energy substrate and has an intricate sulfur energy metabolism involving several sulfur-reducing and -oxidizing supercomplexes and enzymes. We demonstrate that the cytoplasmic rhodanese SbdP participates in this sulfur energy metabolism. Rhodaneses are a widespread family of proteins known to transfer sulfur atoms. We show that SbdP has also some unusual characteristics compared with other rhodaneses; it can load a long sulfur chain, and it can interact with more than one partner. Its partners (sulfur reductase and sulfur oxygenase reductase) are key enzymes of the sulfur energy metabolism of A. aeolicus and share the capacity to use long sulfur chains as substrate. We demonstrate a positive effect of SbdP, once loaded with sulfur chains, on sulfur reductase activity, most likely by optimizing substrate uptake. Taken together, these results lead us to propose a physiological role for SbdP as a carrier and sulfur chain donor to these key enzymes, therefore enabling channeling of sulfur substrate in the cell as well as greater efficiency of the sulfur energy metabolism of A. aeolicus. PMID:22496367

  15. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    PubMed

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  16. Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro.

    PubMed

    Ademiluyi, Adedayo O; Oboh, Ganiyu

    2013-03-01

    This study sought to assess the inhibitory activities of phenolic-rich extracts from soybean on α-amylase, α-glucosidase and angiotensin I converting enzyme (ACE) activities in vitro. The free phenolic extract of the soybean was obtained by extraction with 80% acetone, while that of the bound phenolic extract was done by extracting the alkaline and acid hydrolyzed residue with ethyl acetate. The inhibitory action of these extracts on the enzymes activity as well as their antioxidant properties was assessed. Both phenolic-rich extracts inhibited α-amylase, α-glucosidase and ACE enzyme activities in a dose dependent pattern. However, the bound phenolic extract exhibited significantly (P < 0.05) higher α-amylase and ACE inhibition while the free phenolic extract had significantly (P < 0.05) higher α-glucosidase inhibitory activity. Nevertheless, the free phenolic extract had higher α-glucosidase inhibitory activity when compared to that of α-amylase; this property confer an advantage on soybean phenolic-rich extracts over commercial antidiabetic drugs with little or no side effect. And inhibition of ACE suggests the antihypertension potential of soybean phenolic-rich extracts. Furthermore, the enzyme inhibitory activities of the phenolic-rich extracts were not associated with their phenolic content. Therefore, phenolic-rich extracts of soybean could inhibit key-enzyme linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (ACE) and thus could explain in part the mechanism by which soybean renders these health promoting effect. Copyright © 2011 Elsevier GmbH. All rights reserved.

  17. Enzyme/non-enzyme discrimination and prediction of enzyme active site location using charge-based methods.

    PubMed

    Bate, Paul; Warwicker, Jim

    2004-07-02

    Calculations of charge interactions complement analysis of a characterised active site, rationalising pH-dependence of activity and transition state stabilisation. Prediction of active site location through large DeltapK(a)s or electrostatic strain is relevant for structural genomics. We report a study of ionisable groups in a set of 20 enzymes, finding that false positives obscure predictive potential. In a larger set of 156 enzymes, peaks in solvent-space electrostatic properties are calculated. Both electric field and potential match well to active site location. The best correlation is found with electrostatic potential calculated from uniform charge density over enzyme volume, rather than from assignment of a standard atom-specific charge set. Studying a shell around each molecule, for 77% of enzymes the potential peak is within that 5% of the shell closest to the active site centre, and 86% within 10%. Active site identification by largest cleft, also with projection onto a shell, gives 58% of enzymes for which the centre of the largest cleft lies within 5% of the active site, and 70% within 10%. Dielectric boundary conditions emphasise clefts in the uniform charge density method, which is suited to recognition of binding pockets embedded within larger clefts. The variation of peak potential with distance from active site, and comparison between enzyme and non-enzyme sets, gives an optimal threshold distinguishing enzyme from non-enzyme. We find that 87% of the enzyme set exceeds the threshold as compared to 29% of the non-enzyme set. Enzyme/non-enzyme homologues, "structural genomics" annotated proteins and catalytic/non-catalytic RNAs are studied in this context.

  18. NaCl stress impact on the key enzymes in glycolysis from Lactobacillus bulgaricus during freeze-drying.

    PubMed

    Li, Chun; Sun, Jinwei; Qi, Xiaoxi; Liu, Libo

    2015-01-01

    The viability of Lactobacillus bulgaricus in freeze-drying is of significant commercial interest to dairy industries. In the study, L.bulgaricus demonstrated a significantly improved (p < 0.05) survival rate during freeze-drying when subjected to a pre-stressed period under the conditions of 2% (w/v) NaCl for 2 h in the late growth phase. The main energy source for the life activity of lactic acid bacteria is related to the glycolytic pathway. To investigate the phenomenon of this stress-related viability improvement in L. bulgaricus, the activities and corresponding genes of key enzymes in glycolysis during 2% NaCl stress were studied. NaCl stress significantly enhanced (p < 0.05) glucose utilization. The activities of glycolytic enzymes (phosphofructokinase, pyruvate kinase, and lactate dehydrogenase) decreased during freeze-drying, and NaCl stress were found to improve activities of these enzymes before and after freeze-drying. However, a transcriptional analysis of the corresponding genes suggested that the effect of NaCl stress on the expression of the pfk2 gene was not obvious. The increased survival of freeze-dried cells of L. bulgaricus under NaCl stress might be due to changes in only the activity or translation level of these enzymes in different environmental conditions but have no relation to their mRNA transcription level.

  19. Enzyme-Activated Fluorogenic Probes for Live-Cell and in Vivo Imaging.

    PubMed

    Chyan, Wen; Raines, Ronald T

    2018-06-20

    Fluorogenic probes, small-molecule sensors that unmask brilliant fluorescence upon exposure to specific stimuli, are powerful tools for chemical biology. Those probes that respond to enzymatic activity illuminate the complex dynamics of biological processes at a level of spatiotemporal detail and sensitivity unmatched by other techniques. Here, we review recent advances in enzyme-activated fluorogenic probes for biological imaging. We organize our survey by enzyme classification, with emphasis on fluorophore masking strategies, modes of enzymatic activation, and the breadth of current and future applications. Key challenges such as probe selectivity and spectroscopic requirements are described alongside of therapeutic, diagnostic, and theranostic opportunities.

  20. Multiple enzyme activities of flavivirus proteins.

    PubMed

    Padmanabhan, R; Mueller, N; Reichert, E; Yon, C; Teramoto, T; Kono, Y; Takhampunya, R; Ubol, S; Pattabiraman, N; Falgout, B; Ganesh, V K; Murthy, K

    2006-01-01

    Dengue viruses (DENV) have 5'-capped RNA genomes of (+) polarity and encode a single polyprotein precursor that is processed into mature viral proteins. NS2B, NS3 and NS5 proteins catalyse/activate enzyme activities that are required for key processes in the virus life cycle. The heterodimeric NS2B/NS3 is a serine protease required for processing. Using a high-throughput protease assay, we screened a small molecule chemical library and identified -200 compounds having > or = 50% inhibition. Moreover, NS3 exhibits RNA-stimulated NTPase, RNA helicase and the 5'-RNA triphosphatase activities. The NTPase and the 5'-RTPase activities of NS3 are stimulated by interaction with NS5. Moreover, the conserved, positively charged motif in DENV-2 NS3, 184RKRK, is required for RNA binding and modulates the RNA-dependent enzyme activities of NS3. To study viral replication, a variety of methods are used such as the in vitro RNA-dependent RNA polymerase assays that utilize lysates from DENV-2-infected mosquito or mammalian cells or the purified NS5 along with exogenous short subgenomic viral RNAs or the replicative intracellular membrane-bound viral RNAs as templates. In addition, a cell-based DENV-2 replicon RNA encoding a luciferase reporter is also used to examine the role of cis-acting elements within the 3' UTR and the RKRK motif in viral replication.

  1. Cloning of ubiquitin-activating enzyme and ubiquitin-conjugating enzyme genes from Gracilaria lemaneiformis and their activity under heat shock.

    PubMed

    Li, Guang-Qi; Zang, Xiao-Nan; Zhang, Xue-Cheng; Lu, Ning; Ding, Yan; Gong, Le; Chen, Wen-Chao

    2014-03-15

    To study the response of Gracilaria lemaneiformis to heat stress, two key enzymes - ubiquitin-activating enzyme (E1) and ubiquitin-conjugating enzyme (E2) - of the Ubiquitin/26S proteasome pathway (UPP) were studied in three strains of G. lemaneiformis-wild type, heat-tolerant cultivar 981 and heat-tolerant cultivar 07-2. The full length DNA sequence of E1 contained only one exon. The open reading frame (ORF) sequence was 981 nucleotides encoding 326 amino acids, which contained conserved ATP binding sites (LYDRQIRLWGLE, ELAKNVLLAGV, LKEMN, VVCAI) and the ubiquitin-activating domains (VVCAI…LMTEAC, VFLDLGDEYSYQ, AIVGGMWGRE). The gene sequence of E2 contained four exons and three introns. The sum of the four exons gave an open reading frame sequence of 444 nucleotides encoding 147 amino acids, which contained a conserved ubiquitin-activating domain (GSICLDIL), ubiquitin-conjugating domains (RIYHPNIN, KVLLSICSLL, DDPLV) and ubiquitin-ligase (E3) recognition sites (KRI, YPF, WSP). Real-time-PCR analysis of transcription levels of E1 and E2 under heat shock conditions (28°C and 32°C) showed that in wild type, transcriptions of E1 and E2 were up-regulated at 28°C, while at 32°C, transcriptions of the two enzymes were below the normal level. In cultivar 981 and cultivar 07-2 of G. lemaneiformis, the transcription levels of the two enzymes were up-regulated at 32°C, and transcription level of cultivar 07-2 was even higher than that of cultivar 981. These results suggest that the UPP plays an important role in high temperature resistance of G. lemaneiformis and the bioactivity of UPP is directly related to the heat-resistant ability of G. lemaneiformis. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme.

    PubMed

    Shisler, Krista A; Hutcheson, Rachel U; Horitani, Masaki; Duschene, Kaitlin S; Crain, Adam V; Byer, Amanda S; Shepard, Eric M; Rasmussen, Ashley; Yang, Jian; Broderick, William E; Vey, Jessica L; Drennan, Catherine L; Hoffman, Brian M; Broderick, Joan B

    2017-08-30

    Pyruvate formate-lyase activating enzyme (PFL-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential glycyl radical on pyruvate formate-lyase. We show that PFL-AE binds a catalytically essential monovalent cation at its active site, yet another parallel with B 12 enzymes, and we characterize this cation site by a combination of structural, biochemical, and spectroscopic approaches. Refinement of the PFL-AE crystal structure reveals Na + as the most likely ion present in the solved structures, and pulsed electron nuclear double resonance (ENDOR) demonstrates that the same cation site is occupied by 23 Na in the solution state of the as-isolated enzyme. A SAM carboxylate-oxygen is an M + ligand, and EPR and circular dichroism spectroscopies reveal that both the site occupancy and the identity of the cation perturb the electronic properties of the SAM-chelated iron-sulfur cluster. ENDOR studies of the PFL-AE/[ 13 C-methyl]-SAM complex show that the target sulfonium positioning varies with the cation, while the observation of an isotropic hyperfine coupling to the cation by ENDOR measurements establishes its intimate, SAM-mediated interaction with the cluster. This monovalent cation site controls enzyme activity: (i) PFL-AE in the absence of any simple monovalent cations has little-no activity; and (ii) among monocations, going down Group 1 of the periodic table from Li + to Cs + , PFL-AE activity sharply maximizes at K + , with NH 4 + closely matching the efficacy of K + . PFL-AE is thus a type I M + -activated enzyme whose M + controls reactivity by interactions with the cosubstrate, SAM, which is bound to the catalytic iron-sulfur cluster.

  3. Microbial dynamics and enzyme activities in tropical Andosols depending on land use and nutrient inputs

    NASA Astrophysics Data System (ADS)

    Mganga, Kevin; Razavi, Bahar; Kuzyakov, Yakov

    2015-04-01

    Microbial decomposition of soil organic matter is mediated by enzymes and is a key source of terrestrial CO2 emissions. Microbial and enzyme activities are necessary to understand soil biochemical functioning and identify changes in soil quality. However, little is known about land use and nutrients availability effects on enzyme activities and microbial processes, especially in tropical soils of Africa. This study was conducted to examine how microbial and enzyme activities differ between different land uses and nutrient availability. As Andosols of Mt. Kilimanjaro are limited by nutrient concentrations, we hypothesize that N and P additions will stimulate enzyme activity. N and P were added to soil samples (0-20 cm) representing common land use types in East Africa: (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) traditional Chagga homegardens. Total CO2 efflux from soil, microbial biomass and activities of β-glucosidase, cellobiohydrolase, chitinase and phosphatase involved in C, N and P cycling, respectively was monitored for 60 days. Total CO2 production, microbial biomass and enzyme activities varied in the order forest soils > grassland soils > arable soils. Increased β-glucosidase and cellobiohydrolase activities after N addition of grassland soils suggest that microorganisms increased N uptake and utilization to produce C-acquiring enzymes. Low N concentration in all soils inhibited chitinase activity. Depending on land use, N and P addition had an inhibitory or neutral effect on phosphatase activity. We attribute this to the high P retention of Andosols and low impact of N and P on the labile P fractions. Enhanced CO2 production after P addition suggests that increased P availability could stimulate soil organic matter biodegradation in Andosols. In conclusion, land use and nutrients influenced soil enzyme activities and microbial dynamics and demonstrated the decline in soil quality after landuse

  4. Heparin/heparan sulfate 6-O-sulfatase from Flavobacterium heparinum: integrated structural and biochemical investigation of enzyme active site and substrate specificity.

    PubMed

    Myette, James R; Soundararajan, Venkataramanan; Shriver, Zachary; Raman, Rahul; Sasisekharan, Ram

    2009-12-11

    Heparin and heparan sulfate glycosaminoglycans (HSGAGs) comprise a chemically heterogeneous class of sulfated polysaccharides. The development of structure-activity relationships for this class of polysaccharides requires the identification and characterization of degrading enzymes with defined substrate specificity and enzymatic activity. Toward this end, we report here the molecular cloning and extensive structure-function analysis of a 6-O-sulfatase from the Gram-negative bacterium Flavobacterium heparinum. In addition, we report the recombinant expression of this enzyme in Escherichia coli in a soluble, active form and identify it as a specific HSGAG sulfatase. We further define the mechanism of action of the enzyme through biochemical and structural studies. Through the use of defined substrates, we investigate the kinetic properties of the enzyme. This analysis was complemented by homology-based molecular modeling studies that sought to rationalize the substrate specificity of the enzyme and mode of action through an analysis of the active-site topology of the enzyme including identifying key enzyme-substrate interactions and assigning key amino acids within the active site of the enzyme. Taken together, our structural and biochemical studies indicate that 6-O-sulfatase is a predominantly exolytic enzyme that specifically acts on N-sulfated or N-acetylated 6-O-sulfated glucosamines present at the non-reducing end of HSGAG oligosaccharide substrates. This requirement for the N-acetyl or N-sulfo groups on the glucosamine substrate can be explained through eliciting favorable interactions with key residues within the active site of the enzyme. These findings provide a framework that enables the use of 6-O-sulfatase as a tool for HSGAG structure-activity studies as well as expand our biochemical and structural understanding of this important class of enzymes.

  5. Histochemical location of key enzyme activities involved in receptivity and self-incompatibility in the olive tree (Olea europaea L.).

    PubMed

    Serrano, Irene; Olmedilla, Adela

    2012-12-01

    Stigma-surface and style enzymes are important for pollen reception, selection and germination. This report deals with the histochemical location of the activity of four basic types of enzyme involved in these processes in the olive (Olea europaea L.). The detection of peroxidase, esterase and acid-phosphatase activities at the surface of the stigma provided evidence of early receptivity in olive pistils. The stigma maintained its receptivity until the arrival of pollen. Acid-phosphatase activity appeared in the style at the moment of anthesis and continued until the fertilization of the ovule. RNase activity was detected in the extracellular matrix of the styles of flowers just before pollination and became especially evident in pistils after self-pollination. This activity gradually decreased until it practically disappeared in more advanced stages. RNase activity was also detected in pollen tubes growing in pollinated pistils and appeared after in vitro germination in the presence of self-incompatible pistils. These findings suggest that RNases may well be involved in intraspecific pollen rejection in olive flowers. To the best of our knowledge this is the first time that evidence of enzyme activity in stigma receptivity and pollen selection has been described in this species. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Exposure to leachate from municipal battery recycling site: implication as key inhibitor of steroidogenic enzymes and risk factor of prostate damage in rats.

    PubMed

    Akintunde, Jacob K; Oboh, G

    2013-01-01

    Few or no studies have measured the effect of short- and long-term exposure to industrial leachate. Mature male Wistar strain albino rats (175-220 g) underwent sub-chronic exposure to leachate from the Elewi Odo municipal battery recycling site (EOMABRL) via oral administration for a period of 60 days at different doses (20%, 40%, 60%, 80%, and 100%) per kilogram of body weight to evaluate the toxic effects of the leachate on male reproductive function using steroidogenic enzymes and biomarkers of prostate damage. Control groups were treated equally but were given distilled water instead of the leachate. After the treatment periods, results showed that the treatment induced systemic toxicity at the doses tested by causing a significant (p<0.05) loss in absolute body weight and decline in growth rate. There was a marked significant decrease (p<0.05) in testicular activities of Δ(5)-3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase. Conversely, the activity of prostatic acid phosphatase, a key marker enzyme for prostrate damage was significantly (p<0.05) elevated in the treated rats. Similarly, the administration of EOMABRL significantly (p<0.05) exacerbated the activity of total acid phosphatase with concomitant increase in the activity of prostatic alkaline phosphatase. These findings conclude that exposure to leachate from a battery recycling site induces sub-chronic testicular toxicity by inhibiting key steroidogenic enzymes and activating key markers linked with prostate damage/cancer in rats.

  7. Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America.

    PubMed

    Ranilla, Lena Galvez; Kwon, Young-In; Apostolidis, Emmanouil; Shetty, Kalidas

    2010-06-01

    Traditionally used medicinal plants, herbs and spices in Latin America were investigated to determine their phenolic profiles, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension. High phenolic and antioxidant activity-containing medicinal plants and spices such as Chancapiedra (Phyllantus niruri L.), Zarzaparrilla (Smilax officinalis), Yerba Mate (Ilex paraguayensis St-Hil), and Huacatay (Tagetes minuta) had the highest anti-hyperglycemia relevant in vitro alpha-glucosidase inhibitory activities with no effect on alpha-amylase. Molle (Schinus molle), Maca (Lepidium meyenii Walp), Caigua (Cyclanthera pedata) and ginger (Zingiber officinale) inhibited significantly the hypertension relevant angiotensin I-converting enzyme (ACE). All evaluated pepper (Capsicum) genus exhibited both anti-hyperglycemia and anti-hypertension potential. Major phenolic compounds in Matico (Piper angustifolium R.), Guascas (Galinsoga parviflora) and Huacatay were chlorogenic acid and hydroxycinnamic acid derivatives. Therefore, specific medicinal plants, herbs and spices from Latin America have potential for hyperglycemia and hypertension prevention associated with Type 2 diabetes. (c) 2010 Elsevier Ltd. All rights reserved.

  8. New glycyl radical enzymes catalysing key metabolic steps in anaerobic bacteria.

    PubMed

    Selmer, Thorsten; Pierik, Antonio J; Heider, Johann

    2005-10-01

    During the last decade, an increasing number of new enzymes containing glycyl radicals in their active sites have been identified and biochemically characterised. These include benzylsuccinate synthase (Bss), 4-hydroxyphenylacetate decarboxylase (Hpd) and the coenzyme B12-independent glycerol dehydratase (Gdh). These are involved in metabolic pathways as different as anaerobic toluene metabolism, fermentative production of p-cresol and glycerol fermentation. Some features of these newly discovered enzymes are described and compared with those of the previously known glycyl radical enzymes pyruvate formate-lyase (Pfl) and anaerobic ribonucleotide reductase (Nrd). Among the new enzymes, Bss and Hpd share the presence of small subunits, the function of which in the catalytic mechanisms is still enigmatic, and both enzymes contain metal centres in addition to the glycyl radical prosthetic group. The activating enzymes of the novel systems also deviate from the standard type, containing at least one additional Fe-S cluster. Finally, the available whole-genome sequences of an increasing number of strictly or facultative anaerobic bacteria revealed the presence of many more hitherto unknown glycyl radical enzyme (GRE) systems. Recent studies suggest that the particular types of these enzymes represent the ends of different evolutionary lines, which emerged early in evolution and diversified to yield remarkably versatile biocatalysts for chemical reactions that are otherwise difficult to perform in anoxic environments.

  9. An in-silico insight into the substrate binding characteristics of the active site of amorpha-4, 11-diene synthase, a key enzyme in artemisinin biosynthesis.

    PubMed

    Eslami, Habib; Mohtashami, Seyed Kaveh; Basmanj, Maryam Taghavi; Rahati, Maryam; Rahimi, Hamzeh

    2017-07-01

    The enzyme amorphadiene synthase (ADS) conducts the first committed step in the biosynthetic conversion of the substrate farnesyl pyrophosphate (FPP) to artemisinin, which is a highly effective natural product against multidrug-resistant strains of malaria. Due to the either low abundance or low turn-over rate of the enzyme, obtaining artemisinin from both natural and synthetic sources is costly and laborious. In this in silico study, we strived to elucidate the substrate binding site specificities of the ADS, with the rational that unraveling enzyme features paves the way for enzyme engineering to increase synthesis rate. A homology model of the ADS from Artemisia annua L. was constructed based on the available crystal structure of the 5-epiaristolochene synthase (TEAS) and further analyzed with molecular dynamic simulations to determine residues forming the substrate recognition pocket. We also investigated the structural aspects of Mg 2+ binding. Results revealed DDYTD and NDLMT as metal-binding motifs in the putative active site gorge, which is composed of the D and H helixes and one loop region (aa519-532). Moreover, several representative residues including Tyr519, Asp444, Trp271, Asn443, Thr399, Arg262, Val292, Gly400 and Leu405, determine the FPP binding mode and its fate in terms of stereochemistry as well as the enzyme fidelity for the specific end product. These findings lead to inferences concerning key components of the ADS catalytic cavity, and provide evidence for the spatial localization of the FPP and Mg 2+ . Such detailed understanding will probably help to design an improved enzyme.

  10. Epigenetic reprogramming - is deamination key to active DNA demethylation?

    PubMed Central

    Teperek-Tkacz, Marta; Pasque, Vincent; Gentsch, George; Ferguson-Smith, Anne C.

    2013-01-01

    DNA demethylation processes are important for reproduction being central in epigenetic reprogramming during embryonic and germ cell development. While the enzymes methylating DNA have been known for many years, identification of factors capable of mediating active DNA demethylation has been challenging. Recent findings suggest that cytidine deaminases may be key players in active DNA demethylation. One of the most investigated candidates is AID (activation-induced cytidine deaminase) best known for its role in generating secondary antibody diversity in B cells. We evaluate evidence for cytidine deaminases in DNA demethylation pathways in vertebrates and discuss possible models for their targeting and activity regulation. These findings are also considered alongside alternative demethylation pathways involving hydroxymethylation. PMID:21911441

  11. Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing

    PubMed Central

    Kola, Vijaya Sudhakara Rao; Renuka, P.; Madhav, Maganti Sheshu; Mangrauthia, Satendra K.

    2015-01-01

    RNA interference (RNAi) is a mechanism of homology dependent gene silencing present in plants and animals. It operates through 21–24 nucleotides small RNAs which are processed through a set of core enzymatic machinery that involves Dicer and Argonaute proteins. In recent past, the technology has been well appreciated toward the control of plant pathogens and insects through suppression of key genes/proteins of infecting organisms. The genes encoding key enzymes/proteins with the great potential for developing an effective insect control by RNAi approach are actylcholinesterase, cytochrome P450 enzymes, amino peptidase N, allatostatin, allatotropin, tryptophan oxygenase, arginine kinase, vacuolar ATPase, chitin synthase, glutathione-S-transferase, catalase, trehalose phosphate synthase, vitellogenin, hydroxy-3-methylglutaryl coenzyme A reductase, and hormone receptor genes. Through various studies, it is demonstrated that RNAi is a reliable molecular tool which offers great promises in meeting the challenges imposed by crop insects with careful selection of key enzymes/proteins. Utilization of RNAi tool to target some of these key proteins of crop insects through various approaches is described here. The major challenges of RNAi based insect control such as identifying potential targets, delivery methods of silencing trigger, off target effects, and complexity of insect biology are very well illustrated. Further, required efforts to address these challenges are also discussed. PMID:25954206

  12. County-scale spatial distribution of soil enzyme activities and enzyme activity indices in agricultural land: implications for soil quality assessment.

    PubMed

    Tan, Xiangping; Xie, Baoni; Wang, Junxing; He, Wenxiang; Wang, Xudong; Wei, Gehong

    2014-01-01

    Here the spatial distribution of soil enzymatic properties in agricultural land was evaluated on a county-wide (567 km(2)) scale in Changwu, Shaanxi Province, China. The spatial variations in activities of five hydrolytic enzymes were examined using geostatistical methods. The relationships between soil enzyme activities and other soil properties were evaluated using both an integrated total enzyme activity index (TEI) and the geometric mean of enzyme activities (GME). At the county scale, soil invertase, phosphatase, and catalase activities were moderately spatially correlated, whereas urease and dehydrogenase activities were weakly spatially correlated. Correlation analysis showed that both TEI and GME were better correlated with selected soil physicochemical properties than single enzyme activities. Multivariate regression analysis showed that soil OM content had the strongest positive effect while soil pH had a negative effect on the two enzyme activity indices. In addition, total phosphorous content had a positive effect on TEI and GME in orchard soils, whereas alkali-hydrolyzable nitrogen and available potassium contents, respectively, had negative and positive effects on these two enzyme indices in cropland soils. The results indicate that land use changes strongly affect soil enzyme activities in agricultural land, where TEI provides a sensitive biological indicator for soil quality.

  13. Inhibitory Activities of Zygophyllum album: A Natural Weight-Lowering Plant on Key Enzymes in High-Fat Diet-Fed Rats

    PubMed Central

    Mnafgui, Kais; Hamden, Khaled; Ben Salah, Hichem; Kchaou, Mouna; Nasri, Mbarek; Slama, Sadok; Derbali, Fatma; Allouche, Noureddine; Elfeki, Abdelfattah

    2012-01-01

    Obesity is a serious health problem that increased risk for many complications, including diabetes and cardiovascular disease. The results showed EZA, which found rich in flavonoids and phenolic compounds, exhibited an inhibitory activity on pancreatic lipase in vitro with IC50 of 91.07 μg/mL. In vivo administration of this extract to HFD-rats lowered body weight and serum leptin level; and inhibited lipase activity of obese rats by 37% leading to notable decrease of T-Ch, TGs and LDL-c levels accompanied with an increase in HDL-c concentration in serum and liver of EZA treated HFD-rats. Moreover, the findings revealed that EZA helped to protect liver tissue from the appearance of fatty cysts. Interestingly, supplementation of EZA modulated key enzyme related to hypertension such as ACE by 36% in serum of HFD animals and improve some of serum electrolytes such as Na+, K+, Cl−, Ca2+ and Mg2+. Moreover, EZA significantly protected the liver-kidney function by reverted back near to normal the values of the liver-kidney dysfunction indices AST&ALT, ALP, CPK and GGT activities, decreased T-Bili, creat, urea and uric acid rates. In conclusion, these results showed a strong antihypelipidemic effect of EZA which can delay the occurrence of dislipidemia and hypertension. PMID:23258993

  14. Phosphate starvation promoted the accumulation of phenolic acids by inducing the key enzyme genes in Salvia miltiorrhiza hairy roots.

    PubMed

    Liu, Lin; Yang, DongFeng; Liang, TongYao; Zhang, HaiHua; He, ZhiGui; Liang, ZongSuo

    2016-09-01

    Phosphate starvation increased the production of phenolic acids by inducing the key enzyme genes in a positive feedback pathway in Saliva miltiorrhiza hairy roots. SPX may be involved in this process. Salvia miltiorrhiza is a wildly popular traditional Chinese medicine used for the treatment of coronary heart diseases and inflammation. Phosphate is an essential plant macronutrient that is often deficient, thereby limiting crop yield. In this study, we investigated the effects of phosphate concentration on the biomass and accumulation of phenolic acid in S. miltiorrhiza. Results show that 0.124 mM phosphate was favorable for plant growth. Moreover, 0.0124 mM phosphate was beneficial for the accumulation of phenolic acids, wherein the contents of danshensu, caffeic acid, rosmarinic acid, and salvianolic acid B were, respectively, 2.33-, 1.02-, 1.68-, and 2.17-fold higher than that of the control. By contrast, 12.4 mM phosphate inhibited the accumulation of phenolic acids. The key enzyme genes in the phenolic acid biosynthesis pathway were investigated to elucidate the mechanism of phosphate starvation-induced increase of phenolic acids. The results suggest that phosphate starvation induced the gene expression from the downstream pathway to the upstream pathway, i.e., a feedback phenomenon. In addition, phosphate starvation response gene SPX (SYG1, Pho81, and XPR1) was promoted by phosphate deficiency (0.0124 mM). We inferred that SPX responded to phosphate starvation, which then affected the expression of later responsive key enzyme genes in phenolic acid biosynthesis, resulting in the accumulation of phenolic acids. Our findings provide a resource-saving and environmental protection strategy to increase the yield of active substance in herbal preparations. The relationship between SPX and key enzyme genes and the role they play in phenolic acid biosynthesis during phosphate deficiency need further studies.

  15. Effect of capture stress on plasma enzyme activities in rainbow trout (Salmo gairdneri)

    USGS Publications Warehouse

    Bouck, G.R.; Cairns, M. A.; Christian, A. R.

    1978-01-01

    Four capture methods were used to collect domesticated rainbow trout (Salmo gairdneri): angling, electroshocking, seining, and direct netting (control). Blood was sampled rapidly upon capture, usually within 2 min. No significant differences were noted within the time frame of the experiment between the four capture groups for plasma protein concentration, lactate dehydrogenase activity, or leucine aminonaphthylamidase activity. Creatine phosphokinase activity was elevated among electroshocked fish. Acid phosphatase activity was too low for accurate measurement. Hematocrits were significantly elevated by capture struggles. These results indicate that these capture methods do not preclude the use of plasma enzyme levels for investigating the health of wild fish. Key words: plasma enzyme, capture stress, physiology, plasma protein, rainbow trout, lactate dehydrogenase, leucine aminonaphthylamidase, creatine phosphokinase

  16. Homology to peptide pattern for annotation of carbohydrate-active enzymes and prediction of function.

    PubMed

    Busk, P K; Pilgaard, B; Lezyk, M J; Meyer, A S; Lange, L

    2017-04-12

    Carbohydrate-active enzymes are found in all organisms and participate in key biological processes. These enzymes are classified in 274 families in the CAZy database but the sequence diversity within each family makes it a major task to identify new family members and to provide basis for prediction of enzyme function. A fast and reliable method for de novo annotation of genes encoding carbohydrate-active enzymes is to identify conserved peptides in the curated enzyme families followed by matching of the conserved peptides to the sequence of interest as demonstrated for the glycosyl hydrolase and the lytic polysaccharide monooxygenase families. This approach not only assigns the enzymes to families but also provides functional prediction of the enzymes with high accuracy. We identified conserved peptides for all enzyme families in the CAZy database with Peptide Pattern Recognition. The conserved peptides were matched to protein sequence for de novo annotation and functional prediction of carbohydrate-active enzymes with the Hotpep method. Annotation of protein sequences from 12 bacterial and 16 fungal genomes to families with Hotpep had an accuracy of 0.84 (measured as F1-score) compared to semiautomatic annotation by the CAZy database whereas the dbCAN HMM-based method had an accuracy of 0.77 with optimized parameters. Furthermore, Hotpep provided a functional prediction with 86% accuracy for the annotated genes. Hotpep is available as a stand-alone application for MS Windows. Hotpep is a state-of-the-art method for automatic annotation and functional prediction of carbohydrate-active enzymes.

  17. The effects of exogenous hormones on rooting process and the activities of key enzymes of Malus hupehensis stem cuttings.

    PubMed

    Zhang, Wangxiang; Fan, Junjun; Tan, Qianqian; Zhao, Mingming; Zhou, Ting; Cao, Fuliang

    2017-01-01

    Malus hupehensis is an excellent Malus rootstock species, known for its strong adverse-resistance and apomixes. In the present study, stem cuttings of M. hupehensis were treated with three types of exogenous hormones, including indole acetic acid (IAA), naphthalene acetic acid (NAA), or green growth regulator (GGR). The effects and mechanisms of exogenous hormone treatment and antioxidant enzyme activity on adventitious root formation were investigated. The results showed that the apparent morphology of the adventitious root had four stages, including root pre-emergence stage (S0), early stage of root formation (S1), massive root formation stage (S2), and later stage of root formation (S3). The suitable concentrations of the three exogenous hormones, IAA, NAA and GGR, were 100 mg·L-1, 300 mg·L-1, and 300 mg·L-1, respectively. They shortened the rooting time by 25-47.4% and increased the rooting percentages of cuttings by 0.9-1.3 times, compared with that in the control. The dispersion in S0 stage was 3.6 times of that in the S1 stage after exogenous hormone application. The earlier the third critical point (P3) appeared, the shorter the rooting time and the greater the rooting percentage of the cuttings. During rhizogenesis, the activities of three antioxidant enzymes (POD, SOD, and PPO) showed an A-shaped trend. However, peak values of enzyme activity appeared at different points, which were 9 d before the P3, P3, and the fourth critical point (P4), respectively. Exogenous hormone treatment reduced the time to reach the peak value by 18 days, although the peak values of the enzymatic activities did not significantly changed. Our results suggested that exogenous hormone treatment mainly acted during the root pre-emergence stage, accelerated the synthesis of antioxidant enzymes, reduced the rooting time, and consequently promoted root formation. The three kinds of antioxidant enzymes acted on different stages of rooting.

  18. The effects of exogenous hormones on rooting process and the activities of key enzymes of Malus hupehensis stem cuttings

    PubMed Central

    Tan, Qianqian; Zhao, Mingming; Zhou, Ting; Cao, Fuliang

    2017-01-01

    Malus hupehensis is an excellent Malus rootstock species, known for its strong adverse-resistance and apomixes. In the present study, stem cuttings of M. hupehensis were treated with three types of exogenous hormones, including indole acetic acid (IAA), naphthalene acetic acid (NAA), or green growth regulator (GGR). The effects and mechanisms of exogenous hormone treatment and antioxidant enzyme activity on adventitious root formation were investigated. The results showed that the apparent morphology of the adventitious root had four stages, including root pre-emergence stage (S0), early stage of root formation (S1), massive root formation stage (S2), and later stage of root formation (S3). The suitable concentrations of the three exogenous hormones, IAA, NAA and GGR, were 100 mg·L-1, 300 mg·L-1, and 300 mg·L-1, respectively. They shortened the rooting time by 25–47.4% and increased the rooting percentages of cuttings by 0.9–1.3 times, compared with that in the control. The dispersion in S0 stage was 3.6 times of that in the S1 stage after exogenous hormone application. The earlier the third critical point (P3) appeared, the shorter the rooting time and the greater the rooting percentage of the cuttings. During rhizogenesis, the activities of three antioxidant enzymes (POD, SOD, and PPO) showed an A-shaped trend. However, peak values of enzyme activity appeared at different points, which were 9 d before the P3, P3, and the fourth critical point (P4), respectively. Exogenous hormone treatment reduced the time to reach the peak value by 18 days, although the peak values of the enzymatic activities did not significantly changed. Our results suggested that exogenous hormone treatment mainly acted during the root pre-emergence stage, accelerated the synthesis of antioxidant enzymes, reduced the rooting time, and consequently promoted root formation. The three kinds of antioxidant enzymes acted on different stages of rooting. PMID:28231330

  19. Effects of Recurring Droughts on Extracellular Enzyme Activity in Mountain Grassland

    NASA Astrophysics Data System (ADS)

    Fuchslueger, L.; Bahn, M.; Kienzl, S.; Hofhansl, F.; Schnecker, J.; Richter, A.

    2015-12-01

    Water availability is a key factor for biogeochemical processes and determines microbial activity and functioning, and thereby organic matter decomposition in soils by affecting the osmotic potential, soil pore connectivity, substrate diffusion and nutrient availability. Low water availability during drought periods therefore directly affects microbial activity. Recurring drought periods likely induce shifts in microbial structure that might be reflected in altered responses of microbial turnover of organic matter by extracellular enzymes. To study this we measured a set of potential extracellular enzyme activity rates (cellobiohydrolase CBH; leucine-amino-peptidase LAP; phosphatase PHOS; phenoloxidase POX), in grassland soils that were exposed to extreme experimental droughts during the growing seasons of up to five subsequent years. During the first drought period after eight weeks of rain exclusion all measured potential enzyme activities were significantly decreased. In parallel, soil extractable organic carbon and nitrogen concentrations increased and microbial community structure, determined by phospholipid fatty acid analysis, changed. In soils that were exposed to two and three drought periods only PHOS decreased. After four years of drought again CBH, PHOS and POX decreased, while LAP was unaffected; after five years of drought PHOS and POX decreased and CBH and LAP remained stable. Thus, our results suggest that recurring extreme drought events can cause different responses of extracellular enzyme activities and that the responses change over time. We will discuss whether and to what degree these changes were related to shifts in microbial community composition. However, independent of whether a solitary or a recurrent drought was imposed, in cases when enzyme activity rates were altered during drought, they quickly recovered after rewetting. Overall, our data suggest that microbial functioning in mountain grassland is sensitive to drought, but highly

  20. High muscle lipid content in obesity is not due to enhanced activation of key triglyceride esterification enzymes or the suppression of lipolytic proteins

    PubMed Central

    Li, Minghua; Paran, Christopher; Wolins, Nathan E.

    2011-01-01

    The mechanisms underlying alterations in muscle lipid metabolism in obesity are poorly understood. The primary aim of this study was to compare the abundance and/or activities of key proteins that regulate intramyocellular triglyceride (IMTG) concentration in the skeletal muscle obtained from obese (OB; n = 8, BMI 38 ± 1 kg/m2) and nonobese (NOB; n = 9, BMI 23 ± 1 kg/m2) women. IMTG concentration was nearly twofold greater in OB vs. NOB subjects (75 ± 15 vs. 40 ± 8 μmol/g dry wt, P < 0.05). In contrast, the activity and protein abundance of key enzymes that regulate the esterification of IMTG (i.e., glycerol-3-phosphate acyltransferase and diacylglycerol acyltransferase) were not elevated. We also found no differences between groups in muscle adipose triglyceride lipase and hormone-sensitive lipase (HSL) protein abundance and no differences in phosphorylation of specific sites known to affect HSL activity. However, we did find the elevated IMTG in obesity to be accompanied by a greater abundance of the fatty acid transporter FAT/CD36 in the membrane fraction of muscle from OB vs. NOB subjects (P < 0.05), suggestive of an elevated fatty acid transport capacity. Additionally, protein abundance of the lipid-trafficking protein perilipin 3 was lower (P < 0.05) in muscle from OB vs. NOB when expressed relative to IMTG content. Our findings indicate that the elevated IMTG content found in obese women was not due to an upregulation of key lipogenic proteins or to the suppression of lipolytic proteins. The impact of a low perilipin protein abundance relative to the amount of IMTG in obesity remains to be clarified. PMID:21285405

  1. STRUCTURAL AND FUNCTIONAL CONSEQUENCES OF CIRCULAR PERMUTATION ON THE ACTIVE SITE OF OLD YELLOW ENZYME.

    PubMed

    Daugherty, Ashley B; Horton, John R; Cheng, Xiaodong; Lutz, Stefan

    2015-02-06

    Circular permutation of the NADPH-dependent oxidoreductase Old Yellow Enzyme from Saccharomyces pastorianus (OYE1) can significantly enhance the enzyme's catalytic performance. Termini relocation into four regions of the protein (sectors I-IV) near the active site has proven effective in altering enzyme function. To better understand the structural consequences and rationalize the observed functional gains in these OYE1 variants, we selected representatives from sectors I-III for further characterization by biophysical methods and X-ray crystallography. These investigations not only show trends in enzyme stability and quaternary structure as a function of termini location, but also provide a possible explanation for the catalytic gains in our top-performing OYE variant (new N-terminus at residue 303; sector III). Crystallographic analysis indicates that termini relocation into sector III affects the loop β6 region (amino acid positions: 290-310) of OYE1 which forms a lid over the active site. Peptide backbone cleavage greatly enhances local flexibility, effectively converting the loop into a tether and consequently increasing the environmental exposure of the active site. Interestingly, such active site remodeling does not negatively impact the enzyme's activity and stereoselectivity, nor does it perturb the conformation of other key active site residues with the exception of Y375. These observations were confirmed in truncation experiments, deleting all residues of the loop β6 region in our OYE variant. Intrigued by the finding that circular permutation leaves most of the key catalytic residues unchanged, we also tested OYE permutants for possible additive or synergistic effects of amino acid substitutions. Distinct functional changes in these OYE variants were detected upon mutations at W116, known in native OYE1 to cause inversion of diastereo-selectivity for ( S )-carvone reduction. Our findings demonstrate the contribution of loop β6 toward determining the

  2. Allosteric regulation of epigenetic modifying enzymes.

    PubMed

    Zucconi, Beth E; Cole, Philip A

    2017-08-01

    Epigenetic enzymes including histone modifying enzymes are key regulators of gene expression in normal and disease processes. Many drug development strategies to target histone modifying enzymes have focused on ligands that bind to enzyme active sites, but allosteric pockets offer potentially attractive opportunities for therapeutic development. Recent biochemical studies have revealed roles for small molecule and peptide ligands binding outside of the active sites in modulating the catalytic activities of histone modifying enzymes. Here we highlight several examples of allosteric regulation of epigenetic enzymes and discuss the biological significance of these findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Prediction of active sites of enzymes by maximum relevance minimum redundancy (mRMR) feature selection.

    PubMed

    Gao, Yu-Fei; Li, Bi-Qing; Cai, Yu-Dong; Feng, Kai-Yan; Li, Zhan-Dong; Jiang, Yang

    2013-01-27

    Identification of catalytic residues plays a key role in understanding how enzymes work. Although numerous computational methods have been developed to predict catalytic residues and active sites, the prediction accuracy remains relatively low with high false positives. In this work, we developed a novel predictor based on the Random Forest algorithm (RF) aided by the maximum relevance minimum redundancy (mRMR) method and incremental feature selection (IFS). We incorporated features of physicochemical/biochemical properties, sequence conservation, residual disorder, secondary structure and solvent accessibility to predict active sites of enzymes and achieved an overall accuracy of 0.885687 and MCC of 0.689226 on an independent test dataset. Feature analysis showed that every category of the features except disorder contributed to the identification of active sites. It was also shown via the site-specific feature analysis that the features derived from the active site itself contributed most to the active site determination. Our prediction method may become a useful tool for identifying the active sites and the key features identified by the paper may provide valuable insights into the mechanism of catalysis.

  4. Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses.

    PubMed

    Azad, Kimi; Banerjee, Manidipa; Johnson, John E

    2017-09-29

    Viruses are obligate intracellular parasites that rely on host cell machineries for their replication and survival. Although viruses tend to make optimal use of the host cell protein repertoire, they need to encode essential enzymatic or effector functions that may not be available or accessible in the host cellular milieu. The enzymes encoded by nonenveloped viruses-a group of viruses that lack any lipid coating or envelope-play vital roles in all the stages of the viral life cycle. This review summarizes the structural, biochemical, and mechanistic information available for several classes of enzymes and autocatalytic activity encoded by nonenveloped viruses. Advances in research and development of antiviral inhibitors targeting specific viral enzymes are also highlighted.

  5. Gallium Nitrate Is Efficacious in Murine Models of Tuberculosis and Inhibits Key Bacterial Fe-Dependent Enzymes

    PubMed Central

    Olakanmi, Oyebode; Kesavalu, Banurekha; Pasula, Rajamouli; Abdalla, Maher Y.; Schlesinger, Larry S.

    2013-01-01

    Acquiring iron (Fe) is critical to the metabolism and growth of Mycobacterium tuberculosis. Disruption of Fe metabolism is a potential approach for novel antituberculous therapy. Gallium (Ga) has many similarities to Fe. Biological systems are often unable to distinguish Ga3+ from Fe3+. Unlike Fe3+, Ga3+ cannot be physiologically reduced to Ga2+. Thus, substituting Ga for Fe in the active site of enzymes may render them nonfunctional. We previously showed that Ga inhibits growth of M. tuberculosis in broth and within cultured human macrophages. We now report that Ga(NO3)3 shows efficacy in murine tuberculosis models. BALB/c SCID mice were infected intratracheally with M. tuberculosis, following which they received daily intraperitoneal saline, Ga(NO3)3, or NaNO3. All mice receiving saline or NaNO3 died. All Ga(NO3)3-treated mice survived. M. tuberculosis CFU in the lungs, liver, and spleen of the NaNO3-treated or saline-treated mice were significantly higher than those in Ga-treated mice. When BALB/c mice were substituted for BALB/c SCID mice as a chronic (nonlethal) infection model, Ga(NO3)3 treatment significantly decreased lung CFU. To assess the mechanism(s) whereby Ga inhibits bacterial growth, the effect of Ga on M. tuberculosis ribonucleotide reductase (RR) (a key enzyme in DNA replication) and aconitase activities was assessed. Ga decreased M. tuberculosis RR activity by 50 to 60%, but no additional decrease in RR activity was seen at Ga concentrations that completely inhibited mycobacterial growth. Ga decreased aconitase activity by 90%. Ga(NO3)3 shows efficacy in murine M. tuberculosis infection and leads to a decrease in activity of Fe-dependent enzymes. Additional work is warranted to further define Ga's mechanism of action and to optimize delivery forms for possible therapeutic uses in humans. PMID:24060870

  6. Efficacy of azelaic acid on hepatic key enzymes of carbohydrate metabolism in high fat diet induced type 2 diabetic mice.

    PubMed

    Muthulakshmi, Shanmugam; Saravanan, Ramalingam

    2013-06-01

    Azelaic acid (AzA), a C9 linear α,ω-dicarboxylic acid, is found in whole grains namely wheat, rye, barley, oat seeds and sorghum. The study was performed to investigate whether AzA exerts beneficial effect on hepatic key enzymes of carbohydrate metabolism in high fat diet (HFD) induced type 2 diabetic C57BL/6J mice. C57BL/6J mice were fed high fat diet for 10 weeks and subjected to intragastric administration of various doses (20 mg, 40 mg and 80 mg/kg BW) of AzA daily for the subsequent 5 weeks. Rosiglitazone (RSG) was used as reference drug. Body weight, food intake, plasma glucose, plasma insulin, blood haemoglobin (Hb), blood glycosylated haemoglobin (HbA1c), liver glycolytic enzyme (hexokinase), hepatic shunt enzyme (glucose-6-phosphate dehydrogenase), gluconeogenic enzymes(glucose-6-phosphatase and fructose-1,6-bisphosphatase), liver glycogen, plasma and liver triglycerides were examined in mice fed with normal standard diet (NC), high fat diet (HFD), HFD with AzA (HFD + AzA) and HFD with rosiglitazone (HFD + RSG). Among the three doses, 80 mg/kg BW of AzA was able to positively regulate plasma glucose, insulin, blood HbA1c and haemoglobin levels by significantly increasing the activity of hexokinase and glucose-6-phosphate dehydrogenase and significantly decreasing the activity of glucose-6-phosphatase and fructose-1,6-bisphosphatase thereby increasing the glycogen content in the liver. From this study, we put forward that AzA could significantly restore the levels of plasma glucose, insulin, HbA1c, Hb, liver glycogen and carbohydrate metabolic key enzymes to near normal in diabetic mice and hence, AzA may be useful as a biomaterial in the development of therapeutic agents against high fat diet induced T2DM. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. Molecular dynamics explorations of active site structure in designed and evolved enzymes.

    PubMed

    Osuna, Sílvia; Jiménez-Osés, Gonzalo; Noey, Elizabeth L; Houk, K N

    2015-04-21

    , a noncatalytic arrangement of the catalytic triad is dominant. Unnatural truncated substrates are inactive because of the lack of protein-protein interactions provided by the ACP. Directed evolution is able to gradually restore the catalytic organization of the active site by motion of the protein backbone that alters the active site geometry. In the third case, we demonstrate the key role of MD in combination with crystallography to identify the origins of substrate-dependent stereoselectivities in a number of Codexis-engineered ketoreductases, one of which is used commercially for the production of the antibiotic sulopenem. Here, mutations alter the shape of the active site as well as the accessibility of water to different regions of it. Each of these examples reveals something different about how mutations can influence enzyme activity and shows that directed evolution, like natural evolution, can increase catalytic activity in a variety of remarkable and often subtle ways.

  8. A function-based screen for seeking RubisCO active clones from metagenomes: novel enzymes influencing RubisCO activity.

    PubMed

    Böhnke, Stefanie; Perner, Mirjam

    2015-03-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is a key enzyme of the Calvin cycle, which is responsible for most of Earth's primary production. Although research on RubisCO genes and enzymes in plants, cyanobacteria and bacteria has been ongoing for years, still little is understood about its regulation and activation in bacteria. Even more so, hardly any information exists about the function of metagenomic RubisCOs and the role of the enzymes encoded on the flanking DNA owing to the lack of available function-based screens for seeking active RubisCOs from the environment. Here we present the first solely activity-based approach for identifying RubisCO active fosmid clones from a metagenomic library. We constructed a metagenomic library from hydrothermal vent fluids and screened 1056 fosmid clones. Twelve clones exhibited RubisCO activity and the metagenomic fragments resembled genes from Thiomicrospira crunogena. One of these clones was further analyzed. It contained a 35.2 kb metagenomic insert carrying the RubisCO gene cluster and flanking DNA regions. Knockouts of twelve genes and two intergenic regions on this metagenomic fragment demonstrated that the RubisCO activity was significantly impaired and was attributed to deletions in genes encoding putative transcriptional regulators and those believed to be vital for RubisCO activation. Our new technique revealed a novel link between a poorly characterized gene and RubisCO activity. This screen opens the door to directly investigating RubisCO genes and respective enzymes from environmental samples.

  9. E2 superfamily of ubiquitin-conjugating enzymes: constitutively active or activated through phosphorylation in the catalytic cleft.

    PubMed

    Valimberti, Ilaria; Tiberti, Matteo; Lambrughi, Matteo; Sarcevic, Boris; Papaleo, Elena

    2015-10-14

    Protein phosphorylation is a modification that offers a dynamic and reversible mechanism to regulate the majority of cellular processes. Numerous diseases are associated with aberrant regulation of phosphorylation-induced switches. Phosphorylation is emerging as a mechanism to modulate ubiquitination by regulating key enzymes in this pathway. The molecular mechanisms underpinning how phosphorylation regulates ubiquitinating enzymes, however, are elusive. Here, we show the high conservation of a functional site in E2 ubiquitin-conjugating enzymes. In catalytically active E2s, this site contains aspartate or a phosphorylatable serine and we refer to it as the conserved E2 serine/aspartate (CES/D) site. Molecular simulations of substrate-bound and -unbound forms of wild type, mutant and phosphorylated E2s, provide atomistic insight into the role of the CES/D residue for optimal E2 activity. Both the size and charge of the side group at the site play a central role in aligning the substrate lysine toward E2 catalytic cysteine to control ubiquitination efficiency. The CES/D site contributes to the fingerprint of the E2 superfamily. We propose that E2 enzymes can be divided into constitutively active or regulated families. E2s characterized by an aspartate at the CES/D site signify constitutively active E2s, whereas those containing a serine can be regulated by phosphorylation.

  10. Determining Enzyme Activity by Radial Diffusion

    ERIC Educational Resources Information Center

    Davis, Bill D.

    1977-01-01

    Discusses advantages of radial diffusion assay in determining presence of enzyme and/or rough approximation of amount of enzyme activities. Procedures are included for the preparation of starch-agar plates, and the application and determination of enzyme. Techniques using plant materials (homogenates, tissues, ungerminated embryos, and seedlings)…

  11. Glycyl radical activating enzymes: Structure, mechanism, and substrate interactions☆

    PubMed Central

    Shisler, Krista A.; Broderick, Joan B.

    2014-01-01

    The glycyl radical enzyme activating enzymes (GRE–AEs) are a group of enzymes that belong to the radical S-adenosylmethionine (SAM) superfamily and utilize a [4Fe–4S] cluster and SAM to catalyze H-atom abstraction from their substrate proteins. GRE–AEs activate homodimeric proteins known as glycyl radical enzymes (GREs) through the production of a glycyl radical. After activation, these GREs catalyze diverse reactions through the production of their own substrate radicals. The GRE–AE pyruvate formate lyase activating enzyme (PFL-AE) is extensively characterized and has provided insights into the active site structure of radical SAM enzymes including GRE–AEs, illustrating the nature of the interactions with their corresponding substrate GREs and external electron donors. This review will highlight research on PFL-AE and will also discuss a few GREs and their respective activating enzymes. PMID:24486374

  12. Active Site Gate Dynamics Modulate the Catalytic Activity of the Ubiquitination Enzyme E2-25K.

    PubMed

    Rout, Manoj K; Lee, Brian L; Lin, Aiyang; Xiao, Wei; Spyracopoulos, Leo

    2018-05-03

    The ubiquitin proteasome system (UPS) signals for degradation of proteins through attachment of K48-linked polyubiquitin chains, or alterations in protein-protein recognition through attachment of K63-linked chains. Target proteins are ubiquitinated in three sequential chemical steps by a three-component enzyme system. Ubiquitination, or E2 enzymes, catalyze the central step by facilitating reaction of a target protein lysine with the C-terminus of Ub that is attached to the active site cysteine of the E2 through a thioester bond. E2 reactivity is modulated by dynamics of an active site gate, whose central residue packs against the active site cysteine in a closed conformation. Interestingly, for the E2 Ubc13, which specifically catalyzes K63-linked ubiquitination, the central gate residue adopts an open conformation. We set out to determine if active site gate dynamics play a role in catalysis for E2-25K, which adopts the canonical, closed gate conformation, and which selectively synthesizes K48-linked ubiquitin chains. Gate dynamics were characterized using mutagenesis of key residues, combined with enzyme kinetics measurements, and main chain NMR relaxation. The experimental data were interpreted with all atom MD simulations. The data indicate that active site gate opening and closing rates for E2-25K are precisely balanced.

  13. Enzyme activity in dialkyl phosphate ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, M.F.; Dunn, J.; Li, L.-L.

    2011-12-01

    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariellavolvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.

  14. Glycyl radical activating enzymes: structure, mechanism, and substrate interactions.

    PubMed

    Shisler, Krista A; Broderick, Joan B

    2014-03-15

    The glycyl radical enzyme activating enzymes (GRE-AEs) are a group of enzymes that belong to the radical S-adenosylmethionine (SAM) superfamily and utilize a [4Fe-4S] cluster and SAM to catalyze H-atom abstraction from their substrate proteins. GRE-AEs activate homodimeric proteins known as glycyl radical enzymes (GREs) through the production of a glycyl radical. After activation, these GREs catalyze diverse reactions through the production of their own substrate radicals. The GRE-AE pyruvate formate lyase activating enzyme (PFL-AE) is extensively characterized and has provided insights into the active site structure of radical SAM enzymes including GRE-AEs, illustrating the nature of the interactions with their corresponding substrate GREs and external electron donors. This review will highlight research on PFL-AE and will also discuss a few GREs and their respective activating enzymes. Copyright © 2014. Published by Elsevier Inc.

  15. Novel triterpene oxidizing activity of Arabidopsis thaliana CYP716A subfamily enzymes.

    PubMed

    Yasumoto, Shuhei; Fukushima, Ery O; Seki, Hikaru; Muranaka, Toshiya

    2016-02-01

    Triterpenoids have diverse chemical structures and bioactivities. Cytochrome P450 monooxygenases play a key role in their structural diversification. In higher plants, CYP716A subfamily enzymes are triterpene oxidases. In this study, Arabidopsis thaliana CYP716A1 and CYP716A2 were characterized by heterologously expressing them in simple triterpene-producing yeast strains. In contrast to the C-28 oxidative activity of CYP716A1 shown in several CYP716A subfamily enzymes, remarkably, CYP716A2 displayed 22α-hydroxylation activity against α-amyrin that has not been previously reported, which produces the cytotoxic triterpenoid, 22α-hydroxy-α-amyrin. Our results contribute to the enrichment of the molecular toolbox that allows for the combinatorial biosynthesis of diverse triterpenoids. © 2016 Federation of European Biochemical Societies.

  16. Genetic ontogeny of pancreatic enzymes in Labrus bergylta larvae and the effect of feed type on enzyme activities and gene expression.

    PubMed

    Hansen, Truls Wergeland; Folkvord, Arild; Grøtan, Espen; Sæle, Øystein

    2013-03-01

    A newly cultivated wrasse species, Labrus bergylta, have shown great potential for use in Atlantic salmon (Salmo salar) farms in the battle against sea lice (Lepeoptheirus salmonis) infections. Hatchery reared L. bergylta were studied from 2 to 55 DPH to examine the molecular basis of digestive ontogeny related to the pancreas. An isolated feeding trial was performed on 27-34 DPH larvae to compare the effect of diet on enzyme activity and the possible exogenous contribution by live feed. The following genes coding for key pancreatic enzymes were analyzed by qPCR: trypsin, Cyp7 A1, BAL, sPLA(2) 1B, amylase and pancreatic chitinase. Enzyme activity was measured on trypsin, neutral lipase, sPLA(2), amylase and chitinase in fed and unfed larvae. We did not observe any effects of the formulated diet v.s. rotifers on enzyme activities of neutral lipase, chitinase and sPLA(2). However, a probable feed-dependency was observed at a transcriptional level, where rotifers seem to stimulate upregulation. The regulation of BAL was the only exception, where an upregulation was observed after weaning both in the ontogeny series and the experimental part. Our data on pancreatic chitinase and amylase mRNA levels suggest the importance of carbohydrates in the diet of early larval and juvenile L. bergylta. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Identification of Multiple Phosphorylation Sites on Maize Endosperm Starch Branching Enzyme IIb, a Key Enzyme in Amylopectin Biosynthesis

    PubMed Central

    Makhmoudova, Amina; Williams, Declan; Brewer, Dyanne; Massey, Sarah; Patterson, Jenelle; Silva, Anjali; Vassall, Kenrick A.; Liu, Fushan; Subedi, Sanjeena; Harauz, George; Siu, K. W. Michael; Tetlow, Ian J.; Emes, Michael J.

    2014-01-01

    Starch branching enzyme IIb (SBEIIb) plays a crucial role in amylopectin biosynthesis in maize endosperm by defining the structural and functional properties of storage starch and is regulated by protein phosphorylation. Native and recombinant maize SBEIIb were used as substrates for amyloplast protein kinases to identify phosphorylation sites on the protein. A multidisciplinary approach involving bioinformatics, site-directed mutagenesis, and mass spectrometry identified three phosphorylation sites at Ser residues: Ser649, Ser286, and Ser297. Two Ca2+-dependent protein kinase activities were partially purified from amyloplasts, termed K1, responsible for Ser649 and Ser286 phosphorylation, and K2, responsible for Ser649 and Ser297 phosphorylation. The Ser286 and Ser297 phosphorylation sites are conserved in all plant branching enzymes and are located at opposite openings of the 8-stranded parallel β-barrel of the active site, which is involved with substrate binding and catalysis. Molecular dynamics simulation analysis indicates that phospho-Ser297 forms a stable salt bridge with Arg665, part of a conserved Cys-containing domain in plant branching enzymes. Ser649 conservation appears confined to the enzyme in cereals and is not universal, and is presumably associated with functions specific to seed storage. The implications of SBEIIb phosphorylation are considered in terms of the role of the enzyme and the importance of starch biosynthesis for yield and biotechnological application. PMID:24550386

  18. Compounds from silicones alter enzyme activity in curing barnacle glue and model enzymes.

    PubMed

    Rittschof, Daniel; Orihuela, Beatriz; Harder, Tilmann; Stafslien, Shane; Chisholm, Bret; Dickinson, Gary H

    2011-02-17

    Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties. Altered curing of natural glues has potential in fouling management.

  19. Inhibitory activities of Moringa oleifera leaf extract against α-glucosidase enzyme in vitro

    NASA Astrophysics Data System (ADS)

    Natsir, H.; Wahab, A. W.; Laga, A.; Arif, A. R.

    2018-03-01

    Alpha-glucosidase is a key enzyme in the final process of breaking carbohydrates into glucose. Inhibition of α-glucosidase affected more absorption of glucose, so it can reduce hyperglycemia condition. The aims of this study is to determine the effectiveness of inhibition wet and dried Moringa oleifera leaf extract through α-glucosidase activity in vitro. The effectiveness study of inhibition on the activity of α-glucosidase enzyme obtained from white glutinous rice (Oryza sativa glutinosa) was carried out using wet and dried kelor leaf extract of 13% (w/v) with 10 mM α-D-glucopyranoside (PNPG) substrate. A positive control used 1% acarbose and substrate without addition of extract was a negative control. Inhibitory activity was measured using spectrophotometers at a wavelength of 400 nm. The result showed that the inhibition activity against α-glucosidase enzyme of dried leaf extract, wet leaf extract and acarbose was 81,39%, 83,94%, and 95,4%, respectively on pH 7,0. The effectiveness inhibition of the wet Moringa leaf extract was greater than the dried leaf extract. The findings suggest that M. oleifera leaf has the potential to be developed as an alternative food therapy for diabetics.

  20. Screening the ToxCast Phase I Chemical Library for inhibition of Deiodinase Type I enzyme activity

    EPA Science Inventory

    Thyroid hormone (TH) signaling in vertebrates is dependent upon coordination of multiple key events including iodide uptake, hormone synthesis, metabolism and elimination, to maintain proper homeostasis of the hormones. Deiodinase enzymes interconvert THs between less active and...

  1. Key Building Blocks via Enzyme-Mediated Synthesis

    NASA Astrophysics Data System (ADS)

    Fischer, Thomas; Pietruszka, Jörg

    Biocatalytic approaches to valuable building blocks in organic synthesis have emerged as an important tool in the last few years. While first applications were mainly based on hydrolases, other enzyme classes such as oxidoreductases or lyases moved into the focus of research. Nowadays, a vast number of biotransformations can be found in the chemical and pharmaceutical industries delivering fine chemicals or drugs. The mild reaction conditions, high stereo-, regio-, and chemoselectivities, and the often shortened reaction pathways lead to economical and ecological advantages of enzymatic conversions. Due to the enormous number of enzyme-mediated syntheses, the present chapter is not meant to be a complete review, but to deliver comprehensive insights into well established enzymatic systems and recent advances in the application of enzymes in natural product synthesis. Furthermore, it is focused on the most frequently used enzymes or enzyme classes not covered elsewhere in the present volume.

  2. Chalcone-based Selective Inhibitors of a C4 Plant Key Enzyme as Novel Potential Herbicides

    NASA Astrophysics Data System (ADS)

    Nguyen, G. T. T.; Erlenkamp, G.; Jäck, O.; Küberl, A.; Bott, M.; Fiorani, F.; Gohlke, H.; Groth, G.

    2016-06-01

    Weeds are a challenge for global food production due to their rapidly evolving resistance against herbicides. We have identified chalcones as selective inhibitors of phosphoenolpyruvate carboxylase (PEPC), a key enzyme for carbon fixation and biomass increase in the C4 photosynthetic pathway of many of the world’s most damaging weeds. In contrast, many of the most important crop plants use C3 photosynthesis. Here, we show that 2‧,3‧,4‧,3,4-Pentahydroxychalcone (IC50 = 600 nM) and 2‧,3‧,4‧-Trihydroxychalcone (IC50 = 4.2 μM) are potent inhibitors of C4 PEPC but do not affect C3 PEPC at a same concentration range (selectivity factor: 15-45). Binding and modeling studies indicate that the active compounds bind at the same site as malate/aspartate, the natural feedback inhibitors of the C4 pathway. At the whole plant level, both substances showed pronounced growth-inhibitory effects on the C4 weed Amaranthus retroflexus, while there were no measurable effects on oilseed rape, a C3 plant. Growth of selected soil bacteria was not affected by these substances. Our chalcone compounds are the most potent and selective C4 PEPC inhibitors known to date. They offer a novel approach to combat C4 weeds based on a hitherto unexplored mode of allosteric inhibition of a C4 plant key enzyme.

  3. Chalcone-based Selective Inhibitors of a C4 Plant Key Enzyme as Novel Potential Herbicides

    PubMed Central

    Nguyen, G. T. T.; Erlenkamp, G.; Jäck, O.; Küberl, A.; Bott, M.; Fiorani, F.; Gohlke, H.; Groth, G.

    2016-01-01

    Weeds are a challenge for global food production due to their rapidly evolving resistance against herbicides. We have identified chalcones as selective inhibitors of phosphoenolpyruvate carboxylase (PEPC), a key enzyme for carbon fixation and biomass increase in the C4 photosynthetic pathway of many of the world’s most damaging weeds. In contrast, many of the most important crop plants use C3 photosynthesis. Here, we show that 2′,3′,4′,3,4-Pentahydroxychalcone (IC50 = 600 nM) and 2′,3′,4′-Trihydroxychalcone (IC50 = 4.2 μM) are potent inhibitors of C4 PEPC but do not affect C3 PEPC at a same concentration range (selectivity factor: 15–45). Binding and modeling studies indicate that the active compounds bind at the same site as malate/aspartate, the natural feedback inhibitors of the C4 pathway. At the whole plant level, both substances showed pronounced growth-inhibitory effects on the C4 weed Amaranthus retroflexus, while there were no measurable effects on oilseed rape, a C3 plant. Growth of selected soil bacteria was not affected by these substances. Our chalcone compounds are the most potent and selective C4 PEPC inhibitors known to date. They offer a novel approach to combat C4 weeds based on a hitherto unexplored mode of allosteric inhibition of a C4 plant key enzyme. PMID:27263468

  4. Mercaptosuccinate Dioxygenase, a Cysteine Dioxygenase Homologue, from Variovorax paradoxus Strain B4 Is the Key Enzyme of Mercaptosuccinate Degradation

    PubMed Central

    Brandt, Ulrike; Schürmann, Marc; Steinbüchel, Alexander

    2014-01-01

    The versatile thiol mercaptosuccinate has a wide range of applications, e.g. in quantum dot research or in bioimaging. Its metabolism is investigated in Variovorax paradoxus strain B4, which can utilize this compound as the sole source of carbon and sulfur. Proteomic studies of strain B4 resulted in the identification of a putative mercaptosuccinate dioxygenase, a cysteine dioxygenase homologue, possibly representing the key enzyme in the degradation of mercaptosuccinate. Therefore, the putative mercaptosuccinate dioxygenase was heterologously expressed, purified, and characterized in this study. The results clearly demonstrated that the enzyme utilizes mercaptosuccinate with concomitant consumption of oxygen. Thus, the enzyme is designated as mercaptosuccinate dioxygenase. Succinate and sulfite were verified as the final reaction products. The enzyme showed an apparent Km of 0.4 mm, and a specific activity (Vmax) of 20.0 μmol min−1 mg−1 corresponding to a kcat of 7.7 s−1. Furthermore, the enzyme was highly specific for mercaptosuccinate, no activity was observed with cysteine, dithiothreitol, 2-mercaptoethanol, and 3-mercaptopropionate. These structurally related thiols did not have an inhibitory effect either. Fe(II) could clearly be identified as metal cofactor of the mercaptosuccinate dioxygenase with a content of 0.6 mol of Fe(II)/mol of enzyme. The recently proposed hypothesis for the degradation pathway of mercaptosuccinate based on proteome analyses could be strengthened in the present study. (i) Mercaptosuccinate is first converted to sulfinosuccinate by this mercaptosuccinate dioxygenase; (ii) sulfinosuccinate is spontaneously desulfinated to succinate and sulfite; and (iii) whereas succinate enters the central metabolism, sulfite is detoxified by the previously identified putative molybdopterin oxidoreductase. PMID:25228698

  5. Allosteric activation transitions in enzymes and biomolecular motors: insights from atomistic and coarse-grained simulations.

    PubMed

    Daily, Michael D; Yu, Haibo; Phillips, George N; Cui, Qiang

    2013-01-01

    The chemical step in enzymes is usually preceded by a kinetically distinct activation step that involves large-scale conformational transitions. In "simple" enzymes this step corresponds to the closure of the active site; in more complex enzymes, such as biomolecular motors, the activation step is more complex and may involve interactions with other biomolecules. These activation transitions are essential to the function of enzymes and perturbations in the scale and/or rate of these transitions are implicated in various serious human diseases; incorporating key flexibilities into engineered enzymes is also considered a major remaining challenge in rational enzyme design. Therefore it is important to understand the underlying mechanism of these transitions. This is a significant challenge to both experimental and computational studies because of the allosteric and multi-scale nature of such transitions. Using our recent studies of two enzyme systems, myosin and adenylate kinase (AK), we discuss how atomistic and coarse-grained simulations can be used to provide insights into the mechanism of activation transitions in realistic systems. Collectively, the results suggest that although many allosteric transitions can be viewed as domain displacements mediated by flexible hinges, there are additional complexities and various deviations. For example, although our studies do not find any evidence for "cracking" in AK, our results do underline the contribution of intra-domain properties (e.g., dihedral flexibility) to the rate of the transition. The study of mechanochemical coupling in myosin highlights that local changes important to chemistry require stabilization from more extensive structural changes; in this sense, more global structural transitions are needed to activate the chemistry in the active site. These discussions further emphasize the importance of better understanding factors that control the degree of co-operativity for allosteric transitions, again

  6. Enzyme Activity Experiments Using a Simple Spectrophotometer

    ERIC Educational Resources Information Center

    Hurlbut, Jeffrey A.; And Others

    1977-01-01

    Experimental procedures for studying enzyme activity using a Spectronic 20 spectrophotometer are described. The experiments demonstrate the effect of pH, temperature, and inhibitors on enzyme activity and allow the determination of Km, Vmax, and Kcat. These procedures are designed for teaching large lower-level biochemistry classes. (MR)

  7. Compounds from Silicones Alter Enzyme Activity in Curing Barnacle Glue and Model Enzymes

    PubMed Central

    Rittschof, Daniel; Orihuela, Beatriz; Harder, Tilmann; Stafslien, Shane; Chisholm, Bret; Dickinson, Gary H.

    2011-01-01

    Background Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. Methodology/Principal Findings GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Conclusions/Significance Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties. Altered curing of natural glues has potential in fouling management. PMID:21379573

  8. Structural studies of cinnamoyl-CoA reductase and cinnamyl-alcohol dehydrogenase, key enzymes of monolignol biosynthesis.

    PubMed

    Pan, Haiyun; Zhou, Rui; Louie, Gordon V; Mühlemann, Joëlle K; Bomati, Erin K; Bowman, Marianne E; Dudareva, Natalia; Dixon, Richard A; Noel, Joseph P; Wang, Xiaoqiang

    2014-09-01

    The enzymes cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the two key reduction reactions in the conversion of cinnamic acid derivatives into monolignol building blocks for lignin polymers in plant cell walls. Here, we describe detailed functional and structural analyses of CCRs from Medicago truncatula and Petunia hybrida and of an atypical CAD (CAD2) from M. truncatula. These enzymes are closely related members of the short-chain dehydrogenase/reductase (SDR) superfamily. Our structural studies support a reaction mechanism involving a canonical SDR catalytic triad in both CCR and CAD2 and an important role for an auxiliary cysteine unique to CCR. Site-directed mutants of CAD2 (Phe226Ala and Tyr136Phe) that enlarge the phenolic binding site result in a 4- to 10-fold increase in activity with sinapaldehyde, which in comparison to the smaller coumaraldehyde and coniferaldehyde substrates is disfavored by wild-type CAD2. This finding demonstrates the potential exploitation of rationally engineered forms of CCR and CAD2 for the targeted modification of monolignol composition in transgenic plants. Thermal denaturation measurements and structural comparisons of various liganded and unliganded forms of CCR and CAD2 highlight substantial conformational flexibility of these SDR enzymes, which plays an important role in the establishment of catalytically productive complexes of the enzymes with their NADPH and phenolic substrates. © 2014 American Society of Plant Biologists. All rights reserved.

  9. Correlation Among Soil Enzyme Activities, Root Enzyme Activities, and Contaminant Removal in Two-Stage In Situ Constructed Wetlands Purifying Domestic Wastewater.

    PubMed

    Ni, Lixiao; Xu, Jiajun; Chu, Xianglin; Li, Shiyin; Wang, Peifang; Li, Yiping; Li, Yong; Zhu, Liang; Wang, Chao

    2016-07-01

    Two-stage in situ wetlands (two vertical flow constructed wetlands in parallel and a horizontal flow constructed wetland) were constructed for studying domestic wastewater purification and the correlations between contaminant removal and plant and soil enzyme activities. Results indicated the removal efficiency of NH4 (+) and NO3 (-) were significantly correlated with both urease and protease activity, and the removal of total phosphorus was significantly correlated with phosphatase activity. Chemical oxygen demand removal was not correlated with enzyme activity in constructed wetlands. Plant root enzyme (urease, phosphatase, protease and cellulose) activity correlation was apparent with all contaminant removal in the two vertical flow constructed wetlands. However, the correlation between the plant root enzyme activity and contaminant removal was poor in horizontal flow constructed wetlands. Results indicated that plant roots clearly played a role in the removal of contaminants.

  10. Activity assessment of microbial fibrinolytic enzymes.

    PubMed

    Kotb, Essam

    2013-08-01

    Conversion of fibrinogen to fibrin inside blood vessels results in thrombosis, leading to myocardial infarction and other cardiovascular diseases. In general, there are four therapy options: surgical operation, intake of antiplatelets, anticoagulants, or fibrinolytic enzymes. Microbial fibrinolytic enzymes have attracted much more attention than typical thrombolytic agents because of the expensive prices and the side effects of the latter. The fibrinolytic enzymes were successively discovered from different microorganisms, the most important among which is the genus Bacillus. Microbial fibrinolytic enzymes, especially those from food-grade microorganisms, have the potential to be developed as functional food additives and drugs to prevent or cure thrombosis and other related diseases. There are several assay methods for these enzymes; this may due to the insolubility of substrate, fibrin. Existing assay methods can be divided into three major groups. The first group consists of assay of fibrinolytic activity with natural proteins as substrates, e.g., fibrin plate methods. The second and third groups of assays are suitable for kinetic studies and are based on the determination of hydrolysis of synthetic peptide esters. This review will deal primarily with the microorganisms that have been reported in literature to produce fibrinolytic enzymes and the first review discussing the methods used to assay the fibrinolytic activity.

  11. Activation of immobilized enzymes by acoustic wave resonance oscillation.

    PubMed

    Nishiyama, Hiroshi; Watanabe, Tomoya; Inoue, Yasunobu

    2014-12-01

    Acoustic wave resonance oscillation has been used successfully in the development of methods to activate immobilized enzyme catalysts. In this study, resonance oscillation effects were demonstrated for enzyme reactions on galactose oxidase (GAD), D-amino acid oxidase (DAAO), and L-amino acid oxidase (LAAO), all of which were immobilized covalently on a ferroelectric lead zirconate titanate (PZT) device that could generate thickness-extensional resonance oscillations (TERO) of acoustic waves. For galactose oxidation on immobilized GAD in a microreactor, TERO generation immediately increased enzyme activity 2- to 3-fold. Eliminating TERO caused a slight decrease in the activity, with ∼90% of the enhanced activity retained while the reaction proceeded. Contact of the enhanced enzyme with a galactose-free solution caused almost complete reversion of the activity to the original low level before TERO generation, indicating that, not only TERO-induced GAD activation, but also preservation of the increased activity, required a galactose substrate. Similar activity changes with TERO were observed for enzyme reactions on DAAO and LAAO. Kinetic analysis demonstrated that TERO helped strengthen the interactions of the immobilized enzyme with the reactant substrate and promoted formation of an activation complex. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Normal Modes Expose Active Sites in Enzymes.

    PubMed

    Glantz-Gashai, Yitav; Meirson, Tomer; Samson, Abraham O

    2016-12-01

    Accurate prediction of active sites is an important tool in bioinformatics. Here we present an improved structure based technique to expose active sites that is based on large changes of solvent accessibility accompanying normal mode dynamics. The technique which detects EXPOsure of active SITes through normal modEs is named EXPOSITE. The technique is trained using a small 133 enzyme dataset and tested using a large 845 enzyme dataset, both with known active site residues. EXPOSITE is also tested in a benchmark protein ligand dataset (PLD) comprising 48 proteins with and without bound ligands. EXPOSITE is shown to successfully locate the active site in most instances, and is found to be more accurate than other structure-based techniques. Interestingly, in several instances, the active site does not correspond to the largest pocket. EXPOSITE is advantageous due to its high precision and paves the way for structure based prediction of active site in enzymes.

  13. Normal Modes Expose Active Sites in Enzymes

    PubMed Central

    Glantz-Gashai, Yitav; Samson, Abraham O.

    2016-01-01

    Accurate prediction of active sites is an important tool in bioinformatics. Here we present an improved structure based technique to expose active sites that is based on large changes of solvent accessibility accompanying normal mode dynamics. The technique which detects EXPOsure of active SITes through normal modEs is named EXPOSITE. The technique is trained using a small 133 enzyme dataset and tested using a large 845 enzyme dataset, both with known active site residues. EXPOSITE is also tested in a benchmark protein ligand dataset (PLD) comprising 48 proteins with and without bound ligands. EXPOSITE is shown to successfully locate the active site in most instances, and is found to be more accurate than other structure-based techniques. Interestingly, in several instances, the active site does not correspond to the largest pocket. EXPOSITE is advantageous due to its high precision and paves the way for structure based prediction of active site in enzymes. PMID:28002427

  14. ORENZA: a web resource for studying ORphan ENZyme activities

    PubMed Central

    Lespinet, Olivier; Labedan, Bernard

    2006-01-01

    Background Despite the current availability of several hundreds of thousands of amino acid sequences, more than 36% of the enzyme activities (EC numbers) defined by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB) are not associated with any amino acid sequence in major public databases. This wide gap separating knowledge of biochemical function and sequence information is found for nearly all classes of enzymes. Thus, there is an urgent need to explore these sequence-less EC numbers, in order to progressively close this gap. Description We designed ORENZA, a PostgreSQL database of ORphan ENZyme Activities, to collate information about the EC numbers defined by the NC-IUBMB with specific emphasis on orphan enzyme activities. Complete lists of all EC numbers and of orphan EC numbers are available and will be periodically updated. ORENZA allows one to browse the complete list of EC numbers or the subset associated with orphan enzymes or to query a specific EC number, an enzyme name or a species name for those interested in particular organisms. It is possible to search ORENZA for the different biochemical properties of the defined enzymes, the metabolic pathways in which they participate, the taxonomic data of the organisms whose genomes encode them, and many other features. The association of an enzyme activity with an amino acid sequence is clearly underlined, making it easy to identify at once the orphan enzyme activities. Interactive publishing of suggestions by the community would provide expert evidence for re-annotation of orphan EC numbers in public databases. Conclusion ORENZA is a Web resource designed to progressively bridge the unwanted gap between function (enzyme activities) and sequence (dataset present in public databases). ORENZA should increase interactions between communities of biochemists and of genomicists. This is expected to reduce the number of orphan enzyme activities by allocating gene

  15. Methodological Considerations and Comparisons of Measurement Results for Extracellular Proteolytic Enzyme Activities in Seawater

    PubMed Central

    Obayashi, Yumiko; Wei Bong, Chui; Suzuki, Satoru

    2017-01-01

    Microbial extracellular hydrolytic enzymes that degrade organic matter in aquatic ecosystems play key roles in the biogeochemical carbon cycle. To provide linkages between hydrolytic enzyme activities and genomic or metabolomic studies in aquatic environments, reliable measurements are required for many samples at one time. Extracellular proteases are one of the most important classes of enzymes in aquatic microbial ecosystems, and protease activities in seawater are commonly measured using fluorogenic model substrates. Here, we examined several concerns for measurements of extracellular protease activities (aminopeptidases, and trypsin-type, and chymotrypsin-type activities) in seawater. Using a fluorometric microplate reader with low protein binding, 96-well microplates produced reliable enzymatic activity readings, while use of regular polystyrene microplates produced readings that showed significant underestimation, especially for trypsin-type proteases. From the results of kinetic experiments, this underestimation was thought to be attributable to the adsorption of both enzymes and substrates onto the microplate. We also examined solvent type and concentration in the working solution of oligopeptide-analog fluorogenic substrates using dimethyl sulfoxide (DMSO) and 2-methoxyethanol (MTXE). The results showed that both 2% (final concentration of solvent in the mixture of seawater sample and substrate working solution) DMSO and 2% MTXE provide similarly reliable data for most of the tested substrates, except for some substrates which did not dissolve completely in these assay conditions. Sample containers are also important to maintain the level of enzyme activity in natural seawater samples. In a small polypropylene containers (e.g., standard 50-mL centrifugal tube), protease activities in seawater sample rapidly decreased, and it caused underestimation of natural activities, especially for trypsin-type and chymotrypsin-type proteases. In conclusion, the

  16. Methodological Considerations and Comparisons of Measurement Results for Extracellular Proteolytic Enzyme Activities in Seawater.

    PubMed

    Obayashi, Yumiko; Wei Bong, Chui; Suzuki, Satoru

    2017-01-01

    Microbial extracellular hydrolytic enzymes that degrade organic matter in aquatic ecosystems play key roles in the biogeochemical carbon cycle. To provide linkages between hydrolytic enzyme activities and genomic or metabolomic studies in aquatic environments, reliable measurements are required for many samples at one time. Extracellular proteases are one of the most important classes of enzymes in aquatic microbial ecosystems, and protease activities in seawater are commonly measured using fluorogenic model substrates. Here, we examined several concerns for measurements of extracellular protease activities (aminopeptidases, and trypsin-type, and chymotrypsin-type activities) in seawater. Using a fluorometric microplate reader with low protein binding, 96-well microplates produced reliable enzymatic activity readings, while use of regular polystyrene microplates produced readings that showed significant underestimation, especially for trypsin-type proteases. From the results of kinetic experiments, this underestimation was thought to be attributable to the adsorption of both enzymes and substrates onto the microplate. We also examined solvent type and concentration in the working solution of oligopeptide-analog fluorogenic substrates using dimethyl sulfoxide (DMSO) and 2-methoxyethanol (MTXE). The results showed that both 2% (final concentration of solvent in the mixture of seawater sample and substrate working solution) DMSO and 2% MTXE provide similarly reliable data for most of the tested substrates, except for some substrates which did not dissolve completely in these assay conditions. Sample containers are also important to maintain the level of enzyme activity in natural seawater samples. In a small polypropylene containers (e.g., standard 50-mL centrifugal tube), protease activities in seawater sample rapidly decreased, and it caused underestimation of natural activities, especially for trypsin-type and chymotrypsin-type proteases. In conclusion, the

  17. Cholinesterase and Paraoxonase (PON1) enzyme activities in Mexican-American Mothers and Children from an Agricultural Community

    PubMed Central

    Gonzalez, V.; Huen, K.; Venkat, S.; Pratt, K.; Xiang, P.; Harley, K.G.; Kogut, K.; Trujillo, C.M.; Bradman, A.; Eskenazi, B.; Holland, N.T.

    2014-01-01

    Exposure to organophosphate and carbamate pesticides can lead to neurotoxic effects through inhibition of cholinesterase enzymes. The paraoxonase (PON1) enzyme can detoxify oxon derivatives of some organophosphates. Lower PON1, acetylcholinesterase, and butyrylcholinesterase activities have been reported in newborns relative to adults, suggesting increased susceptibility to organophosphate exposure in young children. We determined PON1, acetylcholinesterase, and butyrylcholinesterase activities in Mexican-American mothers and their 9-year-old children (n=202 pairs) living in an agricultural community in California. We used paired t-tests to compare enzymatic activities among mothers and their children and analysis of variance to determine which factors are associated with enzyme activities. Substrate-specific PON1 activities were slightly lower in children than their mothers; however, these differences were not statistically significant. We observed significantly lower acetylcholinesterase but higher butyrylcholinesterase levels in children compared to their mothers. Mean butyrylcholinesterase levels were strongly associated with child obesity status (BMI Z scores >95%). We observed highly significant correlations among mother-child pairs for each of the enzymatic activities analyzed; however, PON1 activities did not correlate with acetylcholinesterase or butyrylcholinesterase activities. Our findings suggest that by age nine, PON1 activities approach adult levels and host factors including sex and obesity may affect key enzymes involved in pesticide metabolism. PMID:22760442

  18. O 2 Activation by Non-Heme Iron Enzymes

    DOE PAGES

    Solomon, Edward I.; Goudarzi, Serra; Sutherlin, Kyle D.

    2016-10-28

    The non-heme Fe enzymes are ubiquitous in nature and perform a wide range of functions involving O 2 activation. These had been difficult to study relative to heme enzymes; however, spectroscopic methods have now been developed that provide significant insight into the correlation of structure with function. This Current Topics article summarizes both the molecular mechanism these enzymes use to control O 2 activation in the presence of cosubstrates and the oxygen intermediates these reactions generate. Three types of O 2 activation are observed. First, non-heme reactivity is shown to be different from heme chemistry where a low-spin Fe III-OOHmore » non-heme intermediate directly reacts with substrate. Also, two subclasses of non-heme Fe enzymes generate high-spin Fe IV=O intermediates that provide both σ and π frontier molecular orbitals that can control selectivity. Lastly, for several subclasses of non-heme Fe enzymes, substrate binding to the Fe II site leads to the one electron reductive activation of O 2 to an Fe III-superoxide capable of H-atom abstraction and electrophilic attack.« less

  19. O 2 Activation by Non-Heme Iron Enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Edward I.; Goudarzi, Serra; Sutherlin, Kyle D.

    The non-heme Fe enzymes are ubiquitous in nature and perform a wide range of functions involving O 2 activation. These had been difficult to study relative to heme enzymes; however, spectroscopic methods have now been developed that provide significant insight into the correlation of structure with function. This Current Topics article summarizes both the molecular mechanism these enzymes use to control O 2 activation in the presence of cosubstrates and the oxygen intermediates these reactions generate. Three types of O 2 activation are observed. First, non-heme reactivity is shown to be different from heme chemistry where a low-spin Fe III-OOHmore » non-heme intermediate directly reacts with substrate. Also, two subclasses of non-heme Fe enzymes generate high-spin Fe IV=O intermediates that provide both σ and π frontier molecular orbitals that can control selectivity. Lastly, for several subclasses of non-heme Fe enzymes, substrate binding to the Fe II site leads to the one electron reductive activation of O 2 to an Fe III-superoxide capable of H-atom abstraction and electrophilic attack.« less

  20. Modulatory effects of naringin on hepatic key enzymes of carbohydrate metabolism in high-fat diet/low-dose streptozotocin-induced diabetes in rats.

    PubMed

    Pari, Leelavinothan; Chandramohan, Ramasamy

    2017-07-01

    We evaluated the modulatory effects of naringin on altered hepatic key enzymes of carbohydrate metabolism in high-fat diet/low-dose streptozotocin-induced diabetic rats. Oral treatment of naringin at a doses of 20, 40 and 80 mg/kg body weight to diabetic rats for 30 days resulted in a significant reduction in the levels of plasma glucose, blood glycosylated hemoglobin and increase in the levels of plasma insulin and blood hemoglobin. The altered activities of the hepatic key enzymes of carbohydrate metabolism such as hexokinase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase, glycogen synthase, glycogen phosphorylase and glycogen content of diabetic rats were significantly reverted to near normal levels by the treatment of naringin in a dose-dependent manner. Naringin at a dose of 80 mg/kg body weight showed the highest significant effect than the other two doses (20 and 40 mg/kg). Further, immunohistochemical observation of pancreas revealed that naringin-treated diabetic rats showed the increased number of insulin immunoreactive β-cells, which confirmed the biochemical findings. These findings revealed that naringin has potential antihyperglycemic activity in high-fat diet/low-dose streptozotocin-induced diabetic rats.

  1. Identification of an essential active-site residue in the α-D-phosphohexomutase enzyme superfamily.

    PubMed

    Lee, Yingying; Mehra-Chaudhary, Ritcha; Furdui, Cristina; Beamer, Lesa J

    2013-06-01

    Enzymes in the α-d-phosphohexomutase superfamily catalyze the conversion of 1-phosphosugars to their 6-phospho counterparts. Their phosphoryl transfer reaction has long been proposed to require general acid-base catalysts, but candidate residues for these key roles have not been identified. In this study, we show through mutagenesis and kinetic studies that a histidine (His329) in the active site is critical for enzyme activity in a well-studied member of the superfamily, phosphomannomutase/phosphoglucomutase from Pseudomonas aeruginosa. Crystallographic characterization of an H329A mutant protein showed no significant changes from the wild-type enzyme, excluding structural disruption as the source of its compromised activity. Mutation of the structurally analogous lysine residue in a related protein, phosphoglucomutase from Salmonella typhimurium, also results in significant catalytic impairment. Analyses of protein-ligand complexes of the P. aeruginosa enzyme show that His329 is appropriately positioned to abstract a proton from the O1/O6 hydroxyl of the phosphosugar substrates, and thus may serve as the general base in the reaction. Histidine is strongly conserved at this position in many proteins in the superfamily, and lysine is also often conserved at a structurally corresponding position, particularly in the phosphoglucomutase enzyme sub-group. These studies shed light on the mechanism of this important enzyme superfamily, and may facilitate the design of mechanism-based inhibitors. Structural data have been deposited in the Protein Data Bank with accession number 4IL8. © 2013 The Authors Journal compilation © 2013 FEBS.

  2. An appraisal of the enzyme stability-activity trade-off.

    PubMed

    Miller, Scott R

    2017-07-01

    A longstanding idea in evolutionary physiology is that an enzyme cannot jointly optimize performance at both high and low temperatures due to a trade-off between stability and activity. Although a stability-activity trade-off has been observed for well-characterized examples, such a trade-off is not imposed by any physical chemical constraint. To better understand the pervasiveness of this trade-off, I investigated the stability-activity relationship for comparative biochemical studies of purified orthologous enzymes identified by a literature search. The nature of this relationship varied greatly among studies. Notably, studies of enzymes with low mean synonymous nucleotide sequence divergence were less likely to exhibit the predicted negative correlation between stability and activity. Similarly, a survey of directed evolution investigations of the stability-activity relationship indicated that these traits are often uncoupled among nearly identical yet phenotypically divergent enzymes. This suggests that the presumptive trade-off often reported for investigations of enzymes with high mean sequence divergence may in some cases instead be a consequence of the degeneration over time of enzyme function in unselected environments, rather than a direct effect of thermal adaptation. The results caution against the general assertion of a stability-activity trade-off during enzyme adaptation. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  3. HPLC-DAD fingerprinting analysis, antioxidant activities of Tithonia diversifolia (Hemsl.) A. Gray leaves and its inhibition of key enzymes linked to Alzheimer's disease.

    PubMed

    Ojo, Oluwafemi Adeleke; Ojo, Adebola Busola; Ajiboye, Basiru Olaitan; Olaiya, Oluranti; Okesola, Mary Abiola; Boligon, Aline Augusti; de Campos, Marli Matiko Anraku; Oyinloye, Babatunji Emmanuel; Kappo, Abidemi Paul

    2018-01-01

    Tithonia diversifolia (Hemsl.) A. Gray leaves have long been used to manage neurodegenerative diseases without scientific basis. This study characterized the phenolic constituents, evaluated the antioxidant properties of phenolic extracts from T. diversifolia leaves used as traditional medicine in Africa and its inhibition of key enzymes linked to Alzheimer's disease. The extract was rich in phenolic acids (gallic acid, chlorogenic acid, caffeic acid and p -coumaric acid) and flavonoids (apigenin) and had 1,1-diphenyl-2-picryl-hydrazil radical scavenging abilities (IC 50  = 41.05 μg. mL -1 ), 2,2-Azino-bis3-ethylbenthiazoline-6sulphonic acid radical scavenging ability (IC 50  = 33.51 μg. mL -1 ), iron chelation (IC 50  = 38.50 μg. mL -1 ), reducing power (Fe 3+ - Fe 2+ ) (7.34 AAEmg/100 g), inhibited acetylcholinesterase (IC 50  = 39.27 μg mL -1 ) and butyrylcholinesterase (IC 50  = 35.01 μg mL -1 ) activities. These results reveal the leaf as a rich source of phenolic compounds with antioxidant and cholinesterase inhibitory activity.

  4. In vitro antibody-enzyme conjugates with specific bactericidal activity.

    PubMed

    Knowles, D M; Sulivan, T J; Parker, C W; Williams, R C

    1973-06-01

    IgG with antibacterial antibody opsonic activity was isolated from rabbit antisera produced by intravenous hyperimmunization with several test strains of pneumococci, Group A beta-hemolytic streptococci, Staphylococcus aureus, Proteus mirabilis, Pseudomonas aeruginosa, and Escherichia coli. Antibody-enzyme conjugates were prepared, using diethylmalonimidate to couple glucose oxidase to IgG antibacterial antibody preparations. Opsonic human IgG obtained from serum of patients with subacute bacterial endocarditis was also conjugated to glucose oxidase. Antibody-enzyme conjugates retained combining specificity for test bacteria as demonstrated by indirect immunofluorescence. In vitro test for bactericidal activity of antibody-enzyme conjugates utilized potassium iodide, lactoperoxidase, and glucose as cofactors. Under these conditions glucose oxidase conjugated to antibody generates hydrogen peroxide, and lactoperoxidase enzyme catalyzes the reduction of hydrogen peroxide with simultaneous oxidation of I(-) and halogenation and killing of test bacteria. Potent in vitro bactericidal activity of this system was repeatedly demonstrated for antibody-enzyme conjugates against pneumococci, streptococci, S. aureus, P. mirabilis, and E. coli. However, no bactericidal effect was demonstrable with antibody-enzyme conjugates and two test strains of P. aeruginosa. Bactericidal activity of antibody-enzyme conjugates appeared to parallel original opsonic potency of unconjugated IgG preparations. Antibody-enzyme conjugates at concentrations as low as 0.01 mg/ml were capable of intense bactericidal activity producing substantial drops in surviving bacterial counts within 30-60 min after initiation of assay. These in vitro bactericidal systems indicate that the concept of antibacterial antibody-enzyme conjugates may possibly be adaptable as a mechanism for treatment of patients with leukocyte dysfunction or fulminant bacteremia.

  5. Enzyme-polymer composites with high biocatalytic activity and stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jungbae; Kosto, Timothy J.; Manimala, Joseph C.

    2004-08-22

    We have applied vacuum-spraying and electrospinning to incorporate an enzyme into a polymer matrix, creating a novel and highly active biocatalytic composite. As a unique technical approach, enzymes were co-dissolved in toluene with polymers, and the solvent was then rapidly removed by injecting the mixture into a vacuum chamber or by electrospinning. Subsequent crosslinking of the enzyme with glutaraldehyde resulted in stable entrapped enzyme within the polymeric matrices. For example, an amorphous composite of alpha-chymotrypsin and polyethylene showed no significant loss of enzymatic activity in aqueous buffer for one month. Nanofibers of alpha-chymotrypsin and polystyrene also showed no decrease inmore » activity for more than two weeks. The normalized activity of amorphous composite in organic solvents was 3-13 times higher than that of native alpha-chymotrypsin. The activity of nanofibers was 5-7 times higher than that of amorphous composite in aqueous buffer solution. The composites of alpha-chymotrypsin and polymers demonstrate the feasibility of obtaining a wide variety of active and stable biocatalytic materials with many combinations of enzymes and polymers.« less

  6. Ameliorating effect of berbamine on hepatic key enzymes of carbohydrate metabolism in high-fat diet and streptozotocin induced type 2 diabetic rats.

    PubMed

    Sankaranarayanan, Chandrasekaran; Nishanthi, Ramajayam; Pugalendi, Pachaiappan

    2018-07-01

    Aberrations in the activities of key enzymes of carbohydrate metabolism is well documented in diabetes mellitus. Previous studies have shown that active ingredients in the extracts of Berberis aristata exhibits diverse pharmacological activities in animal models. The present study was undertaken to investigate whether berbamine (BBM), an alkaloid from the roots of Berberis aristata can ameliorate the altered activities of carbohydrate metabolic enzymes in high fat diet (HFD)/streptozotocin (STZ) induced diabetic rats. Supplementation of HFD for 4 weeks followed by intraperitonial administration of single low dose of STZ (40 mg/kg b.w.) to Sprague Dawley rats resulted in significant hyperglycemia with a decline in plasma insulin levels. The rats also exhibited decreased hemoglobin with an increase in glycated hemoglobin levels. The activities of hexokinase, glucose-6-phosphate dehydrogenase were decreased whereas increases in the activities of glucose-6-phosphatase and fructose-1,6-bisphosphatase were observed in the hepatic tissues of diabetic control rats. Glycogen content in the hepatic and skeletal muscle tissues were found to be decreased in diabetic rats. Oral administration of BBM for 56 days, dose dependently (50, 100, 200 mg/kg b.w.) improved insulin secretion in diabetic treated rats. Immunohistochemical studies on pancreas revealed a strong immunoreactivity to insulin in BBM treated rats. At the effective dose of 100 mg/kg b.w., BBM restored the altered activities of carbohydrate metabolic enzymes and also improved glycogen content in insulin dependent tissues. From the biochemical and histochemical data obtained in this study we conclude that BBM ameliorated the activities of metabolic enzymes and maintained glucose homeostasis in HFD/STZ induced diabetic rats and it can be used as a potential phytomedicine for the management of diabetes mellitus. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): a comparative study.

    PubMed

    Oboh, Ganiyu; Agunloye, Odunayo M; Adefegha, Stephen A; Akinyemi, Ayodele J; Ademiluyi, Adedayo O

    2015-03-01

    Chlorogenic acid is a major phenolic compound that forms a substantial part of plant foods and is an ester of caffeic acid and quinic acid. However, the effect of the structures of both chlorogenic and caffeic acids on their antioxidant and antidiabetic potentials have not been fully understood. Thus, this study sought to investigate and compare the interaction of caffeic acid and chlorogenic acid with α-amylase and α-glucosidase (key enzymes linked to type 2 diabetes) activities in vitro. The inhibitory effect of the phenolic acids on α-amylase and α-glucosidase activities was evaluated. Thereafter, their antioxidant activities as typified by their 1,1-diphenyl-2 picrylhydrazyl radical scavenging ability and ferric reducing antioxidant properties were determined. The results revealed that both phenolic acids inhibited α-amylase and α-glucosidase activities in a dose-dependent manner (2-8 μg/mL). However, caffeic acid had a significantly (p<0.05) higher inhibitory effect on α-amylase [IC50 (concentration of sample causing 50% enzyme inhibition)=3.68 μg/mL] and α-glucosidase (IC50=4.98 μg/mL) activities than chlorogenic acid (α-amylase IC50=9.10 μg/mL and α-glucosidase IC50=9.24 μg/mL). Furthermore, both phenolic acids exhibited high antioxidant properties, with caffeic acid showing higher effects. The esterification of caffeic acid with quinic acid, producing chlorogenic acid, reduces their ability to inhibit α-amylase and α-glucosidase activities. Thus, the inhibition of α-amylase and α-glucosidase activities by the phenolic acids could be part of the possible mechanism by which the phenolic acids exert their antidiabetic effects.

  8. Structural Studies of Cinnamoyl-CoA Reductase and Cinnamyl-Alcohol Dehydrogenase, Key Enzymes of Monolignol Biosynthesis[C][W

    PubMed Central

    Pan, Haiyun; Zhou, Rui; Louie, Gordon V.; Mühlemann, Joëlle K.; Bomati, Erin K.; Bowman, Marianne E.; Dudareva, Natalia; Dixon, Richard A.; Noel, Joseph P.; Wang, Xiaoqiang

    2014-01-01

    The enzymes cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the two key reduction reactions in the conversion of cinnamic acid derivatives into monolignol building blocks for lignin polymers in plant cell walls. Here, we describe detailed functional and structural analyses of CCRs from Medicago truncatula and Petunia hybrida and of an atypical CAD (CAD2) from M. truncatula. These enzymes are closely related members of the short-chain dehydrogenase/reductase (SDR) superfamily. Our structural studies support a reaction mechanism involving a canonical SDR catalytic triad in both CCR and CAD2 and an important role for an auxiliary cysteine unique to CCR. Site-directed mutants of CAD2 (Phe226Ala and Tyr136Phe) that enlarge the phenolic binding site result in a 4- to 10-fold increase in activity with sinapaldehyde, which in comparison to the smaller coumaraldehyde and coniferaldehyde substrates is disfavored by wild-type CAD2. This finding demonstrates the potential exploitation of rationally engineered forms of CCR and CAD2 for the targeted modification of monolignol composition in transgenic plants. Thermal denaturation measurements and structural comparisons of various liganded and unliganded forms of CCR and CAD2 highlight substantial conformational flexibility of these SDR enzymes, which plays an important role in the establishment of catalytically productive complexes of the enzymes with their NADPH and phenolic substrates. PMID:25217505

  9. Deficiency of cellulase activity measurements for enzyme evaluation.

    PubMed

    Pryor, Scott W; Nahar, Nurun

    2010-11-01

    Switchgrass was used as a model feedstock to determine the influence of pretreatment conditions and biomass quality on enzymatic hydrolysis using different enzyme products. Dilute sulfuric acid and soaking in aqueous ammonia pretreatments were used to produce biomass with varied levels of hemicellulose and lignin sheathing. Pretreated switchgrass solids were tested with simple enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) with three commercial enzyme products: Accellerase 1000 (Genencor), Spezyme CP (Genencor)/Novozyme 188 (Novozymes), and Celluclast/Novozyme 188 (Novozymes). Enzymes were loaded on a common activity basis (FPU/g cellulose and CBU/g cellulose). Despite identical enzyme loadings, glucose yields were significantly different for both acid and alkaline pretreatments but differences diminished as hydrolysis progressed for acid-pretreated biomass. Cellobiose concentrations in Accellerase treatments indicated an initial beta-glucosidase limitation that became less significant over time. SSF experiments showed that differences in glucose and ethanol yields could not be attributed to enzyme product inhibition. Yield discrepancies of glucose or ethanol in acid pretreatment, alkaline pretreatment, and acid pretreatment/SSF were as much as 15%, 19%, and 5%. These results indicate that standardized protocols for measuring enzyme activity may not be adequate for assessing activity using pretreated biomass substrates.

  10. Inhibitory potentials of phenolic-rich extracts from Bridelia ferruginea on two key carbohydrate-metabolizing enzymes and Fe2+-induced pancreatic oxidative stress.

    PubMed

    Afolabi, Olakunle Bamikole; Oloyede, Omotade Ibidun; Agunbiade, Shadrack Oludare

    2018-05-01

    The current study was designed to evaluate the various antioxidant potentials and inhibitory effects of phenolic-rich leaf extracts of Bridelia ferruginea (BF) on the in vitro activities of some key enzymes involved in the metabolism of carbohydrates. In this study, BF leaf free and bound phenolic-rich extracts were used. We quantified total phenolic and flavonoid contents, and evaluated several antioxidant activities using assays for ferric reducing antioxidant power, total antioxidant activity (phosphomolybdenum reducing ability), 1,1-diphenyl-2-picrylhydrazyl and thiobarbituric acid reactive species. Also, extracts were tested for their ability to inhibit α-amylase and α-glucosidase activity. The total phenolic and total flavonoid contents in the free phenolic extract of BF were significantly greater than in the bound phenolic extract. Also, all the antioxidant activities considered were significantly greater in the free phenolic extract than in the bound phenolic extract. In the same vein, the free phenolic-rich extract had a significantly higher percentage inhibition against α-glucosidase activity (IC 50  = 28.5 µg/mL) than the bound phenolic extract (IC 50  = 340.0 µg/mL). On the contrary, the free phenolic extract (IC 50  = 210.0 µg/mL) had significantly lower inhibition against α-amylase than the bound phenolic-rich extract (IC 50  = 190.0 µg/mL). The phenolic-rich extracts of BF leaves showed antioxidant potentials and inhibited two key carbohydrate-metabolizing enzymes in vitro. Copyright © 2018 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.

  11. Geraniol, a natural monoterpene, ameliorates hyperglycemia by attenuating the key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats.

    PubMed

    Babukumar, Sukumar; Vinothkumar, Veerasamy; Sankaranarayanan, Chandrasekaran; Srinivasan, Subramani

    2017-12-01

    Geraniol, an acyclic monoterpene alcohol is found in medicinal plants, is used traditionally for several medical purposes including diabetes. The present study evaluates the antihyperglycemic potential of geraniol on key enzymes of carbohydrate metabolism in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in experimental rats, by a single intraperitoneal (i.p) injection of STZ [40 mg/kg body weight (b.w.)]. Different doses of geraniol (100, 200 and 400 mg/kg b.w.) and glyclazide (5 mg/kg b.w.) were administrated orally to diabetic rats for 45 days. Body weight, food intake, plasma glucose, insulin, blood haemoglobin (Hb), glycosylated haemoglobin (HbA 1c ), hepatic glucose metabolic enzymes and glycogen were examined. The LD 50 value of geraniol is 3600 mg/kg b.w. at oral administration in rats. Administration of geraniol in a dose-dependent manner (100, 200, 400 mg/kg b.w.) and glyclazide (5 mg/kg b.w.) for 45 days significantly improved the levels of insulin, Hb and decreased plasma glucose, HbA 1C in diabetic-treated rats. Geraniol at its effective dose (200 mg/kg b.w.) ameliorated the altered activities of carbohydrate metabolic enzymes near normal effects compared with two other doses (100 and 400 mg/kg b.w.). Geraniol treatment to diabetic rats improved hepatic glycogen content suggesting its anti-hyperglycemic potential. Geraniol supplement was found to preserve the normal histological appearance of hepatic cells and pancreatic β-cells in diabetic rats. The present findings suggest that geraniol can potentially ameliorate key enzymes of glucose metabolism in experimental diabetes even though clinical studies used to evaluate this possibility are warranted.

  12. Mycobacterium tuberculosis Lipolytic Enzymes as Potential Biomarkers for the Diagnosis of Active Tuberculosis

    PubMed Central

    Brust, Belinda; Lecoufle, Mélanie; Tuaillon, Edouard; Dedieu, Luc; Canaan, Stéphane; Valverde, Viviane; Kremer, Laurent

    2011-01-01

    Background New diagnosis tests are urgently needed to address the global tuberculosis (TB) burden and to improve control programs especially in resource-limited settings. An effective in vitro diagnostic of TB based on serological methods would be regarded as an attractive progress because immunoassays are simple, rapid, inexpensive, and may offer the possibility to detect cases missed by standard sputum smear microscopy. However, currently available serology tests for TB are highly variable in sensitivity and specificity. Lipolytic enzymes have recently emerged as key factors in lipid metabolization during dormancy and/or exit of the non-replicating growth phase, a prerequisite step of TB reactivation. The focus of this study was to analyze and compare the potential of four Mycobacterium tuberculosis lipolytic enzymes (LipY, Rv0183, Rv1984c and Rv3452) as new markers in the serodiagnosis of active TB. Methods Recombinant proteins were produced and used in optimized ELISA aimed to detect IgG and IgM serum antibodies against the four lipolytic enzymes. The capacity of the assays to identify infection was evaluated in patients with either active TB or latent TB and compared with two distinct control groups consisting of BCG-vaccinated blood donors and hospitalized non-TB individuals. Results A robust humoral response was detected in patients with active TB whereas antibodies against lipolytic enzymes were infrequently detected in either uninfected groups or in subjects with latent infection. High specifity levels, ranging from 93.9% to 97.5%, were obtained for all four antigens with sensitivity values ranging from 73.4% to 90.5%, with Rv3452 displaying the highest performances. Patients with active TB usually exhibited strong IgG responses but poor IgM responses. Conclusion These results clearly indicate that the lipolytic enzymes tested are strongly immunogenic allowing to distinguish active from latent TB infections. They appear as potent biomarkers providing high

  13. Glutathione-related enzymes and the eye.

    PubMed

    Ganea, Elena; Harding, John J

    2006-01-01

    Glutathione and the related enzymes belong to the defence system protecting the eye against chemical and oxidative stress. This review focuses on GSH and two key enzymes, glutathione reductase and glucose-6-phosphate dehydrogenase in lens, cornea, and retina. Lens contains a high concentration of reduced glutathione, which maintains the thiol groups in the reduced form. These contribute to lens complete transparency as well as to the transparent and refractive properties of the mammalian cornea, which are essential for proper image formation on the retina. In cornea, gluthatione also plays an important role in maintaining normal hydration level, and in protecting cellular membrane integrity. In retina, glutathione is distributed in the different types of retinal cells. Intracellular enzyme, glutathione reductase, involved in reducing the oxidized glutathione has been found at highest activity in human and primate lenses, as compared to other species. Besides the enzymes directly involved in maintaining the normal redox status of the cell, glucose-6-phosphate dehydrogenase which catalyzes the first reaction of the pentose phosphate pathway, plays a key role in protection of the eye against reactive oxygen species. Cornea has a high activity of the pentose phosphate pathway and glucose-6-phosphate dehydrogenase activity. Glycation, the non-enzymic reaction between a free amino group in proteins and a reducing sugar, slowly inactivates gluthathione-related and other enzymes. In addition, glutathione can be also glycated. The presence of glutathione, and of the related enzymes has been also reported in other parts of the eye, such as ciliary body and trabecular meshwork, suggesting that the same enzyme systems are present in all tissues of the eye to generate NADPH and to maintain gluthatione in the reduced form. Changes of glutathione and related enzymes activity in lens, cornea, retina and other eye tissues, occur with ageing, cataract, diabetes, irradiation and

  14. Role of conformational dynamics in the evolution of novel enzyme function.

    PubMed

    Maria-Solano, Miguel A; Serrano-Hervás, Eila; Romero-Rivera, Adrian; Iglesias-Fernández, Javier; Osuna, Sílvia

    2018-05-21

    The free energy landscape concept that describes enzymes as an ensemble of differently populated conformational sub-states in dynamic equilibrium is key for evaluating enzyme activity, enantioselectivity, and specificity. Mutations introduced in the enzyme sequence can alter the populations of the pre-existing conformational states, thus strongly modifying the enzyme ability to accommodate alternative substrates, revert its enantiopreferences, and even increase the activity for some residual promiscuous reactions. In this feature article, we present an overview of the current experimental and computational strategies to explore the conformational free energy landscape of enzymes. We provide a series of recent publications that highlight the key role of conformational dynamics for the enzyme evolution towards new functions and substrates, and provide some perspectives on how conformational dynamism should be considered in future computational enzyme design protocols.

  15. Engineering a hyper-catalytic enzyme by photo-activated conformation modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Pratul K

    2012-01-01

    Enzyme engineering for improved catalysis has wide implications. We describe a novel chemical modification of Candida antarctica lipase B that allows modulation of the enzyme conformation to promote catalysis. Computational modeling was used to identify dynamical enzyme regions that impact the catalytic mechanism. Surface loop regions located distal to active site but showing dynamical coupling to the reaction were connected by a chemical bridge between Lys136 and Pro192, containing a derivative of azobenzene. The conformational modulation of the enzyme was achieved using two sources of light that alternated the azobenzene moiety in cis and trans conformations. Computational model predicted thatmore » mechanical energy from the conformational fluctuations facilitate the reaction in the active-site. The results were consistent with predictions as the activity of the engineered enzyme was found to be enhanced with photoactivation. Preliminary estimations indicate that the engineered enzyme achieved 8-52 fold better catalytic activity than the unmodulated enzyme.« less

  16. Effect of biotin on transcription levels of key enzymes and glutamate efflux in glutamate fermentation by Corynebacterium glutamicum.

    PubMed

    Cao, Yan; Duan, Zuoying; Shi, Zhongping

    2014-02-01

    Biotin is an important factor affecting the performance of glutamate fermentation by biotin auxotrophic Corynebacterium glutamicum and glutamate is over-produced only when initial biotin content is controlled at suitable levels or initial biotin is excessive but with Tween 40 addition during fermentation. The transcription levels of key enzymes at pyruvate, isocitrate and α-ketoglutarate metabolic nodes, as well as transport protein (TP) of glutamate were investigated under the conditions of varied biotin contents and Tween 40 supplementation. When biotin was insufficient, the genes encoding key enzymes and TP were down-regulated in the early production phase, in particular, the transcription level of isocitrate dehydrogenase (ICDH) which was only 2% of that of control. Although the cells' morphology transformation and TP level were not affected, low transcription level of ICDH led to lower final glutamate concentration (64 g/L). When biotin was excessive, the transcription levels of key enzymes were at comparable levels as those of control with ICDH as an exception, which was only 3-22% of control level throughout production phase. In this case, little intracellular glutamate accumulation (1.5 mg/g DCW) and impermeable membrane resulted in non glutamate secretion into broth, even though the quantity of TP was more than 10-folds of control level. Addition of Tween 40 when biotin was excessive stimulated the expression of all key enzymes and TP, intracellular glutamate content was much higher (10-12 mg/g DCW), and final glutamate concentration reached control level (75-80 g/L). Hence, the membrane alteration and TP were indispensable in glutamate secretion. Biotin and Tween 40 influenced the expression level of ICDH and glutamate efflux, thereby influencing glutamate production.

  17. Low dielectric response in enzyme active site

    PubMed Central

    Mertz, Edward L.; Krishtalik, Lev I.

    2000-01-01

    The kinetics of charge transfer depend crucially on the dielectric reorganization of the medium. In enzymatic reactions that involve charge transfer, atomic dielectric response of the active site and of its surroundings determines the efficiency of the protein as a catalyst. We report direct spectroscopic measurements of the reorganization energy associated with the dielectric response in the active site of α-chymotrypsin. A chromophoric inhibitor of the enzyme is used as a spectroscopic probe. We find that water strongly affects the dielectric reorganization in the active site of the enzyme in solution. The reorganization energy of the protein matrix in the vicinity of the active site is similar to that of low-polarity solvents. Surprisingly, water exhibits an anomalously high dielectric response that cannot be described in terms of the dielectric continuum theory. As a result, sequestering the active site from the aqueous environment inside low-dielectric enzyme body dramatically reduces the dielectric reorganization. This reduction is particularly important for controlling the rate of enzymatic reactions. PMID:10681440

  18. Ultrafast infrared spectroscopy reveals water-mediated coherent dynamics in an enzyme active site.

    PubMed

    Adamczyk, Katrin; Simpson, Niall; Greetham, Gregory M; Gumiero, Andrea; Walsh, Martin A; Towrie, Michael; Parker, Anthony W; Hunt, Neil T

    2015-01-01

    Understanding the impact of fast dynamics upon the chemical processes occurring within the active sites of proteins and enzymes is a key challenge that continues to attract significant interest, though direct experimental insight in the solution phase remains sparse. Similar gaps in our knowledge exist in understanding the role played by water, either as a solvent or as a structural/dynamic component of the active site. In order to investigate further the potential biological roles of water, we have employed ultrafast multidimensional infrared spectroscopy experiments that directly probe the structural and vibrational dynamics of NO bound to the ferric haem of the catalase enzyme from Corynebacterium glutamicum in both H 2 O and D 2 O. Despite catalases having what is believed to be a solvent-inaccessible active site, an isotopic dependence of the spectral diffusion and vibrational lifetime parameters of the NO stretching vibration are observed, indicating that water molecules interact directly with the haem ligand. Furthermore, IR pump-probe data feature oscillations originating from the preparation of a coherent superposition of low-frequency vibrational modes in the active site of catalase that are coupled to the haem ligand stretching vibration. Comparisons with an exemplar of the closely-related peroxidase enzyme family shows that they too exhibit solvent-dependent active-site dynamics, supporting the presence of interactions between the haem ligand and water molecules in the active sites of both catalases and peroxidases that may be linked to proton transfer events leading to the formation of the ferryl intermediate Compound I. In addition, a strong, water-mediated, hydrogen bonding structure is suggested to occur in catalase that is not replicated in peroxidase; an observation that may shed light on the origins of the different functions of the two enzymes.

  19. Utility of Adenosine Monophosphate Detection System for Monitoring the Activities of Diverse Enzyme Reactions.

    PubMed

    Mondal, Subhanjan; Hsiao, Kevin; Goueli, Said A

    Adenosine monophosphate (AMP) is a key cellular metabolite regulating energy homeostasis and signal transduction. AMP is also a product of various enzymatic reactions, many of which are dysregulated during disease conditions. Thus, monitoring the activities of these enzymes is a primary goal for developing modulators for these enzymes. In this study, we demonstrate the versatility of an enzyme-coupled assay that quantifies the amount of AMP produced by any enzymatic reaction regardless of its substrates. We successfully implemented it to enzyme reactions that use adenosine triphosphate (ATP) as a substrate (aminoacyl tRNA synthetase and DNA ligase) by an elaborate strategy of removing residual ATP and converting AMP produced into ATP; so it can be detected using luciferase/luciferin and generating light. We also tested this assay to measure the activities of AMP-generating enzymes that do not require ATP as substrate, including phosphodiesterases (cyclic adenosine monophosphate) and Escherichia coli DNA ligases (nicotinamide adenine dinucleotide [NAD + ]). In a further elaboration of the AMP-Glo platform, we coupled it to E. coli DNA ligase, enabling measurement of NAD + and enzymes that use NAD + like monoadenosine and polyadenosine diphosphate-ribosyltransferases. Sulfotransferases use 3'-phosphoadenosine-5'-phosphosulfate as the universal sulfo-group donor and phosphoadenosine-5'-phosphate (PAP) is the universal product. PAP can be quantified by converting PAP to AMP by a Golgi-resident PAP-specific phosphatase, IMPAD1. By coupling IMPAD1 to the AMP-Glo system, we can measure the activities of sulfotransferases. Thus, by utilizing the combinations of biochemical enzymatic conversion of various cellular metabolites to AMP, we were able to demonstrate the versatility of the AMP-Glo assay.

  20. Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers: improved stability and an enzyme cascade for glucose detection

    NASA Astrophysics Data System (ADS)

    Liang, Hao; Jiang, Shuhui; Yuan, Qipeng; Li, Guofeng; Wang, Feng; Zhang, Zijie; Liu, Juewen

    2016-03-01

    Preserving enzyme activity and promoting synergistic activity via co-localization of multiple enzymes are key topics in bionanotechnology, materials science, and analytical chemistry. This study reports a facile method for co-immobilizing multiple enzymes in metal coordinated hydrogel nanofibers. Specifically, four types of protein enzymes, including glucose oxidase, Candida rugosa lipase, α-amylase, and horseradish peroxidase, were respectively encapsulated in a gel nanofiber made of Zn2+ and adenosine monophosphate (AMP) with a simple mixing step. Most enzymes achieved quantitative loading and retained full activity. At the same time, the entrapped enzymes were more stable against temperature variation (by 7.5 °C), protease attack, extreme pH (by 2-fold), and organic solvents. After storing for 15 days, the entrapped enzyme still retained 70% activity while the free enzyme nearly completely lost its activity. Compared to nanoparticles formed with AMP and lanthanide ions, the nanofiber gels allowed much higher enzyme activity. Finally, a highly sensitive and selective biosensor for glucose was prepared using the gel nanofiber to co-immobilize glucose oxidase and horseradish peroxidase for an enzyme cascade system. A detection limit of 0.3 μM glucose with excellent selectivity was achieved. This work indicates that metal coordinated materials using nucleotides are highly useful for interfacing with biomolecules.Preserving enzyme activity and promoting synergistic activity via co-localization of multiple enzymes are key topics in bionanotechnology, materials science, and analytical chemistry. This study reports a facile method for co-immobilizing multiple enzymes in metal coordinated hydrogel nanofibers. Specifically, four types of protein enzymes, including glucose oxidase, Candida rugosa lipase, α-amylase, and horseradish peroxidase, were respectively encapsulated in a gel nanofiber made of Zn2+ and adenosine monophosphate (AMP) with a simple mixing step. Most

  1. Changes in glycolytic enzyme activities in aging erythrocytes fractionated by counter-current distribution in aqueous polymer two-phase systems.

    PubMed Central

    Jimeno, P; Garcia-Perez, A I; Luque, J; Pinilla, M

    1991-01-01

    Human and rat erythrocytes were fractionated by counter-current distribution in charge-sensitive dextran/poly(ethylene glycol) two-phase systems. The specific activities of the key glycolytic enzymes (hexokinase, phosphofructokinase and pyruvate kinase) declined along the distribution profiles, although the relative positions of the activity profiles were reversed in the two species. These enzymes maintained their normal response to specific regulatory effectors in all cell fractions. No variations were observed for phosphoglycerate kinase and bisphosphoglycerate mutase activities. Some correlations between enzyme activities (pyruvate kinase/hexokinase, pyruvate kinase/phosphofructokinase, pyruvate kinase/pyruvate kinase plus phosphoglycerate kinase, pyruvate kinase/bisphosphoglycerate mutase and phosphoglycerate kinase/bisphosphoglycerate mutase ratios) were studied in whole erythrocyte populations as well as in cell fractions. These results strongly support the fractionation of human erythrocytes according to cell age, as occurs with rat erythrocytes. PMID:1656939

  2. In vitro inhibitory potential of Cynara scolymus, Silybum marianum, Taraxacum officinale, and Peumus boldus on key enzymes relevant to metabolic syndrome.

    PubMed

    Villiger, Angela; Sala, Filippo; Suter, Andy; Butterweck, Veronika

    2015-01-15

    Boldocynara®, a proprietary dietary supplement product consisting of the plants Cynara scolymus, Silybum marianum, Taraxacum officinale, and Peumus boldus, used to promote functions of the liver and the gallbladder. It was the aim of the present study to look from a different perspective at the product by investigating the in vitro potential of Boldocynara® as a combination product and its individual extracts on key enzymes relevant to metabolic syndrome. Peumus boldus extract exhibited pronounced inhibitory activities on α-glucosidase (80% inhibition at 100 µg/ml, IC50: 17.56 µg/ml). Silybum marianum had moderate pancreatic lipase (PL) inhibitory activities (30% at 100 µg/ml) whereas Cynara scolymus showed moderate ACE inhibitory activity (31% at 100 µg/ml). The combination had moderate to weak effects on the tested enzymes. In conclusion, our results indicate some moderate potential of the dietary supplement Boldocynara® and its single ingredients for the prevention of metabolic disorders. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. Inhibition of existing denitrification enzyme activity by chloramphenicol

    USGS Publications Warehouse

    Brooks, M.H.; Smith, R.L.; Macalady, D.L.

    1992-01-01

    Chloramphenicol completely inhibited the activity of existing denitrification enzymes in acetylene-block incubations with (i) sediments from a nitrate-contaminated aquifer and (ii) a continuous culture of denitrifying groundwater bacteria. Control flasks with no antibiotic produced significant amounts of nitrous oxide in the same time period. Amendment with chloramphenicol after nitrous oxide production had begun resulted in a significant decrease in the rate of nitrous oxide production. Chloramphenicol also decreased (>50%) the activity of existing denitrification enzymes in pure cultures of Pseudomonas denitrificans that were harvested during log- phase growth and maintained for 2 weeks in a starvation medium lacking electron donor. Short-term time courses of nitrate consumption and nitrous oxide production in the presence of acetylene with P. denitrificans undergoing carbon starvation were performed under optimal conditions designed to mimic denitrification enzyme activity assays used with soils. Time courses were linear for both chloramphenicol and control flasks, and rate estimates for the two treatments were significantly different at the 95% confidence level. Complete or partial inhibition of existing enzyme activity is not consistent with the current understanding of the mode of action of chloramphenicol or current practice, in which the compound is frequently employed to inhibit de novo protein synthesis during the course of microbial activity assays. The results of this study demonstrate that chloramphenicol amendment can inhibit the activity of existing denitrification enzymes and suggest that caution is needed in the design and interpretation of denitrification activity assays in which chloramphenicol is used to prevent new protein synthesis.

  4. Muscle enzyme activities in a deep-sea squaloid shark, Centroscyllium fabricii, compared with its shallow-living relative, Squalus acanthias.

    PubMed

    Treberg, Jason R; Martin, R Aidan; Driedzic, William R

    2003-12-01

    The activities of several enzymes of energy metabolism were measured in the heart, red muscle, and white muscle of a deep and a shallow living squaloid shark, Centroscyllium fabricii and Squalus acanthias, respectively. The phylogenetic closeness of these species, combined with their active predatory nature, similar body form, and size makes them well matched for comparison. This is the first time such a comparison has been made involving a deep-sea elasmobranch. Enzyme activities were similar in the heart, but generally lower in the red muscle of C. fabricii. Paralleling the trend seen in deep-sea teleosts, the white muscle of C. fabricii had substantially lower activities of key glycolytic enzymes, pyruvate kinase and lactate dehydrogenase, relative to S. acanthias or other shallow living elasmobranchs. Unexpectedly, between the squaloid sharks examined, creatine phosphokinase activity was higher in all tissues of the deep living C. fabricii. Low white muscle glycolytic enzyme activities in the deep-sea species coupled with high creatine phosphokinase activity suggests that the capacity for short burst swimming is likely limited once creatine phosphate supplies have been exhausted. Copyright 2003 Wiley-Liss, Inc.

  5. Diffusional correlations among multiple active sites in a single enzyme.

    PubMed

    Echeverria, Carlos; Kapral, Raymond

    2014-04-07

    Simulations of the enzymatic dynamics of a model enzyme containing multiple substrate binding sites indicate the existence of diffusional correlations in the chemical reactivity of the active sites. A coarse-grain, particle-based, mesoscopic description of the system, comprising the enzyme, the substrate, the product and solvent, is constructed to study these effects. The reactive and non-reactive dynamics is followed using a hybrid scheme that combines molecular dynamics for the enzyme, substrate and product molecules with multiparticle collision dynamics for the solvent. It is found that the reactivity of an individual active site in the multiple-active-site enzyme is reduced substantially, and this effect is analyzed and attributed to diffusive competition for the substrate among the different active sites in the enzyme.

  6. Physics-based enzyme design: predicting binding affinity and catalytic activity.

    PubMed

    Sirin, Sarah; Pearlman, David A; Sherman, Woody

    2014-12-01

    Computational enzyme design is an emerging field that has yielded promising success stories, but where numerous challenges remain. Accurate methods to rapidly evaluate possible enzyme design variants could provide significant value when combined with experimental efforts by reducing the number of variants needed to be synthesized and speeding the time to reach the desired endpoint of the design. To that end, extending our computational methods to model the fundamental physical-chemical principles that regulate activity in a protocol that is automated and accessible to a broad population of enzyme design researchers is essential. Here, we apply a physics-based implicit solvent MM-GBSA scoring approach to enzyme design and benchmark the computational predictions against experimentally determined activities. Specifically, we evaluate the ability of MM-GBSA to predict changes in affinity for a steroid binder protein, catalytic turnover for a Kemp eliminase, and catalytic activity for α-Gliadin peptidase variants. Using the enzyme design framework developed here, we accurately rank the most experimentally active enzyme variants, suggesting that this approach could provide enrichment of active variants in real-world enzyme design applications. © 2014 Wiley Periodicals, Inc.

  7. Sustained gastrointestinal activity of dendronized polymer-enzyme conjugates

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Gregor; Grotzky, Andrea; Lukić, Ružica; Matoori, Simon; Luciani, Paola; Yu, Hao; Zhang, Baozhong; Walde, Peter; Schlüter, A. Dieter; Gauthier, Marc A.; Leroux, Jean-Christophe

    2013-07-01

    Methods to stabilize and retain enzyme activity in the gastrointestinal tract are investigated rarely because of the difficulty of protecting proteins from an environment that has evolved to promote their digestion. Preventing the degradation of enzymes under these conditions, however, is critical for the development of new protein-based oral therapies. Here we show that covalent conjugation to polymers can stabilize orally administered therapeutic enzymes at different locations in the gastrointestinal tract. Architecturally and functionally diverse polymers are used to protect enzymes sterically from inactivation and to promote interactions with mucin on the stomach wall. Using this approach the in vivo activity of enzymes can be sustained for several hours in the stomach and/or in the small intestine. These findings provide new insight and a firm basis for the development of new therapeutic and imaging strategies based on orally administered proteins using a simple and accessible technology.

  8. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP).

    PubMed

    Ma, Hongyan; Delafield, Daniel G; Wang, Zhe; You, Jianlan; Wu, Si

    2017-04-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion. Graphical Abstract ᅟ.

  9. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP)

    NASA Astrophysics Data System (ADS)

    Ma, Hongyan; Delafield, Daniel G.; Wang, Zhe; You, Jianlan; Wu, Si

    2017-04-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion.

  10. Loss in photosynthesis during senescence is accompanied by an increase in the activity of β-galactosidase in leaves of Arabidopsis thaliana: modulation of the enzyme activity by water stress.

    PubMed

    Pandey, Jitendra Kumar; Dash, Sidhartha Kumar; Biswal, Basanti

    2017-07-01

    The precise nature of the developmental modulation of the activity of cell wall hydrolases that breakdown the wall polysaccharides to maintain cellular sugar homeostasis under sugar starvation environment still remains unclear. In this work, the activity of β-galactosidase (EC 3.2.1.23), a cell-wall-bound enzyme known to degrade the wall polysaccharides, has been demonstrated to remarkably enhance during senescence-induced loss in photosynthesis in Arabidopsis thaliana. The enhancement in the enzyme activity reaches a peak at the terminal phase of senescence when the rate of photosynthesis is at its minimum. Although the precise nature of chemistry of the interface between the decline in photosynthesis and enhancement in the activity of the enzyme could not be fully resolved, the enhancement in its activity in dark and its suppression in light or with exogenous sugars may indicate the involvement of loss of photosynthetic production of sugars as a key factor that initiates and stimulates the activity of the enzyme. The hydrolase possibly participates in the catabolic network of cell wall polysaccharides to produce sugars for execution of energy-dependant senescence program in the background of loss of photosynthesis. Drought stress experienced by the senescing leaves accelerates the decline in photosynthesis with further stimulation in the activity of the enzyme. The stress recovery of photosynthesis and suppression of the enzyme activity on withdrawal of stress support the proposition of photosynthetic modulation of the cell-wall-bound enzyme activity.

  11. Characterization of Soil Samples of Enzyme Activity

    ERIC Educational Resources Information Center

    Freeland, P. W.

    1977-01-01

    Described are nine enzyme essays for distinguishing soil samples. Colorimetric methods are used to compare enzyme levels in soils from different sites. Each soil tested had its own spectrum of activity. Attention is drawn to applications of this technique in forensic science and in studies of soil fertility. (Author/AJ)

  12. The molecular basis of the effect of temperature on enzyme activity.

    PubMed

    Daniel, Roy M; Peterson, Michelle E; Danson, Michael J; Price, Nicholas C; Kelly, Sharon M; Monk, Colin R; Weinberg, Cristina S; Oudshoorn, Matthew L; Lee, Charles K

    2009-12-23

    Experimental data show that the effect of temperature on enzymes cannot be adequately explained in terms of a two-state model based on increases in activity and denaturation. The Equilibrium Model provides a quantitative explanation of enzyme thermal behaviour under reaction conditions by introducing an inactive (but not denatured) intermediate in rapid equilibrium with the active form. The temperature midpoint (Teq) of the rapid equilibration between the two forms is related to the growth temperature of the organism, and the enthalpy of the equilibrium (DeltaHeq) to its ability to function over various temperature ranges. In the present study, we show that the difference between the active and inactive forms is at the enzyme active site. The results reveal an apparently universal mechanism, independent of enzyme reaction or structure, based at or near the active site, by which enzymes lose activity as temperature rises, as opposed to denaturation which is global. Results show that activity losses below Teq may lead to significant errors in the determination of DeltaG*cat made on the basis of the two-state ('Classical') model, and the measured kcat will then not be a true indication of an enzyme's catalytic power. Overall, the results provide a molecular rationale for observations that the active site tends to be more flexible than the enzyme as a whole, and that activity losses precede denaturation, and provide a general explanation in molecular terms for the effect of temperature on enzyme activity.

  13. Ionizable Side Chains at Catalytic Active Sites of Enzymes

    PubMed Central

    Jimenez-Morales, David; Liang, Jie

    2012-01-01

    Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1072 Å3. The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes. PMID:22484856

  14. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  15. Function and biotechnology of extremophilic enzymes in low water activity

    PubMed Central

    2012-01-01

    Enzymes from extremophilic microorganisms usually catalyze chemical reactions in non-standard conditions. Such conditions promote aggregation, precipitation, and denaturation, reducing the activity of most non-extremophilic enzymes, frequently due to the absence of sufficient hydration. Some extremophilic enzymes maintain a tight hydration shell and remain active in solution even when liquid water is limiting, e.g. in the presence of high ionic concentrations, or at cold temperature when water is close to the freezing point. Extremophilic enzymes are able to compete for hydration via alterations especially to their surface through greater surface charges and increased molecular motion. These properties have enabled some extremophilic enzymes to function in the presence of non-aqueous organic solvents, with potential for design of useful catalysts. In this review, we summarize the current state of knowledge of extremophilic enzymes functioning in high salinity and cold temperatures, focusing on their strategy for function at low water activity. We discuss how the understanding of extremophilic enzyme function is leading to the design of a new generation of enzyme catalysts and their applications to biotechnology. PMID:22480329

  16. Water at Biological Phase Boundaries: Its Role in Interfacial Activation of Enzymes and Metabolic Pathways.

    PubMed

    Damodaran, Srinivasan

    2015-01-01

    Many life-sustaining activities in living cells occur at the membrane-water interface. The pertinent questions that we need to ask are, what are the evolutionary reasons in biology for choosing the membrane-water interface as the site for performing and/or controlling crucial biological reactions, and what is the key physical principle that is very singular to the membrane-water interface that biology exploits for regulating metabolic processes in cells? In this chapter, a hypothesis is developed, which espouses that cells control activities of membrane-bound enzymes through manipulation of the thermodynamic activity of water in the lipid-water interfacial region. The hypothesis is based on the fact that the surface pressure of a lipid monolayer is a direct measure of the thermodynamic activity of water at the lipid-water interface. Accordingly, the surface pressure-dependent activation or inactivation of interfacial enzymes is directly related to changes in the thermodynamic activity of interfacial water. Extension of this argument suggests that cells may manipulate conformations (and activities) of membrane-bound enzymes by manipulating the (re)activity of interfacial water at various locations in the membrane by localized compression or expansion of the interface. In this respect, cells may use the membrane-bound hormone receptors, lipid phase transition, and local variations in membrane lipid composition as effectors of local compression and/or expansion of membrane, and thereby local water activity. Several experimental data in the literature will be reexamined in the light of this hypothesis.

  17. Survey of enzyme activity responsible for phenolic off-flavour production by Dekkera and Brettanomyces yeast.

    PubMed

    Harris, Victoria; Ford, Christopher M; Jiranek, Vladimir; Grbin, Paul R

    2009-01-01

    Volatile phenols are produced by Dekkera yeasts and are of organoleptic importance in alcoholic beverages. The key compound in this respect is 4-ethylphenol, responsible for the medicinal and phenolic aromas in spoiled wines. The microbial synthesis of volatile phenols is thought to occur in two steps, beginning with naturally occurring hydroxycinnamic acids (HCAs). The enzyme phenolic acid decarboxylase (PAD) converts HCAs to vinyl derivatives, which are the substrates of a second enzyme, postulated to be a vinylphenol reductase (VPR), whose activity results in the formation of ethylphenols. Here, both steps of the pathway are investigated, using cell extracts from a number of Dekkera and Brettanomyces species. Dekkera species catabolise ferulic, caffeic and p-coumaric acids and possess inducible enzymes with similar pH and temperature optima. Brettanomyces does not decarboxylate HCAs but does metabolise vinylphenols. Dekkera species form ethylphenols but the VPR enzyme appears to be highly unstable in cell extracts. A partial protein sequence for PAD was determined from Dekkera anomala and may indicate the presence of a novel enzyme in this genus.

  18. Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers: improved stability and an enzyme cascade for glucose detection.

    PubMed

    Liang, Hao; Jiang, Shuhui; Yuan, Qipeng; Li, Guofeng; Wang, Feng; Zhang, Zijie; Liu, Juewen

    2016-03-21

    Preserving enzyme activity and promoting synergistic activity via co-localization of multiple enzymes are key topics in bionanotechnology, materials science, and analytical chemistry. This study reports a facile method for co-immobilizing multiple enzymes in metal coordinated hydrogel nanofibers. Specifically, four types of protein enzymes, including glucose oxidase, Candida rugosa lipase, α-amylase, and horseradish peroxidase, were respectively encapsulated in a gel nanofiber made of Zn(2+) and adenosine monophosphate (AMP) with a simple mixing step. Most enzymes achieved quantitative loading and retained full activity. At the same time, the entrapped enzymes were more stable against temperature variation (by 7.5 °C), protease attack, extreme pH (by 2-fold), and organic solvents. After storing for 15 days, the entrapped enzyme still retained 70% activity while the free enzyme nearly completely lost its activity. Compared to nanoparticles formed with AMP and lanthanide ions, the nanofiber gels allowed much higher enzyme activity. Finally, a highly sensitive and selective biosensor for glucose was prepared using the gel nanofiber to co-immobilize glucose oxidase and horseradish peroxidase for an enzyme cascade system. A detection limit of 0.3 μM glucose with excellent selectivity was achieved. This work indicates that metal coordinated materials using nucleotides are highly useful for interfacing with biomolecules.

  19. ENZYME ACTIVITIES DURING THE ASEXUAL CYCLE OF NEUROSPORA CRASSA

    PubMed Central

    Stine, G. J.

    1968-01-01

    Three enzymes, (a) nicotinamide adenine diphosphate-dependent glutamic dehydrogenase (NAD enzyme), (b) nictoinamide adenine triphosphate-dependent glutamic dehydrogenase (NADP enzyme), and (c) nicotinamide-adenine dinucleotidase (NADase), were measured in separate extracts of Neurospora crassa grown in Vogel's medium N and medium N + glutamate. Specific activities and total units per culture of each enzyme were determined at nine separate intervals phased throughout the asexual cycle. The separate dehydrogenases were lowest in the conidia, increased slowly during germination, and increased rapidly during logarithmic mycelial growth. The amounts of these enzymes present during germination were small when compared with those found later during the production of the conidiophores. The NAD enzyme may be necessary for pregermination synthesis. The NADP-enzyme synthesis was associated with the appearance of the germ tube. Although higher levels of the dehydrogenases in the conidiophores resulted in more enzyme being found in the differentiated conidia, the rate of germination was uneffected. The greatest activity for the NADase enzyme was associated with the conidia, early phases of germination, and later production of new conidia. NADase decreased significantly with the onset of logarithmic growth, remained low during the differentiation of conidiophores, and increased considerably as the conidiophores aged. PMID:4384627

  20. Structural aspects of denitrifying enzymes.

    PubMed

    Moura, I; Moura, J J

    2001-04-01

    The reduction of nitrate to nitrogen gas via nitrite, nitric oxide and nitrous oxide is the metabolic pathway usually known as denitrification, a key step in the nitrogen cycle. As observed for other elemental cycles, a battery of enzymes are utilized, namely the reductases for nitrate, nitrite, nitric oxide and nitrous oxide, as well as multiple electron donors that interact with these enzymes, in order to carry out the stepwise reactions that involve key intermediates. Because of the importance of this pathway (of parallel importance to the nitrogen-fixation pathway), efforts are underway to understand the structures of the participating enzymes and to uncover mechanistic aspects. Three-dimensional structures have been solved for the majority of these enzymes in the past few years, revealing the architecture of the active metal sites as well as global structural aspects, and possible mechanistic aspects. In addition, the recognition of specific electron-transfer partners raises important questions regarding specific electron-transfer pathways, partner recognition and control of metabolism.

  1. Toward "stable-on-the-table" enzymes: improving key properties of catalase by covalent conjugation with poly(acrylic acid).

    PubMed

    Riccardi, Caterina M; Cole, Kyle S; Benson, Kyle R; Ward, Jessamyn R; Bassett, Kayla M; Zhang, Yiren; Zore, Omkar V; Stromer, Bobbi; Kasi, Rajeswari M; Kumar, Challa V

    2014-08-20

    Several key properties of catalase such as thermal stability, resistance to protease degradation, and resistance to ascorbate inhibition were improved, while retaining its structure and activity, by conjugation to poly(acrylic acid) (PAA, Mw 8000) via carbodiimide chemistry where the amine groups on the protein are appended to the carboxyl groups of the polymer. Catalase conjugation was examined at three different pH values (pH 5.0, 6.0, and 7.0) and at three distinct mole ratios (1:100, 1:500, and 1:1000) of catalase to PAA at each reaction pH. The corresponding products are labeled as Cat-PAA(x)-y, where x is the protein to polymer mole ratio and y is the pH used for the synthesis. The coupling reaction consumed about 60-70% of the primary amines on the catalase; all samples were completely water-soluble and formed nanogels, as evidenced by gel electrophoresis and electron microscopy. The UV circular dichroism (CD) spectra indicated substantial retention of protein secondary structure for all samples, which increased to 100% with increasing pH of the synthesis and polymer mole fraction. Soret CD bands of all samples indicated loss of ∼50% of band intensities, independent of the reaction pH. Catalytic activities of the conjugates increased with increasing synthesis pH, where 55-80% and 90-100% activity was retained for all samples synthesized at pH 5.0 and pH 7.0, respectively, and the Km or Vmax values of Cat-PAA(100)-7 did not differ significantly from those of the free enzyme. All conjugates synthesized at pH 7.0 were thermally stable even when heated to ∼85-90 °C, while native catalase denatured between 55 and 65 °C. All conjugates retained 40-90% of their original activities even after storing for 10 weeks at 8 °C, while unmodified catalase lost all of its activity within 2 weeks, under similar storage conditions. Interestingly, PAA surrounding catalase limited access to the enzyme from large molecules like proteases and significantly increased

  2. Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity[S

    PubMed Central

    Jaishy, Bharat; Zhang, Quanjiang; Chung, Heaseung S.; Riehle, Christian; Soto, Jamie; Jenkins, Stephen; Abel, Patrick; Cowart, L. Ashley; Van Eyk, Jennifer E.; Abel, E. Dale

    2015-01-01

    Autophagy is a catabolic process involved in maintaining energy and organelle homeostasis. The relationship between obesity and the regulation of autophagy is cell type specific. Despite adverse consequences of obesity on cardiac structure and function, the contribution of altered cardiac autophagy in response to fatty acid overload is incompletely understood. Here, we report the suppression of autophagosome clearance and the activation of NADPH oxidase (Nox)2 in both high fat-fed murine hearts and palmitate-treated H9C2 cardiomyocytes (CMs). Defective autophagosome clearance is secondary to superoxide-dependent impairment of lysosomal acidification and enzyme activity in palmitate-treated CMs. Inhibition of Nox2 prevented superoxide overproduction, restored lysosome acidification and enzyme activity, and reduced autophagosome accumulation in palmitate-treated CMs. Palmitate-induced Nox2 activation was dependent on the activation of classical protein kinase Cs (PKCs), specifically PKCβII. These findings reveal a novel mechanism linking lipotoxicity with a PKCβ-Nox2-mediated impairment in pH-dependent lysosomal enzyme activity that diminishes autophagic turnover in CMs. PMID:25529920

  3. Enzyme Activities at Different Stages of Plant Biomass Decomposition in Three Species of Fungus-Growing Termites

    PubMed Central

    Pedersen, Kristine S. K.; Aanen, Duur K.

    2017-01-01

    ABSTRACT Fungus-growing termites rely on mutualistic fungi of the genus Termitomyces and gut microbes for plant biomass degradation. Due to a certain degree of symbiont complementarity, this tripartite symbiosis has evolved as a complex bioreactor, enabling decomposition of nearly any plant polymer, likely contributing to the success of the termites as one of the main plant decomposers in the Old World. In this study, we evaluated which plant polymers are decomposed and which enzymes are active during the decomposition process in two major genera of fungus-growing termites. We found a diversity of active enzymes at different stages of decomposition and a consistent decrease in plant components during the decomposition process. Furthermore, our findings are consistent with the hypothesis that termites transport enzymes from the older mature parts of the fungus comb through young worker guts to freshly inoculated plant substrate. However, preliminary fungal RNA sequencing (RNA-seq) analyses suggest that this likely transport is supplemented with enzymes produced in situ. Our findings support that the maintenance of an external fungus comb, inoculated with an optimal mixture of plant material, fungal spores, and enzymes, is likely the key to the extraordinarily efficient plant decomposition in fungus-growing termites. IMPORTANCE Fungus-growing termites have a substantial ecological footprint in the Old World (sub)tropics due to their ability to decompose dead plant material. Through the establishment of an elaborate plant biomass inoculation strategy and through fungal and bacterial enzyme contributions, this farming symbiosis has become an efficient and versatile aerobic bioreactor for plant substrate conversion. Since little is known about what enzymes are expressed and where they are active at different stages of the decomposition process, we used enzyme assays, transcriptomics, and plant content measurements to shed light on how this decomposition of plant

  4. Enzyme Activities at Different Stages of Plant Biomass Decomposition in Three Species of Fungus-Growing Termites.

    PubMed

    da Costa, Rafael R; Hu, Haofu; Pilgaard, Bo; Vreeburg, Sabine M E; Schückel, Julia; Pedersen, Kristine S K; Kračun, Stjepan K; Busk, Peter K; Harholt, Jesper; Sapountzis, Panagiotis; Lange, Lene; Aanen, Duur K; Poulsen, Michael

    2018-03-01

    Fungus-growing termites rely on mutualistic fungi of the genus Termitomyces and gut microbes for plant biomass degradation. Due to a certain degree of symbiont complementarity, this tripartite symbiosis has evolved as a complex bioreactor, enabling decomposition of nearly any plant polymer, likely contributing to the success of the termites as one of the main plant decomposers in the Old World. In this study, we evaluated which plant polymers are decomposed and which enzymes are active during the decomposition process in two major genera of fungus-growing termites. We found a diversity of active enzymes at different stages of decomposition and a consistent decrease in plant components during the decomposition process. Furthermore, our findings are consistent with the hypothesis that termites transport enzymes from the older mature parts of the fungus comb through young worker guts to freshly inoculated plant substrate. However, preliminary fungal RNA sequencing (RNA-seq) analyses suggest that this likely transport is supplemented with enzymes produced in situ Our findings support that the maintenance of an external fungus comb, inoculated with an optimal mixture of plant material, fungal spores, and enzymes, is likely the key to the extraordinarily efficient plant decomposition in fungus-growing termites. IMPORTANCE Fungus-growing termites have a substantial ecological footprint in the Old World (sub)tropics due to their ability to decompose dead plant material. Through the establishment of an elaborate plant biomass inoculation strategy and through fungal and bacterial enzyme contributions, this farming symbiosis has become an efficient and versatile aerobic bioreactor for plant substrate conversion. Since little is known about what enzymes are expressed and where they are active at different stages of the decomposition process, we used enzyme assays, transcriptomics, and plant content measurements to shed light on how this decomposition of plant substrate is so

  5. Ionizable side chains at catalytic active sites of enzymes.

    PubMed

    Jimenez-Morales, David; Liang, Jie; Eisenberg, Bob

    2012-05-01

    Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1,072 Å(3). The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes.

  6. Distribution of enzyme activity hotspots induced by earthworms in top- and subsoil

    NASA Astrophysics Data System (ADS)

    Hoang, D. T. T.

    2016-12-01

    Earthworms (Lumbricus terrestris L.) not only affect soil physics, but they also boost microbial activities and consequently create important hotspots of microbial mediated carbon and nutrient turnover through their burrowing activity. However, it is still unknown to which extend earthworms change the enzyme distribution and activity inside their burrows in top- and subsoil horizons. We hypothesized that earthworm burrows, which are enriched in available substrates, have higher percentage of enzyme activity hotspots than soil without earthworms, and that enzyme activities decreased with increasing depth because of the increasing recalcitrance of organic matter in subsoil. We visualized enzyme distribution inside and outside of worm burrows (biopores) by in situ soil zymography and measured enzyme kinetics of 6 enzymes - β-glucosidase (GLU), cellobiohydrolase (CBH), xylanase (XYL), chitinase (NAG), leucine aminopeptidase (LAP) and acid phosphatase (APT) - in pore and bulk soil material up to 105 cm. Zymography showed a heterogeneous distribution of hotspots in worm burrows. The hotspot areas was 2.4 to 14 times larger in the burrows than in soil without earthworms. However, the dispersion index of hotspot distribution showed more aggregated hotspots in soil without earthworms than in soil with earthworms and burrow wall. Enzyme activities decreased with depth, by a factor of 2 to 8 due to fresh C input from the soil surface. Compared to bulk soil, enzyme activities in topsoil biopores were up to 11 times higher for all enzymes, but in the subsoil activities of XYL, NAG and APT were lower in earthworm biopores than bulk soil. In conclusion, hotspots were twice as concentrated close to earthworm burrows as in surrounding soil. Earthworms exerted stronger effects on enzyme activities in biopores in the topsoil than in subsoil. Keywords: Earthworms, hotspots, enzyme activities, enzyme distribution, subsoil

  7. [Effect of Low-Intensity 900 MHz Frequency Electromagnetic Radiation on Rat Brain Enzyme Activities Linked to Energy Metabolism].

    PubMed

    Petrosyan, M S; Nersesova, L S; Gazaryants, M G; Meliksetyan, G O; Malakyan, M G; Bajinyan, S A; Akopian, J I

    2015-01-01

    The research deals with the effect of low-intensity 900 MHz frequency electromagnetic radiation (EMR), power density 25 μW/cm2, on the following rat brain and blood serum enzyme activities: creatine kinase (CK), playing a central role in the process of storing and distributing the cell energy, as well as alanine aminotransferase (ALT) and aspartate aminotransferase (AST) that play a key role in providing the conjunction of carbohydrate and amino acid metabolism. The comparative analysis of the changes in the enzyme activity studied at different times following the two-hour single, as well as fractional, radiation equivalent of the total time showed that the most radiosensitive enzyme is the brain creatine kinase, which may then be recommended as a marker of the radio frequency radiation impact. According to the analysis of the changing dynamics of the CK, ALT and AST activity level, with time these changes acquire the adaptive character and are directed to compensate the damaged cell energy metabolism.

  8. Extracellular Enzyme Activity Profile in a Chemically Enhanced Water Accommodated Fraction of Surrogate Oil: Toward Understanding Microbial Activities After the Deepwater Horizon Oil Spill

    PubMed Central

    Kamalanathan, Manoj; Xu, Chen; Schwehr, Kathy; Bretherton, Laura; Beaver, Morgan; Doyle, Shawn M.; Genzer, Jennifer; Hillhouse, Jessica; Sylvan, Jason B.; Santschi, Peter; Quigg, Antonietta

    2018-01-01

    Extracellular enzymes and extracellular polymeric substances (EPS) play a key role in overall microbial activity, growth and survival in the ocean. EPS, being amphiphilic in nature, can act as biological surfactant in an oil spill situation. Extracellular enzymes help microbes to digest and utilize fractions of organic matter, including EPS, which can stimulate growth and enhance microbial activity. These natural processes might have been altered during the 2010 Deepwater Horizon oil spill due to the presence of hydrocarbon and dispersant. This study aims to investigate the role of bacterial extracellular enzymes during exposure to hydrocarbons and dispersant. Mesocosm studies were conducted using a water accommodated fraction of oil mixed with the chemical dispersant, Corexit (CEWAF) in seawater collected from two different locations in the Gulf of Mexico and corresponding controls (no additions). Activities of five extracellular enzymes typically found in the EPS secreted by the microbial community – α- and β-glucosidase, lipase, alkaline phosphatase, leucine amino-peptidase – were measured using fluorogenic substrates in three different layers of the mesocosm tanks (surface, water column and bottom). Enhanced EPS production and extracellular enzyme activities were observed in the CEWAF treatment compared to the Control. Higher bacterial and micro-aggregate counts were also observed in the CEWAF treatment compared to Controls. Bacterial genera in the order Alteromonadaceae were the most abundant bacterial 16S rRNA amplicons recovered. Genomes of Alteromonadaceae commonly have alkaline phosphatase and leucine aminopeptidase, therefore they may contribute significantly to the measured enzyme activities. Only Alteromonadaceae and Pseudomonadaceae among bacteria detected here have higher percentage of genes for lipase. Piscirickettsiaceae was abundant; genomes from this order commonly have genes for leucine aminopeptidase. Overall, this study provides insights

  9. A Key Role for Old Yellow Enzyme in the Metabolism of Drugs by Trypanosoma cruzi

    PubMed Central

    Kubata, Bruno Kilunga; Kabututu, Zakayi; Nozaki, Tomoyoshi; Munday, Craig J.; Fukuzumi, Shunichi; Ohkubo, Kei; Lazarus, Michael; Maruyama, Toshihiko; Martin, Samuel K.; Duszenko, Michael; Urade, Yoshihiro

    2002-01-01

    Trypanosoma cruzi is the etiological agent of Chagas' disease. So far, first choice anti-chagasic drugs in use have been shown to have undesirable side effects in addition to the emergence of parasite resistance and the lack of prospect for vaccine against T. cruzi infection. Thus, the isolation and characterization of molecules essential in parasite metabolism of the anti-chagasic drugs are fundamental for the development of new strategies for rational drug design and/or the improvement of the current chemotherapy. While searching for a prostaglandin (PG) F2α synthase homologue, we have identified a novel “old yellow enzyme” from T. cruzi (TcOYE), cloned its cDNA, and overexpressed the recombinant enzyme. Here, we show that TcOYE reduced 9,11-endoperoxide PGH2 to PGF2α as well as a variety of trypanocidal drugs. By electron spin resonance experiments, we found that TcOYE specifically catalyzed one-electron reduction of menadione and β-lapachone to semiquinone-free radicals with concomitant generation of superoxide radical anions, while catalyzing solely the two-electron reduction of nifurtimox and 4-nitroquinoline-N-oxide drugs without free radical production. Interestingly, immunoprecipitation experiments revealed that anti-TcOYE polyclonal antibody abolished major reductase activities of the lysates toward these drugs, identifying TcOYE as a key drug-metabolizing enzyme by which quinone drugs have their mechanism of action. PMID:12417633

  10. Effects of dietary lead acetate on hepatic detoxication enzyme activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagstaff, D.J.

    1979-12-01

    Lead-containing compounds usually inhibit enzymic and metabolic processes. This inhibition is presumed to be the mechanism of intoxication by these compounds. Inhibition of detoxication activities of liver microsomal enzymes could be particularly detrimental because the toxicity of many different substances would be increased. Exposure of experimental animals to lead compounds in several studies has been associated with depressed activity of hepatic microsomal enzymes, reduced levels of hepatic cytochrome P-450, reduced levels of hepatic microsomal protein, and prolonged hexobarbital sleep times. The present report contains observations that under certain experimental conditions there is stimulated hepatic meicrosomal enzyme activity in rats fedmore » lead acetate.« less

  11. Structural and Functional Consequences of Circular Permutation on the Active Site of Old Yellow Enzyme

    DOE PAGES

    Daugherty, Ashley B.; Horton, John R.; Cheng, Xiaodong; ...

    2014-12-09

    Circular permutation of the NADPH-dependent oxidoreductase Old Yellow Enzyme from Saccharomyces pastorianus (OYE1) can significantly enhance the enzyme’s catalytic performance. Termini relocation into four regions of the protein (sectors I–IV) near the active site has proven effective in altering enzyme function. To better understand the structural consequences and rationalize the observed functional gains in these OYE1 variants, we selected representatives from sectors I–III for further characterization by biophysical methods and X-ray crystallography. These investigations not only show trends in enzyme stability and quaternary structure as a function of termini location but also provide a possible explanation for the catalytic gainsmore » in our top-performing OYE variant (new N-terminus at residue 303; sector III). Crystallographic analysis indicates that termini relocation into sector III affects the loop β6 region (amino acid positions: 290–310) of OYE1, which forms a lid over the active site. Peptide backbone cleavage greatly enhances local flexibility, effectively converting the loop into a tether and consequently increasing the environmental exposure of the active site. Interestingly, such an active site remodeling does not negatively impact the enzyme’s activity and stereoselectivity; neither does it perturb the conformation of other key active site residues with the exception of Y375. These observations were confirmed in truncation experiments, deleting all residues of the loop β6 region in our OYE variant. Intrigued by the finding that circular permutation leaves most of the key catalytic residues unchanged, we also tested OYE permutants for possible additive or synergistic effects of amino acid substitutions. Distinct functional changes in these OYE variants were detected upon mutations at W116, known in native OYE1 to cause inversion of diastereoselectivity for (S)-carvone reduction. In conclusion, our findings demonstrate the

  12. Discriminative structural approaches for enzyme active-site prediction.

    PubMed

    Kato, Tsuyoshi; Nagano, Nozomi

    2011-02-15

    Predicting enzyme active-sites in proteins is an important issue not only for protein sciences but also for a variety of practical applications such as drug design. Because enzyme reaction mechanisms are based on the local structures of enzyme active-sites, various template-based methods that compare local structures in proteins have been developed to date. In comparing such local sites, a simple measurement, RMSD, has been used so far. This paper introduces new machine learning algorithms that refine the similarity/deviation for comparison of local structures. The similarity/deviation is applied to two types of applications, single template analysis and multiple template analysis. In the single template analysis, a single template is used as a query to search proteins for active sites, whereas a protein structure is examined as a query to discover the possible active-sites using a set of templates in the multiple template analysis. This paper experimentally illustrates that the machine learning algorithms effectively improve the similarity/deviation measurements for both the analyses.

  13. Characterization of two key enzymes for aromatic amino acid biosynthesis in symbiotic archaea.

    PubMed

    Shlaifer, Irina; Turnbull, Joanne L

    2016-07-01

    Biosynthesis of L-tyrosine (L-Tyr) and L-phenylalanine (L-Phe) is directed by the interplay of three enzymes. Chorismate mutase (CM) catalyzes the rearrangement of chorismate to prephenate, which can be either converted to hydroxyphenylpyruvate by prephenate dehydrogenase (PD) or to phenylpyruvate by prephenate dehydratase (PDT). This work reports the first characterization of a trifunctional PD-CM-PDT from the smallest hyperthermophilic archaeon Nanoarchaeum equitans and a bifunctional CM-PD from its host, the crenarchaeon Ignicoccus hospitalis. Hexa-histidine tagged proteins were expressed in Escherichia coli and purified by affinity chromatography. Specific activities determined for the trifunctional enzyme were 21, 80, and 30 U/mg for CM, PD, and PDT, respectively, and 47 and 21 U/mg for bifunctional CM and PD, respectively. Unlike most PDs, these two archaeal enzymes were insensitive to regulation by L-Tyr and preferred NADP(+) to NAD(+) as a cofactor. Both the enzymes were highly thermally stable and exhibited maximal activity at 90 °C. N. equitans PDT was feedback inhibited by L-Phe (Ki = 0.8 µM) in a non-competitive fashion consistent with L-Phe's combination at a site separate from that of prephenate. Our results suggest that PD from the unique symbiotic archaeal pair encompass a distinct subfamily of prephenate dehydrogenases with regard to their regulation and co-substrate specificity.

  14. Virulence-Associated Enzymes of Cryptococcus neoformans

    PubMed Central

    Almeida, Fausto; Wolf, Julie M.

    2015-01-01

    Enzymes play key roles in fungal pathogenesis. Manipulation of enzyme expression or activity can significantly alter the infection process, and enzyme expression profiles can be a hallmark of disease. Hence, enzymes are worthy targets for better understanding pathogenesis and identifying new options for combatting fungal infections. Advances in genomics, proteomics, transcriptomics, and mass spectrometry have enabled the identification and characterization of new fungal enzymes. This review focuses on recent developments in the virulence-associated enzymes from Cryptococcus neoformans. The enzymatic suite of C. neoformans has evolved for environmental survival, but several of these enzymes play a dual role in colonizing the mammalian host. We also discuss new therapeutic and diagnostic strategies that could be based on the underlying enzymology. PMID:26453651

  15. Patterns of functional enzyme activity in fungus farming ambrosia beetles.

    PubMed

    De Fine Licht, Henrik H; Biedermann, Peter H W

    2012-06-06

    In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose components of the ray

  16. Dose of Phenobarbital and Age of Treatment at Early Life are Two Key Factors for the Persistent Induction of Cytochrome P450 Enzymes in Adult Mouse Liver

    PubMed Central

    Tien, Yun-Chen; Liu, Ke; Pope, Chad; Wang, Pengcheng; Ma, Xiaochao

    2015-01-01

    Drug treatment of neonates and infants and its long-term consequences on drug responses have emerged in recent years as a major challenge for health care professionals. In the current study, we use phenobarbital as a model drug and mouse as an in vivo model to demonstrate that the dose of phenobarbital and age of treatment are two key factors for the persistent induction of gene expression and consequential increases of enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult livers. We show that phenobarbital treatment at early life of day 5 after birth with a low dose (<100 mg/kg) does not change expression and enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult mouse liver, whereas phenobarbital treatment with a high dose (>200 mg/kg) significantly increases expression and enzyme activities of these P450s in adult liver. We also demonstrate that phenobarbital treatment before day 10 after birth, but not at later ages, significantly increases mRNAs, proteins, and enzyme activities of the tested P450s. Such persistent induction of P450 gene expression and enzyme activities in adult livers by phenobarbital treatment only occurs within a sensitive age window early in life. The persistent induction in gene expression and enzyme activities is higher in female mice than in male mice for Cyp2b10 but not for Cyp2c29 and Cyp3a11. These results will stimulate studies to evaluate the long-term impacts of drug treatment with different doses at neonatal and infant ages on drug metabolism, therapeutic efficacy, and drug-induced toxicity throughout the rest of life. PMID:26400395

  17. Dose of Phenobarbital and Age of Treatment at Early Life are Two Key Factors for the Persistent Induction of Cytochrome P450 Enzymes in Adult Mouse Liver.

    PubMed

    Tien, Yun-Chen; Liu, Ke; Pope, Chad; Wang, Pengcheng; Ma, Xiaochao; Zhong, Xiao-bo

    2015-12-01

    Drug treatment of neonates and infants and its long-term consequences on drug responses have emerged in recent years as a major challenge for health care professionals. In the current study, we use phenobarbital as a model drug and mouse as an in vivo model to demonstrate that the dose of phenobarbital and age of treatment are two key factors for the persistent induction of gene expression and consequential increases of enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult livers. We show that phenobarbital treatment at early life of day 5 after birth with a low dose (<100 mg/kg) does not change expression and enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult mouse liver, whereas phenobarbital treatment with a high dose (>200 mg/kg) significantly increases expression and enzyme activities of these P450s in adult liver. We also demonstrate that phenobarbital treatment before day 10 after birth, but not at later ages, significantly increases mRNAs, proteins, and enzyme activities of the tested P450s. Such persistent induction of P450 gene expression and enzyme activities in adult livers by phenobarbital treatment only occurs within a sensitive age window early in life. The persistent induction in gene expression and enzyme activities is higher in female mice than in male mice for Cyp2b10 but not for Cyp2c29 and Cyp3a11. These results will stimulate studies to evaluate the long-term impacts of drug treatment with different doses at neonatal and infant ages on drug metabolism, therapeutic efficacy, and drug-induced toxicity throughout the rest of life. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  18. A Simple and Accurate Method for Measuring Enzyme Activity.

    ERIC Educational Resources Information Center

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  19. Application of activity-based protein profiling to study enzyme function in adipocytes.

    PubMed

    Galmozzi, Andrea; Dominguez, Eduardo; Cravatt, Benjamin F; Saez, Enrique

    2014-01-01

    Activity-based protein profiling (ABPP) is a chemical proteomics approach that utilizes small-molecule probes to determine the functional state of enzymes directly in native systems. ABPP probes selectively label active enzymes, but not their inactive forms, facilitating the characterization of changes in enzyme activity that occur without alterations in protein levels. ABPP can be a tool superior to conventional gene expression and proteomic profiling methods to discover new enzymes active in adipocytes and to detect differences in the activity of characterized enzymes that may be associated with disorders of adipose tissue function. ABPP probes have been developed that react selectively with most members of specific enzyme classes. Here, using as an example the serine hydrolase family that includes many enzymes with critical roles in adipocyte physiology, we describe methods to apply ABPP analysis to the study of adipocyte enzymatic pathways. © 2014 Elsevier Inc. All rights reserved.

  20. Molecular architectures and functions of radical enzymes and their (re)activating proteins.

    PubMed

    Shibata, Naoki; Toraya, Tetsuo

    2015-10-01

    Certain proteins utilize the high reactivity of radicals for catalysing chemically challenging reactions. These proteins contain or form a radical and therefore named 'radical enzymes'. Radicals are introduced by enzymes themselves or by (re)activating proteins called (re)activases. The X-ray structures of radical enzymes and their (re)activases revealed some structural features of these molecular apparatuses which solved common enigmas of radical enzymes—i.e. how the enzymes form or introduce radicals at the active sites, how they use the high reactivity of radicals for catalysis, how they suppress undesired side reactions of highly reactive radicals and how they are (re)activated when inactivated by extinction of radicals. This review highlights molecular architectures of radical B12 enzymes, radical SAM enzymes, tyrosyl radical enzymes, glycyl radical enzymes and their (re)activating proteins that support their functions. For generalization, comparisons of the recently reported structures of radical enzymes with those of canonical radical enzymes are summarized here. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  1. Evolutionary transitions in enzyme activity of ant fungus gardens.

    PubMed

    De Fine Licht, Henrik H; Schiøtt, Morten; Mueller, Ulrich G; Boomsma, Jacobus J

    2010-07-01

    Fungus-growing (attine) ants and their fungal symbionts passed through several evolutionary transitions during their 50 million year old evolutionary history. The basal attine lineages often shifted between two main cultivar clades, whereas the derived higher-attine lineages maintained an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across the attine phylogeny. We show that, relative to sister clades, gardens of higher-attine ants have enhanced activity of protein-digesting enzymes, whereas gardens of leaf-cutting ants also have increased activity of starch-digesting enzymes. However, the enzyme activities of lower-attine fungus gardens are targeted primarily toward partial degradation of plant cell walls, reflecting a plesiomorphic state of nondomesticated fungi. The enzyme profiles of the higher-attine and leaf-cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major breakdown of cell walls. The adaptive significance of the lower-attine symbiont shifts remains unclear. One of these shifts was obligate, but digestive advantages remained ambiguous, whereas the other remained facultative despite providing greater digestive efficiency.

  2. Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside induced lipid peroxidation in rats' pancreas by phenolic extracts of avocado pear leaves and fruit.

    PubMed

    Oboh, Ganiyu; Isaac, Adelusi Temitope; Akinyemi, Ayodele Jacobson; Ajani, Richard Akinlolu

    2014-09-01

    Persea americana fruit and leaves had been known in folk medicine for their anti-diabetic prowess. Therefore, this study sought to investigate the inhibitory effect of phenolic extract from avocado pear (Persea americana) leaves and fruits on some key enzymes linked to type 2 diabetes (α-amylase and α-glucosidase); and sodium nitroprusside (SNP) induced lipid peroxidation in rats' pancreas in vitro. The phenolic extracts of Persea americana fruit and leaves were extracted using methanol and 1M HCl (1:1 v/v). Thereafter, their inhibitory effects on sodium nitroprusside induced lipid peroxidation and key enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) were determined in vitro. The result revealed that the leaves had fruit of avocado pear inhibit both α-amylase and α-glucosidase activities in a dose dependent manner. However, the Peel had the highest α-amylase inhibitory activity while the leaf had the highest α-glucosidase inhibitory activity as revealed by their IC50 value. Furthermore, incubation of the rat pancreas in the presence of 5 mM SNP caused an increase in the malondialdehyde (MDA) content in the tissue, however, introduction of the phenolic extracts inhibited MDA produced in a dose dependent manner. The additive and/or synergistic action of major phenolic compounds such as syringic acid, eugenol, vnillic acid, isoeugenol, guaiacol, kaemferol, catechin, ρ-hydroxybenzoic acid, ferulic acid, apigenin, naringenin, epigallocatechin, epicatechin, lupeol and epigallocatechin-3-O-gallate in avocado pear using gas chromatography (GC) could have contributed to the observed medicinal properties of the plant. Therefore, inhibition of some key enzymes linked to type 2 diabetes and prevention of oxidative stress in the pancreas could be some of the possible mechanism by which they exert their anti-diabetic properties.

  3. Inhibition of Key Enzymes Linked to Type 2 Diabetes and Sodium Nitroprusside Induced Lipid Peroxidation in Rats’ Pancreas by Phenolic Extracts of Avocado Pear Leaves and Fruit

    PubMed Central

    Oboh, Ganiyu; Isaac, Adelusi Temitope; Akinyemi, Ayodele Jacobson; Ajani, Richard Akinlolu

    2014-01-01

    Persea americana fruit and leaves had been known in folk medicine for their anti-diabetic prowess. Therefore, this study sought to investigate the inhibitory effect of phenolic extract from avocado pear (Persea americana) leaves and fruits on some key enzymes linked to type 2 diabetes (α-amylase and α-glucosidase); and sodium nitroprusside (SNP) induced lipid peroxidation in rats’ pancreas in vitro. The phenolic extracts of Persea americana fruit and leaves were extracted using methanol and 1M HCl (1:1 v/v). Thereafter, their inhibitory effects on sodium nitroprusside induced lipid peroxidation and key enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) were determined in vitro. The result revealed that the leaves had fruit of avocado pear inhibit both α-amylase and α-glucosidase activities in a dose dependent manner. However, the Peel had the highest α-amylase inhibitory activity while the leaf had the highest α-glucosidase inhibitory activity as revealed by their IC50 value. Furthermore, incubation of the rat pancreas in the presence of 5 mM SNP caused an increase in the malondialdehyde (MDA) content in the tissue, however, introduction of the phenolic extracts inhibited MDA produced in a dose dependent manner. The additive and/or synergistic action of major phenolic compounds such as syringic acid, eugenol, vnillic acid, isoeugenol, guaiacol, kaemferol, catechin, ρ-hydroxybenzoic acid, ferulic acid, apigenin, naringenin, epigallocatechin, epicatechin, lupeol and epigallocatechin-3-O-gallate in avocado pear using gas chromatography (GC) could have contributed to the observed medicinal properties of the plant. Therefore, inhibition of some key enzymes linked to type 2 diabetes and prevention of oxidative stress in the pancreas could be some of the possible mechanism by which they exert their anti-diabetic properties PMID:25324703

  4. Nicergoline reverts haloperidol-induced loss of detoxifying-enzyme activity.

    PubMed

    Vairetti, Mariapia; Ferrigno, Andrea; Canonico, Pier Luigi; Battaglia, Angelo; Bertè, Francantonio; Richelmi, Plinio

    2004-11-28

    We evaluated the effects of nicergoline on antioxidant defense enzymes (detoxifying enzymes), during chronic treatment with haloperidol in rats. Chronic use of haloperidol (10 weeks, 1.5 mg/kg/day) induces a significant decrease in glutathione reductase, glutathione peroxidase and superoxide dismutase activity, in selected areas of the brain. Co-administration of nicergoline (20 days, 10 mg/kg/day) significantly restored the activity of these enzymes to levels comparable to those observed in control rats. These observations suggest beneficial effects of nicergoline in the prevention and in the treatment of haloperidol-induced side effects.

  5. Bacterial Community Composition and Extracellular Enzyme Activity in Temperate Streambed Sediment during Drying and Rewetting

    PubMed Central

    Pohlon, Elisabeth; Ochoa Fandino, Adriana; Marxsen, Jürgen

    2013-01-01

    Droughts are among the most important disturbance events for stream ecosystems; they not only affect stream hydrology but also the stream biota. Although desiccation of streams is common in Mediterranean regions, phases of dryness in headwaters have been observed more often and for longer periods in extended temperate regions, including Central Europe, reflecting global climate change and enhanced water withdrawal. The effects of desiccation and rewetting on the bacterial community composition and extracellular enzyme activity, a key process in the carbon flow of streams and rivers, were investigated in a typical Central European stream, the Breitenbach (Hesse, Germany). Wet streambed sediment is an important habitat in streams. It was sampled and exposed in the laboratory to different drying scenarios (fast, intermediate, slow) for 13 weeks, followed by rewetting of the sediment from the fast drying scenario via a sediment core perfusion technique for 2 weeks. Bacterial community structure was analyzed using CARD-FISH and TGGE, and extracellular enzyme activity was assessed using fluorogenic model substrates. During desiccation the bacterial community composition shifted toward composition in soil, exhibiting increasing proportions of Actinobacteria and Alphaproteobacteria and decreasing proportions of Bacteroidetes and Betaproteobacteria. Simultaneously the activities of extracellular enzymes decreased, most pronounced with aminopeptidases and less pronounced with enzymes involved in the degradation of polymeric carbohydrates. After rewetting, the general ecosystem functioning, with respect to extracellular enzyme activity, recovered after 10 to 14 days. However, the bacterial community composition had not yet achieved its original composition as in unaffected sediments within this time. Thus, whether the bacterial community eventually recovers completely after these events remains unknown. Perhaps this community undergoes permanent changes, especially after

  6. Effects of epithalon on activities gastrointestinal enzymes in young and old rats.

    PubMed

    Khavinson, V Kh; Malinin, V V; Timofeeva, N M; Egorova, V V; Nikitina, A A

    2002-03-01

    Peroral administration of Epithalon (Ala-Glu-Asp-Gly) to male and female Wistar rats aging 3 and 11 months changed activity of enzymes hydrolyzing carbohydrates, proteins, and phosphoric acid esters in various portions of the gastrointestinal tract. The most pronounced activation of enzymes was observed in 11-month-old animals. This effect diminished the differences in enzyme activities between young and old rats (compared to untreated animals). Our results indicate that Epithalon modulates activity of gastrointestinal enzymes during aging.

  7. Defying the activity-stability trade-off in enzymes: taking advantage of entropy to enhance activity and thermostability.

    PubMed

    Siddiqui, Khawar Sohail

    2017-05-01

    The biotechnological applications of enzymes are limited due to the activity-stability trade-off, which implies that an increase in activity is accompanied by a concomitant decrease in protein stability. This premise is based on thermally adapted homologous enzymes where cold-adapted enzymes show high intrinsic activity linked to enhanced thermolability. In contrast, thermophilic enzymes show low activity around ambient temperatures. Nevertheless, genetically and chemically modified enzymes are beginning to show that the activity-stability trade-off can be overcome. In this review, the origin of the activity-stability trade-off, the thermodynamic basis for enhanced activity and stability, and various approaches for escaping the activity-stability trade-off are discussed. The role of entropy in enhancing both the activity and the stability of enzymes is highlighted with a special emphasis placed on the involvement of solvent water molecules. This review is concluded with suggestions for further research, which underscores the implications of these findings in the context of productivity curves, the Daniel-Danson equilibrium model, catalytic antibodies, and life on cold planets.

  8. Identification of Key Functional Residues in the Active Site of Human β1,4-Galactosyltransferase 7

    PubMed Central

    Talhaoui, Ibtissam; Bui, Catherine; Oriol, Rafael; Mulliert, Guillermo; Gulberti, Sandrine; Netter, Patrick; Coughtrie, Michael W. H.; Ouzzine, Mohamed; Fournel-Gigleux, Sylvie

    2010-01-01

    Glycosaminoglycans (GAGs) play a central role in many pathophysiological events, and exogenous xyloside substrates of β1,4-galactosyltransferase 7 (β4GalT7), a major enzyme of GAG biosynthesis, have interesting biomedical applications. To predict functional peptide regions important for substrate binding and activity of human β4GalT7, we conducted a phylogenetic analysis of the β1,4-galactosyltransferase family and generated a molecular model using the x-ray structure of Drosophila β4GalT7-UDP as template. Two evolutionary conserved motifs, 163DVD165 and 221FWGWGREDDE230, are central in the organization of the enzyme active site. This model was challenged by systematic engineering of point mutations, combined with in vitro and ex vivo functional assays. Investigation of the kinetic properties of purified recombinant wild-type β4GalT7 and selected mutants identified Trp224 as a key residue governing both donor and acceptor substrate binding. Our results also suggested the involvement of the canonical carboxylate residue Asp228 acting as general base in the reaction catalyzed by human β4GalT7. Importantly, ex vivo functional tests demonstrated that regulation of GAG synthesis is highly responsive to modification of these key active site amino acids. Interestingly, engineering mutants at position 224 allowed us to modify the affinity and to modulate the specificity of human β4GalT7 toward UDP-sugars and xyloside acceptors. Furthermore, the W224H mutant was able to sustain decorin GAG chain substitution but not GAG synthesis from exogenously added xyloside. Altogether, this study provides novel insight into human β4GalT7 active site functional domains, allowing manipulation of this enzyme critical for the regulation of GAG synthesis. A better understanding of the mechanism underlying GAG assembly paves the way toward GAG-based therapeutics. PMID:20843813

  9. Light-regulation of enzyme activity in anacystis nidulans (Richt.).

    PubMed

    Duggan, J X; Anderson, L E

    1975-01-01

    The effect of light on the levels of activity of six enzymes which are light-modulated in higher plants was examined in the photosynthetic procaryot Anacystis nidulans. Ribulose-5-phosphate kinase (EC 2.7.1.19) was found to be light-activated in vivo and dithiothreitol-activated in vitro while glucose-6-phosphate dehydrogenase (EC 1.1.1.49) was light-inactivated and dithiothreitol-inactivated. The enzymes fructose-1,6-diphosphate phosphatase (EC 3.1.3.11), sedoheptulose-1,7-diphosphate phosphatase, NAD- and NADP-linked glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12; EC 1.2.1.13) were not affected by light treatment of the intact algae, but sedoheptulose-diphosphate phosphatase and the glyceraldehyde-3-phosphate dehydrogenases were dithiothreitol-activated in crude extracts. Light apparently controls the activity of the reductive and oxidative pentose phosphate pathway in this photosynthetic procaryot as in higher plants, through a process which probably involves reductive modulation of enzyme activity.

  10. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes.

    PubMed

    Santiago, Margarita; Ramírez-Sarmiento, César A; Zamora, Ricardo A; Parra, Loreto P

    2016-01-01

    Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications.

  11. Temperature and UV light affect the activity of marine cell-free enzymes

    NASA Astrophysics Data System (ADS)

    Thomson, Blair; Hepburn, Christopher David; Lamare, Miles; Baltar, Federico

    2017-09-01

    Microbial extracellular enzymatic activity (EEA) is the rate-limiting step in the degradation of organic matter in the oceans. These extracellular enzymes exist in two forms: cell-bound, which are attached to the microbial cell wall, and cell-free, which are completely free of the cell. Contrary to previous understanding, cell-free extracellular enzymes make up a substantial proportion of the total marine EEA. Little is known about these abundant cell-free enzymes, including what factors control their activity once they are away from their sites (cells). Experiments were run to assess how cell-free enzymes (excluding microbes) respond to ultraviolet radiation (UVR) and temperature manipulations, previously suggested as potential control factors for these enzymes. The experiments were done with New Zealand coastal waters and the enzymes studied were alkaline phosphatase (APase), β-glucosidase, (BGase), and leucine aminopeptidase (LAPase). Environmentally relevant UVR (i.e. in situ UVR levels measured at our site) reduced cell-free enzyme activities by up to 87 % when compared to controls, likely a consequence of photodegradation. This effect of UVR on cell-free enzymes differed depending on the UVR fraction. Ambient levels of UV radiation were shown to reduce the activity of cell-free enzymes for the first time. Elevated temperatures (15 °C) increased the activity of cell-free enzymes by up to 53 % when compared to controls (10 °C), likely by enhancing the catalytic activity of the enzymes. Our results suggest the importance of both UVR and temperature as control mechanisms for cell-free enzymes. Given the projected warming ocean environment and the variable UVR light regime, it is possible that there could be major changes in the cell-free EEA and in the enzymes contribution to organic matter remineralization in the future.

  12. A review on the effects of supercritical carbon dioxide on enzyme activity.

    PubMed

    Wimmer, Zdenek; Zarevúcka, Marie

    2010-01-19

    Different types of enzymes such as lipases, several phosphatases, dehydrogenases, oxidases, amylases and others are well suited for the reactions in SC-CO(2). The stability and the activity of enzymes exposed to carbon dioxide under high pressure depend on enzyme species, water content in the solution and on the pressure and temperature of the reaction system. The three-dimensional structure of enzymes may be significantly altered under extreme conditions, causing their denaturation and consequent loss of activity. If the conditions are less adverse, the protein structure may be largely retained. Minor structural changes may induce an alternative active protein state with altered enzyme activity, specificity and stability.

  13. A Review on the Effects of Supercritical Carbon Dioxide on Enzyme Activity

    PubMed Central

    Wimmer, Zdeněk; Zarevúcka, Marie

    2010-01-01

    Different types of enzymes such as lipases, several phosphatases, dehydrogenases, oxidases, amylases and others are well suited for the reactions in SC-CO2. The stability and the activity of enzymes exposed to carbon dioxide under high pressure depend on enzyme species, water content in the solution and on the pressure and temperature of the reaction system. The three-dimensional structure of enzymes may be significantly altered under extreme conditions, causing their denaturation and consequent loss of activity. If the conditions are less adverse, the protein structure may be largely retained. Minor structural changes may induce an alternative active protein state with altered enzyme activity, specificity and stability. PMID:20162013

  14. Enzyme activities in plasma, kidney, liver, and muscle of five avian species

    USGS Publications Warehouse

    Franson, J.C.; Murray, H.C.; Bunck, C.

    1985-01-01

    Activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), creatine phosphokinase (CPK), and lactate dehydrogenase (LDH) were determined in plasma, kidney, liver, and muscle from five species of captive birds. Few differences occurred in plasma activities between sexes but considerable differences occurred between species. All five enzymes were detected in each of the tissues sampled. Relative enzyme activities in liver, kidney, and muscle were similar for each species. CPK activity was much higher in muscle than in liver or kidney and, of the five enzymes studied, may be the best indicator of muscle damage. Most of the other enzymes were more evenly distributed among the three tissues, and no organ-specific enzyme could be identified for liver or kidney. Because of interspecific variations in plasma enzyme activities, it is important to establish baseline values for each species to ensure accurate interpretation of results.

  15. Visualization of enzyme activities inside earthworm biopores by in situ soil zymography

    NASA Astrophysics Data System (ADS)

    Thu Duyen Hoang, Thi; Razavi, Bahar. S.; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Earthworms can strongly activate microorganisms, increase microbial and enzyme activities and consequently the turnover of native soil organic matter. In extremely dynamic microhabitats and hotspots as biopores made by earthworms, the in situ enzyme activities are a footprint of complex biotic interactions. The effect of earthworms on the alteration of enzyme activities inside biopores and the difference between bio-pores and earthworm-free soil was visualized by in situ soil zymography (Spohn and Kuzyakov, 2014). For the first time, we prepared quantitative imaging of enzyme activities in biopores. Furthermore, we developed the zymography technique by direct application of a substrate saturated membrane to the soil to obtain better spatial resolution. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). Simultaneously, maize seed was sown in the soil. Control soil box with maize and without earthworm was prepared in the same way. After two weeks when bio-pore systems were formed by earthworm, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine aminopeptidase) and phosphatase. Followed by non-destructive zymography, biopore samples and control soil were destructively collected to assay enzyme kinetics by fluorogenically labeled substrates method. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. These differences were further confirmed by fluorimetric microplate enzyme assay detected significant difference of Vmax in four above mentioned enzymes. Vmax of β-glucosidase, chitinase, xylanase and phosphatase in biopores is 68%, 108%, 50% and 49% higher than that of control soil. However, no difference in cellobiohydrolase and leucine aminopeptidase kinetics between biopores and control soil were detected. This indicated little effect of earthworms on protein and cellulose transformation in soil

  16. De novo active sites for resurrected Precambrian enzymes

    NASA Astrophysics Data System (ADS)

    Risso, Valeria A.; Martinez-Rodriguez, Sergio; Candel, Adela M.; Krüger, Dennis M.; Pantoja-Uceda, David; Ortega-Muñoz, Mariano; Santoyo-Gonzalez, Francisco; Gaucher, Eric A.; Kamerlin, Shina C. L.; Bruix, Marta; Gavira, Jose A.; Sanchez-Ruiz, Jose M.

    2017-07-01

    Protein engineering studies often suggest the emergence of completely new enzyme functionalities to be highly improbable. However, enzymes likely catalysed many different reactions already in the last universal common ancestor. Mechanisms for the emergence of completely new active sites must therefore either plausibly exist or at least have existed at the primordial protein stage. Here, we use resurrected Precambrian proteins as scaffolds for protein engineering and demonstrate that a new active site can be generated through a single hydrophobic-to-ionizable amino acid replacement that generates a partially buried group with perturbed physico-chemical properties. We provide experimental and computational evidence that conformational flexibility can assist the emergence and subsequent evolution of new active sites by improving substrate and transition-state binding, through the sampling of many potentially productive conformations. Our results suggest a mechanism for the emergence of primordial enzymes and highlight the potential of ancestral reconstruction as a tool for protein engineering.

  17. Enzyme activation through the utilization of intrinsic dianion binding energy.

    PubMed

    Amyes, T L; Malabanan, M M; Zhai, X; Reyes, A C; Richard, J P

    2017-03-01

    We consider 'the proposition that the intrinsic binding energy that results from the noncovalent interaction of a specific substrate with the active site of the enzyme is considerably larger than is generally believed. An important part of this binding energy may be utilized to provide the driving force for catalysis, so that the observed binding energy represents only what is left over after this utilization' [Jencks,W.P. (1975) Adv. Enzymol. Relat. Areas. Mol. Biol. , , 219-410]. The large ~12 kcal/mol intrinsic substrate phosphodianion binding energy for reactions catalyzed by triosephosphate isomerase (TIM), orotidine 5'-monophosphate decarboxylase and glycerol-3-phosphate dehydrogenase is divided into 4-6 kcal/mol binding energy that is expressed on the formation of the Michaelis complex in anchoring substrates to the respective enzyme, and 6-8 kcal/mol binding energy that is specifically expressed at the transition state in activating the respective enzymes for catalysis. A structure-based mechanism is described where the dianion binding energy drives a conformational change that activates these enzymes for catalysis. Phosphite dianion plays the active role of holding TIM in a high-energy closed active form, but acts as passive spectator in showing no effect on transition-state structure. The result of studies on mutant enzymes is presented, which support the proposal that the dianion-driven enzyme conformational change plays a role in enhancing the basicity of side chain of E167, the catalytic base, by clamping the base between a pair of hydrophobic side chains. The insight these results provide into the architecture of enzyme active sites and the development of strategies for the de novo design of protein catalysts is discussed. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  18. Computational Investigations of Trichoderma Reesei Cel7A Suggest New Routes for Enzyme Activity Improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckham, G. T.; Payne, C. M.; Bu, L.

    2012-01-01

    The Trichoderma reesei Family 7 cellulase (Cel7A) is a key industrial enzyme in the production of biofuels from lignocellulosic biomass. It is a multi-modular enzyme with a Family 1 carbohydrate-binding module, a flexible O-glycosylated linker, and a large catalytic domain. We have used simulation to elucidate new functions for the 3 sub-domains, which suggests new routes to increase the activity of this central enzyme. These findings include new roles for glycosylation, which we have shown can be used to tune the binding affinity. We have also examined the structures of the catalytically-active complex of Cel7A and its non-processive counterpart, Cel7B,more » engaged on cellulose, which suggests allosteric mechanisms involved in chain binding when these cellulases are complexed on cellulose. Our computational results also suggest that product inhibition varies significantly between Cel7A and Cel7B, and we offer a molecular-level explanation for this observation. Finally, we discuss simulations of the absolute and relative binding free energy of cellulose ligands and various mutations along the CD tunnel, which will affect processivity and the ability of Cel7A (and related enzymes) to digest cellulose. These results highlight new considerations in protein engineering for processive and non-processive cellulases for production of lignocellulosic biofuels.« less

  19. Effects of protease and non-starch polysaccharide enzyme on performance, digestive function, activity and gene expression of endogenous enzyme of broilers.

    PubMed

    Yuan, Lin; Wang, Mingfa; Zhang, Xiaotu; Wang, Zhixiang

    2017-01-01

    Three hundred one-day-old male broiler chickens (Ross-308) were fed corn-soybean basal diets containing non-starch polysaccharide (NSP) enzyme and different levels of acid protease from 1 to 42 days of age to investigate the effects of exogenous enzymes on growth performance, digestive function, activity of endogenous digestive enzymes in the pancreas and mRNA expression of pancreatic digestive enzymes. For days 1-42, compared to the control chickens, average daily feed intake (ADFI) and average daily gain (ADG) were significantly enhanced by the addition of NSP enzyme in combination with protease supplementation at 40 or 80 mg/kg (p<0.05). Feed-to-gain ratio (FGR) was significantly improved by supplementation with NSP enzymes or NSP enzyme combined with 40 or 80 mg/kg protease compared to the control diet (p<0.05). Apparent digestibility of crude protein (ADCP) was significantly enhanced by the addition of NSP enzyme or NSP enzyme combined with 40 or 80 mg/kg protease (p<0.05). Cholecystokinin (CCK) level in serum was reduced by 31.39% with NSP enzyme combined with protease supplementation at 160 mg/kg (p<0.05), but the CCK level in serum was increased by 26.51% with NSP enzyme supplementation alone. After 21 days, supplementation with NSP enzyme and NSP enzyme combined with 40 or 80 mg/kg protease increased the activity of pancreatic trypsin by 74.13%, 70.66% and 42.59% (p<0.05), respectively. After 42 days, supplementation with NSP enzyme and NSP enzyme combined with 40 mg/kg protease increased the activity of pancreatic trypsin by 32.45% and 27.41%, respectively (p<0.05). However, supplementation with NSP enzyme and 80 or 160 mg/kg protease decreased the activity of pancreatic trypsin by 10.75% and 25.88%, respectively (p<0.05). The activities of pancreatic lipase and amylase were significantly higher in treated animals than they were in the control group (p<0.05). Supplementation with NSP enzyme, NSP enzyme combined with 40 or 80 mg/kg protease increased

  20. Effects of protease and non-starch polysaccharide enzyme on performance, digestive function, activity and gene expression of endogenous enzyme of broilers

    PubMed Central

    Wang, Mingfa; Zhang, Xiaotu; Wang, Zhixiang

    2017-01-01

    Three hundred one-day-old male broiler chickens (Ross-308) were fed corn-soybean basal diets containing non-starch polysaccharide (NSP) enzyme and different levels of acid protease from 1 to 42 days of age to investigate the effects of exogenous enzymes on growth performance, digestive function, activity of endogenous digestive enzymes in the pancreas and mRNA expression of pancreatic digestive enzymes. For days 1-42, compared to the control chickens, average daily feed intake (ADFI) and average daily gain (ADG) were significantly enhanced by the addition of NSP enzyme in combination with protease supplementation at 40 or 80 mg/kg (p<0.05). Feed-to-gain ratio (FGR) was significantly improved by supplementation with NSP enzymes or NSP enzyme combined with 40 or 80 mg/kg protease compared to the control diet (p<0.05). Apparent digestibility of crude protein (ADCP) was significantly enhanced by the addition of NSP enzyme or NSP enzyme combined with 40 or 80 mg/kg protease (p<0.05). Cholecystokinin (CCK) level in serum was reduced by 31.39% with NSP enzyme combined with protease supplementation at 160 mg/kg (p<0.05), but the CCK level in serum was increased by 26.51% with NSP enzyme supplementation alone. After 21 days, supplementation with NSP enzyme and NSP enzyme combined with 40 or 80 mg/kg protease increased the activity of pancreatic trypsin by 74.13%, 70.66% and 42.59% (p<0.05), respectively. After 42 days, supplementation with NSP enzyme and NSP enzyme combined with 40 mg/kg protease increased the activity of pancreatic trypsin by 32.45% and 27.41%, respectively (p<0.05). However, supplementation with NSP enzyme and 80 or 160 mg/kg protease decreased the activity of pancreatic trypsin by 10.75% and 25.88%, respectively (p<0.05). The activities of pancreatic lipase and amylase were significantly higher in treated animals than they were in the control group (p<0.05). Supplementation with NSP enzyme, NSP enzyme combined with 40 or 80 mg/kg protease increased

  1. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-02-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  2. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    PubMed Central

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

  3. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion.

    PubMed

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W; Liu, Yan; Walter, Nils G; Yan, Hao

    2016-02-10

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  4. Key feature of the catalytic cycle of TNF-α converting enzyme involves communication between distal protein sites and the enzyme catalytic core

    PubMed Central

    Solomon, Ariel; Akabayov, Barak; Frenkel, Anatoly; Milla, Marcos E.; Sagi, Irit

    2007-01-01

    Despite their key roles in many normal and pathological processes, the molecular details by which zinc-dependent proteases hydrolyze their physiological substrates remain elusive. Advanced theoretical analyses have suggested reaction models for which there is limited and controversial experimental evidence. Here we report the structure, chemistry and lifetime of transient metal–protein reaction intermediates evolving during the substrate turnover reaction of a metalloproteinase, the tumor necrosis factor-α converting enzyme (TACE). TACE controls multiple signal transduction pathways through the proteolytic release of the extracellular domain of a host of membrane-bound factors and receptors. Using stopped-flow x-ray spectroscopy methods together with transient kinetic analyses, we demonstrate that TACE's catalytic zinc ion undergoes dynamic charge transitions before substrate binding to the metal ion. This indicates previously undescribed communication pathways taking place between distal protein sites and the enzyme catalytic core. The observed charge transitions are synchronized with distinct phases in the reaction kinetics and changes in metal coordination chemistry mediated by the binding of the peptide substrate to the catalytic metal ion and product release. Here we report key local charge transitions critical for proteolysis as well as long sought evidence for the proposed reaction model of peptide hydrolysis. This study provides a general approach for gaining critical insights into the molecular basis of substrate recognition and turnover by zinc metalloproteinases that may be used for drug design. PMID:17360351

  5. Functional Trade-Offs in Promiscuous Enzymes Cannot Be Explained by Intrinsic Mutational Robustness of the Native Activity.

    PubMed

    Kaltenbach, Miriam; Emond, Stephane; Hollfelder, Florian; Tokuriki, Nobuhiko

    2016-10-01

    The extent to which an emerging new function trades off with the original function is a key characteristic of the dynamics of enzyme evolution. Various cases of laboratory evolution have unveiled a characteristic trend; a large increase in a new, promiscuous activity is often accompanied by only a mild reduction of the native, original activity. A model that associates weak trade-offs with "evolvability" was put forward, which proposed that enzymes possess mutational robustness in the native activity and plasticity in promiscuous activities. This would enable the acquisition of a new function without compromising the original one, reducing the benefit of early gene duplication and therefore the selection pressure thereon. Yet, to date, no experimental study has examined this hypothesis directly. Here, we investigate the causes of weak trade-offs by systematically characterizing adaptive mutations that occurred in two cases of evolutionary transitions in enzyme function: (1) from phosphotriesterase to arylesterase, and (2) from atrazine chlorohydrolase to melamine deaminase. Mutational analyses in various genetic backgrounds revealed that, in contrast to the prevailing model, the native activity is less robust to mutations than the promiscuous activity. For example, in phosphotriesterase, the deleterious effect of individual mutations on the native phosphotriesterase activity is much larger than their positive effect on the promiscuous arylesterase activity. Our observations suggest a revision of the established model: weak trade-offs are not caused by an intrinsic robustness of the native activity and plasticity of the promiscuous activity. We propose that upon strong adaptive pressure for the new activity without selection against the original one, selected mutations will lead to the largest possible increases in the new function, but whether and to what extent they decrease the old function is irrelevant, creating a bias towards initially weak trade-offs and the

  6. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes

    PubMed Central

    Santiago, Margarita; Ramírez-Sarmiento, César A.; Zamora, Ricardo A.; Parra, Loreto P.

    2016-01-01

    Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications. PMID:27667987

  7. Effects of Different Substrates on Lignocellulosic Enzyme Expression, Enzyme Activity, Substrate Utilization and Biological Efficiency of Pleurotus Eryngii.

    PubMed

    Xie, Chunliang; Yan, Li; Gong, Wenbing; Zhu, Zuohua; Tan, Senwei; Chen, Du; Hu, Zhenxiu; Peng, Yuande

    2016-01-01

    Pleurotus eryngii is one of the most valued and delicious mushrooms which are commercially cultivated on various agro-wastes. How different substrates affect lignocellulosic biomass degradation, lignocellulosic enzyme production and biological efficiency in Pleurotus eryngii was unclear. In this report, Pleurotus eryngii was cultivated in substrates including ramie stalks, kenaf stalks, cottonseed hulls and bulrush stalks. The results showed that ramie stalks and kenaf stalks were found to best suitable to cultivate Pleurotus eryngii with the biological efficiency achieved at 55% and 57%, respectively. In order to establish correlations between different substrates and lignocellulosic enzymes expression, the extracellular proteins from four substrates were profiled with high throughput TMT-based quantitative proteomic approach. 241 non-redundant proteins were identified and 74 high confidence lignocellulosic enzymes were quantified. Most of the cellulases, hemicellulases and lignin depolymerization enzymes were highly up-regulated when ramie stalks and kenaf stalks were used as carbon sources. The enzyme activities results suggested cellulases, hemicellulases and lignin depolymerization enzymes were significantly induced by ramie stalks and kenaf stalks. The lignocelluloses degradation, most of the lignocellulosic enzymes expressions and activities of Pleurotus eryngii had positive correlation with the biological efficiency, which depend on the nature of lignocellulosic substrates. In addition, the lignocellulosic enzymes expression profiles during Pleurotus eryngii growth in different substrates were obtained. The present study suggested that most of the lignocellulosic enzymes expressions and activities can be used as tools for selecting better performing substrates for commercial mushroom cultivation. © 2016 The Author(s) Published by S. Karger AG, Basel.

  8. A DNA enzyme with N-glycosylase activity

    NASA Technical Reports Server (NTRS)

    Sheppard, T. L.; Ordoukhanian, P.; Joyce, G. F.

    2000-01-01

    In vitro evolution was used to develop a DNA enzyme that catalyzes the site-specific depurination of DNA with a catalytic rate enhancement of about 10(6)-fold. The reaction involves hydrolysis of the N-glycosidic bond of a particular deoxyguanosine residue, leading to DNA strand scission at the apurinic site. The DNA enzyme contains 93 nucleotides and is structurally complex. It has an absolute requirement for a divalent metal cation and exhibits optimal activity at about pH 5. The mechanism of the reaction was confirmed by analysis of the cleavage products by using HPLC and mass spectrometry. The isolation and characterization of an N-glycosylase DNA enzyme demonstrates that single-stranded DNA, like RNA and proteins, can form a complex tertiary structure and catalyze a difficult biochemical transformation. This DNA enzyme provides a new approach for the site-specific cleavage of DNA molecules.

  9. Computational Glycobiology: Mechanistic Studies of Carbohydrate-Active Enzymes and Implication for Inhibitor Design.

    PubMed

    Montgomery, Andrew P; Xiao, Kela; Wang, Xingyong; Skropeta, Danielle; Yu, Haibo

    2017-01-01

    Carbohydrate-active enzymes (CAZymes) are families of essential and structurally related enzymes, which catalyze the creation, modification, and degradation of glycosidic bonds in carbohydrates to maintain essentially all kingdoms of life. CAZymes play a key role in many biological processes underpinning human health and diseases (e.g., cancer, diabetes, Alzheimer's diseases, AIDS) and have thus emerged as important drug targets in the fight against pathogenesis. The realization of the full potential of CAZymes remains a significant challenge, relying on a deeper understanding of the molecular mechanisms of catalysis. Considering numerous unsettled questions in the literature, while with a large amount of structural, kinetic, and mutagenesis data available for CAZymes, there is a pressing need and an abundant opportunity for collaborative computational and experimental investigations with the aim to unlock the secrets of CAZyme catalysis at an atomic level. In this review, we briefly survey key methodology development in computational studies of CAZyme catalysis. This is complemented by selected case studies highlighting mechanistic insights provided by computational glycobiology. Implication for inhibitor design by mimicking the transition state is also illustrated for both glycoside hydrolases and glycosyltransferases. The challenges for such studies will be noted and finally an outlook for future directions will be provided. © 2017 Elsevier Inc. All rights reserved.

  10. Effects of non-starch polysaccharides enzymes on pancreatic and small intestinal digestive enzyme activities in piglet fed diets containing high amounts of barley.

    PubMed

    Li, Wei-Fen; Feng, Jie; Xu, Zi-Rong; Yang, Cai-Mei

    2004-03-15

    To investigate effects of non-starch polysaccharides(NSP) enzymes on pancreatic and small intestinal digestive enzyme activities in piglet fed diets containing high amounts of barley. Sixty crossbred piglets averaging 13.5 kg were randomly assigned to two treatment groups with three replications (pens) based on sex and mass. Each group was fed on the diet based on barley with or without added NSP enzymes (0.15%) for a 40-d period. At the end of the experiment the pigs were weighed. Three piglets of each group were chosen and slaughtered. Pancreas, digesta from the distal end of the duodenum and jejunal mucosa were collected for determination. Activities of the digestive enzymes trypsin, chymotrypsin, amylase and lipase were determined in the small intestinal sections as well as in homogenates of pancreatic tissue. Maltase, sucrase, lactase and gamma-glutamyl transpeptidase (gamma-GT) activities were analyzed in jejunal mucosa. Supplementation with NSP enzymes improved growth performance of piglets. It showed that NSP enzymes had no effect on digestive enzyme activities in pancreas, but decreased the activities of proteolytic enzyme, trypsin, amylase and lipase in duodenal contents by 57.56%, 76.08%, 69.03% and 40.22%(P<0.05) compared with control, and increased gamma-GT activities in jejunal mucosa by 118.75%(P<0.05). Supplementation with NSP enzymes in barley based diets could improve piglets' growth performance, decrease activities of proteolytic enzyme, trypsin, amylase and lipase in duodenal contents and increase gamma-GT activities in jejunal mucosa.

  11. The Action of Antidiabetic Plants of the Canadian James Bay Cree Traditional Pharmacopeia on Key Enzymes of Hepatic Glucose Homeostasis

    PubMed Central

    Nachar, Abir; Vallerand, Diane; Musallam, Lina; Lavoie, Louis; Arnason, John; Haddad, Pierre S.

    2013-01-01

    We determined the capacity of putative antidiabetic plants used by the Eastern James Bay Cree (Canada) to modulate key enzymes of gluconeogenesis and glycogen synthesis and key regulating kinases. Glucose-6-phosphatase (G6Pase) and glycogen synthase (GS) activities were assessed in cultured hepatocytes treated with crude extracts of seventeen plant species. Phosphorylation of AMP-dependent protein kinase (AMPK), Akt, and Glycogen synthase kinase-3 (GSK-3) were probed by Western blot. Seven of the seventeen plant extracts significantly decreased G6Pase activity, Abies balsamea and Picea glauca, exerting an effect similar to insulin. This action involved both Akt and AMPK phosphorylation. On the other hand, several plant extracts activated GS, Larix laricina and A. balsamea, far exceeding the action of insulin. We also found a significant correlation between GS stimulation and GSK-3 phosphorylation induced by plant extract treatments. In summary, three Cree plants stand out for marked effects on hepatic glucose homeostasis. P. glauca affects glucose production whereas L. laricina rather acts on glucose storage. However, A. balsamea has the most promising profile, simultaneously and powerfully reducing G6Pase and stimulating GS. Our studies thus confirm that the reduction of hepatic glucose production likely contributes to the therapeutic potential of several antidiabetic Cree traditional medicines. PMID:23864882

  12. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study.

    PubMed

    Simon, Gabriel M; Cravatt, Benjamin F

    2010-04-09

    Genome sequencing projects have uncovered thousands of uncharacterized enzymes in eukaryotic and prokaryotic organisms. Deciphering the physiological functions of enzymes requires tools to profile and perturb their activities in native biological systems. Activity-based protein profiling has emerged as a powerful chemoproteomic strategy to achieve these objectives through the use of chemical probes that target large swaths of enzymes that share active-site features. Here, we review activity-based protein profiling and its implementation to annotate the enzymatic proteome, with particular attention given to probes that target serine hydrolases, a diverse superfamily of enzymes replete with many uncharacterized members.

  13. Enzyme-dependent fluorescence recovery of NADH after photobleaching to assess dehydrogenase activity of isolated perfused hearts

    NASA Astrophysics Data System (ADS)

    Moreno, Angel; Kuzmiak-Glancy, Sarah; Jaimes, Rafael; Kay, Matthew W.

    2017-03-01

    Reduction of NAD+ by dehydrogenase enzymes to form NADH is a key component of cellular metabolism. In cellular preparations and isolated mitochondria suspensions, enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP) of NADH has been shown to be an effective approach for measuring the rate of NADH production to assess dehydrogenase enzyme activity. Our objective was to demonstrate how dehydrogenase activity could be assessed within the myocardium of perfused hearts using NADH ED-FRAP. This was accomplished using a combination of high intensity UV pulses to photobleach epicardial NADH. Replenishment of epicardial NADH fluorescence was then imaged using low intensity UV illumination. NADH ED-FRAP parameters were optimized to deliver 23.8 mJ of photobleaching light energy at a pulse width of 6 msec and a duty cycle of 50%. These parameters provided repeatable measurements of NADH production rate during multiple metabolic perturbations, including changes in perfusate temperature, electromechanical uncoupling, and acute ischemia/reperfusion injury. NADH production rate was significantly higher in every perturbation where the energy demand was either higher or uncompromised. We also found that NADH production rate remained significantly impaired after 10 min of reperfusion after global ischemia. Overall, our results indicate that myocardial NADH ED-FRAP is a useful optical non-destructive approach for assessing dehydrogenase activity.

  14. Micropollutant degradation via extracted native enzymes from activated sludge.

    PubMed

    Krah, Daniel; Ghattas, Ann-Kathrin; Wick, Arne; Bröder, Kathrin; Ternes, Thomas A

    2016-05-15

    A procedure was developed to assess the biodegradation of micropollutants in cell-free lysates produced from activated sludge of a municipal wastewater treatment plant (WWTP). This proof-of-principle provides the basis for further investigations of micropollutant biodegradation via native enzymes in a solution of reduced complexity, facilitating downstream protein analysis. Differently produced lysates, containing a variety of native enzymes, showed significant enzymatic activities of acid phosphatase, β-galactosidase and β-glucuronidase in conventional colorimetric enzyme assays, whereas heat-deactivated controls did not. To determine the enzymatic activity towards micropollutants, 20 compounds were spiked to the cell-free lysates under aerobic conditions and were monitored via LC-ESI-MS/MS. The micropollutants were selected to span a wide range of different biodegradabilities in conventional activated sludge treatment via distinct primary degradation reactions. Of the 20 spiked micropollutants, 18 could be degraded by intact sludge under assay conditions, while six showed reproducible degradation in the lysates compared to the heat-deactivated negative controls: acetaminophen, N-acetyl-sulfamethoxazole (acetyl-SMX), atenolol, bezafibrate, erythromycin and 10,11-dihydro-10-hydroxycarbamazepine (10-OH-CBZ). The primary biotransformation of the first four compounds can be attributed to amide hydrolysis. However, the observed biotransformations in the lysates were differently influenced by experimental parameters such as sludge pre-treatment and the addition of ammonium sulfate or peptidase inhibitors, suggesting that different hydrolase enzymes were involved in the primary degradation, among them possibly peptidases. Furthermore, the transformation of 10-OH-CBZ to 9-CA-ADIN was caused by a biologically-mediated oxidation, which indicates that in addition to hydrolases further enzyme classes (probably oxidoreductases) are present in the native lysates. Although the

  15. Development of Activity-based Cost Functions for Cellulase, Invertase, and Other Enzymes

    NASA Astrophysics Data System (ADS)

    Stowers, Chris C.; Ferguson, Elizabeth M.; Tanner, Robert D.

    As enzyme chemistry plays an increasingly important role in the chemical industry, cost analysis of these enzymes becomes a necessity. In this paper, we examine the aspects that affect the cost of enzymes based upon enzyme activity. The basis for this study stems from a previously developed objective function that quantifies the tradeoffs in enzyme purification via the foam fractionation process (Cherry et al., Braz J Chem Eng 17:233-238, 2000). A generalized cost function is developed from our results that could be used to aid in both industrial and lab scale chemical processing. The generalized cost function shows several nonobvious results that could lead to significant savings. Additionally, the parameters involved in the operation and scaling up of enzyme processing could be optimized to minimize costs. We show that there are typically three regimes in the enzyme cost analysis function: the low activity prelinear region, the moderate activity linear region, and high activity power-law region. The overall form of the cost analysis function appears to robustly fit the power law form.

  16. Inhibition of Angiotensin-Converting Enzyme Activity by Flavonoids: Structure-Activity Relationship Studies

    PubMed Central

    Guerrero, Ligia; Castillo, Julián; Quiñones, Mar; Garcia-Vallvé, Santiago; Arola, Lluis; Pujadas, Gerard; Muguerza, Begoña

    2012-01-01

    Previous studies have demonstrated that certain flavonoids can have an inhibitory effect on angiotensin-converting enzyme (ACE) activity, which plays a key role in the regulation of arterial blood pressure. In the present study, 17 flavonoids belonging to five structural subtypes were evaluated in vitro for their ability to inhibit ACE in order to establish the structural basis of their bioactivity. The ACE inhibitory (ACEI) activity of these 17 flavonoids was determined by fluorimetric method at two concentrations (500 µM and 100 µM). Their inhibitory potencies ranged from 17 to 95% at 500 µM and from 0 to 57% at 100 µM. In both cases, the highest ACEI activity was obtained for luteolin. Following the determination of ACEI activity, the flavonoids with higher ACEI activity (i.e., ACEI >60% at 500 µM) were selected for further IC50 determination. The IC50 values for luteolin, quercetin, rutin, kaempferol, rhoifolin and apigenin K were 23, 43, 64, 178, 183 and 196 µM, respectively. Our results suggest that flavonoids are an excellent source of functional antihypertensive products. Furthermore, our structure-activity relationship studies show that the combination of sub-structures on the flavonoid skeleton that increase ACEI activity is made up of the following elements: (a) the catechol group in the B-ring, (b) the double bond between C2 and C3 at the C-ring, and (c) the cetone group in C4 at the C-ring. Protein-ligand docking studies are used to understand the molecular basis for these results. PMID:23185345

  17. Enzymes with lid-gated active sites must operate by an induced fit mechanism instead of conformational selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Sarah M.; Holyoak, Todd

    2008-09-17

    The induced fit and conformational selection/population shift models are two extreme cases of a continuum aimed at understanding the mechanism by which the final key-lock or active enzyme conformation is achieved upon formation of the correctly ligated enzyme. Structures of complexes representing the Michaelis and enolate intermediate complexes of the reaction catalyzed by phosphoenolpyruvate carboxykinase provide direct structural evidence for the encounter complex that is intrinsic to the induced fit model and not required by the conformational selection model. In addition, the structural data demonstrate that the conformational selection model is not sufficient to explain the correlation between dynamics andmore » catalysis in phosphoenolpyruvate carboxykinase and other enzymes in which the transition between the uninduced and the induced conformations occludes the active site from the solvent. The structural data are consistent with a model in that the energy input from substrate association results in changes in the free energy landscape for the protein, allowing for structural transitions along an induced fit pathway.« less

  18. Enzymes With Lid-Gated Active Sites Must Operate By An Induced Fit Mechanism Instead of Conformational Selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, S.M.; Holyoak, T.

    2009-05-26

    The induced fit and conformational selection/population shift models are two extreme cases of a continuum aimed at understanding the mechanism by which the final key-lock or active enzyme conformation is achieved upon formation of the correctly ligated enzyme. Structures of complexes representing the Michaelis and enolate intermediate complexes of the reaction catalyzed by phosphoenolpyruvate carboxykinase provide direct structural evidence for the encounter complex that is intrinsic to the induced fit model and not required by the conformational selection model. In addition, the structural data demonstrate that the conformational selection model is not sufficient to explain the correlation between dynamics andmore » catalysis in phosphoenolpyruvate carboxykinase and other enzymes in which the transition between the uninduced and the induced conformations occludes the active site from the solvent. The structural data are consistent with a model in that the energy input from substrate association results in changes in the free energy landscape for the protein, allowing for structural transitions along an induced fit pathway.« less

  19. Motility, ATP levels and metabolic enzyme activity of sperm from bluegill (Lepomis macrochirus).

    PubMed

    Burness, Gary; Moyes, Christopher D; Montgomerie, Robert

    2005-01-01

    Male bluegill displays one of two life history tactics. Some males (termed "parentals") delay reproduction until ca. 7 years of age, at which time they build nests and actively courts females. Others mature precociously (sneakers) and obtain fertilizations by cuckolding parental males. In the current study, we studied the relations among sperm motility, ATP levels, and metabolic enzyme activity in parental and sneaker bluegill. In both reproductive tactics, sperm swimming speed and ATP levels declined in parallel over the first 60 s of motility. Although sneaker sperm initially had higher ATP levels than parental sperm, by approximately 30 s postactivation, no differences existed between tactics. No differences were noted between tactics in swimming speed, percent motility, or the activities of key metabolic enzymes, although sperm from parentals had a higher ratio of creatine phosphokinase (CPK) to citrate synthase (CS). In both tactics, with increasing CPK and CS activity, sperm ATP levels increased at 20 s postactivation, suggesting that capacities for phosphocreatine hydrolysis and aerobic metabolism may influence interindividual variation in rates of ATP depletion. Nonetheless, there was no relation between sperm ATP levels and either swimming speed or percent of sperm that were motile. This suggests that interindividual variation in ATP levels may not be the primary determinant of variation in sperm swimming performance in bluegill.

  20. Glutathione Peroxidase Enzyme Activity in Aging

    PubMed Central

    Espinoza, Sara E.; Guo, Hongfei; Fedarko, Neal; DeZern, Amy; Fried, Linda P.; Xue, Qian-Li; Leng, Sean; Beamer, Brock; Walston, Jeremy D.

    2010-01-01

    Background It is hypothesized that free radical damage contributes to aging. Age-related decline in activity of the antioxidant enzyme glutathione peroxidase (GPx) may contribute to increased free radicals. We hypothesized that GPx activity decreases with age in a population of older women with disability. Methods Whole blood GPx activity was measured in baseline stored samples from participants in the Women's Health and Aging Study I, a cohort of disabled community-dwelling older women. Linear regression was used to determine cross-sectional associations between GPx activity and age, adjusting for hemoglobin, coronary disease, diabetes, selenium, and body mass index. Results Six hundred one participants had complete demographic, disease, and laboratory information. An inverse association was observed between GPx and age (regression coefficient = −2.9, p < .001), indicating that for each 1-year increase in age, GPx activity decreased by 2.9 μmol/min/L. This finding remained significant after adjustment for hemoglobin, coronary disease, diabetes, and selenium, but not after adjustment for body mass index and weight loss. Conclusion This is the first study to examine the association between age and GPx activity in an older adult cohort with disability and chronic disease. These findings suggest that, after age 65, GPx activity declines with age in older women with disability. This decline does not appear to be related to diseases that have been previously reported to alter GPx activity. Longitudinal examination of GPx activity and other antioxidant enzymes in diverse populations of older adults will provide additional insight into age- and disease-related changes in these systems. PMID:18511755

  1. Evidence for a regulatory loop between cholecystokinin (CCK) and tryptic enzyme activity in Atlantic cod larvae (Gadus morhua).

    PubMed

    Tillner, Robert; Rønnestad, Ivar; Harboe, Torstein; Ueberschär, Bernd

    2013-11-01

    In order to maximize protein digestion, the release of enzymes into the gut lumen is closely controlled by a regulatory loop. Cholecystokinin (CCK) is among the enteric hormones that play a key role in the control of digestive enzyme secretion, but its role in first-feeding larvae is still unclear and may differ between species. However, in all marine fish larvae that have not developed a stomach by first-feeding, trypsin is the most important proteolytic enzyme. In order to examine the regulation and feedback mechanisms in the gut of larval cod, we therefore studied the interactions between cholecystokinin and tryptic enzyme activity following the administration of solutions containing test substances directly into the gut. We tube-fed a single dose of physiological saline solution containing either CCK, CCK antagonist, trypsin inhibitor, phytohemagglutinin (PHA; a possible trigger for the digestive response) or physiological saline alone, while a further control group was left untreated. We then followed the response in CCK and tryptic enzyme activity for 0.5-8h after the administration. We performed the experiment on larvae at 26day post first-feeding, which is before the stomach has evolved and the size of the larvae allows easier handling. Individual larvae were analyzed for CCK and tryptic enzyme activity using radioimmunoassay and fluorimetric techniques respectively. Both factors varied over time in the untreated control group, possibly due to an endogenous daily rhythm. The higher CCK levels at 4h and 8h in the saline-injected group may be caused by reflexes initiated by distension of the gut. An increase in tryptic enzyme activity after injection of CCK supports the hypothesis that this hormone plays a part in the release of pancreatic enzymes in larval cod at this developmental stage. However, administration of a CCK antagonist and a trypsin inhibitor did not reveal conclusive results, probably due to the relatively low concentrations used. The response

  2. Functional Evolution of PLP-dependent Enzymes based on Active-Site Structural Similarities

    PubMed Central

    Catazaro, Jonathan; Caprez, Adam; Guru, Ashu; Swanson, David; Powers, Robert

    2014-01-01

    Families of distantly related proteins typically have very low sequence identity, which hinders evolutionary analysis and functional annotation. Slowly evolving features of proteins, such as an active site, are therefore valuable for annotating putative and distantly related proteins. To date, a complete evolutionary analysis of the functional relationship of an entire enzyme family based on active-site structural similarities has not yet been undertaken. Pyridoxal-5’-phosphate (PLP) dependent enzymes are primordial enzymes that diversified in the last universal ancestor. Using the Comparison of Protein Active Site Structures (CPASS) software and database, we show that the active site structures of PLP-dependent enzymes can be used to infer evolutionary relationships based on functional similarity. The enzymes successfully clustered together based on substrate specificity, function, and three-dimensional fold. This study demonstrates the value of using active site structures for functional evolutionary analysis and the effectiveness of CPASS. PMID:24920327

  3. Carotenoid-cleavage activities of crude enzymes from Pandanous amryllifolius.

    PubMed

    Ningrum, Andriati; Schreiner, Matthias

    2014-11-01

    Carotenoid degradation products, known as norisoprenoids, are aroma-impact compounds in several plants. Pandan wangi is a common name of the shrub Pandanus amaryllifolius. The genus name 'Pandanus' is derived from the Indonesian name of the tree, pandan. In Indonesia, the leaves from the plant are used for several purposes, e.g., as natural colorants and flavor, and as traditional treatments. The aim of this study was to determine the cleavage of β-carotene and β-apo-8'-carotenal by carotenoid-cleavage enzymes isolated from pandan leaves, to investigate dependencies of the enzymatic activities on temperature and pH, to determine the enzymatic reaction products by using Headspace Solid Phase Microextraction Gas Chromatography/Mass Spectrophotometry (HS-SPME GC/MS), and to investigate the influence of heat treatment and addition of crude enzyme on formation of norisoprenoids. Crude enzymes from pandan leaves showed higher activity against β-carotene than β-apo-8'-carotenal. The optimum temperature of crude enzymes was 70°, while the optimum pH value was 6. We identified β-ionone as the major volatile reaction product from the incubations of two different carotenoid substrates, β-carotene and β-apo-8'-carotenal. Several treatments, e.g., heat treatment and addition of crude enzymes in pandan leaves contributed to the norisoprenoid content. Our findings revealed that the crude enzymes from pandan leaves with carotenoid-cleavage activity might provide a potential application, especially for biocatalysis, in natural-flavor industry. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  4. Synthesis of New Hydrazone Derivatives for MAO Enzymes Inhibitory Activity.

    PubMed

    Can, Nafiz Öncü; Osmaniye, Derya; Levent, Serkan; Sağlık, Begüm Nurpelin; İnci, Beril; Ilgın, Sinem; Özkay, Yusuf; Kaplancıklı, Zafer Asım

    2017-08-20

    In the present work, 14 new 1-substituted-2-phenylhydrazone derivatives were synthesized to evaluate their inhibitory activity against hMAO enzymes. The structures of the newly synthesized hydrazones 2a-2n were characterized by IR, 1H-NMR, 13C-NMR, HR-MS spectroscopic methods. The inhibitory activity of compounds 2a-2n against hMAO-A and hMAO-B enzymes was elucidated by using an in-vitro Amplex Red® reagent assay based on fluorometric methods. According to the activity studies, 2a and 2b were found to be the most active compounds against hMAO-A enzyme, with IC50 values of 0.342 µM and 0.028 µM, respectively. The most active compounds 2a-2b were evaluated by means of enzyme kinetics and docking studies. Moreover, these compounds were subjected to cytotoxicity and genotoxicity tests to establish their preliminary toxicological profiles and were found to be non-cytotoxic and non-genotoxic. Consequently, the findings of this study display the biological importance of compounds 2a, 2b as selective, irreversible and competitive inhibitors of hMAO-A. Docking studies revealed that there is a strong interaction between hMAO-A and the most active compound 2b.

  5. Exploring the Active Site of the Tungsten, Iron-Sulfur Enzyme Acetylene Hydratase▿ †

    PubMed Central

    tenBrink, Felix; Schink, Bernhard; Kroneck, Peter M. H.

    2011-01-01

    The soluble tungsten, iron-sulfur enzyme acetylene hydratase (AH) from mesophilic Pelobacter acetylenicus is a member of the dimethyl sulfoxide (DMSO) reductase family. It stands out from its class as it catalyzes a nonredox reaction, the addition of H2O to acetylene (H—C☰C—H) to form acetaldehyde (CH3CHO). Caught in its active W(IV) state, the high-resolution three-dimensional structure of AH offers an excellent starting point to tackle its unique chemistry and to identify catalytic amino acid residues within the active site cavity: Asp13 close to W(IV) coordinated to two molybdopterin-guanosine-dinucleotide ligands, Lys48 which couples the [4Fe-4S] cluster to the W site, and Ile142 as part of a hydrophobic ring at the end of the substrate access channel designed to accommodate the substrate acetylene. A protocol was developed to express AH in Escherichia coli and to produce active-site variants which were characterized with regard to activity and occupancy of the tungsten and iron-sulfur centers. By this means, fusion of the N-terminal chaperone binding site of the E. coli nitrate reductase NarG to the AH gene improved the yield and activity of AH and its variants significantly. Results from site-directed mutagenesis of three key residues, Asp13, Lys48, and Ile142, document their important role in catalysis of this unusual tungsten enzyme. PMID:21193613

  6. [Effect of cultivation conditions on the growth and activities of sulfur metabolism enzymes and carboxylases of Sulfobacillus thermosulfidooxidans subsp. asporogenes strain 41].

    PubMed

    Egorova, M A; Tsaplina, I A; Zakharchuk, L M; Bogdanova, T I; Krasil'nikova, E N

    2004-01-01

    The moderately thermophilic acidophilic bacterium Sulfobacillus thermosulfidooxidans subsp. asporogenes strain 41 is capable of utilizing sulfides of gold-arsenic concentrate and elemental sulfur as a source of energy. The growth in the presence of S0 under auto- or mixotrophic conditions was less stable compared with the media containing iron monoxide. The enzymes involved in oxidation of sulfur inorganic compounds--thiosulfate-oxidizing enzyme, tetrathionate hydrolase, rhodonase, adenylyl sulfate reductase, sulfite oxidase, and sulfur oxygenase--were discovered in the cells of Sulfobacillus grown in the mineral medium containing 0.02% yeast extract and either sulfur or iron monoxide and thiosulfate. Cell-free extracts of the cultures grown in the medium with sulfur under auto- or mixotrophic conditions displayed activity of the key enzyme of the Calvin cycle--ribulose bisphosphate carboxylase--and several other enzymes involved in heterotrophic fixation of carbonic acid. Activities of carboxylases depended on the composition of cultivation media.

  7. Functional evolution of PLP-dependent enzymes based on active-site structural similarities.

    PubMed

    Catazaro, Jonathan; Caprez, Adam; Guru, Ashu; Swanson, David; Powers, Robert

    2014-10-01

    Families of distantly related proteins typically have very low sequence identity, which hinders evolutionary analysis and functional annotation. Slowly evolving features of proteins, such as an active site, are therefore valuable for annotating putative and distantly related proteins. To date, a complete evolutionary analysis of the functional relationship of an entire enzyme family based on active-site structural similarities has not yet been undertaken. Pyridoxal-5'-phosphate (PLP) dependent enzymes are primordial enzymes that diversified in the last universal ancestor. Using the comparison of protein active site structures (CPASS) software and database, we show that the active site structures of PLP-dependent enzymes can be used to infer evolutionary relationships based on functional similarity. The enzymes successfully clustered together based on substrate specificity, function, and three-dimensional-fold. This study demonstrates the value of using active site structures for functional evolutionary analysis and the effectiveness of CPASS. © 2014 Wiley Periodicals, Inc.

  8. The position of a key tyrosine in dTDP-4-Keto-6-deoxy-D-glucose-5-epimerase (EvaD) alters the substrate profile for this RmlC-like enzyme.

    PubMed

    Merkel, Alexandra B; Major, Louise L; Errey, James C; Burkart, Michael D; Field, Robert A; Walsh, Christopher T; Naismith, James H

    2004-07-30

    Vancomycin, the last line of defense antibiotic, depends upon the attachment of the carbohydrate vancosamine to an aglycone skeleton for antibacterial activity. Vancomycin is a naturally occurring secondary metabolite that can be produced by bacterial fermentation. To combat emerging resistance, it has been proposed to genetically engineer bacteria to produce analogues of vancomycin. This requires a detailed understanding of the biochemical steps in the synthesis of vancomycin. Here we report the 1.4 A structure and biochemical characterization of EvaD, an RmlC-like protein that is required for the C-5' epimerization during synthesis of dTDP-epivancosamine. EvaD, although clearly belonging to the RmlC class of enzymes, displays very low activity in the archetypal RmlC reaction (double epimerization of dTDP-6-deoxy-4-keto-D-glucose at C-3' and C-5'). The high resolution structure of EvaD compared with the structures of authentic RmlC enzymes indicates that a subtle change in the enzyme active site repositions a key catalytic Tyr residue. A mutant designed to re-establish the normal position of the Tyr increases the RmlC-like activity of EvaD.

  9. Life-history evolution and the microevolution of intermediary metabolism: activities of lipid-metabolizing enzymes in life-history morphs of a wing-dimorphic cricket.

    PubMed

    Zera, Anthony J; Zhao, Zhangwu

    2003-03-01

    Although a considerable amount of information is available on the ecology, genetics, and physiology of life-history traits, much more limited data are available on the biochemical and genetic correlates of life-history variation within species. Specific activities of five enzymes of lipid biosynthesis and two enzymes of amino acid catabolism were compared among lines selected for flight-capable (LW[f]) versus flightless (SW) morphs of the cricket Gryllus firmus. These morphs, which exist in natural populations, differ genetically in ovarian growth (100-400% higher in SW) and aspects of flight capability including the size of wings and flight muscles, and the concentration of triglyceride flight fuel (40% greater in LW[f]). Consistently higher activity of each enzyme in LW(f) versus SW-selected lines, and strong co-segregation between morph and enzyme activity, demonstrated genetically based co-variance between wing morph and enzyme activity. Developmental profiles of enzyme activities strongly paralleled profiles of triglyceride accumulation during adulthood and previous measures of in vivo lipid biosynthesis. These data strongly imply that genetically based elevation in activities of lipogenic enzymes, and enzymes controlling the conversion of amino acids into lipids, is an important cause underlying the elevated accumulation of triglyceride in the LW(f) morph, a key biochemical component of the trade-off between elevated early fecundity and flight capability. Global changes in lipid and amino-acid metabolism appear to have resulted from microevolutionary alteration of regulators of metabolism. Finally, strong genotype x environment (diet) interactions were observed for most enzyme activities. Future progress in understanding the functional causes of life-history evolution requires a more detailed synthesis of the fields of life-history evolution and metabolic biochemistry. Wing polymorphism is a powerful experimental model in such integrative studies.

  10. Small heat shock protein AgsA: an effective stabilizer of enzyme activities.

    PubMed

    Tomoyasu, Toshifumi; Tabata, Atsushi; Ishikawa, Yoko; Whiley, Robert A; Nagamune, Hideaki

    2013-01-01

    A small heat shock protein, AgsA, possesses chaperone activity that can reduce the amount of heat-aggregated protein in vivo, and suppress the aggregation of chemical- and heat-denatured proteins in vitro. Therefore, we examined the ability of AgsA to stabilize the activity of several enzymes by using this chaperone activity. We observed that AgsA can stabilize the enzymatic activities of Renilla (Renilla reniformis) luciferase, firefly (Photinus pyralis) luciferase, and β-galactosidase, and showed comparable or greater stabilization of these enzymes than bovine serum albumin (BSA), a well-known stabilizer of enzyme activities. In particular, AgsA revealed better stabilization of Renilla luciferase and β-galactosidase than BSA under disulfide bond-reducing conditions with dithiothreitol. In addition, AgsA also increased the enzymatic performance of β-galactosidase and various restriction enzymes to a comparable or greater extent than BSA. These data indicate that AgsA may be useful as a general stabilizer of enzyme activities. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Antitumor properties and modulation of antioxidant enzymes' activity by Aloe vera leaf active principles isolated via supercritical carbon dioxide extraction.

    PubMed

    El-Shemy, H A; Aboul-Soud, M A M; Nassr-Allah, A A; Aboul-Enein, K M; Kabash, A; Yagi, A

    2010-01-01

    The aim of this study was to evaluate the potential anticancer properties and modulatory effect of selected Aloe vera (A. vera) active principles on antioxidant enzyme activities. Thus, three anthraquinones (Namely: aloesin, aloe-emodin and barbaloin) were extracted from A. vera leaves by supercritical fluid extraction and subsequently purified by high performance liquid chromatography. Additionally, the N-terminal octapeptide derived from verectin, a biologically active 14 kDa glycoprotein present in A. vera, was also tested. In vivo, active principles exhibited significant prolongation of the life span of tumor-transplanted animals in the following order: barbaloin> octapeptide> aloesin > aloe-emodin. A. vera active principles exhibited significant inhibition on Ehrlich ascite carcinoma cell (EACC) number, when compared to positive control group, in the following order: barbaloin> aloe-emodin > octapeptide > aloesin. Moreover, in trypan blue cell viability assay, active principles showed a significant concentration-dependent cytotoxicity against acute myeloid leukemia (AML) and acute lymphocytes leukemia (ALL) cancerous cells. Furthermore, in MTT cell viability test, aloe-emodin was found to be active against two human colon cancer cell lines (i.e. DLD-1 and HT2), with IC(50) values of 8.94 and 10.78 microM, respectively. Treatments of human AML leukemic cells with active principles (100 microg ml(-1)) resulted in varying intensities of internucleosomal DNA fragmentation, hallmark of cells undergoing apoptosis, in the following order: aloe-emodin> aloesin> barbaloin> octapeptide. Intererstingly, treatment of EACC tumors with active principles resulted in a significant elevation activity of key antioxidant enzymes (SOD, GST, tGPx, and LDH). Our data suggest that the tested A. vera compounds may exert their chemo-preventive effect through modulating antioxidant and detoxification enzyme activity levels, as they are one of the indicators of tumorigenesis. These

  12. The mouse liver displays daily rhythms in the metabolism of phospholipids and in the activity of lipid synthesizing enzymes.

    PubMed

    Gorné, Lucas D; Acosta-Rodríguez, Victoria A; Pasquaré, Susana J; Salvador, Gabriela A; Giusto, Norma M; Guido, Mario Eduardo

    2015-02-01

    The circadian system involves central and peripheral oscillators regulating temporally biochemical processes including lipid metabolism; their disruption leads to severe metabolic diseases (obesity, diabetes, etc). Here, we investigated the temporal regulation of glycerophospholipid (GPL) synthesis in mouse liver, a well-known peripheral oscillator. Mice were synchronized to a 12:12 h light-dark (LD) cycle and then released to constant darkness with food ad libitum. Livers collected at different times exhibited a daily rhythmicity in some individual GPL content with highest levels during the subjective day. The activity of GPL-synthesizing/remodeling enzymes: phosphatidate phosphohydrolase 1 (PAP-1/lipin) and lysophospholipid acyltransferases (LPLATs) also displayed significant variations, with higher levels during the subjective day and at dusk. We evaluated the temporal regulation of expression and activity of phosphatidylcholine (PC) synthesizing enzymes. PC is mainly synthesized through the Kennedy pathway with Choline Kinase (ChoK) as a key regulatory enzyme or through the phosphatidylethanolamine (PE) N-methyltransferase (PEMT) pathway. The PC/PE content ratio exhibited a daily variation with lowest levels at night, while ChoKα and PEMT mRNA expression displayed maximal levels at nocturnal phases. Our results demonstrate that mouse liver GPL metabolism oscillates rhythmically with a precise temporal control in the expression and/or activity of specific enzymes.

  13. Flavourzyme, an Enzyme Preparation with Industrial Relevance: Automated Nine-Step Purification and Partial Characterization of Eight Enzymes.

    PubMed

    Merz, Michael; Eisele, Thomas; Berends, Pieter; Appel, Daniel; Rabe, Swen; Blank, Imre; Stressler, Timo; Fischer, Lutz

    2015-06-17

    Flavourzyme is sold as a peptidase preparation from Aspergillus oryzae. The enzyme preparation is widely and diversely used for protein hydrolysis in industrial and research applications. However, detailed information about the composition of this mixture is still missing due to the complexity. The present study identified eight key enzymes by mass spectrometry and partially by activity staining on native polyacrylamide gels or gel zymography. The eight enzymes identified were two aminopeptidases, two dipeptidyl peptidases, three endopeptidases, and one α-amylase from the A. oryzae strain ATCC 42149/RIB 40 (yellow koji mold). Various specific marker substrates for these Flavourzyme enzymes were ascertained. An automated, time-saving nine-step protocol for the purification of all eight enzymes within 7 h was designed. Finally, the purified Flavourzyme enzymes were biochemically characterized with regard to pH and temperature profiles and molecular sizes.

  14. Remote enzyme activation using gold coated magnetite as antennae for radio frequency fields

    NASA Astrophysics Data System (ADS)

    Collins, Christian B.; Ackerson, Christopher J.

    2018-02-01

    The emerging field of remote enzyme activation, or the ability to remotely turn thermophilic increase enzyme activity, could be a valuable tool for understanding cellular processes. Through exploitation of the temperature dependence of enzymatic processes and high thermal stability of thermophilic enzymes these experiments utilize nanoparticles as `antennae' that convert radiofrequency (RF) radiation into local heat, increasing activity of the enzymes without increasing the temperature of the surrounding bulk solution. To investigate this possible tool, thermolysin, a metalloprotease was covalently conjugated to 4nm gold coated magnetite particles via peptide bond formation with the protecting ligand shell. RF stimulated protease activity at 17.76 MHz in a solenoid shaped antenna, utilizing both electric and magnetic field interactions was investigated. On average 40 percent higher protease activity was observed in the radio frequency fields then when bulk heating the sample to the same temperature. This is attributed to electrophoretic motion of the nanoparticle enzyme conjugates and local regions of heat generated by the relaxation of the magnetite cores with the oscillating field. Radio frequency local heating of nanoparticles conjugated to enzymes as demonstrated could be useful in the activation of specific enzymes in complex cellular environments.

  15. Differential expression of glucose-metabolizing enzymes in multiple sclerosis lesions.

    PubMed

    Nijland, Philip G; Molenaar, Remco J; van der Pol, Susanne M A; van der Valk, Paul; van Noorden, Cornelis J F; de Vries, Helga E; van Horssen, Jack

    2015-12-04

    Demyelinated axons in multiple sclerosis (MS) lesions have an increased energy demand in order to maintain conduction. However, oxidative stress-induced mitochondrial dysfunction likely alters glucose metabolism and consequently impairs neuronal function in MS. Imaging and pathological studies indicate that glucose metabolism is altered in MS, although the underlying mechanisms and its role in neurodegeneration remain elusive. We investigated expression patterns of key enzymes involved in glycolysis, tricarboxylic acid (TCA) cycle and lactate metabolism in well-characterized MS tissue to establish which regulators of glucose metabolism are involved in MS and to identify underlying mechanisms. Expression levels of glycolytic enzymes were increased in active and inactive MS lesions, whereas expression levels of enzymes involved in the TCA cycle were upregulated in active MS lesions, but not in inactive MS lesions. We observed reduced expression and production capacity of mitochondrial α-ketoglutarate dehydrogenase (αKGDH) in demyelinated axons, which correlated with signs of axonal dysfunction. In inactive lesions, increased expression of lactate-producing enzymes was observed in astrocytes, whereas lactate-catabolising enzymes were mainly detected in axons. Our results demonstrate that the expression of various enzymes involved in glucose metabolism is increased in both astrocytes and axons in active MS lesions. In inactive MS lesions, we provide evidence that astrocytes undergo a glycolytic shift resulting in enhanced astrocyte-axon lactate shuttling, which may be pivotal for the survival of demyelinated axons. In conclusion, we show that key enzymes involved in energy metabolism are differentially expressed in active and inactive MS lesions. Our findings imply that, in addition to reduced oxidative phosphorylation activity, other bioenergetic pathways are affected as well, which may contribute to ongoing axonal degeneration in MS.

  16. Inhibition of NEDD8-activating enzyme: a novel approach for the treatment of acute myeloid leukemia.

    PubMed

    Swords, Ronan T; Kelly, Kevin R; Smith, Peter G; Garnsey, James J; Mahalingam, Devalingam; Medina, Ernest; Oberheu, Kelli; Padmanabhan, Swaminathan; O'Dwyer, Michael; Nawrocki, Steffan T; Giles, Francis J; Carew, Jennifer S

    2010-05-06

    NEDD8 activating enzyme (NAE) has been identified as an essential regulator of the NEDD8 conjugation pathway, which controls the degradation of many proteins with important roles in cell-cycle progression, DNA damage, and stress responses. Here we report that MLN4924, a novel inhibitor of NAE, has potent activity in acute myeloid leukemia (AML) models. MLN4924 induced cell death in AML cell lines and primary patient specimens independent of Fms-like tyrosine kinase 3 expression and stromal-mediated survival signaling and led to the stabilization of key NAE targets, inhibition of nuclear factor-kappaB activity, DNA damage, and reactive oxygen species generation. Disruption of cellular redox status was shown to be a key event in MLN4924-induced apoptosis. Administration of MLN4924 to mice bearing AML xenografts led to stable disease regression and inhibition of NEDDylated cullins. Our findings indicate that MLN4924 is a highly promising novel agent that has advanced into clinical trials for the treatment of AML.

  17. Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities.

    PubMed

    Alvarez, Maricel; Huygens, Dries; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Drought stress conditions (DC) reduce plant growth and nutrition, restraining the sustainable reestablishment of Nothofagus dombeyi in temperate south Chilean forest ecosystems. Ectomycorrhizal symbioses have been documented to enhance plant nitrogen (N) and phosphorus (P) uptake under drought, but the regulation of involved assimilative enzymes remains unclear. We studied 1-year-old N. dombeyi (Mirb.) Oerst. plants in association with the ectomycorrhizal fungi Pisolithus tinctorius (Pers.) Coker & Couch. and Descolea antartica Sing. In greenhouse experiments, shoot and root dry weights, mycorrhizal colonization, foliar N and P concentrations, and root enzyme activities [glutamate synthase (glutamine oxoglutarate aminotransferase (GOGAT), EC 1.4.1.13-14), glutamine synthetase (GS, EC 6.3.1.2), glutamate dehydrogenase (GDH, EC 1.4.1.2-4), nitrate reductase (NR, EC 1.6.6.1), and acid phosphomonoesterase (PME, EC 3.1.3.1-2)] were determined as a function of soil-water content. Inoculation of N. dombeyi with P. tinctorius and D. antartica significantly stimulated plant growth and increased plant foliar N and P concentrations, especially under DC. Ectomycorrhizal inoculation increased the activity of all studied enzymes relative to non-mycorrhizal plants under drought. We speculate that GDH is a key enzyme involved in the enhancement of ectomycorrhizal carbon (C) availability by fuelling the tricarboxylic acid (TCA) cycle under conditions of drought-induced carbon deficit. All studied assimilative enzymes of the ectomycorrhizal associations, involved in C, N, and P transfers, are closely interlinked and interdependent. The up-regulation of assimilative enzyme activities by ectomycorrhizal fungal root colonizers acts as a functional mechanism to increase seedling endurance to drought. We insist upon incorporating ectomycorrhizal inoculation in existing Chilean afforestation programs.

  18. Activity of selected hydrolytic enzymes in Allium sativum L. anthers.

    PubMed

    Winiarczyk, Krystyna; Gębura, Joanna

    2016-05-01

    The aim of the study was to determine enzymatic activity in sterile Allium sativum anthers in the final stages of male gametophyte development (the stages of tetrads and free microspores). The analysed enzymes were shown to occur in the form of numerous isoforms. In the tetrad stage, esterase activity was predominant, which was manifested by the greater number of isoforms of the enzyme. In turn, in the microspore stage, higher numbers of isoforms of acid phosphatases and proteases were detected. The development of sterile pollen grains in garlic is associated with a high level of protease and acid phosphatase activity and lower level of esterase activities in the anther locule. Probably this is the first description of the enzymes activity (ACPH, EST, PRO) in the consecutives stages of cell wall formation which is considered to be one of the causes of male sterility in flowering plant. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Soil Minerals Affect Extracellular Enzyme Activities in Cold and Warm Environments

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Morin, M. M.; Graham, D. E.; Wullschleger, S. D.; Gu, B.

    2017-12-01

    Extracellular enzymes are mainly responsible for degrading and cycling soil organic matter (SOM) in both cold and warm terrestrial ecosystems. Minerals can play important roles in affecting soil enzyme activities, however, the interactions between enzyme and soil minerals remain poorly understood. In this study, we developed a model soil-enzyme system to examine the mineral effects on a hydrolytic enzyme (i.e., β-glucosidase) under both cold (4°C) and relatively warm (20 and 30°C) conditions. Minerals including iron oxides and clays (e.g., kaolinite and montmorillonite) were used to mimic different types of soils, and enzyme adsorption experiments were conducted to determine the enzyme interactions with different mineral surfaces. Time-series experiments were also carried out to measure enzymatic degradation of the organic substrates, such as cellobiose and indican. We observed that fractions of adsorbed enzyme and the hydrolytic activity were higher on iron oxides (e.g., hematite) compared to kaolinite and montmorillonite at given experimental conditions. The degradation of cellobiose was significantly faster than that of indican in the presence of minerals. We also found that the adsorption of enzyme was not dependent on the mineral surface areas, but was controlled by the mineral surface charge. In addition, temperature increase from 4 to 30°C enhanced mineral-assisted glucosidase hydrolysis by 2 to 4 fold, suggesting greater degradation under warmer environments. The present work demonstrates that the enzyme activity is influenced not only by the soil temperature but also by the surface chemistry of soil minerals. Our results highlight the need to consider the physical and chemical properties of minerals in biogeochemical models, which could provide a better prediction for enzyme-facilitated SOM transformations in terrestrial ecosystems.

  20. Optimization of Enzyme Co-Immobilization with Sodium Alginate and Glutaraldehyde-Activated Chitosan Beads.

    PubMed

    Gür, Sinem Diken; İdil, Neslihan; Aksöz, Nilüfer

    2018-02-01

    In this study, two different materials-alginate and glutaraldehyde-activated chitosan beads-were used for the co-immobilization of α-amylase, protease, and pectinase. Firstly, optimization of multienzyme immobilization with Na alginate beads was carried out. Optimum Na alginate and CaCl 2 concentration were found to be 2.5% and 0.1 M, respectively, and optimal enzyme loading ratio was determined as 2:1:0.02 for pectinase, protease, and α-amylase, respectively. Next, the immobilization of multiple enzymes on glutaraldehyde-activated chitosan beads was optimized (3% chitosan concentration, 0.25% glutaraldehyde with 3 h of activation and 3 h of coupling time). While co-immobilization was successfully performed with both materials, the specific activities of enzymes were found to be higher for the enzymes co-immobilized with glutaraldehyde-activated chitosan beads. In this process, glutaraldehyde was acting as a spacer arm. SEM and FTIR were used for the characterization of activated chitosan beads. Moreover, pectinase and α-amylase enzymes immobilized with chitosan beads were also found to have higher activity than their free forms. Three different enzymes were co-immobilized with these two materials for the first time in this study.

  1. Crystallographic structure of a small molecule SIRT1 activator-enzyme complex

    NASA Astrophysics Data System (ADS)

    Dai, Han; Case, April W.; Riera, Thomas V.; Considine, Thomas; Lee, Jessica E.; Hamuro, Yoshitomo; Zhao, Huizhen; Jiang, Yong; Sweitzer, Sharon M.; Pietrak, Beth; Schwartz, Benjamin; Blum, Charles A.; Disch, Jeremy S.; Caldwell, Richard; Szczepankiewicz, Bruce; Oalmann, Christopher; Yee Ng, Pui; White, Brian H.; Casaubon, Rebecca; Narayan, Radha; Koppetsch, Karsten; Bourbonais, Francis; Wu, Bo; Wang, Junfeng; Qian, Dongming; Jiang, Fan; Mao, Cheney; Wang, Minghui; Hu, Erding; Wu, Joe C.; Perni, Robert B.; Vlasuk, George P.; Ellis, James L.

    2015-07-01

    SIRT1, the founding member of the mammalian family of seven NAD+-dependent sirtuins, is composed of 747 amino acids forming a catalytic domain and extended N- and C-terminal regions. We report the design and characterization of an engineered human SIRT1 construct (mini-hSIRT1) containing the minimal structural elements required for lysine deacetylation and catalytic activation by small molecule sirtuin-activating compounds (STACs). Using this construct, we solved the crystal structure of a mini-hSIRT1-STAC complex, which revealed the STAC-binding site within the N-terminal domain of hSIRT1. Together with hydrogen-deuterium exchange mass spectrometry (HDX-MS) and site-directed mutagenesis using full-length hSIRT1, these data establish a specific STAC-binding site and identify key intermolecular interactions with hSIRT1. The determination of the interface governing the binding of STACs with human SIRT1 facilitates greater understanding of STAC activation of this enzyme, which holds significant promise as a therapeutic target for multiple human diseases.

  2. Crystal Structures of Trypanosoma cruzi UDP-Galactopyranose Mutase Implicate Flexibility of the Histidine Loop in Enzyme Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle

    2012-11-01

    Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Here we report crystal structures of the galactofuranose biosynthetic enzyme UDP-galactopyranose mutase (UGM) from T. cruzi, which are the first structures of this enzyme from a protozoan parasite. UGM is an attractive target for drug design because galactofuranose is absent in humans but is an essential component of key glycoproteins and glycolipids in trypanosomatids. Analysis of the enzyme-UDP noncovalent interactions and sequence alignments suggests that substrate recognition is exquisitely conserved among eukaryotic UGMs and distinct from that of bacterial UGMs. This observation has implications for inhibitormore » design. Activation of the enzyme via reduction of the FAD induces profound conformational changes, including a 2.3 {angstrom} movement of the histidine loop (Gly60-Gly61-His62), rotation and protonation of the imidazole of His62, and cooperative movement of residues located on the si face of the FAD. Interestingly, these changes are substantially different from those described for Aspergillus fumigatus UGM, which is 45% identical to T. cruzi UGM. The importance of Gly61 and His62 for enzymatic activity was studied with the site-directed mutant enzymes G61A, G61P, and H62A. These mutations lower the catalytic efficiency by factors of 10-50, primarily by decreasing k{sub cat}. Considered together, the structural, kinetic, and sequence data suggest that the middle Gly of the histidine loop imparts flexibility that is essential for activation of eukaryotic UGMs. Our results provide new information about UGM biochemistry and suggest a unified strategy for designing inhibitors of UGMs from the eukaryotic pathogens.« less

  3. Crystal Structures of Trypanosoma cruzi UDP-Galactopyranose Mutase Implicate Flexibility of the Histidine Loop in Enzyme Activation

    PubMed Central

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle; Sobrado, Pablo; Tanner, John J.

    2012-01-01

    Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Here we report crystal structures of the galactofuranose biosynthetic enzyme UDP-galactopyranose mutase (UGM) from T. cruzi, which are the first structures of this enzyme from a protozoan parasite. UGM is an attractive target for drug design because galactofuranose is absent in humans but is an essential component of key glycoproteins and glycolipids in trypanosomatids. Analysis of the enzyme-UDP noncovalent interactions and sequence alignments suggests that substrate recognition is exquisitely conserved among eukaryotic UGMs and distinct from that of bacterial UGMs. This observation has implications for inhibitor design. Activation of the enzyme via reduction of the FAD induces profound conformational changes, including a 2.3-Å movement of the histidine loop (Gly60-Gly61-His62), rotation and protonation of the imidazole of His62, and cooperative movement of residues located on the si face of the FAD. Interestingly, these changes are substantially different from those described for Aspergillus fumigatus UGM, which is 45 % identical to T. cruzi UGM. The importance of Gly61 and His62 for enzymatic activity was studied with the site-directed mutant enzymes G61A, G61P, and H62A. These mutations lower the catalytic efficiency by factors of 10–50, primarily by decreasing kcat. Considered together, the structural, kinetic, and sequence data suggest that the middle Gly of the histidine loop imparts flexibility that is essential for activation of eukaryotic UGMs. Our results provide new information about UGM biochemistry and suggest a unified strategy for designing inhibitors of UGMs from the eukaryotic pathogens. PMID:22646091

  4. Crystal structures of Trypanosoma cruzi UDP-galactopyranose mutase implicate flexibility of the histidine loop in enzyme activation.

    PubMed

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle; Sobrado, Pablo; Tanner, John J

    2012-06-19

    Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Here we report crystal structures of the galactofuranose biosynthetic enzyme UDP-galactopyranose mutase (UGM) from T. cruzi, which are the first structures of this enzyme from a protozoan parasite. UGM is an attractive target for drug design because galactofuranose is absent in humans but is an essential component of key glycoproteins and glycolipids in trypanosomatids. Analysis of the enzyme-UDP noncovalent interactions and sequence alignments suggests that substrate recognition is exquisitely conserved among eukaryotic UGMs and distinct from that of bacterial UGMs. This observation has implications for inhibitor design. Activation of the enzyme via reduction of the FAD induces profound conformational changes, including a 2.3 Å movement of the histidine loop (Gly60-Gly61-His62), rotation and protonation of the imidazole of His62, and cooperative movement of residues located on the si face of the FAD. Interestingly, these changes are substantially different from those described for Aspergillus fumigatus UGM, which is 45% identical to T. cruzi UGM. The importance of Gly61 and His62 for enzymatic activity was studied with the site-directed mutant enzymes G61A, G61P, and H62A. These mutations lower the catalytic efficiency by factors of 10-50, primarily by decreasing k(cat). Considered together, the structural, kinetic, and sequence data suggest that the middle Gly of the histidine loop imparts flexibility that is essential for activation of eukaryotic UGMs. Our results provide new information about UGM biochemistry and suggest a unified strategy for designing inhibitors of UGMs from the eukaryotic pathogens.

  5. Spatial distribution of enzyme activities along the root and in the rhizosphere of different plants

    NASA Astrophysics Data System (ADS)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Extracellular enzymes are important for decomposition of many biological macromolecules abundant in soil such as cellulose, hemicelluloses and proteins. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. So far acquisition of in situ data about local activity of different enzymes in soil has been challenged. That is why there is an urgent need in spatially explicit methods such as 2-D zymography to determine the variation of enzymes along the roots in different plants. Here, we developed further the zymography technique in order to quantitatively visualize the enzyme activities (Spohn and Kuzyakov, 2013), with a better spatial resolution We grew Maize (Zea mays L.) and Lentil (Lens culinaris) in rhizoboxes under optimum conditions for 21 days to study spatial distribution of enzyme activity in soil and along roots. We visualized the 2D distribution of the activity of three enzymes:β-glucosidase, leucine amino peptidase and phosphatase, using fluorogenically labelled substrates. Spatial resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography shows different pattern of spatial distribution of enzyme activity along roots and soil of different plants. We observed a uniform distribution of enzyme activities along the root system of Lentil. However, root system of Maize demonstrated inhomogeneity of enzyme activities. The apical part of an individual root (root tip) in maize showed the highest activity. The activity of all enzymes was the highest at vicinity of the roots and it decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify

  6. Long-range electrostatic complementarity governs substrate recognition by human chymotrypsin C, a key regulator of digestive enzyme activation.

    PubMed

    Batra, Jyotica; Szabó, András; Caulfield, Thomas R; Soares, Alexei S; Sahin-Tóth, Miklós; Radisky, Evette S

    2013-04-05

    Human chymotrypsin C (CTRC) is a pancreatic serine protease that regulates activation and degradation of trypsinogens and procarboxypeptidases by targeting specific cleavage sites within their zymogen precursors. In cleaving these regulatory sites, which are characterized by multiple flanking acidic residues, CTRC shows substrate specificity that is distinct from that of other isoforms of chymotrypsin and elastase. Here, we report the first crystal structure of active CTRC, determined at 1.9-Å resolution, revealing the structural basis for binding specificity. The structure shows human CTRC bound to the small protein protease inhibitor eglin c, which binds in a substrate-like manner filling the S6-S5' subsites of the substrate binding cleft. Significant binding affinity derives from burial of preferred hydrophobic residues at the P1, P4, and P2' positions of CTRC, although acidic P2' residues can also be accommodated by formation of an interfacial salt bridge. Acidic residues may also be specifically accommodated in the P6 position. The most unique structural feature of CTRC is a ring of intense positive electrostatic surface potential surrounding the primarily hydrophobic substrate binding site. Our results indicate that long-range electrostatic attraction toward substrates of concentrated negative charge governs substrate discrimination, which explains CTRC selectivity in regulating active digestive enzyme levels.

  7. Angiotensin-converting enzyme 2 activation improves endothelial function.

    PubMed

    Fraga-Silva, Rodrigo A; Costa-Fraga, Fabiana P; Murça, Tatiane M; Moraes, Patrícia L; Martins Lima, Augusto; Lautner, Roberto Q; Castro, Carlos H; Soares, Célia Maria A; Borges, Clayton L; Nadu, Ana Paula; Oliveira, Marilene L; Shenoy, Vinayak; Katovich, Michael J; Santos, Robson A S; Raizada, Mohan K; Ferreira, Anderson J

    2013-06-01

    Diminished release and function of endothelium-derived nitric oxide coupled with increases in reactive oxygen species production is critical in endothelial dysfunction. Recent evidences have shown that activation of the protective axis of the renin-angiotensin system composed by angiotensin-converting enzyme 2, angiotensin-(1-7), and Mas receptor promotes many beneficial vascular effects. This has led us to postulate that activation of intrinsic angiotensin-converting enzyme 2 would improve endothelial function by decreasing the reactive oxygen species production. In the present study, we tested 1-[[2-(dimetilamino)etil]amino]-4-(hidroximetil)-7-[[(4-metilfenil)sulfonil]oxi]-9H-xantona-9 (XNT), a small molecule angiotensin-converting enzyme 2 activator, on endothelial function to validate this hypothesis. In vivo treatment with XNT (1 mg/kg per day for 4 weeks) improved the endothelial function of spontaneously hypertensive rats and of streptozotocin-induced diabetic rats when evaluated through the vasorelaxant responses to acetylcholine/sodium nitroprusside. Acute in vitro incubation with XNT caused endothelial-dependent vasorelaxation in aortic rings of rats. This vasorelaxation effect was attenuated by the Mas antagonist D-pro7-Ang-(1-7), and it was reduced in Mas knockout mice. These effects were associated with reduction in reactive oxygen species production. In addition, Ang II-induced reactive oxygen species production in human aortic endothelial cells was attenuated by preincubation with XNT. These results showed that chronic XNT administration improves the endothelial function of hypertensive and diabetic rat vessels by attenuation of the oxidative stress. Moreover, XNT elicits an endothelial-dependent vasorelaxation response, which was mediated by Mas. Thus, this study indicated that angiotensin-converting enzyme 2 activation promotes beneficial effects on the endothelial function and it is a potential target for treating cardiovascular disease.

  8. Photoreactivating enzyme activity in the rat tapeworm, Hymenolepis diminuta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodhead, A.D.; Achey, P.M.

    1981-06-01

    There has been considerable speculation about the occurrence of photoreactivating enzyme in different organisms and about its biological purpose. We have developed a simple, sensitive assay for estimating pyrimidine dimers in DNA which is useful in making a rapid survey for the presence of the enzyme. Using this method, we have found photoreactivating enzyme activity in the tissues of the rat tapeworm Hymenolepis diminuta. This parasite spends the majority of its life span in the bodies of its definitive or intermediate hosts, but a period is spent externally. We suggest that photoreactivating enzyme may be important in preserving the integritymore » of embryonic DNA during this free-living stage.« less

  9. Photoreactivating enzyme activity in the rat tapeworm, Hymenolepis diminuta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodhead, A.D.; Achey, P.M.

    1981-01-01

    There has been considerable speculation about the occurrence of photoreactivating enzyme in different organisms and about its biologic purpose. We have developed a simple, sensitive assay for estimating pyrimidine dimers in DNA which is useful in making a rapid survey for the presence of the enzyme. Using this method, we have found photoreactivating enzyme activity in the tissues of the rat tapeworm, Hymenolepis diminuta. This parasite spends the majority of its life span in the bodies of its definitive or intermediate hosts, but a period is spent externally. We suggest that photoreactivating enzyme may be important in perserving the integritymore » of embryonic DNA during this free-living stage.« less

  10. Full activation of RNaseL in animal cells requires binding of 2-5A within ankyrin repeats 6 to 9 of this interferon-inducible enzyme.

    PubMed

    Díaz-Guerra, M; Rivas, C; Esteban, M

    1999-02-01

    To define protein domains important for activation of the interferon (IFN)-induced enzyme 2-5A-dependent RNaseL, we have generated vaccinia virus (VV) recombinants able to express in cultured cells truncated forms of this protein and compared their biologic activities with those producing the wild-type enzyme, with and without coexpression of 2-5A synthetase. Our results show that full activation of RNaseL requires binding of 2-5A oligonucleotides within amino acid positions 212-339, corresponding to ankyrin repeats 6 to 9. The protein kinase and ribonuclease domains of RNaseL, amino acids 340-741, are sufficient for a constitutively active enzyme that is unresponsive to excess 2-5A. These results demonstrate in vivo the importance of the ankyrin domains in the biologic function of RNaseL. We suggest that ankyrin repeats act as key modulators of RNaseL activity.

  11. Functional screening of pharmacological chaperones via restoration of enzyme activity upon denaturation.

    PubMed

    Shanmuganathan, Meera; Britz-McKibbin, Philip

    2012-10-02

    Pharmacological chaperones (PCs) are small molecules that stabilize and promote protein folding. Enzyme inhibition is widely used for PC selection; however, it does not accurately reflect chaperone activity. We introduce a functional assay for characterization of PCs based on their capacity to restore enzyme activity that is abolished upon chemical denaturation. Dose-dependent activity curves were performed as a function of urea to assess the chaperone potency of various ligands to β-glucocerebrosidase as a model system. Restoration of enzyme activity upon denaturation allows direct screening of PCs for treatment of genetic disorders associated with protein deficiency, such as Gaucher disease.

  12. Activities of Tricarboxylic Acid Cycle Enzymes, Glyoxylate Cycle Enzymes, and Fructose Diphosphatase in Bakers' Yeast During Adaptation to Acetate Oxidation

    PubMed Central

    Gosling, J. P.; Duggan, P. F.

    1971-01-01

    Bakers' yeast oxidizes acetate at a high rate only after an adaptation period during which the capacity of the glyoxylate cycle is found to increase. There was apparently no necessity for the activity of acetyl-coenzyme A synthetase, the capacity of the tricarboxylic acid cycle, or the concentrations of the cytochromes to increase for this adaptation to occur. Elevation of fructose 1,6 diphosphatase occurred only when acetate oxidation was nearly maximal. Cycloheximide almost completely inhibited adaptation as well as increases in the activities of isocitrate lyase and aconitate hydratase, the only enzymes assayed. p-Fluorophenylalanine was partially effective and chloramphenicol did not inhibit at all. The presence of ammonium, which considerably delayed adaptation of the yeast to acetate oxidation, inhibited the increases in the activities of the glyoxylate cycle enzymes to different degrees, demonstrating noncoordinate control of these enzymes. Under the various conditions, the only enzyme activity increase consistently related to the rising oxygen uptake rate was that of isocitrate lyase which apparently limited the activity of the cycle. PMID:5557595

  13. Characterization of the receptor-destroying enzyme activity from infectious salmon anaemia virus.

    PubMed

    Kristiansen, Marianne; Frøystad, Marianne K; Rishovd, Anne Lise; Gjøen, Tor

    2002-11-01

    Infectious salmon anaemia virus (ISAV) infects cells via the endocytic pathway and, like many other enveloped viruses, ISAV contains a receptor-destroying enzyme. We have analysed this acetylesterase activity with respect to substrate specificity, enzyme kinetics, inhibitors, temperature and pH stability. The ISAV acetylesterase was inhibited by di-isopropyl fluorophosphate (DFP) in a dose-dependent fashion but not by other known hydrolase inhibitors, suggesting that a serine residue is part of the active site. The pH optimum of the enzyme was in the range 7.5-8.0 and the enzymatic activity was lessened at temperatures above 40 degrees C. The effect of DFP on agglutination/elution of erythrocytes by ISAV demonstrated that the acetylesterase activity is the bona fide receptor-destroying enzyme. A haemadsorption assay was used to analyse whether the esterase was active on the surface of infected cells or not.

  14. Enzyme activity screening of thermophilic bacteria isolated from Dusun Tua Hot Spring, Malaysia

    NASA Astrophysics Data System (ADS)

    Msarah, Marwan; Ibrahim, Izyanti; Aqma, Wan Syaidatul

    2018-04-01

    Thermophilic bacteria have biotechnological importance due to the availability of unique enzymes which are stable in extreme circumstances. The aim of this study includes to isolate thermophilic bacteria from hot spring and screen for important enzyme activities. Water samples from the Dusun Tua Hot Spring were collected and the physiochemical characterisation of water was measured. Eight thermophilic bacteria were isolated and determined to have at least three strong enzyme activity including protease, lipase, amylase, cellulase, pectinase and xylanase. The results showed that HuluC2 displayed all the enzyme activities and can be further studied.

  15. A new versatile microarray-based method for high throughput screening of carbohydrate-active enzymes.

    PubMed

    Vidal-Melgosa, Silvia; Pedersen, Henriette L; Schückel, Julia; Arnal, Grégory; Dumon, Claire; Amby, Daniel B; Monrad, Rune Nygaard; Westereng, Bjørge; Willats, William G T

    2015-04-03

    Carbohydrate-active enzymes have multiple biological roles and industrial applications. Advances in genome and transcriptome sequencing together with associated bioinformatics tools have identified vast numbers of putative carbohydrate-degrading and -modifying enzymes including glycoside hydrolases and lytic polysaccharide monooxygenases. However, there is a paucity of methods for rapidly screening the activities of these enzymes. By combining the multiplexing capacity of carbohydrate microarrays with the specificity of molecular probes, we have developed a sensitive, high throughput, and versatile semiquantitative enzyme screening technique that requires low amounts of enzyme and substrate. The method can be used to assess the activities of single enzymes, enzyme mixtures, and crude culture broths against single substrates, substrate mixtures, and biomass samples. Moreover, we show that the technique can be used to analyze both endo-acting and exo-acting glycoside hydrolases, polysaccharide lyases, carbohydrate esterases, and lytic polysaccharide monooxygenases. We demonstrate the potential of the technique by identifying the substrate specificities of purified uncharacterized enzymes and by screening enzyme activities from fungal culture broths. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. A New Versatile Microarray-based Method for High Throughput Screening of Carbohydrate-active Enzymes*

    PubMed Central

    Vidal-Melgosa, Silvia; Pedersen, Henriette L.; Schückel, Julia; Arnal, Grégory; Dumon, Claire; Amby, Daniel B.; Monrad, Rune Nygaard; Westereng, Bjørge; Willats, William G. T.

    2015-01-01

    Carbohydrate-active enzymes have multiple biological roles and industrial applications. Advances in genome and transcriptome sequencing together with associated bioinformatics tools have identified vast numbers of putative carbohydrate-degrading and -modifying enzymes including glycoside hydrolases and lytic polysaccharide monooxygenases. However, there is a paucity of methods for rapidly screening the activities of these enzymes. By combining the multiplexing capacity of carbohydrate microarrays with the specificity of molecular probes, we have developed a sensitive, high throughput, and versatile semiquantitative enzyme screening technique that requires low amounts of enzyme and substrate. The method can be used to assess the activities of single enzymes, enzyme mixtures, and crude culture broths against single substrates, substrate mixtures, and biomass samples. Moreover, we show that the technique can be used to analyze both endo-acting and exo-acting glycoside hydrolases, polysaccharide lyases, carbohydrate esterases, and lytic polysaccharide monooxygenases. We demonstrate the potential of the technique by identifying the substrate specificities of purified uncharacterized enzymes and by screening enzyme activities from fungal culture broths. PMID:25657012

  17. Endothelin-converting enzyme 2 differentially regulates opioid receptor activity

    PubMed Central

    Gupta, A; Fujita, W; Gomes, I; Bobeck, E; Devi, L A

    2015-01-01

    BACKGROUND AND PURPOSE Opioid receptor function is modulated by post-activation events such as receptor endocytosis, recycling and/or degradation. While it is generally understood that the peptide ligand gets co-endocytosed with the receptor, relatively few studies have investigated the role of the endocytosed peptide and peptide processing enzymes in regulating receptor function. In this study, we focused on endothelin-converting enzyme 2 (ECE2), a member of the neprilysin family of metallopeptidases that exhibits an acidic pH optimum, localizes to an intracellular compartment and selectively processes neuropeptides including opioid peptides in vitro, and examined its role in modulating μ receptor recycling and resensitization. EXPERIMENTAL APPROACH The effect of ECE2 inhibition on hydrolysis of the endocytosed peptide was examined using thin-layer chromatography and on μ opioid receptor trafficking using either elisa or microscopy. The effect of ECE2 inhibition on receptor signalling was measured using a cAMP assay and, in vivo, on antinociception induced by intrathecally administered opioids by the tail-flick assay. KEY RESULTS The highly selective ECE2 inhibitor, S136492, significantly impaired μ receptor recycling and signalling by only those ligands that are ECE2 substrates and this was seen both in heterologous cells and in cells endogenously co-expressing μ receptors with ECE2. We also found that ECE2 inhibition attenuated antinociception mediated only by opioid peptides that are ECE2 substrates. CONCLUSIONS AND IMPLICATIONS These results suggest that ECE2, by selectively processing endogenous opioid peptides in the endocytic compartment, plays a role in modulating opioid receptor activity. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24990314

  18. Understanding drivers of peatland extracellular enzyme activity in the PEATcosm experiment: mixed evidence for enzymic latch hypothesis

    Treesearch

    Karl J. Romanowicz; Evan S. Kane; Lynette R. Potvin; Aleta L. Daniels; Randy Kolka; Erik A. Lilleskov

    2015-01-01

    Aims. Our objective was to assess the impacts of water table position and plant functional groups on peatland extracellular enzyme activity (EEA) framed within the context of the enzymic latch hypothesis. Methods. We utilized a full factorial experiment with 2 water table (WT) treatments (high and low) and 3 plant functional...

  19. A conformational switch in the inhibitory gamma-subunit of PDE6 upon enzyme activation by transducin.

    PubMed

    Granovsky, A E; Artemyev, N O

    2001-11-06

    In response to light, a photoreceptor G protein, transducin, activates cGMP-phosphodiesterase (PDE6) by displacing the inhibitory gamma-subunits (Pgamma) from the enzyme's catalytic sites. Evidence suggests that the activation of PDE6 involves a conformational change of the key inhibitory C-terminal domain of Pgamma. In this study, the C-terminal region of Pgamma, Pgamma-73-85, has been targeted for Ala-scanning mutagenesis to identify the point-to-point interactions between Pgamma and the PDE6 catalytic subunits and to probe the nature of the conformational change. Pgamma mutants were tested for their ability to inhibit PDE6 and a chimeric PDE5-conePDE6 enzyme containing the Pgamma C-terminus-binding site of cone PDE. This analysis has revealed that in addition to previously characterized Ile86 and Ile87, important inhibitory contact residues of Pgamma include Asn74, His75, and Leu78. The patterns of mutant PDE5-conePDE6 enzyme inhibition suggest the interaction between the PgammaAsn74/His75 sequence and Met758 of the cone PDE6alpha' catalytic subunit. This interaction, and the interaction between the PgammaIle86/Ile87 and PDE6alpha'Phe777/Phe781 residues, is most consistent with an alpha-helical structure of the Pgamma C-terminus. The analysis of activation of PDE6 enzymes containing Pgamma mutants with Ala-substituted transducin-contact residues demonstrated the critical role of PgammaLeu76. Accordingly, we hypothesize that the initial step in PDE6 activation involves an interaction of transducin-alpha with PgammaLeu76. This interaction introduces a bend into the alpha-helical structure of the Pgamma C-terminus, allowing transducin-alpha to further twist the C-terminus thereby uncovering the catalytic pocket of PDE6.

  20. Development of in vivo biotransformation enzyme assays for ecotoxicity screening: In vivo measurement of phases I and II enzyme activities in freshwater planarians.

    PubMed

    Li, Mei-Hui

    2016-08-01

    The development of a high-throughput tool is required for screening of environmental pollutants and assessing their impacts on aquatic animals. Freshwater planarians can be used in rapid and sensitive toxicity bioassays. Planarians are known for their remarkable regeneration ability but much less known for their metabolic and xenobiotic biotransformation abilities. In this study, the activities of different phase I and II enzymes were determined in vivo by directly measuring fluorescent enzyme substrate disappearance or fluorescent enzyme metabolite production in planarian culture media. For phase I enzyme activity, O-deethylation activities with alkoxyresorufin could not be detected in planarian culture media. By contrast, O-deethylation activities with alkoxycoumarin were detected in planarian culture media. Increases in 7-ethoxycoumarin O-deethylase (ECOD) activities was only observed in planarians exposed to 1μM, but not 10μM, β-naphthoflavone for 24h. ECOD activity was inhibited in planarians exposed to 10 and 100μM rifampicin or carbamazepine for 24h. For phase II enzyme activity, DT-diaphorase, arylsulfatases, uridine 5'-diphospho (UDP)-glucuronosyltransferase or catechol-O-methyltransferase activity was determined in culture media containing planarians. The results of this study indicate that freshwater planarians are a promising model organism to monitor exposure to environmental pollutants or assess their impacts through the in vivo measurement of phase I and II enzyme activities. Copyright © 2016. Published by Elsevier Inc.

  1. Ultrasound assisted intensification of enzyme activity and its properties: a mini-review.

    PubMed

    Nadar, Shamraja S; Rathod, Virendra K

    2017-08-22

    Over the last decade, ultrasound technique has emerged as the potential technology which shows large applications in food and biotechnology processes. Earlier, ultrasound has been employed as a method of enzyme inactivation but recently, it has been found that ultrasound does not inactivate all enzymes, particularly, under mild conditions. It has been shown that the use of ultrasonic treatment at appropriate frequencies and intensity levels can lead to enhanced enzyme activity due to favourable conformational changes in protein molecules without altering its structural integrity. The present review article gives an overview of influence of ultrasound irradiation parameters (intensity, duty cycle and frequency) and enzyme related factors (enzyme concentration, temperature and pH) on the catalytic activity of enzyme during ultrasound treatment. Also, it includes the effect of ultrasound on thermal kinetic parameters and Michaelis-Menten kinetic parameters (k m and V max ) of enzymes. Further, in this review, the physical and chemical effects of ultrasound on enzyme have been correlated with thermodynamic parameters (enthalpy and entropy). Various techniques used for investigating the conformation changes in enzyme after sonication have been highlighted. At the end, different techniques of immobilization for ultrasound treated enzyme have been summarized.

  2. Induction of antioxidant enzyme activities by a phenylurea derivative, EDU.

    PubMed

    Stevens, T M; Boswell, G A; Adler, R; Ackerman, N R; Kerr, J S

    1988-10-01

    Oxygen free radicals have the potential to mediate cell injury. Defenses against such radicals include the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX). The purposes of this study were (1) to develop an in vitro model using human cells in which to investigate a potential pharmacologic agent as an inducer of these antioxidant enzymes; (2) to investigate the phenylurea derivative N-[2-(2-oxo-1-imidazolindinyl)ethyl]-N-phenylurea (EDU) in this model with paraquat (PQ) serving as the positive control; and (3) to determine if induction of the antioxidant enzymes by EDU occurs in vivo. Human gingival fibroblasts (Gin-1) were used as the target cell in vitro; PQ and EDU, an inducer of SOD and CAT activities in plants, were evaluated as antioxidant enzyme inducers. Total SOD activity in Gin-1 cells increased 2-fold (p less than 0.05) in the presence of 1.0 mM PQ for 18-48 hr compared with untreated controls. Gin-1 cells incubated with 0.25-2.0 mM PQ for 24 hr had significantly increased total SOD (1.5 to 2.0-fold; p less than 0.05). CAT activity increased with 1.0 and 2.0 mM PQ (p less than 0.05). In the presence of PQ, GSH-PX activity decreased (p less than 0.05) in a concentration-dependent manner, indicating inactivation of this enzyme. No toxicity, indicated by lactate dehydrogenase released into the incubation medium, was noted at PQ concentrations below 5.0 mM. In the presence of 0.125-2.0 mM EDU, total SOD activity in Gin-1 cells significantly increased (1.5 to 2.0-fold; p less than 0.05). CAT activity significantly increased in a dose-dependent manner (p less than 0.05), while GSH-PX activity remained constant following exposure to 0.125-2.0 mM EDU. Intraperitoneal administration of EDU to rats twice a day for 2 days at 100 mg/kg induced SOD activity in heart, liver, and lung compared to controls (p less than 0.05). CAT activity increased in the liver 56% and in the lung 36% (p less than 0.05). GSH-PX activity

  3. Differential 3-bromopyruvate inhibition of cytosolic and mitochondrial human serine hydroxymethyltransferase isoforms, key enzymes in cancer metabolic reprogramming.

    PubMed

    Paiardini, Alessandro; Tramonti, Angela; Schirch, Doug; Guiducci, Giulia; di Salvo, Martino Luigi; Fiascarelli, Alessio; Giorgi, Alessandra; Maras, Bruno; Cutruzzolà, Francesca; Contestabile, Roberto

    2016-11-01

    The cytosolic and mitochondrial isoforms of serine hydroxymethyltransferase (SHMT1 and SHMT2, respectively) are well-recognized targets of cancer research, since their activity is critical for purine and pyrimidine biosynthesis and because of their prominent role in the metabolic reprogramming of cancer cells. Here we show that 3-bromopyruvate (3BP), a potent novel anti-tumour agent believed to function primarily by blocking energy metabolism, differentially inactivates human SHMT1 and SHMT2. SHMT1 is completely inhibited by 3BP, whereas SHMT2 retains a significant fraction of activity. Site directed mutagenesis experiments on SHMT1 demonstrate that selective inhibition relies on the presence of a cysteine residue at the active site of SHMT1 (Cys204) that is absent in SHMT2. Our results show that 3BP binds to SHMT1 active site, forming an enzyme-3BP complex, before reacting with Cys204. The physiological substrate l-serine is still able to bind at the active site of the inhibited enzyme, although catalysis does not occur. Modelling studies suggest that alkylation of Cys204 prevents a productive binding of l-serine, hampering interaction between substrate and Arg402. Conversely, the partial inactivation of SHMT2 takes place without the formation of a 3BP-enzyme complex. The introduction of a cysteine residue in the active site of SHMT2 by site directed mutagenesis (A206C mutation), at a location corresponding to that of Cys204 in SHMT1, yields an enzyme that forms a 3BP-enzyme complex and is completely inactivated. This work sets the basis for the development of selective SHMT1 inhibitors that target Cys204, starting from the structure and reactivity of 3BP. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Functional Characterization of Key Enzymes involved in l-Glutamate Synthesis and Degradation in the Thermotolerant and Methylotrophic Bacterium Bacillus methanolicus

    PubMed Central

    Krog, Anne; Heggeset, Tonje Marita Bjerkan; Ellingsen, Trond Erling

    2013-01-01

    Bacillus methanolicus wild-type strain MGA3 secretes 59 g/liter−1 of l-glutamate in fed-batch methanol cultivations at 50°C. We recently sequenced the MGA3 genome, and we here characterize key enzymes involved in l-glutamate synthesis and degradation. One glutamate dehydrogenase (GDH) that is encoded by yweB and two glutamate synthases (GOGATs) that are encoded by the gltAB operon and by gltA2 were found, in contrast to Bacillus subtilis, which has two different GDHs and only one GOGAT. B. methanolicus has a glutamine synthetase (GS) that is encoded by glnA and a 2-oxoglutarate dehydrogenase (OGDH) that is encoded by the odhAB operon. The yweB, gltA, gltB, and gltA2 gene products were purified and characterized biochemically in vitro. YweB has a low Km value for ammonium (10 mM) and a high Km value for l-glutamate (250 mM), and the Vmax value is 7-fold higher for l-glutamate synthesis than for the degradation reaction. GltA and GltA2 displayed similar Km values (1 to 1.4 mM) and Vmax values (4 U/mg) for both l-glutamate and 2-oxoglutarate as the substrates, and GltB had no effect on the catalytic activities of these enzymes in vitro. Complementation assays indicated that GltA and not GltA2 is dependent on GltB for GOGAT activity in vivo. To our knowledge, this is the first report describing the presence of two active GOGATs in a bacterium. In vivo experiments indicated that OGDH activity and, to some degree, GOGAT activity play important roles in regulating l-glutamate production in this organism. PMID:23811508

  5. Functional characterization of key enzymes involved in L-glutamate synthesis and degradation in the thermotolerant and methylotrophic bacterium Bacillus methanolicus.

    PubMed

    Krog, Anne; Heggeset, Tonje Marita Bjerkan; Ellingsen, Trond Erling; Brautaset, Trygve

    2013-09-01

    Bacillus methanolicus wild-type strain MGA3 secretes 59 g/liter(-1) of l-glutamate in fed-batch methanol cultivations at 50°C. We recently sequenced the MGA3 genome, and we here characterize key enzymes involved in l-glutamate synthesis and degradation. One glutamate dehydrogenase (GDH) that is encoded by yweB and two glutamate synthases (GOGATs) that are encoded by the gltAB operon and by gltA2 were found, in contrast to Bacillus subtilis, which has two different GDHs and only one GOGAT. B. methanolicus has a glutamine synthetase (GS) that is encoded by glnA and a 2-oxoglutarate dehydrogenase (OGDH) that is encoded by the odhAB operon. The yweB, gltA, gltB, and gltA2 gene products were purified and characterized biochemically in vitro. YweB has a low Km value for ammonium (10 mM) and a high Km value for l-glutamate (250 mM), and the Vmax value is 7-fold higher for l-glutamate synthesis than for the degradation reaction. GltA and GltA2 displayed similar Km values (1 to 1.4 mM) and Vmax values (4 U/mg) for both l-glutamate and 2-oxoglutarate as the substrates, and GltB had no effect on the catalytic activities of these enzymes in vitro. Complementation assays indicated that GltA and not GltA2 is dependent on GltB for GOGAT activity in vivo. To our knowledge, this is the first report describing the presence of two active GOGATs in a bacterium. In vivo experiments indicated that OGDH activity and, to some degree, GOGAT activity play important roles in regulating l-glutamate production in this organism.

  6. Experimental strategy to discover microbes with gluten-degrading enzyme activities

    NASA Astrophysics Data System (ADS)

    Helmerhorst, Eva J.; Wei, Guoxian

    2014-06-01

    Gluten proteins contained in the cereals barley, rye and wheat cause an inflammatory disorder called celiac disease in genetically predisposed individuals. Certain immunogenic gluten domains are resistant to degradation by mammalian digestive enzymes. Enzymes with the ability to target such domains are potentially of clinical use. Of particular interest are gluten-degrading enzymes that would be naturally present in the human body, e.g. associated with resident microbial species. This manuscript describes a selective gluten agar approach and four enzyme activity assays, including a gliadin zymogram assay, designed for the selection and discovery of novel gluten-degrading microorganisms from human biological samples. Resident and harmless bacteria and/or their derived enzymes could potentially find novel applications in the treatment of celiac disease, in the form of a probiotic agent or as a dietary enzyme supplement.

  7. Experimental Strategy to Discover Microbes with Gluten-degrading Enzyme Activities.

    PubMed

    Helmerhorst, Eva J; Wei, Guoxian

    2014-05-05

    Gluten proteins contained in the cereals barley, rye and wheat cause an inflammatory disorder called celiac disease in genetically predisposed individuals. Certain immunogenic gluten domains are resistant to degradation by mammalian digestive enzymes. Enzymes with the ability to target such domains are potentially of clinical use. Of particular interest are gluten-degrading enzymes that would be naturally present in the human body, e.g. associated with resident microbial species. This manuscript describes a selective gluten agar approach and four enzyme activity assays, including a gliadin zymogram assay, designed for the selection and discovery of novel gluten-degrading microorganisms from human biological samples. Resident and harmless bacteria and/or their derived enzymes could potentially find novel applications in the treatment of celiac disease, in the form of a probiotic agent or as a dietary enzyme supplement.

  8. Structure of the Mitochondrial Aminolevulinic Acid Synthase, a Key Heme Biosynthetic Enzyme.

    PubMed

    Brown, Breann L; Kardon, Julia R; Sauer, Robert T; Baker, Tania A

    2018-04-03

    5-Aminolevulinic acid synthase (ALAS) catalyzes the first step in heme biosynthesis. We present the crystal structure of a eukaryotic ALAS from Saccharomyces cerevisiae. In this homodimeric structure, one ALAS subunit contains covalently bound cofactor, pyridoxal 5'-phosphate (PLP), whereas the second is PLP free. Comparison between the subunits reveals PLP-coupled reordering of the active site and of additional regions to achieve the active conformation of the enzyme. The eukaryotic C-terminal extension, a region altered in multiple human disease alleles, wraps around the dimer and contacts active-site-proximal residues. Mutational analysis demonstrates that this C-terminal region that engages the active site is important for ALAS activity. Our discovery of structural elements that change conformation upon PLP binding and of direct contact between the C-terminal extension and the active site thus provides a structural basis for investigation of disruptions in the first step of heme biosynthesis and resulting human disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Activation energy of extracellular enzymes in soils from different biomes.

    PubMed

    Steinweg, J Megan; Jagadamma, Sindhu; Frerichs, Joshua; Mayes, Melanie A

    2013-01-01

    Enzyme dynamics are being incorporated into soil carbon cycling models and accurate representation of enzyme kinetics is an important step in predicting belowground nutrient dynamics. A scarce number of studies have measured activation energy (Ea) in soils and fewer studies have measured Ea in arctic and tropical soils, or in subsurface soils. We determined the Ea for four typical lignocellulose degrading enzymes in the A and B horizons of seven soils covering six different soil orders. We also elucidated which soil properties predicted any measurable differences in Ea. β-glucosidase, cellobiohydrolase, phenol oxidase and peroxidase activities were measured at five temperatures, 4, 21, 30, 40, and 60°C. Ea was calculated using the Arrhenius equation. β-glucosidase and cellobiohydrolase Ea values for both A and B horizons in this study were similar to previously reported values, however we could not make a direct comparison for B horizon soils because of the lack of data. There was no consistent relationship between hydrolase enzyme Ea and the environmental variables we measured. Phenol oxidase was the only enzyme that had a consistent positive relationship between Ea and pH in both horizons. The Ea in the arctic and subarctic zones for peroxidase was lower than the hydrolases and phenol oxidase values, indicating peroxidase may be a rate limited enzyme in environments under warming conditions. By including these six soil types we have increased the number of soil oxidative enzyme Ea values reported in the literature by 50%. This study is a step towards better quantifying enzyme kinetics in different climate zones.

  10. Mineralogical impact on long-term patterns of soil nitrogen and phosphorus enzyme activities

    NASA Astrophysics Data System (ADS)

    Mikutta, Robert; Turner, Stephanie; Meyer-Stüve, Sandra; Guggenberger, Georg; Dohrmann, Reiner; Schippers, Axel

    2014-05-01

    Soil chronosequences provide a unique opportunity to study microbial activity over time in mineralogical diverse soils of different ages. The main objective of this study was to test the effect of mineralogical properties, nutrient and organic matter availability over whole soil pro-files on the abundance and activity of the microbial communities. We focused on microbio-logical processes involved in nitrogen and phosphorus cycling at the 120,000-year Franz Josef soil chronosequence. Microbial abundances (microbial biomass and total cell counts) and enzyme activities (protease, urease, aminopeptidase, and phosphatase) were determined and related to nutrient contents and mineralogical soil properties. Both, microbial abundances and enzyme activities decreased with soil depth at all sites. In the organic layers, microbial biomass and the activities of N-hydrolyzing enzymes showed their maximum at the intermediate-aged sites, corresponding to a high aboveground biomass. In contrast, the phosphatase activity increased with site age. The activities of N-hydrolyzing enzymes were positively correlated with total carbon and nitrogen contents, whereas the phosphatase activity was negatively correlated with the phosphorus content. In the mineral soil, the enzyme activities were generally low, thus reflecting the presence of strongly sorbing minerals. Sub-strate-normalized enzyme activities correlated negatively to clay content as well as poorly crystalline Al and Fe oxyhydroxides, supporting the view that the evolution of reactive sec-ondary mineral phases alters the activity of the microbial communities by constraining sub-strate availability. Our data suggest a strong mineralogical influence on nutrient cycling par-ticularly in subsoil environments.

  11. Standardized Assay Medium To Measure Lactococcus lactis Enzyme Activities while Mimicking Intracellular Conditions

    PubMed Central

    Goel, Anisha; Santos, Filipe; de Vos, Willem M.; Teusink, Bas

    2012-01-01

    Knowledge of how the activity of enzymes is affected under in vivo conditions is essential for analyzing their regulation and constructing models that yield an integrated understanding of cell behavior. Current kinetic parameters for Lactococcus lactis are scattered through different studies and performed under different assay conditions. Furthermore, assay conditions often diverge from conditions prevailing in the intracellular environment. To establish uniform assay conditions that resemble intracellular conditions, we analyzed the intracellular composition of anaerobic glucose-limited chemostat cultures of L. lactis subsp. cremoris MG 1363. Based on this, we designed a new assay medium for enzyme activity measurements of growing cells of L. lactis, mimicking as closely as practically possible its intracellular environment. Procedures were optimized to be carried out in 96-well plates, and the reproducibility and dynamic range were checked for all enzyme activity measurements. The effects of freezing and the carryover of ammonium sulfate from the addition of coupling enzymes were also established. Activities of all 10 glycolytic and 4 fermentative enzymes were measured. Remarkably, most in vivo-like activities were lower than previously published data. Yet, the ratios of Vmax over measured in vivo fluxes were above 1. With this work, we have developed and extensively validated standard protocols for enzyme activity measurements for L. lactis. PMID:22020503

  12. Potential enzyme activities in cryoturbated organic matter of arctic soils

    NASA Astrophysics Data System (ADS)

    Schnecker, J.; Wild, B.; Rusalimova, O.; Mikutta, R.; Guggenberger, G.; Richter, A.

    2012-12-01

    An estimated 581 Gt organic carbon is stored in arctic soils that are affected by cryoturbtion, more than in today's atmosphere (450 Gt). The high amount of organic carbon is, amongst other factors, due to topsoil organic matter (OM) that has been subducted by freeze-thaw processes. This cryoturbated OM is usually hundreds to thousands of years old, while the chemical composition remains largely unaltered. It has therefore been suggested, that the retarded decomposition rates cannot be explained by unfavourable abiotic conditions in deeper soil layers alone. Since decomposition of soil organic material is dependent on extracellular enzymes, we measured potential and actual extracellular enzyme activities in organic topsoil, mineral subsoil and cryoturbated material from three different tundra sites, in Zackenberg (Greenland) and Cherskii (North-East Siberia). In addition we analysed the microbial community structure by PLFAs. Hydrolytic enzyme activities, calculated on a per gram dry mass basis, were higher in organic topsoil horizons than in cryoturbated horizons, which in turn were higher than in mineral horizons. When calculated on per gram carbon basis, the activity of the carbon acquiring enzyme exoglucanase was not significantly different between cryoturbated and topsoil organic horizons in any of the three sites. Oxidative enzymes, i.e. phenoloxidase and peroxidase, responsible for degradation of complex organic substances, showed higher activities in topsoil organic and cryoturbated horizons than in mineral horizons, when calculated per gram dry mass. Specific activities (per g C) however were highest in mineral horizons. We also measured actual cellulase activities (by inhibiting microbial uptake of products and without substrate addition): calculated per g C, the activities were up to ten times as high in organic topsoil compared to cryoturbated and mineral horizons, the latter not being significantly different. The total amount of PLFAs, as a proxy for

  13. Somatostatin Modulates Insulin-Degrading-Enzyme Metabolism: Implications for the Regulation of Microglia Activity in AD

    PubMed Central

    Tundo, Grazia; Ciaccio, Chiara; Sbardella, Diego; Boraso, Mariaserena; Viviani, Barbara; Coletta, Massimiliano; Marini, Stefano

    2012-01-01

    The deposition of β-amyloid (Aβ) into senile plaques and the impairment of somatostatin-mediated neurotransmission are key pathological events in the onset of Alzheimer's disease (AD). Insulin-degrading-enzyme (IDE) is one of the main extracellular protease targeting Aβ, and thus it represents an interesting pharmacological target for AD therapy. We show that the active form of somatostatin-14 regulates IDE activity by affecting its expression and secretion in microglia cells. A similar effect can also be observed when adding octreotide. Following a previous observation where somatostatin directly interacts with IDE, here we demonstrate that somatostatin regulates Aβ catabolism by modulating IDE proteolytic activity in IDE gene-silencing experiments. As a whole, these data indicate the relevant role played by somatostatin and, potentially, by analogue octreotide, in preventing Aβ accumulation by partially restoring IDE activity. PMID:22509294

  14. Somatostatin modulates insulin-degrading-enzyme metabolism: implications for the regulation of microglia activity in AD.

    PubMed

    Tundo, Grazia; Ciaccio, Chiara; Sbardella, Diego; Boraso, Mariaserena; Viviani, Barbara; Coletta, Massimiliano; Marini, Stefano

    2012-01-01

    The deposition of β-amyloid (Aβ) into senile plaques and the impairment of somatostatin-mediated neurotransmission are key pathological events in the onset of Alzheimer's disease (AD). Insulin-degrading-enzyme (IDE) is one of the main extracellular protease targeting Aβ, and thus it represents an interesting pharmacological target for AD therapy. We show that the active form of somatostatin-14 regulates IDE activity by affecting its expression and secretion in microglia cells. A similar effect can also be observed when adding octreotide. Following a previous observation where somatostatin directly interacts with IDE, here we demonstrate that somatostatin regulates Aβ catabolism by modulating IDE proteolytic activity in IDE gene-silencing experiments. As a whole, these data indicate the relevant role played by somatostatin and, potentially, by analogue octreotide, in preventing Aβ accumulation by partially restoring IDE activity.

  15. Erythrocyte enzymes in sheep: comparison of activity in fetal, newborn, maternal and nonpregnant ewe erythrocytes.

    PubMed

    Noble, N A; Cabalum, T C; Nathanielsz, P W; Tanaka, K R

    1982-01-01

    Hematological data and the activities of 21 red cell enzymes were measured in 8 nonpregnant ewes, 13 chronically catheterized fetuses at 125-135 days of gestation, and 8 of their mothers. In addition, 7 lambs were followed from birth to 17 days of age. Fetal sheep red cells have dramatically increased activities for 17 of 21 enzymes measured compared with adult nonpregnant ewes. The pattern of decline of enzyme activities with development varies considerably among enzymes. The activity of seven enzymes showed an orderly decline from fetal to adult life. For seven enzymes very little or no decline in activity was observed between 125 and 135 days of gestation and birth. Pyruvate kinase activity declined to adult levels by birth. Phosphoglucose isomerase and nucleoside phosphorylase activity increased, and glutathione peroxidase activity decreased in newborn lamb red cells compared to fetal cells. Differences in blood cell variables were also found among these groups.

  16. UHPLC-QqQ-MS/MS identification, quantification of polyphenols from Passiflora subpeltata fruit pulp and determination of nutritional, antioxidant, α-amylase and α-glucosidase key enzymes inhibition properties.

    PubMed

    Shanmugam, Saravanan; Gomes, Isla Alcântara; Denadai, Marina; Dos Santos Lima, Bruno; de Souza Araújo, Adriano Antunes; Narain, Narendra; Neta, Maria Terezinha Santos Leite; Serafini, Mairim Russo; Quintans-Júnior, Lucindo José; Thangaraj, Parimelazhagan

    2018-06-01

    The diabetic key enzymes inhibition, nutritional, antioxidant activity and bioactive compounds identification of Passiflora subpeltata fruit pulp were investigated. Fifteen polyphenolic compounds including protocatechuic acid, ferulic acid, vanillic acid, epicatechin, p-coumaric acid, cinnamic acid, eriodictyol and quercetin-3-glucoside were identified in the pulp of this species by using UHPLC-QqQ-MS/MS analysis. The total carbohydrates and crude protein contents in fruit pulp were 2.62 mg glucose equivalent/g sample fruit pulp and 8.80 mg BSA equivalent/g sample fruit pulp, respectively. The fresh fruit pulp of P. subpeltata contained high total phenolic (724.76 mg GAE/g sample) content and it revealed very high DPPH • (IC 50 of 5.667 μg/mL) and ABTS +• (6794.96 μM trolox equivalent/g sample) scavenging activities. In the key enzymes assays useful for diabetic inhibition the fresh fruit pulp characterized maximum inhibition of α-amylase and α-glucosidase IC 50 of 18.69 and 32.63 μg/mL, respectively. Thus, these results lead to conclude that this fruit specie could be very useful source in nutraceutical products preparations for Type 2 diabetic suffering humans. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Long-range Electrostatic Complementarity Governs Substrate Recognition by Human Chymotrypsin C, a Key Regulator of Digestive Enzyme Activation*

    PubMed Central

    Batra, Jyotica; Szabó, András; Caulfield, Thomas R.; Soares, Alexei S.; Sahin-Tóth, Miklós; Radisky, Evette S.

    2013-01-01

    Human chymotrypsin C (CTRC) is a pancreatic serine protease that regulates activation and degradation of trypsinogens and procarboxypeptidases by targeting specific cleavage sites within their zymogen precursors. In cleaving these regulatory sites, which are characterized by multiple flanking acidic residues, CTRC shows substrate specificity that is distinct from that of other isoforms of chymotrypsin and elastase. Here, we report the first crystal structure of active CTRC, determined at 1.9-Å resolution, revealing the structural basis for binding specificity. The structure shows human CTRC bound to the small protein protease inhibitor eglin c, which binds in a substrate-like manner filling the S6-S5′ subsites of the substrate binding cleft. Significant binding affinity derives from burial of preferred hydrophobic residues at the P1, P4, and P2′ positions of CTRC, although acidic P2′ residues can also be accommodated by formation of an interfacial salt bridge. Acidic residues may also be specifically accommodated in the P6 position. The most unique structural feature of CTRC is a ring of intense positive electrostatic surface potential surrounding the primarily hydrophobic substrate binding site. Our results indicate that long-range electrostatic attraction toward substrates of concentrated negative charge governs substrate discrimination, which explains CTRC selectivity in regulating active digestive enzyme levels. PMID:23430245

  18. Effects of soybean meal on digestive enzymes activity, expression of inflammation-related genes, and chromatin modifications in marine fish (Sparus aurata L.) larvae.

    PubMed

    Perera, Erick; Yúfera, Manuel

    2017-04-01

    The effects of soybean meal (SBM) in early diet of Sparus aurata larvae at two developmental windows were assessed. Prolonged (beyond 14 days post-hatch, dph) feeding with SBM decreased the activity of pancreatic enzymes of larvae. In the absence of SBM these larvae later resumed enzyme activities, but exhibited a significant delay in development. Larvae response to SBM involved up-regulation of extracellular matrix remodeling enzymes and pro-inflammatory cytokines, coupled with a drop in putative intestinal enzymes. Larvae receiving SBM at first feeding appear later to have lower expression of inflammation-related genes, especially those fed SBM until 14 dph. Multivariate analysis confirmed that the duration of the SBM early feeding period drives the physiology of larvae in different directions. Feeding larvae with SBM increased global histone H3 acetylation, whereas upon removal of SBM the process was reverted. A more in deep analysis revealed a dynamic interplay among several reversible histone modifications such as H3K14ac and H3K27m3. Finally, we showed that SBM feeding of larvae results in global hypomethylation that persist after SBM removal. This study is the first demonstrating an effect of diet on marine fish epigenetics. It is concluded that there are limitations for extending SBM feeding of S. aurata larvae beyond 14 dph even under co-feeding with live feed, affecting key physiological processes and normal growth. However, up to 14 dph, SBM does not affect normal development, and produces apparently lasting effects on some key enzymes, genes, and chromatin modifications.

  19. Strong Effects of a Shelfbreak Jet on Microbial Enzyme Activities

    NASA Astrophysics Data System (ADS)

    Hoarfrost, A.; Balmonte, J. P.; Ziervogel, K.; Ghobrial, S.; Gawarkiewicz, G.; Arnosti, C.

    2016-02-01

    The activities of extracellular enzymes are critical in initiating microbial cycling of organic carbon, yet the dynamics of heterotrophic enzyme activities in marine environments are still poorly understood. Variations at a given site in rates of activity and the spectrum of organic substrates hydrolyzed may depend upon environmental context. We measured the extracellular enzymatic hydrolysis of 13 high- and low-molecular-weight organic substrates in surface and bottom waters along a closely spaced 4-station transect at 71 W on the North Atlantic continental shelf, in the vicinity of the shelfbreak front. This transect intersects a robust upwelling cell that typically shows high biologic productivity, and is locatable by changes in T/S profiles and chl a concentrations along sharp spatial gradients. At the time of sampling, cold pool waters over the continental shelf were relatively cold, 3.5 Deg. C, compared to 12 Deg. C over the upper continental slope. Satellite thermal imagery indicated that shelf water extended offshore and interacted with a large crest of the Gulf Stream. The surface and bottom waters associated with the upwelling jet were characterized by enzyme activities a factor of 20 more rapid than closer inshore waters, and surface water chl a concentrations that were two to three times higher than the inshore waters. The spectrum of enzyme activities also differed markedly between surface and bottom waters both within the jet and at near-shore stations. Microbial extracellular enzymatic activities were strongly influenced by differences in their environmental context along the continental slope and shelfbreak front. Constraining the factors controlling heterotrophic activity across the diverse marine environment is an important step in understanding microbial controls on carbon cycling.

  20. Function-based classification of carbohydrate-active enzymes by recognition of short, conserved peptide motifs.

    PubMed

    Busk, Peter Kamp; Lange, Lene

    2013-06-01

    Functional prediction of carbohydrate-active enzymes is difficult due to low sequence identity. However, similar enzymes often share a few short motifs, e.g., around the active site, even when the overall sequences are very different. To exploit this notion for functional prediction of carbohydrate-active enzymes, we developed a simple algorithm, peptide pattern recognition (PPR), that can divide proteins into groups of sequences that share a set of short conserved sequences. When this method was used on 118 glycoside hydrolase 5 proteins with 9% average pairwise identity and representing four characterized enzymatic functions, 97% of the proteins were sorted into groups correlating with their enzymatic activity. Furthermore, we analyzed 8,138 glycoside hydrolase 13 proteins including 204 experimentally characterized enzymes with 28 different functions. There was a 91% correlation between group and enzyme activity. These results indicate that the function of carbohydrate-active enzymes can be predicted with high precision by finding short, conserved motifs in their sequences. The glycoside hydrolase 61 family is important for fungal biomass conversion, but only a few proteins of this family have been functionally characterized. Interestingly, PPR divided 743 glycoside hydrolase 61 proteins into 16 subfamilies useful for targeted investigation of the function of these proteins and pinpointed three conserved motifs with putative importance for enzyme activity. Furthermore, the conserved sequences were useful for cloning of new, subfamily-specific glycoside hydrolase 61 proteins from 14 fungi. In conclusion, identification of conserved sequence motifs is a new approach to sequence analysis that can predict carbohydrate-active enzyme functions with high precision.

  1. The antioxidant enzymes activity in the conditions of systemic hypersilicemia.

    PubMed

    Najda, J; Goss, M; Gmínski, J; Weglarz, L; Siemianowicz, K; Olszowy, Z

    1994-07-01

    The effect of an excessive inorganic silicon oral intake on the activity of basic antioxidant enzymes was studied in rats. Activities of superoxide dismutase, catalase, and glutathione peroxidase were measured in liver and kidney tissues of animals receiving per os sodium metasilicate nonahydrate (Na2SiO3.9H2O) (Sigma, [St. Louis, MO]) dissolved in their drinking water. A decrease of the activity of all the studied enzymes was found in the samples derived from the experimental group. The results obtained indicate the free oxygen radicals participation in the potential pathologic events in the conditions of systemic hypersilicemia.

  2. Fast and accurate enzyme activity measurements using a chip-based microfluidic calorimeter.

    PubMed

    van Schie, Morten M C H; Ebrahimi, Kourosh Honarmand; Hagen, Wilfred R; Hagedoorn, Peter-Leon

    2018-03-01

    Recent developments in microfluidic and nanofluidic technologies have resulted in development of new chip-based microfluidic calorimeters with potential use in different fields. One application would be the accurate high-throughput measurement of enzyme activity. Calorimetry is a generic way to measure activity of enzymes, but unlike conventional calorimeters, chip-based calorimeters can be easily automated and implemented in high-throughput screening platforms. However, application of chip-based microfluidic calorimeters to measure enzyme activity has been limited due to problems associated with miniaturization such as incomplete mixing and a decrease in volumetric heat generated. To address these problems we introduced a calibration method and devised a convenient protocol for using a chip-based microfluidic calorimeter. Using the new calibration method, the progress curve of alkaline phosphatase, which has product inhibition for phosphate, measured by the calorimeter was the same as that recorded by UV-visible spectroscopy. Our results may enable use of current chip-based microfluidic calorimeters in a simple manner as a tool for high-throughput screening of enzyme activity with potential applications in drug discovery and enzyme engineering. Copyright © 2017. Published by Elsevier Inc.

  3. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice.

    PubMed

    Ahmed, Nisar; Tetlow, Ian J; Nawaz, Sehar; Iqbal, Ahsan; Mubin, Muhammad; Nawaz ul Rehman, Muhammad Shah; Butt, Aisha; Lightfoot, David A; Maekawa, Masahiko

    2015-08-30

    High temperature during grain filling affects yield, starch amylose content and activity of starch biosynthesis enzymes in basmati rice. To investigate the physiological mechanisms underpinning the effects of high temperature on rice grain, basmati rice was grown under two temperature conditions - 32 and 22 °C - during grain filling. High temperature decreased the grain filling period from 32 to 26 days, reducing yield by 6%, and caused a reduction in total starch (3.1%) and amylose content (22%). Measurable activities of key enzymes involved in sucrose to starch conversion, sucrose synthase, ADP-glucose pyrophosphorylase, starch phosphorylase and soluble starch synthase in endosperms developed at 32 °C were lower than those at 22 °C compared with similar ripening stage on an endosperm basis. In particular, granule-bound starch synthase (GBSS) activity was significantly lower than corresponding activity in endosperms developing at 22 °C during all developmental stages analyzed. Results suggest changes in amylose/amylopectin ratio observed in plants grown at 32 °C was attributable to a reduction in activity of GBSS, the sole enzyme responsible for amylose biosynthesis. © 2014 Society of Chemical Industry.

  4. A comparison of maximal bioenergetic enzyme activities obtained with commonly used homogenization techniques.

    PubMed

    Grace, M; Fletcher, L; Powers, S K; Hughes, M; Coombes, J

    1996-12-01

    Homogenization of tissue for analysis of bioenergetic enzyme activities is a common practice in studies examining metabolic properties of skeletal muscle adaptation to disease, aging, inactivity or exercise. While numerous homogenization techniques are in use today, limited information exists concerning the efficacy of specific homogenization protocols. Therefore, the purpose of this study was to compare the efficacy of four commonly used approaches to homogenizing skeletal muscle for analysis of bioenergetic enzyme activity. The maximal enzyme activity (Vmax) of citrate synthase (CS) and lactate dehydrogenase (LDH) were measured from homogenous muscle samples (N = 48 per homogenization technique) and used as indicators to determine which protocol had the highest efficacy. The homogenization techniques were: (1) glass-on-glass pestle; (2) a combination of a mechanical blender and a teflon pestle (Potter-Elvehjem); (3) a combination of the mechanical blender and a biological detergent; and (4) the combined use of a mechanical blender and a sonicator. The glass-on-glass pestle homogenization protocol produced significantly higher (P < 0.05) enzyme activities compared to all other protocols for both enzymes. Of the four protocols examined, the data demonstrate that the glass-on-glass pestle homogenization protocol is the technique of choice for studying bioenergetic enzyme activity in skeletal muscle.

  5. Antibacterial and glucosyltransferase enzyme inhibitory activity of helmyntostachyszelanica

    NASA Astrophysics Data System (ADS)

    Kuspradini, H.; Putri, AS; Mitsunaga, T.

    2018-04-01

    Helminthostachyszeylanica is a terrestrial, herbaceous, fern-like plant of southeastern Asia and Australia, commonly known as tunjuk-langit. This kind of plant have a medicinal properties such as treatment of malaria, dysentery and can be eaten with betel in the treatment of whooping cough. To evaluate the scientific basis for the use of the plant, the antimicrobial activities of extracts of the stem and leaves were evaluated. The bacteria used in this study is Streptococcus sobrinus, a species of gram-positive, that may be associated with human dental caries. The dried powdered plant parts were extracted using methanol and 50% aqueous extract and screened for their antibacterial effects of Streptococcus sobrinus using the 96 well-plate microdilution broth method. The inhibitory activities of its related enzyme were also determined. The plant extracts showed variable antibacterial and Glucosyltransferase enzyme inhibitory activity while some extracts could not cause any inhibition. It was shown that 50% ethanolics of Helminthostachyzeylanica stem have a potency as anti dental caries agents.

  6. Metatranscriptomics Reveals the Functions and Enzyme Profiles of the Microbial Community in Chinese Nong-Flavor Liquor Starter

    PubMed Central

    Huang, Yuhong; Yi, Zhuolin; Jin, Yanling; Huang, Mengjun; He, Kaize; Liu, Dayu; Luo, Huibo; Zhao, Dong; He, Hui; Fang, Yang; Zhao, Hai

    2017-01-01

    Chinese liquor is one of the world's best-known distilled spirits and is the largest spirit category by sales. The unique and traditional solid-state fermentation technology used to produce Chinese liquor has been in continuous use for several thousand years. The diverse and dynamic microbial community in a liquor starter is the main contributor to liquor brewing. However, little is known about the ecological distribution and functional importance of these community members. In this study, metatranscriptomics was used to comprehensively explore the active microbial community members and key transcripts with significant functions in the liquor starter production process. Fungi were found to be the most abundant and active community members. A total of 932 carbohydrate-active enzymes, including highly expressed auxiliary activity family 9 and 10 proteins, were identified at 62°C under aerobic conditions. Some potential thermostable enzymes were identified at 50, 62, and 25°C (mature stage). Increased content and overexpressed key enzymes involved in glycolysis and starch, pyruvate and ethanol metabolism were detected at 50 and 62°C. The key enzymes of the citrate cycle were up-regulated at 62°C, and their abundant derivatives are crucial for flavor generation. Here, the metabolism and functional enzymes of the active microbial communities in NF liquor starter were studied, which could pave the way to initiate improvements in liquor quality and to discover microbes that produce novel enzymes or high-value added products. PMID:28955318

  7. Regulation of Hydrolytic Enzyme Activity in Aquatic Microbial Communities Hosted by Carnivorous Pitcher Plants.

    PubMed

    Young, Erica B; Sielicki, Jessica; Grothjan, Jacob J

    2018-04-20

    Carnivorous pitcher plants Sarracenia purpurea host diverse eukaryotic and bacterial communities which aid in insect prey digestion, but little is known about the functional processes mediated by the microbial communities. This study aimed to connect pitcher community diversity with functional nutrient transformation processes, identifying bacterial taxa, and measuring regulation of hydrolytic enzyme activity in response to prey and alternative nutrient sources. Genetic analysis identified diverse bacterial taxa known to produce hydrolytic enzyme activities. Chitinase, protease, and phosphatase activities were measured using fluorometric assays. Enzyme activity in field pitchers was positively correlated with bacterial abundance, and activity was suppressed by antibiotics suggesting predominantly bacterial sources of chitinase and protease activity. Fungi, algae, and rotifers observed could also contribute enzyme activity, but fresh insect prey released minimal chitinase activity. Activity of chitinase and proteases was upregulated in response to insect additions, and phosphatase activity was suppressed by phosphate additions. Particulate organic P in prey was broken down, appearing as increasing dissolved organic and inorganic P pools within 14 days. Chitinase and protease were not significantly suppressed by availability of dissolved organic substrates, though organic C and N stimulated bacterial growth, resulting in elevated enzyme activity. This comprehensive field and experimental study show that pitcher plant microbial communities dynamically regulate hydrolytic enzyme activity, to digest prey nutrients to simpler forms, mediating biogeochemical nutrient transformations and release of nutrients for microbial and host plant uptake.

  8. Optimization of ultrasound-assisted extraction of pectinase enzyme from guava (Psidium guajava) peel: Enzyme recovery, specific activity, temperature, and storage stability.

    PubMed

    Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Islam Sarker, Zaidul

    2016-01-01

    This study aimed to investigate the effects of the ultrasound-assisted extraction conditions on the yield, specific activity, temperature, and storage stability of the pectinase enzyme from guava peel. The ultrasound variables studied were sonication time (10-30 min), ultrasound temperature (30-50 °C), pH (2.0-8.0), and solvent-to-sample ratio (2:1 mL/g to 6:1 mL/g). The main goal was to optimize the ultrasound-assisted extraction conditions to maximize the recovery of pectinase from guava peel with the most desirable enzyme-specific activity and stability. Under the optimum conditions, a high yield (96.2%), good specific activity (18.2 U/mg), temperature stability (88.3%), and storage stability (90.3%) of the extracted enzyme were achieved. The optimal conditions were 20 min sonication time, 40 °C temperature, at pH 5.0, using a 4:1 mL/g solvent-to-sample ratio. The study demonstrated that optimization of ultrasound-assisted process conditions for the enzyme extraction could improve the enzymatic characteristics and yield of the enzyme.

  9. Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato.

    PubMed

    Sun, Liang; Sun, Yufei; Zhang, Mei; Wang, Ling; Ren, Jie; Cui, Mengmeng; Wang, Yanping; Ji, Kai; Li, Ping; Li, Qian; Chen, Pei; Dai, Shengjie; Duan, Chaorui; Wu, Yan; Leng, Ping

    2012-01-01

    Cell wall catabolism during fruit ripening is under complex control and is key for fruit quality and shelf life. To examine the role of abscisic acid (ABA) in tomato (Solanum lycopersicum) fruit ripening, we suppressed SlNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of ABA. To suppress SlNCED1 specifically in tomato fruits, and thus avoid the pleiotropic phenotypes associated with ABA deficiency, we used an RNA interference construct driven by the fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20% and 50% of the levels measured in the control fruit. This significant reduction in NCED activity led to a down-regulation in the transcription of genes encoding major cell wall catabolic enzymes, specifically polygalacturonase (SlPG), pectin methyl esterase (SlPME), β-galactosidase precursor mRNA (SlTBG), xyloglucan endotransglycosylase (SlXET), endo-1,4-β-cellulose (SlCels), and expansin (SlExp). This resulted in an increased accumulation of pectin during ripening. In turn, this led to a significant extension of the shelf life to 15 to 29 d compared with a shelf life of only 7 d for the control fruit and an enhancement of fruit firmness at the mature stage by 30% to 45%. In conclusion, ABA affects cell wall catabolism during tomato fruit ripening via down-regulation of the expression of major catabolic genes (SlPG, SlPME, SlTBG, SlXET, SlCels, and SlExp).

  10. Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity

    PubMed Central

    2012-01-01

    Background Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. Results In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera) wood-chips and mown lawn grass clippings (85:15 in dry-weight) and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. Conclusion The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP) and solid-state fermentation for the production of cellulolytic enzymes and biofuels. PMID:22490508

  11. Tracking Dynamics of Plant Biomass Composting by Changes in Substrate Structure, Microbial Community, and Enzyme Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, H.; Tucker, M. P.; Baker, J. O.

    2012-04-01

    Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera) wood-chips and mown lawn grass clippings (85:15 in dry-weight) and used as amore » model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP) and solid-state fermentation for the production of cellulolytic enzymes and biofuels.« less

  12. A complete thermodynamic analysis of enzyme turnover links the free energy landscape to enzyme catalysis.

    PubMed

    Jones, Hannah B L; Wells, Stephen A; Prentice, Erica J; Kwok, Anthony; Liang, Liyin L; Arcus, Vickery L; Pudney, Christopher R

    2017-09-01

    Our understanding of how enzymes work is coloured by static structure depictions where the enzyme scaffold is presented as either immobile, or in equilibrium between well-defined static conformations. Proteins, however, exhibit a large degree of motion over a broad range of timescales and magnitudes and this is defined thermodynamically by the enzyme free energy landscape (FEL). The role and importance of enzyme motion is extremely contentious. Much of the challenge is in the experimental detection of so called 'conformational sampling' involved in enzyme turnover. Herein we apply combined pressure and temperature kinetics studies to elucidate the full suite of thermodynamic parameters defining an enzyme FEL as it relates to enzyme turnover. We find that the key thermodynamic parameters governing vibrational modes related to enzyme turnover are the isobaric expansivity term and the change in heat capacity for enzyme catalysis. Variation in the enzyme FEL affects these terms. Our analysis is supported by a range of biophysical and computational approaches that specifically capture information on protein vibrational modes and the FEL (all atom flexibility calculations, red edge excitation shift spectroscopy and viscosity studies) that provide independent evidence for our findings. Our data suggest that restricting the enzyme FEL may be a powerful strategy when attempting to rationally engineer enzymes, particularly to alter thermal activity. Moreover, we demonstrate how rational predictions can be made with a rapid computational approach. © 2017 Federation of European Biochemical Societies.

  13. Natural and engineered polyhydroxyalkanoate (PHA) synthase: key enzyme in biopolyester production.

    PubMed

    Zou, Huibin; Shi, Mengxun; Zhang, Tongtong; Li, Lei; Li, Liangzhi; Xian, Mo

    2017-10-01

    With the finite supply of petroleum and increasing concern with environmental issues associated with their harvest and processing, the development of more eco-friendly, sustainable alternative biopolymers that can effectively fill the role of petro-polymers has become a major focus. Polyhydroxyalkanoate (PHA) can be naturally produced by many species of bacteria and the PHA synthase is believed to be key enzyme in this natural pathway. Natural PHA synthases are diverse and can affect the properties of the produced PHAs, such as monomer composition, molecular weights, and material properties. Moreover, recent studies have led to major advances in the searching of PHA synthases that display specific properties, as well as engineering efforts that offer more efficient PHA synthases, increased PHA compound production, or even novel biopolyesters which cannot be naturally produced. In this article, we review the updated information of natural PHA synthases and their engineering strategies for improved performance in polyester production. We also speculate future trends on the development of robust PHA synthases and their application in biopolyester production.

  14. Microbial enzyme activities of peatland soils in south central Alaska lowlands

    EPA Science Inventory

    Microbial enzyme activities related to carbon and nutrient acquisition were measured on Alaskan peatland soils as indicators of nutrient limitation and biochemical sustainability. Peat decomposition is mediated by microorganisms and enzymes that in turn are limited by various ph...

  15. Effects of different dwarfing interstocks on key enzyme activities and the expression of genes related to malic acid metabolism in Red Fuji apples.

    PubMed

    Shi, J; Li, F F; Ma, H; Li, Z Y; Xu, J Z

    2015-12-22

    In this experiment, the test materials were 'Red Fuji' apple trees grafted onto three interstocks (No. 53, No. 111, and No. 236), which were chosen from SH40 seeding interstocks. The content of malic acid, the enzyme activities, and the expression of genes related to malic acid metabolism were determined during fruit development.The results showed that malic acid content in the ripe fruit on interstock No. 53 was higher than that in the interstock No. 111 fruit. The malate dehydrogenase (NAD-MDH) activity in apples on interstock No. 53 was highest on Day 30, Day 100, and Day 160 after bloom, and the malic enzyme (NADP-ME) activity in apples on interstock No. 111 was higher than in the interstock No. 53 fruit from Day 70 to Day 100 after bloom. The relative expression of NAD-MDH genes in interstock No. 53 fruit was higher than in No. 236 fruit on Day 100 after bloom, but the relative expression of NADP-ME in No. 236 interstock fruit was lower than in No. 53 fruit. The relative expression of NAD-MDH genes in No. 53 interstock fruit was highest on Day 160 after bloom. This might have been the main reason for the difference in the accumulation of malic acid in the ripe apples.There was a positive correlation between the relative expression of phosphoenolpyruvate carboxylase (PEPC) and the malic acid content of the fruit, and the content of malic acid in the apples was affected by the PEPC activity during the early developmental stage.

  16. Biosynthesis of abscisic acid in fungi: Identification of a sesquiterpene cyclase as the key enzyme in Botrytis cinerea.

    PubMed

    Izquierdo-Bueno, Inmaculada; González-Rodríguez, Victoria E; Simon, Adeline; Dalmais, Bérengère; Pradier, Jean-Marc; Le Pêcheur, Pascal; Mercier, Alex; Walker, Anne-Sophie; Garrido, Carlos; Collado, Isidro González; Viaud, Muriel

    2018-04-30

    While abscisic acid (ABA) is known as a hormone produced by plants through the carotenoid pathway, a small number of phytopathogenic fungi are also able to produce this sesquiterpene but they use a distinct pathway that starts with the cyclization of farnesyl diphosphate (FPP) into 2Z,4E-α-ionylideneethane which is then subjected to several oxidation steps. To identify the sesquiterpene cyclase (STC) responsible for the biosynthesis of ABA in fungi, we conducted a genomic approach in Botrytis cinerea. The genome of the ABA-overproducing strain ATCC58025 was fully sequenced and five STC-coding genes were identified. Among them, Bcstc5 exhibits an expression profile concomitant with ABA production. Gene inactivation, complementation and chemical analysis demonstrated that BcStc5/BcAba5 is the key enzyme responsible for the key step of ABA biosynthesis in fungi. Unlike what is observed for most of the fungal secondary metabolism genes, the key enzyme-coding gene Bcstc5/Bcaba5 is not clustered with the other biosynthetic genes i.e. Bcaba1 to Bcaba4 that are responsible for the oxidative transformation of 2Z,4E-α-ionylideneethane. Finally, our study revealed that the presence of the Bcaba genes among Botrytis species is rare and that the majority of them do not possess the ability to produce ABA. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Exponential isothermal amplification of nucleic acids and amplified assays for proteins, cells, and enzyme activities.

    PubMed

    Reid, Michael S; Le, X Chris; Zhang, Hongquan

    2018-04-27

    Isothermal exponential amplification techniques, such as strand-displacement amplification (SDA), rolling circle amplification (RCA), loop-mediated isothermal amplification (LAMP), nucleic acid sequence-based amplification (NASBA), helicase-dependent amplification (HDA), and recombinase polymerase amplification (RPA), have great potential for on-site, point-of-care, and in-situ assay applications. These amplification techniques eliminate the need for temperature cycling required for polymerase chain reaction (PCR) while achieving comparable amplification yield. We highlight here recent advances in exponential amplification reaction (EXPAR) for the detection of nucleic acids, proteins, enzyme activities, cells, and metal ions. We discuss design strategies, enzyme reactions, detection techniques, and key features. Incorporation of fluorescence, colorimetric, chemiluminescence, Raman, and electrochemical approaches enables highly sensitive detection of a variety of targets. Remaining issues, such as undesirable background amplification resulting from non-specific template interactions, must be addressed to further improve isothermal and exponential amplification techniques. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The interplay of α-amylase and amyloglucosidase activities on the digestion of starch in in vitro enzymic systems.

    PubMed

    Warren, Frederick J; Zhang, Bin; Waltzer, Gina; Gidley, Michael J; Dhital, Sushil

    2015-03-06

    In vitro hydrolysis assays are a key tool in understanding differences in rate and extent of digestion of starchy foods. They offer a greater degree of simplicity and flexibility than dynamic in vitro models or in vivo experiments for quantifiable, mechanistic exploration of starch digestion. In the present work the influence of α-amylase and amyloglucosidase activities on the digestion of maize and potato starch granules was measured using both glucose and reducing sugar assays. Data were analysed through initial rates of digestion, and by 1st order kinetics, utilising logarithm of slope (LOS) plots. The rate and extent of starch digestion was dependent on the activities of both enzymes and the type of starch used. Potato required more enzyme than maize to achieve logarithmic reaction curves, and complete digestion. The results allow targeted design of starch digestion experiments through a thorough understanding of the contributions of α-amylase and amyloglucosidase to digestion rates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Quantification of microbial activity in subsurface environments using a hydrogenase enzyme assay

    NASA Astrophysics Data System (ADS)

    Adhikari, R. R.; Nickel, J.; Kallmeyer, J.

    2012-04-01

    The subsurface biosphere is the largest microbial ecosystem on Earth. Despite its large size and extensive industrial exploitation, very little is known about the role of microbial activity in the subsurface. Subsurface microbial activity plays a fundamental role in geochemical cycles of carbon and other biologically important elements. How the indigenous microbial communities are supplied with energy is one of the most fundamental questions in subsurface research. It is still an enigma how these communities can survive with such recalcitrant carbon over geological time scales. Despite its usually very low concentration, hydrogen is an important element in subsurface environments. Heterotrophic and chemoautotrophic microorganisms use hydrogen in their metabolic pathways; they either obtain protons from the radiolysis of water and/or cleavage of hydrogen generated by the alteration of basaltic crust, or they dispose of protons by formation of water. Hydrogenase (H2ase) is a ubiquitous intracellular enzyme that catalyzes the interconversion of molecular hydrogen and/or water into protons and electrons. The protons are used for the synthesis of ATP, thereby coupling energy-generating metabolic processes to electron acceptors such as carbon dioxide or sulfate. H2ase activity can therefore be used as a measure for total microbial activity as it targets a key metabolic compound rather than a specific turnover process. Using a highly sensitive tritium assay we measured H2ase enzyme activity in the organic-rich sediments of Lake Van, a saline, alkaline lake in eastern Turkey and in marine subsurface sediments of the Barents Sea. Additionally, sulfate reduction rates (SRRs) were measured to compare the results of the H2ase enzyme assay with the quantitatively most important electron acceptor process. H2ase activity was found at all sites, measured values and distribution of activity varied widely with depth and between sites. At the Lake Van sites H2ase activity ranged from

  20. Extracellular enzyme activity in a willow sewage treatment system.

    PubMed

    Brzezinska, Maria Swiontek; Lalke-Porczyk, Elżbieta; Kalwasińska, Agnieszka

    2012-12-01

    This paper presents the results of studies on the activity of extra-cellular enzymes in soil-willow vegetation filter soil which is used in the post-treatment of household sewage in an onsite wastewater treatment system located in central Poland. Wastewater is discharged from the detached house by gravity into the onsite wastewater treatment system. It flows through a connecting pipe into a single-chamber septic tank and is directed by the connecting pipe to a control well to be further channelled in the soil-willow filter by means of a subsurface leaching system. Soil samples for the studies were collected from two depths of 5 cm and 1 m from three plots: close to the wastewater inflow, at mid-length of the plot and close to its terminal part. Soil samples were collected from May to October 2009. The activity of the extra-cellular enzymes was assayed by the fluorometric method using 4-methylumbelliferyl and 7-amido-4-methylcoumarin substrate. The ranking of potential activity of the assayed enzymes was the same at 5 cm and 1 m soil depths, i.e. esterase > phosphmomoesterase > leucine-aminopeptidase > β-glucosidase > α-glucosidase. The highest values of enzymatic activity were recorded in the surface layer of the soil at the wastewater inflow and decreased with increasing distance from that point.

  1. D-lysergic acid-activating enzyme from the ergot fungus Claviceps purpurea.

    PubMed Central

    Keller, U; Zocher, R; Krengel, U; Kleinkauf, H

    1984-01-01

    A D-lysergic acid-activating enzyme from the ergot fungus Claviceps purpurea was purified about 145-fold. The enzyme was able to catalyse both the D-lysergic acid-dependent ATP-pyrophosphate exchange and the formation of ATP from D-lysergic acid adenylate and pyrophosphate. Both reactions were also catalysed to a decreased but significant extent with respect to dihydrolysergic acid. The molecular mass of the enzyme was estimated to lie between 135 and 140 kDa. The involvement of the enzyme in the biosynthesis of ergot peptide alkaloids is discussed. Images Fig. 4. PMID:6326747

  2. Enhanced enzyme kinetic stability by increasing rigidity within the active site.

    PubMed

    Xie, Yuan; An, Jiao; Yang, Guangyu; Wu, Geng; Zhang, Yong; Cui, Li; Feng, Yan

    2014-03-14

    Enzyme stability is an important issue for protein engineers. Understanding how rigidity in the active site affects protein kinetic stability will provide new insight into enzyme stabilization. In this study, we demonstrated enhanced kinetic stability of Candida antarctica lipase B (CalB) by mutating the structurally flexible residues within the active site. Six residues within 10 Å of the catalytic Ser(105) residue with a high B factor were selected for iterative saturation mutagenesis. After screening 2200 colonies, we obtained the D223G/L278M mutant, which exhibited a 13-fold increase in half-life at 48 °C and a 12 °C higher T50(15), the temperature at which enzyme activity is reduced to 50% after a 15-min heat treatment. Further characterization showed that global unfolding resistance against both thermal and chemical denaturation also improved. Analysis of the crystal structures of wild-type CalB and the D223G/L278M mutant revealed that the latter formed an extra main chain hydrogen bond network with seven structurally coupled residues within the flexible α10 helix that are primarily involved in forming the active site. Further investigation of the relative B factor profile and molecular dynamics simulation confirmed that the enhanced rigidity decreased fluctuation of the active site residues at high temperature. These results indicate that enhancing the rigidity of the flexible segment within the active site may provide an efficient method for improving enzyme kinetic stability.

  3. Enzyme activity in terrestrial soil in relation to exploration of the Martian surface

    NASA Technical Reports Server (NTRS)

    Ardakani, M. S.; Mclaren, A. D.; Pukite, A. H.

    1972-01-01

    An exploration was made of enzyme activities in soil, including abundance, persistence and localization of these activities. An attempt was made to develop procedures for the detection and assaying of enzymes in soils suitable for presumptive tests for life in planetary soils. A suitable extraction procedure for soil enzymes was developed and measurements were made of activities in extracts in order to study how urease is complexed in soil organic matter. Mathematical models were developed, based on enzyme action and microbial growth in soil, for rates of oxidation of nitrogen as nitrogen compounds are moved downward in soil by water flow. These biogeochemical models should be applicable to any percolating system, with suitable modification for special features, such as oxygen concetrations, and types of hydrodynamic flow.

  4. Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: a case study from central European forests.

    PubMed

    Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk

    2014-01-01

    Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling.

  5. Key enzymes of the retinoid (visual) cycle in vertebrate retina

    PubMed Central

    Kiser, Philip D.; Golczak, Marcin; Maeda, Akiko; Palczewski, Krzysztof

    2011-01-01

    A major goal in vision research over the past few decades has been to understand the molecular details of retinoid processing within the retinoid (visual) cycle. This includes the consequences of side reactions that result from delayed all-trans-retinal clearance and condensation with phospholipids that characterize a variety of serious retinal diseases. Knowledge of the basic retinoid biochemistry involved in these diseases is essential for development of effective therapeutics. Photoisomerization of the 11-cis-retinal chromophore of rhodopsin triggers a complex set of metabolic transformations collectively termed phototransduction that ultimately lead to light perception. Continuity of vision depends on continuous conversion of all-trans-retinal back to the 11-cis-retinal isomer. This process takes place in a series of reactions known as the retinoid cycle, which occur in photoreceptor and RPE cells. All-trans-retinal, the initial substrate of this cycle, is a chemically reactive aldehyde that can form toxic conjugates with proteins and lipids. Therefore, much experimental effort has been devoted to elucidate molecular mechanisms of the retinoid cycle and all-trans-retinal-mediated retinal degeneration, resulting in delineation of many key steps involved in regenerating 11-cis-retinal. Three particularly important reactions are catalyzed by enzymes broadly classified as acyltransferases, short-chain dehydrogenases/reductases and carotenoid/retinoid isomerases/oxygenases. PMID:21447403

  6. Using soil enzymes to explain observed differences in the response of soil decomposition to nitrogen fertilization

    NASA Astrophysics Data System (ADS)

    Stone, M.; Weiss, M.; Goodale, C. L.

    2010-12-01

    Soil microbes produce extracellular enzymes that degrade a variety of carbon-rich polymers contained within soil organic matter (SOM). These enzymes are key regulators of the terrestrial carbon cycle. However, basic information about the kinetics of extracellular enzymes and key environmental variables that regulate their catalytic ability is lacking. This study aims to clarify the mechanisms by which microbial carbon-degrading enzymes drive different responses to nitrogen (N) fertilization in soil decomposition at two sites with long-term N fertilization experiments, the Bear Brook (BB) forest in Maine and Fernow Forest (FF) in West Virginia. We examined a suite of cellulolytic and lignolytic enzymes that break down common SOM constituents. We hypothesized that enzymes derived from the site with a higher mean annual temperature (FF) would be more heat-tolerant, and retain their catalytic efficiency (Km) as temperature rises, relative to enzymes from the colder environment (BB). We further hypothesized that cellulolytic enzyme activity would be unaffected by N, while oxidative enzyme activity would be suppressed in N-fertilized soils. To test these hypotheses and examine the interactive effects of temperature and N, we measured enzyme activity in unfertilized and N-fertilized soils under a range of laboratory temperature manipulations. Preliminary results show a significant decrease in cellulolytic enzyme efficiency with temperature at the colder site (BB), as well as a significant increase in efficiency due to N-fertilization for two cellulolytic enzymes. Oxidative enzyme activity shows a marginally significant reduction due to N-fertilization at BB. These results suggest that soil warming may produce a negative feedback on carbon turnover in certain climates, while N-fertilization may alter the relative decomposition rates of different soil organic matter constituents. FF activity will be analyzed in a similar manner and the two sites will be compared in order to

  7. Regulation of enzyme activities in carnivorous pitcher plants of the genus Nepenthes.

    PubMed

    Saganová, Michaela; Bokor, Boris; Stolárik, Tibor; Pavlovič, Andrej

    2018-05-16

    Nepenthes regulates enzyme activities by sensing stimuli from the insect prey. Protein is the best inductor mimicking the presence of an insect prey. Carnivorous plants of the genus Nepenthes have evolved passive pitcher traps for prey capture. In this study, we investigated the ability of chemical signals from a prey (chitin, protein, and ammonium) to induce transcription and synthesis of digestive enzymes in Nepenthes × Mixta. We used real-time PCR and specific antibodies generated against the aspartic proteases nepenthesins, and type III and type IV chitinases to investigate the induction of digestive enzyme synthesis in response to different chemical stimuli from the prey. Transcription of nepenthesins was strongly induced by ammonium, protein and live prey; chitin induced transcription only very slightly. This is in accordance with the amount of released enzyme and proteolytic activity in the digestive fluid. Although transcription of type III chitinase was induced by all investigated stimuli, a significant accumulation of the enzyme in the digestive fluid was found mainly after protein and live prey addition. Protein and live prey were also the best inducers for accumulation of type IV chitinase in the digestive fluid. Although ammonium strongly induced transcription of all investigated genes probably through membrane depolarization, strong acidification of the digestive fluid affected stability and abundance of both chitinases in the digestive fluid. The study showed that the proteins are universal inductors of enzyme activities in carnivorous pitcher plants best mimicking the presence of insect prey. This is not surprising, because proteins are a much valuable source of nitrogen, superior to chitin. Extensive vesicular activity was observed in prey-activated glands.

  8. Active-Site Protonation States in an Acyl-Enzyme Intermediate of a Class A β-Lactamase with a Monobactam Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Jonathan B.; Weiss, Kevin L.; Coates, Leighton

    The monobactam antibiotic aztreonam is used to treat cystic fibrosis patients with chronic pulmonary infections colonized by Pseudomonas aeruginosa strains expressing CTX-M extended-spectrum β-lactamases. Several active site residues in class A β-lactamases have been proposed to play key roles in monobactam hydrolysis. The protonation states of these residues have been determined previously for the apo form of a CTX-M β-lactamase. However, they have not yet been determined for a monobactam acyl-enzyme intermediate. Here we used neutron and high-resolution X-ray crystallography to probe the mechanism by which CTX-M extended-spectrum β-lactamases hydrolyze monobactam antibiotics. In these first reported structures of a classmore » A β-lactamase in acyl enzyme complex with aztreonam we directly observed most of the hydrogen atoms (as deuterium) within the active site in the captured acyl-enzyme state between Toho-1 β-lactamase and aztreonam. Although Lys 234 is fully protonated in the acyl-intermediate, we find that Lys 73 is neutral. These findings are consistent with Lys 73 being able to serve as a general base during the acylation part of the catalytic mechanism, in agreement with previous mechanistic proposals.« less

  9. Active-Site Protonation States in an Acyl-Enzyme Intermediate of a Class A β-Lactamase with a Monobactam Substrate

    DOE PAGES

    Cooper, Jonathan B.; Weiss, Kevin L.; Coates, Leighton; ...

    2016-10-24

    The monobactam antibiotic aztreonam is used to treat cystic fibrosis patients with chronic pulmonary infections colonized by Pseudomonas aeruginosa strains expressing CTX-M extended-spectrum β-lactamases. Several active site residues in class A β-lactamases have been proposed to play key roles in monobactam hydrolysis. The protonation states of these residues have been determined previously for the apo form of a CTX-M β-lactamase. However, they have not yet been determined for a monobactam acyl-enzyme intermediate. Here we used neutron and high-resolution X-ray crystallography to probe the mechanism by which CTX-M extended-spectrum β-lactamases hydrolyze monobactam antibiotics. In these first reported structures of a classmore » A β-lactamase in acyl enzyme complex with aztreonam we directly observed most of the hydrogen atoms (as deuterium) within the active site in the captured acyl-enzyme state between Toho-1 β-lactamase and aztreonam. Although Lys 234 is fully protonated in the acyl-intermediate, we find that Lys 73 is neutral. These findings are consistent with Lys 73 being able to serve as a general base during the acylation part of the catalytic mechanism, in agreement with previous mechanistic proposals.« less

  10. Mechanisms, biology and inhibitors of deubiquitinating enzymes.

    PubMed

    Love, Kerry Routenberg; Catic, André; Schlieker, Christian; Ploegh, Hidde L

    2007-11-01

    The addition of ubiquitin (Ub) and ubiquitin-like (Ubl) modifiers to proteins serves to modulate function and is a key step in protein degradation, epigenetic modification and intracellular localization. Deubiquitinating enzymes and Ubl-specific proteases, the proteins responsible for the removal of Ub and Ubls, act as an additional level of control over the ubiquitin-proteasome system. Their conservation and widespread occurrence in eukaryotes, prokaryotes and viruses shows that these proteases constitute an essential class of enzymes. Here, we discuss how chemical tools, including activity-based probes and suicide inhibitors, have enabled (i) discovery of deubiquitinating enzymes, (ii) their functional profiling, crystallographic characterization and mechanistic classification and (iii) development of molecules for therapeutic purposes.

  11. [Effects of different fertilization patterns on soil enzyme activities in greenhouse vegetable field.

    PubMed

    Wang, Wen Feng; Li, Chun Hua; Huang, Shao Wen; Gao, Wei; Tang, Ji Wei

    2016-03-01

    A fixed-site greenhouse vegetable fertilization experiment was carried out to study effects of 6 fertilization patterns on soil enzyme activities in Tianjin City, Northern China. The results showed that during the growing stages of tomato, activities of soil α-glucosidase, β-xylosidase, β-glucosidase, β-cellobiosidase, chitinase and phosphatase in different treatments all increased first and then decreased, while soil urease activities increased first and then became flat. Compared with the chemical nitrogen fertilizer treatment, soil enzyme activities were much higher in treatments of combined application of organic materials with chemical fertilizers, and rose with the increasing input of pig manure and especially the application of straw. A significant positive correlation was found between soil enzyme activities, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) contents at different growing stages of tomato. Under the condition of same nutrient input, the combined application of inorganic fertilizers with organic materials, especially a certain amount of corn straw, was capable of increasing soil enzyme activities and keeping soil fertility and sustainability in greenhouse vegetable production.

  12. Molecular Imaging of Hydrolytic Enzymes Using PET and SPECT

    PubMed Central

    Rempel, Brian P.; Price, Eric W.

    2017-01-01

    Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents. PMID:28927325

  13. Molecular Imaging of Hydrolytic Enzymes Using PET and SPECT.

    PubMed

    Rempel, Brian P; Price, Eric W; Phenix, Christopher P

    2017-01-01

    Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.

  14. [Seasonal variations of soil enzyme activities in typical plant communities in the Ebinur Lake wetland, China].

    PubMed

    Zhu, Hai Qiang; Li, Yan Hong; Li, Fa Dong

    2017-04-18

    In this study, the soil catalase, phosphatase and urease activities of typical plant communities of reed (Phragmites australis) and tamarisk (Tamarix ramosissima) and their influencing factors were investigated in Ebinur Lake wetland. The results showed that three soil enzyme activities of reed and tamarisk had seasonal dynamic characteristics during different growth periods. For the reed community, the peak concentrations of soil catalase, phosphatase and urease appeared at vigorous stage with 3.26, 0.60 and 0.33 mg·g -1 , respectively, and the minimum value occurred at budding stage and leaf-expansion stage. For the tamarisk community, the peak values of three soil enzyme activities appeared at withered stage with values of 6.33, 0.58 and 0.21 mg·g -1 , respectively, and the valley values were observed at flowering and vigorous stages. Urease was stable during different growth periods, and it could be used as an indicator to identify the differences of soil enzyme activities in the wetlands. The enzyme activities of reed and tamarisk had significant positive correlation with soil organic matter and total P in all growth periods, while there was no significant relationship between enzyme activities and soil water content. The enzyme activities of reed had significant positive correlation with ammonium nitrogen in the rapid growth period. There were no significant relationships between enzyme activities and soil salinity in both communities. The soil enzyme activities of reed and tamarisk were controlled by many factors. Soil organic matter, soil water and soil temperature were the main factors influencing the enzyme activities in the Ebinur Lake wetland.

  15. Computational active site analysis of molecular pathways to improve functional classification of enzymes.

    PubMed

    Ozyurt, A Sinem; Selby, Thomas L

    2008-07-01

    This study describes a method to computationally assess the function of homologous enzymes through small molecule binding interaction energy. Three experimentally determined X-ray structures and four enzyme models from ornithine cyclo-deaminase, alanine dehydrogenase, and mu-crystallin were used in combination with nine small molecules to derive a function score (FS) for each enzyme-model combination. While energy values varied for a single molecule-enzyme combination due to differences in the active sites, we observe that the binding energies for the entire pathway were proportional for each set of small molecules investigated. This proportionality of energies for a reaction pathway appears to be dependent on the amino acids in the active site and their direct interactions with the small molecules, which allows a function score (FS) to be calculated to assess the specificity of each enzyme. Potential of mean force (PMF) calculations were used to obtain the energies, and the resulting FS values demonstrate that a measurement of function may be obtained using differences between these PMF values. Additionally, limitations of this method are discussed based on: (a) larger substrates with significant conformational flexibility; (b) low homology enzymes; and (c) open active sites. This method should be useful in accurately predicting specificity for single enzymes that have multiple steps in their reactions and in high throughput computational methods to accurately annotate uncharacterized proteins based on active site interaction analysis. 2008 Wiley-Liss, Inc.

  16. Enzyme Active Site Interactions by Raman/FTIR, NMR, and Ab Initio Calculations

    PubMed Central

    Deng, Hua

    2017-01-01

    Characterization of enzyme active site structure and interactions at high resolution is important for the understanding of the enzyme catalysis. Vibrational frequency and NMR chemical shift measurements of enzyme-bound ligands are often used for such purpose when X-ray structures are not available or when higher resolution active site structures are desired. This review is focused on how ab initio calculations may be integrated with vibrational and NMR chemical shift measurements to quantitatively determine high-resolution ligand structures (up to 0.001 Å for bond length and 0.01 Å for hydrogen bonding distance) and how interaction energies between bound ligand and its surroundings at the active site may be determined. Quantitative characterization of substrate ionic states, bond polarizations, tautomeric forms, conformational changes and its interactions with surroundings in enzyme complexes that mimic ground state or transition state can provide snapshots for visualizing the substrate structural evolution along enzyme-catalyzed reaction pathway. Our results have shown that the integration of spectroscopic studies with theoretical computation greatly enhances our ability to interpret experimental data and significantly increases the reliability of the theoretical analysis. PMID:24018325

  17. Metabolic enzymes: key modulators of functionality in cancer stem-like cells.

    PubMed

    Dong, Bo-Wen; Qin, Guang-Ming; Luo, Yan; Mao, Jian-Shan

    2017-02-21

    Cancer Stem-like Cells (CSCs) are a subpopulation of cancer cells with self-renewal capacity and are important for the initiation, progression and recurrence of cancer diseases. The metabolic profile of CSCs is consistent with their stem-like properties. Studies have indicated that enzymes, the main regulators of cellular metabolism, dictate functionalities of CSCs in both catalysis-dependent and catalysis-independent manners. This paper reviews diverse studies of metabolic enzymes, and describes the effects of these enzymes on metabolic adaptation, gene transcription and signal transduction, in CSCs.

  18. Rational approaches for engineering novel functionalities in carbon-carbon bond forming enzymes

    PubMed Central

    Baker, Perrin; Seah, Stephen Y. K.

    2012-01-01

    Enzymes that catalyze carbon-carbon bond formation can be exploited as biocatalyst for synthetic organic chemistry. However, natural enzymes frequently do not possess the required properties or specificities to catalyze industrially useful transformations. This mini-review describes recent work using knowledge-guided site-specific mutagenesis of key active site residues to alter substrate specificity, stereospecificity and reaction specificity of these enzymes. In addition, examples of de novo designed enzymes that catalyze C-C bond reactions not found in nature will be discussed. PMID:24688644

  19. Identifying Effective Enzyme Activity Targets for Recombinant Class I and Class II Collagenase for Successful Human Islet Isolation.

    PubMed

    Balamurugan, Appakalai N; Green, Michael L; Breite, Andrew G; Loganathan, Gopalakrishnan; Wilhelm, Joshua J; Tweed, Benjamin; Vargova, Lenka; Lockridge, Amber; Kuriti, Manikya; Hughes, Michael G; Williams, Stuart K; Hering, Bernhard J; Dwulet, Francis E; McCarthy, Robert C

    2016-01-01

    Isolation following a good manufacturing practice-compliant, human islet product requires development of a robust islet isolation procedure where effective limits of key reagents are known. The enzymes used for islet isolation are critical but little is known about the doses of class I and class II collagenase required for successful islet isolation. We used a factorial approach to evaluate the effect of high and low target activities of recombinant class I (rC1) and class II (rC2) collagenase on human islet yield. Consequently, 4 different enzyme formulations with divergent C1:C2 collagenase mass ratios were assessed, each supplemented with the same dose of neutral protease. Both split pancreas and whole pancreas models were used to test enzyme targets (n = 20). Islet yield/g pancreas was compared with historical enzymes (n = 42). Varying the Wunsch (rC2) and collagen degradation activity (CDA, rC1) target dose, and consequently the C1:C2 mass ratio, had no significant effect on tissue digestion. Digestions using higher doses of Wunsch and CDA resulted in comparable islet yields to those obtained with 60% and 50% of those activities, respectively. Factorial analysis revealed no significant main effect of Wunsch activity or CDA for any parameter measured. Aggregate results from 4 different collagenase formulations gave 44% higher islet yield (>5000 islet equivalents/g) in the body/tail of the pancreas (n = 12) when compared with those from the same segment using a standard natural collagenase/protease mixture (n = 6). Additionally, islet yields greater than 5000 islet equivalents/g pancreas were also obtained in whole human pancreas. A broader C1:C2 ratio can be used for human islet isolation than has been used in the past. Recombinant collagenase is an effective replacement for the natural enzyme and we have determined that high islet yield can be obtained even with low doses of rC1:rC2, which is beneficial for the survival of islets.

  20. Activation mechanism of erythrocyte cathepsin E. evidence for the occurrence of the membrane-associated active enzyme.

    PubMed

    Ueno, E; Sakai, H; Kato, Y; Yamamoto, K

    1989-06-01

    Activation of the erythrocyte cathepsin E located on the cytoplasmic surface of the membrane in a latent form was studied in stripped inside-out membrane vesicles prepared from human erythrocyte membranes. Incubation of the vesicles at 40 degrees C at pH 4 resulted in increased degradation of the membrane proteins, especially band 3. This proteolysis was selectively inhibited by the inclusion of pepstatin (isovaleryl-Val-Val-statyl-Ala-statine) or H 297 [Pro-Thr-Glu-Phe(CH2-NH)Nle-Arg-Leu] in the incubation mixtures, indicating that cathepsin E, as the only aspartic proteinase in erythrocytes, is responsible for the proteolysis. Two potential active-site-directed inhibitors of aspartic proteinases, pepstatin and H 297, were used to prove the occurrence of the membrane-associated active enzyme. To minimize potential errors arising from non-specific binding, the concentrations of the inhibitors used in the binding assay (pepstatin, 5 x 10(-8) M; H 297, 1 x 10(-5) M) were determined by calibration for purified and membrane-associated cathepsin E. The inhibition of the membrane-associated cathepsin E by each inhibitor, which showed the binding of the inhibitor to the activated enzyme, was temperature- and time-dependent. The binding of each inhibitor to the enzyme on the exposed surface of the membrane at pH 4 was highly specific, saturable, and reversible. The present study thus provides the first evidence that cathepsin E tightly bound to the membrane is converted to the active enzyme in the membrane-associated form, and suggests that this enzyme may be responsible for the degradation of band 3.

  1. Bundle-sheath thylakoids from NADP-malic enzyme-type C4 plants require an exogenous electron donor for enzyme light activation.

    PubMed

    Lavergne, D; Droux, M; Jacquot, J P; Miginiac-Maslow, M; Champigny, M L; Gadal, P

    1985-10-01

    Light activation of either NADP-malate dehydrogenase (EC 1.1.1.82) or fructose-1,6-bisphosphate phosphatase (EC 3.1.3.11) was assayed in a reconstituted chloroplastic, system comprising the isolated proteins of the ferredoxin-thioredoxin light-activation system and thylakoids from either mesophyll or bundle-sheath tissues of different C4 plants. While C4-plant thylakoids functionned almost equally well with C3-or C4-plant proteins, the photosyntem-II-deficient bundle-sheath thylakoids from the NADP-malic enzyme type, were unable to perform enzyme photoactivation unless supplemented with an electron donor to photosystem I. Bundle-sheath thylakoids isolated from plants showing no photosystem-II deficiency did not require such an addition. The results are discussed with respect to a possible requirement for a physiological reductant of ferredoxin for enzyme light activation in bundle-sheath, tissues.

  2. Immobilization, stabilization and patterning techniques for enzyme based sensor systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flounders, A.W.; Carichner, S.C.; Singh, A.K.

    1997-01-01

    Sandia National Laboratories has recently opened the Chemical and Radiation Detection Laboratory (CRDL) in Livermore CA to address the detection needs of a variety of government agencies (e.g., Department of Energy, Environmental Protection Agency, Department of Agriculture) as well as provide a fertile environment for the cooperative development of new industrial technologies. This laboratory consolidates a variety of existing chemical and radiation detection efforts and enables Sandia to expand into the novel area of biochemically based sensors. One aspect of this biosensor effort is further development and optimization of enzyme modified field effect transistors (EnFETs). Recent work has focused uponmore » covalent attachment of enzymes to silicon dioxide and silicon nitride surfaces for EnFET fabrication. They are also investigating methods to pattern immobilized proteins; a critical component for development of array-based sensor systems. Novel enzyme stabilization procedures are key to patterning immobilized enzyme layers while maintaining enzyme activity. Results related to maximized enzyme loading, optimized enzyme activity and fluorescent imaging of patterned surfaces will be presented.« less

  3. Deletion of creB in Aspergillus oryzae increases secreted hydrolytic enzyme activity.

    PubMed

    Hunter, A J; Morris, T A; Jin, B; Saint, C P; Kelly, J M

    2013-09-01

    Aspergillus oryzae has been used in the food and beverage industry for centuries, and industrial strains have been produced by multiple rounds of selection. Targeted gene deletion technology is particularly useful for strain improvement in such strains, particularly when they do not have a well-characterized meiotic cycle. Phenotypes of an Aspergillus nidulans strain null for the CreB deubiquitinating enzyme include effects on growth and repression, including increased activity levels of various enzymes. We show that Aspergillus oryzae contains a functional homologue of the CreB deubiquitinating enzyme and that a null strain shows increased activity levels of industrially important secreted enzymes, including cellulases, xylanases, amylases, and proteases, as well as alleviated inhibition of spore germination on glucose medium. Reverse transcription-quantitative PCR (RT-qPCR) analysis showed that the increased levels of enzyme activity in both Aspergillus nidulans and Aspergillus oryzae are mirrored at the transcript level, indicating transcriptional regulation. We report that Aspergillus oryzae DAR3699, originally isolated from soy fermentation, has a similar phenotype to that of a creB deletion mutant of the RIB40 strain, and it contains a mutation in the creB gene. Collectively, the results for Aspergillus oryzae, Aspergillus nidulans, Trichoderma reesei, and Penicillium decumbens show that deletion of creB may be broadly useful in diverse fungi for increasing production of a variety of enzymes.

  4. Deletion of creB in Aspergillus oryzae Increases Secreted Hydrolytic Enzyme Activity

    PubMed Central

    Hunter, A. J.; Morris, T. A.; Jin, B.; Saint, C. P.

    2013-01-01

    Aspergillus oryzae has been used in the food and beverage industry for centuries, and industrial strains have been produced by multiple rounds of selection. Targeted gene deletion technology is particularly useful for strain improvement in such strains, particularly when they do not have a well-characterized meiotic cycle. Phenotypes of an Aspergillus nidulans strain null for the CreB deubiquitinating enzyme include effects on growth and repression, including increased activity levels of various enzymes. We show that Aspergillus oryzae contains a functional homologue of the CreB deubiquitinating enzyme and that a null strain shows increased activity levels of industrially important secreted enzymes, including cellulases, xylanases, amylases, and proteases, as well as alleviated inhibition of spore germination on glucose medium. Reverse transcription-quantitative PCR (RT-qPCR) analysis showed that the increased levels of enzyme activity in both Aspergillus nidulans and Aspergillus oryzae are mirrored at the transcript level, indicating transcriptional regulation. We report that Aspergillus oryzae DAR3699, originally isolated from soy fermentation, has a similar phenotype to that of a creB deletion mutant of the RIB40 strain, and it contains a mutation in the creB gene. Collectively, the results for Aspergillus oryzae, Aspergillus nidulans, Trichoderma reesei, and Penicillium decumbens show that deletion of creB may be broadly useful in diverse fungi for increasing production of a variety of enzymes. PMID:23835170

  5. The relevance of chemical interactions with CYP17 enzyme activity: Assessment using a novel in vitro assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roelofs, Maarke J.E., E-mail: m.j.e.roelofs@uu.nl; Center for Health Protection, National Institute for Public Health and the Environment; Piersma, Aldert H.

    The steroidogenic cytochrome P450 17 (CYP17) enzyme produces dehydroepiandrosterone (DHEA), which is the most abundant circulating endogenous sex steroid precursor. DHEA plays a key role in e.g. sexual functioning and development. To date, no rapid screening assay for effects on CYP17 is available. In this study, a novel assay using porcine adrenal cortex microsomes (PACMs) was described. Effects of twenty-eight suggested endocrine disrupting compounds (EDCs) on CYP17 activity were compared with effects in the US EPA validated H295R (human adrenocorticocarcinoma cell line) steroidogenesis assay. In the PACM assay DHEA production was higher compared with the H295R assay (4.4 versus 2.2more » nmol/h/mg protein). To determine the additional value of a CYP17 assay, all compounds were also tested for interaction with CYP19 (aromatase) using human placental microsomes (HPMs) and H295R cells. 62.5% of the compounds showed enzyme inhibition in at least one of the microsomal assays. Only the cAMP inducer forskolin induced CYP17 activity, while CYP19 was induced by four test compounds in the H295R assay. These effects remained unnoticed in the PACM and HPM assays. Diethylstilbestrol and tetrabromobisphenol A inhibited CYP17 but not CYP19 activity, indicating different mechanisms for the inhibition of these enzymes. From our results it becomes apparent that CYP17 can be a target for EDCs and that this interaction differs from interactions with CYP19. Our data strongly suggest that research attention should focus on validating a specific assay for CYP17 activity, such as the PACM assay, that can be included in the EDC screening battery. - Highlights: ► DHEA, produced by CYP17, plays a key role in sexual functioning and development. ► No rapid screening assay for effects on CYP17 is available yet. ► A novel assay using porcine adrenal cortex microsomes (PACMs) was described. ► Endocrine disrupting compounds (EDCs) targeting CYP17 interact differently with CYP19. ► A

  6. Prediction of Enzyme Mutant Activity Using Computational Mutagenesis and Incremental Transduction

    PubMed Central

    Basit, Nada; Wechsler, Harry

    2011-01-01

    Wet laboratory mutagenesis to determine enzyme activity changes is expensive and time consuming. This paper expands on standard one-shot learning by proposing an incremental transductive method (T2bRF) for the prediction of enzyme mutant activity during mutagenesis using Delaunay tessellation and 4-body statistical potentials for representation. Incremental learning is in tune with both eScience and actual experimentation, as it accounts for cumulative annotation effects of enzyme mutant activity over time. The experimental results reported, using cross-validation, show that overall the incremental transductive method proposed, using random forest as base classifier, yields better results compared to one-shot learning methods. T2bRF is shown to yield 90% on T4 and LAC (and 86% on HIV-1). This is significantly better than state-of-the-art competing methods, whose performance yield is at 80% or less using the same datasets. PMID:22007208

  7. Consequences of lower food intake on the digestive enzymes activities, the energy reserves and the reproductive outcome in Gammarus fossarum.

    PubMed

    Charron, Laetitia; Geffard, Olivier; Chaumot, Arnaud; Coulaud, Romain; Jaffal, Ali; Gaillet, Véronique; Dedourge-Geffard, Odile; Geffard, Alain

    2015-01-01

    Digestive enzyme activity is often used as a sensitive response to environmental pollution. However, only little is known about the negative effects of stress on digestive capacities and their consequences on energy reserves and reproduction, although these parameters are important for the maintenance of populations. To highlight if changes in biochemical responses (digestive enzymes and reserves) led to impairments at an individual level (fertility), Gammarus fossarum were submitted to a lower food intake throughout a complete female reproductive cycle (i.e. from ovogenesis to offspring production). For both males and females, amylase activity was inhibited by the diet stress, whereas trypsin activity was not influenced. These results underline similar sensitivity of males and females concerning their digestive capacity. Energy reserves decreased with food starvation in females, and remained stable in males. The number of embryos per female decreased with food starvation. Lower digestive activity in males and females therefore appears as an early response. These results underline the ecological relevance of digestive markers, as they make it possible to anticipate upcoming consequences on reproduction in females, a key biological variable for population dynamics.

  8. Is there any role of prolidase enzyme activity in the etiology of preeclampsia?

    PubMed

    Pehlivan, Mustafa; Ozün Ozbay, Pelin; Temur, Muzaffer; Yılmaz, Ozgur; Verit, Fatma Ferda; Aksoy, Nurten; Korkmazer, Engin; Üstünyurt, Emin

    2017-05-01

    To evaluate a relationship between preeclampsia and prolidase enzyme activity. A prospective cohort study of 41 pregnant women diagnosed with preeclampsia and 31 healthy pregnant women as control group was selected at Harran University Hospital Department of Obstetrics and Gynecology. The prolidase enzyme activity was analyzed in maternal and umbilical cord plasma, amniotic fluid and placental and umbilical cord tissues by Chinard method in addition to maternal serum levels of lactate dehydrogenase (LDH), serum glutamate pyruvate transaminase (SGPT) and serum glutamate oxaloacetate transaminase (SGOT). A significant relationship was found between plasma prolidase activity (635 ± 83 U/L) (p  = 0.007), umbilical cord plasma prolidase activity (610 ± 90 U/L) (p = 0.013), amniotic fluid prolidase activity (558 ± 100 U/L) (p  = 0.001), umbilical cord tissue prolidase activity (4248 ± 1675 U/gr protein) (p  = 0.013) and placental tissue prolidase activity (2116 ± 601 U/gr protein) (p  = 0.001) in preeclamptic group when compared to healthy pregnant women. There is a strong correlation between prolidase enzyme activity and preeclampsia. Prolidase enzyme activity may play a role in preeclampsia.

  9. Metabolic enzymes: key modulators of functionality in cancer stem-like cells

    PubMed Central

    Dong, Bo-Wen; Qin, Guang-Ming; Luo, Yan; Mao, Jian-Shan

    2017-01-01

    Cancer Stem-like Cells (CSCs) are a subpopulation of cancer cells with self-renewal capacity and are important for the initiation, progression and recurrence of cancer diseases. The metabolic profile of CSCs is consistent with their stem-like properties. Studies have indicated that enzymes, the main regulators of cellular metabolism, dictate functionalities of CSCs in both catalysis-dependent and catalysis-independent manners. This paper reviews diverse studies of metabolic enzymes, and describes the effects of these enzymes on metabolic adaptation, gene transcription and signal transduction, in CSCs. PMID:28009990

  10. [Importance of the 11β-hydroxysteroid dehydrogenase enzyme in clinical disorders].

    PubMed

    Feldman, Karolina; Likó, István; Nagy, Zsolt; Szappanos, Agnes; Grolmusz, Vince Kornél; Tóth, Miklós; Rácz, Károly; Patócs, Attila

    2013-02-24

    Glucocorticoids play an important role in the regulation of carbohydrate and amino acid metabolism, they modulate the function of the immune system, and contribute to stress response. Increased and decreased production of glucocorticoids causes specific diseases. In addition to systemic hypo- or hypercortisolism, alteration of local synthesis and metabolism of cortisol may result in tissue-specific hypo- or hypercortisolism. One of the key enzymes participating in the local synthesis and metabolism of cortisol is the 11β-hydroxysteroid dehydrogenase enzyme. Two isoforms, type 1 and type 2 enzymes are located in the endoplasmic reticulum and catalyze the interconversion of hormonally active cortisol and inactive cortisone. The type 1 enzyme mainly works as an activator, and it is responsible for the generation of cortisol from cortisone in liver, adipose tissue, brain and bone. The gene encoding this enzyme is located on chromosome 1. The authors review the physiological and pathophysiological processes related to the function of the type 1 11β-hydroxysteroid dehydrogenase enzyme. They summarize the potential significance of polymorphic variants of the enzyme in clinical diseases as well as knowledge related to inhibitors of enzyme activity. Although further studies are still needed, inhibition of the enzyme activity may prove to be an effective tool for the treatment of several diseases such as obesity, osteoporosis and type 2 diabetes.

  11. Kinetic study of an enzymic cycling system coupled to an enzymic step: determination of alkaline phosphatase activity.

    PubMed Central

    Valero, E; Varón, R; García-Carmona, F

    1995-01-01

    A kinetic study is made of a system consisting of a specific enzymic cycling assay coupled to an enzymic reaction. A kinetic analysis of this system is presented, and the accumulation of chromophore involved in the cycle is seen to be parabolic, i.e. the rate of the reaction increases continuously with constant acceleration. The system is illustrated by the measurement of alkaline phosphatase activity using beta-NADP+ as substrate. The enzymes alcohol dehydrogenase and diaphorase are used to cycle beta-NAD+ in the presence of ethanol and p-Iodonitrotetrazolium Violet. During each turn of the cycle, one molecule of the tetrazolium salt is reduced to an intensely coloured formazan. A simple procedure for evaluating the kinetic parameters involved in the system and for optimizing this cycling assay is described. The method is applicable to the measurement of any enzyme, and its amplification capacity as well as the simplicity of determining kinetic parameters enable it to be employed in enzyme immunoassays to increase the magnitude of the measured response. PMID:7619054

  12. Phosphotriesterase-magnetic nanoparticles bioconjugates with improved enzyme activity in a biocatalytic membrane reactor.

    PubMed

    Gebreyohannes, Abaynesh Yihdego; Mazzei, Rosalinda; Yahia Marei Abdelrahim, Mohamed; Vitola, Giuseppe; Porzio, Elena; Manco, Giuseppe; Barboiu, Mihail; Giorno, Lidietta

    2018-05-24

    The need to find alternative bioremediation solutions for organophosphate degradation pushed the research to develop technologies based on organophosphate degrading enzymes, such as phosphotriesterase. The use of free phosphotriesterase poses limits in terms of enzyme reuse, stability and process development. The heterogenization of enzyme on a support and their use in bioreactors implemented by membrane seems a suitable strategy, thanks to the ability of membranes to compartmentalize, to govern mass transfer and provide microenvironment with tuned physico-chemical and structural properties. Usually, hydrophilic membranes are used since they easily guarantee the presence of water molecules needed for the enzyme catalytic activity. However, hydrophobic materials exhibit a larger shelf life and are preferred for the construction of filters and masks. Therefore, in this work, hydrophobic polyvinylidene fluoride (PVDF) porous membranes were used to develop biocatalytic membrane reactors (BMR). The phosphotriesterase-like lactonase (PLL) enzyme (SsoPox triple mutant from S. solfataricus) endowed with thermostable phosphotriesterase activity was used as model biocatalyst. The enzyme was covalently bound directly to the PVDF hydrophobic membrane or it was bound to magnetic nanoparticles and then positioned on the hydrophobic membrane surface by means of an external magnetic field. Investigation of kinetic properties of the two BMRs and the influence of immobilized enzyme amount revealed that the performance of the BMR was mostly dependent on the amount of enzyme and its distribution on the immobilization support. Magnetic nanocomposite mediated immobilization showed a much better performance, with an observed specific activity higher than 90% compared to grafting of the enzyme on the membrane. Even though the present work focused on phosphotriesterase, it can be easily translated to other class of enzymes and related application.

  13. Computationally optimized deimmunization libraries yield highly mutated enzymes with low immunogenicity and enhanced activity.

    PubMed

    Salvat, Regina S; Verma, Deeptak; Parker, Andrew S; Kirsch, Jack R; Brooks, Seth A; Bailey-Kellogg, Chris; Griswold, Karl E

    2017-06-27

    Therapeutic proteins of wide-ranging function hold great promise for treating disease, but immune surveillance of these macromolecules can drive an antidrug immune response that compromises efficacy and even undermines safety. To eliminate widespread T-cell epitopes in any biotherapeutic and thereby mitigate this key source of detrimental immune recognition, we developed a Pareto optimal deimmunization library design algorithm that optimizes protein libraries to account for the simultaneous effects of combinations of mutations on both molecular function and epitope content. Active variants identified by high-throughput screening are thus inherently likely to be deimmunized. Functional screening of an optimized 10-site library (1,536 variants) of P99 β-lactamase (P99βL), a component of ADEPT cancer therapies, revealed that the population possessed high overall fitness, and comprehensive analysis of peptide-MHC II immunoreactivity showed the population possessed lower average immunogenic potential than the wild-type enzyme. Although similar functional screening of an optimized 30-site library (2.15 × 10 9 variants) revealed reduced population-wide fitness, numerous individual variants were found to have activity and stability better than the wild type despite bearing 13 or more deimmunizing mutations per enzyme. The immunogenic potential of one highly active and stable 14-mutation variant was assessed further using ex vivo cellular immunoassays, and the variant was found to silence T-cell activation in seven of the eight blood donors who responded strongly to wild-type P99βL. In summary, our multiobjective library-design process readily identified large and mutually compatible sets of epitope-deleting mutations and produced highly active but aggressively deimmunized constructs in only one round of library screening.

  14. Duodenal-jejunal bypass surgery up-regulates the expression of the hepatic insulin signaling proteins and the key regulatory enzymes of intestinal gluconeogenesis in diabetic Goto-Kakizaki rats.

    PubMed

    Sun, Dong; Wang, Kexin; Yan, Zhibo; Zhang, Guangyong; Liu, Shaozhuang; Liu, Fengjun; Hu, Chunxiao; Hu, Sanyuan

    2013-11-01

    Duodenal-jejunal bypass (DJB), which is not routinely applied in metabolic surgery, is an effective surgical procedure in terms of type 2 diabetes mellitus resolution. However, the underlying mechanisms are still undefined. Our aim was to investigate the diabetic improvement by DJB and to explore the changes in hepatic insulin signaling proteins and regulatory enzymes of gluconeogenesis after DJB in a non-obese diabetic rat model. Sixteen adult male Goto-Kakizaki rats were randomly divided into DJB and sham-operated groups. The body weight, food intake, hormone levels, and glucose metabolism were measured. The levels of protein expression and phosphorylation of insulin receptor-beta (IR-β) and insulin receptor substrate 2 (IRS-2) were evaluated in the liver. We also detected the expression of key regulatory enzymes of gluconeogenesis [phosphoenoylpyruvate carboxykinase-1 (PCK1), glucose-6-phosphatase-alpha (G6Pase-α)] in small intestine and liver. DJB induced significant diabetic improvement with higher postprandial glucagons-like peptide 1, peptide YY, and insulin levels, but without weight loss. The DJB group exhibited increased expression and phosphorylation of IR-β and IRS-2 in liver, up-regulated the expression of PCK1 and G6Pase-α in small intestine, and down-regulated the expression of these enzymes in liver. DJB is effective in up-regulating the expression of the key proteins in the hepatic insulin signaling pathway and the key regulatory enzymes of intestinal gluconeogenesis and down-regulating the expression of the key regulatory enzymes of hepatic gluconeogenesis without weight loss. Our study helps to reveal the potential role of hepatic insulin signaling pathway and intestinal gluconeogenesis in ameliorating insulin resistance after metabolic surgery.

  15. In vitro screening and in silico validation revealed key microbes for higher production of significant therapeutic enzyme l-asparaginase.

    PubMed

    Vimal, Archana; Kumar, Awanish

    2017-03-01

    l-asparaginase is an enzyme of medical prominence and reputable as a chemotherapeutic agent. It also has immense potential to cure autoimmune and infectious diseases. The vast application of this enzyme in healthcare sector increases its market demand. However, presently the huge market demand is not achieved completely. This serves the basis to explore better producer microbial strains to bridge the gap between huge demand and supply of this therapeutic enzyme. The present study deals with the successful screening of potent microorganisms producing l-asparaginase. 47 microorganisms were screened including bacteria, fungi, and yeasts. Among all, Penicillium lilacinum showed the highest enzyme activity i.e., 39.67 IU/ml. Shigella flexneri has 23.21 IU/ml of enzyme activity (highest among all the bacterial strain tested). Further, the 3-D structure of l-asparaginase from higher producer strains was developed and validated in silico for its activity. l-asparagine (substrate for l-asparaginase) was docked inside the binding pocket of P. lilacinum and S. flexneri. Docking score for the most common substrate l-asparagine is -6.188 (P. lilacinum), -5.576 (S. flexneri) which is quite good. Moreover, the chemical property of the binding pocket revealed that amino acid residues Phe 243, Gln 260, Gly 365, Asp 386 in P. lilacinum and residues Asp 181, Thr 318, Asn 320 in S. flexneri have an important role in H-bonding. The in silico results supports and strengthen the wet lab results. The outcome obtained motivates to take the present study result from lab to industry for the economic/massive production of this enzyme for the diverse therapeutic application. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Antioxidative capacity and enzyme activity in Haematococcus pluvialis cells exposed to superoxide free radicals

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Zhang, Xiaoli; Sun, Yanhong; Lin, Wei

    2010-01-01

    The antioxidative capacity of astaxanthin and enzyme activity of reactive oxygen eliminating enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were studied in three cell types of Haematococcus pluvialis exposed to high concentrations of a superoxide anion radical (O{2/-}). The results show that defensive enzymes and astaxanthin-related mechanisms were both active in H. pluvialis during exposure to reactive oxygen species (ROS) such as O{2/-}. Astaxanthin reacted with ROS much faster than did the protective enzymes, and had the strongest antioxidative capacity to protect against lipid peroxidation. The defensive mechanisms varied significantly between the three cell types and were related to the level of astaxanthin that had accumulated in those cells. Astaxanthin-enriched red cells had the strongest antioxidative capacity, followed by brown cells, and astaxanthin-deficient green cells. Although there was no significant increase in expression of protective enzymes, the malondialdehyde (MDA) content in red cells was sustained at a low level because of the antioxidative effect of astaxanthin, which quenched O{2/-} before the protective enzymes could act. In green cells, astaxanthin is very low or absent; therefore, scavenging of ROS is inevitably reliant on antioxidative enzymes. Accordingly, in green cells, these enzymes play the leading role in scavenging ROS, and the expression of these enzymes is rapidly increased to reduce excessive ROS. However, because ROS were constantly increased in this study, the enhance enzyme activity in the green cells was not able to repair the ROS damage, leading to elevated MDA content. Of the four defensive enzymes measured in astaxanthin-deficient green cells, SOD eliminates O{2/-}, POD eliminates H2O2, which is a by-product of SOD activity, and APX and CAT are then initiated to scavenge excessive ROS.

  17. Biogenesis of ER subdomains containing DGAT2, an enzyme involved in industrial oil biosynthesis

    USDA-ARS?s Scientific Manuscript database

    Diacylglycerol acyltransferases (DGATs) are enzymes that catalyze the committed step in triacylglycerol (TAG) biosynthesis by transferring a fatty acyl group from the acyl-CoA pool to the sn-3 position of diacylglycerol. The substrate specificity and overall activity of these enzymes play a key role...

  18. Quantitation of Lipase Activity from a Bee: An Introductory Enzyme Experiment.

    ERIC Educational Resources Information Center

    Farley, Kathleen A.; Jones, Marjorie A.

    1989-01-01

    This four-hour experiment uses a bee as a source of the enzyme which is reacted with a radioactive substrate to determine the specific activity of the enzyme. Uses thin layer chromatography, visible spectrophotometry, and liquid scintillation spectrometry (if not available a Geiger-Muller counter can be substituted). (MVL)

  19. Enzyme activity assays within microstructured optical fibers enabled by automated alignment.

    PubMed

    Warren-Smith, Stephen C; Nie, Guiying; Schartner, Erik P; Salamonsen, Lois A; Monro, Tanya M

    2012-12-01

    A fluorescence-based enzyme activity assay has been demonstrated within a small-core microstructured optical fiber (MOF) for the first time. To achieve this, a reflection-based automated alignment system has been developed, which uses feedback and piezoelectric actuators to maintain optical alignment. The auto-alignment system provides optical stability for the time required to perform an activity assay. The chosen assay is based on the enzyme proprotein convertase 5/6 (PC6) and has important applications in women's health.

  20. Spatial characterization of proteolytic enzyme activity in the foregut region of the adult necrophagous fly, Protophormia terraenovae.

    PubMed

    Rivers, David B; Acca, Gillian; Fink, Marc; Brogan, Rebecca; Schoeffield, Andrew

    2014-08-01

    The spatial distribution of proteolytic enzymes in the adult foregut of Protophormia terraenovae was studied in the context of protein digestion and regurgitation. Based on substrate specificity, pH optima, and use of specific protease inhibitors, all adults tested displayed enzyme activity in the foregut consistent with pepsin, trypsin and chymotrypsin. Chymotrypsin-like and trypsin-like enzyme activity were detected in all gut fluids and tissues tested, with chymotrypsin displaying the highest activity in saliva and salivary gland tissue, whereas maximal trypsin activity was evident in the crop. Pepsin-like activity was only evident in crop fluids and tissues. The activity of all three enzymes was low or undetectable (pepsin) in the fluids and tissue homogenates derived from the esophagus and cardia of any of the adults assayed. Fed adult females displayed higher enzyme activities than fed males, and the activity of all three enzymes were much more prevalent in fed adults than starved. The pH optimum of the trypsin-like enzyme was between pH 7.0 and 8.0; chymotrypsin was near pH 8.0; and maximal pepsin-like activity occurred between pH 1.0 and 2.0. Regurgitate from fed adult females displayed enzyme activity consistent with the proteolytic enzymes detected in crop gut fluids. Enzymes in regurgitate were not derived from food sources based on assays of bovine liver samples. These latter observations suggest that adult flies release fluids from foregut when encountering dry foods, potentially as a means to initiate extra-oral digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Endogenous enzyme activities and polyamine levels in diverse rice cultivars depend on the genetic background and are not affected by the presence of the hygromycin phosphotransferase selectable marker.

    PubMed

    Lepri, O.; Bassie, L.; Thu-Hang, P.; Christou, P.; Capell, T.

    2002-09-01

    We used the polyamine biosynthetic pathway and rice as a relevant model to understand the genetic basis of variation in endogenous levels of metabolites and key enzymes involved in the pathway. Wild-type tissues and also tissues containing a commonly used selectable marker gene were employed. We detected a wide variation in levels of arginine decarboxylase activity and in the three polyamines, putrescine, spermidine and spermine, in different tissues and varieties, but this was not dependent on the presence of the selectable marker. A more-extensive profile of enzyme activities (ADC, ODC, SAMDC, DAO and PAO) and polyamine levels in different tissues was generated in two different varieties. Our results indicate that genetic background is important in terms of the basal levels of metabolites and enzyme activity, particularly in situations in which we aim to engineer metabolic pathways that are also encoded by homologous endogenous genes. We did not find any evidence that the presence of a selectable marker in any way influences enzyme activity or metabolite levels.

  2. Changes of Serum Angiotensin-Converting Enzyme Activity During Treatment of Patients with Graves’ Disease*

    PubMed Central

    Lee, Dong Soo; Chung, June-Key; Cho, Bo Youn; Koh, Chang-Soon; Lee, Munho

    1986-01-01

    Serum angiotensin-converting enzyme activity was measured spectrophotometrically, and serum thyrotropin-binding-inhibitory immunoglobulin (TBII) activity was measured by radioreceptor assay in normal subjects and in patients with Graves’ disease serially before and during treatment, and these activities were compared with each other and with thyroid hormone levels in various thyroid functional status. Correlation between serum angiotensin-converting enzyme activity and serum thyroid hormone level was pursued with relation to the changes of thyroid functional status in patients with Graves’ disease during treatment. Serum angiotensin-converting enzyme activity was significantly elevated in patients with hyperthyroid Graves’ disease before the start of treatment (35 ± 13 nmol/min/ml, n=50), and not in patients with Graves’ disease, euthyroid state during treatment with antithyroid drugs or radioactive iodine (23 ± 9 nmol/min/ml, n=12), but decreased significantly in patients with Graves’ disease, hypothyroid state transiently during treatment (15 ± 4 nmol/min/ml, n=12), respectively in comparison with normal control subjects. Serum angiotensin-converting enzyme activity was positively correlated with the log value of serum T3 concentration (r=0.62, p<0.001, n=95), and with the log value of free thyroxine index (r=0.66, p<0.001, n=91) but not statistically significantly with serum TBII activity. Serum angiotensin-converting enzyme activity was followed in 11 patients with initially increased activity and the activity decreased in proportion to serum thyroid hormone level during treatment, irrespective of treatment modality. It is suggested that thyroid hormones play a role in the increase and decrease of serum angiotensin-converting enzyme activity directly or indirectly influencing the peripheral tissues (probably reticuloendothelial cells or peripheral endothelial cells) in patients with Graves’ disease. PMID:15759385

  3. Changes in serum enzyme activities after injection of bupivacaine into rat tibialis anterior.

    PubMed

    Nosaka, K

    1996-08-01

    This study investigated the time course of changes in serum creatine kinase (CK), aspartate aminotransferase (AST), and alanine amino-transferase (ALT) activities after intramuscular injection of bupivacaine into the tibialis anterior (TA) of rats. Morphological changes in muscle cells, relationships between the amount of increase in the enzyme activities and the muscle mass damaged, and responses of serum enzymes to additional injections of bupivacaine hydrochloride (BPVC) were also examined. Adult male Wistar rats (24 wk) were placed into one of four groups. Group A (n = 7) was a control, and no injection was applied. Saline solution (0.5 ml of 0.9%) was injected into the right TA for group B (n = 5). BPVC (0.5 ml of 0.5%) was injected into the right TA for group C (n = 9) and into both the right and left TA for group D (n = 9). No increases in CK, AST, and ALT were observed for groups A and B. After BPVC injection, groups C and D showed significant (P < 0.01) increases in serum enzyme activities. CK peaked 4 h after BPVC injection, and AST and ALT peaked 12 h postinjection, then returned to the baseline by the time infiltration of mononuclear cells into the damaged muscle cells progressed. The amount of enzyme increase was significantly larger (P < 0.01) for group D compared with group C. Injection of BPVC into the right then into the left TA 4 h later displayed a bipolar response, and the second injection into the TA 12 wk after the first injection resulted in smaller increase in serum enzyme activities. It appeared that increases in serum enzyme activities reflected muscle damage; however, changes in enzymes occurred in the early stage of myonecrosis.

  4. Effect of cigarette smoke on salivary proteins and enzyme activities.

    PubMed

    Nagler, R; Lischinsky, S; Diamond, E; Drigues, N; Klein, I; Reznick, A Z

    2000-07-15

    Exposure of human plasma in vitro to gas-phase cigarette smoke (CS) causes a marked modification of plasma proteins as measured by protein carbonyl assay. Aldehydes present in CS may cause this elevation of protein carbonyls by reacting with sulfhydryl groups of proteins. Saliva is the first body fluid to confront the inhaled CS. Thus, in vitro exposure of saliva to nine "puffs" of CS also showed a distinct increase in protein carbonyls. Ascorbate and desferrioxamine mesylate had little effect on protein carbonyl formation, while GSH and N-acetylcysteine considerably inhibited the accumulation of protein carbonyls due to CS exposure. Following the exposure to CS, the activities of several salivary enzymes-amylase, lactic dehydrogenase (LDH), and acid phosphatase-were found to be significantly reduced (34, 57, and 77%, respectively). However, CS had no effect on the activities of aspartate aminotransferase and alkaline phosphatase. Addition of 1 mM of GSH and N-acetylcysteine considerably protected LDH and amylase activities, suggesting that sulfhydryl groups are affected in LDH and amylase. On the other hand, addition of 1 mM ascorbate caused a further loss of LDH and amylase activities, which could be partially prevented by the addition of desferrioxamine mesylate, implicating metal-catalyzed oxidation processes. Finally, loss of acid phosphatase activity was completely unaffected by any of the above antioxidants. It is concluded that the loss of salivary enzyme activities may be due to various agents in the CS that affect the enzyme activities via different mechanisms. Copyright 2000 Academic Press.

  5. Carbohydrate active enzymes revealed in Coptotermes formosanus transcriptome

    USDA-ARS?s Scientific Manuscript database

    A normalized cDNA library of Coptotermes formosanus was constructed using mixed RNA isolated from workers, soldiers, nymphs and alates of both sexes. Sequencing of this library generated 131,637 EST and 25,939 unigenes were assembled. Carbohydrate active enzymes (CAZymes) revealed in this library we...

  6. Enzyme activity in terrestrial soil in relation to exploration of the Martian surface

    NASA Technical Reports Server (NTRS)

    Ardakani, M. S.; Burns, R. G.; Mclaren, A. D.; Pukite, A. H.

    1972-01-01

    Urease activity in soil is persistent for long periods under low water, low temperature, and sterile regimes, and it was suggested that some form of enzyme-protective mechanism exists in soil. Dublin soil was extracted by sonication in water followed by adding a mixture of salts. Urease activity is associated with the organo-mineral complex thus obtained and is resistant to the activities of proteolytic enzymes. Clay free soil organic matter prepared subsequently by filtration also exhibits urease activity which is resistant to proteolysis. Models consisting of enzymes with bentonite and lignin were found to mimic this resistance to proteolysis. A model system is presented which suggests both the origin and location of soil ureases and a reason for their persistence in nature.

  7. Influence of Different Forest System Management Practices on Leaf Litter Decomposition Rates, Nutrient Dynamics and the Activity of Ligninolytic Enzymes: A Case Study from Central European Forests

    PubMed Central

    Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk

    2014-01-01

    Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling. PMID:24699676

  8. Hormonal control of GTP cyclohydrolase I gene expression and enzyme activity during color pattern development in wings of Precis coenia.

    PubMed

    Sawada, H; Nakagoshi, M; Reinhardt, R K; Ziegler, I; Koch, P B

    2002-06-01

    Color patterns of butterfly wings are composed of single color points represented by each scale. In the case of Precis coenia, at the end of pupal development, different types of pigments are synthesized sequentially in the differently colored scales beginning with white (pterins) followed by red (ommatins) and then black (melanin). In order to explain how formation of these different colors is regulated, we examined the expression of an mRNA-encoding guanosine triphosphate-cyclohydrolase I (GTP-CH I; EC 3.5.4.16), the first key enzyme in the biosynthesis of pteridines, during pigment formation in the wings of P. coenia. The strongest positive signal was recognized around pigment formation one day before butterfly emergence. This GTP-CH I gene expression is paralleled by GTP-CH I enzyme activity measured in wing extracts. We also investigated the effect of 20-hydroxyecdysone on the expression of GTP-CH I mRNA and the enzyme activity during color formation. The results strongly suggest that the onset and duration of the expression of a GTP-CH I mRNA is triggered by a declining ecdysteroid hormone titer during late pupal development.

  9. Activities of five enzymes following soil disturbance and weed control in a Missouri forest

    Treesearch

    Felix, Jr. Ponder; Frieda Eivazi

    2008-01-01

    Forest disturbances associated with harvesting activities can affect soil properties including enzyme activity and overall soil quality. The activities of five enzymes (acid and alkaline phosphatases, betaglucosidase, aryl-sulfatase, and beta-glucosominidase) were measured after 8 years in soil from clearcut and uncut control plots of a Missouri oak-hickory (...

  10. Probiotic activity of lignocellulosic enzyme as bioactivator for rice husk degradation

    NASA Astrophysics Data System (ADS)

    Lamid, Mirni; Al-Arif, Anam; Warsito, Sunaryo Hadi

    2017-02-01

    The utilization of lignocellulosic enzyme will increase nutritional value of rice husk. Cellulase consists of C1 (β-1, 4-glucan cellobiohydrolase or exo-β-1,4glucanase), Cc (endo-β-1,4-glucanase) and component and cellobiose (β-glucocidase). Hemicellulase enzyme consists of endo-β-1,4-xilanase, β-xilosidase, α-L arabinofuranosidase, α-D-glukuronidaseand asetil xilan esterase. This research aimed to study the activity of lignocellulosic enzyme, produced by cows in their rumen, which can be used as a bioactivator in rice husk degradation. This research resulted G6 and G7 bacteria, producing xylanase and cellulase with the activity of 0.004 U mL-1 and 0.021 U mL-1; 0.003 ( U mL-1) and 0.026 (U mL-1) respectively.

  11. Geometric and electronic structure contributions to function in non-heme iron enzymes.

    PubMed

    Solomon, Edward I; Light, Kenneth M; Liu, Lei V; Srnec, Martin; Wong, Shaun D

    2013-11-19

    Mononuclear non-heme Fe (NHFe) enzymes play key roles in DNA repair, the biosynthesis of antibiotics, the response to hypoxia, cancer therapy, and many other biological processes. These enzymes catalyze a diverse range of oxidation reactions, including hydroxylation, halogenation, ring closure, desaturation, and electrophilic aromatic substitution (EAS). Most of these enzymes use an Fe(II) site to activate dioxygen, but traditional spectroscopic methods have not allowed researchers to insightfully probe these ferrous active sites. We have developed a methodology that provides detailed geometric and electronic structure insights into these NHFe(II) active sites. Using these data, we have defined a general mechanistic strategy that many of these enzymes use: they control O2 activation (and limit autoxidation and self-hydroxylation) by allowing Fe(II) coordination unsaturation only in the presence of cosubstrates. Depending on the type of enzyme, O2 activation either involves a 2e(-) reduced Fe(III)-OOH intermediate or a 4e(-) reduced Fe(IV)═O intermediate. Nuclear resonance vibrational spectroscopy (NRVS) has provided the geometric structure of these intermediates, and magnetic circular dichroism (MCD) has defined the frontier molecular orbitals (FMOs), the electronic structure that controls reactivity. This Account emphasizes that experimental spectroscopy is critical in evaluating the results of electronic structure calculations. Therefore these data are a key mechanistic bridge between structure and reactivity. For the Fe(III)-OOH intermediates, the anticancer drug activated bleomycin (BLM) acts as the non-heme Fe analog of compound 0 in heme (e.g., P450) chemistry. However BLM shows different reactivity: the low-spin (LS) Fe(III)-OOH can directly abstract a H atom from DNA. The LS and high-spin (HS) Fe(III)-OOHs have fundamentally different transition states. The LS transition state goes through a hydroxyl radical, but the HS transition state is activated for

  12. Unfolding and inactivation during thermal denaturation of an enzyme that exhibits phytase and acid phosphatase activities.

    PubMed

    Wang, Xiao-Yun; Meng, Fan-Guo; Zhou, Hai-Meng

    2004-03-01

    The thermostability of an enzyme that exhibits phytase and acid phosphatase activities was studied. Kinetics of inactivation and unfolding during thermal denaturation of the enzyme were compared. The loss of phytase activity on thermal denaturation is most suggestive of a reversible process. As for acid phosphatase activities, an interesting phenomenon was observed; there are two phases in thermal inactivation: when the temperature was between 45 and 50 degrees C, the thermal inactivation could be characterized as an irreversible inactivation which had some residual activity and when the temperature was above 55 degrees C, the thermal inactivation could be characterized as an irreversible process which had no residual activity. The microscopic rate constants for the free enzyme and substrate-enzyme complex were determined by Tsou's method [Adv. Enzymol. Relat. Areas Mol. Biol. 61 (1988) 381]. Fluorescence analyses indicate that when the enzyme was treated at temperatures below 60 degrees C for 60 min, the conformation of the enzyme had no detectable change; when the temperatures were above 60 degrees C, some fluorescence red-shift could be observed with a decrease in emission intensity. The inactivation rates (k(+0)) of free enzymes were faster than those of conformational changes during thermal denaturation at the same temperature. The rapid inactivation and slow conformational changes of phytase during thermal denaturation suggest that inactivation occurs before significant conformational changes of the enzyme, and the active site of this enzyme is situated in a relatively fragile region which makes the active site more flexible than the molecule as a whole.

  13. Effects of ionizing radiation on the enzyme activities and ultrastructural changes of poultry

    NASA Astrophysics Data System (ADS)

    Hwang, H.-I.; Hau, L.-B.

    1995-02-01

    Enzyme-catalyzed changes are generally recognized as one of the major reasons for fresh meat deterioration after irradiation. In this study, the effects of ionizing radiation and storage on the enzyme activities of poultry as well as the ultrastructural change of muscle were evaluated. When chicken breasts were irradiated at 4°C and -20°C, both Ca 2+-dependent protease and cathepsin D showed some degree of resistance to irradiation. The activities of those two enzymes decreased with the increase of irradiation doses. During storage, Ca 2+-dependent proteases showed a marked decrease in activity. On the other hand, the cathepsin D activity was not significantly changed at either 4°C or -20°C after 20 days. Transmission electron microscope examination showed no structural changes of the myofibrils with a radiation dose of up to 10 kGy at either 4°C or -20°C. Freezing protected the irradiated chicken breasts from autolytic enzymes damage during storage. In contrast, considerable sarcomere degradation occurred in Z-line for irradiated samples when stored at 4°C for 20 days. The action of the proteolytic enzymes may have been responsible for the sarcomere degradation in irradiated chicken breasts.

  14. Structure-Activity Relations In Enzymes: An Application Of IR-ATR Modulation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fringeli, Urs P.; Ahlstrom, Peter; Vincenz, Claudius; Fringeli, Marianna

    1985-12-01

    Relations between structure and specific activity in immobilized acetylcholinesterase (ACNE) have been studied by means of pH- and Ca++-modulation technique combined with attenuated total reflection (ATR) infrared (IR) spectroscopy and enzyme activity measurement. Periodic modulation of pH and Ca++-concentration enabled a periodic on-off switching of about 40% of the total enzyme activity. It was found that about 0.5 to 1% of the amino acids were involved in this process. These 15 to 30 amino acids assumed antiparallel pleated sheet structure in the inhibited state and random and/or helical structure in the activated state.

  15. Lactate racemase is a nickel-dependent enzyme activated by a widespread maturation system

    PubMed Central

    Desguin, Benoît; Goffin, Philippe; Viaene, Eric; Kleerebezem, Michiel; Martin-Diaconescu, Vlad; Maroney, Michael J; Declercq, Jean-Paul; Soumillion, Patrice; Hols, Pascal

    2014-01-01

    Racemases catalyze the inversion of stereochemistry in biological molecules, giving the organism the ability to use both isomers. Among them, lactate racemase remains unexplored due to its intrinsic instability and lack of molecular characterization. Here we determine the genetic basis of lactate racemization in Lactobacillus plantarum. We show that, unexpectedly, the racemase is a nickel-dependent enzyme with a novel α/β fold. In addition, we decipher the process leading to an active enzyme, which involves the activation of the apo-enzyme by a single nickel-containing maturation protein that requires preactivation by two other accessory proteins. Genomic investigations reveal the wide distribution of the lactate racemase system among prokaryotes, showing the high significance of both lactate enantiomers in carbon metabolism. The even broader distribution of the nickel-based maturation system suggests a function beyond activation of the lactate racemase and possibly linked with other undiscovered nickel-dependent enzymes. PMID:24710389

  16. Carbon nanotube-lipase hybrid nanoflowers with enhanced enzyme activity and enantioselectivity.

    PubMed

    Li, Kai; Wang, Jianhua; He, Yaojia; Abdulrazaq, Miaad Adnan; Yan, Yunjun

    2018-06-19

    Various nanoflowers are synthesized as supports for different methods of enzyme immobilization; however, the activities of these immobilized enzymes are limited because of their confinement in the nanoflowers. In order to increase the performance of nanoflowers, in this study, different protein-phosphate hybrid nanostructures were successfully synthesized and further enhanced by carbon nanotubes (CNTs) under the same conditions. Only Cu 3 (PO 4 ) 2 complex nanostructures exhibited flower-like structures and showed excellent results after enhancement with CNTs in this framework. An esterification reaction between lauric acid and 1-dodecanol was used to test enzyme activity during immobilization, revealing that the Cu 3 (PO 4 ) 2 /CNT/protein complex exhibited 68-fold higher activity relative to free lipase and 51-fold higher than that of Cu 3 (PO 4 ) 2 /Burkholderia cepacia lipase hybrid nanoflowers in the absence of CNTs. All three hybrid nanostructures showed good performance and exhibited excellent reusability in resolution reactions between 1-phenylethanol and vinyl acetate. Additionally, the substrate enantiomeric excess (ee s ) reached 98% in only 10 min, and the corresponding Cu 3 (PO 4 ) 2 /CNT/protein complex could be recycled eight times without obvious loss of activity. This approach involving nanoflowers enhanced with CNTs will be highly beneficial for decreasing mass-transfer resistance and providing enhanced enzyme loading along with promising potential for industrial application. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm

    NASA Astrophysics Data System (ADS)

    Fu, Jinglin; Yang, Yuhe Renee; Johnson-Buck, Alexander; Liu, Minghui; Liu, Yan; Walter, Nils G.; Woodbury, Neal W.; Yan, Hao

    2014-07-01

    Swinging arms are a key functional component of multistep catalytic transformations in many naturally occurring multi-enzyme complexes. This arm is typically a prosthetic chemical group that is covalently attached to the enzyme complex via a flexible linker, allowing the direct transfer of substrate molecules between multiple active sites within the complex. Mimicking this method of substrate channelling outside the cellular environment requires precise control over the spatial parameters of the individual components within the assembled complex. DNA nanostructures can be used to organize functional molecules with nanoscale precision and can also provide nanomechanical control. Until now, protein-DNA assemblies have been used to organize cascades of enzymatic reactions by controlling the relative distance and orientation of enzymatic components or by facilitating the interface between enzymes/cofactors and electrode surfaces. Here, we show that a DNA nanostructure can be used to create a multi-enzyme complex in which an artificial swinging arm facilitates hydride transfer between two coupled dehydrogenases. By exploiting the programmability of DNA nanostructures, key parameters including position, stoichiometry and inter-enzyme distance can be manipulated for optimal activity.

  18. Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm.

    PubMed

    Fu, Jinglin; Yang, Yuhe Renee; Johnson-Buck, Alexander; Liu, Minghui; Liu, Yan; Walter, Nils G; Woodbury, Neal W; Yan, Hao

    2014-07-01

    Swinging arms are a key functional component of multistep catalytic transformations in many naturally occurring multi-enzyme complexes. This arm is typically a prosthetic chemical group that is covalently attached to the enzyme complex via a flexible linker, allowing the direct transfer of substrate molecules between multiple active sites within the complex. Mimicking this method of substrate channelling outside the cellular environment requires precise control over the spatial parameters of the individual components within the assembled complex. DNA nanostructures can be used to organize functional molecules with nanoscale precision and can also provide nanomechanical control. Until now, protein-DNA assemblies have been used to organize cascades of enzymatic reactions by controlling the relative distance and orientation of enzymatic components or by facilitating the interface between enzymes/cofactors and electrode surfaces. Here, we show that a DNA nanostructure can be used to create a multi-enzyme complex in which an artificial swinging arm facilitates hydride transfer between two coupled dehydrogenases. By exploiting the programmability of DNA nanostructures, key parameters including position, stoichiometry and inter-enzyme distance can be manipulated for optimal activity.

  19. Microbial Community Structure and Enzyme Activities in Semiarid Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Acosta-Martinez, V. A.; Zobeck, T. M.; Gill, T. E.; Kennedy, A. C.

    2002-12-01

    The effect of agricultural management practices on the microbial community structure and enzyme activities of semiarid soils of different textures in the Southern High Plains of Texas were investigated. The soils (sandy clay loam, fine sandy loam and loam) were under continuous cotton (Gossypium hirsutum L.) or in rotations with peanut (Arachis hypogaea L.), sorghum (Sorghum bicolor L.) or wheat (Triticum aestivum L.), and had different water management (irrigated or dryland) and tillage (conservation or conventional). Microbial community structure was investigated using fatty acid methyl ester (FAME) analysis by gas chromatography and enzyme activities, involved in C, N, P and S cycling of soils, were measured (mg product released per kg soil per h). The activities of b-glucosidase, b-glucosaminidase, alkaline phosphatase, and arylsulfatase were significantly (P<0.05) increased in soils under cotton rotated with sorghum or wheat, and due to conservation tillage in comparison to continuous cotton under conventional tillage. Principal component analysis showed FAME profiles of these soils separated distinctly along PC1 (20 %) and PC2 (13 %) due to their differences in soil texture and management. No significant differences were detected in FAME profiles due to management practices for the same soils in this sampling period. Enzyme activities provide early indications of the benefits in microbial populations and activities and soil organic matter under crop rotations and conservation tillage in comparison to the typical practices in semiarid regions of continuous cotton and conventional tillage.

  20. Cadmium Phytoavailability and Enzyme Activity under Humic Acid Treatment in Fluvo-aquic Soil

    NASA Astrophysics Data System (ADS)

    Liu, Borui; Huang, Qing; Su, Yuefeng

    2018-01-01

    A pot experiment was conducted to investigate the cadmium (Cd) availability to pakchois (Brassica chinensis L.) as well as the enzyme activities in fluvo-aquic soil under humic acid treatment. The results showed that the phytoavailability of Cd in soil decreased gradually as humic acid concentration rose (0 to 12 g·kg-1), while the activities of urease (UE), alkaline phosphatase (ALP) and catalase (CAT) kept increasing (P < 0.05). The correlation analysis indicated that humic acid was effective for reducing the devastation to soil enzymes due to the Cd pollution. In conclusion, humic acid is effective for the reduction of both Cd phytoavailability and the damage to enzyme activities due to Cd pollution in fluvo-aquic soil

  1. Measuring potential denitrification enzyme activity rates using the membrane inlet mass spectrometer

    EPA Science Inventory

    The denitrification enzyme activity (DEA) assay, provides a quantitative assessment of the multi enzyme, biological process of reactive nitrogen removal via the reduction of N03 to N2. Measured in soil, usually under non limiting carbon and nitrate concentrations, this short ter...

  2. Identification and functional analysis of delta-9 desaturase, a key enzyme in PUFA Synthesis, isolated from the oleaginous diatom Fistulifera.

    PubMed

    Muto, Masaki; Kubota, Chihiro; Tanaka, Masayoshi; Satoh, Akira; Matsumoto, Mitsufumi; Yoshino, Tomoko; Tanaka, Tsuyoshi

    2013-01-01

    Oleaginous microalgae are one of the promising resource of nonedible biodiesel fuel (BDF) feed stock alternatives. Now a challenge task is the decrease of the long-chain polyunsaturated fatty acids (PUFAs) content affecting on the BDF oxidative stability by using gene manipulation techniques. However, only the limited knowledge has been available concerning the fatty acid and PUFA synthesis pathways in microalgae. Especially, the function of Δ9 desaturase, which is a key enzyme in PUFA synthesis pathway, has not been determined in diatom. In this study, 4 Δ(9) desaturase genes (fD9desA, fD9desB, fD9desC and fD9desD) from the oleaginous diatom Fistulifera were newly isolated and functionally characterized. The putative Δ(9) acyl-CoA desaturases in the endoplasmic reticulum (ER) showed 3 histidine clusters that are well-conserved motifs in the typical Δ(9) desaturase. Furthermore, the function of these Δ(9) desaturases was confirmed in the Saccharomyces cerevisiae ole1 gene deletion mutant (Δole1). All the putative Δ(9) acyl-CoA desaturases showed Δ(9) desaturation activity for C16∶0 fatty acids; fD9desA and fD9desB also showed desaturation activity for C18∶0 fatty acids. This study represents the first functional analysis of Δ(9) desaturases from oleaginous microalgae and from diatoms as the first enzyme to introduce a double bond in saturated fatty acids during PUFA synthesis. The findings will provide beneficial insights into applying metabolic engineering processes to suppressing PUFA synthesis in this oleaginous microalgal strain.

  3. Mesoporous silica-encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis.

    PubMed

    Lin, Youhui; Li, Zhenhua; Chen, Zhaowei; Ren, Jinsong; Qu, Xiaogang

    2013-04-01

    A significant challenge in chemistry is to create synthetic structures that mimic the complexity and function of natural systems. Here, a self-activated, enzyme-mimetic catalytic cascade has been realized by utilizing expanded mesoporous silica-encapsulated gold nanoparticles (EMSN-AuNPs) as both glucose oxidase- and peroxidase-like artificial enzymes. Specifically, EMSN helps the formation of a high degree of very small and well-dispersed AuNPs, which exhibit an extraordinarily stability and dual enzyme-like activities. Inspired by these unique and attractive properties, we further piece them together into a self-organized artificial cascade reaction, which is usually completed by the oxidase-peroxidase coupled enzyme system. Our finding may pave the way to use matrix as the structural component for the design and development of biomimetic catalysts and to apply enzyme mimics for realizing higher functions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Determination of lytic enzyme activities of indigenous Trichoderma isolates from Pakistan.

    PubMed

    Asad, Saeed Ahmad; Tabassum, Ayesha; Hameed, Abdul; Hassan, Fayyaz Ul; Afzal, Aftab; Khan, Sabaz Ali; Ahmed, Rafiq; Shahzad, Muhammad

    2015-01-01

    This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract.

  5. Determination of lytic enzyme activities of indigenous Trichoderma isolates from Pakistan

    PubMed Central

    Asad, Saeed Ahmad; Tabassum, Ayesha; Hameed, Abdul; Hassan, Fayyaz ul; Afzal, Aftab; Khan, Sabaz Ali; Ahmed, Rafiq; Shahzad, Muhammad

    2015-01-01

    Abstract This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract. PMID:26691463

  6. Regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity in murine epidermis. Modulation of enzyme content and activation state by barrier requirements.

    PubMed Central

    Proksch, E; Elias, P M; Feingold, K R

    1990-01-01

    Epidermal cholesterol biosynthesis is regulated by barrier function. We quantitated the amount and activation state (phosphorylation-dephosphorylation) of the rate-limiting enzyme, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, in epidermis before and after barrier disruption. In murine epidermis we found high enzyme activity (1.75 +/- 0.02 nmol/min per mg protein). After acute barrier disruption, enzyme activity began to increase after 1.5 h, reaching a maximum increase by 2.5 h, and returned to normal by 15 h. Chronic barrier disruption increased total enzyme activity by 83%. In normal epidermis, measurement of HMG CoA reductase activity in microsomes isolated in NaF- vs. NaCl-containing buffers demonstrated that 46 +/- 2% of the enzyme was in the active form. After acute or chronic barrier disruption, a marked increase in the percentage of HMG CoA reductase in the active form was observed. Acute disruption increased enzyme activation state as early as 15 min, reaching a maximum after 2.5 h, with an increase still present at 15 h, indicating that changes in activation state had a close temporal relationship with barrier function. Increases in total HMG CoA reductase activity occurred only after profound barrier disruption, whereas changes in activation state occur with lesser degrees of barrier disruption. Artificial correction of barrier function prevented the increase in total HMG CoA reductase activity, and partially prevented the increase in enzyme activation. These results show that barrier requirements regulate epidermal cholesterol synthesis by modulating both the HMG CoA reductase amount and activation state. Images PMID:2312730

  7. Regio- and stereodivergent antibiotic oxidative carbocyclizations catalysed by Rieske oxygenase-like enzymes

    NASA Astrophysics Data System (ADS)

    Sydor, Paulina K.; Barry, Sarah M.; Odulate, Olanipekun M.; Barona-Gomez, Francisco; Haynes, Stuart W.; Corre, Christophe; Song, Lijiang; Challis, Gregory L.

    2011-05-01

    Oxidative cyclizations, exemplified by the biosynthetic assembly of the penicillin nucleus from a tripeptide precursor, are arguably the most synthetically powerful implementation of C-H activation reactions in nature. Here, we show that Rieske oxygenase-like enzymes mediate regio- and stereodivergent oxidative cyclizations to form 10- and 12-membered carbocyclic rings in the key steps of the biosynthesis of the antibiotics streptorubin B and metacycloprodigiosin, respectively. These reactions represent the first examples of oxidative carbocyclizations catalysed by non-haem iron-dependent oxidases and define a novel type of catalytic activity for Rieske enzymes. A better understanding of how these enzymes achieve such remarkable regio- and stereocontrol in the functionalization of unactivated hydrocarbon chains will greatly facilitate the development of selective man-made C-H activation catalysts.

  8. Assessment of mercaptopurine (6MP) metabolites and 6MP metabolic key-enzymes in childhood acute lymphoblastic leukemia.

    PubMed

    Wojtuszkiewicz, Anna; Barcelos, Ana; Dubbelman, Boas; De Abreu, Ronney; Brouwer, Connie; Bökkerink, Jos P; de Haas, Valerie; de Groot-Kruseman, Hester; Jansen, Gerrit; Kaspers, Gertjan L; Cloos, Jacqueline; Peters, G J

    2014-01-01

    Pediatric acute lymphoblastic leukemia (ALL) is treated with combination chemotherapy including mercaptopurine (6MP) as an important component. Upon its uptake, 6MP undergoes a complex metabolism involving many enzymes and active products. The prognostic value of all the factors engaged in this pathway still remains unclear. This study attempted to determine which components of 6MP metabolism in leukemic blasts and red blood cells are important for 6MP's sensitivity and toxicity. In addition, changes in the enzymatic activities and metabolite levels during the treatment were analyzed. In a cohort (N=236) of pediatric ALL patients enrolled in the Dutch ALL-9 protocol, we studied the enzymes inosine-5'-monophosphate dehydrogenase (IMPDH), thiopurine S-methyltransferase (TPMT), hypoxanthine guanine phosphoribosyl transferase (HGPRT), and purine nucleoside phosphorylase (PNP) as well as thioguanine nucleotides (TGN) and methylthioinosine nucleotides (meTINs). Activities of selected enzymes and levels of 6MP derivatives were measured at various time points during the course of therapy. The data obtained and the toxicity related parameters available for these patients were correlated with each other. We found several interesting relations, including high concentrations of two active forms of 6MP--TGN and meTIN--showing a trend toward association with better in vitro antileukemic effect of 6MP. High concentrations of TGN and elevated activity of HGPRT were found to be significantly associated with grade III/IV leucopenia. However, a lot of data of enzymatic activities and metabolite concentrations as well as clinical toxicity were missing, thereby limiting the number of assessed relations. Therefore, although a complex study of 6MP metabolism in ALL patients is feasible, it warrants more robust and strict data collection in order to be able to draw more reliable conclusions.

  9. In vivo fluorescence imaging of exogenous enzyme activity in the gastrointestinal tract

    PubMed Central

    Fuhrmann, Gregor; Leroux, Jean-Christophe

    2011-01-01

    Exogenous enzymes are administered orally to treat several diseases, such as pancreatic insufficiency and lactose intolerance. Due to the proteinaceous nature of enzymes, they are subject to inactivation and/or digestion in the gastrointestinal (GI) tract. Here we describe a convenient fluorescence-based assay to monitor the activity of therapeutic enzymes in real time in vivo in the GI tract. To establish the proof of principle, the assay was applied to proline-specific endopeptidases (PEPs), a group of enzymes recently proposed as adjuvant therapy for celiac disease (a highly prevalent immunogenetic enteropathy). A short PEP-specific peptide sequence which is part of larger immunotoxic sequences of gluten was labeled with a fluorescent dye and a corresponding quencher. Upon enzymatic cleavage, the fluorescence emission was dequenched and detected with an in vivo imaging system. PEPs originating from Flavobacterium meningosepticum (FM) and Myxococcus xanthus (MX) were evaluated after oral administration in rats. While MX PEP could not cleave the peptide in the stomach, FM PEP showed significant gastric activity reaching 40–60% of the maximal in vivo signal intensity. However, both enzymes produced comparable fluorescence signals in the small intestine. Coadministration of an antacid drug significantly enhanced MX PEP’s gastric activity due to increased pH and/or inhibition of stomach proteases. With this simple procedure, differences in the in vivo performance of PEPs, which could not be identified under in vitro conditions, were detected. This imaging assay could be used to study other oral enzymes in vivo and therefore be instrumental in improving their therapeutic efficiency. PMID:21576491

  10. Mutant α-galactosidase A enzymes identified in Fabry disease patients with residual enzyme activity: biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin

    PubMed Central

    Ishii, Satoshi; Chang, Hui-Hwa; Kawasaki, Kunito; Yasuda, Kayo; Wu, Hui-Li; Garman, Scott C.; Fan, Jian-Qiang

    2007-01-01

    Fabry disease is a lysosomal storage disorder caused by the deficiency of α-Gal A (α-galactosidase A) activity. In order to understand the molecular mechanism underlying α-Gal A deficiency in Fabry disease patients with residual enzyme activity, enzymes with different missense mutations were purified from transfected COS-7 cells and the biochemical properties were characterized. The mutant enzymes detected in variant patients (A20P, E66Q, M72V, I91T, R112H, F113L, N215S, Q279E, M296I, M296V and R301Q), and those found mostly in mild classic patients (A97V, A156V, L166V and R356W) appeared to have normal Km and Vmax values. The degradation of all mutants (except E59K) was partially inhibited by treatment with kifunensine, a selective inhibitor of ER (endoplasmic reticulum) α-mannosidase I. Metabolic labelling and subcellular fractionation studies in COS-7 cells expressing the L166V and R301Q α-Gal A mutants indicated that the mutant protein was retained in the ER and degraded without processing. Addition of DGJ (1-deoxygalactonojirimycin) to the culture medium of COS-7 cells transfected with a large set of missense mutant α-Gal A cDNAs effectively increased both enzyme activity and protein yield. DGJ was capable of normalizing intracellular processing of mutant α-Gal A found in both classic (L166V) and variant (R301Q) Fabry disease patients. In addition, the residual enzyme activity in fibroblasts or lymphoblasts from both classic and variant hemizygous Fabry disease patients carrying a variety of missense mutations could be substantially increased by cultivation of the cells with DGJ. These results indicate that a large proportion of mutant enzymes in patients with residual enzyme activity are kinetically active. Excessive degradation in the ER could be responsible for the deficiency of enzyme activity in vivo, and the DGJ approach may be broadly applicable to Fabry disease patients with missense mutations. PMID:17555407

  11. Assessment of digestive enzymes activity during the fry development of the endangered Caspian brown trout Salmo caspius.

    PubMed

    Zamani, A; Hajimoradloo, A; Madani, R; Farhangi, M

    2009-09-01

    The study of digestive enzymes activity at Salmo caspius fry showed that enzymes were available at the moment of mouth opening on the first day post hatching (dph) and the activity of enzymes showed no significant difference from the hatching day 28 dph. An increased activity was seen between 32 and 43 dph and this activity was significantly higher than the activity during the first 28 days. In the primary stages after yolk sac resorption (43-58 dph), enzymes activity showed an increased profile, however none of them showed a significant difference between 43 and 58 dph.

  12. Methods for the Measurement of a Bacterial Enzyme Activity in Cell Lysates and Extracts

    PubMed Central

    Mendz, George; Hazell, Stuart

    1998-01-01

    The kinetic characteristics and regulation of aspartate carbamoyltransferase activity were studied in lysates and cell extracts of Helicobacter pylori by three diffirent methods. Nuclear magnetic resonance spectroscopy, radioactive tracer analysis, and spectrophotometry were employed in conjunction to identify the properties of the enzyme activity and to validate the results obtained with each assay. NMR spectroscopy was the most direct method to provide proof of ACTase activity; radioactive tracer analysis was the most sensitive technique and a microtitre-based colorimetric assay was the most cost-and time-efficient for large scale analyses. Freeze-thawing was adopted as the preferred method for cell lysis in studying enzyme activity in situ. This study showed the benefits of employing several different complementary methods to investigate bacterial enzyme activity. PMID:12734591

  13. Open-mouthed hybrid microcapsules with elevated enzyme loading and enhanced catalytic activity.

    PubMed

    Shi, Jiafu; Zhang, Shaohua; Wang, Xiaoli; Jiang, Zhongyi

    2014-10-25

    Open-mouthed hybrid microcapsules (HMCs) are synthesized through a hard-templating method. When utilized for enzyme immobilization and enzymatic catalysis, the open-mouthed HMCs show high enzyme loading capability, enhanced catalytic activity and desirable recycling stability, due to their fully exposed outer and inner surfaces.

  14. [Study on relationship between effective components and soil enzyme activity in different growth patterns of Panax ginseng].

    PubMed

    Yang, Yan-Wen; Jiang, Yuan-Tong

    2016-08-01

    Study on 5 effective components and 6 soil enzyme activities of 2 different growth patterns, analyse the dates with the canonical correlation analysis, In order to reveal the relations between the effective components and soil enzyme activities. The result showed that they had a great relation between the effective components and soil enzyme activities, the activity of the same enzyme in humus soil was higher than that in farmland soil. Growth pattern of farmland soil, if the invertase and phosphatase activity were too high, which would inhibit the accumulation of total ginsenoside, water-miscible total proteins and total amino acid; Growth pattern of humus soil, if the invertase, urease and phosphatase activity were too high, which would inhibit the accumulation of total ginsenoside and the total essential oils. Integral soil enzyme activity can be used as a index of soil quality, which, together with other growth factors. The appropriate enzyme activity can accelerate the circulation and transformation of all kinds of material in the soil, improve effectively components accumulation. Copyright© by the Chinese Pharmaceutical Association.

  15. [Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions.

    PubMed

    Cao, Rui; Wu, Fu Zhong; Yang, Wan Qin; Xu, Zhen Feng; Tani, Bo; Wang, Bin; Li, Jun; Chang, Chen Hui

    2016-04-22

    In order to understand the variations of soil microbial biomass and soil enzyme activities with the change of altitude, a field incubation was conducted in dry valley, ecotone between dry valley and mountain forest, subalpine coniferous forest, alpine forest and alpine meadow from 1563 m to 3994 m of altitude in the alpine-gorge region of western Sichuan. The microbial biomass carbon and nitrogen, and the activities of invertase, urease and acid phosphorus were measured in both soil organic layer and mineral soil layer. Both the soil microbial biomass and soil enzyme activities showed the similar tendency in soil organic layer. They increased from 2158 m to 3028 m, then decreased to the lowest value at 3593 m, and thereafter increased until 3994 m in the alpine-gorge region. In contrast, the soil microbial biomass and soil enzyme activities in mineral soil layer showed the trends as, the subalpine forest at 3028 m > alpine meadow at 3994 m > montane forest ecotone at 2158 m > alpine forest at 3593 m > dry valley at 1563 m. Regardless of altitudes, soil microbial biomass and soil enzyme activities were significantly higher in soil organic layer than in mineral soil layer. The soil microbial biomass was significantly positively correlated with the activities of the measured soil enzymes. Moreover, both the soil microbial biomass and soil enzyme activities were significantly positively correlated with soil water content, organic carbon, and total nitrogen. The activity of soil invertase was significantly positively correlated with soil phosphorus content, and the soil acid phosphatase was so with soil phosphorus content and soil temperature. In brief, changes in vegetation and other environmental factors resulting from altitude change might have strong effects on soil biochemical properties in the alpine-gorge region.

  16. Activity, cloning, and expression of an isoamylase-type starch-debranching enzyme from banana fruit.

    PubMed

    Bierhals, Jacqueline Dettmann; Lajolo, Franco Maria; Cordenunsi, Beatriz Rosana; Oliveira do Nascimento, João Roberto

    2004-12-01

    Unripe bananas have a high content of starch (almost 20%) that is metabolized during fruit ripening with a concomitant synthesis of soluble sugars. Since starch granules are composed of amylose and amylopectin, several enzymes have to be involved in its mobilization during banana ripening, with a necessary participation of one starch-debranching enzyme (DBE) to hydrolyze the alpha-1,6-branches of amylopectin. Banana DBE seems to be an isoamylase-type enzyme, as indicated by substrate specificity and the cloning of a 1575 bp cDNA, similar to the isoamylase sequences from potato, Arabdopsis, and maize. The assays for DBE indicated only minor changes in activity during ripening, and the results of the northern and western blots with antiserum against the recombinant banana isoamylase were in agreement with the steady-state level of activity, since no significant changes in gene expression were observed. The high activity on beta-limit dextrin and the similarity to the potato isoform 3 suggest that during banana ripening the hydrolysis of alpha-1,6-linkage of amylopectin results from the activity of a pre-existing isoamylase-type debranching enzyme in coordination with other amylolitic enzymes. To the best of our knowledge, this is the first evaluation of activity and expression of a DBE from a fruit.

  17. PlantCAZyme: a database for plant carbohydrate-active enzymes

    PubMed Central

    Ekstrom, Alexander; Taujale, Rahil; McGinn, Nathan; Yin, Yanbin

    2014-01-01

    PlantCAZyme is a database built upon dbCAN (database for automated carbohydrate active enzyme annotation), aiming to provide pre-computed sequence and annotation data of carbohydrate active enzymes (CAZymes) to plant carbohydrate and bioenergy research communities. The current version contains data of 43 790 CAZymes of 159 protein families from 35 plants (including angiosperms, gymnosperms, lycophyte and bryophyte mosses) and chlorophyte algae with fully sequenced genomes. Useful features of the database include: (i) a BLAST server and a HMMER server that allow users to search against our pre-computed sequence data for annotation purpose, (ii) a download page to allow batch downloading data of a specific CAZyme family or species and (iii) protein browse pages to provide an easy access to the most comprehensive sequence and annotation data. Database URL: http://cys.bios.niu.edu/plantcazyme/ PMID:25125445

  18. Effects of silver nanoparticles on soil enzyme activities with and without added organic matter.

    PubMed

    Peyrot, Caroline; Wilkinson, Kevin J; Desrosiers, Mélanie; Sauvé, Sébastien

    2014-01-01

    The effects of silver nanoparticles (AgNPs) on terrestrial ecosystems need to be better understood and assessed. Cationic silver (Ag+) has well-documented toxicity against bacteria, but it is not clear what will be the effect of nanoscale Ag. In the present study, the potential effects of AgNPs were investigated in soils by measuring activity of the enzymes phosphomonoesterase, arylsulfatase, β-D-glucosidase, and leucine-aminopeptidase. The toxicity of AgNPs was compared with that of ionic Ag, and the ameliorating effects of soil organic matter were evaluated. To this end, 2 soils with different organic matter contents were artificially contaminated with either AgNPs or Ag-acetate at equivalent total Ag concentrations. In general, enzyme activities were inhibited as a function of the Ag concentration in the soil. In the AgNP exposures, only a small fraction of the AgNP was actually truly dissolved (found in the <1-nm fraction), suggesting that the particulate forms of AgNPs resulted in a significant inhibition of soil enzymes. The addition of organic matter to the soils appeared to enhance enzyme activities; however, the mechanism of organic matter action is not clear given that dissolved Ag concentrations were similar in both the organic-matter–amended and unamended soils. The present study shows that the AgNP produces significant negative effects on the soil enzyme activities tested. The Ag chemical speciation measurements suggested that the AgNP caused greater toxic effects to the soil enzymes at the low Ag concentrations. For the larger concentrations of total soil Ag, causes of the negative effects on enzyme activities are less obvious but suggest that colloidal forms of Ag play a role.

  19. Purification and characterization of a trehalase-invertase enzyme with dual activity from Candida utilis.

    PubMed

    Lahiri, Sagar; Basu, Arghya; Sengupta, Shinjinee; Banerjee, Shakri; Dutta, Trina; Soren, Dhananjay; Chattopadhyay, Krishnananda; Ghosh, Anil K

    2012-06-15

    Trehalose and sucrose, two important anti-stress non-reducing natural disaccharides, are catabolized by two enzymes, namely trehalase and invertase respectively. In this study, a 175 kDa enzyme protein active against both substrates was purified from wild type Candida utilis and characterized in detail. Substrate specificity assay and activity staining revealed the enzyme to be specific for both sucrose and trehalose. The ratio between trehalase and invertase activity was found to be constant at 1:3.5 throughout the entire study. Almost 40-fold purification and 30% yield for both activities were achieved at the final step of purification. The presence of common enzyme inhibitors, thermal and pH stress had analogous effects on its trehalase and invertase activity. Km values for two activities were similar while Vmax and Kcat also differed by a factor of 3.5. Competition plot for both substrates revealed the two activities to be occurring at the single active site. N-terminal sequencing and MALDI-TOF data analysis revealed higher similarity of the purified protein to previously known neutral trehalases. While earlier workers mentioned independent purification of neutral trehalase or invertase from different sources, the present study reports the purification of a single protein showing dual activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Viral Pseudo Enzymes Activate RIG-I via Deamidation to Evade Cytokine Production

    PubMed Central

    He, Shanping; Zhao, Jun; Song, Shanshan; He, Xiaojing; Minassian, Arlet; Zhou, Yu; Zhang, Junjie; Brulois, Kevin; Wang, Yuqi; Cabo, Jackson; Zandi, Ebrahim; Liang, Chengyu; Jung, Jae U; Zhang, Xuewu; Feng, Pinghui

    2015-01-01

    SUMMARY RIG-I is a pattern recognition receptor that senses viral RNA and is crucial for host innate immune defense. Here we describe a mechanism of RIG-I activation through amidotransferase-mediated deamidation. We show that viral homologues of phosphoribosylformyglycinamide synthase (PFAS), although lacking intrinsic enzyme activity, recruit cellular PFAS to deamidate and activate RIG-I. Accordingly, depletion and biochemical inhibition of PFAS impair RIG-I deamidation and concomitant activation. Purified PFAS and viral homologue thereof deamidate RIG-I in vitro. Ultimately, herpesvirus hijacks activated RIG-I to avoid antiviral cytokine production; loss of RIG-I or inhibition of RIG-I deamidation results in elevated cytokine production. Together, these findings demonstrate a surprising mechanism of RIG-I activation that is mediated by an enzyme. PMID:25752576

  1. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    NASA Astrophysics Data System (ADS)

    Semsang, Nuananong; Yu, LiangDeng

    2013-07-01

    Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  2. Phospholipid-sepiolite biomimetic interfaces for the immobilization of enzymes.

    PubMed

    Wicklein, Bernd; Darder, Margarita; Aranda, Pilar; Ruiz-Hitzky, Eduardo

    2011-11-01

    Biomimetic interfaces based on phosphatidylcholine (PC) assembled to the natural silicate sepiolite were prepared for the stable immobilization of the urease and cholesterol oxidase enzymes. This is an important issue in practical advanced applications such as biocatalysis or biosensing. The supported lipid bilayer (BL-PC), prepared from PC adsorption, was used for immobilization of enzymes and the resulting biomimetic systems were compared to several other supported layers including a lipid monolayer (ML-PC), a mixed phosphatidylcholine/octyl-galactoside layer (PC-OGal), a cetyltrimethylammonium monolayer (CTA), and also to the bare sepiolite surface. Interfacial characteristics of these layers were investigated with a focus on layer packing density, hydrophilicity/hydrophobicity, and surface charge, which are being considered as key points for enzyme immobilization and stabilization of their biological activity. Cytoplasmic urease and membrane-bound cholesterol oxidase, which served as model enzymes, were immobilized on the different PC-based hybrid materials to probe their biomimetic character. Enzymatic activity was assessed by cyclic voltammetry and UV-vis spectrophotometry. The resulting enzyme/bio-organoclay hybrids were applied as active phase of a voltammetric urea biosensor and cholesterol bioreactor, respectively. Urease supported on sepiolite/BL-PC proved to maintain its enzymatic activity over several months while immobilized cholesterol oxidase demonstrated high reusability as biocatalyst. The results emphasize the good preservation of bioactivity due to the accommodation of the enzymatic system within the biomimetic lipid interface on sepiolite.

  3. Activating Intrinsic Carbohydrate-Active Enzymes of the Smut Fungus Ustilago maydis for the Degradation of Plant Cell Wall Components

    PubMed Central

    Geiser, Elena; Reindl, Michèle; Blank, Lars M.; Feldbrügge, Michael

    2016-01-01

    ABSTRACT The microbial conversion of plant biomass to valuable products in a consolidated bioprocess could greatly increase the ecologic and economic impact of a biorefinery. Current strategies for hydrolyzing plant material mostly rely on the external application of carbohydrate-active enzymes (CAZymes). Alternatively, production organisms can be engineered to secrete CAZymes to reduce the reliance on externally added enzymes. Plant-pathogenic fungi have a vast repertoire of hydrolytic enzymes to sustain their lifestyle, but expression of the corresponding genes is usually highly regulated and restricted to the pathogenic phase. Here, we present a new strategy in using the biotrophic smut fungus Ustilago maydis for the degradation of plant cell wall components by activating its intrinsic enzyme potential during axenic growth. This fungal model organism is fully equipped with hydrolytic enzymes, and moreover, it naturally produces value-added substances, such as organic acids and biosurfactants. To achieve the deregulated expression of hydrolytic enzymes during the industrially relevant yeast-like growth in axenic culture, the native promoters of the respective genes were replaced by constitutively active synthetic promoters. This led to an enhanced conversion of xylan, cellobiose, and carboxymethyl cellulose to fermentable sugars. Moreover, a combination of strains with activated endoglucanase and β-glucanase increased the release of glucose from carboxymethyl cellulose and regenerated amorphous cellulose, suggesting that mixed cultivations could be a means for degrading more complex substrates in the future. In summary, this proof of principle demonstrates the potential applicability of activating the expression of native CAZymes from phytopathogens in a biocatalytic process. IMPORTANCE This study describes basic experiments that aim at the degradation of plant cell wall components by the smut fungus Ustilago maydis. As a plant pathogen, this fungus contains a

  4. Hydrolytic and ligninolytic enzyme activities in the Pb contaminated soil inoculated with litter-decomposing fungi.

    PubMed

    Kähkönen, Mika A; Lankinen, Pauliina; Hatakka, Annele

    2008-06-01

    The impact of Pb contamination was tested to five hydrolytic (beta-glucosidase, beta-xylosidase, beta-cellobiosidase, alpha-glucosidase and sulphatase) and two ligninolytic (manganese peroxidase, MnP and laccase) enzyme activities in the humus layer in the forest soil. The ability of eight selected litter-degrading fungi to grow and produce extracellular enzymes in the heavily Pb (40 g Pb of kg ww soil(-1)) contaminated and non-contaminated soil in the non-sterile conditions was also studied. The Pb content in the test soil was close to that of the shooting range at Hälvälä (37 g Pb of kg ww soil(-1)) in Southern Finland. The fungi were Agaricus bisporus, Agrocybe praecox, Gymnopus peronatus, Gymnopilus sapineus, Mycena galericulata, Gymnopilus luteofolius, Stropharia aeruginosa and Stropharia rugosoannulata. The Pb contamination (40 g Pb of kg ww soil(-1)) was deleterious to all five studied hydrolytic enzyme activities after five weeks of incubation. All five hydrolytic enzyme activities were significantly higher in the soil than in the extract of the soil indicating that a considerable part of enzymes were particle bound in the soils. Hydrolytic enzyme activities were higher in the non-contaminated soil than in the Pb contaminated soil. Fungal inocula increased the hydrolytic enzyme activities beta-cellobiosidase and beta-glucosidase in non-contaminated soils. All five hydrolytic enzyme activities were similar with fungi and without fungi in the Pb contaminated soil. This was in line that Pb contamination (40 g Pb of kg ww soil(-1)) depressed the growth of all fungi compared to those grown without Pb in the soil. Laccase and MnP activities were low in both Pb contaminated and non-contaminated soil cultures. MnP activities were higher in soil cultures containing Pb than without Pb. Our results showed that Pb in the shooting ranges decreased fungal growth and microbial functioning in the soil.

  5. Enzyme encapsulation in silica gel prepared by polylysine and its catalytic activity

    NASA Astrophysics Data System (ADS)

    Kawachi, Yuki; Kugimiya, Shin-ichi; Nakamura, Hitomi; Kato, Katsuya

    2014-09-01

    Enzymes used in industrial applications are often immobilized onto different types of supports because they are sensitive to pH, temperature, and various other environmental conditions. However, many of the current immobilization approaches face problems such as the requirement of tedious multi-step procedures, loss of enzyme activity during immobilization, and poor reusability. In this study, we chose poly-L-lysine (Ki) as a catalyst for silica mineralization and attempted a one-step "leave to stand" synthesis method under mild conditions, so as to simultaneously maintain both high enzymatic activity and reusability. To examine the effect of Kx on the enzymatic reaction of lipase, we performed hydrolysis of 2-octylacetate without adding a silica precursor. Results indicate that Kx hardly exerts adverse influence on the enzymatic activity of lipase. The lipase encapsulated in the silica gel prepared by leave to stand (Gelstand) retained 70% of the activity compared to the free solution, which is two times higher than that obtained by mixing (Gelmix). However, the Km value was found to be similar to that of free enzymes. These results suggest that the leave to stand is a suitable procedure for immobilization, without any decrease in the mass transfer of substrate. The Gel-stand sample retained 100% activity even after the 5th cycle, and retained above 95% of its activity after 4 h of heat treatment at 65 °C. Using phenyltriethoxysilane as a silica precursor, tertiary structural stability of enzyme was obtained, and its Kcat value was improved when compared to a free solution.

  6. Recombinant S. cerevisiae expressing Old Yellow Enzymes from non-conventional yeasts: an easy system for selective reduction of activated alkenes

    PubMed Central

    2014-01-01

    Background Old Yellow Enzymes (OYEs) are flavin-dependent enoate reductases (EC 1.6.99.1) that catalyze the stereoselective hydrogenation of electron-poor alkenes. Their ability to generate up to two stereocenters by the trans-hydrogenation of the C = C double bond is highly demanded in asymmetric synthesis. Isolated redox enzymes utilization require the addition of cofactors and systems for their regeneration. Microbial whole-cells may represent a valid alternative combining desired enzymatic activity and efficient cofactor regeneration. Considerable efforts were addressed at developing novel whole-cell OYE biocatalysts, based on recombinant Saccharomyces cerevisiae expressing OYE genes. Results Recombinant S. cerevisiae BY4741∆Oye2 strains, lacking endogenous OYE and expressing nine separate OYE genes from non-conventional yeasts, were used as whole-cell biocatalysts to reduce substrates with an electron-poor double bond activated by different electron-withdrawing groups. Ketoisophorone, α-methyl-trans-cinnamaldehyde, and trans-β-methyl-β-nitrostyrene were successfully reduced with high rates and selectivity. A series of four alkyl-substituted cyclohex-2-enones was tested to check the versatility and efficiency of the biocatalysts. Reduction of double bond occurred with high rates and enantioselectivity, except for 3,5,5-trimethyl-2-cyclohexenone. DFT (density functional theory) computational studies were performed to investigate whether the steric hindrance and/or the electronic properties of the substrates were crucial for reactivity. The three-dimensional structure of enoate reductases from Kluyveromyces lodderae and Candida castellii, predicted through comparative modeling, resulted similar to that of S. cerevisiae OYE2 and revealed the key role of Trp116 both in substrate specificity and stereocontrol. All the modeling studies indicate that steric hindrance was a major determinant in the enzyme reactivity. Conclusions The OYE biocatalysts, based on

  7. Effects of Oxygen Limitation on Xylose Fermentation, Intracellular Metabolites, and Key Enzymes of Neurospora crassa AS3.1602

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihua; Qu, Yinbo; Zhang, Xiao; Lin, Jianqiang

    The effects of oxygen limitation on xylose fermentation of Neurospora crassa AS3.1602 were studied using batch cultures. The maximum yield of ethanol was 0.34 g/g at oxygen transfer rate (OTR) of 8.4 mmol/L·h. The maximum yield of xylitol was 0.33 g/g at OTR of 5.1 mmol/L·h. Oxygen limitation greatly affected mycelia growth and xylitol and ethanol productions. The specific growth rate (μ) decreased 82% from 0.045 to 0.008 h-1 when OTR changed from 12.6 to 8.4 mmol/L·h. Intracellular metabolites of the pentose phosphate pathway, glycolysis, and tricarboxylic acid cycle were determined at various OTRs. Concentrations of most intracellular metabolites decreased with the increase in oxygen limitation. Intracellular enzyme activities of xylose reductase, xylitol dehydrogenase, and xylulokinase, the first three enzymes in xylose metabolic pathway, decreased with the increase in oxygen limitation, resulting in the decreased xylose uptake rate. Under all tested conditions, transaldolase and transketolase activities always maintained at low levels, indicating a great control on xylose metabolism. The enzyme of glucose-6-phosphate dehydrogenase played a major role in NADPH regeneration, and its activity decreased remarkably with the increase in oxygen limitation.

  8. Stepwise Loop Insertion Strategy for Active Site Remodeling to Generate Novel Enzyme Functions.

    PubMed

    Hoque, Md Anarul; Zhang, Yong; Chen, Liuqing; Yang, Guangyu; Khatun, Mst Afroza; Chen, Haifeng; Hao, Liu; Feng, Yan

    2017-05-19

    The remodeling of active sites to generate novel biocatalysts is an attractive and challenging task. We developed a stepwise loop insertion strategy (StLois), in which randomized residue pairs are inserted into active site loops. The phosphotriesterase-like lactonase from Geobacillus kaustophilus (GkaP-PLL) was used to investigate StLois's potential for changing enzyme function. By inserting six residues into active site loop 7, the best variant ML7-B6 demonstrated a 16-fold further increase in catalytic efficiency toward ethyl-paraoxon compared with its initial template, that is a 609-fold higher, >10 7 fold substrate specificity shift relative to that of wild-type lactonase. The remodeled variants displayed 760-fold greater organophosphate hydrolysis activity toward the organophosphates parathion, diazinon, and chlorpyrifos. Structure and docking computations support the source of notably inverted enzyme specificity. Considering the fundamental importance of active site loops, the strategy has potential for the rapid generation of novel enzyme functions by loop remodeling.

  9. Removing the Active-Site Flap in Lipase A from Candida antarctica Produces a Functional Enzyme without Interfacial Activation.

    PubMed

    Wikmark, Ylva; Engelmark Cassimjee, Karim; Lihammar, Richard; Bäckvall, Jan-E

    2016-01-01

    A mobile region is proposed to be a flap that covers the active site of Candida antarctica lipase A. Removal of the mobile region retains the functional properties of the enzyme. Interestingly interfacial activation, required for the wild-type enzyme, was not observed for the truncated variant, although stability, activity, and stereoselectivity were very similar for the wild-type and variant enzymes. The variant followed classical Michaelis-Menten kinetics, unlike the wild type. Both gave the same relative specificity in the transacylation of a primary and a secondary alcohol in organic solvent. Furthermore, both showed the same enantioselectivity in transacylation of alcohols and the hydrolysis of alcohol esters, as well as in the hydrolysis of esters chiral at the acid part. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A Chaperone Enhances Blood α-Glucosidase Activity in Pompe Disease Patients Treated With Enzyme Replacement Therapy

    PubMed Central

    Parenti, Giancarlo; Fecarotta, Simona; la Marca, Giancarlo; Rossi, Barbara; Ascione, Serena; Donati, Maria Alice; Morandi, Lucia Ovidia; Ravaglia, Sabrina; Pichiecchio, Anna; Ombrone, Daniela; Sacchini, Michele; Pasanisi, Maria Barbara; De Filippi, Paola; Danesino, Cesare; Della Casa, Roberto; Romano, Alfonso; Mollica, Carmine; Rosa, Margherita; Agovino, Teresa; Nusco, Edoardo; Porto, Caterina; Andria, Generoso

    2014-01-01

    Enzyme replacement therapy is currently the only approved treatment for Pompe disease, due to acid α-glucosidase deficiency. Clinical efficacy of this approach is variable, and more effective therapies are needed. We showed in preclinical studies that chaperones stabilize the recombinant enzyme used for enzyme replacement therapy. Here, we evaluated the effects of a combination of enzyme therapy and a chaperone on α-glucosidase activity in Pompe disease patients. α-Glucosidase activity was analyzed by tandem-mass spectrometry in dried blood spots from patients treated with enzyme replacement therapy, either alone or in combination with the chaperone N-butyldeoxynojirimycin given at the time of the enzyme infusion. Thirteen patients with different presentations (3 infantile-onset, 10 late-onset) were enrolled. In 11 patients, the combination treatment resulted in α-glucosidase activities greater than 1.85-fold the activities with enzyme replacement therapy alone. In the whole patient population, α-glucosidase activity was significantly increased at 12 hours (2.19-fold, P = 0.002), 24 hours (6.07-fold, P = 0.001), and 36 hours (3.95-fold, P = 0.003). The areas under the curve were also significantly increased (6.78-fold, P = 0.002). These results suggest improved stability of recombinant α-glucosidase in blood in the presence of the chaperone. PMID:25052852

  11. Carbon-Degrading Enzyme Activities Stimulated by Increased Nutrient Availability in Arctic Tundra Soils

    PubMed Central

    Koyama, Akihiro; Wallenstein, Matthew D.; Simpson, Rodney T.; Moore, John C.

    2013-01-01

    Climate-induced warming of the Arctic tundra is expected to increase nutrient availability to soil microbes, which in turn may accelerate soil organic matter (SOM) decomposition. We increased nutrient availability via fertilization to investigate the microbial response via soil enzyme activities. Specifically, we measured potential activities of seven enzymes at four temperatures in three soil profiles (organic, organic/mineral interface, and mineral) from untreated native soils and from soils which had been fertilized with nitrogen (N) and phosphorus (P) since 1989 (23 years) and 2006 (six years). Fertilized plots within the 1989 site received annual additions of 10 g N⋅m-2⋅year-1 and 5 g P⋅m-2⋅year-1. Within the 2006 site, two fertilizer regimes were established – one in which plots received 5 g N⋅m-2⋅year-1 and 2.5 g P⋅m-2⋅year-1 and one in which plots received 10 g N⋅m-2⋅year-1 and 5 g P⋅m-2⋅year-1. The fertilization treatments increased activities of enzymes hydrolyzing carbon (C)-rich compounds but decreased phosphatase activities, especially in the organic soils. Activities of two enzymes that degrade N-rich compounds were not affected by the fertilization treatments. The fertilization treatments increased ratios of enzyme activities degrading C-rich compounds to those for N-rich compounds or phosphate, which could lead to changes in SOM chemistry over the long term and to losses of soil C. Accelerated SOM decomposition caused by increased nutrient availability could significantly offset predicted increased C fixation via stimulated net primary productivity in Arctic tundra ecosystems. PMID:24204773

  12. Gene expression and activity of digestive enzymes of Daphnia pulex in response to food quality differences.

    PubMed

    Schwarzenberger, Anke; Fink, Patrick

    2018-04-01

    Food quality is an important factor influencing organisms' well-being. In freshwater ecosystems, food quality has been studied extensively for the keystone herbivore genus Daphnia, as they form the critical trophic link between primary producers and higher order consumers such as fish. For Daphnia, the edible fraction of phytoplankton in lakes (consisting mostly of unicellular algae and cyanobacteria) is extraordinarily diverse. To be able to digest different food particles, Daphnia possess a set of digestive enzymes that metabolize carbohydrates, lipids and proteins. Recent studies have found a connection between gene expression and activity of single digestive enzyme types of Daphnia, i.e. lipases and proteases, and transcriptome studies have shown that a variety of genes coding for gut enzymes are differentially expressed in response to different food algae. However, never before has a set of digestive enzymes been studied simultaneously both on the gene expression and the enzyme activity level in Daphnia. Here, we investigated several digestive enzymes of Daphnia pulex in a comparison between a high-quality (green algal) and a low-quality (cyanobacterial) diet. Diet significantly affected the expression of all investigated digestive enzyme genes and enzyme activity was altered between treatments. Furthermore, we found that gene expression and enzyme activity were significantly correlated in cellulase, triacylglycerol lipase and β-glucosidase when switched from high to low-quality food. We conclude that one of the factors causing the often observed low biomass and energy transfer efficiency from cyanobacteria to Daphnia is probably the switch to a cost-effective overall increase of gene expression and activity of digestive enzymes of this herbivore. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Etiological classification of depression based on the enzymes of tryptophan metabolism.

    PubMed

    Fukuda, Katsuhiko

    2014-12-24

    Viewed in terms of input and output, the mechanisms of depression are still akin to a black box. However, there must be main pivots for diverse types of depression. From recent therapeutic observations, both the serotonin (5-HT) and kynurenine pathways of tryptophan metabolism may be of particular importance to improved understanding of depression. Here, I propose an etiological classification of depression, based on key peripheral and central enzymes of tryptophan metabolism. Endogenous depression is caused by a larger genetic component than reactive depression. Besides enterochromaffin and mast cells, tryptophan hydroxylase 1 (TPH1), primarily expressed in the gastrointestinal tract, is also found in 5-hydroxytryptophan-producing cells (5-HTP cells) in normal intestinal enterocytes, which are thought to essentially shunt 5-HT production in 5-HT-producing cells. Genetic studies have reported an association between TPH1 and depression, or the responsiveness of depression to antidepressive medication. Therefore, it is possible that hypofunctional 5-HTP cells (reflecting TPH1 dysfunction) in the periphery lead to deficient brain 5-HT levels. Additionally,it has been reported that higher TPH2 expression in depressed suicides may reflect a homeostatic response to deficient 5-HT levels. Subsequently, endogenous depression may be caused by TPH1 dysfunction combined with compensatory TPH2 activation. Reactive depression results from life stresses and involves the hypothalamic-pituitary-adrenal axis, with resulting cortisol production inducing tryptophan 2,3-dioxygenase (TDO) activation. In secondary depression, caused by inflammation, infection, or oxidative stress, indoleamine 2,3-dioxygenase (IDO) is activated. In both reactive and secondary depression, the balance between 3-hydroxykynurenine (3-HK) and kynurenic acid may shift towards 3-HK production via kynurenine-3-monooxygenase (KMO) activation. By shifting the equilibrium position of key enzymes of tryptophan

  14. Isolated gene encoding an enzyme with UDP-glucose pyrophosphorylase and phosphoglucomutase activities from Cyclotella cryptica

    DOEpatents

    Jarvis, Eric E.; Roessler, Paul G.

    1999-01-01

    The present invention relates to a cloned gene which encodes an enzyme, the purified enzyme, and the applications and products resulting from the use of the gene and enzyme. The gene, isolated from Cyclotella cryptica, encodes a multifunctional enzyme that has both UDP-glucose pyrophosphorylase and phosphoglucomutase activities.

  15. Predicting novel substrates for enzymes with minimal experimental effort with active learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pertusi, Dante A.; Moura, Matthew E.; Jeffryes, James G.

    Enzymatic substrate promiscuity is more ubiquitous than previously thought, with significant consequences for understanding metabolism and its application to biocatalysis. This realization has given rise to the need for efficient characterization of enzyme promiscuity. Enzyme promiscuity is currently characterized with a limited number of human-selected compounds that may not be representative of the enzyme's versatility. While testing large numbers of compounds may be impractical, computational approaches can exploit existing data to determine the most informative substrates to test next, thereby more thoroughly exploring an enzyme's versatility. To demonstrate this, we used existing studies and tested compounds for four different enzymes,more » developed support vector machine (SVM) models using these datasets, and selected additional compounds for experiments using an active learning approach. SVMs trained on a chemically diverse set of compounds were discovered to achieve maximum accuracies of similar to 80% using similar to 33% fewer compounds than datasets based on all compounds tested in existing studies. Active learning-selected compounds for testing resolved apparent conflicts in the existing training data, while adding diversity to the dataset. The application of these algorithms to wide arrays of metabolic enzymes would result in a library of SVMs that can predict high-probability promiscuous enzymatic reactions and could prove a valuable resource for the design of novel metabolic pathways.« less

  16. Predicting novel substrates for enzymes with minimal experimental effort with active learning.

    PubMed

    Pertusi, Dante A; Moura, Matthew E; Jeffryes, James G; Prabhu, Siddhant; Walters Biggs, Bradley; Tyo, Keith E J

    2017-11-01

    Enzymatic substrate promiscuity is more ubiquitous than previously thought, with significant consequences for understanding metabolism and its application to biocatalysis. This realization has given rise to the need for efficient characterization of enzyme promiscuity. Enzyme promiscuity is currently characterized with a limited number of human-selected compounds that may not be representative of the enzyme's versatility. While testing large numbers of compounds may be impractical, computational approaches can exploit existing data to determine the most informative substrates to test next, thereby more thoroughly exploring an enzyme's versatility. To demonstrate this, we used existing studies and tested compounds for four different enzymes, developed support vector machine (SVM) models using these datasets, and selected additional compounds for experiments using an active learning approach. SVMs trained on a chemically diverse set of compounds were discovered to achieve maximum accuracies of ~80% using ~33% fewer compounds than datasets based on all compounds tested in existing studies. Active learning-selected compounds for testing resolved apparent conflicts in the existing training data, while adding diversity to the dataset. The application of these algorithms to wide arrays of metabolic enzymes would result in a library of SVMs that can predict high-probability promiscuous enzymatic reactions and could prove a valuable resource for the design of novel metabolic pathways. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. Viral pseudo-enzymes activate RIG-I via deamidation to evade cytokine production.

    PubMed

    He, Shanping; Zhao, Jun; Song, Shanshan; He, Xiaojing; Minassian, Arlet; Zhou, Yu; Zhang, Junjie; Brulois, Kevin; Wang, Yuqi; Cabo, Jackson; Zandi, Ebrahim; Liang, Chengyu; Jung, Jae U; Zhang, Xuewu; Feng, Pinghui

    2015-04-02

    RIG-I is a pattern recognition receptor that senses viral RNA and is crucial for host innate immune defense. Here, we describe a mechanism of RIG-I activation through amidotransferase-mediated deamidation. We show that viral homologs of phosphoribosylformylglycinamidine synthetase (PFAS), although lacking intrinsic enzyme activity, recruit cellular PFAS to deamidate and activate RIG-I. Accordingly, depletion and biochemical inhibition of PFAS impair RIG-I deamidation and concomitant activation. Purified PFAS and viral homolog thereof deamidate RIG-I in vitro. Ultimately, herpesvirus hijacks activated RIG-I to avoid antiviral cytokine production; loss of RIG-I or inhibition of RIG-I deamidation results in elevated cytokine production. Together, these findings demonstrate a surprising mechanism of RIG-I activation that is mediated by an enzyme. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil.

    PubMed

    Liu, Zhanjun; Rong, Qinlei; Zhou, Wei; Liang, Guoqing

    2017-01-01

    Understanding the effects of external organic and inorganic components on soil fertility and quality is essential for improving low-yielding soils. We conducted a field study over two consecutive rice growing seasons to investigate the effect of applying chemical fertilizer (NPK), NPK plus green manure (NPKG), NPK plus pig manure (NPKM), and NPK plus straw (NPKS) on the soil nutrient status, enzyme activities involved in C, N, P, and S cycling, microbial community and rice yields of yellow clayey soil. Results showed that the fertilized treatments significantly improved rice yields over the first three experimental seasons. Compared with the NPK treatment, organic amendments produced more favorable effects on soil productivity. Notably, the NPKM treatment exhibited the highest levels of nutrient availability, microbial biomass carbon (MBC), activities of most enzymes and the microbial community. This resulted in the highest soil quality index (SQI) and rice yield, indicating better soil fertility and quality. Significant differences in enzyme activities and the microbial community were observed among the treatments, and redundancy analysis showed that MBC and available N were the key determinants affecting the soil enzyme activities and microbial community. The SQI score of the non-fertilized control (0.72) was comparable to that of the NPK (0.77), NPKG (0.81) and NPKS (0.79) treatments but significantly lower compared with NPKM (0.85). The significant correlation between rice yield and SQI suggests that SQI can be a useful to quantify soil quality changes caused by different agricultural management practices. The results indicate that application of NPK plus pig manure is the preferred option to enhance SOC accumulation, improve soil fertility and quality, and increase rice yield in yellow clayey soil.

  19. NanoCluster Beacons as reporter probes in rolling circle enhanced enzyme activity detection

    NASA Astrophysics Data System (ADS)

    Juul, Sissel; Obliosca, Judy M.; Liu, Cong; Liu, Yen-Liang; Chen, Yu-An; Imphean, Darren M.; Knudsen, Birgitta R.; Ho, Yi-Ping; Leong, Kam W.; Yeh, Hsin-Chih

    2015-04-01

    As a newly developed assay for the detection of endogenous enzyme activity at the single-catalytic-event level, Rolling Circle Enhanced Enzyme Activity Detection (REEAD) has been used to measure enzyme activity in both single human cells and malaria-causing parasites, Plasmodium sp. Current REEAD assays rely on organic dye-tagged linear DNA probes to report the rolling circle amplification products (RCPs), the cost of which may hinder the widespread use of REEAD. Here we show that a new class of activatable probes, NanoCluster Beacons (NCBs), can simplify the REEAD assays. Easily prepared without any need for purification and capable of large fluorescence enhancement upon hybridization, NCBs are cost-effective and sensitive. Compared to conventional fluorescent probes, NCBs are also more photostable. As demonstrated in reporting the human topoisomerases I (hTopI) cleavage-ligation reaction, the proposed NCBs suggest a read-out format attractive for future REEAD-based diagnostics.As a newly developed assay for the detection of endogenous enzyme activity at the single-catalytic-event level, Rolling Circle Enhanced Enzyme Activity Detection (REEAD) has been used to measure enzyme activity in both single human cells and malaria-causing parasites, Plasmodium sp. Current REEAD assays rely on organic dye-tagged linear DNA probes to report the rolling circle amplification products (RCPs), the cost of which may hinder the widespread use of REEAD. Here we show that a new class of activatable probes, NanoCluster Beacons (NCBs), can simplify the REEAD assays. Easily prepared without any need for purification and capable of large fluorescence enhancement upon hybridization, NCBs are cost-effective and sensitive. Compared to conventional fluorescent probes, NCBs are also more photostable. As demonstrated in reporting the human topoisomerases I (hTopI) cleavage-ligation reaction, the proposed NCBs suggest a read-out format attractive for future REEAD-based diagnostics. Electronic

  20. Regulation of aflatoxin biosynthesis: effect of glucose on activities of various glycolytic enzymes.

    PubMed Central

    Buchanan, R L; Lewis, D F

    1984-01-01

    Catabolism of carbohydrates has been implicated in the regulation of aflatoxin synthesis. To characterize this effect further, the activities of various enzymes associated with glucose catabolism were determined in Aspergillus parasiticus organisms that were initially cultured in peptone-mineral salts medium and then transferred to glucose-mineral salts and peptone-mineral salts media. After an initial increase in activity, the levels of glucose 6-phosphate dehydrogenase, mannitol dehydrogenase, and malate dehydrogenase were lowered in the presence of glucose. Phosphofructokinase activity was greater in the peptone-grown mycelium, but fructose diphosphatase was largely unaffected by carbon source. Likewise, carbon source had relatively little effect on the activities of pyruvate kinase, malic enzyme, isocitrate-NADP dehydrogenase, and isocitrate-NAD dehydrogenase. The results suggest that glucose may, in part, regulate aflatoxin synthesis via a carbon catabolite repression of NADPH-generating and tricarboxylic acid cycle enzymes. PMID:6091545

  1. Diverse effects of arsenic on selected enzyme activities in soil-plant-microbe interactions.

    PubMed

    Lyubun, Yelena V; Pleshakova, Ekaterina V; Mkandawire, Martin; Turkovskaya, Olga V

    2013-11-15

    Under the influence of pollutants, enzyme activities in plant-microbe-soil systems undergo changes of great importance in predicting soil-plant-microbe interactions, regulation of metal and nutrient uptake, and, ultimately, improvement of soil health and fertility. We evaluated the influence of As on soil enzyme activities and the effectiveness of five field crops for As phytoextraction. The initial As concentration in soil was 50mg As kg(-1) soil; planted clean soil, unplanted polluted soil, and unplanted clean soil served as controls. After 10 weeks, the growth of the plants elevated soil dehydrogenase activity relative to polluted but unplanted control soils by 2.4- and 2.5-fold for sorghum and sunflower (respectively), by 3-fold for ryegrass and sudangrass, and by 5.2-fold for spring rape. Soil peroxidase activity increased by 33% with ryegrass and rape, while soil phosphatase activity was directly correlated with residual As (correlation coefficient R(2)=0.7045). We conclude that soil enzyme activities should be taken into account when selecting plants for phytoremediation. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Isolated gene encoding an enzyme with UDP-glucose pyrophosphorylase and phosphoglucomutase activities from Cyclotella cryptica

    DOEpatents

    Jarvis, E.E.; Roessler, P.G.

    1999-07-27

    The present invention relates to a cloned gene which encodes an enzyme, the purified enzyme, and the applications and products resulting from the use of the gene and enzyme. The gene, isolated from Cyclotella cryptica, encodes a multifunctional enzyme that has both UDP-glucose pyrophosphorylase and phosphoglucomutase activities. 8 figs.

  3. Biocatalytic Conversion of Avermectin to 4"-Oxo-Avermectin: Characterization of Biocatalytically Active Bacterial Strains and of Cytochrome P450 Monooxygenase Enzymes and Their Genes

    PubMed Central

    Jungmann, Volker; Molnár, István; Hammer, Philip E.; Hill, D. Steven; Zirkle, Ross; Buckel, Thomas G.; Buckel, Dagmar; Ligon, James M.; Pachlatko, J. Paul

    2005-01-01

    4"-Oxo-avermectin is a key intermediate in the manufacture of the agriculturally important insecticide emamectin benzoate from the natural product avermectin. Seventeen biocatalytically active Streptomyces strains with the ability to oxidize avermectin to 4"-oxo-avermectin in a regioselective manner have been discovered in a screen of 3,334 microorganisms. The enzymes responsible for this oxidation reaction in these biocatalytically active strains were found to be cytochrome P450 monooxygenases (CYPs) and were termed Ema1 to Ema17. The genes for Ema1 to Ema17 have been cloned, sequenced, and compared to reveal a new subfamily of CYPs. Ema1 to Ema16 have been overexpressed in Escherichia coli and purified as His-tagged recombinant proteins, and their basic enzyme kinetic parameters have been determined. PMID:16269732

  4. Redox-initiated hydrogel system for detection and real-time imaging of cellulolytic enzyme activity.

    PubMed

    Malinowska, Klara H; Verdorfer, Tobias; Meinhold, Aylin; Milles, Lukas F; Funk, Victor; Gaub, Hermann E; Nash, Michael A

    2014-10-01

    Understanding the process of biomass degradation by cellulolytic enzymes is of urgent importance for biofuel and chemical production. Optimizing pretreatment conditions and improving enzyme formulations both require assays to quantify saccharification products on solid substrates. Typically, such assays are performed using freely diffusing fluorophores or dyes that measure reducing polysaccharide chain ends. These methods have thus far not allowed spatial localization of hydrolysis activity to specific substrate locations with identifiable morphological features. Here we describe a hydrogel reagent signaling (HyReS) system that amplifies saccharification products and initiates crosslinking of a hydrogel that localizes to locations of cellulose hydrolysis, allowing for imaging of the degradation process in real time. Optical detection of the gel in a rapid parallel format on synthetic and natural pretreated solid substrates was used to quantify activity of T. emersonii and T. reesei enzyme cocktails. When combined with total internal reflection fluorescence microscopy and AFM imaging, the reagent system provided a means to visualize enzyme activity in real-time with high spatial resolution (<2 μm). These results demonstrate the versatility of the HyReS system in detecting cellulolytic enzyme activity and suggest new opportunities in real-time chemical imaging of biomass depolymerization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. [Effect of space flight on the Kosmos-1129 biosatellite on enzyme activity of the rat liver].

    PubMed

    Nemeth, S; Tigranian, R A

    1983-01-01

    After the 18.5 day Cosmos-1129 flight the activity of 7 glucocorticoid-stimulated enzymes of the rat liver was measured. Immediately postflight the activity of tyrosine aminotransferase, tryptophan pyrolase and serine dehydrogenase increased. These enzymes rapidly (within several hours) react to increased glucocorticoids. The activity of aspartate and alanine aminotransferases also increased. These enzymes require many days of a continuous effect of glucocorticoids. The glycogen concentration in the rat liver also grew. At R + 6 the activity of tryptophan pyrolase and serine dehydrogenase decreased and that of the other enzymes returned to normal. The immobilization stress applied postflight led to an increased activity of tyrosine aminotransferase and tryptophan pyrolase. This study gives evidence that after space flight rats are in an acute stress state, evidently, produced by the biosatellite recovery.

  6. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry.

    PubMed

    Cravatt, Benjamin F; Wright, Aaron T; Kozarich, John W

    2008-01-01

    Genome sequencing projects have provided researchers with a complete inventory of the predicted proteins produced by eukaryotic and prokaryotic organisms. Assignment of functions to these proteins represents one of the principal challenges for the field of proteomics. Activity-based protein profiling (ABPP) has emerged as a powerful chemical proteomic strategy to characterize enzyme function directly in native biological systems on a global scale. Here, we review the basic technology of ABPP, the enzyme classes addressable by this method, and the biological discoveries attributable to its application.

  7. Suppression of 9-cis-Epoxycarotenoid Dioxygenase, Which Encodes a Key Enzyme in Abscisic Acid Biosynthesis, Alters Fruit Texture in Transgenic Tomato1[W][OA

    PubMed Central

    Sun, Liang; Sun, Yufei; Zhang, Mei; Wang, Ling; Ren, Jie; Cui, Mengmeng; Wang, Yanping; Ji, Kai; Li, Ping; Li, Qian; Chen, Pei; Dai, Shengjie; Duan, Chaorui; Wu, Yan; Leng, Ping

    2012-01-01

    Cell wall catabolism during fruit ripening is under complex control and is key for fruit quality and shelf life. To examine the role of abscisic acid (ABA) in tomato (Solanum lycopersicum) fruit ripening, we suppressed SlNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of ABA. To suppress SlNCED1 specifically in tomato fruits, and thus avoid the pleiotropic phenotypes associated with ABA deficiency, we used an RNA interference construct driven by the fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20% and 50% of the levels measured in the control fruit. This significant reduction in NCED activity led to a down-regulation in the transcription of genes encoding major cell wall catabolic enzymes, specifically polygalacturonase (SlPG), pectin methyl esterase (SlPME), β-galactosidase precursor mRNA (SlTBG), xyloglucan endotransglycosylase (SlXET), endo-1,4-β-cellulose (SlCels), and expansin (SlExp). This resulted in an increased accumulation of pectin during ripening. In turn, this led to a significant extension of the shelf life to 15 to 29 d compared with a shelf life of only 7 d for the control fruit and an enhancement of fruit firmness at the mature stage by 30% to 45%. In conclusion, ABA affects cell wall catabolism during tomato fruit ripening via down-regulation of the expression of major catabolic genes (SlPG, SlPME, SlTBG, SlXET, SlCels, and SlExp). PMID:22108525

  8. [Effects of Different Reclaimed Scenarios on Soil Microbe and Enzyme Activities in Mining Areas].

    PubMed

    Li, Jun-jian; Liu, Feng; Zhou, Xiao-mei

    2015-05-01

    Abstract: Ecological degradation in the mining areas is greatly aggravated in recent several decades, and ecological restoration has become the primary measure for the sustainable development. Soil microbe and enzyme activity are sensitive indices to evaluate soil quality. Ecological reconstruction was initiated in Antaibao mining area, and we tested soil physicochemical properties, microbial populations of azotobacteria, nitrifying-bacteria and denitrifying-bacteria, and enzyme activities (including sucrose, polyphenol oxidase, dehydrogenase and urease) under different regeneration scenarios. Regeneration scenarios had significant effects on soil physicochemical properties, microbial population and enzyme activities. Total nitrogen was strongly correlated with azotobacteria and nitrifying-bacteria, however, total nitrogen was not correlated with denitrifying-bacteria. Phenol oxidase activity was negatively correlated with soil organic carbon and total nitrogen, but other enzyme activities were positively correlated with soil organic carbon and total nitrogen. Principal Component Analysis ( PCA) was applied to analyze the integrated fertility index (IFI). The highest and lowest IFIs were in Robinia pseudoacacia-Pinus tabuliformis mixed forests and un-reclaimed area, respectively. R. pseudoacacia-P. tabuliformis mixed forests were feasible for reclaimed mining areas in semi-arid region Northwest Shanxi.

  9. Interaction of firefly luciferase and silver nanoparticles and its impact on enzyme activity

    NASA Astrophysics Data System (ADS)

    Käkinen, Aleksandr; Ding, Feng; Chen, Pengyu; Mortimer, Monika; Kahru, Anne; Ke, Pu Chun

    2013-08-01

    We report on the dose-dependent inhibition of firefly luciferase activity induced by exposure of the enzyme to 20 nm citrate-coated silver nanoparticles (AgNPs). The inhibition mechanism was examined by characterizing the physicochemical properties and biophysical interactions of the enzyme and the AgNPs. Consistently, binding of the enzyme induced an increase in zeta potential from -22 to 6 mV for the AgNPs, triggered a red-shift of 44 nm in the absorbance peak of the AgNPs, and rendered a ‘protein corona’ of 20 nm in thickness on the nanoparticle surfaces. However, the secondary structures of the enzyme were only marginally affected upon formation of the protein corona, as verified by circular dichroism spectroscopy measurement and multiscale discrete molecular dynamics simulations. Rather, inductively coupled plasma mass spectrometry measurement revealed a significant ion release from the AgNPs. The released silver ions could readily react with the cysteine residues and N-groups of the enzyme to alter the physicochemical environment of their neighboring catalytic site and subsequently impair the enzymatic activity.

  10. In vivo imaging of endogenous enzyme activities using luminescent 1,2-dioxetane compounds.

    PubMed

    Tseng, Jen-Chieh; Kung, Andrew L

    2015-06-24

    Here we present a non-invasive imaging method for visualizing endogenous enzyme activities in living animals. This optical imaging method is based on an energy transfer principle termed chemically initiated electron exchange luminescence (CIEEL). The light energy is provided by enzymatic activation of metastable 1,2-dioxetane substrates, whose protective groups are removed by hydrolytic enzymes such as β-galactosidase and alkaline phosphatase. In the presence of a nearby fluorescent recipient, the chemical energy within the activated substrate is then transferred via formation of a charge-transfer complex with the fluorophore, a mechanism closely related to glow stick chemistry. Efficient CIEEL energy transfer requires close proximity between the trigger enzyme and the fluorescent recipient. Using cells stained with fluorescent dialkylcarbocyanines as the energy recipients, we demonstrated CIEEL imaging of cellular β-galactosidase or alkaline phosphatase activity. In living animals, we used a similar approach to non-invasively image alkaline phosphatase activity in the peritoneal cavity. In this report, we provide proof-of-concept for CIEEL imaging of in vivo enzymatic activity. In addition, we demonstrate the use of CIEEL energy transfer for visualizing elevated alkaline phosphatase activity associated with tissue inflammation in living animals.

  11. [Change in soil enzymes activities after adding biochar or straw by fluorescent microplate method].

    PubMed

    Zhang, Yu-Lan; Chen, Li-Jun; Duan, Zheng-Hu; Wu, Zhi-Jie; Sun, Cai-Xia; Wang, Jun-Yu

    2014-02-01

    The present work was aimed to study soil a-glucosidase and beta-glucosidase activities of and red soils based on fluorescence detection method combined with 96 microplates with TECAN Infinite 200 Multi-Mode Microplate Reader. We added biochar or straw (2.5 g air dry sample/50g air dry soil sample) into and red soils and the test was carried under fixed temperature and humidity condition (25 degrees C, 20% soil moisture content). The results showed that straw addition enhances soil alpha-glucosidase and beta-glucosidase activities, beta-glucosidase activity stimulated by rice straw treatment was higher than that of corn straw treatment, and activity still maintains strong after 40 days, accounting for increasing soil carbon transformation with straw inputting. Straw inputting increased soil nutrients contents and may promote microbial activity, which also lead to the increase oin enzyme Straw inputting increased soil nutrients contents and may promote microbial activity, which also lead to the increase oin enzyme activities. Different effects of straw kinds may be related to material source that needs further research. However, biochar inputting has little effect on soil alpha-glucosidase and beta-glucosidase activity. Biochar contains less available nutrients than straw and have degradation-resistant characteristics. Compared with the conventional spectrophotometric method, fluorescence microplate method is more sensitive to soil enzyme activities in suspension liquid, which can be used in a large number of samples. In brief, fluorescence microplate method is fast, accurate, and simple to determine soil enzymes activities.

  12. Effect of posttranslational modifications on enzyme function and assembly.

    PubMed

    Ryšlavá, Helena; Doubnerová, Veronika; Kavan, Daniel; Vaněk, Ondřej

    2013-10-30

    The detailed examination of enzyme molecules by mass spectrometry and other techniques continues to identify hundreds of distinct PTMs. Recently, global analyses of enzymes using methods of contemporary proteomics revealed widespread distribution of PTMs on many key enzymes distributed in all cellular compartments. Critically, patterns of multiple enzymatic and nonenzymatic PTMs within a single enzyme are now functionally evaluated providing a holistic picture of a macromolecule interacting with low molecular mass compounds, some of them being substrates, enzyme regulators, or activated precursors for enzymatic and nonenzymatic PTMs. Multiple PTMs within a single enzyme molecule and their mutual interplays are critical for the regulation of catalytic activity. Full understanding of this regulation will require detailed structural investigation of enzymes, their structural analogs, and their complexes. Further, proteomics is now integrated with molecular genetics, transcriptomics, and other areas leading to systems biology strategies. These allow the functional interrogation of complex enzymatic networks in their natural environment. In the future, one might envisage the use of robust high throughput analytical techniques that will be able to detect multiple PTMs on a global scale of individual proteomes from a number of carefully selected cells and cellular compartments. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Activity-Based Screening of Metagenomic Libraries for Hydrogenase Enzymes.

    PubMed

    Adam, Nicole; Perner, Mirjam

    2017-01-01

    Here we outline how to identify hydrogenase enzymes from metagenomic libraries through an activity-based screening approach. A metagenomic fosmid library is constructed in E. coli and the fosmids are transferred into a hydrogenase deletion mutant of Shewanella oneidensis (ΔhyaB) via triparental mating. If a fosmid exhibits hydrogen uptake activity, S. oneidensis' phenotype is restored and hydrogenase activity is indicated by a color change of the medium from yellow to colorless. This new method enables screening of 48 metagenomic fosmid clones in parallel.

  14. Identification and modification of dynamical regions in proteins for alteration of enzyme catalytic effect

    DOEpatents

    Agarwal, Pratul K.

    2015-11-24

    A method for analysis, control, and manipulation for improvement of the chemical reaction rate of a protein-mediated reaction is provided. Enzymes, which typically comprise protein molecules, are very efficient catalysts that enhance chemical reaction rates by many orders of magnitude. Enzymes are widely used for a number of functions in chemical, biochemical, pharmaceutical, and other purposes. The method identifies key protein vibration modes that control the chemical reaction rate of the protein-mediated reaction, providing identification of the factors that enable the enzymes to achieve the high rate of reaction enhancement. By controlling these factors, the function of enzymes may be modulated, i.e., the activity can either be increased for faster enzyme reaction or it can be decreased when a slower enzyme is desired. This method provides an inexpensive and efficient solution by utilizing computer simulations, in combination with available experimental data, to build suitable models and investigate the enzyme activity.

  15. Identification and modification of dynamical regions in proteins for alteration of enzyme catalytic effect

    DOEpatents

    Agarwal, Pratul K.

    2013-04-09

    A method for analysis, control, and manipulation for improvement of the chemical reaction rate of a protein-mediated reaction is provided. Enzymes, which typically comprise protein molecules, are very efficient catalysts that enhance chemical reaction rates by many orders of magnitude. Enzymes are widely used for a number of functions in chemical, biochemical, pharmaceutical, and other purposes. The method identifies key protein vibration modes that control the chemical reaction rate of the protein-mediated reaction, providing identification of the factors that enable the enzymes to achieve the high rate of reaction enhancement. By controlling these factors, the function of enzymes may be modulated, i.e., the activity can either be increased for faster enzyme reaction or it can be decreased when a slower enzyme is desired. This method provides an inexpensive and efficient solution by utilizing computer simulations, in combination with available experimental data, to build suitable models and investigate the enzyme activity.

  16. Complex of vitamins and antioxidants protects low-density lipoproteins in blood plasma from free radical oxidation and activates antioxidants enzymes in erythrocytes from patients with coronary heart disease.

    PubMed

    Konovalova, G G; Lankin, V Z; Tikhaze, A K; Nezhdanova, I B; Lisina, M O; Kukharchuk, V V

    2003-08-01

    We studied the effect of a complex containing antioxidant vitamins C and E, provitamin A, and antioxidant element selenium on the contents of primary (lipid peroxides) and secondary products (malonic dialdehyde) of free radical lipid oxidation in low-density lipoproteins isolated from the plasma of patients with coronary heart disease and hypercholesterolemia by means of preparative ultracentrifugation. Activity of key antioxidant enzymes in the blood was measured during treatment with the antioxidant preparation. Combination treatment with antioxidant vitamins and antioxidant element selenium sharply decreased the contents of primary and secondary free radical oxidation products in circulating low-density lipoproteins and increased activity of antioxidant enzymes in erythrocytes. Activities of superoxide dismutase and selenium-containing glutathione peroxidase increased 1 and 2 months after the start of therapy, respectively.

  17. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parashar, Abhinav; Venkatachalam, Avanthika; Gideon, Daniel Andrew

    Highlights: • Cyanide (CN) is a well-studied toxic principle, known to inhibit heme-enzymes. • Inhibition is supposed to result from CN binding at the active site as a ligand. • Diverse heme enzymes’ CN inhibition profiles challenge prevailing mechanism. • Poor binding efficiency of CN at low enzyme concentrations and ligand pressures. • CN-based diffusible radicals cause ‘non-productive electron transfers’ (inhibition). - Abstract: The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins’ active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations inmore » heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.« less

  18. Dual enzyme activities assay by quantitative electrospray ionization quadrupole-time-of-flight mass spectrometry.

    PubMed

    Cai, Tingting; Zhang, Li; Wang, Haoyang; Zhang, Jing; Wang, Rong; Zhang, Yurong; Guo, Yinlong

    2012-01-01

    A practical and rapid method based on electrospray ionization quadrupole-time of flight mass spectrometry (ESI-Q-ToF MS) was developed for detecting activities of both acetylcholinesterase IAChEI and glutathione S-transferase (GST). The simultaneous study of these two enzyme activities is significant for studying human bio-functions, especially for those who take in toxic compounds and have a risk of disease. Here, the enzyme activities were represented by the conversion of enzymatic substrates and determined by quantitatively analyzing enzymatic substrates. Different internal standards were used to quantify each enzymatic substrate and the good linearity of calibration curves demonstrated the feasibility of the internal standards. The Michaelis-Menten constants (Km) of both GST and AChE were measured by this method and were consistent with values previously reported. Furthermore, we applied this approach to detect GST and AChE activities of whole bloods from four deceased and healthy people. The variation in enzyme activity was in accord with information from gas chromatography mass spectrometry [GC/MS). The screening of AChE and GST provided reliable results and strong forensic evidence. This method offers an alternative choice for detecting enzyme activities and is anticipated to have wide applications in pharmaceutical research and prevention in toxic compounds.

  19. A DNA enzyme with Mg(2+)-Dependent RNA Phosphoesterase Activity

    NASA Technical Reports Server (NTRS)

    Breaker, Ronald R.; Joyce, Gerald F.

    1995-01-01

    Previously we demonstrated that DNA can act as an enzyme in the Pb(2+)-dependent cleavage of an RNA phosphoester. This is a facile reaction, with an uncatalyzed rate for a typical RNA phosphoester of approx. 10(exp -4)/ min in the presence of 1 mM Pb(OAc)2 at pH 7.0 and 23 C. The Mg(2+) - dependent reaction is more difficult, with an uncatalyzed rate of approx. 10(exp -7)/ min under comparable conditions. Mg(2+) - dependent cleavage has special relevance to biology because it is compatible with intracellular conditions. Using in vitro selection, we sought to develop a family of phosphoester-cleaving DNA enzymes that operate in the presence of various divalent metals, focusing particularly on the Mg(2+) - dependent reaction. Results: We generated a population of greater than 10(exp 13) DNAs containing 40 random nucleotides and carried out repeated rounds of selective amplification, enriching for molecules that cleave a target RNA phosphoester in the presence of 1 mM Mg(2+), Mn(2+), Zn(2+) or Pb(2+). Examination of individual clones from the Mg(2+) lineage after the sixth round revealed a catalytic motif comprised of a three-stem junction.This motif was partially randomized and subjected to seven additional rounds of selective amplification, yielding catalysts with a rate of 0.01/ min. The optimized DNA catalyst was divided into separate substrate and enzyme domains and shown to have a similar level of activity under multiple turnover conditions. Conclusions: We have generated a Mg(2+) - dependent DNA enzyme that cleaves a target RNA phosphoester with a catalytic rate approx. 10(exp 5) - fold greater than that of the uncatalyzed reaction. This activity is compatible with intracellular conditions, raising the possibility that DNA enzymes might be made to operate in vivo.

  20. Relief of autoinhibition by conformational switch explains enzyme activation by a catalytically dead paralog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, Oleg A.; Kinch, Lisa; Ariagno, Carson

    Catalytically inactive enzyme paralogs occur in many genomes. Some regulate their active counterparts but the structural principles of this regulation remain largely unknown. We report X-ray structures ofTrypanosoma brucei S-adenosylmethionine decarboxylase alone and in functional complex with its catalytically dead paralogous partner, prozyme. We show monomericTbAdoMetDC is inactive because of autoinhibition by its N-terminal sequence. Heterodimerization with prozyme displaces this sequence from the active site through a complex mechanism involving acis-to-transproline isomerization, reorganization of a β-sheet, and insertion of the N-terminal α-helix into the heterodimer interface, leading to enzyme activation. We propose that the evolution of this intricate regulatory mechanismmore » was facilitated by the acquisition of the dimerization domain, a single step that can in principle account for the divergence of regulatory schemes in the AdoMetDC enzyme family. These studies elucidate an allosteric mechanism in an enzyme and a plausible scheme by which such complex cooperativity evolved.« less

  1. The Structure of the Flavoprotein Tryptophan-2-Monooxygenase, a Key Enzyme in the Formation of Galls in Plants†

    PubMed Central

    Gaweska, Helena M.; Taylor, Alexander B.; Hart, P. John; Fitzpatrick, Paul F.

    2013-01-01

    The flavoprotein tryptophan 2-monooxygenase catalyzes the oxidative decarboxylation of tryptophan to yield indole-3-acetamide. This is the initial step in the biosynthesis of the plant growth hormone indole-acetic-acid by bacterial pathogens that cause crown gall and related diseases. The structure of the enzyme from Pseudomonas savastanoi has been determined by X-ray diffraction methods to a resolution of 1.95 Å. The overall structure of the protein shows that it has the same fold as the monoamine oxidase family of flavoproteins, with the greatest similarities to the L-amino acid oxidases. The location of bound indole-3-acetamide in the active site enables identification of residues responsible for substrate binding and specificity. Two residues in the enzyme are conserved in all members of the monoamine oxidase family, Lys365 and Trp466. The K365M mutation decreases the kcat and kcat/KTrp values by 60,000 and 2 million-fold, respectively. The deuterium kinetic isotope effect increases to 3.2, consistent with carbon-hydrogen bond cleavage becoming rate-limiting in the mutant enzyme. The W466F mutation decreases the kcat value less than 2-fold and the kcat/KTrp value only 5-fold, while the W466M mutation results in enzyme lacking flavin and detectable activity. This is consistent with a role for Trp466 in maintaining the structure of the flavin binding site in the more conserved FAD domain. PMID:23521653

  2. [Activity of antioxidative enzymes of the myocardium during ischemia].

    PubMed

    Gutkin, D V; Petrovich, Iu A

    1982-01-01

    Activation of lipid peroxidation during myocardial ischemia may be determined by the reduction of the enzymatic antioxidant cell protection. Such a conclusion has been drawn on the basis of an analysis of variation in the activity of superoxide dismutase, glutathion peroxidase and catalase in experimental myocardial ischemia in rats, induced by ligation of the left descending artery of the heart. In the early period of ischemia (1-3 h) the activity of superoxide dismutase and glutation peroxidase markedly decreases. In the periischemic zone, the fall in the enzymatic activity is not so pronounced. The activity of the enzymes does not reach the basic level 5 days after the operation.

  3. Biotransformation of anthelmintics and the activity of drug-metabolizing enzymes in the tapeworm Moniezia expansa.

    PubMed

    Prchal, Lukáš; Bártíková, Hana; Bečanová, Aneta; Jirásko, Robert; Vokřál, Ivan; Stuchlíková, Lucie; Skálová, Lenka; Kubíček, Vladimír; Lamka, Jiří; Trejtnar, František; Szotáková, Barbora

    2015-04-01

    The sheep tapeworm Moniezia expansa is very common parasite, which affects ruminants such as sheep, goats as well as other species. The benzimidazole anthelmintics albendazole (ABZ), flubendazole (FLU) and mebendazole (MBZ) are often used to treat the infection. The drug-metabolizing enzymes of helminths may alter the potency of anthelmintic treatment. The aim of our study was to assess the activity of the main drug-metabolizing enzymes and evaluate the metabolism of selected anthelmintics (ABZ, MBZ and FLU) in M. expansa. Activities of biotransformation enzymes were determined in subcellular fractions. Metabolites of the anthelmintics were detected and identified using high performance liquid chromatography/ultra-violet/VIS/fluorescence or ultra-high performance liquid chromatography/mass spectrometry. Reduction of MBZ, FLU and oxidation of ABZ were proved as well as activities of various metabolizing enzymes. Despite the fact that the conjugation enzymes glutathione S-transferase, UDP-glucuronosyl transferase and UDP-glucosyl transferase were active in vitro, no conjugated metabolites of anthelmintics were identified either ex vivo or in vitro. The obtained results indicate that sheep tapeworm is able to deactivate the administered anthelmintics, and thus protects itself against their action.

  4. A new methodology for the determination of enzyme activity based on carbon nanotubes and glucose oxidase.

    PubMed

    Yeşiller, Gülden; Sezgintürk, Mustafa Kemal

    2015-11-10

    In this research, a novel enzyme activity analysis methodology is introduced as a new perspective for this area. The activity of elastase enzyme, which is a digestive enzyme mostly of found in the digestive system of vertebrates, was determined by an electrochemical device composed of carbon nanotubes and a second enzyme, glucose oxidase, which was used as a signal generator enzyme. In this novel methodology, a complex bioactive layer was constructed by using carbon nanotubes, glucose oxidase and a supporting protein, gelatin on a solid, conductive substrate. The activity of elastase was determined by monitoring the hydrolysis rate of elastase enzyme in the bioactive layer. As a result of this hydrolysis of elastase, glucose oxidase was dissociated from the bioactive layer, and following this the electrochemical signal due to glucose oxidase was decreased. The progressive elastase-catalyzed digestion of the bioactive layer containing glucose oxidase decreased the layer's enzymatic efficiency, resulting in a decrease of the glucose oxidation current as a function of the enzyme activity. The ratio of the decrease was correlated to elastase activity level. In this study, optimization experiments of bioactive components and characterization of the resulting new electrochemical device were carried out. A linear calibration range from 0.0303U/mL to 0.0729U/mL of elastase was reported. Real sample analyses were also carried out by the new electrochemical device. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Association between Antioxidant Enzyme Activities and Enterovirus-Infected Type 1 Diabetic Children.

    PubMed

    Abdel-Moneim, Adel; El-Senousy, Waled M; Abdel-Latif, Mahmoud; Khalil, Rehab G

    2018-01-01

    To examine the effect of infection with Enterovirus (EV) in children with type 1 diabetes (T1D) on the activities of serum antioxidant enzymes in diabetic and nondiabetic controls. Three hundred and eighty-two diabetic and 100 nondiabetic children were tested for EV RNA using reverse transcriptase (RT)-PCR. The activities of serum superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were also estimated in diabetic patients infected with EV (T1D-EV+), those not infected with EV (T1D-EV-), and in nondiabetic controls. The frequency of EV was higher in diabetic children (100/382; 26.2%) than in healthy controls (0/100). Levels of fasting blood glucose (FBG), glycosylated hemoglobin (HbA1c) and C-reactive protein (CRP) were significantly higher but C-peptide was significantly lower in diabetic children than in controls. CRP levels were higher in the T1D-EV+ group than in the T1D-EV- group, and higher in all diabetic children than in nondiabetic controls. The activities of the antioxidant enzymes GPx, SOD, and CAT decreased significantly in diabetic children compared to in controls. Moreover, the activities of the enzymes tested were significantly reduced in the T1D-EV+ group compared to in the T1D-EV- group. Our data indicate that EV infection correlated with a decrease in the activity of antioxidant enzymes in the T1D-EV+ group compared to in the T1D-EV- group; this may contribute to β cell damage and increased inflammation. © 2018 The Author(s) Published by S. Karger AG, Basel.

  6. The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies.

    PubMed

    Cang-Rong, Jason Teng; Pastorin, Giorgia

    2009-06-24

    In the last decade, many environmental organizations have devoted their efforts to identifying renewable biosystems, which could provide sustainable fuels and thus enhance energy security. Amidst the myriad of possibilities, some biofuels make use of different types of waste biomasses, and enzymes are often employed to hydrolyze these biomasses and produce sugars that will be subsequently converted into ethanol. In this project, we aimed to bridge nanotechnology and biofuel production: here we report on the activity and structure of the enzyme amyloglucosidase (AMG), physically adsorbed or covalently immobilized onto single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs). In fact, carbon nanotubes (CNTs) present several properties that render them ideal support systems, without the diffusion limitations displayed by porous material and with the advantage of being further functionalizable at their surface. Chemical ligation was achieved both on oxidized nanotubes (via carbodiimide chemistry), as well as on amino-functionalized nanotubes (via periodate-oxidized AMG). Results showed that AMG retained a certain percentage of its specific activity for all enzyme-carbon nanotubes complexes prepared, with the physically adsorbed samples displaying better catalytic efficiency than the covalently immobilized samples. Analysis of the enzyme's structure through circular dichroism (CD) spectroscopy revealed significant structural changes in all samples, the degree of change being consistent with the activity profiles. This study proves that AMG interacts differently with carbon nanotubes depending on the method employed. Due to the higher activity reported by the enzyme physically adsorbed onto CNTs, these samples demonstrated a vast potential for further development. At the same time, the possibility of inducing magnetic properties into CNTs offers the opportunity to easily separate them from the original solution. Hence, substances to which they

  7. The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies

    NASA Astrophysics Data System (ADS)

    Cang-Rong, Jason Teng; Pastorin, Giorgia

    2009-06-01

    In the last decade, many environmental organizations have devoted their efforts to identifying renewable biosystems, which could provide sustainable fuels and thus enhance energy security. Amidst the myriad of possibilities, some biofuels make use of different types of waste biomasses, and enzymes are often employed to hydrolyze these biomasses and produce sugars that will be subsequently converted into ethanol. In this project, we aimed to bridge nanotechnology and biofuel production: here we report on the activity and structure of the enzyme amyloglucosidase (AMG), physically adsorbed or covalently immobilized onto single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs). In fact, carbon nanotubes (CNTs) present several properties that render them ideal support systems, without the diffusion limitations displayed by porous material and with the advantage of being further functionalizable at their surface. Chemical ligation was achieved both on oxidized nanotubes (via carbodiimide chemistry), as well as on amino-functionalized nanotubes (via periodate-oxidized AMG). Results showed that AMG retained a certain percentage of its specific activity for all enzyme-carbon nanotubes complexes prepared, with the physically adsorbed samples displaying better catalytic efficiency than the covalently immobilized samples. Analysis of the enzyme's structure through circular dichroism (CD) spectroscopy revealed significant structural changes in all samples, the degree of change being consistent with the activity profiles. This study proves that AMG interacts differently with carbon nanotubes depending on the method employed. Due to the higher activity reported by the enzyme physically adsorbed onto CNTs, these samples demonstrated a vast potential for further development. At the same time, the possibility of inducing magnetic properties into CNTs offers the opportunity to easily separate them from the original solution. Hence, substances to which they

  8. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil

    PubMed Central

    Liu, Zhanjun; Rong, Qinlei; Zhou, Wei; Liang, Guoqing

    2017-01-01

    Understanding the effects of external organic and inorganic components on soil fertility and quality is essential for improving low-yielding soils. We conducted a field study over two consecutive rice growing seasons to investigate the effect of applying chemical fertilizer (NPK), NPK plus green manure (NPKG), NPK plus pig manure (NPKM), and NPK plus straw (NPKS) on the soil nutrient status, enzyme activities involved in C, N, P, and S cycling, microbial community and rice yields of yellow clayey soil. Results showed that the fertilized treatments significantly improved rice yields over the first three experimental seasons. Compared with the NPK treatment, organic amendments produced more favorable effects on soil productivity. Notably, the NPKM treatment exhibited the highest levels of nutrient availability, microbial biomass carbon (MBC), activities of most enzymes and the microbial community. This resulted in the highest soil quality index (SQI) and rice yield, indicating better soil fertility and quality. Significant differences in enzyme activities and the microbial community were observed among the treatments, and redundancy analysis showed that MBC and available N were the key determinants affecting the soil enzyme activities and microbial community. The SQI score of the non-fertilized control (0.72) was comparable to that of the NPK (0.77), NPKG (0.81) and NPKS (0.79) treatments but significantly lower compared with NPKM (0.85). The significant correlation between rice yield and SQI suggests that SQI can be a useful to quantify soil quality changes caused by different agricultural management practices. The results indicate that application of NPK plus pig manure is the preferred option to enhance SOC accumulation, improve soil fertility and quality, and increase rice yield in yellow clayey soil. PMID:28263999

  9. Beyond Vmax and Km: How details of enzyme function influence geochemical cycles

    NASA Astrophysics Data System (ADS)

    Steen, A. D.

    2015-12-01

    Enzymes catalyze the vast majority of chemical reactions relevant to geomicrobiology. Studies of the activities of enzymes in environmental systems often report Vmax (the maximum possible rate of reaction; often proportional to the concentration of enzymes in the system) and sometimes Km (a measure of the affinity between enzymes and their substrates). However, enzyme studies - particularly those related to enzymes involved in organic carbon oxidation - are often limited to only those parameters, and a relatively limited and mixed set of enzymes. Here I will discuss some novel methods to assay and characterize the specific sets of enzymes that may be important to the carbon cycle in aquatic environments. First, kinetic experiments revealed the collective properties of the complex mixtures of extracellular peptidases that occur where microbial communities are diverse. Crystal structures combined with biochemical characterization of specific enzymes can yield more detailed information about key steps in organic carbon transformations. These new techniques have the potential to provide mechanistic grounding to geomicrobiological models.

  10. Ecotoxicological effects of copper and selenium combined pollution on soil enzyme activities in planted and unplanted soils.

    PubMed

    Hu, Bin; Liang, Dongli; Liu, Juanjuan; Xie, Junyu

    2013-04-01

    The present study explored the joint effects of Cu and Se pollution mechanisms on soil enzymes to provide references for the phytoremediation of contaminated areas and agricultural environmental protection. Pot experiments and laboratory analyses were carried out to study the individual and combined influences of Cu and Se on soil enzyme activities. The activities of four soil enzymes (urease, catalase, alkaline phosphatase, and nitrate reductase) were chosen. All soil enzyme activities tested were inhibited by Cu and Se pollution, either individually or combined, in varying degrees, following the order nitrate reductase>urease>catalase>alkaline phosphatase. Growing plants stimulated soil enzyme activity in a similar trend compared with treatments without plants. The joint effects of Cu and Se on catalase activity showed synergism at low concentrations and antagonism at high concentrations, whereas the opposite was observed for urease activity. However, nitrate reductase activity showed synergism both with and without plant treatments. The half maximal effective concentration (EC50) of exchangeable fractions had a similar trend with the EC50 of total content and was lower than that of total content. The EC50 values of nitrate reductase and urease activities were significantly lower for both Se and Cu (p<0.05), which indicated that they were more sensitive than the other two enzymes. Copyright © 2013 SETAC.

  11. Enhancement of hepatic detoxification enzyme activity by dietary mercuric acetate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagstaff, D.J.

    1973-01-01

    This report deals with stimulation of liver microsomal enzymes by dietary mercuric acetate (HgAc) and interactions of HgAc with phenobarbital sodium (PB). There is a diphasic response of microsomal enzymes in rats exposed to mercurials. Detoxication activity increased as the dietary dose of HgAc was increased. Liver weight was unaffected by ingestion of HgAc . Toxicity of HgAc increased with dosage. There were no deaths among animals fed diets of 2000 ppM HgAc or less but all five animals fed the diet of 5000 ppM died after five but before ten days on the experiment. The mercury-phenobarbital interactions support speculationmore » that mercury in combination with other chemicals in the environment may have enzyme stimulatory capacity at low exposure levels. 25 references, 1 figure, 1 table.« less

  12. A Rigidifying Salt-Bridge Favors the Activity of Thermophilic Enzyme at High Temperatures at the Expense of Low-Temperature Activity

    PubMed Central

    Lam, Sonia Y.; Yeung, Rachel C. Y.; Yu, Tsz-Ha; Sze, Kong-Hung; Wong, Kam-Bo

    2011-01-01

    Background Thermophilic enzymes are often less active than their mesophilic homologues at low temperatures. One hypothesis to explain this observation is that the extra stabilizing interactions increase the rigidity of thermophilic enzymes and hence reduce their activity. Here we employed a thermophilic acylphosphatase from Pyrococcus horikoshii and its homologous mesophilic acylphosphatase from human as a model to study how local rigidity of an active-site residue affects the enzymatic activity. Methods and Findings Acylphosphatases have a unique structural feature that its conserved active-site arginine residue forms a salt-bridge with the C-terminal carboxyl group only in thermophilic acylphosphatases, but not in mesophilic acylphosphatases. We perturbed the local rigidity of this active-site residue by removing the salt-bridge in the thermophilic acylphosphatase and by introducing the salt-bridge in the mesophilic homologue. The mutagenesis design was confirmed by x-ray crystallography. Removing the salt-bridge in the thermophilic enzyme lowered the activation energy that decreased the activation enthalpy and entropy. Conversely, the introduction of the salt-bridge to the mesophilic homologue increased the activation energy and resulted in increases in both activation enthalpy and entropy. Revealed by molecular dynamics simulations, the unrestrained arginine residue can populate more rotamer conformations, and the loss of this conformational freedom upon the formation of transition state justified the observed reduction in activation entropy. Conclusions Our results support the conclusion that restricting the active-site flexibility entropically favors the enzymatic activity at high temperatures. However, the accompanying enthalpy-entropy compensation leads to a stronger temperature-dependency of the enzymatic activity, which explains the less active nature of the thermophilic enzymes at low temperatures. PMID:21423654

  13. A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity.

    PubMed

    Lam, Sonia Y; Yeung, Rachel C Y; Yu, Tsz-Ha; Sze, Kong-Hung; Wong, Kam-Bo

    2011-03-01

    Thermophilic enzymes are often less active than their mesophilic homologues at low temperatures. One hypothesis to explain this observation is that the extra stabilizing interactions increase the rigidity of thermophilic enzymes and hence reduce their activity. Here we employed a thermophilic acylphosphatase from Pyrococcus horikoshii and its homologous mesophilic acylphosphatase from human as a model to study how local rigidity of an active-site residue affects the enzymatic activity. Acylphosphatases have a unique structural feature that its conserved active-site arginine residue forms a salt-bridge with the C-terminal carboxyl group only in thermophilic acylphosphatases, but not in mesophilic acylphosphatases. We perturbed the local rigidity of this active-site residue by removing the salt-bridge in the thermophilic acylphosphatase and by introducing the salt-bridge in the mesophilic homologue. The mutagenesis design was confirmed by x-ray crystallography. Removing the salt-bridge in the thermophilic enzyme lowered the activation energy that decreased the activation enthalpy and entropy. Conversely, the introduction of the salt-bridge to the mesophilic homologue increased the activation energy and resulted in increases in both activation enthalpy and entropy. Revealed by molecular dynamics simulations, the unrestrained arginine residue can populate more rotamer conformations, and the loss of this conformational freedom upon the formation of transition state justified the observed reduction in activation entropy. Our results support the conclusion that restricting the active-site flexibility entropically favors the enzymatic activity at high temperatures. However, the accompanying enthalpy-entropy compensation leads to a stronger temperature-dependency of the enzymatic activity, which explains the less active nature of the thermophilic enzymes at low temperatures.

  14. Markers of oxidative stress and erythrocyte antioxidant enzyme activity in older men and women with differing physical activity.

    PubMed

    Rowiński, Rafał; Kozakiewicz, Mariusz; Kędziora-Kornatowska, Kornelia; Hübner-Woźniak, Elżbieta; Kędziora, Józef

    2013-11-01

    The aim of the present study was to examine the relationship between markers of oxidative stress and erythrocyte antioxidant enzyme activity and physical activity in older men and women. The present study included 481 participants (233 men and 248 women) in the age group 65-69 years (127 men and 125 women) and in the age group 90 years and over (106 men and 123 women). The classification of respondents by physical activity was based on answers to the question if, in the past 12 months, they engaged in any pastimes which require physical activity. The systemic oxidative stress status was assessed by measuring plasma iso-PGF2α and protein carbonyl concentration as well as erythrocyte antioxidant enzymes activity, i.e., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). The concentration of plasma iso-PGF2α and protein carbonyls (CP) was lower in groups of younger men and women compared to the respective older groups. In all examined groups, physical activity resulted in decrease of these oxidative stress markers and simultaneously caused adaptive increase in the erythrocyte SOD activity. Additionally, in active younger men CAT, GPx, and GR activities were higher than in sedentary ones. In conclusion, oxidative stress increase is age-related, but physical activity can reduce oxidative stress markers and induce adaptive increase in the erythrocyte antioxidant enzyme activity, especially SOD, even in old and very old men and women. © 2013.

  15. Profiling the orphan enzymes.

    PubMed

    Sorokina, Maria; Stam, Mark; Médigue, Claudine; Lespinet, Olivier; Vallenet, David

    2014-06-06

    The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called "orphan enzymes". The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to "local orphan enzymes" that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new activities.

  16. [Study on soil enzyme activities and microbial biomass carbon in greenland irrigated with reclaimed water].

    PubMed

    Pan, Neng; Hou, Zhen-An; Chen, Wei-Ping; Jiao, Wen-Tao; Peng, Chi; Liu, Wen

    2012-12-01

    The physicochemical properties of soils might be changed under the long-term reclaimed water irrigation. Its effects on soil biological activities have received great attentions. We collected surface soil samples from urban green spaces and suburban farmlands of Beijing. Soil microbial biomass carbon (SMBC), five types of soil enzyme activities (urease, alkaline phosphatase, invertase, dehydrogenase and catalase) and physicochemical indicators in soils were measured subsequently. SMBC and enzyme activities from green land soils irrigated with reclaimed water were higher than that of control treatments using drinking water, but the difference is not significant in farmland. The SMBC increased by 60.1% and 14.2% than those control treatments in 0-20 cm soil layer of green land and farmland, respectively. Compared with their respective controls, the activities of enzymes in 0-20 cm soil layer of green land and farmland were enhanced by an average of 36.7% and 7.4%, respectively. Investigation of SMBC and enzyme activities decreased with increasing of soil depth. Significantly difference was found between 0-10 cm and 10-20 cm soil layer in green land. Soil biological activities were improved with long-term reclaimed water irrigation in Beijing.

  17. Spatial localization of the first and last enzymes effectively connects active metabolic pathways in bacteria.

    PubMed

    Meyer, Pablo; Cecchi, Guillermo; Stolovitzky, Gustavo

    2014-12-14

    Although much is understood about the enzymatic cascades that underlie cellular biosynthesis, comparatively little is known about the rules that determine their cellular organization. We performed a detailed analysis of the localization of E.coli GFP-tagged enzymes for cells growing exponentially. We found that out of 857 globular enzymes, at least 219 have a discrete punctuate localization in the cytoplasm and catalyze the first or the last reaction in 60% of biosynthetic pathways. A graph-theoretic analysis of E.coli's metabolic network shows that localized enzymes, in contrast to non-localized ones, form a tree-like hierarchical structure, have a higher within-group connectivity, and are traversed by a higher number of feed-forward and feedback loops than their non-localized counterparts. A Gene Ontology analysis of these enzymes reveals an enrichment of terms related to essential metabolic functions in growing cells. Given that these findings suggest a distinct metabolic role for localization, we studied the dynamics of cellular localization of the cell wall synthesizing enzymes in B. subtilis and found that enzymes localize during exponential growth but not during stationary growth. We conclude that active biochemical pathways inside the cytoplasm are organized spatially following a rule where their first or their last enzymes localize to effectively connect the different active pathways and thus could reflect the activity state of the cell's metabolic network.

  18. Inhibitory effect of leaves extracts of Ocimum basilicum and Ocimum gratissimum on two key enzymes involved in obesity and hypertension in vitro

    PubMed Central

    Irondi, Emmanuel Anyachukwu; Agboola, Samson Olalekan; Oboh, Ganiyu; Boligon, Aline Augusti

    2016-01-01

    Aim: To evaluate the phenolics composition and inhibitory effect of the leaves extracts of Ocimum basilicum and Ocimum gratissimum on two key enzymes (pancreatic lipase [PL] and angiotensin 1-converting enzyme [ACE]) involved in obesity and hypertension in vitro. Materials and Methods: The phenolics (flavonoids and phenolic acids) were quantified using high-performance liquid chromatography coupled with diode array detection. PL and ACE inhibitory effects; DPPH* and ABTS*+ scavenging activities of the extracts were tested using spectrophotometric methods. Results: O. basilicum had the following major phenolics: Rutin, quercetin, and quercitrin (flavonoids); caffeic, chlorogenic, and gallic acids (phenolic acids); while O. gratissimum had the following major phenolics: Rutin, quercitrin, and luteolin (flavonoids); ellagic and chlorogenic acids (phenolic acids). “Extracts of both plants inhibited PL and ACE; scavenged DPPH* in a dose-dependent manner”. O. gratissimum extract was more potent in inhibiting PL (IC50: 20.69 µg/mL) and ACE (IC50: 29.44 µg/mL) than O. basilicum (IC50: 52.14 µg/mL and IC50: 64.99 µg/mL, against PL and ACE, respectively). O. gratissimum also scavenged DPPH* and ABTS*+ more than O. basilicum. Conclusion: O. basilicum and O. gratissimum leaves could be used as functional foods for the management of obesity and obesity-related hypertension. However, O. gratissimum may be more effective than O. basilicum. PMID:27757270

  19. [Erythremia: the activity of erythrocyte antioxidant enzymes and the association with iron deficiency].

    PubMed

    Petukhov, V I; Kumerova, A O; Letse, A G; Silova, A A; Shkesters, A P; Krishchuna, M A; Mironova, N A

    1997-01-01

    Concentration of malonic dialdehyde (MDA) and activity of antioxidant enzymes G-6-PD, glutation peroxidase (GP), glutation reductase, catalase, superoxide dismutase were measured in red cells of patients with polycythemia vera. Plasmic ions Fe3+ were estimated by means of electron-paramagnetic resonance. MDA concentration and antioxidant enzymes (except GP) in polycythemia red cells were found increased, while the activity of selenium-dependent GP was reduced, the inhibition being greatest in severe iron deficiency. It is suggested that GP activity in red cells depends on both selenium levels in the body and concentrations of non-hematic iron.

  20. Evaluation of the energy efficiency of enzyme fermentation by mechanistic modeling.

    PubMed

    Albaek, Mads O; Gernaey, Krist V; Hansen, Morten S; Stocks, Stuart M

    2012-04-01

    Modeling biotechnological processes is key to obtaining increased productivity and efficiency. Particularly crucial to successful modeling of such systems is the coupling of the physical transport phenomena and the biological activity in one model. We have applied a model for the expression of cellulosic enzymes by the filamentous fungus Trichoderma reesei and found excellent agreement with experimental data. The most influential factor was demonstrated to be viscosity and its influence on mass transfer. Not surprisingly, the biological model is also shown to have high influence on the model prediction. At different rates of agitation and aeration as well as headspace pressure, we can predict the energy efficiency of oxygen transfer, a key process parameter for economical production of industrial enzymes. An inverse relationship between the productivity and energy efficiency of the process was found. This modeling approach can be used by manufacturers to evaluate the enzyme fermentation process for a range of different process conditions with regard to energy efficiency. Copyright © 2011 Wiley Periodicals, Inc.

  1. Analysis of α-glucosidase enzyme activity used in a rapid test for steam sterilization assurance.

    PubMed

    Setlow, B; Korza, G; Setlow, P

    2016-05-01

    This study was to determine the sources, location and identity of α-glucosidases in dormant/germinating/outgrowing spores and growing cells of Geobacillus stearothermophilus ATCC 7953, an enzymatic activity in spores used in rapid tests of steam sterilization. α-Glucosidase activity in spores and cells was determined measuring methylumbelliferyl-α-d-glucoside (α-MUG) or α-MUG-6-phosphate hydrolysis fluorometrically. While α-MUG-6-phosphate was not hydrolysed by cell or spore extracts, assays with α-MUG showed that: (1) the α-glucosidase activity was inside and outside spores, and the activity outside spores was largely removed by buffer washes or heat activation, whereas α-glucosidase activity was only inside vegetative cells; (2) most α-glucosidase activity in cells and spores was soluble; (3) Western blots and enzyme inhibition using an anti-α-glucosidase antiserum identified ≥2 α-glucosidases in spores and growing cells; (4) α-glucosidase-specific activities were similar in dormant, germinated and outgrowing spore and growing cell extracts; and (5) significant α-glucosidase was synthesized during spore germination and outgrowth and cell growth, this synthesis was not repressed by glucose nor induced by α-MUG, but glucose inhibited α-MUG uptake. α-MUG hydrolysis by G. stearothermophilus is by α-MUG uptake and hydrolysis by ≥2 α-glucosidases associated with dormant spores and synthesized by germinating and outgrowing spores. The enzyme activity observed by sterilization assurance assays appears likely to come from heat-stable enzyme in the spore core and enzyme(s) synthesized in spore outgrowth. The results of this work provide new insight into the science behind a rapid test for steam sterilization assurance. © 2016 The Society for Applied Microbiology.

  2. Acyl-CoA:cholesterol acyltransferases (ACATs/SOATs): Enzymes with multiple sterols as substrates and as activators.

    PubMed

    Rogers, Maximillian A; Liu, Jay; Song, Bao-Liang; Li, Bo-Liang; Chang, Catherine C Y; Chang, Ta-Yuan

    2015-07-01

    Cholesterol is essential to the growth and viability of cells. The metabolites of cholesterol include: steroids, oxysterols, and bile acids, all of which play important physiological functions. Cholesterol and its metabolites have been implicated in the pathogenesis of multiple human diseases, including: atherosclerosis, cancer, neurodegenerative diseases, and diabetes. Thus, understanding how cells maintain the homeostasis of cholesterol and its metabolites is an important area of study. Acyl-coenzyme A:cholesterol acyltransferases (ACATs, also abbreviated as SOATs) converts cholesterol to cholesteryl esters and play key roles in the regulation of cellular cholesterol homeostasis. ACATs are most unusual enzymes because (i) they metabolize diverse substrates including both sterols and certain steroids; (ii) they contain two different binding sites for steroidal molecules. In mammals, there are two ACAT genes that encode two different enzymes, ACAT1 and ACAT2. Both are allosteric enzymes that can be activated by a variety of sterols. In addition to cholesterol, other sterols that possess the 3-beta OH at C-3, including PREG, oxysterols (such as 24(S)-hydroxycholesterol and 27-hydroxycholesterol, etc.), and various plant sterols, could all be ACAT substrates. All sterols that possess the iso-octyl side chain including cholesterol, oxysterols, various plant sterols could all be activators of ACAT. PREG can only be an ACAT substrate because it lacks the iso-octyl side chain required to be an ACAT activator. The unnatural cholesterol analogs epi-cholesterol (with 3-alpha OH in steroid ring B) and ent-cholesterol (the mirror image of cholesterol) contain the iso-octyl side chain but do not have the 3-beta OH at C-3. Thus, they can only serve as activators and cannot serve as substrates. Thus, within the ACAT holoenzyme, there are site(s) that bind sterol as substrate and site(s) that bind sterol as activator; these sites are distinct from each other. These features form

  3. C(3)-C(4) Intermediate Species in Alternanthera (Amaranthaceae) : Leaf Anatomy, CO(2) Compensation Point, Net CO(2) Exchange and Activities of Photosynthetic Enzymes.

    PubMed

    Rajendrudu, G; Prasad, J S; Das, V S

    1986-02-01

    Two naturally occurring species of the genus Alternanthera, namely A. ficoides and A. tenella, were identified as C(3)-C(4) intermediates based on leaf anatomy, photosynthetic CO(2) compensation point (Gamma), O(2) response of small ghe, Cyrillic, light intensity response of small ghe, Cyrillic, and the activities of key enzymes of photosynthesis. A. ficoides and A. tenella exhibited a less distinct Kranz-like leaf anatomy with substantial accumulation of starch both in mesophyll and bundle sheath cells. Photosynthetic CO(2) compensation points of these two intermediate species at 29 degrees C were much lower than in C(3) plants and ranged from 18 to 22 microliters per liter. Although A. ficoides and A. tenella exhibited similar intermediacy in small ghe, Cyrillic, the apparent photorespiratory component of O(2) inhibition in A. ficoides is lower than in A. tenella. The small ghe, Cyrillic progressively decreases from 35 microliters per liter at lowest light intensity to 18 microliters per liter at highest light intensity in A. tenella. It was, however, constant in A. ficoides at 20 to 25 microliters per liter between light intensities measured. The rates of net photosynthesis at 21% O(2) and 29 degrees C by A. ficoides and A. tenella were 25 to 28 milligrams CO(2) per square decimeter per hour which are intermediate between values obtained for Tridax procumbens and A. pungens, C(3) and C(4) species, respectively. The activities of key enzymes of C(4) photosynthesis, phosphoenolpyruvate carboxylase, pyruvate Pi dikinase, NAD malic enzyme, NADP malic enzyme and phosphoenolpyruvate carboxykinase in the two intermediates, A. ficoides and A. tenella are very low or insignificant. Results indicated that the relatively low apparent photorespiratory component in these two species is presumably the basis for the C(3)-C(4) intermediate photosynthesis.

  4. The structure and function of Alzheimer's gamma secretase enzyme complex.

    PubMed

    Krishnaswamy, Sudarsan; Verdile, Giuseppe; Groth, David; Kanyenda, Limbikani; Martins, Ralph N

    2009-01-01

    The production and accumulation of the beta amyloid protein (Abeta) is a key event in the cascade of oxidative and inflammatory processes that characterizes Alzheimer's disease (AD). A multi-subunit enzyme complex, referred to as gamma (gamma) secretase, plays a pivotal role in the generation of Abeta from its parent molecule, the amyloid precursor protein (APP). Four core components (presenilin, nicastrin, aph-1, and pen-2) interact in a high-molecular-weight complex to perform intramembrane proteolysis on a number of membrane-bound proteins, including APP and Notch. Inhibitors and modulators of this enzyme have been assessed for their therapeutic benefit in AD. However, although these agents reduce Abeta levels, the majority have been shown to have severe side effects in pre-clinical animal studies, most likely due to the enzymes role in processing other proteins involved in normal cellular function. Current research is directed at understanding this enzyme and, in particular, at elucidating the roles that each of the core proteins plays in its function. In addition, a number of interacting proteins that are not components of gamma-secretase also appear to play important roles in modulating enzyme activity. This review will discuss the structural and functional complexity of the gamma-secretase enzyme and the effects of inhibiting its activity.

  5. Changes in selected physical property and enzyme activity of rice and barley koji during fermentation and storage.

    PubMed

    Bechman, Allison; Phillips, Robert D; Chen, Jinru

    2012-06-01

    Koji are solid-state fermentation products made by inoculating steamed grains with the spores of fungi, particularly Aspergillus spp. This research was undertaken to identify the fermentation and storage conditions optimal for the production and maintenance of selected hydrolytic enzymes, such as α-amlyase and protease, in koji. Steamed rice and barley were inoculated with 2 × 10 ¹¹ Aspergillus oryzae spores per kilogram of grains and fermented for 118 h in a growth chamber at 28 to 32 °C with controlled relative humidities. Samples were drawn periodically during fermentation and storage at -20, 4, or 32 °C, and α-amylase and protease activity, mold counts, a(w), moisture contents, and pH of collected samples were determined. It was observed that the a(w), moisture contents, and pH of the koji were influenced by the duration of fermentation and temperature of storage. The α-amylase activity of both koji increased as the populations of A. oryzae increased during the exponential growth phase. The enzyme activity of barley koji was significantly higher than that of rice koji, reaching a peak activity of 211.87 or 116.57 U at 46 and 58 h, respectively, into the fermentation process. The enzyme activity in both products started to decrease once the mold culture entered the stationary growth phase. The protease activities of both koji were low and remained relatively stable during fermentation and storage. These results suggest that rice and barley koji can be used as sources of α-amylase and desired enzyme activity can be achieved by controlling the fermentation and storage conditions. Amylases and proteases are 2 important hydrolytic enzymes. In the food industry, these enzymes are used to break down starches and proteins while reducing the viscosity of foods. Although amylases and proteases are found in plants and animals, commercial enzymes are often produced using bacteria or molds through solid state fermentation, which is designed to use natural microbial

  6. Regulation and seasonal dynamics of extracellular enzyme activities in the sediments of a large lowland river.

    PubMed

    Wilczek, Sabine; Fischer, Helmut; Pusch, Martin T

    2005-08-01

    We tested whether seasonal changes in the sources of organic substances for microbial metabolism were reflected changes in the activities of five extracellular enzymes in the eighth order lowland River Elbe, Germany. Leucine aminopeptidase showed the highest activities in the water column and the sediments, followed by phosphatase > beta-glucosidase > alpha-glucosidase > exo-1,4-beta-glucanase. Individual enzymes exhibited characteristic seasonal dynamics, as indicated by their relative contribution to cumulative enzyme activity. Leucine aminopeptidase was significantly more active in spring and summer. In contrast, the carbohydrate-degrading enzymes peaked in autumn, and beta-glucosidase activity peaked once again in winter. Thus, in sediments, the ratio of leucine aminopeptidase/beta-glucosidase reached significant higher medians in spring and summer (5-cm depth: ratio 7.7; 20-cm depth: ratio 10.1) than in autumn and winter (5-cm depth: ratio 3.7, 20-cm depth: ratio 6.3). The relative activity of phosphatase in the sediments was seasonally related to both the biomass of planktonic algae as well as to the high content of total particulate phosphorus in autumn and winter. Due to temporal shifts in organic matter supply and changes in the storage capacity of sediments, the seasonal peaks of enzyme activities in sediments exhibited a time lag of 2-3 months compared to that in the water column, along with a significant extension of peak width. Hence, our data show that the seasonal pattern of extracellular enzyme activities provides a sensitive approach to infer seasonal or temporary availability of organic matter in rivers from autochthonous and allochthonous sources. From the dynamics of individual enzyme activities, a consistent synoptic pattern of heterotrophic functioning in the studied river ecosystem could be derived. Our data support the revised riverine productivity model predicting that the metabolism of organic matter in high-order rivers is mainly fuelled

  7. Controlled immobilisation of active enzymes on the cowpea mosaic virus capsid

    NASA Astrophysics Data System (ADS)

    Aljabali, Alaa A. A.; Barclay, J. Elaine; Steinmetz, Nicole F.; Lomonossoff, George P.; Evans, David J.

    2012-08-01

    Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors.Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors. Electronic supplementary information (ESI) available: Alternative conjugation strategies, agarose gel electrophoresis of CPMV and CPMV-HRP conjugates, UV-vis spectrum of HRP-ADHCPMV, agarose gel electrophoresis of GOX-ADHCPMV particles and corresponding TEM image, calibration curves for HRP-ADHCPMV and GOX-ADHCPMV, DLS data for GOX-ADHCPMV are made available. See DOI: 10.1039/c2nr31485a

  8. Modeling the effects of tree species and incubation temperature on soil's extracellular enzyme activity in 78-year-old tree plantations

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoqi; Wang, Shen S. J.; Chen, Chengrong

    2017-12-01

    Forest plantations have been widely used as an effective measure for increasing soil carbon (C), and nitrogen (N) stocks and soil enzyme activities play a key role in soil C and N losses during decomposition of soil organic matter. However, few studies have been carried out to elucidate the mechanisms behind the differences in soil C and N cycling by different tree species in response to climate warming. Here, we measured the responses of soil's extracellular enzyme activity (EEA) to a gradient of temperatures using incubation methods in 78-year-old forest plantations with different tree species. Based on a soil enzyme kinetics model, we established a new statistical model to investigate the effects of temperature and tree species on soil EEA. In addition, we established a tree species-enzyme-C/N model to investigate how temperature and tree species influence soil C/N contents over time without considering plant C inputs. These extracellular enzymes included C acquisition enzymes (β-glucosidase, BG), N acquisition enzymes (N-acetylglucosaminidase, NAG; leucine aminopeptidase, LAP) and phosphorus acquisition enzymes (acid phosphatases). The results showed that incubation temperature and tree species significantly influenced all soil EEA and Eucalyptus had 1.01-2.86 times higher soil EEA than coniferous tree species. Modeling showed that Eucalyptus had larger soil C losses but had 0.99-2.38 times longer soil C residence time than the coniferous tree species over time. The differences in the residual soil C and N contents between Eucalyptus and coniferous tree species, as well as between slash pine (Pinus elliottii Engelm. var. elliottii) and hoop pine (Araucaria cunninghamii Ait.), increase with time. On the other hand, the modeling results help explain why exotic slash pine can grow faster, as it has 1.22-1.38 times longer residual soil N residence time for LAP, which mediate soil N cycling in the long term, than native coniferous tree species like hoop pine and

  9. Changes in digestive enzyme activities during larval development of leopard grouper (Mycteroperca rosacea).

    PubMed

    Martínez-Lagos, R; Tovar-Ramírez, D; Gracia-López, V; Lazo, J P

    2014-06-01

    The leopard grouper is an endemic species of the Mexican Pacific with an important commercial fishery and good aquaculture potential. In order to assess the digestive capacity of this species during the larval period and aid in the formulation of adequate weaning diets, this study aimed to characterize the ontogeny of digestive enzymes during development of the digestive system. Digestive enzymes trypsin, chymotrypsin, acid protease, leucine-alanine peptidase, alkaline phosphatase, aminopeptidase N, lipase, amylase and maltase were quantified in larvae fed live prey and weaned onto a formulated microdiet at 31 days after hatching (DAH) and compared with fasting larvae. Enzyme activity for trypsin, lipase and amylase were detected before the opening of the mouth and the onset of exogenous feeding, indicating a precocious development of the digestive system that has been described in many fish species. The intracellular enzyme activity of leucine-alanine peptidase was high during the first days of development, with a tendency to decrease as larvae developed, reaching undetectable levels at the end of the experimental period. In contrast, activities of enzymes located in the intestinal brush border (i.e., aminopeptidase and alkaline phosphatase) were low at the start of exogenous feeding but progressively increased with larval development, indicating the gradual maturation of the digestive system. Based on our results, we conclude that leopard grouper larvae possess a functional digestive system at hatching and before the onset of exogenous feeding. The significant increase in the activity of trypsin, lipase, amylase and acid protease between 30 and 40 DAH suggests that larvae of this species can be successfully weaned onto microdiets during this period.

  10. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes.

    PubMed

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data.

  11. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    PubMed Central

    Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  12. Enzyme immobilisation in biocatalysis: why, what and how.

    PubMed

    Sheldon, Roger A; van Pelt, Sander

    2013-08-07

    In this tutorial review, an overview of the why, what and how of enzyme immobilisation for use in biocatalysis is presented. The importance of biocatalysis in the context of green and sustainable chemicals manufacture is discussed and the necessity for immobilisation of enzymes as a key enabling technology for practical and commercial viability is emphasised. The underlying reasons for immobilisation are the need to improve the stability and recyclability of the biocatalyst compared to the free enzyme. The lower risk of product contamination with enzyme residues and low or no allergenicity are further advantages of immobilised enzymes. Methods for immobilisation are divided into three categories: adsorption on a carrier (support), encapsulation in a carrier, and cross-linking (carrier-free). General considerations regarding immobilisation, regardless of the method used, are immobilisation yield, immobilisation efficiency, activity recovery, enzyme loading (wt% in the biocatalyst) and the physical properties, e.g. particle size and density, hydrophobicity and mechanical robustness of the immobilisate, i.e. the immobilised enzyme as a whole (enzyme + support). The choice of immobilisate is also strongly dependent on the reactor configuration used, e.g. stirred tank, fixed bed, fluidised bed, and the mode of downstream processing. Emphasis is placed on relatively recent developments, such as the use of novel supports such as mesoporous silicas, hydrogels, and smart polymers, and cross-linked enzyme aggregates (CLEAs).

  13. Enzyme activity in terrestrial soil in relation to exploration of the Martian surface

    NASA Technical Reports Server (NTRS)

    Mclaren, A. D.

    1974-01-01

    Sensitive tests for the detection of extracellular enzyme activity in Martian soil was investigated using simulated Martian soil. Enzyme action at solid-liquid water interfaces and at low humidity were studied, and a kinetic scheme was devised and tested based on the growth of microorganisms and the oxidation of ammonium nitrite.

  14. Effect of heavy metals ions on enzyme activity in the Mediterranean mussel, Donax trunculus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizrahi, L.; Achituv, Y.

    Heavy metal ions strongly are bound by sulfhydryl groups of proteins. Sulfhydryl binding changes the structure and enzymatic activities of proteins and causes toxic effects evident at the whole organism level. Heavy metal ions like Cd, Cu, Hg, Zn, and Pb in sufficiently high concentrations might kill organisms or cause other adverse effects that changing aquatic community structures. Bivalves are known to be heavy metal accumulators. The aim of the present study was to examine the effects of different concentrations of each of five heavy metal ions on the activity of four enzymes in D. trunculus. As it is knownmore » that heavy metals inhibit the activity of a wide range of enzymes, the authors chose representative examples of dehydrogenases (lactate and malate dehydrogenases), respiratory enzyme (cytochrome oxidase) and digestive enzyme ({alpha}-amylase). The acute effects of different concentrations of selected metals were examined. These concentrations were higher than those found usually in the locality where the animals occur, but might be encountered during a given event of pollution.« less

  15. Inhibitors of enzymes catalyzing modifications to histone lysine residues: structure, function and activity.

    PubMed

    Lillico, Ryan; Stesco, Nicholas; Khorshid Amhad, Tina; Cortes, Claudia; Namaka, Mike P; Lakowski, Ted M

    2016-05-01

    Gene expression is partly controlled by epigenetic mechanisms including histone-modifying enzymes. Some diseases are caused by changes in gene expression that can be mitigated by inhibiting histone-modifying enzymes. This review covers the enzyme inhibitors targeting histone lysine modifications. We summarize the enzymatic mechanisms of histone lysine acetylation, deacetylation, methylation and demethylation and discuss the biochemical roles of these modifications in gene expression and in disease. We discuss inhibitors of lysine acetylation, deacetylation, methylation and demethylation defining their structure-activity relationships and their potential mechanisms. We show that there are potentially indiscriminant off-target effects on gene expression even with the use of selective epigenetic enzyme inhibitors.

  16. Amy63, a novel type of marine bacterial multifunctional enzyme possessing amylase, agarase and carrageenase activities

    PubMed Central

    Liu, Ge; Wu, Shimei; Jin, Weihua; Sun, Chaomin

    2016-01-01

    A multifunctional enzyme is one that performs multiple physiological functions, thus benefiting the organism. Characterization of multifunctional enzymes is important for researchers to understand how organisms adapt to different environmental challenges. In the present study, we report the discovery of a novel multifunctional enzyme Amy63 produced by marine bacterium Vibrio alginolyticus 63. Remarkably, Amy63 possesses amylase, agarase and carrageenase activities. Amy63 is a substrate promiscuous α-amylase, with the substrate priority order of starch, carrageenan and agar. Amy63 maintains considerable amylase, carrageenase and agarase activities and stabilities at wide temperature and pH ranges, and optimum activities are detected at temperature of 60 °C and pH of 6.0, respectively. Moreover, the heteroexpression of Amy63 dramatically enhances the ability of E. coli to degrade starch, carrageenan and agar. Motif searching shows three continuous glycosyl hydrolase 70 (GH70) family homologs existed in Amy63 encoding sequence. Combining serial deletions and phylogenetic analysis of Amy63, the GH70 homologs are proposed as the determinants of enzyme promiscuity. Notably, such enzymes exist in all kingdoms of life, thus providing an expanded perspective on studies of multifunctional enzymes. To our knowledge, this is the first report of an amylase having additional agarase and carrageenase activities. PMID:26725302

  17. Effects of varying dietary iodine supplementation levels as iodide or iodate on thyroid status as well as mRNA expression and enzyme activity of antioxidative enzymes in tissues of grower/finisher pigs.

    PubMed

    Li, Qimeng; Mair, Christiane; Schedle, Karl; Hellmayr, Isabella; Windisch, Wilhelm

    2013-02-01

    The objective of this study was to investigate the influence of high dietary iodine supply and different iodine sources on thyroid status and oxidative stress in target tissues of the thyroid hormones in fattening pigs. Eighty castrates (body weight: 33.3 ± 0.4 kg) were randomly allotted into five different treatments: The control diet contained 150 μg I/kg as KI, the other feeding groups were supplemented with 4,000 μg I/kg (as KI and KIO(3)) and 10,000 μg I/kg (as KI and KIO(3)), respectively. The mRNA expression levels of sodium/iodide symporter (NIS) and key antioxidant enzymes (Cu/Zn SOD, CAT, GPx) were analyzed in thyroid gland, liver, kidney, muscle, and adipose tissue sampled during slaughter. Furthermore, antioxidant enzyme activities and the effect on lipid peroxidation (MDA) were determined in liver and muscle. In thyroid gland, a significant downregulation of NIS and Cu/Zn SOD mRNA expression was observed in high-iodine groups. In liver, a source effect on the mRNA expression of Cu/Zn SOD between KI and KIO(3) at 4,000 μg I/kg was shown. In contrast, not SOD but GPx activity was affected by iodine source with strongest downregulation in high KIO(3) group. In muscle, GPx activity was affected by both iodine source and dose, showing stronger downregulation in KI groups. In kidney and adipose tissue, oxidative stress parameters showed no or only unsystematic changes. However, variation in iodine supply had no effect on MDA concentrations. NIS expression was significantly decreased with increased iodine supplementation, which is to ensure the thyroid gland function. However, the alleviating effect of iodine supplementation observed in antioxidant enzyme mRNA expression and activity did not reflect on the lipid peroxide level.

  18. Metagenomics as a Tool for Enzyme Discovery: Hydrolytic Enzymes from Marine-Related Metagenomes.

    PubMed

    Popovic, Ana; Tchigvintsev, Anatoly; Tran, Hai; Chernikova, Tatyana N; Golyshina, Olga V; Yakimov, Michail M; Golyshin, Peter N; Yakunin, Alexander F

    2015-01-01

    This chapter discusses metagenomics and its application for enzyme discovery, with a focus on hydrolytic enzymes from marine metagenomic libraries. With less than one percent of culturable microorganisms in the environment, metagenomics, or the collective study of community genetics, has opened up a rich pool of uncharacterized metabolic pathways, enzymes, and adaptations. This great untapped pool of genes provides the particularly exciting potential to mine for new biochemical activities or novel enzymes with activities tailored to peculiar sets of environmental conditions. Metagenomes also represent a huge reservoir of novel enzymes for applications in biocatalysis, biofuels, and bioremediation. Here we present the results of enzyme discovery for four enzyme activities, of particular industrial or environmental interest, including esterase/lipase, glycosyl hydrolase, protease and dehalogenase.

  19. QM/MM simulations identify the determinants of catalytic activity differences between type II dehydroquinase enzymes.

    PubMed

    Lence, Emilio; van der Kamp, Marc W; González-Bello, Concepción; Mulholland, Adrian J

    2018-05-16

    Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2 from Mycobacterium tuberculosis (MtDHQ2) and Helicobacter pylori (HpDHQ2) show a 50-fold difference in catalytic efficiency. Revealing the determinants of this activity difference is important for our understanding of biological catalysis and further offers the potential to contribute to tailoring specificity in drug design. Molecular dynamics simulations using a quantum mechanics/molecular mechanics potential, with correlated ab initio single point corrections, identify and quantify the subtle determinants of the experimentally observed difference in efficiency. The rate-determining step involves the formation of an enolate intermediate: more efficient stabilization of the enolate and transition state of the key step in MtDHQ2, mainly by the essential residues Tyr24 and Arg19, makes it more efficient than HpDHQ2. Further, a water molecule, which is absent in MtDHQ2 but involved in generation of the catalytic Tyr22 tyrosinate in HpDHQ2, was found to destabilize both the transition state and the enolate intermediate. The quantification of the contribution of key residues and water molecules in the rate-determining step of the mechanism also leads to improved understanding of higher potencies and specificity of known inhibitors, which should aid ongoing inhibitor design.

  20. Enzyme Informatics

    PubMed Central

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  1. Activity of trypsin-like enzymes and gelatinases in rats with doxorubicin cardiomyopathy.

    PubMed

    Gordiienko, Iu A; Babets, Ya V; Kulinich, A O; Shevtsova, A I; Ushakova, G O

    2014-01-01

    Activity of trypsin-like enzymes (ATLE) and gelatinases A and B were studied in the blood plasma and extracts from cardiac muscle, cerebral cortex and cerebellum of rats with cardiomyopathy caused by anthracycline antibiotic doxorubicin against the background of preventive application of corvitin and α-ketoglutarate. ATLE significantly increased in blood plasma and extracts from cerebral cortex but decreased in extracts from cardiac muscle and cerebellum in doxorubicin cardiomyopathy (DCMP). In addition, a significant increase of activity of both gelatinases in plasma and tissue extracts was observed. Preventive administration of corvitin and α-ketoglutarate resulted in differently directed changes of activity of the above mentioned enzymes in heart and brain tissues. Obtained data confirm the hypothesis about activation of proteolysis under the influence of anthracycline antibiotics and testify to selective effect of corvitin and α-ketoglutarate on ATLE and gelatinases.

  2. Effects of culture conditions on monosaccharide composition of Ganoderma lucidum exopolysaccharide and on activities of related enzymes.

    PubMed

    Peng, Lin; Qiao, Shuangkui; Xu, Zhenghong; Guan, Feng; Ding, Zhongyang; Gu, Zhenghua; Zhang, Liang; Shi, Guiyang

    2015-11-20

    We investigated the relationship between monosaccharide composition of Ganoderma lucidum exopolysaccharide (EPS) and activities of EPS synthesis enzymes under various culture temperatures and initial pH values. The mole percentages of three major EPS monosaccharides, glucose, galactose and mannose, varied depending on culture conditions and the resulting EPS displayed differing anti-tumor activities. In nine tested enzymes, higher enzyme activities were correlated with higher temperature and lower initial pH. Altered mole percentages of galactose and mannose under various culture conditions were associated with activities of α-phosphoglucomutase (PGM) and phosphoglucose isomerase (PGI), respectively, and that of mannose was also associated with phosphomannose isomerase (PMI) activity only under various pH. Our findings suggest that mole percentages of G. lucidum EPS monosaccharides can be manipulated by changes of culture conditions that affect enzyme activities, and that novel fermentation strategies based on this approach may enhance production and biological activity of EPS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. In vitro inhibitory activities of selected Australian medicinal plant extracts against protein glycation, angiotensin converting enzyme (ACE) and digestive enzymes linked to type II diabetes.

    PubMed

    Deo, Permal; Hewawasam, Erandi; Karakoulakis, Aris; Claudie, David J; Nelson, Robert; Simpson, Bradley S; Smith, Nicholas M; Semple, Susan J

    2016-11-04

    There is a need to develop potential new therapies for the management of diabetes and hypertension. Australian medicinal plants collected from the Kuuku I'yu (Northern Kaanju) homelands, Cape York Peninsula, Queensland, Australia were investigated to determine their therapeutic potential. Extracts were tested for inhibition of protein glycation and key enzymes relevant to the management of hyperglycaemia and hypertension. The inhibitory activities were further correlated with the antioxidant activities. Extracts of five selected plant species were investigated: Petalostigma pubescens, Petalostigma banksii, Memecylon pauciflorum, Millettia pinnata and Grewia mesomischa. Enzyme inhibitory activity of the plant extracts was assessed against α-amylase, α-glucosidase and angiotensin converting enzyme (ACE). Antiglycation activity was determined using glucose-induced protein glycation models and formation of protein-bound fluorescent advanced glycation endproducts (AGEs). Antioxidant activity was determined by measuring the scavenging effect of plant extracts against 1, 1-diphenyl-2-picryl hydrazyl (DPPH) and using the ferric reducing anti-oxidant potential assay (FRAP). Total phenolic and flavonoid contents were also determined. Extracts of the leaves of Petalostigma banksii and P. pubescens showed the strongest inhibition of α-amylase with IC 50 values of 166.50 ± 5.50 μg/mL and 160.20 ± 27.92 μg/mL, respectively. The P. pubescens leaf extract was also the strongest inhibitor of α-glucosidase with an IC 50 of 167.83 ± 23.82 μg/mL. Testing for the antiglycation potential of the extracts, measured as inhibition of formation of protein-bound fluorescent AGEs, showed that P. banksii root and fruit extracts had IC 50 values of 34.49 ± 4.31 μg/mL and 47.72 ± 1.65 μg/mL, respectively, which were significantly lower (p < 0.05) than other extracts. The inhibitory effect on α-amylase, α-glucosidase and the antiglycation potential of

  4. A Quaternary Mechanism Enables the Complex Biological Functions of Octameric Human UDP-glucose Pyrophosphorylase, a Key Enzyme in Cell Metabolism

    PubMed Central

    Führing, Jana Indra; Cramer, Johannes Thomas; Schneider, Julia; Baruch, Petra; Gerardy-Schahn, Rita; Fedorov, Roman

    2015-01-01

    In mammals, UDP-glucose pyrophosphorylase (UGP) is the only enzyme capable of activating glucose-1-phosphate (Glc-1-P) to UDP-glucose (UDP-Glc), a metabolite located at the intersection of virtually all metabolic pathways in the mammalian cell. Despite the essential role of its product, the molecular basis of UGP function is poorly understood. Here we report the crystal structure of human UGP in complex with its product UDP-Glc. Beyond providing first insight into the active site architecture, we describe the substrate binding mode and intermolecular interactions in the octameric enzyme that are crucial to its activity. Importantly, the quaternary mechanism identified for human UGP in this study may be common for oligomeric sugar-activating nucleotidyltransferases. Elucidating such mechanisms is essential for understanding nucleotide sugar metabolism and opens the perspective for the development of drugs that specifically inhibit simpler organized nucleotidyltransferases in pathogens. PMID:25860585

  5. Long-term effect of municipal solid waste amendment on microbial abundance and humus-associated enzyme activities under semiarid conditions.

    PubMed

    Bastida, Felipe; Kandeler, Ellen; Hernández, Teresa; García, Carlos

    2008-05-01

    Microbial ecology is the key to understanding the function of soil biota for organic matter cycling after a single amendment of organic waste in semiarid soils. Therefore, in this paper, the long-term effect (17 years) of adding different doses of a solid municipal waste to an arid soil on humus-enzyme complexes, a very stable and long-lasting fraction of soil enzymes, as well as on microbial and plant abundance, was studied. Humic substances were extracted by 0.1 M pH 7 sodium pyrophosphate from soil samples collected in experimental plots amended with different doses of a solid municipal waste (0, 65, 130, 195, and 260 t/ha) 17 years before. The activity of different hydrolases related with the C (beta-glucosidase), N (urease), and P (alkaline phosphatase) cycles and with the formation of humic substances (o-diphenol oxidase) were determined in this extract. The density and diversity of plant cover in the plots, as well as the fungal and bacterial biomass (by analyzing phopholipid fatty acids) were also determined. In general, the amended plots showed greater humic substance-related enzymatic activity than the unamended plots. This activity increased with the dose but only up to a certain level, above which it leveled off or even diminished. Plant diversity and cover density followed the same trend. Fungal and bacterial biomass also benefited in a dose-dependent manner. Different signature molecules representing gram+ and gram- bacteria, and those corresponding to monounsaturated and saturated fatty acids showed a similar behavior. The results demonstrate that organic amendment had a noticeable long-term effect on the vegetal development, humic substances-related enzyme activity and on the development of bacteria and fungi in semiarid conditions.

  6. Influence of altered precipitation pattern on greenhouse gas emissions and soil enzyme activities in Pannonian soils

    NASA Astrophysics Data System (ADS)

    Forstner, Stefan Johannes; Michel, Kerstin; Berthold, Helene; Baumgarten, Andreas; Wanek, Wolfgang; Zechmeister-Boltenstern, Sophie; Kitzler, Barbara

    2013-04-01

    Precipitation patterns are likely to be altered due to climate change. Recent models predict a reduction of mean precipitation during summer accompanied by a change in short-term precipitation variability for central Europe. Correspondingly, the risk for summer drought is likely to increase. This may especially be valid for regions which already have the potential for rare, but strong precipitation events like eastern Austria. Given that these projections hold true, soils in this area will receive water irregularly in few, heavy rainfall events and be subjected to long-lasting dry periods in between. This pattern of drying/rewetting can alter soil greenhouse gas fluxes, creating a potential feedback mechanism for climate change. Microorganisms are the key players in most soil carbon (C) and nitrogen (N) transformation processes including greenhouse gas exchange. A conceptual model proposed by Schimel and colleagues (2007) links microbial stress-response physiology to ecosystem-scale biogeochemical processes: In order to cope with decreasing soil water potential, microbes modify resource allocation patterns from growth to survival. However, it remains unclear how microbial resource acquisition via extracellular enzymes and microbial-controlled greenhouse gas fluxes respond to water stress induced by soil drying/rewetting. We designed a laboratory experiment to test for effects of multiple drying/rewetting cycles on soil greenhouse gas fluxes (CO2, CH4, N2O, NO), microbial biomass and extracellular enzyme activity. Three soils representing the main soil types of eastern Austria were collected in June 2012 at the Lysimeter Research Station of the Austrian Agency for Health and Food Safety (AGES) in Vienna. Soils were sieved to 2mm, filled in steel cylinders and equilibrated for one week at 50% water holding capacity (WHC) for each soil. Then soils were separated into two groups: One group received water several times per week (C=control), the other group received

  7. Profiling the orphan enzymes

    PubMed Central

    2014-01-01

    The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called “orphan enzymes”. The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to “local orphan enzymes” that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new

  8. Immobilized enzymes: understanding enzyme - surface interactions at the molecular level.

    PubMed

    Hoarau, Marie; Badieyan, Somayesadat; Marsh, E Neil G

    2017-11-22

    Enzymes immobilized on solid supports have important and industrial and medical applications. However, their uses are limited by the significant reductions in activity and stability that often accompany the immobilization process. Here we review recent advances in our understanding of the molecular level interactions between proteins and supporting surfaces that contribute to changes in stability and activity. This understanding has been facilitated by the application of various surface-sensitive spectroscopic techniques that allow the structure and orientation of enzymes at the solid/liquid interface to be probed, often with monolayer sensitivity. An appreciation of the molecular interactions between enzyme and surface support has allowed the surface chemistry and method of enzyme attachement to be fine-tuned such that activity and stability can be greatly enhanced. These advances suggest that a much wider variety of enzymes may eventually be amenable to immobilization as green catalysts.

  9. Biochemistry students' ideas about how an enzyme interacts with a substrate.

    PubMed

    Linenberger, Kimberly J; Bretz, Stacey Lowery

    2015-01-01

    Enzyme-substrate interactions are a fundamental concept of biochemistry that is built upon throughout multiple biochemistry courses. Central to understanding enzyme-substrate interactions is specific knowledge of exactly how an enzyme and substrate interact. Within this narrower topic, students must understand the various binding sites on an enzyme and be able to reason from simplistic lock and key or induced fit models to the more complex energetics model of transition state theory. Learning to understand these many facets of enzyme-substrate interactions and reasoning from multiple models present challenges where students incorrectly make connections between concepts or make no connection at all. This study investigated biochemistry students' understanding of enzyme-substrate interactions through the use of clinical interviews and a national administration (N = 707) of the Enzyme-Substrate Interactions Concept Inventory. Findings include misconceptions regarding the nature of enzyme-substrate interactions, naïve ideas about the active site, a lack of energetically driven interactions, and an incomplete understanding of the specificity pocket. © 2015 by the International Union of Biochemistry and Molecular Biology.

  10. Improving the Production of L-Phenylalanine by Identifying Key Enzymes Through Multi-Enzyme Reaction System in Vitro

    PubMed Central

    Ding, Dongqin; Liu, Yongfei; Xu, Yiran; Zheng, Ping; Li, Haixing; Zhang, Dawei; Sun, Jibin

    2016-01-01

    L-Phenylalanine (L-Phe) is an important amino acid used in both food and medicinal applications. We developed an in vitro system that allowed a direct, quantitative investigation of phenylalanine biosynthesis in E. coli. Here, the absolute concentrations of six enzymes (AroK, AroL, AroA, AroC, PheA and TyrB) involved in the shikimate (SHIK) pathway were determined by a quantitative proteomics approach and in vitro enzyme titration experiments. The reconstitution of an in vitro reaction system for these six enzymes was established and their effects on the phenylalanine production were tested. The results showed that the yield of phenylalanine increased 3.0 and 2.1 times when the concentrations of shikimate kinase (AroL) and 5-enolpyruvoyl shikimate 3-phosphate (EPSP) synthase (AroA) were increased 2.5 times. Consistent results were obtained from in vivo via the overexpression of AroA in a phenylalanine-producing strain, and the titer of phenylalanine reached 62.47 g/l after 48 h cultivation in a 5-liter jar fermentor. Our quantitative findings provide a practical method to detect the potential bottleneck in a specific metabolic pathway to determine which gene products should be targeted to improve the yield of the desired product. PMID:27558633

  11. Effect of benzo[a]pyrene on detoxification and the activity of antioxidant enzymes of marine microalgae

    NASA Astrophysics Data System (ADS)

    Shen, Chen; Miao, Jingjing; Li, Yun; Pan, Luqing

    2016-04-01

    The objective of this study was to examine the effect of benzo[a]pyrene (BaP) on the detoxification and antioxidant systems of two microalgae, Isochrysis zhanjiangensis and Platymonas subcordiformis. In our study, these two algae were exposed to BaP for 4 days at three different concentrations including 0.5 μg L-1 (low), 3 μg L-1 (mid) and 18 μg L-1 (high). The activity of detoxification enzymes, ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST) increased in P. subcordiformis in all BaP-treated groups. In I. zhanjiangensis, the activity of these two enzymes increased at the beginning of exposure, and then decreased in the groups treated with mid- and high BaP. The activity of antioxidant enzyme superoxide dismutase (SOD) increased in I. zhanjiangensis in all BaP-treated groups, and then decreased in high BaP-treated group, while no significant change was observed in P. subcordiformis. The activity of antioxidant enzyme catalase (CAT) increased in I. zhanjiangensis and P. subcordiformis in all BaPtreated groups. The content of malondialdehyde (MDA) in Isochrysis zhanjiangensis increased first, and then decreased in high BaP-treated group, while no change occurred in P. subcordiformis. These results demonstrated that BaP significantly influenced the activity of detoxifying and antioxidant enzymes in microalgae. The metabolic related enzymes (EROD, GST and CAT) may serve as sensitive biomarkers of measuring the contamination level of BaP in marine water.

  12. [Effects of bio-crust on soil microbial biomass and enzyme activities in copper mine tailings].

    PubMed

    Chen, Zheng; Yang, Gui-de; Sun, Qing-ye

    2009-09-01

    Bio-crust is the initial stage of natural primary succession in copper mine tailings. With the Yangshanchong and Tongguanshan copper mine tailings in Tongling City of Anhui Province as test objects, this paper studied the soil microbial biomass C and N and the activities of dehydrogenase, catalase, alkaline phosphatase, and urease under different types of bio-crust. The bio-crusts improved the soil microbial biomass and enzyme activities in the upper layer of the tailings markedly. Algal crust had the best effect in improving soil microbial biomass C and N, followed by moss-algal crust, and moss crust. Soil microflora also varied with the type of bio-crust. No'significant difference was observed in the soil enzyme activities under the three types of bio-crust. Soil alkaline phosphatase activity was significantly positively correlated with soil microbial biomass and dehydrogenase and urease activities, but negatively correlated with soil pH. In addition, moss rhizoid could markedly enhance the soil microbial biomass and enzyme activities in moss crust rhizoid.

  13. Illustrating the Effect of pH on Enzyme Activity Using Gibbs Energy Profiles

    ERIC Educational Resources Information Center

    Bearne, Stephen L.

    2014-01-01

    Gibbs energy profiles provide students with a visual representation of the energy changes that occur during enzyme catalysis, making such profiles useful as teaching and learning tools. Traditional kinetic topics, such as the effect of pH on enzyme activity, are often not discussed in terms of Gibbs energy profiles. Herein, the symbolism of Gibbs…

  14. Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass.

    PubMed

    Boutard, Magali; Cerisy, Tristan; Nogue, Pierre-Yves; Alberti, Adriana; Weissenbach, Jean; Salanoubat, Marcel; Tolonen, Andrew C

    2014-11-01

    Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.

  15. Soil microbial communities and enzyme activities in sea-buckthorn (Hippophae rhamnoides) plantation at different ages.

    PubMed

    Yang, Miao; Yang, Dan; Yu, Xuan

    2018-01-01

    The aim of this study was to assess the impact of forest age and season on the soil microbial community and enzyme activities in sea-buckthorn plantation system and to determine the relative contributions to soil microbial properties. Soil sampling was carried out in the dry season (April) and wet season (September) in four areas, including: abandoned farmland (NH), an 8-year- old plantation (young plantation, 8Y), a 13-year-old plantation (middle-aged plantation, 13Y), and an 18-year-old plantation (mature plantation, 18Y). The results showed that forest age and season have a significant effect on soil microbial community structure and enzyme activities. The total, bacterial, fungal, Gram-negative (G+), and Gram-positive (G-) PLFAs increased gradually with forest age, with the highest values detected in 18Y. All the detected enzyme activities showed the trend as a consequence of forest age. The microbial PLFAs and soil enzyme activities were higher in the wet season than the dry season. However, there were no significant interactions between forest age and season. A Correlation analysis suggested that soil microbial communities and enzyme activities were significantly and positively correlated with pH, total nitrogen (TN) and available phosphorus (AP). Season had a stronger influence on soil microbial communities than forest age. In general, sea-buckthorn plantations establishment might be a potential tool for maintaining and increasing soil fertility in arid and semi-arid regions.

  16. Soil microbial communities and enzyme activities in sea-buckthorn (Hippophae rhamnoides) plantation at different ages

    PubMed Central

    Yang, Miao; Yang, Dan

    2018-01-01

    The aim of this study was to assess the impact of forest age and season on the soil microbial community and enzyme activities in sea-buckthorn plantation system and to determine the relative contributions to soil microbial properties. Soil sampling was carried out in the dry season (April) and wet season (September) in four areas, including: abandoned farmland (NH), an 8-year- old plantation (young plantation, 8Y), a 13-year-old plantation (middle-aged plantation, 13Y), and an 18-year-old plantation (mature plantation, 18Y). The results showed that forest age and season have a significant effect on soil microbial community structure and enzyme activities. The total, bacterial, fungal, Gram-negative (G+), and Gram-positive (G-) PLFAs increased gradually with forest age, with the highest values detected in 18Y. All the detected enzyme activities showed the trend as a consequence of forest age. The microbial PLFAs and soil enzyme activities were higher in the wet season than the dry season. However, there were no significant interactions between forest age and season. A Correlation analysis suggested that soil microbial communities and enzyme activities were significantly and positively correlated with pH, total nitrogen (TN) and available phosphorus (AP). Season had a stronger influence on soil microbial communities than forest age. In general, sea-buckthorn plantations establishment might be a potential tool for maintaining and increasing soil fertility in arid and semi-arid regions. PMID:29324845

  17. The environment shapes microbial enzymes: five cold-active and salt-resistant carboxylesterases from marine metagenomes.

    PubMed

    Tchigvintsev, Anatoli; Tran, Hai; Popovic, Ana; Kovacic, Filip; Brown, Greg; Flick, Robert; Hajighasemi, Mahbod; Egorova, Olga; Somody, Joseph C; Tchigvintsev, Dmitri; Khusnutdinova, Anna; Chernikova, Tatyana N; Golyshina, Olga V; Yakimov, Michail M; Savchenko, Alexei; Golyshin, Peter N; Jaeger, Karl-Erich; Yakunin, Alexander F

    2015-03-01

    Most of the Earth's biosphere is cold and is populated by cold-adapted microorganisms. To explore the natural enzyme diversity of these environments and identify new carboxylesterases, we have screened three marine metagenome gene libraries for esterase activity. The screens identified 23 unique active clones, from which five highly active esterases were selected for biochemical characterization. The purified metagenomic esterases exhibited high activity against α-naphthyl and p-nitrophenyl esters with different chain lengths. All five esterases retained high activity at 5 °C indicating that they are cold-adapted enzymes. The activity of MGS0010 increased more than two times in the presence of up to 3.5 M NaCl or KCl, whereas the other four metagenomic esterases were inhibited to various degrees by these salts. The purified enzymes showed different sensitivities to inhibition by solvents and detergents, and the activities of MGS0010, MGS0105 and MGS0109 were stimulated three to five times by the addition of glycerol. Screening of purified esterases against 89 monoester substrates revealed broad substrate profiles with a preference for different esters. The metagenomic esterases also hydrolyzed several polyester substrates including polylactic acid suggesting that they can be used for polyester depolymerization. Thus, esterases from marine metagenomes are cold-adapted enzymes exhibiting broad biochemical diversity reflecting the environmental conditions where they evolved.

  18. Creation of catalytically active particles from enzymes crosslinked with a natural bifunctional agent--homocysteine thiolactone.

    PubMed

    Stroylova, Yulia Y; Semenyuk, Pavel I; Asriyantz, Regina A; Gaillard, Cedric; Haertlé, Thomas; Muronetz, Vladimir I

    2014-09-01

    The current study describes an approach to creation of catalytically active particles with increased stability from enzymes by N-homocysteinylation, a naturally presented protein modification. Enzymatic activities and properties of two globular tetrameric enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH) were studied before and after N-homocysteinylation. Modification of these proteins concerns the accessible lysine residues and introduces an average of 2-2,5 homocysteine residues per protein monomer. Formation of a range of aggregates was observed for both enzymes, which assemble via formation of intermolecular noncovalent bonds and by disulfide bonds. It was demonstrated that both studied enzymes retain their catalytic activities on modification and the subsequent formation of oligomeric forms. At low concentrations of homocysteine thiolactone, modification of GAPDH leads not only to prevention of spontaneous inactivation but also increases thermal stability of this enzyme on heating to 80°C. A moderate reduction of the activity of GAPDH observed in case of its crosslinking with 50-fold excess of homocysteine thiolactone per lysine is probably caused by hindered substrate diffusion. Spherical particles of 100 nm and larger diameters were observed by transmission electron microscopy and atomic force microscope techniques after modification of GAPDH with different homocysteine thiolactone concentrations. In case of LDH, branched fibril-like aggregates were observed under the same conditions. Interestingly, crosslinked samples of both proteins were found to have reversible thermal denaturation profiles, indicating that modification with homocysteine thiolactone stabilizes the spatial structure of these enzymes. © 2014 Wiley Periodicals, Inc.

  19. Salt stress induced lipid accumulation in heterotrophic culture cells of Chlorella protothecoides: Mechanisms based on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration.

    PubMed

    Wang, Tao; Ge, Haiyan; Liu, Tingting; Tian, Xiwei; Wang, Zejian; Guo, Meijin; Chu, Ju; Zhuang, Yingping

    2016-06-20

    Salt stress as an effective stress factor that could improve the lipid content and lipid yield of glucose in the heterotrophic culture cells of Chlorella protothecoides was demonstrated in this study. The highest lipid content of 41.2% and lipid yield of 185.8mg/g were obtained when C. protothecoides was stressed under 30g/L NaCl condition at its late logarithmic growth phase. Moreover, the effects of salt and osmotic stress on lipid accumulation were comparatively analyzed, and it was found that the effects of NaCl and KCl stress had no significant differences at the same osmolarity level of 1150mOsm/kg with lipid contents of 41.7 and 40.8% as well as lipid yields of 192.9 and 186.8mg/g, respectively, whereas these results were obviously higher than those obtained under the iso-osmotic glycerol and sorbitol stresses. Furthermore, basing on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration, the superior performance of salt stress driving lipid over-synthesis was probably ascribed to the more ROS production as a result of additional ion effect besides the osmotic effect, subsequently mediating the alteration from carbohydrate storage to lipid accumulation in signal transduction process of C. protothecoides. Copyright © 2016. Published by Elsevier B.V.

  20. Comparative Bioinformatic Analysis of Active Site Structures in Evolutionarily Remote Homologues of α,β-Hydrolase Superfamily Enzymes.

    PubMed

    Suplatov, D A; Arzhanik, V K; Svedas, V K

    2011-01-01

    Comparative bioinformatic analysis is the cornerstone of the study of enzymes' structure-function relationship. However, numerous enzymes that derive from a common ancestor and have undergone substantial functional alterations during natural selection appear not to have a sequence similarity acceptable for a statistically reliable comparative analysis. At the same time, their active site structures, in general, can be conserved, while other parts may largely differ. Therefore, it sounds both plausible and appealing to implement a comparative analysis of the most functionally important structural elements - the active site structures; that is, the amino acid residues involved in substrate binding and the catalytic mechanism. A computer algorithm has been developed to create a library of enzyme active site structures based on the use of the PDB database, together with programs of structural analysis and identification of functionally important amino acid residues and cavities in the enzyme structure. The proposed methodology has been used to compare some α,β-hydrolase superfamily enzymes. The insight has revealed a high structural similarity of catalytic site areas, including the conservative organization of a catalytic triad and oxyanion hole residues, despite the wide functional diversity among the remote homologues compared. The methodology can be used to compare the structural organization of the catalytic and substrate binding sites of various classes of enzymes, as well as study enzymes' evolution and to create of a databank of enzyme active site structures.

  1. Activation and thermostabilization effects of cyclic 2, 3-diphosphoglycerate on enzymes from the hyperthermophilic Methanopyrus kandleri.

    PubMed

    Shima, S; Hérault, D A; Berkessel, A; Thauer, R K

    1998-11-01

    Enzymes involved in methane formation from carbon dioxide and dihydrogen in Methanopyrus kandleri require high concentrations (> 1 M) of lyotropic salts such as K2HPO4/KH2PO4 or (NH4)2SO4 for activity and for thermostability. The requirement correlates with high intracellular concentrations of cyclic 2,3-diphosphoglycerate (cDPG; approximately 1 M) in this hyperthermophilic organism. We report here on the effects of potassium cDPG on the activity and thermostability of the two methanogenic enzymes cyclohydrolase and formyltransferase and show that at cDPG concentrations prevailing in the cells the investigated enzymes are highly active and completely thermostable. At molar concentrations also the potassium salts of phosphate and of 2,3-bisphosphoglycerate, the biosynthetic precursor of cDPG, were found to confer activity and thermostability to the enzymes. Thermodynamic arguments are discussed as to why cDPG, rather than these salts, is present in high concentrations in the cells of Mp. kandleri.

  2. Ex vivo effects of ibogaine on the activity of antioxidative enzymes in human erythrocytes.

    PubMed

    Nikolić-Kokić, Aleksandra; Oreščanin-Dušić, Zorana; Spasojević, Ivan; Slavić, Marija; Mijušković, Ana; Paškulin, Roman; Miljević, Čedo; Spasić, Mihajlo B; Blagojević, Duško P

    2015-04-22

    Ibogaine is a naturally occurring alkaloid with psychotropic and metabotropic effects, derived from the bark of the root of the West African Tabernanthe iboga plant. The tribes of Kongo basin have been using iboga as a stimulant, for medicinal purposes, and in rite of passage ceremonies, for centuries. Besides, it has been found that this drug has anti-addictive effects. Previous studies have demonstrated that ibogaine changed the quantity of ATP and energy related enzymes as well as the activity of antioxidant enzymes in cells thus altering redox equilibrium in a time manner. In this work, the mechanism of its action was further studied by measuring the effects of ibogaine in human erythrocytes in vitro on ATP liberation, membrane fluidity and antioxidant enzymes activity. Heparinized human blood samples were incubated with ibogaine (10 and 20 μM) at 37°C for 1h. Blood plasma was separated by centrifugation and the levels of ATP and uric acid were measured 10 min after the addition of ibogaine using standard kits. The activity of copper-zinc superoxide dismutase (SOD1), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) were measured in erythrocytes after incubation period. The stability of SOD1 activity was further tested through in vitro incubation with H2O2 and scanning of its electrophoretic profiles. Membrane fluidity was determined using an electron paramagnetic resonance spin-labelling method. Results showed that ibogaine treatment of erythrocytes in vitro increased ATP concentration in the blood plasma without changes in neither erythrocytes membrane fluidity nor uric acid concentration. Ibogaine also increased SOD1 activity in erythrocytes at both doses applied here. Treatment with 20 μM also elevated GR activity after in vitro incubation at 37°C. Electrophoretic profiles revealed that incubation with ibogaine mitigates H2O2 mediated suppression of SOD1 activity. Some of the effects of ibogaine seem to be mediated through

  3. Characterization of a feruloyl esterase from Aspergillus terreus facilitates the division of fungal enzymes from Carbohydrate Esterase family 1 of the carbohydrate-active enzymes (CAZy) database.

    PubMed

    Mäkelä, Miia R; Dilokpimol, Adiphol; Koskela, Salla M; Kuuskeri, Jaana; de Vries, Ronald P; Hildén, Kristiina

    2018-04-26

    Feruloyl esterases (FAEs) are accessory enzymes for plant biomass degradation, which catalyse hydrolysis of carboxylic ester linkages between hydroxycinnamic acids and plant cell-wall carbohydrates. They are a diverse group of enzymes evolved from, e.g. acetyl xylan esterases (AXEs), lipases and tannases, thus complicating their classification and prediction of function by sequence similarity. Recently, an increasing number of fungal FAEs have been biochemically characterized, owing to their potential in various biotechnological applications and multitude of candidate FAEs in fungal genomes. However, only part of the fungal FAEs are included in Carbohydrate Esterase family 1 (CE1) of the carbohydrate-active enzymes (CAZy) database. In this work, we performed a phylogenetic analysis that divided the fungal members of CE1 into five subfamilies of which three contained characterized enzymes with conserved activities. Conservation within one of the subfamilies was confirmed by characterization of an additional CE1 enzyme from Aspergillus terreus. Recombinant A. terreus FaeD (AtFaeD) showed broad specificity towards synthetic methyl and ethyl esters, and released ferulic acid from plant biomass substrates, demonstrating its true FAE activity and interesting features as potential biocatalyst. The subfamily division of the fungal CE1 members enables more efficient selection of candidate enzymes for biotechnological processes. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  4. Immunogold Localization of Key Metabolic Enzymes in the Anammoxosome and on the Tubule-Like Structures of Kuenenia stuttgartiensis.

    PubMed

    de Almeida, Naomi M; Neumann, Sarah; Mesman, Rob J; Ferousi, Christina; Keltjens, Jan T; Jetten, Mike S M; Kartal, Boran; van Niftrik, Laura

    2015-07-01

    Anaerobic ammonium-oxidizing (anammox) bacteria oxidize ammonium with nitrite as the terminal electron acceptor to form dinitrogen gas in the absence of oxygen. Anammox bacteria have a compartmentalized cell plan with a central membrane-bound "prokaryotic organelle" called the anammoxosome. The anammoxosome occupies most of the cell volume, has a curved membrane, and contains conspicuous tubule-like structures of unknown identity and function. It was suggested previously that the catalytic reactions of the anammox pathway occur in the anammoxosome, and that proton motive force was established across its membrane. Here, we used antibodies raised against five key enzymes of the anammox catabolism to determine their cellular location. The antibodies were raised against purified native hydroxylamine oxidoreductase-like protein kustc0458 with its redox partner kustc0457, hydrazine dehydrogenase (HDH; kustc0694), hydroxylamine oxidase (HOX; kustc1061), nitrite oxidoreductase (NXR; kustd1700/03/04), and hydrazine synthase (HZS; kuste2859-61) of the anammox bacterium Kuenenia stuttgartiensis. We determined that all five protein complexes were exclusively located inside the anammoxosome matrix. Four of the protein complexes did not appear to form higher-order protein organizations. However, the present data indicated for the first time that NXR is part of the tubule-like structures, which may stretch the whole length of the anammoxosome. These findings support the anammoxosome as the locus of catabolic reactions of the anammox pathway. Anammox bacteria are environmentally relevant microorganisms that contribute significantly to the release of fixed nitrogen in nature. Furthermore, the anammox process is applied for nitrogen removal from wastewater as an environment-friendly and cost-effective technology. These microorganisms feature a unique cellular organelle, the anammoxosome, which was proposed to contain the energy metabolism of the cell and tubule-like structures with

  5. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes.

    PubMed

    Wei, Hui; Wang, Erkang

    2013-07-21

    Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

  6. Pyranoflavones: a group of small-molecule probes for exploring the active site cavities of cytochrome P450 enzymes 1A1, 1A2, and 1B1.

    PubMed

    Liu, Jiawang; Taylor, Shannon F; Dupart, Patrick S; Arnold, Corey L; Sridhar, Jayalakshmi; Jiang, Quan; Wang, Yuji; Skripnikova, Elena V; Zhao, Ming; Foroozesh, Maryam

    2013-05-23

    Selective inhibition of P450 enzymes is the key to block the conversion of environmental procarcinogens to their carcinogenic metabolites in both animals and humans. To discover highly potent and selective inhibitors of P450s 1A1, 1A2, and 1B1, as well as to investigate active site cavities of these enzymes, 14 novel flavone derivatives were prepared as chemical probes. Fluorimetric enzyme inhibition assays were used to determine the inhibitory activities of these probes toward P450s 1A1, 1A2, 1B1, 2A6, and 2B1. A highly selective P450 1B1 inhibitor 5-hydroxy-4'-propargyloxyflavone (5H4'FPE) was discovered. Some tested compounds also showed selectivity between P450s 1A1 and 1A2. α-Naphthoflavone-like and 5-hydroxyflavone derivatives preferentially inhibited P450 1A2, while β-naphthoflavone-like flavone derivatives showed selective inhibition of P450 1A1. On the basis of structural analysis, the active site cavity models of P450 enzymes 1A1 and 1A2 were generated, demonstrating a planar long strip cavity and a planar triangular cavity, respectively.

  7. A Computational Methodology to Screen Activities of Enzyme Variants

    PubMed Central

    Hediger, Martin R.; De Vico, Luca; Svendsen, Allan; Besenmatter, Werner; Jensen, Jan H.

    2012-01-01

    We present a fast computational method to efficiently screen enzyme activity. In the presented method, the effect of mutations on the barrier height of an enzyme-catalysed reaction can be computed within 24 hours on roughly 10 processors. The methodology is based on the PM6 and MOZYME methods as implemented in MOPAC2009, and is tested on the first step of the amide hydrolysis reaction catalyzed by the Candida Antarctica lipase B (CalB) enzyme. The barrier heights are estimated using adiabatic mapping and shown to give barrier heights to within 3 kcal/mol of B3LYP/6-31G(d)//RHF/3-21G results for a small model system. Relatively strict convergence criteria (0.5 kcal/(molÅ)), long NDDO cutoff distances within the MOZYME method (15 Å) and single point evaluations using conventional PM6 are needed for reliable results. The generation of mutant structures and subsequent setup of the semiempirical calculations are automated so that the effect on barrier heights can be estimated for hundreds of mutants in a matter of weeks using high performance computing. PMID:23284627

  8. Identification of a highly active tannase enzyme from the oral pathogen Fusobacterium nucleatum subsp. polymorphum.

    PubMed

    Tomás-Cortázar, Julen; Plaza-Vinuesa, Laura; de Las Rivas, Blanca; Lavín, José Luis; Barriales, Diego; Abecia, Leticia; Mancheño, José Miguel; Aransay, Ana M; Muñoz, Rosario; Anguita, Juan; Rodríguez, Héctor

    2018-02-26

    Tannases are tannin-degrading enzymes that have been described in fungi and bacteria as an adaptative mechanism to overcome the stress conditions associated with the presence of these phenolic compounds. We have identified and expressed in E. coli a tannase from the oral microbiota member Fusobacterium nucleatum subs. polymorphum (TanB Fnp ). TanB Fnp is the first tannase identified in an oral pathogen. Sequence analyses revealed that it is closely related to other bacterial tannases. The enzyme exhibits biochemical properties that make it an interesting target for industrial use. TanB Fnp has one of the highest specific activities of all bacterial tannases described to date and shows optimal biochemical properties such as a high thermal stability: the enzyme keeps 100% of its activity after prolonged incubations at different temperatures up to 45 °C. TanB Fnp also shows a wide temperature range of activity, maintaining above 80% of its maximum activity between 22 and 55 °C. The use of a panel of 27 esters of phenolic acids demonstrated activity of TanB Fnp only against esters of gallic and protocatechuic acid, including tannic acid, gallocatechin gallate and epigallocatechin gallate. Overall, TanB Fnp possesses biochemical properties that make the enzyme potentially useful in biotechnological applications. We have identified and characterized a metabolic enzyme from the oral pathogen Fusobacterium nucleatum subsp. polymorphum. The biochemical properties of TanB Fnp suggest that it has a major role in the breakdown of complex food tannins during oral processing. Our results also provide some clues regarding its possible participation on bacterial survival in the oral cavity. Furthermore, the characteristics of this enzyme make it of potential interest for industrial use.

  9. Unraveling Entropic Rate Acceleration Induced by Solvent Dynamics in Membrane Enzymes.

    PubMed

    Kürten, Charlotte; Syrén, Per-Olof

    2016-01-16

    Enzyme catalysis evolved in an aqueous environment. The influence of solvent dynamics on catalysis is, however, currently poorly understood and usually neglected. The study of water dynamics in enzymes and the associated thermodynamical consequences is highly complex and has involved computer simulations, nuclear magnetic resonance (NMR) experiments, and calorimetry. Water tunnels that connect the active site with the surrounding solvent are key to solvent displacement and dynamics. The protocol herein allows for the engineering of these motifs for water transport, which affects specificity, activity and thermodynamics. By providing a biophysical framework founded on theory and experiments, the method presented herein can be used by researchers without previous expertise in computer modeling or biophysical chemistry. The method will advance our understanding of enzyme catalysis on the molecular level by measuring the enthalpic and entropic changes associated with catalysis by enzyme variants with obstructed water tunnels. The protocol can be used for the study of membrane-bound enzymes and other complex systems. This will enhance our understanding of the importance of solvent reorganization in catalysis as well as provide new catalytic strategies in protein design and engineering.

  10. In vitro and in silico Studies of Mangiferin from Aphloia theiformis on Key Enzymes Linked to Diabetes Type 2 and Associated Complications.

    PubMed

    Picot, Marie C N; Zengin, Gokhan; Mollica, Adriano; Stefanucci, Azzurra; Carradori, Simone; Mahomoodally, Mohamad F

    2017-01-01

    Mangiferin, was identified in the crude methanol extract, ethyl acetate, and n-butanol fractions of Aphloia theiformis (Vahl.) Benn. This study aimed to analyze the plausible binding modes of mangiferin to key enzymes linked to diabetes type 2 (DT2), obesity, hypertension, Alzheimer's disease, and urolithiasis using molecular docking. Crystallographic structures of α-amylase, α-glucosidase, glycogen phosphorylase (GP), pancreatic lipase, cholesterol esterase (CEase), angiotensin-I-converting enzyme (ACE), acetyl cholinesterase (AChE), and urease available on the Protein Databank database were docked to mangiferin using Gold 6.0 software. We showed that mangiferin bound to all enzymes by π-π and hydrogen bonds mostly. Mangiferin was docked to both allosteric and orthosteric sites of α-glucosidase by π-π interactions. However, several hydrogen bonds were observed at the orthosteric position, suggesting a preference for this site. The docking of mangiferin on AChE with the catalytic pocket occupied by paraoxon could be attributed to π-π stacking involving amino acid residues, Trp341 and Trp124. This study provided an insight of the molecular interaction of mangiferin with the studied enzymes and can be considered as a valuable tool for designing new drugs for better management of these diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Daily rhythms of digestive enzyme activity and gene expression in gilthead seabream (Sparus aurata) during ontogeny.

    PubMed

    Mata-Sotres, José Antonio; Moyano, Francisco Javier; Martínez-Rodríguez, Gonzalo; Yúfera, Manuel

    2016-07-01

    In order to identify daily changes in digestive physiology in developing gilthead seabream larvae, the enzyme activity (trypsin, lipases and α-amylase) and gene expression (trypsinogen-try, chymotrypsinogen-ctrb, bile salt-activated lipase-cel1b, phospholipase A2-pla2 and α-amylase-amy2a) were measured during a 24h cycle in larvae reared under a 12h light/12h dark photoperiod. Larvae were sampled at 10, 18, 30 and 60days post-hatch. In each sampling day, larvae were sampled every 3h during a complete 24h cycle. The enzyme activity and gene expression exhibited a marked dependent behavior to the light/darkness cycle in all tested ages. The patterns of activity and expression of all tested enzymes were compared to the feeding pattern found in the same larvae, which showed a rhythmic feeding pattern with a strong light synchronization. In the four tested ages, the activities of trypsin, and to a lesser extent lipases and amylase, were related to feeding activity. Molecular expression of the pancreatic enzymes tended to increase during the night, probably as an anticipation of the forthcoming ingestion of food that will take place during the next light period. It follows that the enzymatic activities are being regulated at translational and/or post-translational level. The potential variability of enzyme secretion along the whole day is an important factor to take into account in future studies. A particularly striking consequence of the present results is the reliability of studies based in only one daily sample taken at the same hour of the day, as those focused to assess ontogeny of digestive enzymes. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Turmeric (Curcuma longa L.) volatile oil inhibits key enzymes linked to type 2 diabetes.

    PubMed

    Lekshmi, P C; Arimboor, Ranjith; Indulekha, P S; Menon, A Nirmala

    2012-11-01

    Anti-diabetic capacity of Curcuma longa volatile oil in terms of its ability to inhibit glucosidase activities was evaluated. Turmeric volatile oils inhibited glucosidase enzymes more effectively than the reference standard drug acarbose. Drying of rhizomes was found to enhance α-glucosidase (IC₅₀ = 1.32-0.38 μg/ml) and α-amylase (IC₅₀ = 64.7-34.3 μg/ml) inhibitory capacities of volatile oils. Ar-Turmerone, the major volatile component in the rhizome also showed potent α-glucosidase (IC₅₀ = 0.28 μg) and α-amylase (IC₅₀ = 24.5 μg) inhibition.

  13. Quantifying microbial activity in deep subsurface sediments using a tritium based hydrognease enzyme assay

    NASA Astrophysics Data System (ADS)

    Adhikari, R.; Nickel, J.; Kallmeyer, J.

    2012-12-01

    Microbial life is widespread in Earth's subsurface and estimated to represent a significant fraction of Earth's total living biomass. However, very little is known about subsurface microbial activity and its fundamental role in biogeochemical cycles of carbon and other biologically important elements. Hydrogen is one of the most important elements in subsurface anaerobic microbial metabolism. Heterotrophic and chemoautotrophic microorganisms use hydrogen in their metabolic pathways. They either consume or produce protons for ATP synthesis. Hydrogenase (H2ase) is a ubiquitous intracellular enzyme that catalyzes the interconversion of molecular hydrogen and/or water into protons and electrons. The protons are used for the synthesis of ATP, thereby coupling energy generating metabolic processes to electron acceptors such as CO2 or sulfate. H2ase enzyme targets a key metabolic compound in cellular metabolism therefore the assay can be used as a measure for total microbial activity without the need to identify any specific metabolic process. Using the highly sensitive tritium assay we measured H2ase enzyme activity in the organic-rich sediments of Lake Van, a saline, alkaline lake in eastern Turkey, in marine sediments of the Barents Sea and in deep subseafloor sediments from the Nankai Trough. H2ase activity could be quantified at all depths of all sites but the activity distribution varied widely with depth and between sites. At the Lake Van sites H2ase activity ranged from ca. 20 mmol H2 cm-3d-1 close to the sediment-water interface to 0.5 mmol H2 cm-3d-1 at a depth of 0.8 m. In samples from the Barents Sea H2ase activity ranged between 0.1 to 2.5 mmol H2 cm-3d-1 down to a depth of 1.60 m. At all sites the sulfate reduction rate profile followed the upper part of the H2ase activity profile until sulfate reduction reached the minimum detection limit (ca. 10 pmol cm-3d-1). H2ase activity could still be quantified after the decline of sulfate reduction, indicating that

  14. Protein Surface Softness Is the Origin of Enzyme Cold-Adaptation of Trypsin

    PubMed Central

    Isaksen, Geir Villy; Åqvist, Johan; Brandsdal, Bjørn Olav

    2014-01-01

    Life has effectively colonized most of our planet and extremophilic organisms require specialized enzymes to survive under harsh conditions. Cold-loving organisms (psychrophiles) express heat-labile enzymes that possess a high specific activity and catalytic efficiency at low temperatures. A remarkable universal characteristic of cold-active enzymes is that they show a reduction both in activation enthalpy and entropy, compared to mesophilic orthologs, which makes their reaction rates less sensitive to falling temperature. Despite significant efforts since the early 1970s, the important question of the origin of this effect still largely remains unanswered. Here we use cold- and warm-active trypsins as model systems to investigate the temperature dependence of the reaction rates with extensive molecular dynamics free energy simulations. The calculations quantitatively reproduce the catalytic rates of the two enzymes and further yield high-precision Arrhenius plots, which show the characteristic trends in activation enthalpy and entropy. Detailed structural analysis indicates that the relationship between these parameters and the 3D structure is reflected by significantly different internal protein energy changes during the reaction. The origin of this effect is not localized to the active site, but is found in the outer regions of the protein, where the cold-active enzyme has a higher degree of softness. Several structural mechanisms for softening the protein surface are identified, together with key mutations responsible for this effect. Our simulations further show that single point-mutations can significantly affect the thermodynamic activation parameters, indicating how these can be optimized by evolution. PMID:25165981

  15. The effect of preparation, storage and shipping of dried blood spots on the activity of five lysosomal enzymes.

    PubMed

    Elbin, Carole S; Olivova, Petra; Marashio, Carla A; Cooper, Samantha K; Cullen, Emmaline; Keutzer, Joan M; Zhang, X Kate

    2011-06-11

    Fluorometric and tandem mass spectrometry assays can be used to measure lysosomal enzyme activities in dried blood spots (DBS). The effect of DBS preparation, storage and shipping was evaluated on the activities of acid α-glucosidase, acid α-galactosidase, acid β-glucocerebrosidase, acid sphingomyelinase, and galactocerebrosidase. Whole blood from normal donors was used to prepare DBS following Clinical and Laboratory Standards Institute guidelines and by several deviations. Some DBS were subjected to various treatments, storage and shipping conditions. The activity of 5 lysosomal enzymes (GAA, GLA, GBA, ASM, and GALC) was measured using tandem mass spectrometric and fluorometric (GAA only) assays with 2 distinct and commonly used synthetic substrates. Enzyme activities were strongly affected by the way DBS were prepared and stored. Exposure of DBS to elevated heat and humidity can destroy enzyme functions rapidly. DBS prepared from poorly mixed blood caused significant variation on enzyme activities. EDTA, but not heparin, as an anti-coagulant gave more precise results. The study confirmed the importance of proper and consistent DBS preparation and storage when screening for deficiencies of lysosomal enzymes. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Indicators: Sediment Enzymes

    EPA Pesticide Factsheets

    Sediment enzymes are proteins that are produced by microorganisms living in the sediment or soil. They are indicators of key ecosystem processes and can help determine which nutrients are affecting the biological community of a waterbody.

  17. Key Enzymes of the Semiphosphorylative Entner-Doudoroff Pathway in the Haloarchaeon Haloferax volcanii: Characterization of Glucose Dehydrogenase, Gluconate Dehydratase, and 2-Keto-3-Deoxy-6-Phosphogluconate Aldolase.

    PubMed

    Sutter, Jan-Moritz; Tästensen, Julia-Beate; Johnsen, Ulrike; Soppa, Jörg; Schönheit, Peter

    2016-08-15

    The halophilic archaeon Haloferax volcanii has been proposed to degrade glucose via the semiphosphorylative Entner-Doudoroff (spED) pathway. So far, the key enzymes of this pathway, glucose dehydrogenase (GDH), gluconate dehydratase (GAD), and 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase (KDPGA), have not been characterized, and their functional involvement in glucose degradation has not been demonstrated. Here we report that the genes HVO_1083 and HVO_0950 encode GDH and KDPGA, respectively. The recombinant enzymes show high specificity for glucose and KDPG and did not convert the corresponding C4 epimers galactose and 2-keto-3-deoxy-6-phosphogalactonate at significant rates. Growth studies of knockout mutants indicate the functional involvement of both GDH and KDPGA in glucose degradation. GAD was purified from H. volcanii, and the encoding gene, gad, was identified as HVO_1488. GAD catalyzed the specific dehydration of gluconate and did not utilize galactonate at significant rates. A knockout mutant of GAD lost the ability to grow on glucose, indicating the essential involvement of GAD in glucose degradation. However, following a prolonged incubation period, growth of the Δgad mutant on glucose was recovered. Evidence is presented that under these conditions, GAD was functionally replaced by xylonate dehydratase (XAD), which uses both xylonate and gluconate as substrates. Together, the characterization of key enzymes and analyses of the respective knockout mutants present conclusive evidence for the in vivo operation of the spED pathway for glucose degradation in H. volcanii The work presented here describes the identification and characterization of the key enzymes glucose dehydrogenase, gluconate dehydratase, and 2-keto-3-deoxy-6-phosphogluconate aldolase and their encoding genes of the proposed semiphosphorylative Entner-Doudoroff pathway in the haloarchaeon Haloferax volcanii The functional involvement of the three enzymes was proven by analyses of the

  18. Comprehensive Structural Characterization of the Bacterial Homospermidine Synthase–an Essential Enzyme of the Polyamine Metabolism

    PubMed Central

    Krossa, Sebastian; Faust, Annette; Ober, Dietrich; Scheidig, Axel J.

    2016-01-01

    The highly conserved bacterial homospermidine synthase (HSS) is a key enzyme of the polyamine metabolism of many proteobacteria including pathogenic strains such as Legionella pneumophila and Pseudomonas aeruginosa; The unique usage of NAD(H) as a prosthetic group is a common feature of bacterial HSS, eukaryotic HSS and deoxyhypusine synthase (DHS). The structure of the bacterial enzyme does not possess a lysine residue in the active center and thus does not form an enzyme-substrate Schiff base intermediate as observed for the DHS. In contrast to the DHS the active site is not formed by the interface of two subunits but resides within one subunit of the bacterial HSS. Crystal structures of Blastochloris viridis HSS (BvHSS) reveal two distinct substrate binding sites, one of which is highly specific for putrescine. BvHSS features a side pocket in the direct vicinity of the active site formed by conserved amino acids and a potential substrate discrimination, guiding, and sensing mechanism. The proposed reaction steps for the catalysis of BvHSS emphasize cation-π interaction through a conserved Trp residue as a key stabilizer of high energetic transition states. PMID:26776105

  19. Poly(2-ethyloxazoline) as matrix for highly active electrospun enzymes in organic solvents.

    PubMed

    Plothe, Ramona; Sittko, Ina; Lanfer, Franziska; Fortmann, Maximilian; Roth, Meike; Kolbach, Vivien; Tiller, Joerg C

    2017-01-01

    Nanofibers are advantageous carriers for biocatalysts, because they show lower diffusion limitations due to their high surface/volume ratio. Only a few samples are known where enzymes are directly spun into nanofibers, mostly because there are not many suited polymer carriers. In this study, poly(2-ethyloxazoline) (PEtOx) was explored regarding its usefulness to activate various enzymes in organic solvents by directly electrospinning them from aqueous solutions containing the polymer. It was found that the concentration of PEtOx in the spinning solution and also the swellability of the fibers play a great role in the activity of the enzymes in organic solvents. Using electrospun lipase B from Candida antarctica (CaLB) under optimized conditions revealed a higher carrier activity than the commercial Novozyme 435 with 10 times less immobilized protein. The electrospinning of PEtOx/CaLB fibers onto a stirrer is used to realize a biocatalytic stirrer for organic solvents. Biotechnol. Bioeng. 2017;114: 39-45. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Improvement in Saccharification Yield of Mixed Rumen Enzymes by Identification of Recalcitrant Cell Wall Constituents Using Enzyme Fingerprinting.

    PubMed

    Badhan, Ajay; Wang, Yu-Xi; Gruninger, Robert; Patton, Donald; Powlowski, Justin; Tsang, Adrian; McAllister, Tim A

    2015-01-01

    Identification of recalcitrant factors that limit digestion of forages and the development of enzymatic approaches that improve hydrolysis could play a key role in improving the efficiency of meat and milk production in ruminants. Enzyme fingerprinting of barley silage fed to heifers and total tract indigestible fibre residue (TIFR) collected from feces was used to identify cell wall components resistant to total tract digestion. Enzyme fingerprinting results identified acetyl xylan esterases as key to the enhanced ruminal digestion. FTIR analysis also suggested cross-link cell wall polymers as principal components of indigested fiber residues in feces. Based on structural information from enzymatic fingerprinting and FTIR, enzyme pretreatment to enhance glucose yield from barley straw and alfalfa hay upon exposure to mixed rumen-enzymes was developed. Prehydrolysis effects of recombinant fungal fibrolytic hydrolases were analyzed using microassay in combination with statistical experimental design. Recombinant hemicellulases and auxiliary enzymes initiated degradation of plant structural polysaccharides upon application and improved the in vitro saccharification of alfalfa and barley straw by mixed rumen enzymes. The validation results showed that microassay in combination with statistical experimental design can be successfully used to predict effective enzyme pretreatments that can enhance plant cell wall digestion by mixed rumen enzymes.

  1. Crystal structure of Escherichia coli diaminopropionate ammonia-lyase reveals mechanism of enzyme activation and catalysis.

    PubMed

    Bisht, Shveta; Rajaram, Venkatesan; Bharath, Sakshibeedu R; Kalyani, Josyula Nitya; Khan, Farida; Rao, Appaji N; Savithri, Handanahal S; Murthy, Mathur R N

    2012-06-08

    Pyridoxal 5'-phosphate (PLP)-dependent enzymes utilize the unique chemistry of a pyridine ring to carry out diverse reactions involving amino acids. Diaminopropionate (DAP) ammonia-lyase (DAPAL) is a prokaryotic PLP-dependent enzyme that catalyzes the degradation of d- and l-forms of DAP to pyruvate and ammonia. Here, we report the first crystal structure of DAPAL from Escherichia coli (EcDAPAL) in tetragonal and monoclinic forms at 2.0 and 2.2 Å resolutions, respectively. Structures of EcDAPAL soaked with substrates were also determined. EcDAPAL has a typical fold type II PLP-dependent enzyme topology consisting of a large and a small domain with the active site at the interface of the two domains. The enzyme is a homodimer with a unique biological interface not observed earlier. Structure of the enzyme in the tetragonal form had PLP bound at the active site, whereas the monoclinic structure was in the apo-form. Analysis of the apo and holo structures revealed that the region around the active site undergoes transition from a disordered to ordered state and assumes a conformation suitable for catalysis only upon PLP binding. A novel disulfide was found to occur near a channel that is likely to regulate entry of ligands to the active site. EcDAPAL soaked with dl-DAP revealed density at the active site appropriate for the reaction intermediate aminoacrylate, which is consistent with the observation that EcDAPAL has low activity under crystallization conditions. Based on the analysis of the structure and results of site-directed mutagenesis, a two-base mechanism of catalysis involving Asp(120) and Lys(77) is suggested.

  2. Diel changes in stream periphyton extracellular enzyme activity throughout community development on inert and organic substrates

    NASA Astrophysics Data System (ADS)

    Rier, S. T.; Francoeur, S. N.; Kuehn, K. A.

    2005-05-01

    We tested the hypothesis that algal photosynthesis in stream periphyton communities would influence the activities of extracellular enzymes produced by associated heterotrophic bacteria and fungi to acquire organic compounds and inorganic nutrients. We approached this question by looking for diurnal variation in activities of four extracellular enzymes in periphyton communities that were grown on either inert (glass fiber filters) or organic (leaves) substrata that there were incubated in stream-side channels that were either open to full sun or shaded. Substrata were subsampled for β-glucosidase, alkaline phosphotase, leucine-aminopeptidase, and phenol oxidase activities at 3-5 hr. intervals over two consecutive diurnal cycles that were repeated at an early and later stage of periphyton community development. Activities of all enzymes displayed diurnal periodicity but the strength of the diurnal effects depended largely on the substrate type and stage of community development. The most consistent diurnal change was observed with phenol oxidase activity with significantly greater (p<0.05) activities being observed in during the day for both stages of community development and for both substrate types. It is likely that oxygen produced by algal photosynthesis is driving the activity of this oxidative enzyme and that algae might indirectly influence the decomposition of phenolic compounds.

  3. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand.

    PubMed

    Parashar, Abhinav; Venkatachalam, Avanthika; Gideon, Daniel Andrew; Manoj, Kelath Murali

    2014-12-12

    The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins' active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils.

    PubMed

    Turner, Benjamin L

    2010-10-01

    Extracellular enzymes synthesized by soil microbes play a central role in the biogeochemical cycling of nutrients in the environment. The pH optima of eight hydrolytic enzymes involved in the cycles of carbon, nitrogen, phosphorus, and sulfur, were assessed in a series of tropical forest soils of contrasting pH values from the Republic of Panama. Assays were conducted using 4-methylumbelliferone-linked fluorogenic substrates in modified universal buffer. Optimum pH values differed markedly among enzymes and soils. Enzymes were grouped into three classes based on their pH optima: (i) enzymes with acidic pH optima that were consistent among soils (cellobiohydrolase, β-xylanase, and arylsulfatase), (ii) enzymes with acidic pH optima that varied systematically with soil pH, with the most acidic pH optima in the most acidic soils (α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminidase), and (iii) enzymes with an optimum pH in either the acid range or the alkaline range depending on soil pH (phosphomonoesterase and phosphodiesterase). The optimum pH values of phosphomonoesterase were consistent among soils, being 4 to 5 for acid phosphomonoesterase and 10 to 11 for alkaline phosphomonoesterase. In contrast, the optimum pH for phosphodiesterase activity varied systematically with soil pH, with the most acidic pH optima (3.0) in the most acidic soils and the most alkaline pH optima (pH 10) in near-neutral soils. Arylsulfatase activity had a very acidic optimum pH in all soils (pH ≤3.0) irrespective of soil pH. The differences in pH optima may be linked to the origins of the enzymes and/or the degree of stabilization on solid surfaces. The results have important implications for the interpretation of hydrolytic enzyme assays using fluorogenic substrates.

  5. Effects of Geroprotectors on Age-Related Changes in Proteolytic Digestive Enzyme Activities at Different Lighting Conditions.

    PubMed

    Morozov, A V; Khizhkin, E A; Svechkina, E B; Vinogradova, I A; Ilyukha, V A; Anisimov, V N; Khavinson, V Kh

    2015-10-01

    We studied the effect of melatonin and epithalon on age-related changes in proteolytic digestive enzyme activity in the pancreas and gastric mucosa of rats kept under different lighting conditions. In rats kept under standard illumination, pepsin activity and the total proteolytic activity in the stomach and pancreas increased by the age of 12 months, but then decreased. Constant and natural lighting disturbed the age dynamics of proteolytic digestive enzyme activity. Administration of melatonin and epithalon to animals exposed to constant lighting restored age dynamics of pepsin activity and little affected total proteolytic activity.

  6. Reconciling Apparent Variability in Effects of Biochar Amendment on Soil Enzyme Activities by Assay Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Vanessa L.; Fansler, Sarah J.; Smith, Jeffery L.

    2011-02-01

    Applying biochar to soils as an ameliorative substance and mechanism for C sequestration has received a great deal of interest in light of the sustained fertility observed in the Terra Preta soils of Brazil. The effects of synthetic biochars on biochemical processes needs to be better understood in order to determine if this is a reasonable practice in managed systems. The biochar studied was formed from the fast-pyrolysis of a switchgrass feedstock. Four soil enzymes were studied: β-glucosidase, β-N-acetylglucosaminidase, lipase, and leucine aminopeptidase. Both colorimetric and fluorescent assays were used for β-glucosidase and β-N-acetylglucosaminidase. Seven days after biochar was addedmore » to microcosms of a Palouse silt loam, the fluorescence-based assays indicated increased activities of the four enzymes, compared to non-amended soil. To clarify the mechanisms of the observed effects,in the absence of soil, purified enzymes or substrates were briefly exposed to biochar and then assayed. Except for β-N-acetylglucosaminidase, the exposure of substrate to biochar reduced the apparent activity of the remaining three enzymes in vitro, suggesting that sorption reactions between the substrate and biochar either removed the substrate from the assays or impeded the enzyme binding. The activity of purified β-N-acetylglucosaminidase increased significantly following biochar exposure, suggesting a chemical stimulation of enzyme functioning. We conclude that biochar added to soil acts as a substrate that can stimulate the soil microbial biomass and its activity. Our in vitro study suggests that biochar is not biochemically inert. Biochar amendments are likely to have effects that are currently difficult to predict, and that could impact overall soil function.« less

  7. Redox and Chemical Activities of the Hemes in the Sulfur Oxidation Pathway Enzyme SoxAX*

    PubMed Central

    Bradley, Justin M.; Marritt, Sophie J.; Kihlken, Margaret A.; Haynes, Kate; Hemmings, Andrew M.; Berks, Ben C.; Cheesman, Myles R.; Butt, Julea N.

    2012-01-01

    SoxAX enzymes couple disulfide bond formation to the reduction of cytochrome c in the first step of the phylogenetically widespread Sox microbial sulfur oxidation pathway. Rhodovulum sulfidophilum SoxAX contains three hemes. An electrochemical cell compatible with magnetic circular dichroism at near infrared wavelengths has been developed to resolve redox and chemical properties of the SoxAX hemes. In combination with potentiometric titrations monitored by electronic absorbance and EPR, this method defines midpoint potentials (Em) at pH 7.0 of approximately +210, −340, and −400 mV for the His/Met, His/Cys−, and active site His/CysS−-ligated heme, respectively. Exposing SoxAX to S2O42−, a substrate analog with Em ∼−450 mV, but not Eu(II) complexed with diethylene triamine pentaacetic acid (Em ∼−1140 mV), allows cyanide to displace the cysteine persulfide (CysS−) ligand to the active site heme. This provides the first evidence for the dissociation of CysS− that has been proposed as a key event in SoxAX catalysis. PMID:23060437

  8. Human γ-Glutamyl Transpeptidase 1: STRUCTURES OF THE FREE ENZYME, INHIBITOR-BOUND TETRAHEDRAL TRANSITION STATES, AND GLUTAMATE-BOUND ENZYME REVEAL NOVEL MOVEMENT WITHIN THE ACTIVE SITE DURING CATALYSIS.

    PubMed

    Terzyan, Simon S; Burgett, Anthony W G; Heroux, Annie; Smith, Clyde A; Mooers, Blaine H M; Hanigan, Marie H

    2015-07-10

    γ-Glutamyl transpeptidase 1 (GGT1) is a cell surface, N-terminal nucleophile hydrolase that cleaves glutathione and other γ-glutamyl compounds. GGT1 expression is essential in cysteine homeostasis, and its induction has been implicated in the pathology of asthma, reperfusion injury, and cancer. In this study, we report four new crystal structures of human GGT1 (hGGT1) that show conformational changes within the active site as the enzyme progresses from the free enzyme to inhibitor-bound tetrahedral transition states and finally to the glutamate-bound structure prior to the release of this final product of the reaction. The structure of the apoenzyme shows flexibility within the active site. The serine-borate-bound hGGT1 crystal structure demonstrates that serine-borate occupies the active site of the enzyme, resulting in an enzyme-inhibitor complex that replicates the enzyme's tetrahedral intermediate/transition state. The structure of GGsTop-bound hGGT1 reveals its interactions with the enzyme and why neutral phosphonate diesters are more potent inhibitors than monoanionic phosphonates. These structures are the first structures for any eukaryotic GGT that include a molecule in the active site covalently bound to the catalytic Thr-381. The glutamate-bound structure shows the conformation of the enzyme prior to release of the final product and reveals novel information regarding the displacement of the main chain atoms that form the oxyanion hole and movement of the lid loop region when the active site is occupied. These data provide new insights into the mechanism of hGGT1-catalyzed reactions and will be invaluable in the development of new classes of hGGT1 inhibitors for therapeutic use. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Proteomic Profiling of Mitochondrial Enzymes during Skeletal Muscle Aging.

    PubMed

    Staunton, Lisa; O'Connell, Kathleen; Ohlendieck, Kay

    2011-03-07

    Mitochondria are of central importance for energy generation in skeletal muscles. Expression changes or functional alterations in mitochondrial enzymes play a key role during myogenesis, fibre maturation, and various neuromuscular pathologies, as well as natural fibre aging. Mass spectrometry-based proteomics suggests itself as a convenient large-scale and high-throughput approach to catalogue the mitochondrial protein complement and determine global changes during health and disease. This paper gives a brief overview of the relatively new field of mitochondrial proteomics and discusses the findings from recent proteomic surveys of mitochondrial elements in aged skeletal muscles. Changes in the abundance, biochemical activity, subcellular localization, and/or posttranslational modifications in key mitochondrial enzymes might be useful as novel biomarkers of aging. In the long term, this may advance diagnostic procedures, improve the monitoring of disease progression, help in the testing of side effects due to new drug regimes, and enhance our molecular understanding of age-related muscle degeneration.

  10. Enzymatically Regulated Peptide Pairing and Catalysis for the Bioanalysis of Extracellular Prometastatic Activities of Functionally Linked Enzymes

    NASA Astrophysics Data System (ADS)

    Li, Hao; Huang, Yue; Yu, Yue; Li, Tianqi; Li, Genxi; Anzai, Jun-Ichi

    2016-05-01

    Diseases such as cancer arise from systematical reconfiguration of interactions of exceedingly large numbers of proteins in cell signaling. The study of such complicated molecular mechanisms requires multiplexed detection of the inter-connected activities of several proteins in a disease-associated context. However, the existing methods are generally not well-equipped for this kind of application. Here a method for analyzing functionally linked protein activities is developed based on enzyme controlled pairing between complementary peptide helix strands, which simultaneously enables elaborate regulation of catalytic activity of the paired peptides. This method has been used to detect three different types of protein modification enzymes that participate in the modification of extracellular matrix and the formation of invasion front in tumour. In detecting breast cancer tissue samples using this method, up-regulated activity can be observed for two of the assessed enzymes, while the third enzyme is found to have a subtle fluctuation of activity. These results may point to the application of this method in evaluating prometastatic activities of proteins in tumour.

  11. Effect of monensin on the levels of tachykinins and their processing enzyme activity in rat dorsal root ganglia.

    PubMed

    Chikuma, Toshiyuki; Inomata, Yuji; Tsuchida, Ken; Hojo, Hiroshi; Kato, Takeshi

    2002-06-28

    Th effect of monensin, which inhibits trans-Golgi function, on the levels of tachykinins and their processing enzyme activity was examined in organ-cultured rat dorsal root ganglia (DRG). Using an enzyme immunoassay method, we measured neurokinin A and substance P immunoreactivity in the DRG cultured for 72 h with and without 0.1 microM monensin. Both tachykinins were reduced in the DRG treated with monensin. Treatment with monensin also reduced the activity of carboxypeptidase E, which is one of the proteolytic processing enzymes of neuropeptides. These data suggest that proteolytic processing enzymes may in part modulate the biological activity of neuropeptides within a trans-Golgi apparatus.

  12. Active Site Hydrophobicity and the Convergent Evolution of Paraoxonase Activity in Structurally Divergent Enzymes: The Case of Serum Paraoxonase 1

    PubMed Central

    2016-01-01

    Serum paraoxonase 1 (PON1) is a native lactonase capable of promiscuously hydrolyzing a broad range of substrates, including organophosphates, esters, and carbonates. Structurally, PON1 is a six-bladed β-propeller with a flexible loop (residues 70–81) covering the active site. This loop contains a functionally critical Tyr at position 71. We have performed detailed experimental and computational analyses of the role of selected Y71 variants in the active site stability and catalytic activity in order to probe the role of Y71 in PON1’s lactonase and organophosphatase activities. We demonstrate that the impact of Y71 substitutions on PON1’s lactonase activity is minimal, whereas the kcat for the paraoxonase activity is negatively perturbed by up to 100-fold, suggesting greater mutational robustness of the native activity. Additionally, while these substitutions modulate PON1’s active site shape, volume, and loop flexibility, their largest effect is in altering the solvent accessibility of the active site by expanding the active site volume, allowing additional water molecules to enter. This effect is markedly more pronounced in the organophosphatase activity than the lactonase activity. Finally, a detailed comparison of PON1 to other organophosphatases demonstrates that either a similar “gating loop” or a highly buried solvent-excluding active site is a common feature of these enzymes. We therefore posit that modulating the active site hydrophobicity is a key element in facilitating the evolution of organophosphatase activity. This provides a concrete feature that can be utilized in the rational design of next-generation organophosphate hydrolases that are capable of selecting a specific reaction from a pool of viable substrates. PMID:28026940

  13. Active Site Hydrophobicity and the Convergent Evolution of Paraoxonase Activity in Structurally Divergent Enzymes: The Case of Serum Paraoxonase 1.

    PubMed

    Blaha-Nelson, David; Krüger, Dennis M; Szeler, Klaudia; Ben-David, Moshe; Kamerlin, Shina Caroline Lynn

    2017-01-25

    Serum paraoxonase 1 (PON1) is a native lactonase capable of promiscuously hydrolyzing a broad range of substrates, including organophosphates, esters, and carbonates. Structurally, PON1 is a six-bladed β-propeller with a flexible loop (residues 70-81) covering the active site. This loop contains a functionally critical Tyr at position 71. We have performed detailed experimental and computational analyses of the role of selected Y71 variants in the active site stability and catalytic activity in order to probe the role of Y71 in PON1's lactonase and organophosphatase activities. We demonstrate that the impact of Y71 substitutions on PON1's lactonase activity is minimal, whereas the k cat for the paraoxonase activity is negatively perturbed by up to 100-fold, suggesting greater mutational robustness of the native activity. Additionally, while these substitutions modulate PON1's active site shape, volume, and loop flexibility, their largest effect is in altering the solvent accessibility of the active site by expanding the active site volume, allowing additional water molecules to enter. This effect is markedly more pronounced in the organophosphatase activity than the lactonase activity. Finally, a detailed comparison of PON1 to other organophosphatases demonstrates that either a similar "gating loop" or a highly buried solvent-excluding active site is a common feature of these enzymes. We therefore posit that modulating the active site hydrophobicity is a key element in facilitating the evolution of organophosphatase activity. This provides a concrete feature that can be utilized in the rational design of next-generation organophosphate hydrolases that are capable of selecting a specific reaction from a pool of viable substrates.

  14. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maltz, Lauren

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure ofmore » the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.« less

  15. Impact of microbial growth inhibition and proteolytic activity on the stability of a new formulation containing a phytate-degrading enzyme obtained from mushroom.

    PubMed

    Spier, Michele R; Siepmann, Francieli B; Staack, Larissa; Souza, Priscila Z; Kumar, Vikas; Medeiros, Adriane B P; Soccol, Carlos R

    2016-10-02

    The development of stable enzymes is a key issue in both the food and feed industries. Consequently, the aim of the current study is to evaluate the impact of various additives (sodium chloride, sodium citrate, mannitol, methylparaben, polyethylene glycol 3350, ethylenediaminetetraacetic acid disodium salt, and a serine protease inhibitor) on the stability of a mushroom phytase produced by solid-state cultivation and recovery. Also observed was the effect of the additives on microbial growth inhibition by monitoring both the change in optical density over 30 days of storage and proteolytic activity. Initially, eight experimental formulations were prepared along with a control. After screening, a 3(2) factorial design was applied to define suitable concentrations of the selected additives. Among the eight formulations tested, the formulation containing NaCl, PEG 3350, and methylparaben retained all of the initial phytase activity after 50 days of storage, with no detected interference from protease activity. Sodium citrate, a metal chelation agent, presented the unusual effect of reducing protease activity in the formulations. Although all formulations presented better phytase stability when compared to the control, NaCl and PEG were both able to prolong the stability of the enzyme activity and also to inhibit microbial growth during storage, making them favorable for application as food and feed additives.

  16. Soil zymography - A novel technique for mapping enzyme activity in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Spohn, Marie

    2014-05-01

    The effect plant roots on microbial activity in soil at the millimeter scale is poorly understood. One reason for this is that spatially explicit methods for the study of microbial activity in soil are limited. Here we present a quantitative in situ technique for mapping the distribution of exoenzymes in soil along with some results about the effects of roots on exoenzyme activity in soil. In the first study we showed that both acid and alkaline phosphatase activity were up to 5.4-times larger in the rhizosphere of Lupinus albus than in the bulk soil. While acid phosphatase activity (produced by roots and microorganisms) was closely associated with roots, alkaline phosphatase activity (produced only by microorganisms) was more widely distributed, leading to a 2.5-times larger area of activity of alkaline than of acid phosphatase. These results indicate a spatial differentiation of different ecophysiological groups of organic phosphorus mineralizing organisms in the rhizosphere which might alleviate a potential competition for phosphorus between them. In a second study cellulase, chitinase and phosphatase activities were analyzed in the presence of living Lupinus polyphyllus roots and dead/dying roots (in the same soils 10, 20 and 30 days after cutting the L. polyphyllus shoots). The activity of all three enzymes was 9.0 to 13.9-times higher at the living roots compared to the bulk soil. Microhotspots of cellulase, chitinase and phosphatase activity in the soil were found up to 60 mm away from the living roots. 10 days after shoot cutting, the areas of high activities of cellulase and phosphatase activity were extend up to 55 mm away from the next root, while the extension of the area of chitinase activity did not change significantly. At the root, cellulase and chitinase activity increased first at the root tips after shoot cutting and showed maximal activity 20 days after shoot cutting. The number and activity of microhotspots of chitinase activity was maximal 10

  17. Determination of Microbial Extracellular Enzyme Activity in Waters, Soils, and Sediments using High Throughput Microplate Assays

    PubMed Central

    Jackson, Colin R.; Tyler, Heather L.; Millar, Justin J.

    2013-01-01

    Much of the nutrient cycling and carbon processing in natural environments occurs through the activity of extracellular enzymes released by microorganisms. Thus, measurement of the activity of these extracellular enzymes can give insights into the rates of ecosystem level processes, such as organic matter decomposition or nitrogen and phosphorus mineralization. Assays of extracellular enzyme activity in environmental samples typically involve exposing the samples to artificial colorimetric or fluorometric substrates and tracking the rate of substrate hydrolysis. Here we describe microplate based methods for these procedures that allow the analysis of large numbers of samples within a short time frame. Samples are allowed to react with artificial substrates within 96-well microplates or deep well microplate blocks, and enzyme activity is subsequently determined by absorption or fluorescence of the resulting end product using a typical microplate reader or fluorometer. Such high throughput procedures not only facilitate comparisons between spatially separate sites or ecosystems, but also substantially reduce the cost of such assays by reducing overall reagent volumes needed per sample. PMID:24121617

  18. Determination of microbial extracellular enzyme activity in waters, soils, and sediments using high throughput microplate assays.

    PubMed

    Jackson, Colin R; Tyler, Heather L; Millar, Justin J

    2013-10-01

    Much of the nutrient cycling and carbon processing in natural environments occurs through the activity of extracellular enzymes released by microorganisms. Thus, measurement of the activity of these extracellular enzymes can give insights into the rates of ecosystem level processes, such as organic matter decomposition or nitrogen and phosphorus mineralization. Assays of extracellular enzyme activity in environmental samples typically involve exposing the samples to artificial colorimetric or fluorometric substrates and tracking the rate of substrate hydrolysis. Here we describe microplate based methods for these procedures that allow the analysis of large numbers of samples within a short time frame. Samples are allowed to react with artificial substrates within 96-well microplates or deep well microplate blocks, and enzyme activity is subsequently determined by absorption or fluorescence of the resulting end product using a typical microplate reader or fluorometer. Such high throughput procedures not only facilitate comparisons between spatially separate sites or ecosystems, but also substantially reduce the cost of such assays by reducing overall reagent volumes needed per sample.

  19. Effects of Soil Organic Matter Properties and Microbial Community Composition on Enzyme Activities in Cryoturbated Arctic Soils

    PubMed Central

    Schnecker, Jörg; Wild, Birgit; Hofhansl, Florian; Eloy Alves, Ricardo J.; Bárta, Jiří; Čapek, Petr; Fuchslueger, Lucia; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Hofer, Angelika; Kienzl, Sandra; Knoltsch, Anna; Lashchinskiy, Nikolay; Mikutta, Robert; Šantrůčková, Hana; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Weltin, Georg; Richter, Andreas

    2014-01-01

    Enzyme-mediated decomposition of soil organic matter (SOM) is controlled, amongst other factors, by organic matter properties and by the microbial decomposer community present. Since microbial community composition and SOM properties are often interrelated and both change with soil depth, the drivers of enzymatic decomposition are hard to dissect. We investigated soils from three regions in the Siberian Arctic, where carbon rich topsoil material has been incorporated into the subsoil (cryoturbation). We took advantage of this subduction to test if SOM properties shape microbial community composition, and to identify controls of both on enzyme activities. We found that microbial community composition (estimated by phospholipid fatty acid analysis), was similar in cryoturbated material and in surrounding subsoil, although carbon and nitrogen contents were similar in cryoturbated material and topsoils. This suggests that the microbial community in cryoturbated material was not well adapted to SOM properties. We also measured three potential enzyme activities (cellobiohydrolase, leucine-amino-peptidase and phenoloxidase) and used structural equation models (SEMs) to identify direct and indirect drivers of the three enzyme activities. The models included microbial community composition, carbon and nitrogen contents, clay content, water content, and pH. Models for regular horizons, excluding cryoturbated material, showed that all enzyme activities were mainly controlled by carbon or nitrogen. Microbial community composition had no effect. In contrast, models for cryoturbated material showed that enzyme activities were also related to microbial community composition. The additional control of microbial community composition could have restrained enzyme activities and furthermore decomposition in general. The functional decoupling of SOM properties and microbial community composition might thus be one of the reasons for low decomposition rates and the persistence of 400 Gt

  20. Atrazine degradation and enzyme activities in an agricultural soil under two tillage systems.

    PubMed

    Mahía, Jorge; Martín, Angela; Carballas, Tarsy; Díaz-Raviña, Montserrat

    2007-05-25

    The content of atrazine and its metabolites (hydroxyatrazine, deethylatrazine and deisopropylatrazine) as well as the activities of two soil enzymes (urease and beta-glucosidase) were evaluated in an acid agricultural soil, located in a temperate humid zone (Galicia, NW Spain), with an annual ryegrass-maize rotation under conventional tillage (CT) and no tillage (NT). Samples were collected during two consecutive years from the arable layer at two depths (0-5 cm and 5-20 cm) and different times after atrazine application. Hydroxyatrazine and deisopropylatrazine were the main metabolites resulting from atrazine degradation in the acid soil studied, the highest levels being detected in the surface layer of the NT treatment. A residual effect of atrazine was observed since hydroxyatrazine was detected in the arable layer (0-5 cm, 5-20 cm) even one year after the herbicide application. Soil enzyme activities in the upper 5 cm layer under NT were consistently higher than those in the same layer under CT. Urease and beta-glucosidase activities decreased with depth in the profile under NT but they did not show any differences between the two depths for the plots under CT. For both tillage systems enzyme activities also reflected temporal changes during the maize cultivation; however, no consistent effect of the herbicide application was observed.

  1. Rational assignment of key motifs for function guides in silico enzyme identification.

    PubMed

    Höhne, Matthias; Schätzle, Sebastian; Jochens, Helge; Robins, Karen; Bornscheuer, Uwe T

    2010-11-01

    Biocatalysis has emerged as a powerful alternative to traditional chemistry, especially for asymmetric synthesis. One key requirement during process development is the discovery of a biocatalyst with an appropriate enantiopreference and enantioselectivity, which can be achieved, for instance, by protein engineering or screening of metagenome libraries. We have developed an in silico strategy for a sequence-based prediction of substrate specificity and enantiopreference. First, we used rational protein design to predict key amino acid substitutions that indicate the desired activity. Then, we searched protein databases for proteins already carrying these mutations instead of constructing the corresponding mutants in the laboratory. This methodology exploits the fact that naturally evolved proteins have undergone selection over millions of years, which has resulted in highly optimized catalysts. Using this in silico approach, we have discovered 17 (R)-selective amine transaminases, which catalyzed the synthesis of several (R)-amines with excellent optical purity up to >99% enantiomeric excess.

  2. Correction: Mesoporous titania thin films as efficient enzyme carriers for paraoxon determination/detoxification: effects of enzyme binding and pore hierarchy on the biocatalyst activity and reusability.

    PubMed

    Frančič, N; Bellino, M G; Soler-Illia, G J A A; Lobnik, A

    2016-07-07

    Correction for 'Mesoporous titania thin films as efficient enzyme carriers for paraoxon determination/detoxification: effects of enzyme binding and pore hierarchy on the biocatalyst activity and reusability' by N. Frančičet al., Analyst, 2014, 139, 3127-3136.

  3. Nano-Biotechnology in Using Enzymes for Environmental Remediation: Single-Enzyme Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jungbae; Grate, Jay W.

    2005-01-01

    We have developed armored single-enzyme nanoparticles (SENs), which dramatically stabilize a protease (a-chymotrypsin, CT) by surrounding each enzyme molecule with a porous composite organic/inorganic shell of less than a few nanometers thick. The armored enzymes show no decrease in CT activity at 30°C for a day while free CT activity is rapidly reduced by orders of magnitude. The armored shell around CT is sufficiently thin and porous that it does not place any serious mass-transfer limitation of substrate. This unique approach will have a great impact in using enzymes in various fields, including environmental remediation.

  4. Proteolytic enzyme activities in Cheddar cheese juice made using lactococcal starters of differing autolytic properties.

    PubMed

    Sheehan, A; Cuinn, G O'; Fitzgerald, R J; Wilkinson, M G

    2006-04-01

    To determine proteolytic enzyme activities released in Cheddar cheese juice manufactured using lactococcal starter strains of differing autolytic properties. The activities of residual chymosin, cell envelope proteinase and a range of intracellular proteolytic enzymes were determined during the first 70 days of ripening when starter lactococci predominate the microbial flora. In general, in cell free extracts (CFE) of the strains, the majority of proteolytic activities was highest for Lactococcus lactis HP, intermediate for L. lactis AM2 and lowest for L. lactis 303. However, in cheese juice, as ripening progressed, released proteolytic activities were highest for the highly autolytic strain L. lactis AM2, intermediate for L. lactis 303 and lowest for L. lactis HP. These results indicate that strain related differences in autolysis influence proteolytic enzyme activities released into Cheddar cheese during ripening. No correlation was found between proteolytic potential of the starter strains measured in CFE prior to cheese manufacture and levels of activities released in cheese juice. The findings further support the importance of autolysis of lactococcal starters in determining the levels of proteolytic activities present in cheese during initial stages of ripening.

  5. Chemical ecology of the luna moth : Effects of host plant on detoxification enzyme activity.

    PubMed

    Lindroth, R L

    1989-07-01

    The effects of food plant on larval performance and midgut detoxification enzymes were investigated in larvae of the luna moth,Actias luna. Neonate larvae were fed leaves of black cherry, cottonwood, quaking aspen, white willow, red oak, white oak, tulip tree, paper birch, black walnut, butternut, or shagbark hickory. First instar survival, larval duration, and pupal weights were monitored as indices of food quality. Midgut enzyme preparations from fifth instars were assayed for β-glucosidase, quinone reductase, polysubstrate monooxygenase, esterase, and glutathione transferase activities. Larval survival on seven of the 11 plant species, including several recorded host plants, was extremely poor. Larvae performed well, and quite similarly, on birch, walnut, butternut, and hickory. Activities of all enzyme systems except β-glucosidase were significantly influenced by larval host plant. Of the systems assayed, quinone reductase and glutathione transferase activities were especially high. Comparisons of these values with published values for other Lepidoptera support the hypothesis that these enzyme systems are involved in conferring tolerance to juglone and related quinones occurring in members of the plant family Juglandaceae. Results suggest that host plant utilization by luna is more specialized at the individual or population level than at the species level and that biochemical detoxification systems may play a role in such specialization.

  6. Prenatal ethanol exposure alters steroidogenic enzyme activity in newborn rat testes.

    PubMed

    Kelce, W R; Rudeen, P K; Ganjam, V K

    1989-10-01

    We have examined the in utero effects of ethanol exposure on testicular steroidogenesis in newborn male pups. Pregnant Sprague-Dawley rats were fed a liquid ethanol diet (35% ethanol-derived calories), a pair-fed isocaloric liquid diet, or a standard laboratory rat chow and water diet beginning on Day 12 of gestation and continuing through parturition. Although there were no significant differences in the enzymatic activity of 5-ene-3 beta-hydroxysteroid dehydrogenase/isomerase or C17,20-lyase, the enzymatic activity of 17 alpha-hydroxylase was significantly (p less than 0.01) reduced (i.e., approximately 36%) in the ethanol-exposed pups compared to those from the pair-fed and chow treatment groups. This lesion in testicular steroidogenic enzyme activity in newborn male pups exposed to alcohol in utero was transient as 17 alpha-hydroxylase activity from the ethanol-exposed animals returned to control levels by postnatal Day 20 and remained at control levels through adulthood (postnatal Day 60). These data suggest that the suppression of the perinatal testosterone surge in male rats exposed to alcohol in utero and the associated long term demasculinizing effects of prenatal ethanol exposure might be the result of reduced testicular steroidogenic enzyme activity in the perinatal animal.

  7. Multiple active site residues are important for photochemical efficiency in the light-activated enzyme protochlorophyllide oxidoreductase (POR).

    PubMed

    Menon, Binuraj R K; Hardman, Samantha J O; Scrutton, Nigel S; Heyes, Derren J

    2016-08-01

    Protochlorophyllide oxidoreductase (POR) catalyzes the light-driven reduction of protochlorophyllide (Pchlide), an essential, regulatory step in chlorophyll biosynthesis. The unique requirement of the enzyme for light has provided the opportunity to investigate how light energy can be harnessed to power biological catalysis and enzyme dynamics. Excited state interactions between the Pchlide molecule and the protein are known to drive the subsequent reaction chemistry. However, the structural features of POR and active site residues that are important for photochemistry and catalysis are currently unknown, because there is no crystal structure for POR. Here, we have used static and time-resolved spectroscopic measurements of a number of active site variants to study the role of a number of residues, which are located in the proposed NADPH/Pchlide binding site based on previous homology models, in the reaction mechanism of POR. Our findings, which are interpreted in the context of a new improved structural model, have identified several residues that are predicted to interact with the coenzyme or substrate. Several of the POR variants have a profound effect on the photochemistry, suggesting that multiple residues are important in stabilizing the excited state required for catalysis. Our work offers insight into how the POR active site geometry is finely tuned by multiple active site residues to support enzyme-mediated photochemistry and reduction of Pchlide, both of which are crucial to the existence of life on Earth. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Serum prolidase enzyme activity in obese subjects and its relationship with oxidative stress markers.

    PubMed

    Aslan, Mehmet; Duzenli, Ufuk; Esen, Ramazan; Soyoral, Yasemin Usul

    2017-10-01

    The relationship between increased serum enzyme activity of prolidase and increased rate of collagen turnover in the arterial wall has been asserted in previous studies. Collagen reflects much of the strength to the connective tissue involved in the arterial wall. Atherosclerosis is very common vessel disease and oxidative stress plays a pivotal role in the etiopathogenesis. Our objective was to examine the serum enzyme activity of prolidase and its possible relationships with oxidative stress parameters in obese subjects. Our present study was conducted 27 obese subjects and 26 age-matched healthy control subjects. The serum enzyme activity of prolidase in all study population was evaluated spectrophotometrically. Oxidative stress levels in obese subjects were analyzed with total antioxidant capacity (TAC) and total oxidant status (TOS) as well as oxidative stress index (OSI). Obese subjects have higher serum TOS and OSI indicators as well as prolidase activity than those in control subjects (for all; p<0.001). Moreover, obese subjects have lower levels of TAC than in those in healthy subjects (p<0.001). In the Pearson's correlation analysis, enzyme activity of prolidase was positively related with TOS (p<0.001, r=0.529) and OSI (p<0.001, r=0.519) as well as BMI (p<0.001, r=0.692) and inversely related with TAC (p<0.05, r=-0.405) in obese subjects. Increased serum prolidase activity and decreased antioxidant levels are likely to be a results of increased of oxidative stress levels in obese subjects. The significantly correlation between increased oxidative stress and increased prolidase activity may play a pivotal role in etiopathogenesis of atherosclerotic cardiovascular diseases in obese subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. [CSF enzyme activities in patients with head injury--especially on GOT, GPT, LDH, and CPK (AUTHOR'S TRANSL)].

    PubMed

    Nakamura, H; Mizuno, T; Kawamura, K; Kamino, T

    1976-08-01

    In our studies on patients with head injury, it was noted that there are some correlations between their clinical courses and the urinary excretion of creatine (cr), creatinine (Crn), 17-ketosteroid and 17-hydroxycorticosteroid. We observed the high urinary excretion of Cr in patients with severe head injury while almost negative in a mild case. We reported those facts in 1974. Also noted in patients with head injury is the relationship between the enzyme-activities (GOT, GPT, LDH and CPK) in the cerebrospinal fluid and their clinical courses. In this paper, we reported 34 cases of head injured patients (simple type: 2, concussion: 9, contusion: 8, acute intracranial hematoma: 7 and chronic intra-cranial hematoma: 8). The control values of CSF enzyme-activities were determined in these 14 cases (simple head injury, whip-lash injury and osteoma of the skull) as GOT less that 15, GPT less than 7, LDH less than 12 and CPK less than 8 units. In the moderate cases, a slight increase in activities of 4 enzymes in CSF were observed, while in severe or comatose cases, the enzyme-activities (especially LDH and CPK) were greater than in the controls. In the dead cases these values were five times as high as the normal case. In the patients recovering from a serious stage, these activities decreased to normal. High CSF enzyme-levels tend to indicate a poor prognosis and low levels a favorable progrosis. In the patients with a significant elevation of CSF enzymes, a high urinary excretion of Cr [normal range: 0-150 (ca. 50)mg/day] was often observed. There was no apparent correlation between the enzyme level in CSF and that in serum and the increase or decrease of these 4 enzymes are not always proprotionate with each other. As reported by Green (1958) and Lending (1961), cerebral cell necrosis and increased permeability of BLB, BBB or cerebral cell membrane can be related to the increase of enzymeactivities. With these observations, it can be considered that severe head

  10. Analysis of the activation of acetylcholinesterase by carbon nanoparticles using a monolithic immobilized enzyme microreactor: role of the water molecules in the active site gorge.

    PubMed

    Ibrahim, Firas; Andre, Claire; Iutzeler, Anne; Guillaume, Yves Claude

    2013-10-01

    A biochromatographic system was used to study the direct effect of carbon nanoparticles (CNPs) on the acetylcholinesterase (AChE) activity. The AChE enzyme was covalently immobilized on a monolithic CIM-disk via its NH2 residues. Our results showed an increase in the AChE activity in presence of CNPs. The catalytic constant (k(cat)) was increased while the Michaelis constant (K(m)) was slightly decreased. This indicated an increase in the enzyme efficiency with increase of the substrate affinity to the active site. The thermodynamic data of the activation mechanism of the enzyme, i.e. ΔH* and ΔS*, showed no change in the substrate interaction mechanism with the anionic binding site. The increase of the enthalpy (ΔH*) and the entropy (ΔS*) with decrease in the free energy of activation (Ea) was related to structural conformation change in the active site gorge. This affected the stability of water molecules in the active site gorge and facilitated water displacement by substrate for entering to the active site of the enzyme.

  11. Digestive enzyme activities of turbot (Scophthalmus maximus L.) during early developmental stages under culture condition.

    PubMed

    Tong, X H; Xu, S H; Liu, Q H; Li, J; Xiao, Z Z; Ma, D Y

    2012-06-01

    Digestive enzyme activities were analysed in turbot (Scophthalmus maximus) from hatching until 60 days after hatching (DAH). Trypsin sharply increased to the climax at 17 DAH and decreased until 31 DAH followed by a stable level thereafter. Amylase was determined at 4 DAH, reached the maximum value at 19 DAH and declined sharply to 39 DAH and remained at a low level thereafter, suggesting the carbohydrate component should remain at a low level in formulated diets. Pepsin was detected at 9 DAH and increased to 34 DAH and then remained at a stable level. The above results revealed pancreatic enzymes are no longer main enzymes for food digestion after the formation of functional stomach. Leucine-alanine peptidase (Leu-ala) and alkaline phosphatase (AP) and leucine aminopeptidase N (LAP) were found in newly hatched larvae. Both AP and LAP activities markedly increased to 23 DAH, decreased abruptly to 50 DAH and increased gradually to 60 DAH. Leu-ala reached the plateau from 23 to 39 DAH, followed by a decline to 46 DAH and an increase until 60 DAH. The brush border membrane (BBM)-bound enzyme activities increased from 30% at 31 DAH to 81% at 38 DAH of the total activities, indicating the maturation of intestinal tract.

  12. Citrate Accumulation-Related Gene Expression and/or Enzyme Activity Analysis Combined With Metabolomics Provide a Novel Insight for an Orange Mutant

    PubMed Central

    Guo, Ling-Xia; Shi, Cai-Yun; Liu, Xiao; Ning, Dong-Yuan; Jing, Long-Fei; Yang, Huan; Liu, Yong-Zhong

    2016-01-01

    ‘Hong Anliu’ (HAL, Citrus sinensis cv. Hong Anliu) is a bud mutant of ‘Anliu’ (AL), characterized by a comprehensive metabolite alteration, such as lower accumulation of citrate, high accumulation of lycopene and soluble sugars in fruit juice sacs. Due to carboxylic acid metabolism connects other metabolite biosynthesis and/or catabolism networks, we therefore focused analyzing citrate accumulation-related gene expression profiles and/or enzyme activities, along with metabolic fingerprinting between ‘HAL’ and ‘AL’. Compared with ‘AL’, the transcript levels of citrate biosynthesis- and utilization-related genes and/or the activities of their respective enzymes such as citrate synthase, cytosol aconitase and ATP-citrate lyase were significantly higher in ‘HAL’. Nevertheless, the mitochondrial aconitase activity, the gene transcript levels of proton pumps, including vacuolar H+-ATPase, vacuolar H+-PPase, and the juice sac-predominant p-type proton pump gene (CsPH8) were significantly lower in ‘HAL’. These results implied that ‘HAL’ has higher abilities for citrate biosynthesis and utilization, but lower ability for the citrate uptake into vacuole compared with ‘AL’. Combined with the metabolites-analyzing results, a model was then established and suggested that the reduction in proton pump activity is the key factor for the low citrate accumulation and the comprehensive metabolite alterations as well in ‘HAL’. PMID:27385485

  13. Assaying Oxidative Coupling Activity of CYP450 Enzymes.

    PubMed

    Agarwal, Vinayak

    2018-01-01

    Cytochrome P450 (CYP450) enzymes are ubiquitous catalysts in natural product biosynthetic schemes where they catalyze numerous different transformations using radical intermediates. In this protocol, we describe procedures to assay the activity of a marine bacterial CYP450 enzyme Bmp7 which catalyzes the oxidative radical coupling of polyhalogenated aromatic substrates. The broad substrate tolerance of Bmp7, together with rearrangements of the aryl radical intermediates leads to a large number of products to be generated by the enzymatic action of Bmp7. The complexity of the product pool generated by Bmp7 thus presents an analytical challenge for structural elucidation. To address this challenge, we describe mass spectrometry-based procedures to provide structural insights into aryl crosslinked products generated by Bmp7, which can complement subsequent spectroscopic experiments. Using the procedures described here, for the first time, we show that Bmp7 can efficiently accept polychlorinated aryl substrates, in addition to the physiological polybrominated substrates for the biosynthesis of polyhalogenated marine natural products. © 2018 Elsevier Inc. All rights reserved.

  14. Marine-derived Penicillium in Korea: diversity, enzyme activity, and antifungal properties.

    PubMed

    Park, Myung Soo; Fong, Jonathan J; Oh, Seung-Yoon; Kwon, Kae Kyoung; Sohn, Jae Hak; Lim, Young Woon

    2014-08-01

    The diversity of marine-derived Penicillium from Korea was investigated using morphological and multigene phylogenetic approaches, analyzing sequences of the internal transcribed spacer region, β-tubulin gene, and RNA polymerase subunit II gene. In addition, the biological activity of all isolated strains was evaluated. We tested for the extracellular enzyme activity of alginase, endoglucanase, and β-glucosidase, and antifungal activity against two plant pathogens (Colletotrichum acutatum and Fusarium oxysporum). A total of 184 strains of 36 Penicillium species were isolated, with 27 species being identified. The most common species were Penicillium polonicum (19.6 %), P. rubens (11.4 %), P. chrysogenum (11.4 %), and P. crustosum (10.9 %). The diversity of Penicillium strains isolated from soil (foreshore soil and sand) and marine macroorganisms was higher than the diversity of strains isolated from seawater. While many of the isolated strains showed alginase and β-glucosidase activity, no endoglucanase activity was found. More than half the strains (50.5 %) showed antifungal activity against at least one of the plant pathogens tested. Compared with other strains in this study, P. citrinum (strain SFC20140101-M662) showed high antifungal activity against both plant pathogens. The results reported here expand our knowledge of marine-derived Penicillium diversity. The relatively high proportion of strains that showed antifungal and enzyme activity demonstrates that marine-derived Penicillium have great potential to be used in the production of natural bioactive products for pharmaceutical and/or industrial use.

  15. New tricks for the glycyl radical enzyme family

    PubMed Central

    Backman, Lindsey R.F.; Funk, Michael A.; Dawson, Christopher D.; Drennan, Catherine. L.

    2018-01-01

    Glycyl radical enzymes (GREs) are important biological catalysts in both strict and facultative anaerobes, playing key roles both in the human microbiota and in the environment. GREs contain a backbone glycyl radical that is post-translationally installed, enabling radical-based mechanisms. GREs function in several metabolic pathways including mixed acid fermentation, ribonucleotide reduction, and the anaerobic breakdown of the nutrient choline and the pollutant toluene. By generating a substrate-based radical species within the active site, GREs enable C-C, C-O, and C-N bond breaking and formation steps that are otherwise challenging for non-radical enzymes. Identification of previously unknown family members from genomic data and the determination of structures of well-characterized GREs have expanded the scope of GRE-catalyzed reactions as well as defined key features that enable radical catalysis. Here we review the structures and mechanisms of characterized GREs, classifying members into five categories. We consider the open questions about each of the five GRE classes and evaluate the tools available to interrogate uncharacterized GREs. PMID:28901199

  16. Ultrasound in Enzyme Activation and Inactivation

    NASA Astrophysics Data System (ADS)

    Mawson, Raymond; Gamage, Mala; Terefe, Netsanet Shiferaw; Knoerzer, Kai

    As discussed in previous chapters, most effects due to ultrasound arise from cavitation events, in particular, collapsing cavitation bubbles. These collapsing bubbles generate very high localized temperatures and pressure shockwaves along with micro-streaming that is associated with high shear forces. These effects can be used to accelerate the transport of substrates and reaction products to and from enzymes, and to enhance mass transfer in enzyme reactor systems, and thus improve efficiency. However, the high velocity streaming, together with the formation of hydroxy radicals and heat generation during collapsing of bubbles, may also potentially affect the biocatalyst stability, and this can be a limiting factor in combined ultrasound/enzymatic applications. Typically, enzymes can be readily denatured by slight changes in environmental conditions, including temperature, pressure, shear stress, pH and ionic strength.

  17. Influence of protoplast fusion between two Trichoderma spp. on extracellular enzymes production and antagonistic activity

    PubMed Central

    Hassan, Mohamed M.

    2014-01-01

    Biological control plays a crucial role in grapevine pathogens disease management. The cell-wall degrading enzymes chitinase, cellulase and β-glucanase have been suggested to be essential for the mycoparasitism activity of Trichoderma species against grapevine fungal pathogens. In order to develop a useful strain as a single source of these vital enzymes, it was intended to incorporate the characteristics of two parental fungicides tolerant mutants of Trichoderma belonging to the high chitinase producing species T. harzianum and the high cellulase producing species T. viride, by fusing their protoplasts. The phylogeny of the parental strains was carried out using a sequence of the 5.8S-ITS region. The BLAST of the obtained sequence identified these isolates as T. harzianum and T. viride. Protoplasts were isolated using lysing enzymes and were fused using polyethylene glycol. The fused protoplasts have been regenerated on protoplast regeneration minimal medium supplemented with two selective fungicides. Among the 40 fast growing fusants, 17 fusants were selected based on their enhanced growth on selective media for further studies. The fusant strains were growing 60%–70% faster than the parents up to third generation. All the 17 selected fusants exhibited morphological variations. Some fusant strains displayed threefold increased chitinase enzyme activity and twofold increase in β-glucanase enzyme activity compared to the parent strains. Most fusants showed powerful antagonistic activity against Macrophomin aphaseolina, Pythium ultimum and Sclerotium rolfsii pathogens. Fusant number 15 showed the highest inhibition percentage (92.8%) against M. phaseolina and P. ultimum, while fusant number 9 showed the highest inhibition percentage (98.2%) against the growth of S. rolfsii. A hyphal intertwining and degradation phenomenon was observed by scanning electron microscope. The Trichoderma antagonistic effect against pathogenic fungal mycelia was due to the

  18. Influence of protoplast fusion between two Trichoderma spp. on extracellular enzymes production and antagonistic activity.

    PubMed

    Hassan, Mohamed M

    2014-11-02

    Biological control plays a crucial role in grapevine pathogens disease management. The cell-wall degrading enzymes chitinase, cellulase and β-glucanase have been suggested to be essential for the mycoparasitism activity of Trichoderma species against grapevine fungal pathogens. In order to develop a useful strain as a single source of these vital enzymes, it was intended to incorporate the characteristics of two parental fungicides tolerant mutants of Trichoderma belonging to the high chitinase producing species T. harzianum and the high cellulase producing species T. viride , by fusing their protoplasts. The phylogeny of the parental strains was carried out using a sequence of the 5.8S-ITS region. The BLAST of the obtained sequence identified these isolates as T. harzianum and T. viride . Protoplasts were isolated using lysing enzymes and were fused using polyethylene glycol. The fused protoplasts have been regenerated on protoplast regeneration minimal medium supplemented with two selective fungicides. Among the 40 fast growing fusants, 17 fusants were selected based on their enhanced growth on selective media for further studies. The fusant strains were growing 60%-70% faster than the parents up to third generation. All the 17 selected fusants exhibited morphological variations. Some fusant strains displayed threefold increased chitinase enzyme activity and twofold increase in β-glucanase enzyme activity compared to the parent strains. Most fusants showed powerful antagonistic activity against Macrophomin aphaseolina , Pythium ultimum and Sclerotium rolfsii pathogens. Fusant number 15 showed the highest inhibition percentage (92.8%) against M. phaseolina and P. ultimum, while fusant number 9 showed the highest inhibition percentage (98.2%) against the growth of S. rolfsii. A hyphal intertwining and degradation phenomenon was observed by scanning electron microscope. The Trichoderma antagonistic effect against pathogenic fungal mycelia was due to the

  19. Exquisite Enzyme-Fenton Biomimetic Catalysts for Hydroxyl Radical Production by Mimicking an Enzyme Cascade.

    PubMed

    Zhang, Qi; Chen, Shuo; Wang, Hua; Yu, Hongtao

    2018-03-14

    Hydrogen peroxide (H 2 O 2 ) is a key reactant in the Fenton process. As a byproduct of enzymatic reaction, H 2 O 2 can be obtained via catalytical oxidation of glucose using glucose oxidase in the presence of O 2 . Another oxidation product (gluconic acid) can suitably adjust the microenvironmental pH contributing to the Fe 3+ /Fe 2+ cycle in the Fenton reaction. Enzymes are extremely efficient at catalyzing a variety of reactions with high catalytic activity, substrate specificity, and yields in living organisms. Inspired by the multiple functions of natural multienzyme systems, an exquisite nanozyme-modified α-FeOOH/porous carbon (PC) biomimetic catalyst constructed by in situ growth of glucose oxidase-mimicking Au nanoparticles and crystallization of adsorbed ferric ions within carboxyl into hierarchically PC is developed as an efficient enzyme-Fenton catalyst. The products (H 2 O 2 , ∼4.07 mmol·L -1 ) of the first enzymatic reaction are immediately used as substrates for the second Fenton-like reaction to generate the valuable • OH (∼96.84 μmol·L -1 ), thus mimicking an enzyme cascade pathway. α-FeOOH nanocrystals, attached by C-O-Fe bondings, are encapsulated into the mesoporous PC frameworks, facilitating the electron transfer between α-FeOOH and the PC support and greatly suppressing iron leaching. This study paves a new avenue for designing biomimetic enzyme-based Fenton catalysts mimicking a natural system for • OH production.

  20. Hydrolytic enzyme activities in shiitake mushroom (Lentinula edodes) strains cultivated on coffee pulp.

    PubMed

    Mata, Gerardo; Salmones, Dulce; Pérez-Merlo, Rosalía

    Hydrolytic enzyme production (cellulases, laminarinases and xylanases) was studied in cultures of Lentinula edodes on sterilized coffee pulp. Samples of substrate colonized by mycelia were taken after 7, 14, 21, 28 and 35 days of incubation at 25°C (W1 to W5) and during the fruiting period at different stages: formation of primordia (PF), first harvest (H) and one week after the first harvest (PH). The enzymatic activity was lower during the early mycelial growth and showed higher levels during the formation and development of fruiting bodies. During the reproductive stage of the fungus, the samples were subjected to a soaking treatment; however, it was not possible to relate this soaking treatment to the increase in enzyme production. The levels of enzymatic activity suggest that secretion of the studied enzymes does not influence the adaptability of the strains to the substrate. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.