Sample records for key experimental observations

  1. Experimental quantum key distribution with finite-key security analysis for noisy channels.

    PubMed

    Bacco, Davide; Canale, Matteo; Laurenti, Nicola; Vallone, Giuseppe; Villoresi, Paolo

    2013-01-01

    In quantum key distribution implementations, each session is typically chosen long enough so that the secret key rate approaches its asymptotic limit. However, this choice may be constrained by the physical scenario, as in the perspective use with satellites, where the passage of one terminal over the other is restricted to a few minutes. Here we demonstrate experimentally the extraction of secure keys leveraging an optimal design of the prepare-and-measure scheme, according to recent finite-key theoretical tight bounds. The experiment is performed in different channel conditions, and assuming two distinct attack models: individual attacks or general quantum attacks. The request on the number of exchanged qubits is then obtained as a function of the key size and of the ambient quantum bit error rate. The results indicate that viable conditions for effective symmetric, and even one-time-pad, cryptography are achievable.

  2. Experimental demonstration of counterfactual quantum key distribution

    NASA Astrophysics Data System (ADS)

    Ren, M.; Wu, G.; Wu, E.; Zeng, H.

    2011-04-01

    Counterfactual quantum key distribution provides natural advantage against the eavesdropping on the actual signal particles. It can prevent the photon-number-splitting attack when a weak coherent light source is used for the practical implementation. We experimentally realized the counterfactual quantum key distribution in an unbalanced Mach-Zehnder interferometer of 12.5-km-long quantum channel with a high-fringe visibility of 97.4%. According to the security analysis, the system was robust against the photon-number-splitting attack. The article is published in the original.

  3. Experimental demonstration of subcarrier multiplexed quantum key distribution system.

    PubMed

    Mora, José; Ruiz-Alba, Antonio; Amaya, Waldimar; Martínez, Alfonso; García-Muñoz, Víctor; Calvo, David; Capmany, José

    2012-06-01

    We provide, to our knowledge, the first experimental demonstration of the feasibility of sending several parallel keys by exploiting the technique of subcarrier multiplexing (SCM) widely employed in microwave photonics. This approach brings several advantages such as high spectral efficiency compatible with the actual secure key rates, the sharing of the optical fainted pulse by all the quantum multiplexed channels reducing the system complexity, and the possibility of upgrading with wavelength division multiplexing in a two-tier scheme, to increase the number of parallel keys. Two independent quantum SCM channels featuring a sifted key rate of 10 Kb/s/channel over a link with quantum bit error rate <2% is reported.

  4. Experimental quantum key distribution with source flaws

    NASA Astrophysics Data System (ADS)

    Xu, Feihu; Wei, Kejin; Sajeed, Shihan; Kaiser, Sarah; Sun, Shihai; Tang, Zhiyuan; Qian, Li; Makarov, Vadim; Lo, Hoi-Kwong

    2015-09-01

    Decoy-state quantum key distribution (QKD) is a standard technique in current quantum cryptographic implementations. Unfortunately, existing experiments have two important drawbacks: the state preparation is assumed to be perfect without errors and the employed security proofs do not fully consider the finite-key effects for general attacks. These two drawbacks mean that existing experiments are not guaranteed to be proven to be secure in practice. Here, we perform an experiment that shows secure QKD with imperfect state preparations over long distances and achieves rigorous finite-key security bounds for decoy-state QKD against coherent attacks in the universally composable framework. We quantify the source flaws experimentally and demonstrate a QKD implementation that is tolerant to channel loss despite the source flaws. Our implementation considers more real-world problems than most previous experiments, and our theory can be applied to general discrete-variable QKD systems. These features constitute a step towards secure QKD with imperfect devices.

  5. Experimental land observing data system feasibility study

    NASA Technical Reports Server (NTRS)

    Buckley, J. L.; Kraiman, H.

    1982-01-01

    An end-to-end data system to support a Shuttle-based Multispectral Linear Array (MLA) mission in the mid-1980's was defined. The experimental Land Observing System (ELOS) is discussed. A ground system that exploits extensive assets from the LANDSAT-D Program to effectively meet the objectives of the ELOS Mission was defined. The goal of 10 meter pixel precision, the variety of data acquisition capabilities, and the use of Shuttle are key to the mission requirements, Ground mission management functions are met through the use of GSFC's Multi-Satellite Operations Control Center (MSOCC). The MLA Image Generation Facility (MIGF) combines major hardware elements from the Applications Development Data System (ADDS) facility and LANDSAT Assessment System (LAS) with a special purpose MLA interface unit. LANDSAT-D image processing techniques, adapted to MLA characteristics, form the basis for the use of existing software and the definition of new software required.

  6. Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium, Desulfovibrio vulgaris.

    PubMed

    Zhou, Aifen; Lau, Rebecca; Baran, Richard; Ma, Jincai; von Netzer, Frederick; Shi, Weiling; Gorman-Lewis, Drew; Kempher, Megan L; He, Zhili; Qin, Yujia; Shi, Zhou; Zane, Grant M; Wu, Liyou; Bowen, Benjamin P; Northen, Trent R; Hillesland, Kristina L; Stahl, David A; Wall, Judy D; Arkin, Adam P; Zhou, Jizhong

    2017-11-14

    Rapid genetic and phenotypic adaptation of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough to salt stress was observed during experimental evolution. In order to identify key metabolites important for salt tolerance, a clone, ES10-5, which was isolated from population ES10 and allowed to experimentally evolve under salt stress for 5,000 generations, was analyzed and compared to clone ES9-11, which was isolated from population ES9 and had evolved under the same conditions for 1,200 generations. These two clones were chosen because they represented the best-adapted clones among six independently evolved populations. ES10-5 acquired new mutations in genes potentially involved in salt tolerance, in addition to the preexisting mutations and different mutations in the same genes as in ES9-11. Most basal abundance changes of metabolites and phospholipid fatty acids (PLFAs) were lower in ES10-5 than ES9-11, but an increase of glutamate and branched PLFA i17:1ω9c under high-salinity conditions was persistent. ES9-11 had decreased cell motility compared to the ancestor; in contrast, ES10-5 showed higher cell motility under both nonstress and high-salinity conditions. Both genotypes displayed better growth energy efficiencies than the ancestor under nonstress or high-salinity conditions. Consistently, ES10-5 did not display most of the basal transcriptional changes observed in ES9-11, but it showed increased expression of genes involved in glutamate biosynthesis, cation efflux, and energy metabolism under high salinity. These results demonstrated the role of glutamate as a key osmolyte and i17:1ω9c as the major PLFA for salt tolerance in D. vulgaris The mechanistic changes in evolved genotypes suggested that growth energy efficiency might be a key factor for selection. IMPORTANCE High salinity (e.g., elevated NaCl) is a stressor that affects many organisms. Salt tolerance, a complex trait involving multiple cellular pathways, is attractive for

  7. Pulsar-aided SETI experimental observations

    NASA Technical Reports Server (NTRS)

    Heidmann, J.; Biraud, F.; Tarter, J.

    1989-01-01

    The rotational frequencies of pulsars are used to select preferred radio frequencies for SETI. Pulsar rotational frequencies are converted into SETI frequencies in the 1-10 GHz Galactic radio window. Experimental observations using the frequencies are conducted for target stars closer than 25 parsecs, unknown targets in a globular cluster, and unknown targets in the Galaxy closer than 2.5 kpc. The status of these observations is discussed.

  8. Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium, Desulfovibrio vulgaris

    PubMed Central

    Zhou, Aifen; Lau, Rebecca; Baran, Richard; Ma, Jincai; von Netzer, Frederick; Shi, Weiling; Gorman-Lewis, Drew; Kempher, Megan L.; He, Zhili; Qin, Yujia; Shi, Zhou; Zane, Grant M.; Wu, Liyou; Bowen, Benjamin P.; Northen, Trent R.; Hillesland, Kristina L.; Stahl, David A.; Wall, Judy D.; Arkin, Adam P.

    2017-01-01

    ABSTRACT Rapid genetic and phenotypic adaptation of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough to salt stress was observed during experimental evolution. In order to identify key metabolites important for salt tolerance, a clone, ES10-5, which was isolated from population ES10 and allowed to experimentally evolve under salt stress for 5,000 generations, was analyzed and compared to clone ES9-11, which was isolated from population ES9 and had evolved under the same conditions for 1,200 generations. These two clones were chosen because they represented the best-adapted clones among six independently evolved populations. ES10-5 acquired new mutations in genes potentially involved in salt tolerance, in addition to the preexisting mutations and different mutations in the same genes as in ES9-11. Most basal abundance changes of metabolites and phospholipid fatty acids (PLFAs) were lower in ES10-5 than ES9-11, but an increase of glutamate and branched PLFA i17:1ω9c under high-salinity conditions was persistent. ES9-11 had decreased cell motility compared to the ancestor; in contrast, ES10-5 showed higher cell motility under both nonstress and high-salinity conditions. Both genotypes displayed better growth energy efficiencies than the ancestor under nonstress or high-salinity conditions. Consistently, ES10-5 did not display most of the basal transcriptional changes observed in ES9-11, but it showed increased expression of genes involved in glutamate biosynthesis, cation efflux, and energy metabolism under high salinity. These results demonstrated the role of glutamate as a key osmolyte and i17:1ω9c as the major PLFA for salt tolerance in D. vulgaris. The mechanistic changes in evolved genotypes suggested that growth energy efficiency might be a key factor for selection. PMID:29138306

  9. Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium, Desulfovibrio vulgaris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Aifen; Lau, Rebecca; Baran, Richard

    ABSTRACT. Rapid genetic and phenotypic adaptation of the sulfate-reducing bacteriumDesulfovibrio vulgarisHildenborough to salt stress was observed during experimental evolution. In order to identify key metabolites important for salt tolerance, a clone, ES10-5, which was isolated from population ES10 and allowed to experimentally evolve under salt stress for 5,000 generations, was analyzed and compared to clone ES9-11, which was isolated from population ES9 and had evolved under the same conditions for 1,200 generations. These two clones were chosen because they represented the best-adapted clones among six independently evolved populations. ES10-5 acquired new mutations in genes potentially involved in salt tolerance, inmore » addition to the preexisting mutations and different mutations in the same genes as in ES9-11. Most basal abundance changes of metabolites and phospholipid fatty acids (PLFAs) were lower in ES10-5 than ES9-11, but an increase of glutamate and branched PLFA i17:1ω9c under high-salinity conditions was persistent. ES9-11 had decreased cell motility compared to the ancestor; in contrast, ES10-5 showed higher cell motility under both nonstress and high-salinity conditions. Both genotypes displayed better growth energy efficiencies than the ancestor under nonstress or high-salinity conditions. Consistently, ES10-5 did not display most of the basal transcriptional changes observed in ES9-11, but it showed increased expression of genes involved in glutamate biosynthesis, cation efflux, and energy metabolism under high salinity. These results demonstrated the role of glutamate as a key osmolyte and i17:1ω9c as the major PLFA for salt tolerance inD. vulgaris. The mechanistic changes in evolved genotypes suggested that growth energy efficiency might be a key factor for selection. IMPORTANCE. High salinity (e.g., elevated NaCl) is a stressor that affects many organisms. Salt tolerance, a complex trait involving multiple cellular pathways, is

  10. Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium, Desulfovibrio vulgaris

    DOE PAGES

    Zhou, Aifen; Lau, Rebecca; Baran, Richard; ...

    2017-11-14

    ABSTRACT. Rapid genetic and phenotypic adaptation of the sulfate-reducing bacteriumDesulfovibrio vulgarisHildenborough to salt stress was observed during experimental evolution. In order to identify key metabolites important for salt tolerance, a clone, ES10-5, which was isolated from population ES10 and allowed to experimentally evolve under salt stress for 5,000 generations, was analyzed and compared to clone ES9-11, which was isolated from population ES9 and had evolved under the same conditions for 1,200 generations. These two clones were chosen because they represented the best-adapted clones among six independently evolved populations. ES10-5 acquired new mutations in genes potentially involved in salt tolerance, inmore » addition to the preexisting mutations and different mutations in the same genes as in ES9-11. Most basal abundance changes of metabolites and phospholipid fatty acids (PLFAs) were lower in ES10-5 than ES9-11, but an increase of glutamate and branched PLFA i17:1ω9c under high-salinity conditions was persistent. ES9-11 had decreased cell motility compared to the ancestor; in contrast, ES10-5 showed higher cell motility under both nonstress and high-salinity conditions. Both genotypes displayed better growth energy efficiencies than the ancestor under nonstress or high-salinity conditions. Consistently, ES10-5 did not display most of the basal transcriptional changes observed in ES9-11, but it showed increased expression of genes involved in glutamate biosynthesis, cation efflux, and energy metabolism under high salinity. These results demonstrated the role of glutamate as a key osmolyte and i17:1ω9c as the major PLFA for salt tolerance inD. vulgaris. The mechanistic changes in evolved genotypes suggested that growth energy efficiency might be a key factor for selection. IMPORTANCE. High salinity (e.g., elevated NaCl) is a stressor that affects many organisms. Salt tolerance, a complex trait involving multiple cellular pathways, is

  11. Intermediate experimental vehicle, ESA program aerodynamics-aerothermodynamics key technologies for spacecraft design and successful flight

    NASA Astrophysics Data System (ADS)

    Dutheil, Sylvain; Pibarot, Julien; Tran, Dac; Vallee, Jean-Jacques; Tribot, Jean-Pierre

    2016-07-01

    With the aim of placing Europe among the world's space players in the strategic area of atmospheric re-entry, several studies on experimental vehicle concepts and improvements of critical re-entry technologies have paved the way for the flight of an experimental space craft. The successful flight of the Intermediate eXperimental Vehicle (IXV), under ESA's Future Launchers Preparatory Programme (FLPP), is definitively a significant step forward from the Atmospheric Reentry Demonstrator flight (1998), establishing Europe as a key player in this field. The IXV project objectives were the design, development, manufacture and ground and flight verification of an autonomous European lifting and aerodynamically controlled reentry system, which is highly flexible and maneuverable. The paper presents, the role of aerodynamics aerothermodynamics as part of the key technologies for designing an atmospheric re-entry spacecraft and securing a successful flight.

  12. Metrological challenges for measurements of key climatological observables Part 2: oceanic salinity

    NASA Astrophysics Data System (ADS)

    Pawlowicz, R.; Feistel, R.; McDougall, T. J.; Ridout, P.; Seitz, S.; Wolf, H.

    2016-02-01

    Salinity is a key variable in the modelling and observation of ocean circulation and ocean-atmosphere fluxes of heat and water. In this paper, we examine the climatological relevance of ocean salinity, noting fundamental deficiencies in the definition of this key observable, and its lack of a secure foundation in the International System of Units, the SI. The metrological history of salinity is reviewed, problems with its current definitions and measurement practices are analysed, and options for future improvements are discussed in conjunction with the recent seawater standard TEOS-10.

  13. A key role for Pre-B cell colony-enhancing factor in experimental hepatitis.

    PubMed

    Moschen, Alexander R; Gerner, Romana; Schroll, Andrea; Fritz, Teresa; Kaser, Arthur; Tilg, Herbert

    2011-08-01

    Pre-B cell colony-enhancing factor (PBEF), also known as nicotinamide phosphoribosyltransferase or visfatin, plays an important role in metabolic, inflammatory, and malignant diseases. Recent evidence suggests that blocking its enzymatic activity using a specific small-molecule inhibitor (FK866) might be beneficial in acute experimental inflammation. We investigated the role of PBEF in human liver disease and experimental hepatitis. PBEF serum levels and hepatic expression were determined in patients with chronic liver diseases. These studies were followed by in vivo experiments using concanavalin A (ConA) and D-galactosamine/lipopolysaccharide (LPS) models of experimental hepatitis. PBEF was either overexpressed by hydrodynamic perfusion or inhibited by FK866. In vivo findings were corroborated studying inflammatory responses of lentivirally PBEF-silenced or control FL83B mouse hepatocytes. Here, we demonstrate that PBEF serum levels were increased in patients with chronic liver diseases irrespective of disease stage and etiology. In particular, we observed enhanced PBEF expression in hepatocytes. Liver-targeted overexpression of PBEF rendered mice more susceptible to ConA- and D-galactosamine/LPS-induced hepatitis compared with control animals. In contrast, inhibition of PBEF using FK866 protected mice from ConA-induced liver damage and apoptosis. Administration of FK866 resulted in depletion of liver nicotinamide adenine dinucleotide+ levels and reduced proinflammatory cytokine expression. Additionally, FK866 protected mice in the D-galactosamine/LPS model of acute hepatitis. In vitro, PBEF-silenced mouse hepatocytes showed decreased responses after stimulation with LPS, lipoteichoic acid, and tumor necrosis factor α. In primary murine Kupffer cells, FK866 suppressed LPS-induced interleukin (IL)-6 production, whereas incubation with recombinant PBEF resulted in increased IL-6 release. Our data suggest that PBEF is of key importance in experimental hepatitis

  14. Progresses on the Intensive Observation Period of Watershed Allied Telemetry Experimental Research

    NASA Astrophysics Data System (ADS)

    Li, Xin; Li, Xiaowen; Li, Zengyuan; Ma, Mingguo; Wang, Jian; Liu, Qiang; Xiao, Qing; Chen, Erxue; Che, Tao; Hu, Zeyong

    2010-05-01

    The Watershed Allied Telemetry Experimental Research (WATER) is an intensively simultaneous airborne, satellite-borne and ground based remote sensing experiment aiming to improve the observability, understanding, and predictability of hydrological and related ecological processes at catchment scale. It was taken place in the Heihe River Basin, the second largest inland river basin in the arid regions of northwest China. WATER consists of the cold region, forest, and arid region hydrological experiments as well as a hydrometeorology experiment. It was divided into 4 phases, namely, the experiment planning period, pre-observation period, intensive observation period (IOP) and persistent observation period. The field campaigns have been completed, with the IOP lasting from March 7 to April 12, May 15 to July 22, and August 23 to September 5, 2008, in total, 120 days, more than 280 individuals of scientists, engineers, students, and aircrews from 28 different institutes and universities were involved in. A total of 26 airborne missions, about 110 hours were flown. Airborne sensors including microwave radiometers at L, K and Ka bands, imaging spectrometer, thermal imager, CCD and LIDAR were used. Ground measurements were carried out concurrently with the airborne and space-borne remote sensing at four scales, i.e., key experimental area, foci experimental area, experiment site and elementary sampling plot. A network of hydro meteorological and flux observations was established in the upper and middle reaches of the Heihe River Basin. The network was composed of 12 super Automatic Meteorological Stations (AMS), 6 Eddy Covariance (EC) systems, 2 Large Aperture Scintillometers (LAS), and plenty of China Meteorological Administration (CMA) operational meteorological and hydrological stations. Additionally, we also used ground-based remote sensing instruments, such as Doppler Radar, ground based microwave radiometer and truck-mounted scatterometer and lots of auto

  15. Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system.

    PubMed

    Lodewyck, Jérôme; Debuisschert, Thierry; García-Patrón, Raúl; Tualle-Brouri, Rosa; Cerf, Nicolas J; Grangier, Philippe

    2007-01-19

    An intercept-resend attack on a continuous-variable quantum-key-distribution protocol is investigated experimentally. By varying the interception fraction, one can implement a family of attacks where the eavesdropper totally controls the channel parameters. In general, such attacks add excess noise in the channel, and may also result in non-Gaussian output distributions. We implement and characterize the measurements needed to detect these attacks, and evaluate experimentally the information rates available to the legitimate users and the eavesdropper. The results are consistent with the optimality of Gaussian attacks resulting from the security proofs.

  16. Squeezed-state quantum key distribution with a Rindler observer

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Shi, Ronghua; Guo, Ying

    2018-03-01

    Lengthening the maximum transmission distance of quantum key distribution plays a vital role in quantum information processing. In this paper, we propose a directional squeezed-state protocol with signals detected by a Rindler observer in the relativistic quantum field framework. We derive an analytical solution to the transmission problem of squeezed states from the inertial sender to the accelerated receiver. The variance of the involved signal mode is closer to optimality than that of the coherent-state-based protocol. Simulation results show that the proposed protocol has better performance than the coherent-state counterpart especially in terms of the maximal transmission distance.

  17. Experimental Observation of Dark Solitons on Water Surface

    DTIC Science & Technology

    2016-06-13

    Experimental observation of dark solitons on water surface A. Chabchoub1,∗, O. Kimmoun2, H. Branger3, N. Hoffmann1, D. Proment4, M. Onorato4,5, and N...The shape and width of the soliton depend on the water depth, carrier frequency and the amplitude of the background wave. The experimental data...partic- ular, the governing equation describing the dynamics of weakly nonlinear and quasi -monochromatic waves prop- agating on the surface of water with

  18. Experimental study on all-fiber-based unidimensional continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Wang, Xuyang; Liu, Wenyuan; Wang, Pu; Li, Yongmin

    2017-06-01

    We experimentally demonstrated an all-fiber-based unidimensional continuous-variable quantum key distribution (CV QKD) protocol and analyzed its security under collective attack in realistic conditions. A pulsed balanced homodyne detector, which could not be accessed by eavesdroppers, with phase-insensitive efficiency and electronic noise, was considered. Furthermore, a modulation method and an improved relative phase-locking technique with one amplitude modulator and one phase modulator were designed. The relative phase could be locked precisely with a standard deviation of 0.5° and a mean of almost zero. Secret key bit rates of 5.4 kbps and 700 bps were achieved for transmission fiber lengths of 30 and 50 km, respectively. The protocol, which simplified the CV QKD system and reduced the cost, displayed a performance comparable to that of a symmetrical counterpart under realistic conditions. It is expected that the developed protocol can facilitate the practical application of the CV QKD.

  19. Experimental Observation of Bohr's Nonlinear Fluidic Surface Oscillation.

    PubMed

    Moon, Songky; Shin, Younghoon; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon

    2016-01-25

    Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of 0.416η(2) for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of η much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained a coefficient of 0.42 ± 0.08 consistently under various experimental conditions. We also measured the resonance mode spectrum of a two-dimensional cavity formed by the cross-sectional segment of the liquid jet. The observed spectra agree well with wave calculations assuming a coefficient of 0.414 ± 0.011. Our measurements establish the first experimental observation of Bohr's hydrodynamic theory.

  20. Experimental quantum key distribution with simulated ground-to-satellite photon losses and processing limitations

    NASA Astrophysics Data System (ADS)

    Bourgoin, Jean-Philippe; Gigov, Nikolay; Higgins, Brendon L.; Yan, Zhizhong; Meyer-Scott, Evan; Khandani, Amir K.; Lütkenhaus, Norbert; Jennewein, Thomas

    2015-11-01

    Quantum key distribution (QKD) has the potential to improve communications security by offering cryptographic keys whose security relies on the fundamental properties of quantum physics. The use of a trusted quantum receiver on an orbiting satellite is the most practical near-term solution to the challenge of achieving long-distance (global-scale) QKD, currently limited to a few hundred kilometers on the ground. This scenario presents unique challenges, such as high photon losses and restricted classical data transmission and processing power due to the limitations of a typical satellite platform. Here we demonstrate the feasibility of such a system by implementing a QKD protocol, with optical transmission and full post-processing, in the high-loss regime using minimized computing hardware at the receiver. Employing weak coherent pulses with decoy states, we demonstrate the production of secure key bits at up to 56.5 dB of photon loss. We further illustrate the feasibility of a satellite uplink by generating a secure key while experimentally emulating the varying losses predicted for realistic low-Earth-orbit satellite passes at 600 km altitude. With a 76 MHz source and including finite-size analysis, we extract 3374 bits of a secure key from the best pass. We also illustrate the potential benefit of combining multiple passes together: while one suboptimal "upper-quartile" pass produces no finite-sized key with our source, the combination of three such passes allows us to extract 165 bits of a secure key. Alternatively, we find that by increasing the signal rate to 300 MHz it would be possible to extract 21 570 bits of a secure finite-sized key in just a single upper-quartile pass.

  1. Experimental Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S.; Fejer, M. M.; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

    2013-09-01

    Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.

  2. Experimental measurement-device-independent quantum key distribution.

    PubMed

    Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S; Fejer, M M; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

    2013-09-27

    Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.

  3. Experimental human influenza: observations from studies of influenza antivirals.

    PubMed

    Hayden, Frederick G

    2012-01-01

    Randomized, placebo-controlled trials have been conducted for nearly five decades in experimentally induced human influenza infections to assess the effectiveness, tolerability and pharmacological properties of influenza antivirals. The results of such studies have not only provided key proof-of-concept data to facilitate drug development but also contributed to our understanding of influenza pathogenesis and transmission. The lack of availability of contemporary, safety-tested virus inoculation pools in recent years needs to be resolved in order to avoid hindering the development of new drugs and vaccines.

  4. Key Process Uncertainties in Soil Carbon Dynamics: Comparing Multiple Model Structures and Observational Meta-analysis

    NASA Astrophysics Data System (ADS)

    Sulman, B. N.; Moore, J.; Averill, C.; Abramoff, R. Z.; Bradford, M.; Classen, A. T.; Hartman, M. D.; Kivlin, S. N.; Luo, Y.; Mayes, M. A.; Morrison, E. W.; Riley, W. J.; Salazar, A.; Schimel, J.; Sridhar, B.; Tang, J.; Wang, G.; Wieder, W. R.

    2016-12-01

    Soil carbon (C) dynamics are crucial to understanding and predicting C cycle responses to global change and soil C modeling is a key tool for understanding these dynamics. While first order model structures have historically dominated this area, a recent proliferation of alternative model structures representing different assumptions about microbial activity and mineral protection is providing new opportunities to explore process uncertainties related to soil C dynamics. We conducted idealized simulations of soil C responses to warming and litter addition using models from five research groups that incorporated different sets of assumptions about processes governing soil C decomposition and stabilization. We conducted a meta-analysis of published warming and C addition experiments for comparison with simulations. Assumptions related to mineral protection and microbial dynamics drove strong differences among models. In response to C additions, some models predicted long-term C accumulation while others predicted transient increases that were counteracted by accelerating decomposition. In experimental manipulations, doubling litter addition did not change soil C stocks in studies spanning as long as two decades. This result agreed with simulations from models with strong microbial growth responses and limited mineral sorption capacity. In observations, warming initially drove soil C loss via increased CO2 production, but in some studies soil C rebounded and increased over decadal time scales. In contrast, all models predicted sustained C losses under warming. The disagreement with experimental results could be explained by physiological or community-level acclimation, or by warming-related changes in plant growth. In addition to the role of microbial activity, assumptions related to mineral sorption and protected C played a key role in driving long-term model responses. In general, simulations were similar in their initial responses to perturbations but diverged over

  5. From experimental zoology to big data: Observation and integration in the study of animal development.

    PubMed

    Bolker, Jessica; Brauckmann, Sabine

    2015-06-01

    The founding of the Journal of Experimental Zoology in 1904 was inspired by a widespread turn toward experimental biology in the 19th century. The founding editors sought to promote experimental, laboratory-based approaches, particularly in developmental biology. This agenda raised key practical and epistemological questions about how and where to study development: Does the environment matter? How do we know that a cell or embryo isolated to facilitate observation reveals normal developmental processes? How can we integrate descriptive and experimental data? R.G. Harrison, the journal's first editor, grappled with these questions in justifying his use of cell culture to study neural patterning. Others confronted them in different contexts: for example, F.B. Sumner insisted on the primacy of fieldwork in his studies on adaptation, but also performed breeding experiments using wild-collected animals. The work of Harrison, Sumner, and other early contributors exemplified both the power of new techniques, and the meticulous explanation of practice and epistemology that was marshaled to promote experimental approaches. A century later, experimentation is widely viewed as the standard way to study development; yet at the same time, cutting-edge "big data" projects are essentially descriptive, closer to natural history than to the approaches championed by Harrison et al. Thus, the original questions about how and where we can best learn about development are still with us. Examining their history can inform current efforts to incorporate data from experiment and description, lab and field, and a broad range of organisms and disciplines, into an integrated understanding of animal development. © 2015 Wiley Periodicals, Inc.

  6. Experimental Observation of Thermal Self-Modulation in OPO

    NASA Technical Reports Server (NTRS)

    Gao, Jiangrui; Wang, Hai; Xie, Changde; Peng, Kunchi

    1996-01-01

    The thermal self-modulation has been observed experimentally via SHG in OPO. The threshold pump power for the thermal self- modulation is much smaller than that of the nonlinear self-pulsing. The thermal effect prevent from realizing the theoretical prediction for the self-pulsing.

  7. Experimental Infections with Mycoplasma agalactiae Identify Key Factors Involved in Host-Colonization

    PubMed Central

    Baranowski, Eric; Bergonier, Dominique; Sagné, Eveline; Hygonenq, Marie-Claude; Ronsin, Patricia; Berthelot, Xavier; Citti, Christine

    2014-01-01

    Mechanisms underlying pathogenic processes in mycoplasma infections are poorly understood, mainly because of limited sequence similarities with classical, bacterial virulence factors. Recently, large-scale transposon mutagenesis in the ruminant pathogen Mycoplasma agalactiae identified the NIF locus, including nifS and nifU, as essential for mycoplasma growth in cell culture, while dispensable in axenic media. To evaluate the importance of this locus in vivo, the infectivity of two knock-out mutants was tested upon experimental infection in the natural host. In this model, the parental PG2 strain was able to establish a systemic infection in lactating ewes, colonizing various body sites such as lymph nodes and the mammary gland, even when inoculated at low doses. In these PG2-infected ewes, we observed over the course of infection (i) the development of a specific antibody response and (ii) dynamic changes in expression of M. agalactiae surface variable proteins (Vpma), with multiple Vpma profiles co-existing in the same animal. In contrast and despite a sensitive model, none of the knock-out mutants were able to survive and colonize the host. The extreme avirulent phenotype of the two mutants was further supported by the absence of an IgG response in inoculated animals. The exact role of the NIF locus remains to be elucidated but these data demonstrate that it plays a key role in the infectious process of M. agalactiae and most likely of other pathogenic mycoplasma species as many carry closely related homologs. PMID:24699671

  8. Attribution of Observed Streamflow Changes in Key British Columbia Drainage Basins

    NASA Astrophysics Data System (ADS)

    Najafi, Mohammad Reza; Zwiers, Francis W.; Gillett, Nathan P.

    2017-11-01

    We study the observed decline in summer streamflow in four key river basins in British Columbia (BC), Canada, using a formal detection and attribution (D&A) analysis procedure. Reconstructed and simulated streamflow is generated using the semidistributed variable infiltration capacity hydrologic model, which is driven by 1/16° gridded observations and downscaled climate model data from the Coupled Model Intercomparison Project phase 5 (CMIP5), respectively. The internal variability of the regional hydrologic components using 5100 years of streamflow was simulated using CMIP5 preindustrial control runs. Results show that the observed changes in summer streamflow are inconsistent with simulations representing the responses to natural forcing factors alone, while the response to anthropogenic and natural forcing factors combined is detected in these changes. A two-signal D&A analysis indicates that the effects of anthropogenic (ANT) forcing factors are discernable from natural forcing in BC, albeit with large uncertainties.

  9. Experimental Observation of Bohr’s Nonlinear Fluidic Surface Oscillation

    PubMed Central

    Moon, Songky; Shin, Younghoon; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon

    2016-01-01

    Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of 0.416η2 for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of η much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained a coefficient of 0.42 ± 0.08 consistently under various experimental conditions. We also measured the resonance mode spectrum of a two-dimensional cavity formed by the cross-sectional segment of the liquid jet. The observed spectra agree well with wave calculations assuming a coefficient of 0.414 ± 0.011. Our measurements establish the first experimental observation of Bohr’s hydrodynamic theory. PMID:26803911

  10. Experimental realization of equiangular three-state quantum key distribution

    PubMed Central

    Schiavon, Matteo; Vallone, Giuseppe; Villoresi, Paolo

    2016-01-01

    Quantum key distribution using three states in equiangular configuration combines a security threshold comparable with the one of the Bennett-Brassard 1984 protocol and a quantum bit error rate (QBER) estimation that does not need to reveal part of the key. We implement an entanglement-based version of the Renes 2004 protocol, using only passive optic elements in a linear scheme for the positive-operator valued measure (POVM), generating an asymptotic secure key rate of more than 10 kbit/s, with a mean QBER of 1.6%. We then demonstrate its security in the case of finite key and evaluate the key rate for both collective and general attacks. PMID:27465643

  11. Experimental Observations and Theoretical Modeling of VLF Scattering During LEP Events

    NASA Astrophysics Data System (ADS)

    Mitchell, M. F.; Moore, R. C.

    2012-12-01

    Recent experimental observations of very low frequency (VLF) scattering during lightning-induced election precipitation (LEP) events are presented. A spread spectrum analysis technique is applied to these observations, demonstrating a significant dependence on frequency. For LEP events, the scattered field amplitude and phase both exhibit strong frequency dependence, as do the event onset delays (relative to the causative lightning flash) and the event onset durations. The experimental observations are compared with the predictions of an Earth-ionosphere waveguide propagation and scattering model. The Long-Wave Propagation Capability (LWPC) code is used to demonstrate that the scattered field amplitude and phase depend sensitively on the electrical properties of the scattering body and the ionosphere between the scatterer and the receiver. The observed frequency-dependent onset times and durations, on the other hand, are attributed to the scattering source characteristics. These measurements can also be used to study radiation belt dynamics.

  12. Experimental observation of Lorenz chaos in the Quincke rotor dynamics.

    PubMed

    Peters, François; Lobry, Laurent; Lemaire, Elisabeth

    2005-03-01

    In this paper, we report experimental evidence of Lorenz chaos for the Quincke rotor dynamics. We study the angular motion of an insulating cylinder immersed in slightly conducting oil and submitted to a direct current electric field. The simple equations which describe the dynamics of the rotor are shown to be equivalent to the Lorenz equations. In particular, we observe two bifurcations in our experimental system. Above a critical value of the electric field, the cylinder rotates at a constant rate. At a second bifurcation, the system becomes chaotic. The characteristic shape of the experimental first return map provides strong evidence for Lorenz-type chaos.

  13. Experimental observation of Lorenz chaos in the Quincke rotor dynamics

    NASA Astrophysics Data System (ADS)

    Peters, François; Lobry, Laurent; Lemaire, Elisabeth

    2005-03-01

    In this paper, we report experimental evidence of Lorenz chaos for the Quincke rotor dynamics. We study the angular motion of an insulating cylinder immersed in slightly conducting oil and submitted to a direct current electric field. The simple equations which describe the dynamics of the rotor are shown to be equivalent to the Lorenz equations. In particular, we observe two bifurcations in our experimental system. Above a critical value of the electric field, the cylinder rotates at a constant rate. At a second bifurcation, the system becomes chaotic. The characteristic shape of the experimental first return map provides strong evidence for Lorenz-type chaos.

  14. Experimentally feasible quantum-key-distribution scheme using qubit-like qudits and its comparison with existing qubit- and qudit-based protocols

    NASA Astrophysics Data System (ADS)

    Chau, H. F.; Wang, Qinan; Wong, Cardythy

    2017-02-01

    Recently, Chau [Phys. Rev. A 92, 062324 (2015), 10.1103/PhysRevA.92.062324] introduced an experimentally feasible qudit-based quantum-key-distribution (QKD) scheme. In that scheme, one bit of information is phase encoded in the prepared state in a 2n-dimensional Hilbert space in the form (|i > ±|j >) /√{2 } with n ≥2 . For each qudit prepared and measured in the same two-dimensional Hilbert subspace, one bit of raw secret key is obtained in the absence of transmission error. Here we show that by modifying the basis announcement procedure, the same experimental setup can generate n bits of raw key for each qudit prepared and measured in the same basis in the noiseless situation. The reason is that in addition to the phase information, each qudit also carries information on the Hilbert subspace used. The additional (n -1 ) bits of raw key comes from a clever utilization of this extra piece of information. We prove the unconditional security of this modified protocol and compare its performance with other existing provably secure qubit- and qudit-based protocols on market in the one-way classical communication setting. Interestingly, we find that for the case of n =2 , the secret key rate of this modified protocol using nondegenerate random quantum code to perform one-way entanglement distillation is equal to that of the six-state scheme.

  15. Gypsum crystals observed in experimental and natural sea ice

    NASA Astrophysics Data System (ADS)

    Geilfus, N.-X.; Galley, R. J.; Cooper, M.; Halden, N.; Hare, A.; Wang, F.; Søgaard, D. H.; Rysgaard, S.

    2013-12-01

    gypsum has been predicted to precipitate in sea ice, it has never been observed. Here we provide the first report on gypsum precipitation in both experimental and natural sea ice. Crystals were identified by X-ray diffraction analysis. Based on their apparent distinguishing characteristics, the gypsum crystals were identified as being authigenic. The FREeZing CHEMistry (FREZCHEM) model results support our observations of both gypsum and ikaite precipitation at typical in situ sea ice temperatures and confirms the "Gitterman pathway" where gypsum is predicted to precipitate. The occurrence of authigenic gypsum in sea ice during its formation represents a new observation of precipitate formation and potential marine deposition in polar seas.

  16. SPRUCE Ground Observations of Phenology in Experimental Plots, 2016-2017

    DOE Data Explorer

    Richardson, Andrew D.; Latimer, John M.; Nettles, W. Robert; Heiderman, Ryan R.; Warren, Jeffrey M.; Hanson, Paul J.

    2018-01-01

    This data set consists of phenological transition dates, as derived from direct observations of vegetative and reproductive phenology recorded by a human observer, from the SPRUCE experiment during the 2+ years (August 2015 through December 2017) of whole-ecosystem warming. For 2016, only springtime (April - June) phenological events are included. For 2017 (April - December), spring and autumn events are included.

    Beginning in April 2016, human observers have been directly tracking the phenology of both woody and herbaceous species on a weekly schedule within the SPRUCE experimental chambers. The observed date reported here is the first survey date on which an event/phenophase was definitively observed.

  17. ANALYSIS OF METEOROLOGICAL CONDITIONS DURING THE 1977 ANCLOTE KEYS PLUME STUDY

    EPA Science Inventory

    Meteorological conditions are described and analyzed for nine experimental observation periods of the Anclote Keys Plume Study, which was conducted near Tampa, Florida during February 1977. The primary objective of the Plume Study was to investigate both the short and long range ...

  18. Personal Reflections on Observational and Experimental Research Approaches to Childhood Psychopathology

    ERIC Educational Resources Information Center

    Rapoport, Judith L.

    2009-01-01

    The past 50 years have seen dramatic changes in childhood psychopathology research. The goal of this overview is to contrast observational and experimental research approaches; both have grown more complex such that the boundary between these approaches may be blurred. Both are essential. Landmark observational studies with long-term follow-up…

  19. Quantum dense key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.

    2004-03-01

    This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.

  20. Harmonising and semantically linking key variables from in-situ observing networks of an Integrated Atlantic Ocean Observing System, AtlantOS

    NASA Astrophysics Data System (ADS)

    Darroch, Louise; Buck, Justin

    2017-04-01

    Atlantic Ocean observation is currently undertaken through loosely-coordinated, in-situ observing networks, satellite observations and data management arrangements at regional, national and international scales. The EU Horizon 2020 AtlantOS project aims to deliver an advanced framework for the development of an Integrated Atlantic Ocean Observing System that strengthens the Global Ocean Observing System (GOOS) and contributes to the aims of the Galway Statement on Atlantic Ocean Cooperation. One goal is to ensure that data from different and diverse in-situ observing networks are readily accessible and useable to a wider community, including the international ocean science community and other stakeholders in this field. To help achieve this goal, the British Oceanographic Data Centre (BODC) produced a parameter matrix to harmonise data exchange, data flow and data integration for the key variables acquired by multiple in-situ AtlantOS observing networks such as ARGO, Seafloor Mapping and OceanSITES. Our solution used semantic linking of controlled vocabularies and metadata for parameters that were "mappable" to existing EU and international standard vocabularies. An AtlantOS Essential Variables list of terms (aggregated level) based on Global Climate Observing System (GCOS) Essential Climate Variables (ECV), GOOS Essential Ocean Variables (EOV) and other key network variables was defined and published on the Natural Environment Research Council (NERC) Vocabulary Server (version 2.0) as collection A05 (http://vocab.nerc.ac.uk/collection/A05/current/). This new vocabulary was semantically linked to standardised metadata for observed properties and units that had been validated by the AtlantOS community: SeaDataNet parameters (P01), Climate and Forecast (CF) Standard Names (P07) and SeaDataNet units (P06). Observed properties were mapped to biological entities from the internationally assured AphiaID from the WOrld Register of Marine Species (WoRMS), http

  1. Experimental Apparatus to Observe Dynamical Manifestations of Hamiltonian Monodromy

    NASA Astrophysics Data System (ADS)

    Nerem, M. Perry; Salmon, Danial; Delos, John; Aubin, Seth

    An experiment to observe a topological change in a classical system with nontrivial monodromy is presented. Monodromy is the study of the topological behavior of a system as it evolves along a closed path. If the system does not return to the initial topological state at the end of the circuit, that system exhibits nontrivial monodromy. Such a topological change has been predicted in certain mechanical systems, but has not yet been observed experimentally. One such system is a family of paths in a cylindrically symmetric champagne-bottle potential, with a classically forbidden region centered at the origin. We constructed this system with a long spherically symmetric pendulum and a permanent magnet attached at the end. Magnetic fields from coils are used to create the potential barrier and the external forces to drive the pendulum about a monodromy circuit. A loop of initial conditions, that is initially on one side of the forbidden region, is driven smoothly about this circuit such that it continuously evolves into a loop that surrounds the forbidden region. We will display this phenomena through numerical simulations and hopefully experimental measurement.

  2. Experimental Demonstration of Observability and Operability of Robustness of Coherence

    NASA Astrophysics Data System (ADS)

    Zheng, Wenqiang; Ma, Zhihao; Wang, Hengyan; Fei, Shao-Ming; Peng, Xinhua

    2018-06-01

    Quantum coherence is an invaluable physical resource for various quantum technologies. As a bona fide measure in quantifying coherence, the robustness of coherence (ROC) is not only mathematically rigorous, but also physically meaningful. We experimentally demonstrate the witness-observable and operational feature of the ROC in a multiqubit nuclear magnetic resonance system. We realize witness measurements by detecting the populations of quantum systems in one trial. The approach may also apply to physical systems compatible with ensemble or nondemolition measurements. Moreover, we experimentally show that the ROC quantifies the advantage enabled by a quantum state in a phase discrimination task.

  3. A Simplified Experimental System for Observing Pollen Tube Growth in Styles.

    ERIC Educational Resources Information Center

    Motten, Alexander F.

    1992-01-01

    Describes an experimental system that allows students to observe pollen tubes in vitro and to investigate a variety of aspects of pollen tube-style interactions. One interaction provides an example of postmating reproductive isolation. (MDH)

  4. Middle Term Achievements of Project 5322: Retrieval Of Key Eco-Hydrological Parameters From Remote Sensing In The Watershed Allied Telemetry Experimental Research (Water)

    NASA Astrophysics Data System (ADS)

    Li, Xin; Menenti, Massimo

    2010-10-01

    The general objective of project 5322 in the Dragon 2 programme is to quantitatively retrieve some key eco- hydrological parameters by using remote sensed data, especially from ESA, Chinese, and the Third Party Mission (TPM). To achieve this goal, a comprehensive observation experiment, Watershed Allied Telemetry Experimental Research (WATER) was carried out. WARER is a simultaneously airborne, satellite-borne, and ground-based remote sensing experiment took place in the Heihe River Basin, a typical inland river basin in the northwest of China. This paper introduces the background and implementation of WATER. Data have been obtained so far are described in details. After a period of data analysis for two years, numerous results have also been achieved. This paper presents some early results of WATER as well.

  5. Clinical Impact Research - how to choose experimental or observational intervention study?

    PubMed

    Malmivaara, Antti

    2016-11-01

    Interventions directed to individuals by health and social care systems should increase health and welfare of patients and customers. This paper aims to present and define a new concept Clinical Impact Research (CIR) and suggest which study design, either randomized controlled trial (RCT) (experimental) or benchmarking controlled trial (BCT) (observational) is recommendable and to consider the feasibility, validity, and generalizability issues in CIR. The new concept is based on a narrative review of the literature and on author's idea that in intervention studies, there is a need to cover comprehensively all the main impact categories and their respective outcomes. The considerations on how to choose the most appropriate study design (RCT or BCT) were based on previous methodological studies on RCTs and BCTs and on author's previous work on the concepts benchmarking controlled trial and system impact research (SIR). The CIR covers all studies aiming to assess the impact for health and welfare of any health (and integrated social) care or public health intervention directed to an individual. The impact categories are accessibility, quality, equality, effectiveness, safety, and efficiency. Impact is the main concept, and within each impact category, both generic- and context-specific outcome measures are needed. CIR uses RCTs and BCTs. CIR should be given a high priority in medical, health care, and health economic research. Clinicians and leaders at all levels of health care can exploit the evidence from CIR. Key messages The new concept of Clinical Impact Research (CIR) is defined as a research field aiming to assess what are the impacts of healthcare and public health interventions targeted to patients or individuals. The term impact refers to all effects caused by the interventions, with particular emphasis on accessibility, quality, equality, effectiveness, safety, and efficiency. CIR uses two study designs: randomized controlled trials (RCTs) (experimental

  6. A century of meteorological observations at Fort Valley Experimental Forest: A cooperative observer program success story

    Treesearch

    Daniel P. Huebner; Susan D. Olberding; Byron Peterson; Dino DeSimone

    2008-01-01

    Meteorological observations at Fort Valley Experimental Forest began with its establishment as early silvicultural research made heavy use of meteorological data. The Fort Valley weather data represent the longest climatological record for northern Arizona with records dating back to 1909. Importance of long-term meteorological records and access to the weather record...

  7. Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices

    NASA Astrophysics Data System (ADS)

    Liang, Lin-Mei; Sun, Shi-Hai; Jiang, Mu-Sheng; Li, Chun-Yan

    2014-10-01

    In general, quantum key distribution (QKD) has been proved unconditionally secure for perfect devices due to quantum uncertainty principle, quantum noncloning theorem and quantum nondividing principle which means that a quantum cannot be divided further. However, the practical optical and electrical devices used in the system are imperfect, which can be exploited by the eavesdropper to partially or totally spy the secret key between the legitimate parties. In this article, we first briefly review the recent work on quantum hacking on some experimental QKD systems with respect to imperfect devices carried out internationally, then we will present our recent hacking works in details, including passive faraday mirror attack, partially random phase attack, wavelength-selected photon-number-splitting attack, frequency shift attack, and single-photon-detector attack. Those quantum attack reminds people to improve the security existed in practical QKD systems due to imperfect devices by simply adding countermeasure or adopting a totally different protocol such as measurement-device independent protocol to avoid quantum hacking on the imperfection of measurement devices [Lo, et al., Phys. Rev. Lett., 2012, 108: 130503].

  8. Experimental and simulation of split semi-torus key in PVC foam core to improve the debonding resistance of composite sandwich panel

    NASA Astrophysics Data System (ADS)

    Juliyana, M.; Santhana Krishnan, R.

    2018-02-01

    The sandwich composite panels consisting of facesheet and core material are used as a primary structural member for aerospace, civil and marine areas due to its high stiffness to weight ratio. But the debonding nature of facesheet from the foam core under shear loading conditions leads to failure of the composite structure. To inhibit the debonding, an innovative methodology of introducing semi-torus key is used in the present study. The polyvinyl chloride foam core(PVC) is grooved and filled with semi-torus shaped chopped strand prepregs which are sandwiched between alternate layers of woven roven(WR) and chopped strand mat(CSM) skins by vacuum infusion process. The sandwich panel manufactured with semi-torus keys is evaluated regarding experimental and numerical simulations under shear loading conditions. The present innovative concept delays the debonding between face-sheet and foam core with enhancement the shear load carrying capability as the initial stiffness is higher than the conventional model. Also, the shear behaviour of the proposed concept is in good agreement with experimental results. The split semi-torus keys sustain the shear failure resulting in resistance to debonding capability.

  9. Direct and full-scale experimental verifications towards ground-satellite quantum key distribution

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Yu; Yang, Bin; Liao, Sheng-Kai; Zhang, Liang; Shen, Qi; Hu, Xiao-Fang; Wu, Jin-Cai; Yang, Shi-Ji; Jiang, Hao; Tang, Yan-Lin; Zhong, Bo; Liang, Hao; Liu, Wei-Yue; Hu, Yi-Hua; Huang, Yong-Mei; Qi, Bo; Ren, Ji-Gang; Pan, Ge-Sheng; Yin, Juan; Jia, Jian-Jun; Chen, Yu-Ao; Chen, Kai; Peng, Cheng-Zhi; Pan, Jian-Wei

    2013-05-01

    Quantum key distribution (QKD) provides the only intrinsically unconditional secure method for communication based on the principle of quantum mechanics. Compared with fibre-based demonstrations, free-space links could provide the most appealing solution for communication over much larger distances. Despite significant efforts, all realizations to date rely on stationary sites. Experimental verifications are therefore extremely crucial for applications to a typical low Earth orbit satellite. To achieve direct and full-scale verifications of our set-up, we have carried out three independent experiments with a decoy-state QKD system, and overcome all conditions. The system is operated on a moving platform (using a turntable), on a floating platform (using a hot-air balloon), and with a high-loss channel to demonstrate performances under conditions of rapid motion, attitude change, vibration, random movement of satellites, and a high-loss regime. The experiments address wide ranges of all leading parameters relevant to low Earth orbit satellites. Our results pave the way towards ground-satellite QKD and a global quantum communication network.

  10. Proof-of-principle experimental realization of a qubit-like qudit-based quantum key distribution scheme

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Yin, Zhen-Qiang; Chau, H. F.; Chen, Wei; Wang, Chao; Guo, Guang-Can; Han, Zheng-Fu

    2018-04-01

    In comparison to qubit-based protocols, qudit-based quantum key distribution ones generally allow two cooperative parties to share unconditionally secure keys under a higher channel noise. However, it is very hard to prepare and measure the required quantum states in qudit-based protocols in general. One exception is the recently proposed highly error tolerant qudit-based protocol known as the Chau15 (Chau 2015 Phys. Rev. A 92 062324). Remarkably, the state preparation and measurement in this protocol can be done relatively easily since the required states are phase encoded almost like the diagonal basis states of a qubit. Here we report the first proof-of-principle demonstration of the Chau15 protocol. One highlight of our experiment is that its post-processing is based on practical one-way manner, while the original proposal in Chau (2015 Phys. Rev. A 92 062324) relies on complicated two-way post-processing, which is a great challenge in experiment. In addition, by manipulating time-bin qudit and measurement with a variable delay interferometer, our realization is extensible to qudit with high-dimensionality and confirms the experimental feasibility of the Chau15 protocol.

  11. A comprehensive study on rotation reversal in KSTAR: experimental observations and modelling

    NASA Astrophysics Data System (ADS)

    Na, D. H.; Na, Yong-Su; Angioni, C.; Yang, S. M.; Kwon, J. M.; Jhang, Hogun; Camenen, Y.; Lee, S. G.; Shi, Y. J.; Ko, W. H.; Lee, J. A.; Hahm, T. S.; KSTAR Team

    2017-12-01

    Dedicated experiments have been performed in KSTAR Ohmic plasmas to investigate the detailed physics of the rotation reversal phenomena. Here we adapt the more general definition of rotation reversal, a large change of the intrinsic toroidal rotation gradient produced by minor changes in the control parameters (Camenen et al 2017 Plasma Phys. Control. Fusion 59 034001), which is commonly observed in KSTAR regardless of the operating conditions. The two main phenomenological features of the rotation reversal are the normalized toroidal rotation gradient ({{u}\\prime} ) change in the gradient region and the existence of an anchor point. For the KSTAR Ohmic plasma database including the experiment results up to the 2016 experimental campaign, both features were investigated. First, the observations show that the locations of the gradient and the anchor point region are dependent on {{q}95} . Second, a strong dependence of {{u}\\prime} on {νeff} is clearly observed in the gradient region, whereas the dependence on R/{{L}{{Ti}}} , R/{{L}{{Te}}} , and R/{{L}{{ne}}} is unclear considering the usual variation of the normalized gradient length in KSTAR. The experimental observations were compared against several theoretical models. The rotation reversal might not occur due to the transition of the dominant turbulence from the trapped electron mode to the ion temperature gradient mode or the neoclassical equilibrium effect in KSTAR. Instead, it seems that the profile shearing effects associated with a finite ballooning tilting well reproduce the experimental observations of both the gradient region and the anchor point; the difference seems to be related to the magnetic shear and the q value. Further analysis implies that the increase of {{u}\\prime} in the gradient region with the increase of the collisionality would occur when the reduction of the momentum diffusivity is comparatively larger than the reduction of the residual stress. It is supported by the perturbative

  12. Experimental observation of spatially localized dynamo magnetic fields.

    PubMed

    Gallet, B; Aumaître, S; Boisson, J; Daviaud, F; Dubrulle, B; Bonnefoy, N; Bourgoin, M; Odier, Ph; Pinton, J-F; Plihon, N; Verhille, G; Fauve, S; Pétrélis, F

    2012-04-06

    We report the first experimental observation of a spatially localized dynamo magnetic field, a common feature of astrophysical dynamos and convective dynamo simulations. When the two propellers of the von Kármán sodium experiment are driven at frequencies that differ by 15%, the mean magnetic field's energy measured close to the slower disk is nearly 10 times larger than the one close to the faster one. This strong localization of the magnetic field when a symmetry of the forcing is broken is in good agreement with a prediction based on the interaction between a dipolar and a quadrupolar magnetic mode. © 2012 American Physical Society

  13. Experimental observation of four-photon entangled Dicke state with high fidelity.

    PubMed

    Kiesel, N; Schmid, C; Tóth, G; Solano, E; Weinfurter, H

    2007-02-09

    We present the experimental observation of the symmetric four-photon entangled Dicke state with two excitations |D_{4};{(2)}. A simple experimental setup allowed quantum state tomography yielding a fidelity as high as 0.844+/-0.008. We study the entanglement persistency of the state using novel witness operators and focus on the demonstration of a remarkable property: depending on the orientation of a measurement on one photon, the remaining three photons are projected into both inequivalent classes of genuine tripartite entanglement, the Greenberger-Horne-Zeilinger and W class. Furthermore, we discuss possible applications of |D_{4};{(2)} in quantum communication.

  14. Experimental study on discretely modulated continuous-variable quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen Yong; Zou Hongxin; Chen Pingxing

    2010-08-15

    We present a discretely modulated continuous-variable quantum key distribution system in free space by using strong coherent states. The amplitude noise in the laser source is suppressed to the shot-noise limit by using a mode cleaner combined with a frequency shift technique. Also, it is proven that the phase noise in the source has no impact on the final secret key rate. In order to increase the encoding rate, we use broadband homodyne detectors and the no-switching protocol. In a realistic model, we establish a secret key rate of 46.8 kbits/s against collective attacks at an encoding rate of 10more » MHz for a 90% channel loss when the modulation variance is optimal.« less

  15. Management, Analysis, and Visualization of Experimental and Observational Data -- The Convergence of Data and Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, E. Wes; Greenwald, Martin; Kleese van Dam, Kersten

    Scientific user facilities---particle accelerators, telescopes, colliders, supercomputers, light sources, sequencing facilities, and more---operated by the U.S. Department of Energy (DOE) Office of Science (SC) generate ever increasing volumes of data at unprecedented rates from experiments, observations, and simulations. At the same time there is a growing community of experimentalists that require real-time data analysis feedback, to enable them to steer their complex experimental instruments to optimized scientific outcomes and new discoveries. Recent efforts in DOE-SC have focused on articulating the data-centric challenges and opportunities facing these science communities. Key challenges include difficulties coping with data size, rate, and complexity inmore » the context of both real-time and post-experiment data analysis and interpretation. Solutions will require algorithmic and mathematical advances, as well as hardware and software infrastructures that adequately support data-intensive scientific workloads. This paper presents the summary findings of a workshop held by DOE-SC in September 2015, convened to identify the major challenges and the research that is needed to meet those challenges.« less

  16. Value of Earth Observations: Key principles and techniques of socioeconomic benefits analysis (Invited)

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Macauley, M.; Bernknopf, R.

    2013-12-01

    Internationally, multiple organizations are placing greater emphasis on the societal benefits that governments, businesses, and NGOs can derive from applications of Earth-observing satellite observations, research, and models. A growing set of qualitative, anecdotal examples on the uses of Earth observations across a range of sectors can be complemented by the quantitative substantiation of the socioeconomic benefits. In turn, the expanding breadth of environmental data available and the awareness of their beneficial applications to inform decisions can support new products and services by companies, agencies, and civil society. There are, however, significant efforts needed to bridge the Earth sciences and social and economic sciences fields to build capacity, develop case studies, and refine analytic techniques in quantifying socioeconomic benefits from the use of Earth observations. Some government programs, such as the NASA Earth Science Division's Applied Sciences Program have initiated activities in recent years to quantify the socioeconomic benefits from applications of Earth observations research, and to develop multidisciplinary models for organizations' decision-making activities. A community of practice has conducted workshops, developed impact analysis reports, published a book, developed a primer, and pursued other activities to advance analytic methodologies and build capacity. This paper will present an overview of measuring socioeconomic impacts of Earth observations and how the measures can be translated into a value of Earth observation information. It will address key terms, techniques, principles and applications of socioeconomic impact analyses. It will also discuss activities to pursue a research agenda on analytic techniques, develop a body of knowledge, and promote broader skills and capabilities.

  17. Experimental observation of the asymmetric instability of intermediate-reduced-volume vesicles in extensional flow.

    PubMed

    Dahl, Joanna B; Narsimhan, Vivek; Gouveia, Bernardo; Kumar, Sanjay; Shaqfeh, Eric S G; Muller, Susan J

    2016-04-20

    Vesicles provide an attractive model system to understand the deformation of living cells in response to mechanical forces. These simple, enclosed lipid bilayer membranes are suitable for complementary theoretical, numerical, and experimental analysis. A recent study [Narsimhan, Spann, Shaqfeh, J. Fluid Mech., 2014, 750, 144] predicted that intermediate-aspect-ratio vesicles extend asymmetrically in extensional flow. Upon infinitesimal perturbation to the vesicle shape, the vesicle stretches into an asymmetric dumbbell with a cylindrical thread separating the two ends. While the symmetric stretching of high-aspect-ratio vesicles in extensional flow has been observed and characterized [Kantsler, Segre, Steinberg, Phys. Rev. Lett., 2008, 101, 048101] as well as recapitulated in numerical simulations by Narsimhan et al., experimental observation of the asymmetric stretching has not been reported. In this work, we present results from microfluidic cross-slot experiments observing this instability, along with careful characterization of the flow field, vesicle shape, and vesicle bending modulus. The onset of this shape transition depends on two non-dimensional parameters: reduced volume (a measure of vesicle asphericity) and capillary number (ratio of viscous to bending forces). We observed that every intermediate-reduced-volume vesicle that extends forms a dumbbell shape that is indeed asymmetric. For the subset of the intermediate-reduced-volume regime we could capture experimentally, we present an experimental phase diagram for asymmetric vesicle stretching that is consistent with the predictions of Narsimhan et al.

  18. Clinical Impact Research – how to choose experimental or observational intervention study?

    PubMed Central

    Malmivaara, Antti

    2016-01-01

    Abstract Background: Interventions directed to individuals by health and social care systems should increase health and welfare of patients and customers. Aims: This paper aims to present and define a new concept Clinical Impact Research (CIR) and suggest which study design, either randomized controlled trial (RCT) (experimental) or benchmarking controlled trial (BCT) (observational) is recommendable and to consider the feasibility, validity, and generalizability issues in CIR. Methods: The new concept is based on a narrative review of the literature and on author’s idea that in intervention studies, there is a need to cover comprehensively all the main impact categories and their respective outcomes. The considerations on how to choose the most appropriate study design (RCT or BCT) were based on previous methodological studies on RCTs and BCTs and on author’s previous work on the concepts benchmarking controlled trial and system impact research (SIR). Results: The CIR covers all studies aiming to assess the impact for health and welfare of any health (and integrated social) care or public health intervention directed to an individual. The impact categories are accessibility, quality, equality, effectiveness, safety, and efficiency. Impact is the main concept, and within each impact category, both generic- and context-specific outcome measures are needed. CIR uses RCTs and BCTs. Conclusions: CIR should be given a high priority in medical, health care, and health economic research. Clinicians and leaders at all levels of health care can exploit the evidence from CIR. Key messagesThe new concept of Clinical Impact Research (CIR) is defined as a research field aiming to assess what are the impacts of healthcare and public health interventions targeted to patients or individuals.The term impact refers to all effects caused by the interventions, with particular emphasis on accessibility, quality, equality, effectiveness, safety, and efficiency. CIR uses two study

  19. Sample size considerations for paired experimental design with incomplete observations of continuous outcomes.

    PubMed

    Zhu, Hong; Xu, Xiaohan; Ahn, Chul

    2017-01-01

    Paired experimental design is widely used in clinical and health behavioral studies, where each study unit contributes a pair of observations. Investigators often encounter incomplete observations of paired outcomes in the data collected. Some study units contribute complete pairs of observations, while the others contribute either pre- or post-intervention observations. Statistical inference for paired experimental design with incomplete observations of continuous outcomes has been extensively studied in literature. However, sample size method for such study design is sparsely available. We derive a closed-form sample size formula based on the generalized estimating equation approach by treating the incomplete observations as missing data in a linear model. The proposed method properly accounts for the impact of mixed structure of observed data: a combination of paired and unpaired outcomes. The sample size formula is flexible to accommodate different missing patterns, magnitude of missingness, and correlation parameter values. We demonstrate that under complete observations, the proposed generalized estimating equation sample size estimate is the same as that based on the paired t-test. In the presence of missing data, the proposed method would lead to a more accurate sample size estimate comparing with the crude adjustment. Simulation studies are conducted to evaluate the finite-sample performance of the generalized estimating equation sample size formula. A real application example is presented for illustration.

  20. Experimental evaluation of shark detection rates by aerial observers.

    PubMed

    Robbins, William D; Peddemors, Victor M; Kennelly, Steven J; Ives, Matthew C

    2014-01-01

    Aerial surveys are a recognised technique to identify the presence and abundance of marine animals. However, the capability of aerial observers to reliably sight coastal sharks has not been previously assessed, nor have differences in sighting rates between aircraft types been examined. In this study we investigated the ability of observers in fixed-wing and helicopter aircraft to sight 2.5 m artificial shark analogues placed at known depths and positions. Initial tests revealed that the shark analogues could only be detected at shallow depths, averaging only 2.5 m and 2.7 m below the water surface for observers in fixed-wing and helicopter aircraft, respectively. We then deployed analogues at shallower depths along a 5 km-long grid, and assessed their sightability to aircraft observers through a series of transects flown within 500 m. Analogues were seen infrequently from all distances, with overall sighting rates of only 12.5% and 17.1% for fixed-wing and helicopter observers, respectively. Although helicopter observers had consistently higher success rates of sighting analogues within 250 m of their flight path, neither aircraft observers sighted more than 9% of analogues deployed over 300 m from their flight paths. Modelling of sighting rates against environmental and experimental variables indicated that observations were affected by distance, aircraft type, sun glare and sea conditions, while the range of water turbidities observed had no effect. We conclude that aerial observers have limited ability to detect the presence of submerged animals such as sharks, particularly when the sharks are deeper than ∼ 2.6 m, or over 300 m distant from the aircraft's flight path, especially during sunny or windy days. The low rates of detections found in this study cast serious doubts on the use of aerial beach patrols as an effective early-warning system to prevent shark attacks.

  1. Experimental Evaluation of Shark Detection Rates by Aerial Observers

    PubMed Central

    Robbins, William D.; Peddemors, Victor M.; Kennelly, Steven J.; Ives, Matthew C.

    2014-01-01

    Aerial surveys are a recognised technique to identify the presence and abundance of marine animals. However, the capability of aerial observers to reliably sight coastal sharks has not been previously assessed, nor have differences in sighting rates between aircraft types been examined. In this study we investigated the ability of observers in fixed-wing and helicopter aircraft to sight 2.5 m artificial shark analogues placed at known depths and positions. Initial tests revealed that the shark analogues could only be detected at shallow depths, averaging only 2.5 m and 2.7 m below the water surface for observers in fixed-wing and helicopter aircraft, respectively. We then deployed analogues at shallower depths along a 5 km-long grid, and assessed their sightability to aircraft observers through a series of transects flown within 500 m. Analogues were seen infrequently from all distances, with overall sighting rates of only 12.5% and 17.1% for fixed-wing and helicopter observers, respectively. Although helicopter observers had consistently higher success rates of sighting analogues within 250 m of their flight path, neither aircraft observers sighted more than 9% of analogues deployed over 300 m from their flight paths. Modelling of sighting rates against environmental and experimental variables indicated that observations were affected by distance, aircraft type, sun glare and sea conditions, while the range of water turbidities observed had no effect. We conclude that aerial observers have limited ability to detect the presence of submerged animals such as sharks, particularly when the sharks are deeper than ∼2.6 m, or over 300 m distant from the aircraft's flight path, especially during sunny or windy days. The low rates of detections found in this study cast serious doubts on the use of aerial beach patrols as an effective early-warning system to prevent shark attacks. PMID:24498258

  2. Experimental quantum data locking

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Cao, Zhu; Wu, Cheng; Fukuda, Daiji; You, Lixing; Zhong, Jiaqiang; Numata, Takayuki; Chen, Sijing; Zhang, Weijun; Shi, Sheng-Cai; Lu, Chao-Yang; Wang, Zhen; Ma, Xiongfeng; Fan, Jingyun; Zhang, Qiang; Pan, Jian-Wei

    2016-08-01

    Classical correlation can be locked via quantum means: quantum data locking. With a short secret key, one can lock an exponentially large amount of information in order to make it inaccessible to unauthorized users without the key. Quantum data locking presents a resource-efficient alternative to one-time pad encryption which requires a key no shorter than the message. We report experimental demonstrations of a quantum data locking scheme originally proposed by D. P. DiVincenzo et al. [Phys. Rev. Lett. 92, 067902 (2004), 10.1103/PhysRevLett.92.067902] and a loss-tolerant scheme developed by O. Fawzi et al. [J. ACM 60, 44 (2013), 10.1145/2518131]. We observe that the unlocked amount of information is larger than the key size in both experiments, exhibiting strong violation of the incremental proportionality property of classical information theory. As an application example, we show the successful transmission of a photo over a lossy channel with quantum data (un)locking and error correction.

  3. Multiscale Behavior of Viscous Fluids Dynamics: Experimental Observations

    NASA Astrophysics Data System (ADS)

    Arciniega-Ceballos, Alejandra; Spina, Laura; Scheu, Bettina; Dingwell, Donald B.

    2016-04-01

    The dynamics of Newtonian fluids with viscosities of mafic to intermediate silicate melts (10-1000 Pa s) during slow decompression present multi-time scale processes. To observe these processes we have performed several experiments on silicon oil saturated with Argon gas for 72 hours, in a Plexiglas autoclave. The slow decompression, dropping from 10 MPa to ambient pressure, acting as the excitation mechanism, triggered several processes with their own distinct timescales. These processes generate complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit flanked by high-speed video recordings. The analysis in time and frequency of these time series and their correlation with the associated high-speed imaging enables the characterization of distinct phases and the extraction of the individual processes during the evolution of decompression of these viscous fluids. We have observed fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution along the conduit. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the conduit system. Our observations point to the great potential of this experimental approach in the understanding of volcanic conduit dynamics and volcanic seismicity.

  4. Cosmic ray experimental observations

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Mcdonald, F. B.

    1974-01-01

    The current experimental situation in cosmic ray studies is discussed, with special emphasis on the development of new detector systems. Topics covered are the techniques for particle identification, energy measurements, gas Cerenkov counters, magnet spectrometers, ionization spectrometers, track detectors, nuclear emulsions, multiparameter analysis using arrays of detectors, the Goddard ionization spectrometer, charge spectra, relative abundances, isotope composition, antinuclei in cosmic rays, electrons, the measurement of cosmic ray arrival directions, and the prehistory of cosmic rays.

  5. A century of meteorological observations at Fort Valley Experimental Forest: A cooperative observer program success story (P-53)

    Treesearch

    Daniel P. Huebner; Susan D. Olberding; Byron Peterson; Dino DeSimone

    2008-01-01

    Meteorological observations at Fort Valley Experimental Forest began with its establishment as early silvicultural research made heavy use of meteorological data. The Fort Valley weather data represent the longest climatological record for northern Arizona with records dating back to 1909. Importance of long term meteorological records and access to the weather record...

  6. Management, Analysis, and Visualization of Experimental and Observational Data – The Convergence of Data and Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, E. Wes; Greenwald, Martin; Kleese van Dam, Kerstin

    Scientific user facilities—particle accelerators, telescopes, colliders, supercomputers, light sources, sequencing facilities, and more—operated by the U.S. Department of Energy (DOE) Office of Science (SC) generate ever increasing volumes of data at unprecedented rates from experiments, observations, and simulations. At the same time there is a growing community of experimentalists that require real-time data analysis feedback, to enable them to steer their complex experimental instruments to optimized scientific outcomes and new discoveries. Recent efforts in DOE-SC have focused on articulating the data-centric challenges and opportunities facing these science communities. Key challenges include difficulties coping with data size, rate, and complexity inmore » the context of both real-time and post-experiment data analysis and interpretation. Solutions will require algorithmic and mathematical advances, as well as hardware and software infrastructures that adequately support data-intensive scientific workloads. This paper presents the summary findings of a workshop held by DOE-SC in September 2015, convened to identify the major challenges and the research that is needed to meet those challenges.« less

  7. Simulating of the measurement-device independent quantum key distribution with phase randomized general sources

    PubMed Central

    Wang, Qin; Wang, Xiang-Bin

    2014-01-01

    We present a model on the simulation of the measurement-device independent quantum key distribution (MDI-QKD) with phase randomized general sources. It can be used to predict experimental observations of a MDI-QKD with linear channel loss, simulating corresponding values for the gains, the error rates in different basis, and also the final key rates. Our model can be applicable to the MDI-QKDs with arbitrary probabilistic mixture of different photon states or using any coding schemes. Therefore, it is useful in characterizing and evaluating the performance of the MDI-QKD protocol, making it a valuable tool in studying the quantum key distributions. PMID:24728000

  8. Study of key factors influencing dust emission: An assessment of GEOS-Chem and DEAD simulations with observations

    NASA Astrophysics Data System (ADS)

    Bartlett, Kevin S.

    Mineral dust aerosols can impact air quality, climate change, biological cycles, tropical cyclone development and flight operations due to reduced visibility. Dust emissions are primarily limited to the extensive arid regions of the world, yet can negatively impact local to global scales, and are extremely complex to model accurately. Within this dissertation, the Dust Entrainment And Deposition (DEAD) model was adapted to run, for the first known time, using high temporal (hourly) and spatial (0.3°x0.3°) resolution data to methodically interrogate the key parameters and factors influencing global dust emissions. The dependence of dust emissions on key parameters under various conditions has been quantified and it has been shown that dust emissions within DEAD are largely determined by wind speeds, vegetation extent, soil moisture and topographic depressions. Important findings were that grid degradation from 0.3ºx0.3º to 1ºx1º, 2ºx2.5º, and 4°x5° of key meteorological, soil, and surface input parameters greatly reduced emissions approximately 13% and 29% and 64% respectively, as a result of the loss of sub grid detail within these key parameters at coarse grids. After running high resolution DEAD emissions globally for 2 years, two severe dust emission cases were chosen for an in-depth investigation of the root causes of the events and evaluation of the 2°x2.5° Goddard Earth Observing System (GEOS)-Chem and 0.3°x0.3° DEAD model capabilities to simulate the events: one over South West Asia (SWA) in June 2008 and the other over the Middle East in July 2009. The 2 year lack of rain over SWA preceding June 2008 with a 43% decrease in mean rainfall, yielded less than normal plant growth, a 28% increase in Aerosol Optical Depth (AOD), and a 24% decrease in Meteorological Aerodrome Report (METAR) observed visibility (VSBY) compared to average years. GEOS-Chem captured the observed higher AOD over SWA in June 2008. More detailed comparisons of GEOS

  9. Experimental Study and Computational Simulations of Key Pebble Bed Thermo-mechanics Issues for Design and Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokuhiro, Akira; Potirniche, Gabriel; Cogliati, Joshua

    2014-07-08

    An experimental and computational study, consisting of modeling and simulation (M&S), of key thermal-mechanical issues affecting the design and safety of pebble-bed (PB) reactors was conducted. The objective was to broaden understanding and experimentally validate thermal-mechanic phenomena of nuclear grade graphite, specifically, spheres in frictional contact as anticipated in the bed under reactor relevant pressures and temperatures. The contact generates graphite dust particulates that can subsequently be transported into the flowing gaseous coolent. Under postulated depressurization transients and with the potential for leaked fission products to be adsorbed onto graphite 'dust', there is the potential for fission products to escapemore » from the primary volume. This is a design safety concern. Furthermore, earlier safety assessment identified the distinct possibility for the dispersed dust to combust in contact with air if sufficient conditions are met. Both of these phenomena were noted as important to design review and containing uncertainty to warrant study. The team designed and conducted two separate effects tests to study and benchmark the potential dust-generation rate, as well as study the conditions under which a dust explosion may occure in a standardized, instrumented explosion chamber.« less

  10. Experimental Observation and Theoretical Description of Multisoliton Fission in Shallow Water

    NASA Astrophysics Data System (ADS)

    Trillo, S.; Deng, G.; Biondini, G.; Klein, M.; Clauss, G. F.; Chabchoub, A.; Onorato, M.

    2016-09-01

    We observe the dispersive breaking of cosine-type long waves [Phys. Rev. Lett. 15, 240 (1965)] in shallow water, characterizing the highly nonlinear "multisoliton" fission over variable conditions. We provide new insight into the interpretation of the results by analyzing the data in terms of the periodic inverse scattering transform for the Korteweg-de Vries equation. In a wide range of dispersion and nonlinearity, the data compare favorably with our analytical estimate, based on a rigorous WKB approach, of the number of emerging solitons. We are also able to observe experimentally the universal Fermi-Pasta-Ulam recurrence in the regime of moderately weak dispersion.

  11. Experimental Demonstration of Polarization Encoding Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Tang, Zhiyuan; Liao, Zhongfa; Xu, Feihu; Qi, Bing; Qian, Li; Lo, Hoi-Kwong

    2014-05-01

    We demonstrate the first implementation of polarization encoding measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks. Active phase randomization of each individual pulse is implemented to protect against attacks on imperfect sources. By optimizing the parameters in the decoy state protocol, we show that it is feasible to implement polarization encoding MDI-QKD with commercial off-the-shelf devices. A rigorous finite key analysis is applied to estimate the secure key rate. Our work paves the way for the realization of a MDI-QKD network, in which the users only need compact and low-cost state-preparation devices and can share complicated and expensive detectors provided by an untrusted network server.

  12. Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution.

    PubMed

    Tang, Zhiyuan; Liao, Zhongfa; Xu, Feihu; Qi, Bing; Qian, Li; Lo, Hoi-Kwong

    2014-05-16

    We demonstrate the first implementation of polarization encoding measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks. Active phase randomization of each individual pulse is implemented to protect against attacks on imperfect sources. By optimizing the parameters in the decoy state protocol, we show that it is feasible to implement polarization encoding MDI-QKD with commercial off-the-shelf devices. A rigorous finite key analysis is applied to estimate the secure key rate. Our work paves the way for the realization of a MDI-QKD network, in which the users only need compact and low-cost state-preparation devices and can share complicated and expensive detectors provided by an untrusted network server.

  13. Experimental Observation of Thin-shell Instability in a Collisionless Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, H.; Doria, D.; Sarri, G.

    We report on the experimental observation of the instability of a plasma shell, which formed during the expansion of a laser-ablated plasma into a rarefied ambient medium. By means of a proton radiography technique, the evolution of the instability is temporally and spatially resolved on a timescale much shorter than the hydrodynamic one. The density of the thin shell exceeds that of the surrounding plasma, which lets electrons diffuse outward. An ambipolar electric field grows on both sides of the thin shell that is antiparallel to the density gradient. Ripples in the thin shell result in a spatially varying balancemore » between the thermal pressure force mediated by this field and the ram pressure force that is exerted on it by the inflowing plasma. This mismatch amplifies the ripples by the same mechanism that drives the hydrodynamic nonlinear thin-shell instability (NTSI). Our results thus constitute the first experimental verification that the NTSI can develop in colliding flows.« less

  14. Experimental Observation of Thin-shell Instability in a Collisionless Plasma

    NASA Astrophysics Data System (ADS)

    Ahmed, H.; Doria, D.; Dieckmann, M. E.; Sarri, G.; Romagnani, L.; Bret, A.; Cerchez, M.; Giesecke, A. L.; Ianni, E.; Kar, S.; Notley, M.; Prasad, R.; Quinn, K.; Willi, O.; Borghesi, M.

    2017-01-01

    We report on the experimental observation of the instability of a plasma shell, which formed during the expansion of a laser-ablated plasma into a rarefied ambient medium. By means of a proton radiography technique, the evolution of the instability is temporally and spatially resolved on a timescale much shorter than the hydrodynamic one. The density of the thin shell exceeds that of the surrounding plasma, which lets electrons diffuse outward. An ambipolar electric field grows on both sides of the thin shell that is antiparallel to the density gradient. Ripples in the thin shell result in a spatially varying balance between the thermal pressure force mediated by this field and the ram pressure force that is exerted on it by the inflowing plasma. This mismatch amplifies the ripples by the same mechanism that drives the hydrodynamic nonlinear thin-shell instability (NTSI). Our results thus constitute the first experimental verification that the NTSI can develop in colliding flows.

  15. Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, De-Qin; School of Science, Tianjin University of Technology and Education, Tianjin 300222; Song, Xin-Bing

    It has been theoretically predicted that N-photon quantum imaging can realize either an N-fold resolution improvement (Heisenberg-like scaling) or a √(N)-fold resolution improvement (standard quantum limit) beyond the Rayleigh diffraction bound, over classical imaging. Here, we report the experimental study on spatial sub-Rayleigh quantum imaging using a two-photon entangled source. Two experimental schemes are proposed and performed. In a Fraunhofer diffraction scheme with a lens, two-photon Airy disk pattern is observed with subwavelength diffraction property. In a lens imaging apparatus, however, two-photon sub-Rayleigh imaging for an object is realized with super-resolution property. The experimental results agree with the theoretical predictionmore » in the two-photon quantum imaging regime.« less

  16. Non-resonant electromagnetic energy harvester for car-key applications

    NASA Astrophysics Data System (ADS)

    Li, X.; Hehn, T.; Thewes, M.; Kuehne, I.; Frey, A.; Scholl, G.; Manoli, Y.

    2013-12-01

    This paper presents a novel non-resonant electromagnetic energy harvester for application in a remote car-key, to extend the lifetime of the battery or even to realize a fully energy autonomous, maintenance-free car-key product. Characteristic for a car-key are low frequency and large amplitude motions during normal daily operation. The basic idea of this non-resonant generator is to use a round flat permanent magnet moving freely in a round flat cavity, which is packaged on both sides by printed circuit boards embedded with multi-layer copper coils. The primary goal of this structure is to easily integrate the energy harvester with the existing electrical circuit module into available commercial car-key designs. The whole size of the energy harvester is comparable to a CR2032 coin battery. To find out the best power-efficient and optimal design, several magnets with different dimensions and magnetizations, and various layouts of copper coils were analysed and built up for prototype testing. Experimental results show that with an axially magnetized NdFeB magnet and copper coils of design variant B a maximum open circuit voltage of 1.1V can be observed.

  17. Porphyromonas gingivalis Peptidylarginine Deiminase, a Key Contributor in the Pathogenesis of Experimental Periodontal Disease and Experimental Arthritis

    PubMed Central

    Gully, Neville; Bright, Richard; Marino, Victor; Marchant, Ceilidh; Cantley, Melissa; Haynes, David; Butler, Catherine; Dashper, Stuart; Reynolds, Eric; Bartold, Mark

    2014-01-01

    Objectives To investigate the suggested role of Porphyromonas gingivalis peptidylarginine deiminase (PAD) in the relationship between the aetiology of periodontal disease and experimentally induced arthritis and the possible association between these two conditions. Methods A genetically modified PAD-deficient strain of P. gingivalis W50 was produced. The effect of this strain, compared to the wild type, in an established murine model for experimental periodontitis and experimental arthritis was assessed. Experimental periodontitis was induced following oral inoculation with the PAD-deficient and wild type strains of P. gingivalis. Experimental arthritis was induced via the collagen antibody induction process and was monitored by assessment of paw swelling and micro-CT analysis of the radio-carpal joints. Experimental periodontitis was monitored by micro CT scans of the mandible and histological assessment of the periodontal tissues around the mandibular molars. Serum levels of anti-citrullinated protein antibodies (ACPA) and P. gingivalis were assessed by ELISA. Results The development of experimental periodontitis was significantly reduced in the presence of the PAD-deficient P. gingivalis strain. When experimental arthritis was induced in the presence of the PAD-deficient strain there was less paw swelling, less erosive bone damage to the joints and reduced serum ACPA levels when compared to the wild type P. gingivalis inoculated group. Conclusion This study has demonstrated that a PAD-deficient strain of P. gingivalis was associated with significantly reduced periodontal inflammation. In addition the extent of experimental arthritis was significantly reduced in animals exposed to prior induction of periodontal disease through oral inoculation of the PAD-deficient strain versus the wild type. This adds further evidence to the potential role for P. gingivalis and its PAD in the pathogenesis of periodontitis and exacerbation of arthritis. Further studies are now

  18. Continuous-variable quantum key distribution with 1 Mbps secure key rate.

    PubMed

    Huang, Duan; Lin, Dakai; Wang, Chao; Liu, Weiqi; Fang, Shuanghong; Peng, Jinye; Huang, Peng; Zeng, Guihua

    2015-06-29

    We report the first continuous-variable quantum key distribution (CVQKD) experiment to enable the creation of 1 Mbps secure key rate over 25 km standard telecom fiber in a coarse wavelength division multiplexers (CWDM) environment. The result is achieved with two major technological advances: the use of a 1 GHz shot-noise-limited homodyne detector and the implementation of a 50 MHz clock system. The excess noise due to noise photons from local oscillator and classical data channels in CWDM is controlled effectively. We note that the experimental verification of high-bit-rate CVQKD in the multiplexing environment is a significant step closer toward large-scale deployment in fiber networks.

  19. Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks.

    PubMed

    Furrer, F; Franz, T; Berta, M; Leverrier, A; Scholz, V B; Tomamichel, M; Werner, R F

    2012-09-07

    We provide a security analysis for continuous variable quantum key distribution protocols based on the transmission of two-mode squeezed vacuum states measured via homodyne detection. We employ a version of the entropic uncertainty relation for smooth entropies to give a lower bound on the number of secret bits which can be extracted from a finite number of runs of the protocol. This bound is valid under general coherent attacks, and gives rise to keys which are composably secure. For comparison, we also give a lower bound valid under the assumption of collective attacks. For both scenarios, we find positive key rates using experimental parameters reachable today.

  20. Physiotherapists use a small number of behaviour change techniques when promoting physical activity: A systematic review comparing experimental and observational studies.

    PubMed

    Kunstler, Breanne E; Cook, Jill L; Freene, Nicole; Finch, Caroline F; Kemp, Joanne L; O'Halloran, Paul D; Gaida, James E

    2018-06-01

    Physiotherapists promote physical activity as part of their practice. This study reviewed the behaviour change techniques physiotherapists use when promoting physical activity in experimental and observational studies. Systematic review of experimental and observational studies. Twelve databases were searched using terms related to physiotherapy and physical activity. We included experimental studies evaluating the efficacy of physiotherapist-led physical activity interventions delivered to adults in clinic-based private practice and outpatient settings to individuals with, or at risk of, non-communicable diseases. Observational studies reporting the techniques physiotherapists use when promoting physical activity were also included. The behaviour change techniques used in all studies were identified using the Behaviour Change Technique Taxonomy. The behaviour change techniques appearing in efficacious and inefficacious experimental interventions were compared using a narrative approach. Twelve studies (nine experimental and three observational) were retained from the initial search yield of 4141. Risk of bias ranged from low to high. Physiotherapists used seven behaviour change techniques in the observational studies, compared to 30 behaviour change techniques in the experimental studies. Social support (unspecified) was the most frequently identified behaviour change technique across both settings. Efficacious experimental interventions used more behaviour change techniques (n=29) and functioned in more ways (n=6) than did inefficacious experimental interventions (behaviour change techniques=10 and functions=1). Physiotherapists use a small number of behaviour change techniques. Less behaviour change techniques were identified in observational studies compared to experimental studies, suggesting physiotherapists use less BCTs clinically than experimentally. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. Experimentally observed conformation-dependent geometry and hidden strain in proteins.

    PubMed Central

    Karplus, P. A.

    1996-01-01

    A database has been compiled documenting the peptide conformations and geometries from 70 diverse proteins refined at 1.75 A or better. Analysis of the well-ordered residues within the database shows phi, psi-distributions that have more fine structure than is generally observed. Also, clear evidence is presented that the peptide covalent geometry depends on conformation, with the interpeptide N-C alpha-C bond angle varying by nearly +/-5 degrees from its standard value. The observed deviations from standard peptide geometry are greatest near the edges of well-populated regions, consistent with strain occurring in these conformations. Minimization of such hidden strain could be an important factor in thermostability of proteins. These empirical data describing how equilibrium peptide geometry varies as a function of conformation confirm and extend quantum mechanics calculations, and have predictive value that will aid both theoretical and experimental analyses of protein structure. PMID:8819173

  2. Annular tautomerism: experimental observations and quantum mechanics calculations.

    PubMed

    Cruz-Cabeza, Aurora J; Schreyer, Adrian; Pitt, William R

    2010-06-01

    The use of MP2 level quantum mechanical (QM) calculations on isolated heteroaromatic ring systems for the prediction of the tautomeric propensities of whole molecules in a crystalline environment was examined. A Polarisable Continuum Model was used in the calculations to account for environment effects on the tautomeric relative stabilities. The calculated relative energies of tautomers were compared to relative abundances within the Cambridge Structural Database (CSD) and the Protein Data Bank (PDB). The work was focussed on 84 annular tautomeric forms of 34 common ring systems. Good agreement was found between the calculations and the experimental data even if the quantity of these data was limited in many cases. The QM results were compared to those produced by much faster semiempirical calculations. In a search for other sources of the useful experimental data, the relative numbers of known compounds in which prototropic positions were often substituted by heavy atoms were also analysed. A scheme which groups all annular tautomeric transformations into 10 classes was developed. The scheme was designed to encompass a comprehensive set of known and theoretically possible tautomeric ring systems generated as part of a previous study. General trends across analogous ring systems were detected as a result. The calculations and statistics collected on crystallographic data as well as the general trends observed should be useful for the better modelling of annular tautomerism in the applications such as computer-aided drug design, small molecule crystal structure prediction, the naming of compounds and the interpretation of protein-small molecule crystal structures.

  3. Annular tautomerism: experimental observations and quantum mechanics calculations

    NASA Astrophysics Data System (ADS)

    Cruz-Cabeza, Aurora J.; Schreyer, Adrian; Pitt, William R.

    2010-06-01

    The use of MP2 level quantum mechanical (QM) calculations on isolated heteroaromatic ring systems for the prediction of the tautomeric propensities of whole molecules in a crystalline environment was examined. A Polarisable Continuum Model was used in the calculations to account for environment effects on the tautomeric relative stabilities. The calculated relative energies of tautomers were compared to relative abundances within the Cambridge Structural Database (CSD) and the Protein Data Bank (PDB). The work was focussed on 84 annular tautomeric forms of 34 common ring systems. Good agreement was found between the calculations and the experimental data even if the quantity of these data was limited in many cases. The QM results were compared to those produced by much faster semiempirical calculations. In a search for other sources of the useful experimental data, the relative numbers of known compounds in which prototropic positions were often substituted by heavy atoms were also analysed. A scheme which groups all annular tautomeric transformations into 10 classes was developed. The scheme was designed to encompass a comprehensive set of known and theoretically possible tautomeric ring systems generated as part of a previous study. General trends across analogous ring systems were detected as a result. The calculations and statistics collected on crystallographic data as well as the general trends observed should be useful for the better modelling of annular tautomerism in the applications such as computer-aided drug design, small molecule crystal structure prediction, the naming of compounds and the interpretation of protein—small molecule crystal structures.

  4. A century of ocean warming on Florida Keys coral reefs: historic in situ observations

    USGS Publications Warehouse

    Kuffner, Ilsa B.; Lidz, Barbara H.; Hudson, J. Harold; Anderson, Jeffery S.

    2015-01-01

    There is strong evidence that global climate change over the last several decades has caused shifts in species distributions, species extinctions, and alterations in the functioning of ecosystems. However, because of high variability on short (i.e., diurnal, seasonal, and annual) timescales as well as the recency of a comprehensive instrumental record, it is difficult to detect or provide evidence for long-term, site-specific trends in ocean temperature. Here we analyze five in situ datasets from Florida Keys coral reef habitats, including historic measurements taken by lighthouse keepers, to provide three independent lines of evidence supporting approximately 0.8 °C of warming in sea surface temperature (SST) over the last century. Results indicate that the warming observed in the records between 1878 and 2012 can be fully accounted for by the warming observed in recent decades (from 1975 to 2007), documented using in situ thermographs on a mid-shore patch reef. The magnitude of warming revealed here is similar to that found in other SST datasets from the region and to that observed in global mean surface temperature. The geologic context and significance of recent ocean warming to coral growth and population dynamics are discussed, as is the future prognosis for the Florida reef tract.

  5. Mining key elements for severe convection prediction based on CNN

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Pan, Ning; Zhang, Changan; Sha, Hongzhou; Zhang, Bolei; Liu, Liang; Zhang, Meng

    2017-04-01

    Severe convective weather is a kind of weather disasters accompanied by heavy rainfall, gust wind, hail, etc. Along with recent developments on remote sensing and numerical modeling, there are high-volume and long-term observational and modeling data accumulated to capture massive severe convective events over particular areas and time periods. With those high-volume and high-variety weather data, most of the existing studies and methods carry out the dynamical laws, cause analysis, potential rule study, and prediction enhancement by utilizing the governing equations from fluid dynamics and thermodynamics. In this study, a key-element mining method is proposed for severe convection prediction based on convolution neural network (CNN). It aims to identify the key areas and key elements from huge amounts of historical weather data including conventional measurements, weather radar, satellite, so as numerical modeling and/or reanalysis data. Under this manner, the machine-learning based method could help the human forecasters on their decision-making on operational weather forecasts on severe convective weathers by extracting key information from the real-time and historical weather big data. In this paper, it first utilizes computer vision technology to complete the data preprocessing work of the meteorological variables. Then, it utilizes the information such as radar map and expert knowledge to annotate all images automatically. And finally, by using CNN model, it cloud analyze and evaluate each weather elements (e.g., particular variables, patterns, features, etc.), and identify key areas of those critical weather elements, then help forecasters quickly screen out the key elements from huge amounts of observation data by current weather conditions. Based on the rich weather measurement and model data (up to 10 years) over Fujian province in China, where the severe convective weathers are very active during the summer months, experimental tests are conducted with

  6. Key frame extraction based on spatiotemporal motion trajectory

    NASA Astrophysics Data System (ADS)

    Zhang, Yunzuo; Tao, Ran; Zhang, Feng

    2015-05-01

    Spatiotemporal motion trajectory can accurately reflect the changes of motion state. Motivated by this observation, this letter proposes a method for key frame extraction based on motion trajectory on the spatiotemporal slice. Different from the well-known motion related methods, the proposed method utilizes the inflexions of the motion trajectory on the spatiotemporal slice of all the moving objects. Experimental results show that although a similar performance is achieved in the single-objective screen, by comparing the proposed method to that achieved with the state-of-the-art methods based on motion energy or acceleration, the proposed method shows a better performance in a multiobjective video.

  7. Experimental measurement-device-independent quantum key distribution with uncharacterized encoding.

    PubMed

    Wang, Chao; Wang, Shuang; Yin, Zhen-Qiang; Chen, Wei; Li, Hong-Wei; Zhang, Chun-Mei; Ding, Yu-Yang; Guo, Guang-Can; Han, Zheng-Fu

    2016-12-01

    Measurement-device-independent quantum key distribution (MDI QKD) is an efficient way to share secrets using untrusted measurement devices. However, the assumption on the characterizations of encoding states is still necessary in this promising protocol, which may lead to unnecessary complexity and potential loopholes in realistic implementations. Here, by using the mismatched-basis statistics, we present the first proof-of-principle experiment of MDI QKD with uncharacterized encoding sources. In this demonstration, the encoded states are only required to be constrained in a two-dimensional Hilbert space, and two distant parties (Alice and Bob) are resistant to state preparation flaws even if they have no idea about the detailed information of their encoding states. The positive final secure key rates of our system exhibit the feasibility of this novel protocol, and demonstrate its value for the application of secure communication with uncharacterized devices.

  8. Development of an Agent-Based Model (ABM) to Simulate the Immune System and Integration of a Regression Method to Estimate the Key ABM Parameters by Fitting the Experimental Data

    PubMed Central

    Tong, Xuming; Chen, Jinghang; Miao, Hongyu; Li, Tingting; Zhang, Le

    2015-01-01

    Agent-based models (ABM) and differential equations (DE) are two commonly used methods for immune system simulation. However, it is difficult for ABM to estimate key parameters of the model by incorporating experimental data, whereas the differential equation model is incapable of describing the complicated immune system in detail. To overcome these problems, we developed an integrated ABM regression model (IABMR). It can combine the advantages of ABM and DE by employing ABM to mimic the multi-scale immune system with various phenotypes and types of cells as well as using the input and output of ABM to build up the Loess regression for key parameter estimation. Next, we employed the greedy algorithm to estimate the key parameters of the ABM with respect to the same experimental data set and used ABM to describe a 3D immune system similar to previous studies that employed the DE model. These results indicate that IABMR not only has the potential to simulate the immune system at various scales, phenotypes and cell types, but can also accurately infer the key parameters like DE model. Therefore, this study innovatively developed a complex system development mechanism that could simulate the complicated immune system in detail like ABM and validate the reliability and efficiency of model like DE by fitting the experimental data. PMID:26535589

  9. Power-Stepped HF Cross-Modulation Experiments: Simulations and Experimental Observations

    NASA Astrophysics Data System (ADS)

    Greene, S.; Moore, R. C.

    2014-12-01

    High frequency (HF) cross modulation experiments are a well established means for probing the HF-modified characteristics of the D-region ionosphere. The interaction between the heating wave and the probing pulse depends on the ambient and modified conditions of the D-region ionosphere. Cross-modulation observations are employed as a measure of the HF-modified refractive index. We employ an optimized version of Fejer's method that we developed during previous experiments. Experiments were performed in March 2013 at the High Frequency Active Auroral Research Program (HAARP) observatory in Gakona, Alaska. During these experiments, the power of the HF heating signal incrementally increased in order to determine the dependence of cross-modulation on HF power. We found that a simple power law relationship does not hold at high power levels, similar to previous ELF/VLF wave generation experiments. In this paper, we critically compare these experimental observations with the predictions of a numerical ionospheric HF heating model and demonstrate close agreement.

  10. Three-observer Bell inequality violation on a two-qubit entangled state

    NASA Astrophysics Data System (ADS)

    Schiavon, Matteo; Calderaro, Luca; Pittaluga, Mirko; Vallone, Giuseppe; Villoresi, Paolo

    2017-03-01

    Bipartite Bell inequalities can simultaneously be violated by two different pairs of observers when weak measurements and signalling is employed. Here, we experimentally demonstrate the violation of two simultaneous CHSH inequalities by exploiting a two-photon polarisation maximally entangled state. Our results demonstrate that large double violation is experimentally achievable. Our demonstration may have impact for Quantum Key Distribution or certification of Quantum Random Number generators based on weak measurements.

  11. Lagrange Point Missions: the Key to Next-Generation Integrated Earth Observations. DSCOVR Innovation

    NASA Astrophysics Data System (ADS)

    Valero, F. P. J.

    2016-12-01

    From L-1 DSCOVR is capable of new, unique observations potentially conducive to a deeper scientific understanding of the Earth sciences. At L-1 and L-2 the net gravitational pull of the Earth and Sun equals the centripetal force required to orbit the Sun with the same period as the Earth. Satellites at or near L-1 and L-2 keep the same position relative to the Sun and the Earth. DSCOVR does not orbit the Earth but the Sun in synchronism with Earth, acts like a planetoid (orbits the Sun in the ecliptic plane) while acquiring integrated plus spatially and time resolved scientific data as Earth rotates around its axis. Because of the planet's axial tilt relative to the ecliptic plane, the Polar Regions are visible during local summer from L-1 and local winter from L-2 (Fig. 1). DSCOVR's synoptic and continuous observations solve most of the temporal and spatial limitations associated with low Earth (LEO) and Geostationary (GEO) orbits. Two observatories, one at L-1 (daytime) and one at L-2 (nighttime), would acquire minute-by-minute climate quality data for essentially every point on Earth. The integration of L-1, L-2, LEO, and GEO satellites plus the Moon offers new scientific tools and enriched data sets for Earth sciences. Lagrange points observatories are key to next-generation integrated Earth observations. For example, DSCOVR at L-1 views the Earth plus the Moon (a reference) and simultaneously, at one time or another, all LEO and GEO satellites. The L-1 and L-2 satellites would be the link between the Moon, LEO and GEO satellites while providing the data needed to build an integrated Earth observational system. The above properties are the bases for DSCOVR's innovation and scientific approach that systematically observes climate drivers (radiation, aerosols, ozone, clouds, water vapor, vegetation) from L-1 in a way not possible but synergistic with other satellites. Next step: more capable L-1 plus L-2 satellites. The way of the future.

  12. Experimental Observation of a Generalized Thouless Pump with a Single Spin

    NASA Astrophysics Data System (ADS)

    Ma, Wenchao; Zhou, Longwen; Zhang, Qi; Li, Min; Cheng, Chunyang; Geng, Jianpei; Rong, Xing; Shi, Fazhan; Gong, Jiangbin; Du, Jiangfeng

    2018-03-01

    Adiabatic cyclic modulation of a one-dimensional periodic potential will result in quantized charge transport, which is termed the Thouless pump. In contrast to the original Thouless pump restricted by the topology of the energy band, here we experimentally observe a generalized Thouless pump that can be extensively and continuously controlled. The extraordinary features of the new pump originate from interband coherence in nonequilibrium initial states, and this fact indicates that a quantum superposition of different eigenstates individually undergoing quantum adiabatic following can also be an important ingredient unavailable in classical physics. The quantum simulation of this generalized Thouless pump in a two-band insulator is achieved by applying delicate control fields to a single spin in diamond. The experimental results demonstrate all principal characteristics of the generalized Thouless pump. Because the pumping in our system is most pronounced around a band-touching point, this work also suggests an alternative means to detect quantum or topological phase transitions.

  13. Continuous variable quantum key distribution with modulated entangled states.

    PubMed

    Madsen, Lars S; Usenko, Vladyslav C; Lassen, Mikael; Filip, Radim; Andersen, Ulrik L

    2012-01-01

    Quantum key distribution enables two remote parties to grow a shared key, which they can use for unconditionally secure communication over a certain distance. The maximal distance depends on the loss and the excess noise of the connecting quantum channel. Several quantum key distribution schemes based on coherent states and continuous variable measurements are resilient to high loss in the channel, but are strongly affected by small amounts of channel excess noise. Here we propose and experimentally address a continuous variable quantum key distribution protocol that uses modulated fragile entangled states of light to greatly enhance the robustness to channel noise. We experimentally demonstrate that the resulting quantum key distribution protocol can tolerate more noise than the benchmark set by the ideal continuous variable coherent state protocol. Our scheme represents a very promising avenue for extending the distance for which secure communication is possible.

  14. Observations of experimental and numerical waveforms of piezoelectric signals generated in bovine cancellous bone by ultrasound waves

    NASA Astrophysics Data System (ADS)

    Hosokawa, Atsushi

    2018-07-01

    Experimental and numerical waveforms of piezoelectric signals generated in the bovine cancellous bone by ultrasound waves at 1.0 MHz were observed. The experimental observations were performed using a “piezoelectric cell (PE-cell)”, in which an air-saturated cancellous bone specimen was electrically shielded. The PE-cell was used to receive burst ultrasound waves. The numerical observations were performed using a piezoelectric finite-difference time-domain (PE-FDTD) method, which was an elastic FDTD method with piezoelectric constitutive equations. The cancellous bone model was reconstructed from the three-dimensional X-ray microcomputed tomographic image of the specimen used in the experiments. Both experimental and numerical results showed that the repetitive piezoelectric signals could be generated by the multireflected ultrasound waves within the cancellous bone specimen. Moreover, it was shown that the output piezoelectric signal in the PE-cell could be the overlap of the local signals in the trabecular elements at various depths (or thicknesses) in the cancellous bone specimen.

  15. Performance of device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Cao, Zhu; Zhao, Qi; Ma, Xiongfeng

    2016-07-01

    Quantum key distribution provides information-theoretically-secure communication. In practice, device imperfections may jeopardise the system security. Device-independent quantum key distribution solves this problem by providing secure keys even when the quantum devices are untrusted and uncharacterized. Following a recent security proof of the device-independent quantum key distribution, we improve the key rate by tightening the parameter choice in the security proof. In practice where the system is lossy, we further improve the key rate by taking into account the loss position information. From our numerical simulation, our method can outperform existing results. Meanwhile, we outline clear experimental requirements for implementing device-independent quantum key distribution. The maximal tolerable error rate is 1.6%, the minimal required transmittance is 97.3%, and the minimal required visibility is 96.8 % .

  16. Students' Understanding of Analogy after a Core (Chemical Observations, Representations, Experimentation) Learning Cycle, General Chemistry Experiment

    ERIC Educational Resources Information Center

    Avargil, Shirly; Bruce, Mitchell R. M.; Amar, Franc¸ois G.; Bruce, Alice E.

    2015-01-01

    Students' understanding about analogy was investigated after a CORE learning cycle general chemistry experiment. CORE (Chemical Observations, Representations, Experimentation) is a new three-phase learning cycle that involves (phase 1) guiding students through chemical observations while they consider a series of open-ended questions, (phase 2)…

  17. Experimental observation of hysteresis in a coherent metal-hydride phase transition

    NASA Astrophysics Data System (ADS)

    Huang, Wen; Pálsson, Gunnar K.; Brischetto, Martin; Droulias, Sotirios A.; Hartmann, Ola; Wolff, Max; Hjörvarsson, Björgvin

    2017-12-01

    We investigate the hysteresis obtained in the hydrogen absorption and desorption cycle for a single crystal Pd/V_28 ≤ft[Fe4 /V_28\\right]11 superlattice. Below the critical temperature, a small but clear hysteresis is observed in the pressure-composition isotherms, while it is absent above. The experimental results thereby prove the relevance of macroscopic energy barriers for obtaining hysteresis in coherent structural transformations. The textured Pd layer exhibits substantially larger hysteresis effects, which can be related to an irreversible energy loss caused by defect generation in Pd.

  18. Experimental observation of low threshold optical bistability in exfoliated graphene with low oxidation degree

    NASA Astrophysics Data System (ADS)

    Sharif, Morteza A.; Majles Ara, M. H.; Ghafary, Bijan; Salmani, Somayeh; Mohajer, Salman

    2016-03-01

    We have experimentally investigated low threshold Optical Bistability (OB) and multi-stability in exfoliated graphene ink with low oxidation degree. Theoretical predictions of N-layer problem and the resonator feedback problem show good agreement with the experimental observation. In contrary to the other graphene oxide samples, we have indicated that the absorbance does not restrict OB process. We have concluded from the experimental results and Nonlinear Schrödinger Equation (NLSE) that the nonlinear dispersion - rather than absorption - is the main nonlinear mechanism of OB. In addition to the enhanced nonlinearity, exfoliated graphene with low oxidation degree possesses semiconductors group III-V equivalent band gap energy, high charge carrier mobility and thus, ultra-fast optical response which makes it a unique optical material for application in all optical switching, especially in THz frequency range.

  19. Experimental Observation of Spin-Exchange in Ultracold Fermi Gases

    NASA Astrophysics Data System (ADS)

    Peng, Peng; Huang, Liang-Hui; Li, Dong-Hao; Meng, Zeng-Ming; Wang, Peng-Jun; Zhang, Jing

    2018-03-01

    Not Available Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0301600 and 2016YFA0301602, the National Natural Science Foundation of China under Grant Nos 11234008, 11474188 and 11704234, and the Fund for Shanxi ‘1331 Project’ Key Subjects Construction.

  20. Metrological challenges for measurements of key climatological observables, Part 4: Atmospheric relative humidity

    PubMed Central

    Lovell-Smith, J W; Feistel, R; Harvey, A H; Hellmuth, O; Bell, S A; Heinonen, M; Cooper, J R

    2016-01-01

    Water in its three ambient phases plays the central thermodynamic role in the terrestrial climate system. Clouds control Earth’s radiation balance, atmospheric water vapour is the strongest “greenhouse” gas, and non-equilibrium relative humidity at the air-sea interface drives evaporation and latent heat export from the ocean. In this paper, we examine the climatologically relevant atmospheric relative humidity, noting fundamental deficiencies in the definition of this key observable. The metrological history of this quantity is reviewed, problems with its current definition and measurement practice are analysed, and options for future improvements are discussed in conjunction with the recent seawater standard TEOS-10. It is concluded that the International Bureau of Weights and Measures, (BIPM), in cooperation with the International Association for the Properties of Water and Steam, IAPWS, along with other international organisations and institutions, can make significant contributions by developing and recommending state-of-the-art solutions for this long standing metrological problem, such as are suggested here. PMID:26877551

  1. The International Space Station as a Key Platform to Synergize Observations of Fundamental Ecosystem Properties

    NASA Astrophysics Data System (ADS)

    Fisher, J. B.; Stavros, E. N.; Pavlick, R.; Hook, S. J.; Eldering, A.; Dubayah, R.; Schimel, D.

    2016-12-01

    Terrestrial ecosystems can be described in terms of trait composition, physiological function, and physical structure; all three of these are observable remotely to varying degrees. Yet, no mission is able to singularly capture all three together, thus inhibiting our ability to dynamically measure and describe ecosystems as holistic, integrated, and interconnected entities. The International Space Station (ISS) is a new platform for global ecology. The variable overpass time offers a key advantage to investigations interested in sampling over the diurnal cycle, critical to understanding ecosystem function. The ISS also offers another key advantage—financial; it is already there with funded astronaut cargo re-supply missions, so the cost of launch and platform do not need to be added onto new science missions, thereby enabling NASA to select more missions at lower costs. In 2018, NASA will begin sending a series of independently-selected missions to the ISS focused on terrestrial ecosystems. First, ECOSTRESS will produce thermal-based evapotranspiration (ET) data, among other products. OCO-3 will arrive a few months later to measure chlorophyll fluorescence (related to gross primary production, GPP) and atmospheric CO2. Finally, GEDI will produce LiDAR-based ecosystem structure (height, leaf area index, biomass). While each mission is independently developed and funded, the respective mission scientists are working together to bridge observations and leverage their unique contemporaneous and synergistic value for global ecology. A composition-based mission is still missing from the ISS, but airborne and other space agency missions may be leveraged. This talk will describe these ISS-based terrestrial ecosystem science missions, and discuss synergies that will enable the study of ecosystems as a whole that is larger than the sum of their parts.

  2. Water clarity in the Florida Keys, USA, as observed from space (1984-2002)

    NASA Astrophysics Data System (ADS)

    Palandro, D. A.; Hu, C.; Andrefouet, S.; Muller-Karger, F. E.; Hallock, P.

    2007-12-01

    Landsat TM and ETM+ satellite data were used to derive the diffuse attenuation coefficient (Kd, m-1), a measure of water clarity, for 29 sites throughout the Florida Keys Reef Tract. A total of 28 individual Landsat images between 1984 and 2002 were used, with imagery gathered every two years for spring seasons and every six years for fall seasons. Useful information was obtained by Landsat bands 1 (blue) and 2 (green), except when sites were covered by clouds or showed turbid water. Landsat band 3 (red) provided no consistent data due to the high absorption of red light by water. Because image sampling represented only one or two samples per year on specific days, and because water turbidity may change over short time scales, it was not possible to assess temporal trends at the sites with the Landsat data. Kd values in band 1 were higher in the spring (mean spring = 0.034 m-1, mean fall = 0.031 m-1) and band 2 were higher in the fall (mean spring = 0.056 m-1, mean fall = 0.058 m-1), but the differences were not statistically significant. Spatial variability was high between sites and between regions (Upper, Middle and Lower Keys), with band 1 ranges of 0.019 m-1 - 0.060 m-1 and band 2 ranges of 0.036 m-1 - 0.076 m-1. The highest Kd values were found in the Upper Keys, followed by the Middle Keys and Lower Keys, respectively. This result must be taken in context however, two Middle Keys sites were found to be inconsistent due to high turbidity, obscuring the benthos and altering our assumption of a visible seafloor, which the algorithm is dependent upon. If all Middle Keys data were valid it is likely that this region would have the highest Kd values for both bands. The Landsat-derived Kd values, and inherent variability, may be influenced by the dominant water mass associated with each Florida Keys region, as well as localized oceanic variables. The methodology used here may be applied to other reef areas and used with satellites that offer higher temporal

  3. Experimental observation of negative effective gravity in water waves.

    PubMed

    Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C T; Ho, Kai-Ming

    2013-01-01

    The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection.

  4. Experimental Observation of Negative Effective Gravity in Water Waves

    PubMed Central

    Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C. T.; Ho, Kai-Ming

    2013-01-01

    The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection. PMID:23715132

  5. Experimental investigation of polarization insensitivity and cascadability with semiconductor optical amplifier-based differential phase-shift keyed wavelength converter

    NASA Astrophysics Data System (ADS)

    Mao, Yaya; Wu, Chongqing; Liu, Bo; Ullah, Rahat; Tian, Feng

    2017-12-01

    We experimentally investigate the polarization insensitivity and cascadability of an all-optical wavelength converter for differential phase-shift keyed (DPSK) signals for the first time. The proposed wavelength converter is composed of a one-bit delay interferometer demodulation stage followed by a single semiconductor optical amplifier. The impact of input DPSK signal polarization fluctuation on receiver sensitivity for the converted signal is carried out. It is found that this scheme is almost insensitive to the state of polarization of the input DPSK signal. Furthermore, the cascadability of the converter is demonstrated in a two-path recirculating loop. Error-free transmission is achieved with 20 stage cascaded wavelength conversions over 2800 km, where the power penalty is <3.4 dB at bit error rate of 10-9.

  6. A review of nuclear thermal propulsion carbide fuel corrosion and key issues

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; El-Genk, Mohamed S.

    1994-01-01

    Corrosion (mass loss) of carbide nuclear fuels due to their exposure to hot hydrogen in nuclear thermal propulsion engine systems greatly impacts the performance, thrust-to-weight and life of such systems. This report provides an overview of key issues and processes associated with the corrosion of carbide materials. Additionally, past pertinent development reactor test observations, as well as related experimental work and analysis modeling efforts are reviewed. At the conclusion, recommendations are presented, which provide the foundation for future corrosion modeling and verification efforts.

  7. Key Skills Influencing Student Achievement

    ERIC Educational Resources Information Center

    Balch, Tonya; Gruenert, Steve

    2009-01-01

    A predictive, non-experimental, cross-sectional design (Johnson, 2001) was used to conduct a study to determine if elementary administrators' key counseling skills and select demographics predicted state-level student performance indicators in their respective schools. A secondary purpose of this study was to develop a valid and reliable on-line…

  8. The Gulf of Mexico Coastal Ocean Observing System: Building an MBON for the Florida Keys.

    NASA Astrophysics Data System (ADS)

    Howard, M.; Stoessel, M. M.; Currier, R. D.

    2016-02-01

    The Gulf of Mexico Coastal Ocean Observing System Regional Association (GCOOS-RA) Data Portal was designed to aggregate regional data and to serve it to the public through standards-based services in useful and desirable forms. These standards are established and sanctioned for use by the U.S. Integrated Ocean Observing System (IOOS) Program Office with inputs from experts on the Integrated Ocean Observation Committee and the RA informatics community. In 2012, with considerable input from staff from Ocean Biogeographical Information System USA (OBIS-USA), IOOS began to develop and adopt standards for serving biological datasets. GCOOS-RA applied these standards the following year and began serving fisheries independent data through an GCOOS ERDDAP server. In late 2014, GCOOS-RA partnered with the University of South Florida in a 5-year Marine Biodiversity Observing Network (MBON) Project sponsored by NOAA, NASA and BOEM. Work began in 2015. GCOOS' primary role is to aggregate, organize and serve data that are useful to an MBON for the Florida Keys National Marine Sanctuary. GCOOS, in collaboration with Axiom Data Science, will produce a decision support system (DSS) for stakeholders such as NOAA National Marine Sanctuaries Program managers. The datasets to be managed include environmental observations from: field surveys, fixed platforms, and satellites; GIS layers of: bathymetry, shoreline, sanctuary boundaries, living marine resources and habitats; outputs from ocean circulation models and ecosystem models (e.g., Ecopath/Ecosim) and Environmental DNA. Additionally, the DSS may be called upon to perform analyses, compute indices of biodiversity and present results in tabular, graphic and fused forms in an interactive setting. This presentation will discuss our progress to date for this challenging work in data integration.

  9. Experimental evolution in biofilm populations

    PubMed Central

    Steenackers, Hans P.; Parijs, Ilse; Foster, Kevin R.; Vanderleyden, Jozef

    2016-01-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. PMID:26895713

  10. Experimental evolution in biofilm populations.

    PubMed

    Steenackers, Hans P; Parijs, Ilse; Dubey, Akanksha; Foster, Kevin R; Vanderleyden, Jozef

    2016-05-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. © FEMS 2016.

  11. Simple 2.5 GHz time-bin quantum key distribution

    NASA Astrophysics Data System (ADS)

    Boaron, Alberto; Korzh, Boris; Houlmann, Raphael; Boso, Gianluca; Rusca, Davide; Gray, Stuart; Li, Ming-Jun; Nolan, Daniel; Martin, Anthony; Zbinden, Hugo

    2018-04-01

    We present a 2.5 GHz quantum key distribution setup with the emphasis on a simple experimental realization. It features a three-state time-bin protocol based on a pulsed diode laser and a single intensity modulator. Implementing an efficient one-decoy scheme and finite-key analysis, we achieve record breaking secret key rates of 1.5 kbps over 200 km of standard optical fibers.

  12. Epidemiological Data Management during an Outbreak of Ebola Virus Disease: Key Issues and Observations from Sierra Leone.

    PubMed

    Owada, Kei; Eckmanns, Tim; Kamara, Kande-Bure O'Bai; Olu, Olushayo Oluseun

    2016-01-01

    Sierra Leone experienced intense transmission of Ebola virus disease (EVD) from May 2014 to November 2015 during which a total of 8,704 confirmed cases and over 3,589 confirmed deaths were reported. Our field observation showed many issues in the EVD data management system, which may have contributed to the magnitude and long duration of the outbreak. In this perspective article, we explain the key issues with EVD data management in the field, and the resulting obstacles in analyzing key epidemiological indicators during the outbreak response work. Our observation showed that, during the latter part of the EVD outbreak, surveillance and data management improved at all levels in the country as compared to the earlier stage. We identified incomplete filling and late arrival of the case investigation forms at data management centers, difficulties in detecting double entries and merging identified double entries in the database, and lack of clear process of how death of confirmed cases in holding, treatment, and community care centers are reported to the data centers as some of challenges to effective data management. Furthermore, there was no consolidated database that captured and linked all data sources in a structured way. We propose development of a new application tool easily adaptable to new occurrences, regular data harmonization meetings between national and district data management teams, and establishment of a data quality audit system to assure good quality data as ways to improve EVD data management during future outbreaks.

  13. Bidirectional private key exchange using delay-coupled semiconductor lasers.

    PubMed

    Porte, Xavier; Soriano, Miguel C; Brunner, Daniel; Fischer, Ingo

    2016-06-15

    We experimentally demonstrate a key exchange cryptosystem based on the phenomenon of identical chaos synchronization. In our protocol, the private key is symmetrically generated by the two communicating partners. It is built up from the synchronized bits occurring between two current-modulated bidirectionally coupled semiconductor lasers with additional self-feedback. We analyze the security of the exchanged key and discuss the amplification of its privacy. We demonstrate private key generation rates up to 11  Mbit/s over a public channel.

  14. Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam

    NASA Astrophysics Data System (ADS)

    Warwick, J.; Dzelzainis, T.; Dieckmann, M. E.; Schumaker, W.; Doria, D.; Romagnani, L.; Poder, K.; Cole, J. M.; Alejo, A.; Yeung, M.; Krushelnick, K.; Mangles, S. P. D.; Najmudin, Z.; Reville, B.; Samarin, G. M.; Symes, D. D.; Thomas, A. G. R.; Borghesi, M.; Sarri, G.

    2017-11-01

    We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1 T ) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ɛB≈10-3 is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.

  15. Experimental Observation of Two-Dimensional Anderson Localization with the Atomic Kicked Rotor.

    PubMed

    Manai, Isam; Clément, Jean-François; Chicireanu, Radu; Hainaut, Clément; Garreau, Jean Claude; Szriftgiser, Pascal; Delande, Dominique

    2015-12-11

    Dimension 2 is expected to be the lower critical dimension for Anderson localization in a time-reversal-invariant disordered quantum system. Using an atomic quasiperiodic kicked rotor-equivalent to a two-dimensional Anderson-like model-we experimentally study Anderson localization in dimension 2 and we observe localized wave function dynamics. We also show that the localization length depends exponentially on the disorder strength and anisotropy and is in quantitative agreement with the predictions of the self-consistent theory for the 2D Anderson localization.

  16. Experimental determination of the key heat transfer mechanisms in pharmaceutical freeze-drying.

    PubMed

    Ganguly, Arnab; Nail, Steven L; Alexeenko, Alina

    2013-05-01

    The study is aimed at quantifying the relative contribution of key heat transfer modes in lyophilization. Measurements of vial heat transfer rates in a laboratory-scale freeze-dryer were performed using pure water, which was partially sublimed under various conditions. The separation distance between the shelf and the vial was systematically varied, and sublimation rates were determined gravimetrically. The heat transfer rates were observed to be independent of separation distance between the vial and the shelf and linearly dependent on pressure in the free molecular flow limit, realized at low pressures (<50 mTorr). However, under higher pressures (>120 mTorr), heat transfer rates were independent of pressure and inversely proportional to separation distance. Previous heat transfer studies in conventional freeze-drying cycles have attributed a dominant portion of the total heat transfer to radiation, the rest to conduction, whereas convection has been found to be insignificant. Although the measurements reported here confirm the significance of the radiative and gas conduction components, the convective component has been found to be comparable to the gas conduction contribution at pressures greater than 100 mTorr. The current investigation supports the conclusion that the convective component of the heat transfer cannot be ignored in typical laboratory-scale freeze-drying conditions. Copyright © 2013 Wiley Periodicals, Inc.

  17. A Detailed Data-Driven Network Model of Prefrontal Cortex Reproduces Key Features of In Vivo Activity

    PubMed Central

    Hass, Joachim; Hertäg, Loreen; Durstewitz, Daniel

    2016-01-01

    The prefrontal cortex is centrally involved in a wide range of cognitive functions and their impairment in psychiatric disorders. Yet, the computational principles that govern the dynamics of prefrontal neural networks, and link their physiological, biochemical and anatomical properties to cognitive functions, are not well understood. Computational models can help to bridge the gap between these different levels of description, provided they are sufficiently constrained by experimental data and capable of predicting key properties of the intact cortex. Here, we present a detailed network model of the prefrontal cortex, based on a simple computationally efficient single neuron model (simpAdEx), with all parameters derived from in vitro electrophysiological and anatomical data. Without additional tuning, this model could be shown to quantitatively reproduce a wide range of measures from in vivo electrophysiological recordings, to a degree where simulated and experimentally observed activities were statistically indistinguishable. These measures include spike train statistics, membrane potential fluctuations, local field potentials, and the transmission of transient stimulus information across layers. We further demonstrate that model predictions are robust against moderate changes in key parameters, and that synaptic heterogeneity is a crucial ingredient to the quantitative reproduction of in vivo-like electrophysiological behavior. Thus, we have produced a physiologically highly valid, in a quantitative sense, yet computationally efficient PFC network model, which helped to identify key properties underlying spike time dynamics as observed in vivo, and can be harvested for in-depth investigation of the links between physiology and cognition. PMID:27203563

  18. Experimental Observation of Two Features Unexpected from the Classical Theories of Rubber Elasticity

    NASA Astrophysics Data System (ADS)

    Nishi, Kengo; Fujii, Kenta; Chung, Ung-il; Shibayama, Mitsuhiro; Sakai, Takamasa

    2017-12-01

    Although the elastic modulus of a Gaussian chain network is thought to be successfully described by classical theories of rubber elasticity, such as the affine and phantom models, verification experiments are largely lacking owing to difficulties in precisely controlling of the network structure. We prepared well-defined model polymer networks experimentally, and measured the elastic modulus G for a broad range of polymer concentrations and connectivity probabilities, p . In our experiment, we observed two features that were distinct from those predicted by classical theories. First, we observed the critical behavior G ˜|p -pc|1.95 near the sol-gel transition. This scaling law is different from the prediction of classical theories, but can be explained by analogy between the electric conductivity of resistor networks and the elasticity of polymer networks. Here, pc is the sol-gel transition point. Furthermore, we found that the experimental G -p relations in the region above C* did not follow the affine or phantom theories. Instead, all the G /G0-p curves fell onto a single master curve when G was normalized by the elastic modulus at p =1 , G0. We show that the effective medium approximation for Gaussian chain networks explains this master curve.

  19. Space division multiplexing chip-to-chip quantum key distribution.

    PubMed

    Bacco, Davide; Ding, Yunhong; Dalgaard, Kjeld; Rottwitt, Karsten; Oxenløwe, Leif Katsuo

    2017-09-29

    Quantum cryptography is set to become a key technology for future secure communications. However, to get maximum benefit in communication networks, transmission links will need to be shared among several quantum keys for several independent users. Such links will enable switching in quantum network nodes of the quantum keys to their respective destinations. In this paper we present an experimental demonstration of a photonic integrated silicon chip quantum key distribution protocols based on space division multiplexing (SDM), through multicore fiber technology. Parallel and independent quantum keys are obtained, which are useful in crypto-systems and future quantum network.

  20. Political science. Reverse-engineering censorship in China: randomized experimentation and participant observation.

    PubMed

    King, Gary; Pan, Jennifer; Roberts, Margaret E

    2014-08-22

    Existing research on the extensive Chinese censorship organization uses observational methods with well-known limitations. We conducted the first large-scale experimental study of censorship by creating accounts on numerous social media sites, randomly submitting different texts, and observing from a worldwide network of computers which texts were censored and which were not. We also supplemented interviews with confidential sources by creating our own social media site, contracting with Chinese firms to install the same censoring technologies as existing sites, and--with their software, documentation, and even customer support--reverse-engineering how it all works. Our results offer rigorous support for the recent hypothesis that criticisms of the state, its leaders, and their policies are published, whereas posts about real-world events with collective action potential are censored. Copyright © 2014, American Association for the Advancement of Science.

  1. Internally electrodynamic particle model: Its experimental basis and its predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng-Johansson, J. X., E-mail: jxzj@iofpr.or

    2010-03-15

    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schroedinger equation, mass, Einstein mass-energy relation, Newton's law of gravity,more » single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.« less

  2. Internally electrodynamic particle model: Its experimental basis and its predictions

    NASA Astrophysics Data System (ADS)

    Zheng-Johansson, J. X.

    2010-03-01

    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell’s equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schrödinger equation, mass, Einstein mass-energy relation, Newton’s law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.

  3. Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam.

    PubMed

    Warwick, J; Dzelzainis, T; Dieckmann, M E; Schumaker, W; Doria, D; Romagnani, L; Poder, K; Cole, J M; Alejo, A; Yeung, M; Krushelnick, K; Mangles, S P D; Najmudin, Z; Reville, B; Samarin, G M; Symes, D D; Thomas, A G R; Borghesi, M; Sarri, G

    2017-11-03

    We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1  T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε_{B}≈10^{-3} is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.

  4. Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warwick, J.; Dzelzainis, T.; Dieckmann, M. E.

    Here, we report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥ 1T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε B ≈ 10 -3 is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma formore » thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.« less

  5. Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam

    DOE PAGES

    Warwick, J.; Dzelzainis, T.; Dieckmann, M. E.; ...

    2017-11-03

    Here, we report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥ 1T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε B ≈ 10 -3 is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma formore » thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.« less

  6. Practical issues in quantum-key-distribution postprocessing

    NASA Astrophysics Data System (ADS)

    Fung, Chi-Hang Fred; Ma, Xiongfeng; Chau, H. F.

    2010-01-01

    Quantum key distribution (QKD) is a secure key generation method between two distant parties by wisely exploiting properties of quantum mechanics. In QKD, experimental measurement outcomes on quantum states are transformed by the two parties to a secret key. This transformation is composed of many logical steps (as guided by security proofs), which together will ultimately determine the length of the final secret key and its security. We detail the procedure for performing such classical postprocessing taking into account practical concerns (including the finite-size effect and authentication and encryption for classical communications). This procedure is directly applicable to realistic QKD experiments and thus serves as a recipe that specifies what postprocessing operations are needed and what the security level is for certain lengths of the keys. Our result is applicable to the BB84 protocol with a single or entangled photon source.

  7. Numerical approach for unstructured quantum key distribution

    PubMed Central

    Coles, Patrick J.; Metodiev, Eric M.; Lütkenhaus, Norbert

    2016-01-01

    Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study ‘unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown. PMID:27198739

  8. SIM PlanetQuest Key Project Precursor Observations to Detect Gas Giant Planets Around Young Stars

    NASA Technical Reports Server (NTRS)

    Tanner, Angelle; Beichman, Charles; Akeson, Rachel; Ghez, Andrea; Grankin, Konstantin N.; Herbst, William; Hillenbrand, Lynne; Huerta, Marcos; Konopacky, Quinn; Metchev, Stanimir; hide

    2008-01-01

    We present a review of precursor observing programs for the SIM PlanetQuest Key project devoted to detecting Jupiter mass planets around young stars. In order to ensure that the stars in the sample are free of various sources of astrometric noise that might impede the detection of planets, we have initiated programs to collect photometry, high contrast images, interferometric data and radial velocities for stars in both the Northern and Southern hemispheres. We have completed a high contrast imaging survey of target stars in Taurus and the Pleiades and found no definitive common proper motion companions within one arcsecond (140 AU) of the SIM targets. Our radial velocity surveys have shown that many of the target stars in Sco-Cen are fast rotators and a few stars in Taurus and the Pleiades may have sub-stellar companions. Interferometric data of a few stars in Taurus show no signs of stellar or sub-stellar companions with separations of <5 mas. The photometric survey suggests that approximately half of the stars initially selected for this program are variable to a degree (1(sigma) >0.1 mag) that would degrade the astrometric accuracy achievable for that star. While the precursor programs are still a work in progress, we provide a comprehensive list of all targets ranked according to their viability as a result of the observations taken to date. By far, the observable that removes the most targets from the SIM-YSO program is photometric variability.

  9. Experimental results on current-driven turbulence in plasmas - a survey

    NASA Astrophysics Data System (ADS)

    de Kluiver, H.; Perepelkin, N. F.; Hirose, A.

    1991-01-01

    The experimental consequences of plasma turbulence driven by a current parallel to a magnetic field and concurrent anomalous plasma heating are reviewed, with an attempt to deduce universalities in key parameters such as the anomalous electrical conductivities observed in diverse devices. It has been found that the nature of plasma turbulence and turbulent heating depends on several parameters including the electric field, current and magnetic fields. A classification of turbulence regimes based on these parameters has been made. Experimental observations of the anomalous electrical conductivity, plasma heating, skin effect, runaway electron braking and turbulent fluctuations are surveyed, and current theoretical understanding is briefly reviewed. Experimental results recently obtained in stellarators (SIRIUS, URAGAN at Kharkov), and in tokamaks (TORTUR at Nieuwegein, STOR-1M at Saskatoon) are presented in some detail in the light of investigating the feasibility of using turbulent heating as a means of injecting a large power into toroidal devices.

  10. Experimental and observational studies find contrasting responses of soil nutrients to climate change.

    PubMed

    Yuan, Z Y; Jiao, F; Shi, X R; Sardans, Jordi; Maestre, Fernando T; Delgado-Baquerizo, Manuel; Reich, Peter B; Peñuelas, Josep

    2017-06-01

    Manipulative experiments and observations along environmental gradients, the two most common approaches to evaluate the impacts of climate change on nutrient cycling, are generally assumed to produce similar results, but this assumption has rarely been tested. We did so by conducting a meta-analysis and found that soil nutrients responded differentially to drivers of climate change depending on the approach considered. Soil carbon, nitrogen, and phosphorus concentrations generally decreased with water addition in manipulative experiments but increased with annual precipitation along environmental gradients. Different patterns were also observed between warming experiments and temperature gradients. Our findings provide evidence of inconsistent results and suggest that manipulative experiments may be better predictors of the causal impacts of short-term (months to years) climate change on soil nutrients but environmental gradients may provide better information for long-term correlations (centuries to millennia) between these nutrients and climatic features. Ecosystem models should consequently incorporate both experimental and observational data to properly assess the impacts of climate change on nutrient cycling.

  11. Seeing mental states: An experimental strategy for measuring the observability of other minds

    NASA Astrophysics Data System (ADS)

    Becchio, Cristina; Koul, Atesh; Ansuini, Caterina; Bertone, Cesare; Cavallo, Andrea

    2018-03-01

    Is it possible to perceive others' mental states? Are mental states visible in others' behavior? In contrast to the traditional view that mental states are hidden and not directly accessible to perception, in recent years a phenomenologically-motivated account of social cognition has emerged: direct social perception. However, despite numerous published articles that both defend and critique direct perception, researchers have made little progress in articulating the conditions under which direct perception of others' mental states is possible. This paper proposes an empirically anchored approach to the observability of others' mentality - not just in the weak sense of discussing relevant empirical evidence for and against the phenomenon of interest, but also, and more specifically, in the stronger sense of identifying an experimental strategy for measuring the observability of mental states and articulating the conditions under which mental states are observable. We conclude this article by reframing the problem of direct perception in terms of establishing a definable and measurable relationship between movement features and perceived mental states.

  12. Optimizing Requirements Decisions with KEYS

    NASA Technical Reports Server (NTRS)

    Jalali, Omid; Menzies, Tim; Feather, Martin

    2008-01-01

    Recent work with NASA's Jet Propulsion Laboratory has allowed for external access to five of JPL's real-world requirements models, anonymized to conceal proprietary information, but retaining their computational nature. Experimentation with these models, reported herein, demonstrates a dramatic speedup in the computations performed on them. These models have a well defined goal: select mitigations that retire risks which, in turn, increases the number of attainable requirements. Such a non-linear optimization is a well-studied problem. However identification of not only (a) the optimal solution(s) but also (b) the key factors leading to them is less well studied. Our technique, called KEYS, shows a rapid way of simultaneously identifying the solutions and their key factors. KEYS improves on prior work by several orders of magnitude. Prior experiments with simulated annealing or treatment learning took tens of minutes to hours to terminate. KEYS runs much faster than that; e.g for one model, KEYS ran 13,000 times faster than treatment learning (40 minutes versus 0.18 seconds). Processing these JPL models is a non-linear optimization problem: the fewest mitigations must be selected while achieving the most requirements. Non-linear optimization is a well studied problem. With this paper, we challenge other members of the PROMISE community to improve on our results with other techniques.

  13. Autoshaping of key pecking in pigeons with negative reinforcement.

    PubMed

    Rachlin, H

    1969-07-01

    Pigeons exposed to gradually increasing intensities of pulsing electric shock pecked a key and thereby reduced the intensity of shock to zero for 2 min. Acquisition of key pecking was brought about through an autoshaping process in which periodic brief keylight presentations immediately preceded automatic reduction of the shock. On the occasions of such automatic reduction of shock preceding the first measured key peck, little or no orientation to the key was observed. Observations of pigeons with autoshaping of positive reinforcement also revealed little evidence of orientation toward the key.

  14. Fully device-independent conference key agreement

    NASA Astrophysics Data System (ADS)

    Ribeiro, Jérémy; Murta, Gláucia; Wehner, Stephanie

    2018-02-01

    We present a security analysis of conference key agreement (CKA) in the most adversarial model of device independence (DI). Our protocol can be implemented by any experimental setup that is capable of performing Bell tests [specifically, the Mermin-Ardehali-Belinskii-Klyshko (MABK) inequality], and security can in principle be obtained for any violation of the MABK inequality that detects genuine multipartite entanglement among the N parties involved in the protocol. As our main tool, we derive a direct physical connection between the N -partite MABK inequality and the Clauser-Horne-Shimony-Holt (CHSH) inequality, showing that certain violations of the MABK inequality correspond to a violation of the CHSH inequality between one of the parties and the other N -1 . We compare the asymptotic key rate for device-independent conference key agreement (DICKA) to the case where the parties use N -1 device-independent quantum key distribution protocols in order to generate a common key. We show that for some regime of noise the DICKA protocol leads to better rates.

  15. Phase transitions in mixed gas hydrates: experimental observations versus calculated data.

    PubMed

    Schicks, Judith M; Naumann, Rudolf; Erzinger, Jörg; Hester, Keith C; Koh, Carolyn A; Sloan, E Dendy

    2006-06-15

    This paper presents the phase behavior of multicomponent gas hydrate systems formed from primarily methane with small amounts of ethane and propane. Experimental conditions were typically in a pressure range between 1 and 6 MPa, and the temperature range was between 260 and 290 K. These multicomponent systems have been investigated using a variety of techniques including microscopic observations, Raman spectroscopy, and X-ray diffraction. These techniques, used in combination, allowed for measurement of the hydrate structure and composition, while observing the morphology of the hydrate crystals measured. The hydrate formed immediately below the three-phase line (V-L --> V-L-H) and contained crystals that were both light and dark in appearance. The light crystals, which visually were a single solid phase, showed a spectroscopic indication for the presence of occluded free gas in the hydrate. In contrast, the dark crystals were measured to be structure II (sII) without the presence of these occluded phases. Along with hydrate measurements near the decomposition line, an unexpected transformation process was visually observed at P-T-conditions in the stability field of the hydrates. Larger crystallites transformed into a foamy solid upon cooling over this transition line (between 5 and 10 K below the decomposition temperature). Below the transition line, a mixture of sI and sII was detected. This is the first time that these multicomponent systems have been investigated at these pressure and temperature conditions using both visual and spectroscopic techniques. These techniques enabled us to observe and measure the unexpected transformation process showing coexistence of different gas hydrate phases.

  16. Design of virtual simulation experiment based on key events

    NASA Astrophysics Data System (ADS)

    Zhong, Zheng; Zhou, Dongbo; Song, Lingxiu

    2018-06-01

    Considering complex content and lacking of guidance in virtual simulation experiments, the key event technology in VR narrative theory was introduced for virtual simulation experiment to enhance fidelity and vividness process. Based on the VR narrative technology, an event transition structure was designed to meet the need of experimental operation process, and an interactive event processing model was used to generate key events in interactive scene. The experiment of" margin value of bees foraging" based on Biologic morphology was taken as an example, many objects, behaviors and other contents were reorganized. The result shows that this method can enhance the user's experience and ensure experimental process complete and effectively.

  17. Practical quantum key distribution protocol without monitoring signal disturbance.

    PubMed

    Sasaki, Toshihiko; Yamamoto, Yoshihisa; Koashi, Masato

    2014-05-22

    Quantum cryptography exploits the fundamental laws of quantum mechanics to provide a secure way to exchange private information. Such an exchange requires a common random bit sequence, called a key, to be shared secretly between the sender and the receiver. The basic idea behind quantum key distribution (QKD) has widely been understood as the property that any attempt to distinguish encoded quantum states causes a disturbance in the signal. As a result, implementation of a QKD protocol involves an estimation of the experimental parameters influenced by the eavesdropper's intervention, which is achieved by randomly sampling the signal. If the estimation of many parameters with high precision is required, the portion of the signal that is sacrificed increases, thus decreasing the efficiency of the protocol. Here we propose a QKD protocol based on an entirely different principle. The sender encodes a bit sequence onto non-orthogonal quantum states and the receiver randomly dictates how a single bit should be calculated from the sequence. The eavesdropper, who is unable to learn the whole of the sequence, cannot guess the bit value correctly. An achievable rate of secure key distribution is calculated by considering complementary choices between quantum measurements of two conjugate observables. We found that a practical implementation using a laser pulse train achieves a key rate comparable to a decoy-state QKD protocol, an often-used technique for lasers. It also has a better tolerance of bit errors and of finite-sized-key effects. We anticipate that this finding will give new insight into how the probabilistic nature of quantum mechanics can be related to secure communication, and will facilitate the simple and efficient use of conventional lasers for QKD.

  18. Coherent one-way quantum key distribution

    NASA Astrophysics Data System (ADS)

    Stucki, Damien; Fasel, Sylvain; Gisin, Nicolas; Thoma, Yann; Zbinden, Hugo

    2007-05-01

    Quantum Key Distribution (QKD) consists in the exchange of a secrete key between two distant points [1]. Even if quantum key distribution systems exist and commercial systems are reaching the market [2], there are still improvements to be made: simplify the construction of the system; increase the secret key rate. To this end, we present a new protocol for QKD tailored to work with weak coherent pulses and at high bit rates [3]. The advantages of this system are that the setup is experimentally simple and it is tolerant to reduced interference visibility and to photon number splitting attacks, thus resulting in a high efficiency in terms of distilled secret bits per qubit. After having successfully tested the feasibility of the system [3], we are currently developing a fully integrated and automated prototype within the SECOQC project [4]. We present the latest results using the prototype. We also discuss the issue of the photon detection, which still remains the bottleneck for QKD.

  19. Pot binding as a variable confounding plant phenotype: theoretical derivation and experimental observations.

    PubMed

    Sinclair, Thomas R; Manandhar, Anju; Shekoofa, Avat; Rosas-Anderson, Pablo; Bagherzadi, Laleh; Schoppach, Remy; Sadok, Walid; Rufty, Thomas W

    2017-04-01

    Theoretical derivation predicted growth retardation due to pot water limitations, i.e., pot binding. Experimental observations were consistent with these limitations. Combined, these results indicate a need for caution in high-throughput screening and phenotyping. Pot experiments are a mainstay in many plant studies, including the current emphasis on developing high-throughput, phenotyping systems. Pot studies can be vulnerable to decreased physiological activity of the plants particularly when pot volume is small, i.e., "pot binding". It is necessary to understand the conditions under which pot binding may exist to avoid the confounding influence of pot binding in interpreting experimental results. In this paper, a derivation is offered that gives well-defined conditions for the occurrence of pot binding based on restricted water availability. These results showed that not only are pot volume and plant size important variables, but the potting media is critical. Artificial potting mixtures used in many studies, including many high-throughput phenotyping systems, are particularly susceptible to the confounding influences of pot binding. Experimental studies for several crop species are presented that clearly show the existence of thresholds of plant leaf area at which various pot sizes and potting media result in the induction of pot binding even though there may be no immediate, visual plant symptoms. The derivation and experimental results showed that pot binding can readily occur in plant experiments if care is not given to have sufficiently large pots, suitable potting media, and maintenance of pot water status. Clear guidelines are provided for avoiding the confounding effects of water-limited pot binding in studying plant phenotype.

  20. [Observation of antiarrhythmic effects of Cinnamomum migao H. W. Li on experimental arrhythmia].

    PubMed

    Sui, Y; Qiu, D; Xie, C; Chen, K

    1998-08-01

    To investigate the effects of Cinnamomum migao on experimental arrhythmia. Arrhythmic models of mice, rabbits, guinea pigs and rats were built using chloroform(Chl), adrenalin(Adr), strophanthin-K (Spt-K) and barium chloride (BaCl2). The affected animals were divided randomly into three groups: control group, Cinnamomum migao (CV-3) group and mexiletine (MXL) group, so as to observe and compare the antiarrhythmic effects. CV-3 could reduce the incidence of ventricular fibrillation caused by ch1 in mice and the ventricular tachycardia induced by Adr in rabbits, delay the onset time of this arrhythmia, increase the arrhythmic doses of Spt-K in guinea pigs, reduce the incidence of some arrhythmia caused by BaCl2 in rats and slow down their heart rate. CV-3 has obvious antiarrhythmic effects on experimental arrhythmia. The mechanism of these effects is probably related to the arrest of the intraflow of Na+, Ca2+ in the cardiac cells and the depression of their cardiac autoarrhythmicity and conductivity.

  1. Effect of the Key Mixture Parameters on Shrinkage of Reactive Powder Concrete

    PubMed Central

    Zubair, Ahmed

    2014-01-01

    Reactive powder concrete (RPC) mixtures are reported to have excellent mechanical and durability characteristics. However, such concrete mixtures having high amount of cementitious materials may have high early shrinkage causing cracking of concrete. In the present work, an attempt has been made to study the simultaneous effects of three key mixture parameters on shrinkage of the RPC mixtures. Considering three different levels of the three key mixture factors, a total of 27 mixtures of RPC were prepared according to 33 factorial experiment design. The specimens belonging to all 27 mixtures were monitored for shrinkage at different ages over a total period of 90 days. The test results were plotted to observe the variation of shrinkage with time and to see the effects of the key mixture factors. The experimental data pertaining to 90-day shrinkage were used to conduct analysis of variance to identify significance of each factor and to obtain an empirical equation correlating the shrinkage of RPC with the three key mixture factors. The rate of development of shrinkage at early ages was higher. The water to binder ratio was found to be the most prominent factor followed by cement content with the least effect of silica fume content. PMID:25050395

  2. Effect of the key mixture parameters on shrinkage of reactive powder concrete.

    PubMed

    Ahmad, Shamsad; Zubair, Ahmed; Maslehuddin, Mohammed

    2014-01-01

    Reactive powder concrete (RPC) mixtures are reported to have excellent mechanical and durability characteristics. However, such concrete mixtures having high amount of cementitious materials may have high early shrinkage causing cracking of concrete. In the present work, an attempt has been made to study the simultaneous effects of three key mixture parameters on shrinkage of the RPC mixtures. Considering three different levels of the three key mixture factors, a total of 27 mixtures of RPC were prepared according to 3(3) factorial experiment design. The specimens belonging to all 27 mixtures were monitored for shrinkage at different ages over a total period of 90 days. The test results were plotted to observe the variation of shrinkage with time and to see the effects of the key mixture factors. The experimental data pertaining to 90-day shrinkage were used to conduct analysis of variance to identify significance of each factor and to obtain an empirical equation correlating the shrinkage of RPC with the three key mixture factors. The rate of development of shrinkage at early ages was higher. The water to binder ratio was found to be the most prominent factor followed by cement content with the least effect of silica fume content.

  3. Experimental study of the Ca-Mg-Zn system using diffusion couples and key alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Nan; Kevorkov, Dmytro; Bridier, Florent; Medraj, Mamoun

    2011-03-01

    Nine diffusion couples and 32 key samples were prepared to map the phase diagram of the Ca-Mg-Zn system. Phase relations and solubility limits were determined for binary and ternary compounds using scanning electron microscopy, electron probe microanalysis and x-ray diffraction (XRD). The crystal structure of the ternary compounds was studied by XRD and electron backscatter diffraction. Four ternary intermetallic (IM) compounds were identified in this system: Ca3MgxZn15-x (4.6<=x<=12 at 335 °C, IM1), Ca14.5Mg15.8Zn69.7 (IM2), Ca2Mg5Zn13 (IM3) and Ca1.5Mg55.3Zn43.2 (IM4). Three binary compounds were found to have extended solid solubility into ternary systems: CaZn11, CaZn13 and Mg2Ca form substitutional solid solutions where Mg substitutes for Zn atoms in the first two compounds, and Zn substitutes for both Ca and Mg atoms in Mg2Ca. The isothermal section of the Ca-Mg-Zn phase diagram at 335 °C was constructed on the basis of the obtained experimental results. The morphologies of the diffusion couples in the Ca-Mg-Zn phase diagram at 335 °C were studied. Depending on the terminal compositions of the diffusion couples, the two-phase regions in the diffusion zone have either a tooth-like morphology or contain a matrix phase with isolated and/or dendritic precipitates.

  4. Development of Ocean Acidification Flow-Thru Experimental Raceway Units (OAFTERU): Simulating the Future Reefs in the Keys Today

    NASA Astrophysics Data System (ADS)

    Hall, E. R.; Vaughan, D.; Crosby, M. P.

    2011-12-01

    Ocean acidification, a consequence of anthropogenic CO2 production due to fossil fuel combustion, deforestation, and cement production, has been referred to as "the other CO2 problem" and is receiving much attention in marine science and public policy communities. Critical needs that have been identified by top climate change and marine scientists include using projected pCO2 (partial pressure of CO2 in seawater) levels in manipulative experiments to determine physiological indices of ecologically important species, such as corals. Coral reefs were one of the first ecosystems to be documented as susceptible to ocean acidification. The Florida Keys reef system has already experienced a long-term deterioration, resulting in increased calls for large scale coral reef ecosystem restoration of these critical resources. It has also been speculated that this decline in reef ecosystem health may be exacerbated by increasing atmospheric CO2 levels with resulting ocean acidification. Therefore, reef resilience to ocean acidification and the potential for successful restoration of these systems under forecasted long-term modified pH conditions in the Florida Keys is of great concern. Many studies for testing effects of ocean acidification on corals have already been established and tested. However, many employ pH modification experimental designs that include addition of acid to seawater which may not mimic conditions of climate change induced ocean acidification. It would be beneficial to develop and maintain an ocean acidification testing system more representative of climate change induced changes, and specific to organisms and ecosystems indigenous to the Florida Keys reef tract. The Mote Marine Laboratory research facility in Summerland Key, FL has an established deep well from which its supply of seawater is obtained. This unique source of seawater is 80 feet deep, "fossil" marine water. It is pumped from the on-site aquifer aerated to reduce H2S and ammonia, and passed

  5. Necroptosis is a key pathogenic event in human and experimental murine models of non-alcoholic steatohepatitis.

    PubMed

    Afonso, Marta B; Rodrigues, Pedro M; Carvalho, Tânia; Caridade, Marta; Borralho, Paula; Cortez-Pinto, Helena; Castro, Rui E; Rodrigues, Cecília M P

    2015-10-01

    Hepatocyte cell death, inflammation and oxidative stress constitute key pathogenic mechanisms underlying non-alcoholic fatty liver disease (NAFLD). We aimed to investigate the role of necroptosis in human and experimental NAFLD and its association with tumour necrosis factor α (TNF-α) and oxidative stress. Serum markers of necrosis, liver receptor-interacting protein 3 (RIP3) and phosphorylated mixed lineage kinase domain-like (MLKL) were evaluated in control individuals and patients with NAFLD. C57BL/6 wild-type (WT) or RIP3-deficient (RIP3(-/-)) mice were fed a high-fat choline-deficient (HFCD) or methionine and choline-deficient (MCD) diet, with subsequent histological and biochemical analysis of hepatic damage. In primary murine hepatocytes, necroptosis and oxidative stress were also assessed after necrostatin-1 (Nec-1) treatment or RIP3 silencing. We show that circulating markers of necrosis and TNF-α, as well as liver RIP3 and MLKL phosphorylation were increased in NAFLD. Likewise, RIP3 and MLKL protein levels and TNF-α expression were increased in the liver of HFCD and MCD diet-fed mice. Moreover, RIP3 and MLKL sequestration in the insoluble protein fraction of NASH (non-alcoholic steatohepatitis) mice liver lysates represented an early event during stetatohepatitis progression. Functional studies in primary murine hepatocytes established the association between TNF-α-induced RIP3 expression, activation of necroptosis and oxidative stress. Strikingly, RIP3 deficiency attenuated MCD diet-induced liver injury, steatosis, inflammation, fibrosis and oxidative stress. In conclusion, necroptosis is increased in the liver of NAFLD patients and in experimental models of NASH. Further, TNF-α triggers RIP3-dependent oxidative stress during hepatocyte necroptosis. As such, targeting necroptosis appears to arrest or at least impair NAFLD progression. © 2015 Authors; published by Portland Press Limited.

  6. Influence of humidity on the initial emittable concentration of formaldehyde and hexaldehyde in building materials: experimental observation and correlation

    PubMed Central

    Huang, Shaodan; Xiong, Jianyin; Cai, Chaorui; Xu, Wei; Zhang, Yinping

    2016-01-01

    Humidity is one of the main environmental factors affecting the emission rate and key parameters of formaldehyde and volatile organic compounds (VOCs) from building materials. Meanwhile, the initial emittable concentration (Cm,0) is proved to be the most sensitive key parameter to the emission behaviours. However, there is no report on the relationship between humidity and Cm,0. In this paper, Cm,0 of formaldehyde and hexaldehyde from a type of medium density fiberboard in absolute humidity (AH) range of 4.6–19.6 g/m3 at 25 °C were tested by virtue of a C-history method. Experimental results indicate that Cm,0 is dramatically dependent on AH, increased by 10 and 2 times for formaldehyde and hexaldehyde when AH rising from 4.6 g/m3 to 19.6 g/m3. A linear relationship between the logarithm of Cm,0 and AH is obtained based on the measured results. In addition, a correlation characterizing the association of emission rate and AH is derived. The effectiveness of the correlation is verified with our experimental results as well as data from literature. With the correlations, the Cm,0 or emission rate different from the test AH conditions can be conveniently obtained. This study should be useful for predicting the emission characteristics of humidity changing scenarios and for source control. PMID:27025353

  7. Influence of humidity on the initial emittable concentration of formaldehyde and hexaldehyde in building materials: experimental observation and correlation.

    PubMed

    Huang, Shaodan; Xiong, Jianyin; Cai, Chaorui; Xu, Wei; Zhang, Yinping

    2016-03-30

    Humidity is one of the main environmental factors affecting the emission rate and key parameters of formaldehyde and volatile organic compounds (VOCs) from building materials. Meanwhile, the initial emittable concentration (Cm,0) is proved to be the most sensitive key parameter to the emission behaviours. However, there is no report on the relationship between humidity and Cm,0. In this paper, Cm,0 of formaldehyde and hexaldehyde from a type of medium density fiberboard in absolute humidity (AH) range of 4.6-19.6 g/m(3) at 25 °C were tested by virtue of a C-history method. Experimental results indicate that Cm,0 is dramatically dependent on AH, increased by 10 and 2 times for formaldehyde and hexaldehyde when AH rising from 4.6 g/m(3) to 19.6 g/m(3). A linear relationship between the logarithm of Cm,0 and AH is obtained based on the measured results. In addition, a correlation characterizing the association of emission rate and AH is derived. The effectiveness of the correlation is verified with our experimental results as well as data from literature. With the correlations, the Cm,0 or emission rate different from the test AH conditions can be conveniently obtained. This study should be useful for predicting the emission characteristics of humidity changing scenarios and for source control.

  8. Velocity changes at Volcán de Colima: Seismic and Experimental observations

    NASA Astrophysics Data System (ADS)

    Lamb, Oliver; Lavallée, Yan; De Angelis, Silvio; Varley, Nick; Reyes-Dávila, Gabriel; Arámbula-Mendoza, Raúl; Hornby, Adrian; Wall, Richard; Kendrick, Jackie

    2016-04-01

    Immediately prior to dome-building eruptions, volcano-seismic swarms are a direct consequence of strain localisation in the ascending magma. A deformation mechanism map of magma subjected to strain localisation will help develop accurate numerical models, which, coupled to an understanding of the mechanics driving monitored geophysical signals prior to lava eruption, will enhance forecasts. Here we present how seismic data from Volcán de Colima, Mexico, is combined with experimental work to give insights into fracturing in and around magma. Volcán de Colima is a dome-forming volcano that has been almost-continuously erupting since November 1998. We use coda-wave interferometry to quantify small changes in seismic velocity structure between pairs of similar earthquakes, employing waveforms from clusters of repeating earthquakes. The changes in all pairs of events were then used together to create a continuous function of velocity change at all stations within 7 km of the volcano from October to December 1998. We complement our seismic data with acoustic emission data from tensional experiments using samples collected at Volcán de Colima. Decreases in velocity and frequency reflect changes in the sample properties prior to failure. By comparing experimental and seismic observations, we may place constraints on the conditions of the natural seismogenic processes. Using a combination of field and experimental data promises a greater understanding of the processes affecting the rise of magma during an eruption. This will help with the challenge of forecasting and hazard mitigation during dome-forming eruptions worldwide.

  9. Experimental and observational studies find contrasting responses of soil nutrients to climate change

    PubMed Central

    Yuan, ZY; Jiao, F; Shi, XR; Sardans, Jordi; Maestre, Fernando T; Delgado-Baquerizo, Manuel; Reich, Peter B; Peñuelas, Josep

    2017-01-01

    Manipulative experiments and observations along environmental gradients, the two most common approaches to evaluate the impacts of climate change on nutrient cycling, are generally assumed to produce similar results, but this assumption has rarely been tested. We did so by conducting a meta-analysis and found that soil nutrients responded differentially to drivers of climate change depending on the approach considered. Soil carbon, nitrogen, and phosphorus concentrations generally decreased with water addition in manipulative experiments but increased with annual precipitation along environmental gradients. Different patterns were also observed between warming experiments and temperature gradients. Our findings provide evidence of inconsistent results and suggest that manipulative experiments may be better predictors of the causal impacts of short-term (months to years) climate change on soil nutrients but environmental gradients may provide better information for long-term correlations (centuries to millennia) between these nutrients and climatic features. Ecosystem models should consequently incorporate both experimental and observational data to properly assess the impacts of climate change on nutrient cycling. DOI: http://dx.doi.org/10.7554/eLife.23255.001 PMID:28570219

  10. Experimental quantum key distribution at 1.3 gigabit-per-second secret-key rate over a 10 dB loss channel

    NASA Astrophysics Data System (ADS)

    Zhang, Zheshen; Chen, Changchen; Zhuang, Quntao; Wong, Franco N. C.; Shapiro, Jeffrey H.

    2018-04-01

    Quantum key distribution (QKD) enables unconditionally secure communication ensured by the laws of physics, opening a promising route to security infrastructure for the coming age of quantum computers. QKD’s demonstrated secret-key rates (SKRs), however, fall far short of the gigabit-per-second rates of classical communication, hindering QKD’s widespread deployment. QKD’s low SKRs are largely due to existing single-photon-based protocols’ vulnerability to channel loss. Floodlight QKD (FL-QKD) boosts SKR by transmitting many photons per encoding, while offering security against collective attacks. Here, we report an FL-QKD experiment operating at a 1.3 Gbit s‑1 SKR over a 10 dB loss channel. To the best of our knowledge, this is the first QKD demonstration that achieves a gigabit-per-second-class SKR, representing a critical advance toward high-rate QKD at metropolitan-area distances.

  11. Experimental observation of chimera and cluster states in a minimal globally coupled network

    NASA Astrophysics Data System (ADS)

    Hart, Joseph D.; Bansal, Kanika; Murphy, Thomas E.; Roy, Rajarshi

    2016-09-01

    A "chimera state" is a dynamical pattern that occurs in a network of coupled identical oscillators when the symmetry of the oscillator population is broken into synchronous and asynchronous parts. We report the experimental observation of chimera and cluster states in a network of four globally coupled chaotic opto-electronic oscillators. This is the minimal network that can support chimera states, and our study provides new insight into the fundamental mechanisms underlying their formation. We use a unified approach to determine the stability of all the observed partially synchronous patterns, highlighting the close relationship between chimera and cluster states as belonging to the broader phenomenon of partial synchronization. Our approach is general in terms of network size and connectivity. We also find that chimera states often appear in regions of multistability between global, cluster, and desynchronized states.

  12. Experimental observation of chimera and cluster states in a minimal globally coupled network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Joseph D.; Department of Physics, University of Maryland, College Park, Maryland 20742; Bansal, Kanika

    A “chimera state” is a dynamical pattern that occurs in a network of coupled identical oscillators when the symmetry of the oscillator population is broken into synchronous and asynchronous parts. We report the experimental observation of chimera and cluster states in a network of four globally coupled chaotic opto-electronic oscillators. This is the minimal network that can support chimera states, and our study provides new insight into the fundamental mechanisms underlying their formation. We use a unified approach to determine the stability of all the observed partially synchronous patterns, highlighting the close relationship between chimera and cluster states as belongingmore » to the broader phenomenon of partial synchronization. Our approach is general in terms of network size and connectivity. We also find that chimera states often appear in regions of multistability between global, cluster, and desynchronized states.« less

  13. Secret Key Generation via a Modified Quantum Secret Sharing Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith IV, Amos M; Evans, Philip G; Lawrie, Benjamin J

    We present and experimentally show a novel protocol for distributing secret information between two and only two parties in a N-party single-qubit Quantum Secret Sharing (QSS) system. We demonstrate this new algorithm with N = 3 active parties over 6km of telecom. ber. Our experimental device is based on the Clavis2 Quantum Key Distribution (QKD) system built by ID Quantique but is generalizable to any implementation. We show that any two out of the N parties can build secret keys based on partial information from each other and with collaboration from the remaining N > 2 parties. This algorithm allowsmore » for the creation of two-party secret keys were standard QSS does not and signicantly reduces the number of resources needed to implement QKD on a highly connected network such as the electrical grid.« less

  14. High key rate continuous-variable quantum key distribution with a real local oscillator.

    PubMed

    Wang, Tao; Huang, Peng; Zhou, Yingming; Liu, Weiqi; Ma, Hongxin; Wang, Shiyu; Zeng, Guihua

    2018-02-05

    Continuous-variable quantum key distribution (CVQKD) with a real local oscillator (LO) has been extensively studied recently due to its security and simplicity. In this paper, we propose a novel implementation of a high-key-rate CVQKD with a real LO. Particularly, with the help of the simultaneously generated reference pulse, the phase drift of the signal is tracked in real time and then compensated. By utilizing the time and polarization multiplexing techniques to isolate the reference pulse and controlling the intensity of it, not only the contamination from it is suppressed, but also a high accuracy of the phase compensation can be guaranteed. Besides, we employ homodyne detection on the signal to ensure the high quantum efficiency and heterodyne detection on the reference pulse to acquire the complete phase information of it. In order to suppress the excess noise, a theoretical noise model for our scheme is established. According to this model, the impact of the modulation variance and the intensity of the reference pulse are both analysed theoretically and then optimized according to the experimental data. By measuring the excess noise in the 25km optical fiber transmission system, a 3.14Mbps key rate in the asymptotic regime proves to be achievable. This work verifies the feasibility of the high-key-rate CVQKD with a real LO within the metropolitan area.

  15. Key Design Considerations When Calculating Cost Savings for Population Health Management Programs in an Observational Setting.

    PubMed

    Murphy, Shannon M E; Hough, Douglas E; Sylvia, Martha L; Dunbar, Linda J; Frick, Kevin D

    2018-02-08

    To illustrate the impact of key quasi-experimental design elements on cost savings measurement for population health management (PHM) programs. Population health management program records and Medicaid claims and enrollment data from December 2011 through March 2016. The study uses a difference-in-difference design to compare changes in cost and utilization outcomes between program participants and propensity score-matched nonparticipants. Comparisons of measured savings are made based on (1) stable versus dynamic population enrollment and (2) all eligible versus enrolled-only participant definitions. Options for the operationalization of time are also discussed. Individual-level Medicaid administrative and claims data and PHM program records are used to match study groups on baseline risk factors and assess changes in costs and utilization. Savings estimates are statistically similar but smaller in magnitude when eliminating variability based on duration of population enrollment and when evaluating program impact on the entire target population. Measurement in calendar time, when possible, simplifies interpretability. Program evaluation design elements, including population stability and participant definitions, can influence the estimated magnitude of program savings for the payer and should be considered carefully. Time specifications can also affect interpretability and usefulness. © Health Research and Educational Trust.

  16. Quantum exhaustive key search with simplified-DES as a case study.

    PubMed

    Almazrooie, Mishal; Samsudin, Azman; Abdullah, Rosni; Mutter, Kussay N

    2016-01-01

    To evaluate the security of a symmetric cryptosystem against any quantum attack, the symmetric algorithm must be first implemented on a quantum platform. In this study, a quantum implementation of a classical block cipher is presented. A quantum circuit for a classical block cipher of a polynomial size of quantum gates is proposed. The entire work has been tested on a quantum mechanics simulator called libquantum. First, the functionality of the proposed quantum cipher is verified and the experimental results are compared with those of the original classical version. Then, quantum attacks are conducted by using Grover's algorithm to recover the secret key. The proposed quantum cipher is used as a black box for the quantum search. The quantum oracle is then queried over the produced ciphertext to mark the quantum state, which consists of plaintext and key qubits. The experimental results show that for a key of n-bit size and key space of N such that [Formula: see text], the key can be recovered in [Formula: see text] computational steps.

  17. Side-channel-free quantum key distribution.

    PubMed

    Braunstein, Samuel L; Pirandola, Stefano

    2012-03-30

    Quantum key distribution (QKD) offers the promise of absolutely secure communications. However, proofs of absolute security often assume perfect implementation from theory to experiment. Thus, existing systems may be prone to insidious side-channel attacks that rely on flaws in experimental implementation. Here we replace all real channels with virtual channels in a QKD protocol, making the relevant detectors and settings inside private spaces inaccessible while simultaneously acting as a Hilbert space filter to eliminate side-channel attacks. By using a quantum memory we find that we are able to bound the secret-key rate below by the entanglement-distillation rate computed over the distributed states.

  18. Quantum key distribution: vulnerable if imperfectly implemented

    NASA Astrophysics Data System (ADS)

    Leuchs, G.

    2013-10-01

    We report several vulnerabilities found in Clavis2, the flagship quantum key distribution (QKD) system from ID Quantique. We show the hacking of a calibration sequence run by Clavis2 to synchronize the Alice and Bob devices before performing the secret key exchange. This hack induces a temporal detection efficiency mismatch in Bob that can allow Eve to break the security of the cryptosystem using faked states. We also experimentally investigate the superlinear behaviour in the single-photon detectors (SPDs) used by Bob. Due to this superlinearity, the SPDs feature an actual multi-photon detection probability which is generally higher than the theoretically-modelled value. We show how this increases the risk of detector control attacks on QKD systems (including Clavis2) employing such SPDs. Finally, we review the experimental feasibility of Trojan-horse attacks. In the case of Clavis2, the objective is to read Bob's phase modulator to acquire knowledge of his basis choice as this information suffices for constructing the raw key in the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) protocol. We work in close collaboration with ID Quantique and for all these loopholes, we notified them in advance. Wherever possible, we or ID Quantique proposed countermeasures and they implemented suitable patches and upgrade their systems.

  19. The key roles of four Experimental Forests in the LTSP International Research Program

    Treesearch

    Robert F. Powers; Robert Denner; John D. Elioff; Gary O. Fiddler; Deborah Page-Dumroese; Felix Ponder; Allan E. Tiarks; Peter E. Avers; Richard G. Cline; Nelson S. Loftus

    2014-01-01

    Four Experimental Forests were pivotal in piloting the long-term soil productivity (LTSP) cooperative research program - one of the most successful and extensive collaborative science efforts yet undertaken by the USDA Forest Service. Launched on the Palustris, Challenge, Marcell, and Priest River Experimental Forests, LTSP traces to a seminal discussion during a field...

  20. Criticality in conserved dynamical systems: experimental observation vs. exact properties.

    PubMed

    Marković, Dimitrije; Gros, Claudius; Schuelein, André

    2013-03-01

    Conserved dynamical systems are generally considered to be critical. We study a class of critical routing models, equivalent to random maps, which can be solved rigorously in the thermodynamic limit. The information flow is conserved for these routing models and governed by cyclic attractors. We consider two classes of information flow, Markovian routing without memory and vertex routing involving a one-step routing memory. Investigating the respective cycle length distributions for complete graphs, we find log corrections to power-law scaling for the mean cycle length, as a function of the number of vertices, and a sub-polynomial growth for the overall number of cycles. When observing experimentally a real-world dynamical system one normally samples stochastically its phase space. The number and the length of the attractors are then weighted by the size of their respective basins of attraction. This situation is equivalent, for theory studies, to "on the fly" generation of the dynamical transition probabilities. For the case of vertex routing models, we find in this case power law scaling for the weighted average length of attractors, for both conserved routing models. These results show that the critical dynamical systems are generically not scale-invariant but may show power-law scaling when sampled stochastically. It is hence important to distinguish between intrinsic properties of a critical dynamical system and its behavior that one would observe when randomly probing its phase space.

  1. Self-referenced continuous-variable quantum key distribution protocol

    DOE PAGES

    Soh, Daniel Beom Soo; Sarovar, Mohan; Brif, Constantin; ...

    2015-10-21

    We introduce a new continuous-variable quantum key distribution (CV-QKD) protocol, self-referenced CV-QKD, that eliminates the need for transmission of a high-power local oscillator between the communicating parties. In this protocol, each signal pulse is accompanied by a reference pulse (or a pair of twin reference pulses), used to align Alice’s and Bob’s measurement bases. The method of phase estimation and compensation based on the reference pulse measurement can be viewed as a quantum analog of intradyne detection used in classical coherent communication, which extracts the phase information from the modulated signal. We present a proof-of-principle, fiber-based experimental demonstration of themore » protocol and quantify the expected secret key rates by expressing them in terms of experimental parameters. Our analysis of the secret key rate fully takes into account the inherent uncertainty associated with the quantum nature of the reference pulse(s) and quantifies the limit at which the theoretical key rate approaches that of the respective conventional protocol that requires local oscillator transmission. The self-referenced protocol greatly simplifies the hardware required for CV-QKD, especially for potential integrated photonics implementations of transmitters and receivers, with minimum sacrifice of performance. Furthermore, it provides a pathway towards scalable integrated CV-QKD transceivers, a vital step towards large-scale QKD networks.« less

  2. Self-referenced continuous-variable quantum key distribution protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soh, Daniel Beom Soo; Sarovar, Mohan; Brif, Constantin

    We introduce a new continuous-variable quantum key distribution (CV-QKD) protocol, self-referenced CV-QKD, that eliminates the need for transmission of a high-power local oscillator between the communicating parties. In this protocol, each signal pulse is accompanied by a reference pulse (or a pair of twin reference pulses), used to align Alice’s and Bob’s measurement bases. The method of phase estimation and compensation based on the reference pulse measurement can be viewed as a quantum analog of intradyne detection used in classical coherent communication, which extracts the phase information from the modulated signal. We present a proof-of-principle, fiber-based experimental demonstration of themore » protocol and quantify the expected secret key rates by expressing them in terms of experimental parameters. Our analysis of the secret key rate fully takes into account the inherent uncertainty associated with the quantum nature of the reference pulse(s) and quantifies the limit at which the theoretical key rate approaches that of the respective conventional protocol that requires local oscillator transmission. The self-referenced protocol greatly simplifies the hardware required for CV-QKD, especially for potential integrated photonics implementations of transmitters and receivers, with minimum sacrifice of performance. Furthermore, it provides a pathway towards scalable integrated CV-QKD transceivers, a vital step towards large-scale QKD networks.« less

  3. Self-Referenced Continuous-Variable Quantum Key Distribution Protocol

    NASA Astrophysics Data System (ADS)

    Soh, Daniel B. S.; Brif, Constantin; Coles, Patrick J.; Lütkenhaus, Norbert; Camacho, Ryan M.; Urayama, Junji; Sarovar, Mohan

    2015-10-01

    We introduce a new continuous-variable quantum key distribution (CV-QKD) protocol, self-referenced CV-QKD, that eliminates the need for transmission of a high-power local oscillator between the communicating parties. In this protocol, each signal pulse is accompanied by a reference pulse (or a pair of twin reference pulses), used to align Alice's and Bob's measurement bases. The method of phase estimation and compensation based on the reference pulse measurement can be viewed as a quantum analog of intradyne detection used in classical coherent communication, which extracts the phase information from the modulated signal. We present a proof-of-principle, fiber-based experimental demonstration of the protocol and quantify the expected secret key rates by expressing them in terms of experimental parameters. Our analysis of the secret key rate fully takes into account the inherent uncertainty associated with the quantum nature of the reference pulse(s) and quantifies the limit at which the theoretical key rate approaches that of the respective conventional protocol that requires local oscillator transmission. The self-referenced protocol greatly simplifies the hardware required for CV-QKD, especially for potential integrated photonics implementations of transmitters and receivers, with minimum sacrifice of performance. As such, it provides a pathway towards scalable integrated CV-QKD transceivers, a vital step towards large-scale QKD networks.

  4. Direct experimental observation of mesoscopic fluorous domains in fluorinated room temperature ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo Celso, F.; Yoshida, Y.; Castiglione, F.

    Fluorinated room temperature ionic liquids (FRTILs) represent a class of solvent media that are attracting great attention due to their IL-specific properties as well as features stemming from their fluorous nature. Medium-to-long fluorous tails constitute a well-defined apolar moiety in the otherwise polar environment. Similarly to the case of alkyl tails, such chains are expected to result in the formation of self-assembled fluorous domains. So far, however, no direct experimental observation has been made of the existence of such structural heterogeneities on the nm scale. We report here the first experimental evidence of the existence of mesoscopic spatial segregation ofmore » fluorinated domains, on the basis of highly complementary X-ray and neutron scattering data sets (highlighting the importance of the latter probe) and NMR spectroscopy. Data are interpreted using atomistic molecular dynamics simulations, emphasizing the existence of a self-assembly mechanism that delivers segregated fluorous domains, where preferential solubilisation of fluorinated compounds can occur, thus paving the way for several smart applications.« less

  5. Semiquantum key distribution with secure delegated quantum computation

    PubMed Central

    Li, Qin; Chan, Wai Hong; Zhang, Shengyu

    2016-01-01

    Semiquantum key distribution allows a quantum party to share a random key with a “classical” party who only can prepare and measure qubits in the computational basis or reorder some qubits when he has access to a quantum channel. In this work, we present a protocol where a secret key can be established between a quantum user and an almost classical user who only needs the quantum ability to access quantum channels, by securely delegating quantum computation to a quantum server. We show the proposed protocol is robust even when the delegated quantum server is a powerful adversary, and is experimentally feasible with current technology. As one party of our protocol is the most quantum-resource efficient, it can be more practical and significantly widen the applicability scope of quantum key distribution. PMID:26813384

  6. Finite-key analysis for the 1-decoy state QKD protocol

    NASA Astrophysics Data System (ADS)

    Rusca, Davide; Boaron, Alberto; Grünenfelder, Fadri; Martin, Anthony; Zbinden, Hugo

    2018-04-01

    It has been shown that in the asymptotic case of infinite-key length, the 2-decoy state Quantum Key Distribution (QKD) protocol outperforms the 1-decoy state protocol. Here, we present a finite-key analysis of the 1-decoy method. Interestingly, we find that for practical block sizes of up to 108 bits, the 1-decoy protocol achieves for almost all experimental settings higher secret key rates than the 2-decoy protocol. Since using only one decoy is also easier to implement, we conclude that it is the best choice for QKD, in most common practical scenarios.

  7. Vicarious Neural Processing of Outcomes during Observational Learning

    PubMed Central

    Monfardini, Elisabetta; Gazzola, Valeria; Boussaoud, Driss

    2013-01-01

    Learning what behaviour is appropriate in a specific context by observing the actions of others and their outcomes is a key constituent of human cognition, because it saves time and energy and reduces exposure to potentially dangerous situations. Observational learning of associative rules relies on the ability to map the actions of others onto our own, process outcomes, and combine these sources of information. Here, we combined newly developed experimental tasks and functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms that govern such observational learning. Results show that the neural systems involved in individual trial-and-error learning and in action observation and execution both participate in observational learning. In addition, we identified brain areas that specifically activate for others’ incorrect outcomes during learning in the posterior medial frontal cortex (pMFC), the anterior insula and the posterior superior temporal sulcus (pSTS). PMID:24040104

  8. Efficient optical cloud removal technique for earth observation based on MOEMs device

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Noell, Wilfried

    2017-11-01

    In Earth Observation instruments, observation of scenes including bright sources leads to an important degradation of the recorded signal. We propose a new concept to remove dynamically the bright sources and then obtain a field of view with an optically enhanced Signal-to-Noise Ratio (SNR). Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. MOEMS-based programmable slit masks will permit the straylight control in future Earth Observation instruments. Experimental demonstration of this concept has been conducted on a dedicated bench. This successful first demonstration shows the high potential of this new concept in future spectro-imager for Earth Observation.

  9. Experimental observation of Bethe strings

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Wu, Jianda; Yang, Wang; Bera, Anup Kumar; Kamenskyi, Dmytro; Islam, A. T. M. Nazmul; Xu, Shenglong; Law, Joseph Matthew; Lake, Bella; Wu, Congjun; Loidl, Alois

    2018-02-01

    Almost a century ago, string states—complex bound states of magnetic excitations—were predicted to exist in one-dimensional quantum magnets. However, despite many theoretical studies, the experimental realization and identification of string states in a condensed-matter system have yet to be achieved. Here we use high-resolution terahertz spectroscopy to resolve string states in the antiferromagnetic Heisenberg-Ising chain SrCo2V2O8 in strong longitudinal magnetic fields. In the field-induced quantum-critical regime, we identify strings and fractional magnetic excitations that are accurately described by the Bethe ansatz. Close to quantum criticality, the string excitations govern the quantum spin dynamics, whereas the fractional excitations, which are dominant at low energies, reflect the antiferromagnetic quantum fluctuations. Today, Bethe’s result is important not only in the field of quantum magnetism but also more broadly, including in the study of cold atoms and in string theory; hence, we anticipate that our work will shed light on the study of complex many-body systems in general.

  10. Autoshaping of key pecking in pigeons with negative reinforcement1

    PubMed Central

    Rachlin, Howard

    1969-01-01

    Pigeons exposed to gradually increasing intensities of pulsing electric shock pecked a key and thereby reduced the intensity of shock to zero for 2 min. Acquisition of key pecking was brought about through an autoshaping process in which periodic brief keylight presentations immediately preceded automatic reduction of the shock. On the occasions of such automatic reduction of shock preceding the first measured key peck, little or no orientation to the key was observed. Observations of pigeons with autoshaping of positive reinforcement also revealed little evidence of orientation toward the key. ImagesFig. 3.Fig. 4. PMID:16811371

  11. The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Silverburg, Robert

    2009-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (approx. 0.5 arcsec) in this band. BETTII will use a double-Fourier instrument to simultaneously obtain both spatial and spectral information. The spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  12. Polarized Light Scanning Cryomacroscopy, Part II: Thermal Modeling and Analysis of Experimental Observations

    PubMed Central

    Feig, Justin S.G.; Solanki, Prem K.; Eisenberg, David P.; Rabin, Yoed

    2016-01-01

    This study aims at developing thermal analysis tools and explaining experimental observations made by means of polarized-light cryomacroscopy (Part I). Thermal modeling is based on finite elements analysis (FEA), where two model parameters are extracted from thermal measurements: (i) the overall heat transfer coefficient between the cuvette and the cooling chamber, and (ii) the effective thermal conductivity within the cryoprotective agent (CPA) at the upper part of the cryogenic temperature range. The effective thermal conductivity takes into account enhanced heat transfer due to convection currents within the CPA, creating the so-called Bénard cells. Comparison of experimental results with simulation data indicates that the uncertainty in simulations due to the propagation of uncertainty in measured physical properties exceeds the uncertainty in experimental measurements, which validates the modeling approach. It is shown in this study that while a cavity may form in the upper-center portion of the vitrified CPA, it has very little effect on estimating the temperature distribution within the domain. This cavity is driven by thermal contraction of the CPA, with the upper-center of the domain transitioning to glass last. Finally, it is demonstrated in this study that additional stresses may develop within the glass transition temperature range due to nonlinear behavior of the thermal expansion coefficient. This effect is reported here for the first time in the context of cryobiology, using the capabilities of polarized-light cryomacroscopy. PMID:27343139

  13. Polarized light scanning cryomacroscopy, part II: Thermal modeling and analysis of experimental observations.

    PubMed

    Feig, Justin S G; Solanki, Prem K; Eisenberg, David P; Rabin, Yoed

    2016-10-01

    This study aims at developing thermal analysis tools and explaining experimental observations made by means of polarized-light cryomacroscopy (Part I). Thermal modeling is based on finite elements analysis (FEA), where two model parameters are extracted from thermal measurements: (i) the overall heat transfer coefficient between the cuvette and the cooling chamber, and (ii) the effective thermal conductivity within the cryoprotective agent (CPA) at the upper part of the cryogenic temperature range. The effective thermal conductivity takes into account enhanced heat transfer due to convection currents within the CPA, creating the so-called Bénard cells. Comparison of experimental results with simulation data indicates that the uncertainty in simulations due to the propagation of uncertainty in measured physical properties exceeds the uncertainty in experimental measurements, which validates the modeling approach. It is shown in this study that while a cavity may form in the upper-center portion of the vitrified CPA, it has very little effect on estimating the temperature distribution within the domain. This cavity is driven by thermal contraction of the CPA, with the upper-center of the domain transitioning to glass last. Finally, it is demonstrated in this study that additional stresses may develop within the glass transition temperature range due to nonlinear behavior of the thermal expansion coefficient. This effect is reported here for the first time in the context of cryobiology, using the capabilities of polarized-light cryomacroscopy. Copyright © 2016. Published by Elsevier Inc.

  14. Quantum key distribution with an efficient countermeasure against correlated intensity fluctuations in optical pulses

    NASA Astrophysics Data System (ADS)

    Yoshino, Ken-ichiro; Fujiwara, Mikio; Nakata, Kensuke; Sumiya, Tatsuya; Sasaki, Toshihiko; Takeoka, Masahiro; Sasaki, Masahide; Tajima, Akio; Koashi, Masato; Tomita, Akihisa

    2018-03-01

    Quantum key distribution (QKD) allows two distant parties to share secret keys with the proven security even in the presence of an eavesdropper with unbounded computational power. Recently, GHz-clock decoy QKD systems have been realized by employing ultrafast optical communication devices. However, security loopholes of high-speed systems have not been fully explored yet. Here we point out a security loophole at the transmitter of the GHz-clock QKD, which is a common problem in high-speed QKD systems using practical band-width limited devices. We experimentally observe the inter-pulse intensity correlation and modulation pattern-dependent intensity deviation in a practical high-speed QKD system. Such correlation violates the assumption of most security theories. We also provide its countermeasure which does not require significant changes of hardware and can generate keys secure over 100 km fiber transmission. Our countermeasure is simple, effective and applicable to wide range of high-speed QKD systems, and thus paves the way to realize ultrafast and security-certified commercial QKD systems.

  15. The comparison and analysis of extracting video key frame

    NASA Astrophysics Data System (ADS)

    Ouyang, S. Z.; Zhong, L.; Luo, R. Q.

    2018-05-01

    Video key frame extraction is an important part of the large data processing. Based on the previous work in key frame extraction, we summarized four important key frame extraction algorithms, and these methods are largely developed by comparing the differences between each of two frames. If the difference exceeds a threshold value, take the corresponding frame as two different keyframes. After the research, the key frame extraction based on the amount of mutual trust is proposed, the introduction of information entropy, by selecting the appropriate threshold values into the initial class, and finally take a similar mean mutual information as a candidate key frame. On this paper, several algorithms is used to extract the key frame of tunnel traffic videos. Then, with the analysis to the experimental results and comparisons between the pros and cons of these algorithms, the basis of practical applications is well provided.

  16. Numerical modeling of experimental observations on gas formation and multi-phase flow of carbon dioxide in subsurface formations

    NASA Astrophysics Data System (ADS)

    Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.

    2011-12-01

    One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.

  17. Experimental observation of acoustic sub-harmonic diffraction by a grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jingfei, E-mail: benjamin.jf.liu@gatech.edu; Declercq, Nico F., E-mail: declercqdepatin@gatech.edu

    2014-06-28

    A diffraction grating is a spatial filter causing sound waves or optical waves to reflect in directions determined by the frequency of the waves and the period of the grating. The classical grating equation is the governing principle that has successfully described the diffraction phenomena caused by gratings. However, in this work, we show experimental observation of the so-called sub-harmonic diffraction in acoustics that cannot be explained by the classical grating equation. Experiments indicate two physical phenomena causing the effect: internal scattering effects within the corrugation causing a phase shift and nonlinear acoustic effects generating new frequencies. This discovery expandsmore » our current understanding of the diffraction phenomenon, and it also makes it possible to better design spatial diffraction spectra, such as a rainbow effect in optics with a more complicated color spectrum than a traditional rainbow. The discovery reveals also a possibly new technique to study nonlinear acoustics by exploitation of the natural spatial filtering effect inherent to an acoustic diffraction grating.« less

  18. Quantum key distribution with passive decoy state selection

    NASA Astrophysics Data System (ADS)

    Mauerer, Wolfgang; Silberhorn, Christine

    2007-05-01

    We propose a quantum key distribution scheme which closely matches the performance of a perfect single photon source. It nearly attains the physical upper bound in terms of key generation rate and maximally achievable distance. Our scheme relies on a practical setup based on a parametric downconversion source and present day, nonideal photon-number detection. Arbitrary experimental imperfections which lead to bit errors are included. We select decoy states by classical postprocessing. This allows one to improve the effective signal statistics and achievable distance.

  19. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states

    PubMed Central

    Chen, Wen-Jie; Xiao, Meng; Chan, C. T.

    2016-01-01

    Weyl points, as monopoles of Berry curvature in momentum space, have captured much attention recently in various branches of physics. Realizing topological materials that exhibit such nodal points is challenging and indeed, Weyl points have been found experimentally in transition metal arsenide and phosphide and gyroid photonic crystal whose structure is complex. If realizing even the simplest type of single Weyl nodes with a topological charge of 1 is difficult, then making a real crystal carrying higher topological charges may seem more challenging. Here we design, and fabricate using planar fabrication technology, a photonic crystal possessing single Weyl points (including type-II nodes) and multiple Weyl points with topological charges of 2 and 3. We characterize this photonic crystal and find nontrivial 2D bulk band gaps for a fixed kz and the associated surface modes. The robustness of these surface states against kz-preserving scattering is experimentally observed for the first time. PMID:27703140

  20. Observation of Weyl points

    Science.gov Websites

    copolymers, liquid crystals. Experimental observation of Weyl points First public annoucement on 11 Feburary Vishwanath from University of California, Berkeley. "Experimental Observation of Weyl Semimetals" ; Published by Science on 16 July, 2015. "Experimental observation of Weyl points" Featured on the

  1. Experimental demonstration of an active phase randomization and monitor module for quantum key distribution

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Hai; Liang, Lin-Mei

    2012-08-01

    Phase randomization is a very important assumption in the BB84 quantum key distribution (QKD) system with weak coherent source; otherwise, eavesdropper may spy the final key. In this Letter, a stable and monitored active phase randomization scheme for the one-way and two-way QKD system is proposed and demonstrated in experiments. Furthermore, our scheme gives an easy way for Alice to monitor the degree of randomization in experiments. Therefore, we expect our scheme to become a standard part in future QKD systems due to its secure significance and feasibility.

  2. Watershed Allied Telemetry Experimental Research

    NASA Astrophysics Data System (ADS)

    Li, Xin; Li, Xiaowen; Li, Zengyuan; Ma, Mingguo; Wang, Jian; Xiao, Qing; Liu, Qiang; Che, Tao; Chen, Erxue; Yan, Guangjian; Hu, Zeyong; Zhang, Lixin; Chu, Rongzhong; Su, Peixi; Liu, Qinhuo; Liu, Shaomin; Wang, Jindi; Niu, Zheng; Chen, Yan; Jin, Rui; Wang, Weizhen; Ran, Youhua; Xin, Xiaozhou; Ren, Huazhong

    2009-11-01

    The Watershed Allied Telemetry Experimental Research (WATER) is a simultaneous airborne, satellite-borne, and ground-based remote sensing experiment aiming to improve the observability, understanding, and predictability of hydrological and related ecological processes at a catchment scale. WATER consists of the cold region, forest, and arid region hydrological experiments as well as a hydrometeorology experiment and took place in the Heihe River Basin, a typical inland river basin in the northwest of China. The field campaigns have been completed, with an intensive observation period lasting from 7 March to 12 April, from 15 May to 22 July, and from 23 August to 5 September 2008: in total, 120 days. Twenty-five airborne missions were flown. Airborne sensors including microwave radiometers at L, K, and Ka bands, imaging spectrometer, thermal imager, CCD, and lidar were used. Various satellite data were collected. Ground measurements were carried out at four scales, that is, key experimental area, foci experimental area, experiment site, and elementary sampling plot, using ground-based remote sensing instruments, densified network of automatic meteorological stations, flux towers, and hydrological stations. On the basis of these measurements, the remote sensing retrieval models and algorithms of water cycle variables are to be developed or improved, and a catchment-scale land/hydrological data assimilation system is being developed. This paper reviews the background, scientific objectives, experiment design, filed campaign implementation, and current status of WATER. The analysis of the data will continue over the next 2 years, and limited revisits to the field are anticipated.

  3. A New Experimental Method Assessing Attitudes toward Adolescent Dating and Sibling Violence Using Observations of Violent Interactions

    ERIC Educational Resources Information Center

    Reese-Weber, Marla

    2008-01-01

    The present study provides experimental data comparing emerging adults' attitudes toward dating and sibling violence in adolescence using a new methodology in which participants observe a violent interaction between adolescents. The reported amount of violence experienced in dating and sibling relationships among emerging adults is also compared.…

  4. Key experimental information on intermediate-range atomic structures in amorphous Ge2Sb2Te5 phase change material

    NASA Astrophysics Data System (ADS)

    Hosokawa, Shinya; Pilgrim, Wolf-Christian; Höhle, Astrid; Szubrin, Daniel; Boudet, Nathalie; Bérar, Jean-François; Maruyama, Kenji

    2012-04-01

    Laser-induced crystalline-amorphous phase change of Ge-Sb-Te alloys is the key mechanism enabling the fast and stable writing/erasing processes in rewritable optical storage devices, such as digital versatile disk (DVD) or blu-ray disk. Although the structural information in the amorphous phase is essential for clarifying this fast process, as well as long lasting stabilities of both the phases, experimental works were mostly limited to the short-range order by x ray absorption fine structure. Here we show both the short and intermediate-range atomic structures of amorphous DVD material, Ge2Sb2Te5 (GST), investigated by a combination of anomalous x ray scattering and reverse Monte Carlo modeling. From the obtained atomic configurations of amorphous GST, we have found that the Sb atoms and half of the Ge atoms play roles in the fast phase change process of order-disorder transition, while the remaining Ge atoms act for the proper activation energy of barriers between the amorphous and crystalline phases.

  5. Numerical-experimental observation of shape bistability of red blood cells flowing in a microchannel

    NASA Astrophysics Data System (ADS)

    Guckenberger, Achim; Kihm, Alexander; John, Thomas; Wagner, Christian; Gekle, Stephan

    Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a complex field as they are determined by the intricate interplay between the flow conditions and the membrane mechanics. In this work we construct the shape phase diagram of a single red blood cell with a physiological viscosity ratio flowing in a microchannel. We use both experimental in-vitro measurements as well as 3D numerical simulations to complement the respective other one. Numerically, we have easy control over the initial starting configuration and natural access to the full 3D shape. With this information we obtain the phase diagram as a function of initial position, starting shape and cell velocity. Experimentally, we measure the occurrence frequency of the different shapes as a function of the cell velocity to construct the experimental diagram which is in good agreement with the numerical observations. Two different major shapes are found, namely croissants and slippers. Notably, both shapes show coexistence at low (<1 mm/s) and high velocities (>3 mm/s) while in-between only croissants are stable. This pronounced bistability indicates that RBC shapes are not only determined by system parameters such as flow velocity or channel size, but also strongly depend on the initial conditions.

  6. Teaching key use to persons with severe disabilities in congregate living settings.

    PubMed

    Ivancic, M T; Schepis, M M

    1995-01-01

    Key use remains overlooked for increasing independent material use by persons with severe mental retardation. In Experiment 1, a procedure to train key locating was evaluated in a multiple-probe withdrawal design across three groups of participants. Most participants located their keys when reinforced for doing so; however, key locating decreased when the reinforcement procedure was withdrawn. In Experiment 2, a multiple probe design across four participant groups was used to evaluate a training procedure to teach key use. Twenty of 25 participants used a key to open and lock their personal lockers as a result of training. However, only 36% of the participants were able to use their keys without prompts from experimenters.

  7. Experimental Observation of the Aubry Transition in Two-Dimensional Colloidal Monolayers

    NASA Astrophysics Data System (ADS)

    Brazda, T.; Silva, A.; Manini, N.; Vanossi, A.; Guerra, R.; Tosatti, E.; Bechinger, C.

    2018-01-01

    The possibility to achieve entirely frictionless, i.e., superlubric, sliding between solids holds enormous potential for the operation of mechanical devices. At small length scales, where mechanical contacts are well defined, Aubry predicted a transition from a superlubric to a pinned state when the mechanical load is increased. Evidence for this intriguing Aubry transition (AT), which should occur in one dimension (1D) and at zero temperature, was recently obtained in few-atom chains. Here, we experimentally and theoretically demonstrate the occurrence of the AT in an extended two-dimensional (2D) system at room temperature using a colloidal monolayer on an optical lattice. Unlike the continuous nature of the AT in 1D, we observe a first-order transition in 2D leading to a coexistence regime of pinned and unpinned areas. Our data demonstrate that the original concept of Aubry not only survives in 2D but is relevant for the design of nanoscopic machines and devices at ambient temperature.

  8. Pulse advancement and delay in an integrated-optical two-port ring-resonator circuit: direct experimental observations.

    PubMed

    Uranus, H P; Zhuang, L; Roeloffzen, C G H; Hoekstra, H J W M

    2007-09-01

    We report experimental observations of the negative-group-velocity (v(g)) phenomenon in an integrated-optical two-port ring-resonator circuit. We demonstrate that when the v(g) is negative, the (main) peak of output pulse appears earlier than the peak of a reference pulse, while for a positive v(g), the situation is the other way around. We observed that a pulse splitting phenomenon occurs in the neighborhood of the critical-coupling point. This pulse splitting limits the maximum achievable delay and advancement of a single device as well as facilitating a smooth transition from highly advanced to highly delayed pulse, and vice versa, across the critical-coupling point.

  9. Experimental observation of self excited co-rotating multiple vortices in a dusty plasma with inhomogeneous plasma background

    NASA Astrophysics Data System (ADS)

    Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.

    2017-03-01

    We report an experimental observation of multiple co-rotating vortices in an extended dust column in the background of an inhomogeneous diffused plasma. An inductively coupled rf discharge is initiated in the background of argon gas in the source region. This plasma was later found to diffuse into the main experimental chamber. A secondary DC glow discharge plasma is produced to introduce dust particles into the plasma volume. These micron-sized poly-disperse dust particles get charged in the background of the DC plasma and are transported by the ambipolar electric field of the diffused plasma. These transported particles are found to be confined in an electrostatic potential well, where the resultant electric field due to the diffused plasma (ambipolar E-field) and glass wall charging (sheath E-field) holds the micron-sized particles against the gravity. Multiple co-rotating (anti-clockwise) dust vortices are observed in the dust cloud for a particular discharge condition. The transition from multiple vortices to a single dust vortex is observed when input rf power is lowered. The occurrence of these vortices is explained on the basis of the charge gradient of dust particles, which is orthogonal to the ion drag force. The charge gradient is a consequence of the plasma inhomogeneity along the dust cloud length. The detailed nature and the reason for multiple vortices are still under investigation through further experiments; however, preliminary qualitative understanding is discussed based on the characteristic scale length of the dust vortex. There is a characteristic size of the vortex in the dusty plasma; therefore, multiple vortices could possibly be formed in an extended dusty plasma with inhomogeneous plasma background. The experimental results on the vortex motion of particles are compared with a theoretical model and are found to be in close agreement.

  10. Experimental observation of different soliton types in a net-normal group-dispersion fiber laser.

    PubMed

    Feng, Zhongyao; Rong, Qiangzhou; Qiao, Xueguang; Shao, Zhihua; Su, Dan

    2014-09-20

    Different soliton types are observed in a net-normal group-dispersion fiber laser based on nonlinear polarization rotation for passive mode locking. The proposed laser can deliver a dispersion-managed soliton, typical dissipation solitons, and a quasi-harmonic mode-locked pulse, a soliton bundle, and especially a dark pulse by only appropriately adjusting the linear cavity phase delay bias using one polarization controller at the fixed pump power. These nonlinear waves show different features, including the spectral shapes and time traces. The experimental observations show that the five soliton types could exist in the same laser cavity, which implies that integrable systems, dissipative systems, and dark pulse regimes can transfer and be switched in a passively mode-locked laser. Our studies not only verify the numeral simulation of the different soliton-types formation in a net-normal group-dispersion operation but also provide insight into Ginzburg-Landau equation systems.

  11. Detector-device-independent quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Charles Ci Wen; Korzh, Boris; Martin, Anthony

    2014-12-01

    Recently, a quantum key distribution (QKD) scheme based on entanglement swapping, called measurement-device-independent QKD (mdiQKD), was proposed to bypass all measurement side-channel attacks. While mdiQKD is conceptually elegant and offers a supreme level of security, the experimental complexity is challenging for practical systems. For instance, it requires interference between two widely separated independent single-photon sources, and the secret key rates are dependent on detecting two photons—one from each source. Here, we demonstrate a proof-of-principle experiment of a QKD scheme that removes the need for a two-photon system and instead uses the idea of a two-qubit single-photon to significantly simplify themore » implementation and improve the efficiency of mdiQKD in several aspects.« less

  12. Microscale optical cryptography using a subdiffraction-limit optical key

    NASA Astrophysics Data System (ADS)

    Ogura, Yusuke; Aino, Masahiko; Tanida, Jun

    2018-04-01

    We present microscale optical cryptography using a subdiffraction-limit optical pattern, which is finer than the diffraction-limit size of the decrypting optical system, as a key and a substrate with a reflectance distribution as an encrypted image. Because of the subdiffraction-limit spatial coding, this method enables us to construct a secret image with the diffraction-limit resolution. Simulation and experimental results demonstrate, both qualitatively and quantitatively, that the secret image becomes recognizable when and only when the substrate is illuminated with the designed key pattern.

  13. Experimental observation of breathing solitons and a third harmonic in a tapered photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Wang, F.; Yao, C. F.; Li, C. Z.; Jia, Z. X.; Li, Q.; Wu, C. F.; Ohishi, Y.; Qin, W. P.; Qin, G. S.

    2018-02-01

    We report the experimental observation of breathing solitons and a third harmonic in a tapered fluorotellurite photonic crystal fiber (PCF) pumped by a 1560 nm femtosecond fiber laser. The PCF has a core diameter that varies continuously along its length, resulting in a zero-dispersion wavelength that moves from 1325 nm to 906 nm over the transition region. By finely controlling the dispersion map of the tapered PCF and increasing the order of the optical solitons, their breathing behavior is observed in the frequency domain and the number of breaths goes up to 9. Furthermore, the breathing behavior of the optical soliton is transferred to the third harmonic through inter-modal phase-matched processes in the tapered PCF, and the third harmonic also breathes with an increase in the pump power.

  14. Experimental observations of a complex, supersonic nozzle concept

    NASA Astrophysics Data System (ADS)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark; Ruscher, Christopher; Gogineni, Sivaram; Kiel, Barry; Skytop Turbulence Labs, Syracuse University Team; Spectral Energies, LLC. Team; Air Force Research Laboratory Team

    2015-11-01

    A complex nozzle concept, which fuses multiple canonical flows together, has been experimentally investigated via pressure, schlieren and PIV in the anechoic chamber at Syracuse University. Motivated by future engine designs of high-performance aircraft, the rectangular, supersonic jet under investigation has a single plane of symmetry, an additional shear layer (referred to as a wall jet) and an aft deck representative of airframe integration. Operating near a Reynolds number of 3 ×106 , the nozzle architecture creates an intricate flow field comprised of high turbulence levels, shocks, shear & boundary layers, and powerful corner vortices. Current data suggest that the wall jet, which is an order of magnitude less energetic than the core, has significant control authority over the acoustic power through some non-linear process. As sound is a direct product of turbulence, experimental and analytical efforts further explore this interesting phenomenon associated with the turbulent flow. The authors acknowledge the funding source, a SBIR Phase II project with Spectral Energies, LLC. and AFRL turbine engine branch under the direction of Dr. Barry Kiel.

  15. Gaseous Sulfate Solubility in Glass: Experimental Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bliss, Mary

    2013-11-30

    Sulfate solubility in glass is a key parameter in many commercial glasses and nuclear waste glasses. This report summarizes key publications specific to sulfate solubility experimental methods and the underlying physical chemistry calculations. The published methods and experimental data are used to verify the calculations in this report and are expanded to a range of current technical interest. The calculations and experimental methods described in this report will guide several experiments on sulfate solubility and saturation for the Hanford Waste Treatment Plant Enhanced Waste Glass Models effort. There are several tables of sulfate gas equilibrium values at high temperature tomore » guide experimental gas mixing and to achieve desired SO3 levels. This report also describes the necessary equipment and best practices to perform sulfate saturation experiments for molten glasses. Results and findings will be published when experimental work is finished and this report is validated from the data obtained.« less

  16. OBSERVATIONS ON THE EFFECT OF RESIDUAL INSECTICIDES IN EXPERIMENTAL HUTS IN MASAKA DISTRICT, UGANDA.

    PubMed

    CULLEN, J R; DEZULUETA, J

    1964-01-01

    Observations made in Kigezi District, Uganda, had shown a great reduction in the number of Anopheles gambiae entering an experimental hut treated with DDT. The work reported in this paper confirms the phenomenon of reduced entry by A. gambiae and A. funestus in two experiments carried out in Masaka, another district of Uganda, using mud-walled huts, roofed with thatch or corrugated-iron sheets and sprayed with DDT and dieldrin. The fact that no similar reduction was observed with Mansonia (mansonioides) uniformis, a common species in the area, indicates the need to determine and take into account any reduction in the number of entering mosquitos when assessing the effect of residual insecticides. Of interest in these experiments was the finding that DDT and dieldrin produced satisfactory kills with all the local anopheline species in spite of their rapid sorption by the mud walls, an indication of the importance of thatch or metal roofs as a source of active insecticide.

  17. Observations on the effect of residual insecticides in experimental huts in Masaka District, Uganda*

    PubMed Central

    Cullen, J. R.; de Zulueta, J.

    1964-01-01

    Observations made in Kigezi District, Uganda, had shown a great reduction in the number of Anopheles gambiae entering an experimental hut treated with DDT. The work reported in this paper confirms the phenomenon of reduced entry by A. gambiae and A. funestus in two experiments carried out in Masaka, another district of Uganda, using mud-walled huts, roofed with thatch or corrugated-iron sheets and sprayed with DDT and dieldrin. The fact that no similar reduction was observed with Mansonia (mansonioides) uniformis, a common species in the area, indicates the need to determine and take into account any reduction in the number of entering mosquitos when assessing the effect of residual insecticides. Of interest in these experiments was the finding that DDT and dieldrin produced satisfactory kills with all the local anopheline species in spite of their rapid sorption by the mud walls, an indication of the importance of thatch or metal roofs as a source of active insecticide. PMID:14153414

  18. Herschel Observations of Protostellar and Young Stellar Objects in Nearby Molecular Clouds: The DIGIT Open Time Key Project

    NASA Astrophysics Data System (ADS)

    Green, Joel D.; DIGIT OTKP Team

    2010-01-01

    The DIGIT (Dust, Ice, and Gas In Time) Open Time Key Project utilizes the PACS spectrometer (57-210 um) onboard the Herschel Space Observatory to study the colder regions of young stellar objects and protostellar cores, complementary to recent observations from Spitzer and ground-based observatories. DIGIT focuses on 30 embedded sources and 64 disk sources, and includes supporting photometry from PACS and SPIRE, as well as spectroscopy from HIFI, selected from nearby molecular clouds. For the embedded sources, PACS spectroscopy will allow us to address the origin of [CI] and high-J CO lines observed with ISO-LWS. Our observations are sensitive to the presence of cold crystalline water ice, diopside, and carbonates. Additionally, PACS scans are 5x5 maps of the embedded sources and their outflows. Observations of more evolved disk sources will sample low and intermediate mass objects as well as a variety of spectral types from A to M. Many of these sources are extremely rich in mid-IR crystalline dust features, enabling us to test whether similar features can be detected at larger radii, via colder dust emission at longer wavelengths. If processed grains are present only in the inner disk (in the case of full disks) or from the emitting wall surface which marks the outer edge of the gap (in the case of transitional disks), there must be short timescales for dust processing; if processed grains are detected in the outer disk, radial transport must be rapid and efficient. Weak bands of forsterite and clino- and ortho-enstatite in the 60-75 um range provide information about the conditions under which these materials were formed. For the Science Demonstration Phase we are observing an embedded protostar (DK Cha) and a Herbig Ae/Be star (HD 100546), exemplars of the kind of science that DIGIT will achieve over the full program.

  19. Role of codeposited impurities during growth. I. Explaining distinctive experimental morphology on Cu(0 0 1)

    NASA Astrophysics Data System (ADS)

    Hamouda, Ajmi Bh.; Sathiyanarayanan, Rajesh; Pimpinelli, Alberto; Einstein, T. L.

    2011-01-01

    A unified explanation of the physics underlying all the distinctive features of the growth instabilities observed on Cu vicinals has long eluded theorists. Recently, kinetic Monte Carlo studies showed that codeposition of impurities during growth could account for the key distinctive experimental observations [Hamouda , Phys. Rev. BPLRBAQ0556-280510.1103/PhysRevB.77.245430 77, 245430 (2008)]. To identify the responsible impurity atom, we compute the nearest-neighbor binding energies (ENN) and terrace diffusion barriers (Ed) for several candidate impurity atoms on Cu(0 0 1) using DFT-based VASP. Our calculations show that codeposition (with Cu) of midtransition elements, such as Fe, Mn, and W, could—in conjunction with substantial Ehrlich-Schwoebel barriers—cause the observed instabilities; when the experimental setup is considered, W emerges to be the most likely candidate. We discuss the role of impurities in nanostructuring of surfaces.

  20. Quantum key distribution using gaussian-modulated coherent states

    NASA Astrophysics Data System (ADS)

    Grosshans, Frédéric; Van Assche, Gilles; Wenger, Jérôme; Brouri, Rosa; Cerf, Nicolas J.; Grangier, Philippe

    2003-01-01

    Quantum continuous variables are being explored as an alternative means to implement quantum key distribution, which is usually based on single photon counting. The former approach is potentially advantageous because it should enable higher key distribution rates. Here we propose and experimentally demonstrate a quantum key distribution protocol based on the transmission of gaussian-modulated coherent states (consisting of laser pulses containing a few hundred photons) and shot-noise-limited homodyne detection; squeezed or entangled beams are not required. Complete secret key extraction is achieved using a reverse reconciliation technique followed by privacy amplification. The reverse reconciliation technique is in principle secure for any value of the line transmission, against gaussian individual attacks based on entanglement and quantum memories. Our table-top experiment yields a net key transmission rate of about 1.7 megabits per second for a loss-free line, and 75 kilobits per second for a line with losses of 3.1dB. We anticipate that the scheme should remain effective for lines with higher losses, particularly because the present limitations are essentially technical, so that significant margin for improvement is available on both the hardware and software.

  1. Key Frame Extraction in the Summary Space.

    PubMed

    Li, Xuelong; Zhao, Bin; Lu, Xiaoqiang; Xuelong Li; Bin Zhao; Xiaoqiang Lu; Lu, Xiaoqiang; Li, Xuelong; Zhao, Bin

    2018-06-01

    Key frame extraction is an efficient way to create the video summary which helps users obtain a quick comprehension of the video content. Generally, the key frames should be representative of the video content, meanwhile, diverse to reduce the redundancy. Based on the assumption that the video data are near a subspace of a high-dimensional space, a new approach, named as key frame extraction in the summary space, is proposed for key frame extraction in this paper. The proposed approach aims to find the representative frames of the video and filter out similar frames from the representative frame set. First of all, the video data are mapped to a high-dimensional space, named as summary space. Then, a new representation is learned for each frame by analyzing the intrinsic structure of the summary space. Specifically, the learned representation can reflect the representativeness of the frame, and is utilized to select representative frames. Next, the perceptual hash algorithm is employed to measure the similarity of representative frames. As a result, the key frame set is obtained after filtering out similar frames from the representative frame set. Finally, the video summary is constructed by assigning the key frames in temporal order. Additionally, the ground truth, created by filtering out similar frames from human-created summaries, is utilized to evaluate the quality of the video summary. Compared with several traditional approaches, the experimental results on 80 videos from two datasets indicate the superior performance of our approach.

  2. Note: Experimental observation of nano-channel pattern in light sheet laser interference nanolithography system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, Kavya; Mondal, Partha Pratim, E-mail: partha@iap.iisc.ernet.in

    We experimentally observed nano-channel-like pattern in a light-sheet based interference nanolithography system. The optical system created nano-channel-like patterned illumination. Coherent counter-propagating light sheets are made to interfere at and near geometrical focus along the propagation z-axis. This results in the formation of nano-channel-like pattern (of size ≈ 300 nm and inter-channel periodicity of ≈337.5 nm) inside the sample due to constructive and destructive interference. In addition, the technique has the ability to generate large area patterning using larger light-sheets. Exciting applications are in the broad field of nanotechnology (nano-electronics and nano-fluidics).

  3. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2

    NASA Astrophysics Data System (ADS)

    Deng, Ke; Wan, Guoliang; Deng, Peng; Zhang, Kenan; Ding, Shijie; Wang, Eryin; Yan, Mingzhe; Huang, Huaqing; Zhang, Hongyun; Xu, Zhilin; Denlinger, Jonathan; Fedorov, Alexei; Yang, Haitao; Duan, Wenhui; Yao, Hong; Wu, Yang; Fan, Shoushan; Zhang, Haijun; Chen, Xi; Zhou, Shuyun

    2016-12-01

    Weyl semimetal is a new quantum state of matter hosting the condensed matter physics counterpart of the relativistic Weyl fermions originally introduced in high-energy physics. The Weyl semimetal phase realized in the TaAs class of materials features multiple Fermi arcs arising from topological surface states and exhibits novel quantum phenomena, such as a chiral anomaly-induced negative magnetoresistance and possibly emergent supersymmetry. Recently it was proposed theoretically that a new type (type-II) of Weyl fermion that arises due to the breaking of Lorentz invariance, which does not have a counterpart in high-energy physics, can emerge as topologically protected touching between electron and hole pockets. Here, we report direct experimental evidence of topological Fermi arcs in the predicted type-II Weyl semimetal MoTe2 (refs ,,). The topological surface states are confirmed by directly observing the surface states using bulk- and surface-sensitive angle-resolved photoemission spectroscopy, and the quasi-particle interference pattern between the putative topological Fermi arcs in scanning tunnelling microscopy. By establishing MoTe2 as an experimental realization of a type-II Weyl semimetal, our work opens up opportunities for probing the physical properties of this exciting new state.

  4. Physical properties of dust particles in different comets inferred from observations and experimental simulations

    NASA Astrophysics Data System (ADS)

    Hadamcik, E.; Levasseur-Regourd, A. C.

    2007-08-01

    1.Introduction Remote observations of solar light scattered by cometary dust particles provide information on the dust properties for a large variety of comets, in complement to the exceptional in-situ observations (with or without sample returns). The scattered light is partially linearly polarized, with a polarization degree depending on the geometry of observations (phase angle ?) and on the physical properties of the particles. Differences in polarization have been found in cometary comae, pointing to different physical properties of the dust (e.g. sizes of the grains, of the aggregates, structures and porosities, complex refractive indices) [1, 2]. Such differences, as well as an observed polarimetric wavelength effect, tend to show that large aggregates made of submicron-sized grains could be present in some cometary comae regions [3, 4]. On the opposite, more compact particles seem to be present in other comae regions and/or comets [5, 6]. 2. Results We will present observations of different comets. The variations of the dust properties in the coma and their evolution will be discussed. The results will be compared to the results obtained by other observational techniques. On the images of comet 9P/Tempel 1 (at ?=41°) some hours after Deep Impact, two kinds of dust particles are detected: more compact particles with small velocities and fluffy particles ejected by the impact with larger velocities. On the images of comet 73P/Schwassmann-Wachmann 3, in the tail direction of fragment B, a disruption is observed. The dust coma around fragment C is more symmetric. For both A and B, important dust jets are ejected by the nucleus, which are visible on the intensity images in the solar and antisolar directions, and on the polarization maps. 3. Interpretation and conclusion Numerical (7,8,9) and experimental simulations provide an interpretation of the observations in terms of the physical properties of the particles. Experimental simulations have been performed on

  5. Materializing Heart Regeneration: Biomimicry of Key Observations in Cell Transplantation Therapies and Natural Cardiac Regeneration

    NASA Astrophysics Data System (ADS)

    Kong, Yen P.; Jongpaiboonkit, Leena

    2016-07-01

    New regenerative paradigms are needed to address the growing global problem of heart failure as existing interventions are unsatisfactory. Outcomes from the current paradigm of cell transplantation have not been stellar but the mechanistic knowledge learned from them is instructive in the development of future paradigms. An emerging biomaterial-based approach incorporating key mechanisms and additional ones scrutinized from the process of natural heart regeneration in zebrafish may become the next evolution in cardiac repair. We highlight, with examples, tested key concepts and pivotal ones that may be integrated into a successful therapy.

  6. A New Three Dimensional Based Key Generation Technique in AVK

    NASA Astrophysics Data System (ADS)

    Banerjee, Subhasish; Dutta, Manash Pratim; Bhunia, Chandan Tilak

    2017-08-01

    In modern era, ensuring high order security becomes one and only objective of computer networks. From the last few decades, many researchers have given their contributions to achieve the secrecy over the communication channel. In achieving perfect security, Shannon had done the pioneer work on perfect secret theorem and illustrated that secrecy of the shared information can be maintained if the key becomes variable in nature instead of static one. In this regard, a key generation technique has been proposed where the key can be changed every time whenever a new block of data needs to be exchanged. In our scheme, the keys not only vary in bit sequences but also in size. The experimental study is also included in this article to prove the correctness and effectiveness of our proposed technique.

  7. Practical and Secure Recovery of Disk Encryption Key Using Smart Cards

    NASA Astrophysics Data System (ADS)

    Omote, Kazumasa; Kato, Kazuhiko

    In key-recovery methods using smart cards, a user can recover the disk encryption key in cooperation with the system administrator, even if the user has lost the smart card including the disk encryption key. However, the disk encryption key is known to the system administrator in advance in most key-recovery methods. Hence user's disk data may be read by the system administrator. Furthermore, if the disk encryption key is not known to the system administrator in advance, it is difficult to achieve a key authentication. In this paper, we propose a scheme which enables to recover the disk encryption key when the user's smart card is lost. In our scheme, the disk encryption key is not preserved anywhere and then the system administrator cannot know the key before key-recovery phase. Only someone who has a user's smart card and knows the user's password can decrypt that user's disk data. Furthermore, we measured the processing time required for user authentication in an experimental environment using a virtual machine monitor. As a result, we found that this processing time is short enough to be practical.

  8. Tight finite-key analysis for quantum cryptography

    PubMed Central

    Tomamichel, Marco; Lim, Charles Ci Wen; Gisin, Nicolas; Renner, Renato

    2012-01-01

    Despite enormous theoretical and experimental progress in quantum cryptography, the security of most current implementations of quantum key distribution is still not rigorously established. One significant problem is that the security of the final key strongly depends on the number, M, of signals exchanged between the legitimate parties. Yet, existing security proofs are often only valid asymptotically, for unrealistically large values of M. Another challenge is that most security proofs are very sensitive to small differences between the physical devices used by the protocol and the theoretical model used to describe them. Here we show that these gaps between theory and experiment can be simultaneously overcome by using a recently developed proof technique based on the uncertainty relation for smooth entropies. PMID:22252558

  9. Tight finite-key analysis for quantum cryptography.

    PubMed

    Tomamichel, Marco; Lim, Charles Ci Wen; Gisin, Nicolas; Renner, Renato

    2012-01-17

    Despite enormous theoretical and experimental progress in quantum cryptography, the security of most current implementations of quantum key distribution is still not rigorously established. One significant problem is that the security of the final key strongly depends on the number, M, of signals exchanged between the legitimate parties. Yet, existing security proofs are often only valid asymptotically, for unrealistically large values of M. Another challenge is that most security proofs are very sensitive to small differences between the physical devices used by the protocol and the theoretical model used to describe them. Here we show that these gaps between theory and experiment can be simultaneously overcome by using a recently developed proof technique based on the uncertainty relation for smooth entropies.

  10. The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths, a powerful tool for scientific discovery, We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers,

  11. Experimental multiplexing of quantum key distribution with classical optical communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liu-Jun; Chen, Luo-Kan; Ju, Lei

    2015-02-23

    We demonstrate the realization of quantum key distribution (QKD) when combined with classical optical communication, and synchronous signals within a single optical fiber. In the experiment, the classical communication sources use Fabry-Pérot (FP) lasers, which are implemented extensively in optical access networks. To perform QKD, multistage band-stop filtering techniques are developed, and a wavelength-division multiplexing scheme is designed for the multi-longitudinal-mode FP lasers. We have managed to maintain sufficient isolation among the quantum channel, the synchronous channel and the classical channels to guarantee good QKD performance. Finally, the quantum bit error rate remains below a level of 2% across themore » entire practical application range. The proposed multiplexing scheme can ensure low classical light loss, and enables QKD over fiber lengths of up to 45 km simultaneously when the fibers are populated with bidirectional FP laser communications. Our demonstration paves the way for application of QKD to current optical access networks, where FP lasers are widely used by the end users.« less

  12. A fingerprint key binding algorithm based on vector quantization and error correction

    NASA Astrophysics Data System (ADS)

    Li, Liang; Wang, Qian; Lv, Ke; He, Ning

    2012-04-01

    In recent years, researches on seamless combination cryptosystem with biometric technologies, e.g. fingerprint recognition, are conducted by many researchers. In this paper, we propose a binding algorithm of fingerprint template and cryptographic key to protect and access the key by fingerprint verification. In order to avoid the intrinsic fuzziness of variant fingerprints, vector quantization and error correction technique are introduced to transform fingerprint template and then bind with key, after a process of fingerprint registration and extracting global ridge pattern of fingerprint. The key itself is secure because only hash value is stored and it is released only when fingerprint verification succeeds. Experimental results demonstrate the effectiveness of our ideas.

  13. Mast cells play a key role in neutrophil recruitment in experimental bullous pemphigoid

    PubMed Central

    Chen, Ruoyan; Ning, Gang; Zhao, Ming-Lang; Fleming, Matthew G.; Diaz, Luis A.; Werb, Zena; Liu, Zhi

    2001-01-01

    Bullous pemphigoid (BP) is an inflammatory subepidermal blistering disease associated with an IgG autoimmune response to the hemidesmosomal protein BP180. Passive transfer of antibodies to the murine BP180 (mBP180) ectodomain triggers a blistering skin disease in mice that depends on complement activation and neutrophil infiltration and closely mimics human BP. In the present study, we show that mast cells (MCs) play a crucial role in experimental BP. Wild-type mice injected intradermally with pathogenic anti-mBP180 IgG exhibited extensive MC degranulation in skin, which preceded neutrophil infiltration and subsequent subepidermal blistering. In contrast, mice genetically deficient in MCs or MC-sufficient mice pretreated with an inhibitor of MC degranulation failed to develop BP. Further, MC-deficient mice reconstituted in skin with MCs became susceptible to experimental BP. Despite the activation of complement to yield C3a and C5a, in the absence of MCs, accumulation of neutrophils at the injection site was blunted. The lack of response due to MC deficiency was overcome by intradermal administration of a neutrophil chemoattractant, IL-8, or by reconstitution of the injection sites with neutrophils. These findings provide the first direct evidence to our knowledge that MCs play an essential role in neutrophil recruitment during subepidermal blister formation in experimental BP. PMID:11602622

  14. Experimental generalized quantum suppression law in Sylvester interferometers

    NASA Astrophysics Data System (ADS)

    Viggianiello, Niko; Flamini, Fulvio; Innocenti, Luca; Cozzolino, Daniele; Bentivegna, Marco; Spagnolo, Nicolò; Crespi, Andrea; Brod, Daniel J.; Galvão, Ernesto F.; Osellame, Roberto; Sciarrino, Fabio

    2018-03-01

    Photonic interference is a key quantum resource for optical quantum computation, and in particular for so-called boson sampling devices. In interferometers with certain symmetries, genuine multiphoton quantum interference effectively suppresses certain sets of events, as in the original Hong–Ou–Mandel effect. Recently, it was shown that some classical and semi-classical models could be ruled out by identifying such suppressions in Fourier interferometers. Here we propose a suppression law suitable for random-input experiments in multimode Sylvester interferometers, and verify it experimentally using 4- and 8-mode integrated interferometers. The observed suppression occurs for a much larger fraction of input–output combinations than what is observed in Fourier interferometers of the same size, and could be relevant to certification of boson sampling machines and other experiments relying on bosonic interference, such as quantum simulation and quantum metrology.

  15. Key-value store with internal key-value storage interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, John M.; Faibish, Sorin; Ting, Dennis P. J.

    A key-value store is provided having one or more key-value storage interfaces. A key-value store on at least one compute node comprises a memory for storing a plurality of key-value pairs; and an abstract storage interface comprising a software interface module that communicates with at least one persistent storage device providing a key-value interface for persistent storage of one or more of the plurality of key-value pairs, wherein the software interface module provides the one or more key-value pairs to the at least one persistent storage device in a key-value format. The abstract storage interface optionally processes one or moremore » batch operations on the plurality of key-value pairs. A distributed embodiment for a partitioned key-value store is also provided.« less

  16. Optically driven oscillations of ellipsoidal particles. Part I: experimental observations.

    PubMed

    Mihiretie, B M; Snabre, P; Loudet, J-C; Pouligny, B

    2014-12-01

    We report experimental observations of the mechanical effects of light on ellipsoidal micrometre-sized dielectric particles, in water as the continuous medium. The particles, made of polystyrene, have shapes varying between near disk-like (aspect ratio k = 0.2) to very elongated needle-like (k = 8). Rather than the very tightly focused beam geometry of optical tweezers, we use a moderately focused laser beam to manipulate particles individually by optical levitation. The geometry allows us varying the longitudinal position of the particle, and to capture images perpendicular to the beam axis. Experiments show that moderate-k particles are radially trapped with their long axis lying parallel to the beam. Conversely, elongated (k > 3) or flattened (k < 0.3) ellipsoids never come to rest, and permanently "dance" around the beam, through coupled translation-rotation motions. The oscillations are shown to occur in general, be the particle in bulk water or close to a solid boundary, and may be periodic or irregular. We provide evidence for two bifurcations between static and oscillating states, at k ≈ 0.33 and k ≈ 3 for oblate and prolate ellipsoids, respectively. Based on a recently developed 2-dimensional ray-optics simulation (Mihiretie et al., EPL 100, 48005 (2012)), we propose a simple model that allows understanding the physical origin of the oscillations.

  17. JHR Project: a future Material Testing Reactor working as an International user Facility: The key-role of instrumentation in support to the development of modern experimental capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bignan, G.; Gonnier, C.; Lyoussi, A.

    2015-07-01

    Research and development on fuel and material behaviour under irradiation is a key issue for sustainable nuclear energy in order to meet specific needs by keeping the best level of safety. These needs mainly deal with a constant improvement of performances and safety in order to optimize the fuel cycle and hence to reach nuclear energy sustainable objectives. A sustainable nuclear energy requires a high level of performances in order to meet specific needs such as: - Pursuing improvement of the performances and safety of present and coming water cooled reactor technologies. This will require a continuous R and Dmore » support following a long-term trend driven by the plant life management, safety demonstration, flexibility and economics improvement. Experimental irradiations of structure materials are necessary to anticipate these material behaviours and will contribute to their optimisation. - Upgrading continuously nuclear fuel technology in present and future nuclear power plants to achieve better performances and to optimise the fuel cycle keeping the best level of safety. Fuel evolution for generation II, III and III+ is a key stake requiring developments, qualification tests and safety experiments to ensure the competitiveness and safety: experimental tests exploring the full range of fuel behaviour determine fuel stability limits and safety margins, as a major input for the fuel reliability analysis. To perform such accurate and innovative progress and developments, specific and ad hoc instrumentation, irradiation devices, measurement methods are necessary to be set up inside or beside the material testing reactor (MTR) core. These experiments require beforehand in situ and on line sophisticated measurements to accurately determine different key parameters such as thermal and fast neutron fluxes and nuclear heating in order to precisely monitor and control the conducted assays. The new Material Testing Reactor JHR (Jules Horowitz Reactor) currently under

  18. Experimental observation of Fano effect in Ag nanoparticle-CdTe quantum dot hybrid system

    NASA Astrophysics Data System (ADS)

    Gurung, Sabina; Jayabalan, J.; Singh, Asha; Khan, Salahuddin; Chari, Rama

    2018-04-01

    We have experimentally measured the optical properties of Ag nanoparticle-CdTe quantum dot hybrid system and compared it with that of bare CdTe quantum dot colloid. It has been shown that the photoluminescence line shape of CdTe quantum dots becomes asymmetric in presence of Ag nanoparticles. The observed changes in the PL spectrum closely match the expected changes in the line shape due to Fano interaction between discrete level and continuum levels. Our experiment shows that a very small fraction of metal nanoparticles in the metal-semiconductor hybrid is sufficient to induce such changes in line shape which is in contrary to the earlier reported theoretical prediction on metal-semiconductor hybrid.

  19. Free-space quantum key distribution at night

    NASA Astrophysics Data System (ADS)

    Buttler, William T.; Hughes, Richard J.; Kwiat, Paul G.; Lamoreaux, Steve K.; Luther, Gabriel G.; Morgan, George L.; Nordholt, Jane E.; Peterson, C. Glen; Simmons, Charles M.

    1998-07-01

    An experimental free-space quantum key distribution (QKD) system has been tested over an outdoor optical path of approximately 1 km under nighttime conditions at Los Alamos National Laboratory. This system employs the Bennett 92 protocol; here we give a brief overview of this protocol, and describe our experimental implementation of it. An analysis of the system efficiency is presented as well as a description of our error detection protocol, which employs a 2D parity check scheme. Finally, the susceptibility of this system to eavesdropping by various techniques is determined, and the effectiveness of privacy amplification procedures is discussed. Our conclusions are that free-space QKD is both effective and secure; possible applications include the rekeying of satellites in low earth orbit.

  20. Efficient bit sifting scheme of post-processing in quantum key distribution

    NASA Astrophysics Data System (ADS)

    Li, Qiong; Le, Dan; Wu, Xianyan; Niu, Xiamu; Guo, Hong

    2015-10-01

    Bit sifting is an important step in the post-processing of quantum key distribution (QKD). Its function is to sift out the undetected original keys. The communication traffic of bit sifting has essential impact on the net secure key rate of a practical QKD system. In this paper, an efficient bit sifting scheme is presented, of which the core is a lossless source coding algorithm. Both theoretical analysis and experimental results demonstrate that the performance of the scheme is approaching the Shannon limit. The proposed scheme can greatly decrease the communication traffic of the post-processing of a QKD system, which means the proposed scheme can decrease the secure key consumption for classical channel authentication and increase the net secure key rate of the QKD system, as demonstrated by analyzing the improvement on the net secure key rate. Meanwhile, some recommendations on the application of the proposed scheme to some representative practical QKD systems are also provided.

  1. An annotated key to the identification of commonly occurring and dominant genera of algae observed in the phytoplankton of the United States

    USGS Publications Warehouse

    Greeson, Phillip E.

    1982-01-01

    In early 1979, a retrieval was made for all phytoplankton data contained in the computerized data file of the U. S. Geological Survey. The retrieval revealed the analytical results of 17,959 samples collected and processed between October 1973 and October 1978. Of the approximately 500 genera of freshwater algae reported in the United States, the U.S. Geological Survey observed 321 genera in the phytoplankton. Fifty-two genera were considered to be commonly occurring and 42 genera were considered to be community dominants. The report lists, describes, and provides a detailed taxonomic key to the identification of 58 genera of algae considered either commonly occurring or dominant. Also included is a summary of environmental conditions under which each algal genus was observed, as well as a glossary and an extensive list of selected references.

  2. Satellite lidar and radar: Key components of the future climate observing system

    NASA Astrophysics Data System (ADS)

    Winker, D. M.

    2017-12-01

    Cloud feedbacks represent the dominant source of uncertainties in estimates of climate sensitivity and aerosols represent the largest source of uncertainty in climate forcing. Both observation of long-term changes and observational constraints on the processes responsible for those changes are necessary. The existing 30-year record of passive satellite observations has not yet provided constraints to significantly reduce these uncertainties, though. We now have more than a decade of experience with active sensors flying in the A-Train. These new observations have demonstrated the strengths of active sensors and the benefits of continued and more advanced active sensors. This talk will discuss the multiple roles for active sensors as an essential component of a global climate observing system.

  3. CNES developments of key detection technologies to prepare next generation focal planes for high resolution Earth observation

    NASA Astrophysics Data System (ADS)

    Materne, A.; Virmontois, C.; Bardoux, A.; Gimenez, T.; Biffi, J. M.; Laubier, D.; Delvit, J. M.

    2014-10-01

    This paper describes the activities managed by CNES (French National Space Agency) for the development of focal planes for next generation of optical high resolution Earth observation satellites, in low sun-synchronous orbit. CNES has launched a new programme named OTOS, to increase the level of readiness (TRL) of several key technologies for high resolution Earth observation satellites. The OTOS programme includes several actions in the field of detection and focal planes: a new generation of CCD and CMOS image sensors, updated analog front-end electronics and analog-to-digital converters. The main features that must be achieved on focal planes for high resolution Earth Observation, are: readout speed, signal to noise ratio at low light level, anti-blooming efficiency, geometric stability, MTF and line of sight stability. The next steps targeted are presented in comparison to the in-flight measured performance of the PLEIADES satellites launched in 2011 and 2012. The high resolution panchromatic channel is still based upon Backside illuminated (BSI) CCDs operated in Time Delay Integration (TDI). For the multispectral channel, the main evolution consists in moving to TDI mode and the competition is open with the concurrent development of a CCD solution versus a CMOS solution. New CCDs will be based upon several process blocks under evaluation on the e2v 6 inches BSI wafer manufacturing line. The OTOS strategy for CMOS image sensors investigates on one hand custom TDI solutions within a similar approach to CCDs, and, on the other hand, investigates ways to take advantage of existing performance of off-the-shelf 2D arrays CMOS image sensors. We present the characterization results obtained from test vehicles designed for custom TDI operation on several CIS technologies and results obtained before and after radiation on snapshot 2D arrays from the CMOSIS CMV family.

  4. Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hong-Wei; Zhengzhou Information Science and Technology Institute, Zhengzhou, 450004; Wang, Shuang

    2011-12-15

    It is well known that the unconditional security of quantum-key distribution (QKD) can be guaranteed by quantum mechanics. However, practical QKD systems have some imperfections, which can be controlled by the eavesdropper to attack the secret key. With current experimental technology, a realistic beam splitter, made by fused biconical technology, has a wavelength-dependent property. Based on this fatal security loophole, we propose a wavelength-dependent attacking protocol, which can be applied to all practical QKD systems with passive state modulation. Moreover, we experimentally attack a practical polarization encoding QKD system to obtain all the secret key information at the cost ofmore » only increasing the quantum bit error rate from 1.3 to 1.4%.« less

  5. Measurement-device-independent quantum key distribution for Scarani-Acin-Ribordy-Gisin 04 protocol

    PubMed Central

    Mizutani, Akihiro; Tamaki, Kiyoshi; Ikuta, Rikizo; Yamamoto, Takashi; Imoto, Nobuyuki

    2014-01-01

    The measurement-device-independent quantum key distribution (MDI QKD) was proposed to make BB84 completely free from any side-channel in detectors. Like in prepare & measure QKD, the use of other protocols in MDI setting would be advantageous in some practical situations. In this paper, we consider SARG04 protocol in MDI setting. The prepare & measure SARG04 is proven to be able to generate a key up to two-photon emission events. In MDI setting we show that the key generation is possible from the event with single or two-photon emission by a party and single-photon emission by the other party, but the two-photon emission event by both parties cannot contribute to the key generation. On the contrary to prepare & measure SARG04 protocol where the experimental setup is exactly the same as BB84, the measurement setup for SARG04 in MDI setting cannot be the same as that for BB84 since the measurement setup for BB84 in MDI setting induces too many bit errors. To overcome this problem, we propose two alternative experimental setups, and we simulate the resulting key rate. Our study highlights the requirements that MDI QKD poses on us regarding with the implementation of a variety of QKD protocols. PMID:24913431

  6. Florida Keys

    NASA Image and Video Library

    2002-12-13

    The Florida Keys are a chain of islands, islets and reefs extending from Virginia Key to the Dry Tortugas for about 309 kilometers (192 miles). The keys are chiefly limestone and coral formations. The larger islands of the group are Key West (with its airport), Key Largo, Sugarloaf Key, and Boca Chica Key. A causeway extends from the mainland to Key West. This image was acquired on October 28, 2001, by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03890

  7. Experimental observation and determination of the laser-induced frequency shift of hyperfine levels of ultracold polar molecules

    NASA Astrophysics Data System (ADS)

    Liu, Wenliang; Wang, Xiaofeng; Wu, Jizhou; Su, Xingliang; Wang, Shen; Sovkov, Vladimir B.; Ma, Jie; Xiao, Liantuan; Jia, Suotang

    2017-08-01

    We report on the experimental observation and quantitative determination of the laser-induced frequency shift (LIFS) of the ultracold polar molecules formed by photoassociation (PA). The experiments are performed by detecting a series of double PA spectra with a molecular hyperfine structure, which are induced by two PA lasers with a precise and adjustable frequency reference. We find that the LIFS of the molecular hyperfine levels shows a linear dependence on PA laser intensity.

  8. Conceptual Modeling of a Quantum Key Distribution Simulation Framework Using the Discrete Event System Specification

    DTIC Science & Technology

    2014-09-18

    and full/scale experimental verifications towards ground/ satellite quantum key distribution0 Oat Qhotonics 4235>9+7,=5;9!អ \\58^ Zin K. Dao Z. Miu T...Conceptual Modeling of a Quantum Key Distribution Simulation Framework Using the Discrete Event System Specification DISSERTATION Jeffrey D. Morris... QUANTUM KEY DISTRIBUTION SIMULATION FRAMEWORK USING THE DISCRETE EVENT SYSTEM SPECIFICATION DISSERTATION Presented to the Faculty Department of Systems

  9. SeaQuaKE: Sea-optimized Quantum Key Exchange

    DTIC Science & Technology

    2014-06-01

    is led by Applied Communications Sciences under the ONR Free Space Optical Quantum Key Distribution Special Notice (13-SN-0004 under ONRBAA13-001...In addition, we discuss our initial progress towards the free - space quantum channel model and planning for the experimental validation effort. 15...SUBJECT TERMS Quantum communications, free - space optical communications 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as

  10. A Routing Path Construction Method for Key Dissemination Messages in Sensor Networks

    PubMed Central

    Moon, Soo Young; Cho, Tae Ho

    2014-01-01

    Authentication is an important security mechanism for detecting forged messages in a sensor network. Each cluster head (CH) in dynamic key distribution schemes forwards a key dissemination message that contains encrypted authentication keys within its cluster to next-hop nodes for the purpose of authentication. The forwarding path of the key dissemination message strongly affects the number of nodes to which the authentication keys in the message are actually distributed. We propose a routing method for the key dissemination messages to increase the number of nodes that obtain the authentication keys. In the proposed method, each node selects next-hop nodes to which the key dissemination message will be forwarded based on secret key indexes, the distance to the sink node, and the energy consumption of its neighbor nodes. The experimental results show that the proposed method can increase by 50–70% the number of nodes to which authentication keys in each cluster are distributed compared to geographic and energy-aware routing (GEAR). In addition, the proposed method can detect false reports earlier by using the distributed authentication keys, and it consumes less energy than GEAR when the false traffic ratio (FTR) is ≥10%. PMID:25136649

  11. Experimental Observation of Bulk Liquid Water Structure in ``No Man's Land''

    NASA Astrophysics Data System (ADS)

    Sellberg, Jonas; McQueen, Trevor; Huang, Congcong; Loh, Duane; Laksmono, Hartawan; Sierra, Raymond; Hampton, Christina; Starodub, Dmitri; Deponte, Daniel; Martin, Andrew; Barty, Anton; Wikfeldt, Thor; Schlesinger, Daniel; Pettersson, Lars; Beye, Martin; Nordlund, Dennis; Weiss, Thomas; Feldkamp, Jan; Caronna, Chiara; Seibert, Marvin; Messerschmidt, Marc; Williams, Garth; Boutet, Sebastien; Bogan, Michael; Nilsson, Anders

    2013-03-01

    Experiments on pure bulk water below about 235 K have so far been difficult: water crystallization occurs very rapidly below the homogeneous nucleation temperature of 232 K and above 160 K, leading to a ``no man's land'' devoid of experimental results regarding the structure. Here, we demonstrate a new, general experimental approach to study the structure of liquid states at supercooled conditions below their limit of homogeneous nucleation. We use femtosecond x-ray pulses generated by the LCLS x-ray laser to probe evaporatively cooled droplets of supercooled bulk water and find experimental evidence for the existence of metastable bulk liquid water down to temperatures of 223 K in the previously largely unexplored ``no man's land''. We acknoweledge NSF (CHE-0809324), Office of Basic Energy Sciences, and the Swedish Research Council for financial support.

  12. First experimental observations on melting and chemical modification of volcanic ash during lightning interaction.

    PubMed

    Mueller, S P; Helo, C; Keller, F; Taddeucci, J; Castro, J M

    2018-01-23

    Electrification in volcanic ash plumes often leads to syn-eruptive lightning discharges. High temperatures in and around lightning plasma channels have the potential to chemically alter, re-melt, and possibly volatilize ash fragments in the eruption cloud. In this study, we experimentally simulate temperature conditions of volcanic lightning in the laboratory, and systematically investigate the effects of rapid melting on the morphology and chemical composition of ash. Samples of different size and composition are ejected towards an artificially generated electrical arc. Post-experiment ash morphologies include fully melted spheres, partially melted particles, agglomerates, and vesiculated particles. High-speed imaging reveals various processes occurring during the short lightning-ash interactions, such as particle melting and rounding, foaming, and explosive particle fragmentation. Chemical analyses of the flash-melted particles reveal considerable bulk loss of Cl, S, P and Na through thermal vaporization. Element distribution patterns suggest convection as a key process of element transport from the interior of the melt droplet to rim where volatiles are lost. Modeling the degree of sodium loss delivers maximum melt temperatures between 3290 and 3490 K. Our results imply that natural lighting strikes may be an important agent of syn-eruptive morphological and chemical processing of volcanic ash.

  13. Function key and shortcut key use in airway facilities.

    DOT National Transportation Integrated Search

    2003-02-01

    This document provides information on the function keys and shortcut keys used by systems in the Federal Aviation Administration : Airway Facilities (AF) work environment. It includes a catalog of the function keys and shortcut keys used by each syst...

  14. Observational studies as human experimentation: the uranium mining experience in the Navajo Nation (1947-66).

    PubMed

    Moure-Eraso, R

    1999-01-01

    This article evaluates how an observational epidemiologic study of federal agencies in uranium miners became an experiment of opportunity for radiation effects. Navajo miners and communities suffered environmental exposures caused by the practices of uranium mining and milling in the Navajo reservation during the 1947 to 1966 period. A historical review of the state-of-the-art knowledge of the health effects of uranium mining and milling during the years prior to 1947 was conducted. Contemporary prevention and remediation practices also were assessed. An appraisal of the summary of findings of a comprehensive evaluation of radiation human experimentation conducted by the U.S. federal government in 1995-96 (ACHRE) demonstrates that uranium miners, including Navajo miners, were the single group that was put more seriously at risk of harm from radiation exposures, with inadequate disclosure and often with fatal consequences. Uranium miners were unwilling and unaware victims of human experimentation to evaluate the health effects of radiation. The failure of the State and U.S. Governments to issue regulations or demand installation of known mine-dust exposure control measures caused widespread environmental damage in the Navajo Nation.

  15. Experimental observation of multiphoton Thomson scattering

    NASA Astrophysics Data System (ADS)

    Yan, Wenchao; Golovin, Grigory; Fruhling, Colton; Haden, Daniel; Zhang, Ping; Zhang, Jun; Zhao, Baozhen; Liu, Cheng; Chen, Shouyuan; Banerjee, Sudeep; Umstadter, Donald

    2016-10-01

    With the advent of high-power lasers, several multiphoton processes have been reported involving electrons in strong fields. For electrons that were initially bound to atoms, both multiphoton ionization and scattering have been reported. However, for free electrons, only low-order harmonic generation has been observed until now. This limitation stems from past difficulty in achieving the required ultra-high-field strengths in scattering experiments. Highly relativistic laser intensities are required to reach the multiphoton regime of Thomson scattering, and generate high harmonics from free electrons. The scaling parameter is the normalized vector potential (a0). Previous experiments have observed phenomena in the weakly relativistic case (a0 >> 1). In ultra-intense fields (a0 >>1), the anomalous electron trajectory is predicted to produce a spectrum characterized by the merging of multiple high-order harmonic generation into a continuum. This may be viewed as the multiphoton Thomson scattering regime analogous to the wiggler of a synchrotron. Thus, the light produced reflects the electrons behavior in an ultra-intense lase field. We discuss the first experiments in the highly relativistic case (a0 15). This material is based upon work supported by NSF No. PHY-153700; US DOE, Office of Science, BES, # DE-FG02-05ER15663; AFOSR # FA9550-11-1-0157; and DHS DNDO # HSHQDC-13-C-B0036.

  16. A novel key-frame extraction approach for both video summary and video index.

    PubMed

    Lei, Shaoshuai; Xie, Gang; Yan, Gaowei

    2014-01-01

    Existing key-frame extraction methods are basically video summary oriented; yet the index task of key-frames is ignored. This paper presents a novel key-frame extraction approach which can be available for both video summary and video index. First a dynamic distance separability algorithm is advanced to divide a shot into subshots based on semantic structure, and then appropriate key-frames are extracted in each subshot by SVD decomposition. Finally, three evaluation indicators are proposed to evaluate the performance of the new approach. Experimental results show that the proposed approach achieves good semantic structure for semantics-based video index and meanwhile produces video summary consistent with human perception.

  17. Effect of vorticity flip-over on the premixed flame structure: Experimental observation of type-I inflection flames

    NASA Astrophysics Data System (ADS)

    El-Rabii, Hazem; Kazakov, Kirill A.

    2015-12-01

    Premixed flames propagating in horizontal tubes are observed to take on a convex shape towards the fresh mixture, which is commonly explained as a buoyancy effect. A recent rigorous analysis has shown, on the contrary, that this process is driven by the balance of vorticity generated by a curved flame front with the baroclinic vorticity, and predicted existence of a regime in which the leading edge of the flame front is concave. We report experimental realization of this regime. Our experiments on ethane and n -butane mixtures with air show that flames with an inflection point on the front are regularly produced in lean mixtures, provided that a sufficiently weak ignition is used. The observed flame shape perfectly agrees with that theoretically predicted.

  18. On radiation emission from a microbunched beam with wavefront tilt and its experimental observation

    NASA Astrophysics Data System (ADS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2018-03-01

    In this paper we compare experimental observations and theory of radiation emission from a microbunched beam with microbunching wavefront tilt with respect to the direction of motion. The theory refers to the work Tanaka et al. (2004) , which predicts, in this case, exponential suppression of coherent radiation along the kicked direction. The observations refer to a recent experiment performed at the LCLS (Nuhn et al., 2015; Lutman etal., 2016), where a microbunched beam was kicked by a bend and sent to a radiator undulator. The experiment resulted in the emission of strong coherent radiation that had its maximum along the kicked direction of motion, when the undulator parameter was detuned to a value larger than the nominal one. We first analyze the theory in detail, and we confirm the correctness of its derivation according to the conventional theory of radiation emission from charged particles. Subsequently, we look for possible peculiarities in the experiment, which may not be modeled by the theory. We show that only spurious effects are not accounted for. We conclude that the experiment defies explanation in terms of the conventional theory of radiation emission.

  19. Experimental insights into angiosperm origins.

    NASA Astrophysics Data System (ADS)

    Lomax, Barry; Lee, Alex; Smilie, Ian; Knight, Charles; Upchurch, Garland

    2017-04-01

    The angiosperms occupy almost every habitat type on Earth and comprise nearly 90% of extant plant species. Yet this ascendency is a relatively recent (geological) phenomenon. Palaeobotanical evidence indicates a likely first occurrence in the Early Cretaceous followed by a relatively rapid increase in diversity with their rise to dominance marking the onset of modern world. Understanding this diversification event has been a key research question since Darwin commented on this "abominable mystery", and it remains one of the most significant unanswered questions in plant biology. Sequencing work shows that the diversification and radiation was accompanied by successive whole genome duplication (WGD) events. Furthermore proxy data and predictions from long-term carbon cycle models indicate that the angiosperm diversification was accompanied by a decline in atmospheric CO2. These observation raise the intriguing possibility that declining atmospheric CO2 concentration and capacity to undergo polyploidy could have given angiosperms a competitive advantage when compared to other plant groups. Using comparative ecophysiology we set out to test the effects of declining atmospheric CO2 by growing a six species (Ranunculus acris and Polypodium vulgare, chosen to represent Cretaceous understorey angiosperms and pteridophytes respectively. Liquidambar styraciflua and Laurus nobilis represented canopy angiosperms and Ginkgo biloba and Metasequoia glyptostroboides canopy gymnosperms) in controlled conditions across a CO2 gradient (2000, 1200, 800 and 400 ppm) to simulate Cretaceous CO2decline. To test for WGDs we use the relationship between guard cell size and genome size to reconstruct angiosperm genome size as they radiated. Analysis of our fossil dataset shows that earliest angiosperms had a small genome size. Our experimental work shows that angiosperms have a greater capacity for acclimation suggesting that declining CO2 could have acted as a trigger for the angiosperm

  20. Self-Assembled Resonance Energy Transfer Keys for Secure Communication over Classical Channels.

    PubMed

    Nellore, Vishwa; Xi, Sam; Dwyer, Chris

    2015-12-22

    Modern authentication and communication protocols increasingly use physical keys in lieu of conventional software-based keys for security. This shift is primarily driven by the ability to derive a unique, unforgeable signature from a physical key. The sole demonstration of an unforgeable key, thus far, has been through quantum key distribution, which suffers from limited communication distances and expensive infrastructure requirements. Here, we show a method for creating unclonable keys by molecular self-assembly of resonance energy transfer (RET) devices. It is infeasible to clone the RET-key due to the inability to characterize the key using current technology, the large number of input-output combinations per key, and the variation of the key's response with time. However, the manufacturer can produce multiple identical devices, which enables inexpensive, secure authentication and communication over classical channels, and thus any distance. Through a detailed experimental survey of the nanoscale keys, we demonstrate that legitimate users are successfully authenticated 99.48% of the time and the false-positives are only 0.39%, over two attempts. We estimate that a legitimate user would have a computational advantage of more than 10(340) years over an attacker. Our method enables the discovery of physical key based multiparty authentication and communication schemes that are both practical and possess unprecedented security.

  1. Some observations on precipitation measurement on forested experimental watersheds

    Treesearch

    Raymond E. Leonard; Kenneth G. Reinhart

    1963-01-01

    Measurement of precipitation on forested experimental watersheds presents difficulties other than those associated with access to and from the gages in all kinds of weather. For instance, the tree canopy must be cleared above the gage. The accepted practice of keeping an unobstructed sky view of 45" around the gage involves considerable tree cutting. On a level...

  2. Experimental demonstration on the deterministic quantum key distribution based on entangled photons.

    PubMed

    Chen, Hua; Zhou, Zhi-Yuan; Zangana, Alaa Jabbar Jumaah; Yin, Zhen-Qiang; Wu, Juan; Han, Yun-Guang; Wang, Shuang; Li, Hong-Wei; He, De-Yong; Tawfeeq, Shelan Khasro; Shi, Bao-Sen; Guo, Guang-Can; Chen, Wei; Han, Zheng-Fu

    2016-02-10

    As an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified "Ping-Pong"(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based quantum communications.

  3. Experimental demonstration on the deterministic quantum key distribution based on entangled photons

    PubMed Central

    Chen, Hua; Zhou, Zhi-Yuan; Zangana, Alaa Jabbar Jumaah; Yin, Zhen-Qiang; Wu, Juan; Han, Yun-Guang; Wang, Shuang; Li, Hong-Wei; He, De-Yong; Tawfeeq, Shelan Khasro; Shi, Bao-Sen; Guo, Guang-Can; Chen, Wei; Han, Zheng-Fu

    2016-01-01

    As an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified “Ping-Pong”(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based quantum communications. PMID:26860582

  4. Experimental Observation of Classical Dynamical Monodromy

    NASA Astrophysics Data System (ADS)

    Nerem, M. P.; Salmon, D.; Aubin, S.; Delos, J. B.

    2018-03-01

    A Hamiltonian system is said to have nontrivial monodromy if its fundamental action-angle loops do not return to their initial topological state at the end of a closed circuit in angular momentum-energy space. This process has been predicted to have consequences which can be seen in dynamical systems, called dynamical monodromy. Using an apparatus consisting of a spherical pendulum subject to magnetic potentials and torques, we observe nontrivial monodromy by the associated topological change in the evolution of a loop of trajectories.

  5. Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Song, Xiao-Tian; Yin, Zhen-Qiang; Wang, Shuang; Chen, Wei; Zhang, Chun-Mei; Guo, Guang-Can; Han, Zheng-Fu

    2015-10-01

    Measurement-device-independent quantum key distribution (MDI QKD) is a substantial step toward practical information-theoretic security for key sharing between remote legitimate users (Alice and Bob). As with other standard device-dependent quantum key distribution protocols, such as BB84, MDI QKD assumes that the reference frames have been shared between Alice and Bob. In practice, a nontrivial alignment procedure is often necessary, which requires system resources and may significantly reduce the secure key generation rate. Here, we propose a phase-coding reference-frame-independent MDI QKD scheme that requires no phase alignment between the interferometers of two distant legitimate parties. As a demonstration, a proof-of-principle experiment using Faraday-Michelson interferometers is presented. The experimental system worked at 1 MHz, and an average secure key rate of 8.309 bps was obtained at a fiber length of 20 km between Alice and Bob. The system can maintain a positive key generation rate without phase compensation under normal conditions. The results exhibit the feasibility of our system for use in mature MDI QKD devices and its value for network scenarios.

  6. All quantum observables in a hidden-variable model must commute simultaneously

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malley, James D.

    Under a standard set of assumptions for a hidden-variable model for quantum events we show that all observables must commute simultaneously. This seems to be an ultimate statement about the inapplicability of the usual hidden-variable model for quantum events. And, despite Bell's complaint that a key condition of von Neumann's was quite unrealistic, we show that these conditions, under which von Neumann produced the first no-go proof, are entirely equivalent to those introduced by Bell and Kochen and Specker. As these conditions are also equivalent to those under which the Bell-Clauster-Horne inequalities are derived, we see that the experimental violationsmore » of the inequalities demonstrate only that quantum observables do not commute.« less

  7. Experimental Observation of Near-Field Deterioration Induced by Stimulated Rotational Raman Scattering in Long Air Paths

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Zhang, Xiao-Min; Han, Wei; Li, Fu-Quan; Zhou, Li-Dan; Feng, Bin; Xiang, Yong

    2011-08-01

    We report the experimental investigation of a stimulated rotational Raman scattering effect in long air paths on SG-III TIL, with a 1053 nm, 20-cm-diameter, linearly polarized, 3 ns flat-topped laser pulse. An intense speckle pattern of near field with thickly dotted hot spots is observed at the end of propagation with an intensity-length product above 17TW/cm. The Stokes developing from the scattering of the laser beam by quantum fluctuations is characterized by a combination of high spatial frequency components. The observed speckle pattern with small-diameter hot spots results from the combination of the nonlinear Raman amplification and the linear diffraction propagation effect of the Stokes with a noise pattern arising from the spontaneous Raman scattering. A new promising suppression concept based on the special characteristic of the Stokes, called active and selective filtering of Stokes, is proposed.

  8. Free-Space Quantum Key Distribution using Polarization Entangled Photons

    NASA Astrophysics Data System (ADS)

    Kurtsiefer, Christian

    2007-06-01

    We report on a complete experimental implementation of a quantum key distribution protocol through a free space link using polarization-entangled photon pairs from a compact parametric down-conversion source [1]. Based on a BB84-equivalent protocol, we generated without interruption over 10 hours a secret key free-space optical link distance of 1.5 km with a rate up to 950 bits per second after error correction and privacy amplification. Our system is based on two time stamp units and relies on no specific hardware channel for coincidence identification besides an IP link. For that, initial clock synchronization with an accuracy of better than 2 ns is achieved, based on a conventional NTP protocol and a tiered cross correlation of time tags on both sides. Time tags are used to servo a local clock, allowing a streamed measurement on correctly identified photon pairs. Contrary to the majority of quantum key distribution systems, this approach does not require a trusted large-bandwidth random number generator, but integrates that into the physical key generation process. We discuss our current progress of implementing a key distribution via an atmospherical link during daylight conditions, and possible attack scenarios on a physical timing information side channel to a entanglement-based key distribution system. [1] I. Marcikic, A. Lamas-Linares, C. Kurtsiefer, Appl. Phys. Lett. 89, 101122 (2006).

  9. Simple Web-based interactive key development software (WEBiKEY) and an example key for Kuruna (Poaceae: Bambusoideae).

    PubMed

    Attigala, Lakshmi; De Silva, Nuwan I; Clark, Lynn G

    2016-04-01

    Programs that are user-friendly and freely available for developing Web-based interactive keys are scarce and most of the well-structured applications are relatively expensive. WEBiKEY was developed to enable researchers to easily develop their own Web-based interactive keys with fewer resources. A Web-based multiaccess identification tool (WEBiKEY) was developed that uses freely available Microsoft ASP.NET technologies and an SQL Server database for Windows-based hosting environments. WEBiKEY was tested for its usability with a sample data set, the temperate woody bamboo genus Kuruna (Poaceae). WEBiKEY is freely available to the public and can be used to develop Web-based interactive keys for any group of species. The interactive key we developed for Kuruna using WEBiKEY enables users to visually inspect characteristics of Kuruna and identify an unknown specimen as one of seven possible species in the genus.

  10. Scent marking in Sunda clouded leopards (Neofelis diardi): novel observations close a key gap in understanding felid communication behaviours.

    PubMed

    Allen, Maximilian L; Wittmer, Heiko U; Setiawan, Endro; Jaffe, Sarah; Marshall, Andrew J

    2016-10-14

    Intraspecific communication is integral to the behavioural ecology of solitary carnivores, but observing and quantifying their communication behaviours in natural environments is difficult. Our systematic literature review found that basic information on scent marking is completely lacking for 23% of all felid species, and information on 21% of other felid species comes solely from one study of captive animals. Here we present results of the first systematic investigation of the scent marking behaviours of Sunda clouded leopards in the wild. Our observations using motion-triggered video cameras in Indonesian Borneo are novel for clouded leopards, and contrary to previous descriptions of their behaviour. We found that clouded leopards displayed 10 distinct communication behaviours, with olfaction, scraping, and cheek rubbing the most frequently recorded. We also showed that males make repeated visits to areas they previously used for marking and that multiple males advertise and receive information at the same sites, potentially enhancing our ability to document and monitor clouded leopard populations. The behaviours we recorded are remarkably similar to those described in other solitary felids, despite tremendous variation in the environments they inhabit, and close a key gap in understanding and interpreting communication behaviours of clouded leopards and other solitary felids.

  11. Scent marking in Sunda clouded leopards (Neofelis diardi): novel observations close a key gap in understanding felid communication behaviours

    PubMed Central

    Allen, Maximilian L.; Wittmer, Heiko U.; Setiawan, Endro; Jaffe, Sarah; Marshall, Andrew J.

    2016-01-01

    Intraspecific communication is integral to the behavioural ecology of solitary carnivores, but observing and quantifying their communication behaviours in natural environments is difficult. Our systematic literature review found that basic information on scent marking is completely lacking for 23% of all felid species, and information on 21% of other felid species comes solely from one study of captive animals. Here we present results of the first systematic investigation of the scent marking behaviours of Sunda clouded leopards in the wild. Our observations using motion-triggered video cameras in Indonesian Borneo are novel for clouded leopards, and contrary to previous descriptions of their behaviour. We found that clouded leopards displayed 10 distinct communication behaviours, with olfaction, scraping, and cheek rubbing the most frequently recorded. We also showed that males make repeated visits to areas they previously used for marking and that multiple males advertise and receive information at the same sites, potentially enhancing our ability to document and monitor clouded leopard populations. The behaviours we recorded are remarkably similar to those described in other solitary felids, despite tremendous variation in the environments they inhabit, and close a key gap in understanding and interpreting communication behaviours of clouded leopards and other solitary felids. PMID:27739507

  12. Saturation of the laser-induced narrowband coherent synchrotron radiation process: Experimental observation at a storage ring

    NASA Astrophysics Data System (ADS)

    Hosaka, M.; Yamamoto, N.; Takashima, Y.; Szwaj, C.; Le Parquier, M.; Evain, C.; Bielawski, S.; Adachi, M.; Zen, H.; Tanikawa, T.; Kimura, S.; Katoh, M.; Shimada, M.; Takahashi, T.

    2013-02-01

    We study the efficiency limitation affecting laser-induced coherent synchrotron radiation (CSR) at high laser power. Experiments are made on the UVSOR-II storage ring in conditions of narrowband terahertz CSR emission. While, at moderate power, CSR power increases quadratically with laser power, a noticeable decrease in efficiency and eventually a decrease in CSR power is observed experimentally at high power. Details of the underlying process are analyzed numerically. As the saturation effect depends almost instantaneously on the laser intensity, the saturation occurs locally in longitudinal space. This has important consequences on the modulation pattern induced on the electron bunch.

  13. Parallel Key Frame Extraction for Surveillance Video Service in a Smart City.

    PubMed

    Zheng, Ran; Yao, Chuanwei; Jin, Hai; Zhu, Lei; Zhang, Qin; Deng, Wei

    2015-01-01

    Surveillance video service (SVS) is one of the most important services provided in a smart city. It is very important for the utilization of SVS to provide design efficient surveillance video analysis techniques. Key frame extraction is a simple yet effective technique to achieve this goal. In surveillance video applications, key frames are typically used to summarize important video content. It is very important and essential to extract key frames accurately and efficiently. A novel approach is proposed to extract key frames from traffic surveillance videos based on GPU (graphics processing units) to ensure high efficiency and accuracy. For the determination of key frames, motion is a more salient feature in presenting actions or events, especially in surveillance videos. The motion feature is extracted in GPU to reduce running time. It is also smoothed to reduce noise, and the frames with local maxima of motion information are selected as the final key frames. The experimental results show that this approach can extract key frames more accurately and efficiently compared with several other methods.

  14. Securing quantum key distribution systems using fewer states

    NASA Astrophysics Data System (ADS)

    Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton; Kim, Jungsang; Gauthier, Daniel J.

    2018-04-01

    Quantum key distribution (QKD) allows two remote users to establish a secret key in the presence of an eavesdropper. The users share quantum states prepared in two mutually unbiased bases: one to generate the key while the other monitors the presence of the eavesdropper. Here, we show that a general d -dimension QKD system can be secured by transmitting only a subset of the monitoring states. In particular, we find that there is no loss in the secure key rate when dropping one of the monitoring states. Furthermore, it is possible to use only a single monitoring state if the quantum bit error rates are low enough. We apply our formalism to an experimental d =4 time-phase QKD system, where only one monitoring state is transmitted, and obtain a secret key rate of 17.4 ±2.8 Mbits/s at a 4 dB channel loss and with a quantum bit error rate of 0.045 ±0.001 and 0.037 ±0.001 in time and phase bases, respectively, which is 58.4% of the secret key rate that can be achieved with the full setup. This ratio can be increased, potentially up to 100%, if the error rates in time and phase basis are reduced. Our results demonstrate that it is possible to substantially simplify the design of high-dimensional QKD systems, including those that use the spatial or temporal degrees of freedom of the photon, and still outperform qubit-based (d =2 ) protocols.

  15. Experimental Observation of Temperature Variation of Surface Magnetization on a Nanostructured Co/Pt Thin Film

    NASA Astrophysics Data System (ADS)

    Nwokoye, Chidubem; Della Torre, Edward; Bennett, Lawrence; Siddique, Abid; Narducci, Frank A.

    2015-04-01

    Magneto-optic Kerr effect, MOKE, is used to observe the complex rotation of the polarization plane of linearly polarized incident light reflected from the surface of a magnetic material. The rotation is directly related to the surface magnetization of the material. We report work that extends the experiments in that studied Bose-Einstein Condensation (BEC) of magnons in confined nanostructures. We report the MOKE experimental results of an investigation of surface magnetic remanence and coercivity on a Co/Pt ferromagnetic thin film at low-temperatures. Our findings are explained and are attributed to the BEC of confined magnons in the Co/Pt thin film. We recognize financial support from the Naval Air Systems Command Section 219 grant.

  16. Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice

    PubMed Central

    Mukherjee, Sebabrata; Spracklen, Alexander; Valiente, Manuel; Andersson, Erika; Öhberg, Patrik; Goldman, Nathan; Thomson, Robert R.

    2017-01-01

    Topological quantum matter can be realized by subjecting engineered systems to time-periodic modulations. In analogy with static systems, periodically driven quantum matter can be topologically classified by topological invariants, whose non-zero value guarantees the presence of robust edge modes. In the high-frequency limit of the drive, topology is described by standard topological invariants, such as Chern numbers. Away from this limit, these topological numbers become irrelevant, and novel topological invariants must be introduced to capture topological edge transport. The corresponding edge modes were coined anomalous topological edge modes, to highlight their intriguing origin. Here we demonstrate the experimental observation of these topological edge modes in a 2D photonic lattice, where these propagating edge states are shown to coexist with a quasi-localized bulk. Our work opens an exciting route for the exploration of topological physics in time-modulated systems operating away from the high-frequency regime. PMID:28051060

  17. Experimental observations of granular debris flows

    NASA Astrophysics Data System (ADS)

    Ghilardi, P.

    2003-04-01

    Various tests are run using two different laboratory flumes with rectangular cross section and transparent walls. The grains used in a single experiment have an almost constant grain sizes; mean diameter ranges from 5 mm to 20 mm. In each test various measurements are taken: hydrograms, velocity distribution near the transparent walls and on the free surface, average flow concentration. Concentration values are measured taking samples. Velocity distributions are obtained from movies recorded by high speed video cameras capable of 350 frames per second; flow rates and depth hydrograms are computed from the same velocity distributions. A gate is installed at the beginning of one of the flumes; this gate slides normally to the bed and opens very quickly, reproducing a dam-break. Several tests are run using this device, varying channel slope, sediment concentration, initial mixture thickness before the gate. Velocity distribution in the flume is almost constant from left to right, except for the flow sections near the front. The observed discharges and velocities are less than those given by a classic dam break formula, and depend on sediment concentration. The other flume is fed by a mixture with constant discharge and concentration, and is mainly used for measuring velocity distributions when the flow is uniform, with both rigid and granular bed, and to study erosion/deposition processes near debris flow dams or other mitigation devices. The equilibrium slope of the granular bed is very close to that given by the classical equilibrium formulas for debris flow. Different deposition processes are observed depending on mixture concentration and channel geometry.

  18. Key Provenance of Earth Science Observational Data Products

    NASA Astrophysics Data System (ADS)

    Conover, H.; Plale, B.; Aktas, M.; Ramachandran, R.; Purohit, P.; Jensen, S.; Graves, S. J.

    2011-12-01

    As the sheer volume of data increases, particularly evidenced in the earth and environmental sciences, local arrangements for sharing data need to be replaced with reliable records about the what, who, how, and where of a data set or collection. This is frequently called the provenance of a data set. While observational data processing systems in the earth sciences have a long history of capturing metadata about the processing pipeline, current processes are limited in both what is captured and how it is disseminated to the science community. Provenance capture plays a role in scientific data preservation and stewardship precisely because it can automatically capture and represent a coherent picture of the what, how and who of a particular scientific collection. It reflects the transformations that a data collection underwent prior to its current form and the sequence of tasks that were executed and data products applied to generate a new product. In the NASA-funded Instant Karma project, we examine provenance capture in earth science applications, specifically the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) Science Investigator-led Processing system (SIPS). The project is integrating the Karma provenance collection and representation tool into the AMSR-E SIPS production environment, with an initial focus on Sea Ice. This presentation will describe capture and representation of provenance that is guided by the Open Provenance Model (OPM). Several things have become clear during the course of the project to date. One is that core OPM entities and relationships are not adequate for expressing the kinds of provenance that is of interest in the science domain. OPM supports name-value pair annotations that can be used to augment what is known about the provenance entities and relationships, but in Karma, annotations cannot be added during capture, but only after the fact. This limits the capture system's ability to record something it

  19. Experimental observations of pressure oscillations and flow regimes in an analogue volcanic system

    USGS Publications Warehouse

    Lane, S.J.; Chouet, B.A.; Phillips, J.C.; Dawson, P.; Ryan, G.A.; Hurst, E.

    2001-01-01

    Gas-liquid flows, designed to be analogous to those in volcanic conduits, are generated in the laboratory using organic gas-gum rosin mixtures expanding in a vertically mounted tube. The expanding fluid shows a range of both flow and pressure oscillation behaviors. Weakly supersaturated source liquids produce a low Reynolds number flow with foam expanding from the top surface of a liquid that exhibits zero fluid velocity at the tube wall; i.e., the conventional "no-slip" boundary condition. Pressure oscillations, often with strong long-period characteristics and consistent with longitudinal and radial resonant oscillation modes, are detected in these fluids. Strongly supersaturated source liquids generate more energetic flows that display a number of flow regimes. These regimes include a static liquid source, viscous flow, detached flow (comprising gas-pockets-at-wall and foam-in-gas annular flow, therefore demonstrating strong radial heterogeneity), and a fully turbulent transonic fragmented or mist flow. Each of these flow regimes displays characteristic pressure oscillations that can be related to resonance of flow features or wall impact phenomena. The pressure oscillations are produced by the degassing processes without the need of elastic coupling to the confining medium or flow restrictors and valvelike features. The oscillatory behavior of the experimental flows is compared to seismoacoustic data from a range of volcanoes where resonant oscillation of the fluid within the conduit is also often invoked as controlling the observed oscillation frequencies. On the basis of the experimental data we postulate on the nature of seismic signals that may be measured during large-scale explosive activity. Copyright 2001 by the American Geophysical Union.

  20. Resolving Key Uncertainties in Subsurface Energy Recovery: One Role of In Situ Experimentation and URLs (Invited)

    NASA Astrophysics Data System (ADS)

    Elsworth, D.

    2013-12-01

    Significant uncertainties remain and influence the recovery of energy from the subsurface. These uncertainties include the fate and transport of long-lived radioactive wastes that result from the generation of nuclear power and have been the focus of an active network of international underground research laboratories dating back at least 35 years. However, other nascent carbon-free energy technologies including conventional and EGS geothermal methods, carbon-neutral methods such as carbon capture and sequestration and the utilization of reduced-carbon resources such as unconventional gas reservoirs offer significant challenges in their effective deployment. We illustrate the important role that in situ experiments may play in resolving behaviors at extended length- and time-scales for issues related to chemical-mechanical interactions. Significantly, these include the evolution of transport and mechanical characteristics of stress-sensitive fractured media and their influence of the long-term behavior of the system. Importantly, these interests typically relate to either creating reservoirs (hydroshearing in EGS reservoirs, artificial fractures in shales and coals) or maintaining seals at depth where the permeating fluids may include mixed brines, CO2, methane and other hydrocarbons. Critical questions relate to the interaction of these various fluid mixtures and compositions with the fractured substrate. Important needs are in understanding the roles of key processes (transmission, dissolution, precipitation, sorption and dynamic stressing) on the modification of effective stresses and their influence on the evolution of permeability, strength and induced seismicity on the resulting development of either wanted or unwanted fluid pathways. In situ experimentation has already contributed to addressing some crucial issues of these complex interactions at field scale. Important contributions are noted in understanding the fate and transport of long-lived wastes

  1. Experimental observation of the topological structure of exceptional points in an ultrathin hybridized metamaterial

    NASA Astrophysics Data System (ADS)

    Kang, Ming; Zhu, Weiren; Rukhlenko, Ivan D.

    2017-12-01

    The exceptional point (EP), which is one of the most important branch-type singularities exclusive to non-Hermitian systems, has been observed recently in various synthetic materials, giving rise to counterintuitive phenomena due to the nontrivial topology of the EP. Here, we present a direct experimental observation of the topological structure of the EPs via the angle-resolved transmission measurement of a hybridized metamaterial. Both eigenvalues and eigenvectors show branch-point singularities in the investigated biparametric space of frequency and incident angle. Importantly, the angle-resolved transmission coefficients provide all the information about the eigenvalues as well as the corresponding eigenvectors in the biparametric space, revealing the nontrivial topological structure of the EP, such as mode switching and the topological phase for a parameter loop encircling the EP. It is shown that the appearance of the EP in the scattering matrix is related directly to the perfect unidirectional transmission and the chirality of the EP corresponds to the maximum or minimum value of the asymmetric factor. Our investigation uncovers the capabilities of metamaterials for exploring the physics of EPs and their potential for having extreme optical properties, which provide potential applications in the spectral band ranging from microwaves to visible frequencies.

  2. Implementation of continuous-variable quantum key distribution with discrete modulation

    NASA Astrophysics Data System (ADS)

    Hirano, Takuya; Ichikawa, Tsubasa; Matsubara, Takuto; Ono, Motoharu; Oguri, Yusuke; Namiki, Ryo; Kasai, Kenta; Matsumoto, Ryutaroh; Tsurumaru, Toyohiro

    2017-06-01

    We have developed a continuous-variable quantum key distribution (CV-QKD) system that employs discrete quadrature-amplitude modulation and homodyne detection of coherent states of light. We experimentally demonstrated automated secure key generation with a rate of 50 kbps when a quantum channel is a 10 km optical fibre. The CV-QKD system utilises a four-state and post-selection protocol and generates a secure key against the entangling cloner attack. We used a pulsed light source of 1550 nm wavelength with a repetition rate of 10 MHz. A commercially available balanced receiver is used to realise shot-noise-limited pulsed homodyne detection. We used a non-binary LDPC code for error correction (reverse reconciliation) and the Toeplitz matrix multiplication for privacy amplification. A graphical processing unit card is used to accelerate the software-based post-processing.

  3. Framework for assessing key variable dependencies in loose-abrasive grinding and polishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, J.S.; Aikens, D.M.; Brown, N.J.

    1995-12-01

    This memo describes a framework for identifying all key variables that determine the figuring performance of loose-abrasive lapping and polishing machines. This framework is intended as a tool for prioritizing R&D issues, assessing the completeness of process models and experimental data, and for providing a mechanism to identify any assumptions in analytical models or experimental procedures. Future plans for preparing analytical models or performing experiments can refer to this framework in establishing the context of the work.

  4. Experimental observation of two phase flow of R123 inside a herringbone microfin tube

    NASA Astrophysics Data System (ADS)

    Miyara, Akio; Islam, Mohammad Ariful; Mizuta, Yoshihiko; Kibe, Atsushi

    2003-08-01

    Vapor-liquid two phase flow behavior of R123 inside herringbone microfin tubes has been studied. Herringbone microfin tube is a kind of internally finned tube in which microfins are installed inside the tube where the microfins form multi-V-shape in flow direction. For the present experiment three different types of herringbone microfin tubes with helix angle β=8°, 14° and 28° are used. Experimental observations showed how flow diverges and converges inside herringbone microfin tube due to fin arrangement. The effect is more remarkable for larger helix angle. From the measurements of the cross-sectional liquid flow rate distribution, the liquid removal and collection and the entrained droplet are discussed. Quantity of liquid droplets is increased with increase of helix angle. The tube with helix angle β=28° shows higher quantity of liquid droplets than others.

  5. Key optoelectronic properties of Diiodo-bis(carbamide)-zinc(II): An experimental and computational investigation

    NASA Astrophysics Data System (ADS)

    Shkir, Mohd.; Irfan, Ahmad; AlFaify, S.; Ganesh, V.; Arora, M.; Muhammad, Shabbir; Al-Sehemi, Abdullah G.; Yahia, I. S.

    2018-03-01

    Large size single crystals of Diiodo-bis(carbamide)-zinc(II) [ZnI2. 2[CO(NH2)2] were grown successfully for the first time by slow evaporation techniques at room temperature within the evaporation time of two weeks. The single phase and high crystalline nature of the grown crystals was confirmed by X-ray diffraction analysis. Quantum chemically the geometrical parameters were found in good correlation with experimental values calculated at B3LYP/6-31G* (LANL2DZ), B2LYPD/6-31G* (LANL2DZ), M062X/6-31G* (LANL2DZ) and MP2/6-31G* (LANL2DZ) level of theories. Additionally, the experimental vibrational modes also have shown a good agreement with calculated ones. The optical transparency and band gap were calculated and found to be ∼80% and 4.706 eV, respectively. The calculated value of HOMO-LUMO gap was found in correlation with experimental energy gap. The electronic properties were investigated by shedding light on the frontier molecular orbitals, partial density of states (PDOS), and total density of states (TDOS). The mechanical and dielectric studies show that the grown crystals possess quite good mechanical strength and dielectric constant. The dielectric loss revealed that the grown crystal contains low defects. The total ac electrical conductivity was increased with frequency and the frequency components confirm the sudden hoping mechanism in the grown crystal.

  6. Robust shot-noise measurement for continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Kunz-Jacques, Sébastien; Jouguet, Paul

    2015-02-01

    We study a practical method to measure the shot noise in real time in continuous-variable quantum key distribution systems. The amount of secret key that can be extracted from the raw statistics depends strongly on this quantity since it affects in particular the computation of the excess noise (i.e., noise in excess of the shot noise) added by an eavesdropper on the quantum channel. Some powerful quantum hacking attacks relying on faking the estimated value of the shot noise to hide an intercept and resend strategy were proposed. Here, we provide experimental evidence that our method can defeat the saturation attack and the wavelength attack.

  7. The Complicate Observations and Multi-Parameter Land Information Constructions on Allied Telemetry Experiment (COMPLICATE)

    PubMed Central

    Tian, Xin; Li, Zengyuan; Chen, Erxue; Liu, Qinhuo; Yan, Guangjian; Wang, Jindi; Niu, Zheng; Zhao, Shaojie; Li, Xin; Pang, Yong; Su, Zhongbo; van der Tol, Christiaan; Liu, Qingwang; Wu, Chaoyang; Xiao, Qing; Yang, Le; Mu, Xihan; Bo, Yanchen; Qu, Yonghua; Zhou, Hongmin; Gao, Shuai; Chai, Linna; Huang, Huaguo; Fan, Wenjie; Li, Shihua; Bai, Junhua; Jiang, Lingmei; Zhou, Ji

    2015-01-01

    The Complicate Observations and Multi-Parameter Land Information Constructions on Allied Telemetry Experiment (COMPLICATE) comprises a network of remote sensing experiments designed to enhance the dynamic analysis and modeling of remotely sensed information for complex land surfaces. Two types of experimental campaigns were established under the framework of COMPLICATE. The first was designed for continuous and elaborate experiments. The experimental strategy helps enhance our understanding of the radiative and scattering mechanisms of soil and vegetation and modeling of remotely sensed information for complex land surfaces. To validate the methodologies and models for dynamic analyses of remote sensing for complex land surfaces, the second campaign consisted of simultaneous satellite-borne, airborne, and ground-based experiments. During field campaigns, several continuous and intensive observations were obtained. Measurements were undertaken to answer key scientific issues, as follows: 1) Determine the characteristics of spatial heterogeneity and the radiative and scattering mechanisms of remote sensing on complex land surfaces. 2) Determine the mechanisms of spatial and temporal scale extensions for remote sensing on complex land surfaces. 3) Determine synergist inversion mechanisms for soil and vegetation parameters using multi-mode remote sensing on complex land surfaces. Here, we introduce the background, the objectives, the experimental designs, the observations and measurements, and the overall advances of COMPLICATE. As a result of the implementation of COMLICATE and for the next several years, we expect to contribute to quantitative remote sensing science and Earth observation techniques. PMID:26332035

  8. Observations of compound sawteeth in ion cyclotron resonant heating plasma using ECE imaging on experimental advanced superconducting tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Azam; Zhao, Zhenling; Xie, Jinlin, E-mail: jlxie@ustc.edu.cn

    The spatial and temporal evolutions of compound sawteeth were directly observed using 2D electron cyclotron emission imaging on experimental advanced superconducting tokamak. The compound sawtooth consists of partial and full collapses. After partial collapse, the hot core survives as only a small amount of heat disperses outwards, whereas in the following full collapse a large amount of heat is released and the hot core dissipates. The presence of two q = 1 surfaces was not observed. Instead, the compound sawtooth occurs mainly at the beginning of an ion cyclotron resonant frequency heating pulse and during the L-H transition phase, which may bemore » related to heat transport suppression caused by a decrease in electron heat diffusivity.« less

  9. Experimental investigation of observation error in anuran call surveys

    USGS Publications Warehouse

    McClintock, B.T.; Bailey, L.L.; Pollock, K.H.; Simons, T.R.

    2010-01-01

    Occupancy models that account for imperfect detection are often used to monitor anuran and songbird species occurrence. However, presenceabsence data arising from auditory detections may be more prone to observation error (e.g., false-positive detections) than are sampling approaches utilizing physical captures or sightings of individuals. We conducted realistic, replicated field experiments using a remote broadcasting system to simulate simple anuran call surveys and to investigate potential factors affecting observation error in these studies. Distance, time, ambient noise, and observer abilities were the most important factors explaining false-negative detections. Distance and observer ability were the best overall predictors of false-positive errors, but ambient noise and competing species also affected error rates for some species. False-positive errors made up 5 of all positive detections, with individual observers exhibiting false-positive rates between 0.5 and 14. Previous research suggests false-positive errors of these magnitudes would induce substantial positive biases in standard estimators of species occurrence, and we recommend practices to mitigate for false positives when developing occupancy monitoring protocols that rely on auditory detections. These recommendations include additional observer training, limiting the number of target species, and establishing distance and ambient noise thresholds during surveys. ?? 2010 The Wildlife Society.

  10. Aerobiology: Experimental Considerations, Observations, and Future Tools

    PubMed Central

    Haddrell, Allen E.

    2017-01-01

    ABSTRACT Understanding airborne survival and decay of microorganisms is important for a range of public health and biodefense applications, including epidemiological and risk analysis modeling. Techniques for experimental aerosol generation, retention in the aerosol phase, and sampling require careful consideration and understanding so that they are representative of the conditions the bioaerosol would experience in the environment. This review explores the current understanding of atmospheric transport in relation to advances and limitations of aerosol generation, maintenance in the aerosol phase, and sampling techniques. Potential tools for the future are examined at the interface between atmospheric chemistry, aerosol physics, and molecular microbiology where the heterogeneity and variability of aerosols can be explored at the single-droplet and single-microorganism levels within a bioaerosol. The review highlights the importance of method comparison and validation in bioaerosol research and the benefits that the application of novel techniques could bring to increasing the understanding of aerobiological phenomena in diverse research fields, particularly during the progression of atmospheric transport, where complex interdependent physicochemical and biological processes occur within bioaerosol particles. PMID:28667111

  11. Observation of runaway electron beams by visible color camera in the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Shi, Yuejiang; Fu, Jia; Li, Jiahong; Yang, Yu; Wang, Fudi; Li, Yingying; Zhang, Wei; Wan, Baonian; Chen, Zhongyong

    2010-03-01

    The synchrotron radiation originated from the energetic runaway electrons has been measured by a visible complementary metal oxide semiconductor camera working in the wavelength ranges of 380-750 nm in the Experimental Advanced Superconducting Tokamak [H. Q. Liu et al., Plasma Phys. Contr. Fusion 49, 995 (2007)]. With a tangential viewing into the plasma in the direction of electron approach on the equatorial plane, the synchrotron radiation from the energetic runaway electrons was measured in full poloidal cross section. The synchrotron radiation diagnostics provides a direct pattern of the runaway beam inside the plasma. The energy and pitch angle of runaway electrons have been obtained according to the synchrotron radiation pattern. A stable shell shape of synchrotron radiation has been observed in a few runaway discharges.

  12. Simple Web-based interactive key development software (WEBiKEY) and an example key for Kuruna (Poaceae: Bambusoideae)1

    PubMed Central

    Attigala, Lakshmi; De Silva, Nuwan I.; Clark, Lynn G.

    2016-01-01

    Premise of the study: Programs that are user-friendly and freely available for developing Web-based interactive keys are scarce and most of the well-structured applications are relatively expensive. WEBiKEY was developed to enable researchers to easily develop their own Web-based interactive keys with fewer resources. Methods and Results: A Web-based multiaccess identification tool (WEBiKEY) was developed that uses freely available Microsoft ASP.NET technologies and an SQL Server database for Windows-based hosting environments. WEBiKEY was tested for its usability with a sample data set, the temperate woody bamboo genus Kuruna (Poaceae). Conclusions: WEBiKEY is freely available to the public and can be used to develop Web-based interactive keys for any group of species. The interactive key we developed for Kuruna using WEBiKEY enables users to visually inspect characteristics of Kuruna and identify an unknown specimen as one of seven possible species in the genus. PMID:27144109

  13. Practical decoy state for quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Xiongfeng; Qi Bing; Zhao Yi

    2005-07-15

    Decoy states have recently been proposed as a useful method for substantially improving the performance of quantum key distribution (QKD). Here, we present a general theory of the decoy state protocol based on only two decoy states and one signal state. We perform optimization on the choice of intensities of the two decoy states and the signal state. Our result shows that a decoy state protocol with only two types of decoy states - the vacuum and a weak decoy state - asymptotically approaches the theoretical limit of the most general type of decoy state protocol (with an infinite numbermore » of decoy states). We also present a one-decoy-state protocol. Moreover, we provide estimations on the effects of statistical fluctuations and suggest that, even for long-distance (larger than 100 km) QKD, our two-decoy-state protocol can be implemented with only a few hours of experimental data. In conclusion, decoy state quantum key distribution is highly practical.« less

  14. A Global Capacity Building Vision for Societal Applications of Earth Observing Systems and Data: Key Questions and Recommendations

    NASA Technical Reports Server (NTRS)

    Hossain, Faisal; Serrat-Capdevila, Aleix; Granger, Stephanie; Thomas, Amy; Saah, David; Ganz, David; Mugo, Robinson; Murthy, M. S. R.; Ramos, Victor Hugo; Kirschbaum, Dalia; hide

    2016-01-01

    Capacity building using Earth observing (EO) systems and data (i.e., from orbital and nonorbital platforms) to enable societal applications includes the network of human, nonhuman, technical, nontechnical, hardware, and software dimensions that are necessary to successfully cross the valley [of death; see NRC (2001)] between science and research (port of departure) and societal application (port of arrival). In many parts of the world (especially where ground-based measurements are scarce or insufficient), applications of EO data still struggle for longevity or continuity for a variety of reasons, foremost among them being the lack of resilient capacity. An organization is said to have resilient capacity when it can retain and continue to build capacity in the face of unexpected shocks or stresses. Stresses can include intermittent power and limited Internet bandwidth, constant need for education on ever-increasing complexity of EO systems and data, communication challenges between the ports of departure and arrival (especially across time zones), and financial limitations and instability. Shocks may also include extreme events such as disasters and losing key staff with technical and institutional knowledge.

  15. Decoy-state quantum key distribution with biased basis choice

    PubMed Central

    Wei, Zhengchao; Wang, Weilong; Zhang, Zhen; Gao, Ming; Ma, Zhi; Ma, Xiongfeng

    2013-01-01

    We propose a quantum key distribution scheme that combines a biased basis choice with the decoy-state method. In this scheme, Alice sends all signal states in the Z basis and decoy states in the X and Z basis with certain probabilities, and Bob measures received pulses with optimal basis choice. This scheme simplifies the system and reduces the random number consumption. From the simulation result taking into account of statistical fluctuations, we find that in a typical experimental setup, the proposed scheme can increase the key rate by at least 45% comparing to the standard decoy-state scheme. In the postprocessing, we also apply a rigorous method to upper bound the phase error rate of the single-photon components of signal states. PMID:23948999

  16. Decoy-state quantum key distribution with biased basis choice.

    PubMed

    Wei, Zhengchao; Wang, Weilong; Zhang, Zhen; Gao, Ming; Ma, Zhi; Ma, Xiongfeng

    2013-01-01

    We propose a quantum key distribution scheme that combines a biased basis choice with the decoy-state method. In this scheme, Alice sends all signal states in the Z basis and decoy states in the X and Z basis with certain probabilities, and Bob measures received pulses with optimal basis choice. This scheme simplifies the system and reduces the random number consumption. From the simulation result taking into account of statistical fluctuations, we find that in a typical experimental setup, the proposed scheme can increase the key rate by at least 45% comparing to the standard decoy-state scheme. In the postprocessing, we also apply a rigorous method to upper bound the phase error rate of the single-photon components of signal states.

  17. Review on optical constants of Titan aerosols: Experimental results and modeling/observational data

    NASA Astrophysics Data System (ADS)

    Brassé, Coralie; Muñoz, Olga; Coll, Patrice; Raulin, François

    2014-05-01

    During the last years many studies have been performed to improve the experimental database of optical constants of Titan aerosols. Indeed, the determination of the optical constants of these particles is essential to quantify their capacity to absorb and to scatter solar radiation, and thus to evaluate their role on Titan's radiative balance and climate. The study of optical properties is also crucial to analyze and to better interpret many of Titan's observational data, in particular those acquired during the Cassini-Huygens mission. One way to determine Titan aerosols optical constant is to measure the optical constants of analogues of Titan complex organic material synthesized in the laboratory, usually named Titan's tholins (Sagan and Khare, 1979). But the optical constants depend on the chemical composition, the size and the shape of particles (Raulin et al., 2012). Those three parameters result from the experimental conditions such as energy source, gas mixing ratio, gas pressure, flow rate and irradiation time (Cable et al., 2012). Besides the determination of the refractive index in the laboratory, there are others methods using theoretical models or observational data. Nevertheless, theoretical models are based on laboratory data or/and observational data. The visible - near infrared spectral region of optical constants has been widely studied with laboratory analogues. Comparison of the obtained results suggest that tholins synthesized by Tran et al. (2003) and Majhoub et al. (2012) are the best representative of Titan aerosols with regards to their refractive indexes in this spectral region. The mid-infrared spectral range has been studied only by Imanaka et al. (2012) and slightly by Tran et al. (2003). In that spectral range, Titan tholins do not exhibit the features displayed by Kim and Courtin (2013) from Titan's observations. For spectral region of wavelengths smaller than 0.20µm or higher than 25µm, only the data from Khare et al. (1984) are

  18. Evaluation of the MyWellness Key accelerometer.

    PubMed

    Herrmann, S D; Hart, T L; Lee, C D; Ainsworth, B E

    2011-02-01

    to examine the concurrent validity of the Technogym MyWellness Key accelerometer against objective and subjective physical activity (PA) measures. randomised, cross-sectional design with two phases. The laboratory phase compared the MyWellness Key with the ActiGraph GT1M and the Yamax SW200 Digiwalker pedometer during graded treadmill walking, increasing speed each minute. The free-living phase compared the MyWellness Key with the ActiGraph, Digiwalker, Bouchard Activity cord (BAR) and Global Physical Activity Questionnaire (GPAQ) for seven continuous days. Data were analysed using Spearman rank-order correlation coefficients for all comparisons. laboratory and free-living phases. sixteen participants randomly stratified from 41 eligible respondents by sex (n=8 men; n=8 women) and PA levels (n=4 low, n=8 middle and n=4 high active). there was a strong association between the MyWellness Key and the ActiGraph accelerometer during controlled graded treadmill walking (r=0.91, p<0.01) and in free-living settings (r=0.73-0.76 for light to vigorous PA, respectively, p<0.01). No associations were observed between the MyWellness Key and the BAR and GPAQ (p>0.05). the MyWellness Key has a high concurrent validity with the ActiGraph accelerometer to detect PA in both controlled laboratory and free-living settings.

  19. Eating disorders need more experimental psychopathology.

    PubMed

    Jansen, Anita

    2016-11-01

    Eating disorders are severe and disabling mental disorders. The scientific study of eating disorders has expanded dramatically over the past few decades, and provided significant understanding of eating disorders and their treatments. Those significant advances notwithstanding, there is scant knowledge about key processes that are crucial to clinical improvement. The lack of understanding mechanisms that cause, maintain and change eating disorders, currently is the biggest problem facing the science of eating disorders. It hampers the development of really effective interventions that could be fine-tuned to target the mechanisms of change and, therefore, the development of more effective treatments. It is argued here that the science of eating disorders and eating disorder treatment could benefit tremendously from pure experimental studies into its mechanisms of change, that is, experimental psychopathology (EPP). To illustrate why eating disorders need more EPP research, some key symptoms - restriction of intake, binge eating and body overvaluation - will be discussed. EPP studies challenge some generally accepted views and offer a fresh new look at key symptoms. This will, consequently, better inform eating disorder treatments. Copyright © 2016. Published by Elsevier Ltd.

  20. Experimental observation of direct particle acceleration by stimulated emission of radiation.

    PubMed

    Banna, Samer; Berezovsky, Valery; Schächter, Levi

    2006-09-29

    We report the first experimental evidence for direct particle acceleration by stimulated emission of radiation. In the framework of this proof-of-principle experiment, a 45 MeV electron macrobunch was modulated by a high-power CO2 laser and then injected into an excited CO2 gas mixture. The emerging microbunches experienced a 0.15% relative change in the kinetic energy, in a less than 40 cm long interaction region. According to our experimental results, a fraction of these electrons have gained more than 200 keV each, implying that such an electron has undergone an order of magnitude of 2 x 10(6) collisions of the second kind.

  1. Quasi-experimental study designs series-paper 9: collecting data from quasi-experimental studies.

    PubMed

    Aloe, Ariel M; Becker, Betsy Jane; Duvendack, Maren; Valentine, Jeffrey C; Shemilt, Ian; Waddington, Hugh

    2017-09-01

    To identify variables that must be coded when synthesizing primary studies that use quasi-experimental designs. All quasi-experimental (QE) designs. When designing a systematic review of QE studies, potential sources of heterogeneity-both theory-based and methodological-must be identified. We outline key components of inclusion criteria for syntheses of quasi-experimental studies. We provide recommendations for coding content-relevant and methodological variables and outlined the distinction between bivariate effect sizes and partial (i.e., adjusted) effect sizes. Designs used and controls used are viewed as of greatest importance. Potential sources of bias and confounding are also addressed. Careful consideration must be given to inclusion criteria and the coding of theoretical and methodological variables during the design phase of a synthesis of quasi-experimental studies. The success of the meta-regression analysis relies on the data available to the meta-analyst. Omission of critical moderator variables (i.e., effect modifiers) will undermine the conclusions of a meta-analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Quantum cryptography using coherent states: Randomized encryption and key generation

    NASA Astrophysics Data System (ADS)

    Corndorf, Eric

    With the advent of the global optical-telecommunications infrastructure, an increasing number of individuals, companies, and agencies communicate information with one another over public networks or physically-insecure private networks. While the majority of the traffic flowing through these networks requires little or no assurance of secrecy, the same cannot be said for certain communications between banks, between government agencies, within the military, and between corporations. In these arenas, the need to specify some level of secrecy in communications is a high priority. While the current approaches to securing sensitive information (namely the public-key-cryptography infrastructure and deterministic private-key ciphers like AES and 3DES) seem to be cryptographically strong based on empirical evidence, there exist no mathematical proofs of secrecy for any widely deployed cryptosystem. As an example, the ubiquitous public-key cryptosystems infer all of their secrecy from the assumption that factoring of the product of two large primes is necessarily time consuming---something which has not, and perhaps cannot, be proven. Since the 1980s, the possibility of using quantum-mechanical features of light as a physical mechanism for satisfying particular cryptographic objectives has been explored. This research has been fueled by the hopes that cryptosystems based on quantum systems may provide provable levels of secrecy which are at least as valid as quantum mechanics itself. Unfortunately, the most widely considered quantum-cryptographic protocols (BB84 and the Ekert protocol) have serious implementation problems. Specifically, they require quantum-mechanical states which are not readily available, and they rely on unproven relations between intrusion-level detection and the information available to an attacker. As a result, the secrecy level provided by these experimental implementations is entirely unspecified. In an effort to provably satisfy the cryptographic

  3. Quantum key management

    DOEpatents

    Hughes, Richard John; Thrasher, James Thomas; Nordholt, Jane Elizabeth

    2016-11-29

    Innovations for quantum key management harness quantum communications to form a cryptography system within a public key infrastructure framework. In example implementations, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a Merkle signature scheme (using Winternitz one-time digital signatures or other one-time digital signatures, and Merkle hash trees) to constitute a cryptography system. More generally, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a hash-based signature scheme. This provides a secure way to identify, authenticate, verify, and exchange secret cryptographic keys. Features of the quantum key management innovations further include secure enrollment of users with a registration authority, as well as credential checking and revocation with a certificate authority, where the registration authority and/or certificate authority can be part of the same system as a trusted authority for quantum key distribution.

  4. Experimental observation of edge transport in graphene nanostructures

    NASA Astrophysics Data System (ADS)

    Kinikar, Amogh; Sai, T. Phanindra; Bhattacharyya, Semonti; Agarwala, Adhip; Biswas, Tathagata; Sarker, Sanjoy K.; Krishnamurthy, H. R.; Jain, Manish; Shenoy, Vijay B.; Ghosh, Arindam

    The zizzag edges of graphene, whether single or few layers, host zero energy gapless states and are perfect 1D ballistic conductors. Conclusive observations of electrical conduction through edge states has been elusive. We report the observation of edge bound transport in atomic-scale constrictions of single and multilayer suspended graphene created stochastically by nanomechanical exfoliation of graphite. We observe that the conductance is quantized in near multiples of e2/h. Non-equilibrium transport shows a split zero bias anomaly and, the magneto-conductance is hysteretic; indicating that the electron transport is through spin polarized edge states in the presence of electron-electron interaction. Atomic force microscope scans on the graphite surface post exfoliation reveal that the final constriction is usually a single layer graphene with a constricting angle of 30o. Tearing along crystallographic angles suggests the tears occur along zigzag and armchair configurations with high fidelity of the edge morphology. We acknowledge the financial support from the DST, Government of India. SS acknowledges support from the NSF (DMR-1508680).

  5. The effects of music genre on young people's alcohol consumption: an experimental observational study.

    PubMed

    Engels, Rutger C M E; Poelen, Evelien A P; Spijkerman, Renske; Ter Bogt, Tom

    2012-01-01

    The aim of this study was to test whether exposure to specific music genres in a social drinking setting leads to differences in drinking levels. An observational experimental design was used in which we invited peer groups of young adults into a bar lab, a lab which is furnished like an ordinary, small pub. Between two tasks, people had a break of 50 minutes in which they could order nonalcoholic and alcoholic beverages. During the break, participants were exposed to a specific music genre: popular, hard rock, rap, or classical music. Those groups who were exposed to classical music drank significantly more alcohol than those who were exposed to other music genres. This pattern is quite robust and does not depend on participants' sex or age, drinking habits, own music preference, and relative importance of music in participant's lives. The study's limitations are mentioned.

  6. Experimental Apparatus for the Observation of the Topological Change Associated with Dynamical Monodromy

    NASA Astrophysics Data System (ADS)

    Salmon, Daniel; Nerem, M. Perry; Aubin, Seth; Delos, John

    Monodromy means ``once around a path,'' therefore systems that have non-trivial monodromy are systems such that, when taken around a closed circuit in some space, the system has changed state in some way. Classical systems that exhibit non-trivial Hamiltonian monodromy have action and angle variables that are multivalued functions. A family, or loop, of trajectories of this system has a topological change upon traversing a monodromy circuit. We present an experimental apparatus for observing this topological change. A family of particles moving in a cylindrically symmetric champagne-bottle potential exhibits non-trivial Hamiltonian monodromy. At the center of this system is a classically forbidden region. By following a monodromy circuit, a loop of initial conditions on one side of the forbidden region can be made to evolve continuously into a loop that surrounds the forbidden region. We realize this system using a spherical pendulum, having at its end a permanent magnet. Magnetic fields generated by coils can then be used to create the champagne-bottle potential, as well as drive the pendulum through the monodromy circuit.

  7. Experimental observation of attosecond control over relativistic electron bunches with two-colour fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeung, M.; Rykovanov, S.; Bierbach, J.

    2016-12-05

    Energy coupling during relativistically intense laser–matter interactions is encoded in the attosecond motion of strongly driven electrons at the pre-formed plasma–vacuum boundary. Studying and controlling this motion can reveal details about the microscopic processes that govern a vast array of light–matter interaction phenomena, including those at the forefront of extreme laser–plasma science such as laser-driven ion acceleration, bright attosecond pulse generation and efficient energy coupling for the generation and study of warm dense matter. Here in this paper, we experimentally demonstrate that by precisely adjusting the relative phase of an additional laser beam operating at the second harmonic of themore » driving laser it is possible to control the trajectories of relativistic electron bunches formed during the interaction with a solid target at the attosecond scale. Finally, we observe significant enhancements in the resulting high-harmonic yield, suggesting potential applications for sources of ultra-bright, extreme ultraviolet attosecond radiation to be used in atomic and molecular pump–probe experiments« less

  8. Giant-Magnetoresistance(GMR) Siegel KEY FIRST Experimental Discovery Decade-Earlier PRE-``Fert"-``Gruenberg" in Nuc"el"ar ``Super"alloys: Science?;``SEANCE!!!; Ethics?; SHMETHICS!!!

    NASA Astrophysics Data System (ADS)

    Hoffman, R.; Siegel, E.

    2010-03-01

    (So MIScalled) ``Fert"-``Grunberg"[PRL(1988;1989)] GMR 2007 physics Nobel/Wolf/Japan-Prizes VS. decade-earlier(1973-1977) KEY FIRST Siegel at:Westin"kl"ouse/PSEG/IAEA/ABB[google:``Martin Ebner"(94-04) in financial media]/Vattenfall/Wallenbergs/nuc"el"ar-DoE Labs[at flickr.com, search on ``Giant- Magnotoresistance''; find: Intl.Conf.Mag.Alloys & Oxides(ICMAO), Haifa(Aug./1977); J.Mag.Mag.Mtls,(JMMM)7,312(1978)``unavailable: not yet scanned''/modified(last R(H) GMR Figs(7;8) deleted!!!) on JMMM/Reed-Elsevier website until 7/29/08 conveniently one- half-year after last (Nobel)award(12/2007); conveniently effectively deleted!!!; google: ``If Leaks Could Kill''; many APS/MRS Mtgs(1970s)<<<1988/1989] decade-earlier GMR: (1978)<<< (1988); 1988-1978 =10 years = one full decadeprecedence!!!] first experimental discovery in (so MIScalled) ``super''alloys [182/82, Hastelloy-X, 600, 690(!!!), Stainless-Steels: ANY/ALL!!!] generic endemic Wigner's[JAP,17,857(1946)]- disease/Ostwald-ripening/spinodal-decomposition/overageing- embrittlement/ thermo-mechanical-INstability!

  9. Does observability affect prosociality?

    PubMed Central

    Lawrence, Claire

    2018-01-01

    The observation of behaviour is a key theoretical parameter underlying a number of models of prosociality. However, the empirical findings showing the effect of observability on prosociality are mixed. In this meta-analysis, we explore the boundary conditions that may account for this variability, by exploring key theoretical and methodological moderators of this link. We identified 117 papers yielding 134 study level effects (total n = 788 164) and found a small but statistically significant, positive association between observability and prosociality (r = 0.141, 95% confidence interval = 0.106, 0.175). Moderator analysis showed that observability produced stronger effects on prosociality: (i) in the presence of passive observers (i.e. people whose role was to only observe participants) versus perceptions of being watched, (ii) when participants’ decisions were consequential (versus non-consequential), (iii) when the studies were performed in the laboratory (as opposed to in the field/online), (iv) when the studies used repeated measures (instead of single games), and (v) when the studies involved social dilemmas (instead of bargaining games). These effects show the conditions under which observability effects on prosociality will be maximally observed. We describe the theoretical and practical significance of these results. PMID:29593114

  10. Does observability affect prosociality?

    PubMed

    Bradley, Alex; Lawrence, Claire; Ferguson, Eamonn

    2018-03-28

    The observation of behaviour is a key theoretical parameter underlying a number of models of prosociality. However, the empirical findings showing the effect of observability on prosociality are mixed. In this meta-analysis, we explore the boundary conditions that may account for this variability, by exploring key theoretical and methodological moderators of this link. We identified 117 papers yielding 134 study level effects (total n = 788 164) and found a small but statistically significant, positive association between observability and prosociality ( r = 0.141, 95% confidence interval = 0.106, 0.175). Moderator analysis showed that observability produced stronger effects on prosociality: (i) in the presence of passive observers (i.e. people whose role was to only observe participants) versus perceptions of being watched, (ii) when participants' decisions were consequential (versus non-consequential), (iii) when the studies were performed in the laboratory (as opposed to in the field/online), (iv) when the studies used repeated measures (instead of single games), and (v) when the studies involved social dilemmas (instead of bargaining games). These effects show the conditions under which observability effects on prosociality will be maximally observed. We describe the theoretical and practical significance of these results. © 2018 The Authors.

  11. [Key content and formulation of national Chinese materia medica resources survey at county level].

    PubMed

    Lu, Jian-Wei; Zhang, Xiao-Bo; Li, Hai-Tao; Guo, Lan-Ping; Zhao, Run-Huai; Zhang, Ben-Gang; Sun, Li-Ying; Huang, Lu-Qi

    2013-08-01

    According to National Census for Water, National Population Census, National Land and Resources Survey, and work experience of experimental measures for national Chinese materia medica resources(CMMR) survey,the national CMMR survey at the county level is the key point of whole survey, that includes organization and management, field survey, sorting data three key links. Organization and management works of national CMMR survey needs to finish four key contents, there are definite goals and tasks, practicable crew, preparation directory, and security assurance. Field survey works of the national CMMR survey needs to finish five key contents, there are preparation works for field survey, the choice of the key survey area (samples), fill in the questionnaire, video data collection, specimen and other physical collection. Sorting data works of the national CMMR survey needs to finish tree key contents, there are data, specimen and census results.

  12. The effect of sampling rate on observed statistics in a correlated random walk

    PubMed Central

    Rosser, G.; Fletcher, A. G.; Maini, P. K.; Baker, R. E.

    2013-01-01

    Tracking the movement of individual cells or animals can provide important information about their motile behaviour, with key examples including migrating birds, foraging mammals and bacterial chemotaxis. In many experimental protocols, observations are recorded with a fixed sampling interval and the continuous underlying motion is approximated as a series of discrete steps. The size of the sampling interval significantly affects the tracking measurements, the statistics computed from observed trajectories, and the inferences drawn. Despite the widespread use of tracking data to investigate motile behaviour, many open questions remain about these effects. We use a correlated random walk model to study the variation with sampling interval of two key quantities of interest: apparent speed and angle change. Two variants of the model are considered, in which reorientations occur instantaneously and with a stationary pause, respectively. We employ stochastic simulations to study the effect of sampling on the distributions of apparent speeds and angle changes, and present novel mathematical analysis in the case of rapid sampling. Our investigation elucidates the complex nature of sampling effects for sampling intervals ranging over many orders of magnitude. Results show that inclusion of a stationary phase significantly alters the observed distributions of both quantities. PMID:23740484

  13. Simulations of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment system.

    PubMed

    Liu, Z; Voelger, P; Sugimoto, N

    2000-06-20

    We carried out a simulation study for the observation of clouds and aerosols with the Japanese Experimental Lidar in Space Equipment (ELISE), which is a two-wavelength backscatter lidar with three detection channels. The National Space Development Agency of Japan plans to launch the ELISE on the Mission Demonstrate Satellite 2 (MDS-2). In the simulations, the lidar return signals for the ELISE are calculated for an artificial, two-dimensional atmospheric model including different types of clouds and aerosols. The signal detection processes are simulated realistically by inclusion of various sources of noise. The lidar signals that are generated are then used as input for simulations of data analysis with inversion algorithms to investigate retrieval of the optical properties of clouds and aerosols. The results demonstrate that the ELISE can provide global data on the structures and optical properties of clouds and aerosols. We also conducted an analysis of the effects of cloud inhomogeneity on retrievals from averaged lidar profiles. We show that the effects are significant for space lidar observations of optically thick broken clouds.

  14. Phase Transitions of Nanoemulsions Using Ultrasound: Experimental Observations

    PubMed Central

    Singh, Ram; Husseini, Ghaleb A.; Pitt, William G.

    2012-01-01

    The ultrasound-induced transformation of perfluorocarbon liquids to gases is of interest in the area of drug and gene delivery. In this study, three independent parameters (temperature, size, and perfluorocarbon species) were selected to investigate the effects of 476-kHz and 20-kHz ultrasound on nanoemulsion phase transition. Two levels of each factor (low and high) were considered at each frequency. The acoustic intensities at gas bubble formation and at the onset of inertial cavitation were recorded and subsequently correlated with the acoustic parameters. Experimental data showed that low frequencies are more effective in forming and collapsing a bubble. Additionally, as the size of the emulsion droplet increased, the intensity required for bubble formation decreased. As expected, perfluorohexane emulsions require greater intensity to form cavitating bubbles than perfluoropentane emulsions. PMID:22444691

  15. Experimental and numerical simulation of a rotor/stator interaction event localized on a single blade within an industrial high-pressure compressor

    NASA Astrophysics Data System (ADS)

    Batailly, Alain; Agrapart, Quentin; Millecamps, Antoine; Brunel, Jean-François

    2016-08-01

    This contribution addresses a confrontation between the experimental simulation of a rotor/stator interaction case initiated by structural contacts with numerical predictions made with an in-house numerical strategy. Contrary to previous studies carried out within the low-pressure compressor of an aircraft engine, this interaction is found to be non-divergent: high amplitudes of vibration are experimentally observed and numerically predicted over a short period of time. An in-depth analysis of experimental data first allows for a precise characterization of the interaction as a rubbing event involving the first torsional mode of a single blade. Numerical results are in good agreement with experimental observations: the critical angular speed, the wear patterns on the casing as well as the blade dynamics are accurately predicted. Through out the article, the in-house numerical strategy is also confronted to another numerical strategy that may be found in the literature for the simulation of rubbing events: key differences are underlined with respect to the prediction of non-linear interaction phenomena.

  16. Key observations from the NHLBI Asthma Clinical Research Network.

    PubMed

    Szefler, Stanley J; Chinchilli, Vernon M; Israel, Elliot; Denlinger, Loren Clark; Lemanske, Robert F; Calhoun, William; Peters, Stephen P

    2012-05-01

    The National Heart, Lung and Blood Institute (NHLBI) Asthma Clinical Research Network (ACRN) recently completed its work after 20 years of collaboration as a multicentre clinical trial network. When formed, its stated mission was to perform multiple controlled clinical trials for treating patients with asthma by dispassionately examining new and existing therapies, and to rapidly communicate its findings to the medical community. The ACRN conducted 15 major clinical trials. In addition, clinical data, manual of operations, protocols and template informed consents from all ACRN trials are available via NHLBI BioLINCC (https://biolincc.nhlbi.nih.gov/studies/). This network contributed major insights into the use of inhaled corticosteroids, short-acting and long-acting ß-adrenergic agonists, leukotriene receptor antagonists, and novel agents (tiotropium, colchicine and macrolide antibiotics). They also pioneered studies of the variability in drug response, predictors of treatment response and pharmacogenetics. This review highlights the major research observations from the ACRN that have impacted the current management of asthma.

  17. Key Odorants Regulate Food Attraction in Drosophila melanogaster

    PubMed Central

    Giang, Thomas; He, Jianzheng; Belaidi, Safaa; Scholz, Henrike

    2017-01-01

    In insects, the search for food is highly dependent on olfactory sensory input. Here, we investigated whether a single key odorant within an odor blend or the complexity of the odor blend influences the attraction of Drosophila melanogaster to a food source. A key odorant is defined as an odorant that elicits a difference in the behavioral response when two similar complex odor blends are offered. To validate that the observed behavioral responses were elicited by olfactory stimuli, we used olfactory co-receptor Orco mutants. We show that within a food odor blend, ethanol functions as a key odorant. In addition to ethanol other odorants might serve as key odorants at specific concentrations. However, not all odorants are key odorants. The intensity of the odor background influences the attractiveness of the key odorants. Increased complexity is only more attractive in a concentration-dependent range for single compounds in a blend. Orco is necessary to discriminate between two similarly attractive odorants when offered as single odorants and in food odor blends, supporting the importance of single odorant recognition in odor blends. These data strongly indicate that flies use more than one strategy to navigate to a food odor source, depending on the availability of key odorants in the odor blend and the alternative odor offered. PMID:28928642

  18. Crew Earth Observations

    NASA Technical Reports Server (NTRS)

    Runco, Susan

    2009-01-01

    Crew Earth Observations (CEO) takes advantage of the crew in space to observe and photograph natural and human-made changes on Earth. The photographs record the Earth's surface changes over time, along with dynamic events such as storms, floods, fires and volcanic eruptions. These images provide researchers on Earth with key data to better understand the planet.

  19. Experimental observation of the effect of generic singularities in polychromatic dark hollow beams.

    PubMed

    Yadav, Bharat Kumar; Joshi, Stuti; Kandpal, Hem Chandra

    2014-08-15

    This Letter presents the essence of our recent experimental study on generic singularities carrying spatially partially coherent, polychromatic dark hollow beams (PDHBs). To the best of our knowledge, this is the first experimental demonstration of generic singularities-induced wavefront tearing in focused polychromatic beams.

  20. Three-particle hyper-entanglement: teleportation and quantum key distribution

    NASA Astrophysics Data System (ADS)

    Perumangatt, Chithrabhanu; Abdul Rahim, Aadhi; Salla, Gangi Reddy; Prabhakar, Shashi; Samanta, Goutam Kumar; Paul, Goutam; Singh, Ravindra Pratap

    2015-10-01

    We present a scheme to generate three-particle hyper-entanglement utilizing polarization and orbital angular momentum (OAM) of photons. We show that the generated state can be used to teleport a two-qubit state described by the polarization and the OAM. The proposed quantum system has also been used to describe a new efficient quantum key distribution (QKD) protocol. We give a sketch of the experimental arrangement to realize the proposed teleportation and the QKD.

  1. Quantum hacking on quantum key distribution using homodyne detection

    NASA Astrophysics Data System (ADS)

    Huang, Jing-Zheng; Kunz-Jacques, Sébastien; Jouguet, Paul; Weedbrook, Christian; Yin, Zhen-Qiang; Wang, Shuang; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu

    2014-03-01

    Imperfect devices in commercial quantum key distribution systems open security loopholes that an eavesdropper may exploit. An example of one such imperfection is the wavelength-dependent coupling ratio of the fiber beam splitter. Utilizing this loophole, the eavesdropper can vary the transmittances of the fiber beam splitter at the receiver's side by inserting lights with wavelengths different from what is normally used. Here, we propose a wavelength attack on a practical continuous-variable quantum key distribution system using homodyne detection. By inserting light pulses at different wavelengths, this attack allows the eavesdropper to bias the shot-noise estimation even if it is done in real time. Based on experimental data, we discuss the feasibility of this attack and suggest a prevention scheme by improving the previously proposed countermeasures.

  2. Experimental integration of quantum key distribution and gigabit-capable passive optical network

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Wang, Liu-Jun; Sun, Xiang-Xiang; Mao, Yingqiu; Yin, Hua-Lei; Wang, Bi-Xiao; Chen, Teng-Yun; Pan, Jian-Wei

    2018-01-01

    Quantum key distribution (QKD) ensures information-theoretic security for the distribution of random bits between two remote parties. To extend QKD applications to fiber-to-the-home optical communications, such as gigabit-capable passive optical networks (GPONs), an effective method is the use of wavelength-division multiplexing. However, the Raman scattering noise from intensive classical traffic and the huge loss introduced by the beam splitter in a GPON severely limits the performance of QKD. Here, we demonstrate the integration of QKD and a commercial GPON system with fiber lengths up to 14 km, in which the maximum splitting ratio of the beam splitter reaches 1:64. By placing the QKD transmitter on the optical line terminal side, we reduce the Raman noise collected at the QKD receiver. Using a bypass structure, the loss of the beam splitter is circumvented effectively. Our results pave the way to extending the applications of QKD to last-mile communications.

  3. Entropy Driven Self-Assembly in Charged Lock-Key Particles.

    PubMed

    Odriozola, Gerardo; Lozada-Cassou, Marcelo

    2016-07-07

    In this work we study the lock-key model successfully used in supramolecular chemistry and particles self-assembly and gain further insight into the infinite diluted limit of the lock and key, depletant mediated, effective attraction. We discuss the depletant forces and entropy approaches to self-assembly and give details on the different contributions to the net force for a charged lock and key pair immersed in a solvent plus a primitive model electrolyte. We show a strong correlation of the force components behavior and the underlying processes of co-ion and solvent release from the cavity. In addition, we put into context the universal behavior observed for the energy-distance curves when changing the lock and key to solvent size ratio. Basically, we now show that this behavior is not always achieved and depends on the particular system geometry. Finally, we present a qualitative good agreement with experiments when changing the electrolyte concentration, valence, and cavity-key size ratio.

  4. The Massabesic Experimental Forest

    Treesearch

    Thomas W. McConkey; Wendell E. Smith

    1958-01-01

    White pine and fire! These two - the tree and its destroyer, fire - are keys to the history and present make-up of the research program on the Massabesic Experimental Forest at Alfred, Maine. The Forest was established in the late 1930's to study the management of eastern white pine. During World War II, it was shut down, and reopened again in 1946. Then, in 1947...

  5. Quantum key distribution without detector vulnerabilities using optically seeded lasers

    NASA Astrophysics Data System (ADS)

    Comandar, L. C.; Lucamarini, M.; Fröhlich, B.; Dynes, J. F.; Sharpe, A. W.; Tam, S. W.-B.; Yuan, Z. L.; Penty, R. V.; Shields, A. J.

    2016-05-01

    Security in quantum cryptography is continuously challenged by inventive attacks targeting the real components of a cryptographic set-up, and duly restored by new countermeasures to foil them. Owing to their high sensitivity and complex design, detectors are the most frequently attacked components. It was recently shown that two-photon interference from independent light sources can be used to remove any vulnerability from detectors. This new form of detection-safe quantum key distribution (QKD), termed measurement-device-independent (MDI), has been experimentally demonstrated but with modest key rates. Here, we introduce a new pulsed laser seeding technique to obtain high-visibility interference from gain-switched lasers and thereby perform MDI-QKD with unprecedented key rates in excess of 1 megabit per second in the finite-size regime. This represents a two to six orders of magnitude improvement over existing implementations and supports the new scheme as a practical resource for secure quantum communications.

  6. Observation and experimental investigation of confinement effects on ion transport and electrokinetic flows at the microscale

    PubMed Central

    Benneker, Anne M.; Wood, Jeffery A.; Tsai, Peichun A.; Lammertink, Rob G. H.

    2016-01-01

    Electrokinetic effects adjacent to charge-selective interfaces (CSI) have been experimentally investigated in microfluidic platforms in order to gain understanding on underlying phenomena of ion transport at elevated applied voltages. We experimentally investigate the influence of geometry and multiple array densities of the CSI on concentration and flow profiles in a microfluidic set-up using nanochannels as the CSI. Particle tracking obtained under chronoamperometric measurements show the development of vortices in the microchannel adjacent to the nanochannels. We found that the direction of the electric field and the potential drop inside the microchannel has a large influence on the ion transport through the interface, for example by inducing immediate wall electroosmotic flow. In microfluidic devices, the electric field may not be directed normal to the interface, which can result in an inefficient use of the CSI. Multiple vortices are observed adjacent to the CSI, growing in size and velocity as a function of time and dependent on their location in the microfluidic device. Local velocities inside the vortices are measured to be more than 1.5 mm/s. Vortex speed, as well as flow speed in the channel, are dependent on the geometry of the CSI and the distance from the electrode. PMID:27853257

  7. Collective attacks and unconditional security in continuous variable quantum key distribution.

    PubMed

    Grosshans, Frédéric

    2005-01-21

    We present here an information theoretic study of Gaussian collective attacks on the continuous variable key distribution protocols based on Gaussian modulation of coherent states. These attacks, overlooked in previous security studies, give a finite advantage to the eavesdropper in the experimentally relevant lossy channel, but are not powerful enough to reduce the range of the reverse reconciliation protocols. Secret key rates are given for the ideal case where Bob performs optimal collective measurements, as well as for the realistic cases where he performs homodyne or heterodyne measurements. We also apply the generic security proof of Christiandl et al. to obtain unconditionally secure rates for these protocols.

  8. Wavelength calibration of x-ray imaging crystal spectrometer on Joint Texas Experimental Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, W.; Chen, Z. Y., E-mail: zychen@hust.edu.cn; Jin, W.

    2014-11-15

    The wavelength calibration of x-ray imaging crystal spectrometer is a key issue for the measurements of plasma rotation. For the lack of available standard radiation source near 3.95 Å and there is no other diagnostics to measure the core rotation for inter-calibration, an indirect method by using tokamak plasma itself has been applied on joint Texas experimental tokamak. It is found that the core toroidal rotation velocity is not zero during locked mode phase. This is consistent with the observation of small oscillations on soft x-ray signals and electron cyclotron emission during locked-mode phase.

  9. Human Health Effects of Biphenyl: Key Findings and Scientific Issues

    PubMed Central

    Li, Zheng; Hogan, Karen A.; Cai, Christine; Rieth, Susan

    2015-01-01

    Background: In support of the Integrated Risk Information System (IRIS), the U.S. Environmental Protection Agency (EPA) has evaluated the human health hazards of biphenyl exposure. Objectives: We review key findings and scientific issues regarding expected human health effects of biphenyl. Methods: Scientific literature from 1926 through September 2012 was critically evaluated to identify potential human health hazards associated with biphenyl exposure. Key issues related to the carcinogenicity and noncancer health hazards of biphenyl were examined based on evidence from experimental animal bioassays and mechanistic studies. Discussion: Systematic consideration of experimental animal studies of oral biphenyl exposure took into account the variety of study designs (e.g., study sizes, exposure levels, and exposure durations) to reconcile differing reported results. The available mechanistic and toxicokinetic evidence supports the hypothesis that male rat urinary bladder tumors arise through urinary bladder calculi formation but is insufficient to hypothesize a mode of action for liver tumors in female mice. Biphenyl and its metabolites may induce genetic damage, but a role for genotoxicity in biphenyl-induced carcinogenicity has not been established. Conclusions: The available health effects data for biphenyl provides suggestive evidence for carcinogenicity in humans, based on increased incidences of male rat urinary bladder tumors at high exposure levels and on female mouse liver tumors. Kidney toxicity is also a potential human health hazard of biphenyl exposure. Citation: Li Z, Hogan KA, Cai C, Rieth S. 2016. Human health effects of biphenyl: key findings and scientific issues. Environ Health Perspect 124:703–712; http://dx.doi.org/10.1289/ehp.1509730 PMID:26529796

  10. Human Health Effects of Biphenyl: Key Findings and Scientific Issues.

    PubMed

    Li, Zheng; Hogan, Karen A; Cai, Christine; Rieth, Susan

    2016-06-01

    In support of the Integrated Risk Information System (IRIS), the U.S. Environmental Protection Agency (EPA) has evaluated the human health hazards of biphenyl exposure. We review key findings and scientific issues regarding expected human health effects of biphenyl. Scientific literature from 1926 through September 2012 was critically evaluated to identify potential human health hazards associated with biphenyl exposure. Key issues related to the carcinogenicity and noncancer health hazards of biphenyl were examined based on evidence from experimental animal bioassays and mechanistic studies. Systematic consideration of experimental animal studies of oral biphenyl exposure took into account the variety of study designs (e.g., study sizes, exposure levels, and exposure durations) to reconcile differing reported results. The available mechanistic and toxicokinetic evidence supports the hypothesis that male rat urinary bladder tumors arise through urinary bladder calculi formation but is insufficient to hypothesize a mode of action for liver tumors in female mice. Biphenyl and its metabolites may induce genetic damage, but a role for genotoxicity in biphenyl-induced carcinogenicity has not been established. The available health effects data for biphenyl provides suggestive evidence for carcinogenicity in humans, based on increased incidences of male rat urinary bladder tumors at high exposure levels and on female mouse liver tumors. Kidney toxicity is also a potential human health hazard of biphenyl exposure. Li Z, Hogan KA, Cai C, Rieth S. 2016. Human health effects of biphenyl: key findings and scientific issues. Environ Health Perspect 124:703-712; http://dx.doi.org/10.1289/ehp.1509730.

  11. Human Health Effects of Trichloroethylene: Key Findings and Scientific Issues

    PubMed Central

    Jinot, Jennifer; Scott, Cheryl Siegel; Makris, Susan L.; Cooper, Glinda S.; Dzubow, Rebecca C.; Bale, Ambuja S.; Evans, Marina V.; Guyton, Kathryn Z.; Keshava, Nagalakshmi; Lipscomb, John C.; Barone, Stanley; Fox, John F.; Gwinn, Maureen R.; Schaum, John; Caldwell, Jane C.

    2012-01-01

    Background: In support of the Integrated Risk Information System (IRIS), the U.S. Environmental Protection Agency (EPA) completed a toxicological review of trichloroethylene (TCE) in September 2011, which was the result of an effort spanning > 20 years. Objectives: We summarized the key findings and scientific issues regarding the human health effects of TCE in the U.S. EPA’s toxicological review. Methods: In this assessment we synthesized and characterized thousands of epidemiologic, experimental animal, and mechanistic studies, and addressed several key scientific issues through modeling of TCE toxicokinetics, meta-analyses of epidemiologic studies, and analyses of mechanistic data. Discussion: Toxicokinetic modeling aided in characterizing the toxicological role of the complex metabolism and multiple metabolites of TCE. Meta-analyses of the epidemiologic data strongly supported the conclusions that TCE causes kidney cancer in humans and that TCE may also cause liver cancer and non-Hodgkin lymphoma. Mechanistic analyses support a key role for mutagenicity in TCE-induced kidney carcinogenicity. Recent evidence from studies in both humans and experimental animals point to the involvement of TCE exposure in autoimmune disease and hypersensitivity. Recent avian and in vitro mechanistic studies provided biological plausibility that TCE plays a role in developmental cardiac toxicity, the subject of substantial debate due to mixed results from epidemiologic and rodent studies. Conclusions: TCE is carcinogenic to humans by all routes of exposure and poses a potential human health hazard for noncancer toxicity to the central nervous system, kidney, liver, immune system, male reproductive system, and the developing embryo/fetus. PMID:23249866

  12. THE ROLE OF METASTABLE STATES IN POLYMER PHASE TRANSITIONS: Concepts, Principles, and Experimental Observations

    NASA Astrophysics Data System (ADS)

    Cheng, Stephen Z. D.; Keller, Andrew

    1998-08-01

    Polymer phases can be described in the same way as phases in other condensed matter using a number density operator and its correlation functions. This description requires the understanding of symmetry operations and order at different atomic and molecular levels. Statistical mechanics provides a link between the microscopic description of the structure and motion and the macroscopic thermodynamic properties. Within the limits of the laws of thermodynamics, polymers exhibit a rich variety of phase transition behaviors. By definition, a first-order phase transition describes a transformation that involves a sudden change of thermodynamic properties at its transition temperature, whereas higher-order phase transitions are classified as critical phenomena. Of special interest is the role of metastability in phase and phase transition behaviors. Although a metastable state possesses a local free energy minimum, it is not at the global equilibrium. Furthermore, metastable states can also be associated with phase sizes. Metastable behavior is also observed in phase transformations that are impeded by kinetic limitations along the pathway to thermodynamic equilibrium. This is illustrated in structural and morphological investigations of crystallization and mesophase transitions, liquid-liquid phase separation, vitrification, and gel formation, as well as combinations of transformation processes. In these cases, the metastable state often becomes the dominant state for the entire system and is observed over a range of time and size scales. This review describes the general principles of metastability in polymer phases and phase transitions and provides illustrations from current experimental works in selected areas.

  13. Secure communications using nonlinear silicon photonic keys.

    PubMed

    Grubel, Brian C; Bosworth, Bryan T; Kossey, Michael R; Cooper, A Brinton; Foster, Mark A; Foster, Amy C

    2018-02-19

    We present a secure communication system constructed using pairs of nonlinear photonic physical unclonable functions (PUFs) that harness physical chaos in integrated silicon micro-cavities. Compared to a large, electronically stored one-time pad, our method provisions large amounts of information within the intrinsically complex nanostructure of the micro-cavities. By probing a micro-cavity with a rapid sequence of spectrally-encoded ultrafast optical pulses and measuring the lightwave responses, we experimentally demonstrate the ability to extract 2.4 Gb of key material from a single micro-cavity device. Subsequently, in a secure communication experiment with pairs of devices, we achieve bit error rates below 10 -5 at code rates of up to 0.1. The PUFs' responses are never transmitted over the channel or stored in digital memory, thus enhancing the security of the system. Additionally, the micro-cavity PUFs are extremely small, inexpensive, robust, and fully compatible with telecommunications infrastructure, components, and electronic fabrication. This approach can serve one-time pad or public key exchange applications where high security is required.

  14. Experimental observation of spontaneous depolarized guided acoustic-wave Brillouin scattering in side cores of a multicore fiber

    NASA Astrophysics Data System (ADS)

    Hayashi, Neisei; Mizuno, Yosuke; Nakamura, Kentaro; Set, Sze Yun; Yamashita, Shinji

    2018-06-01

    Spontaneous depolarized guided acoustic-wave Brillouin scattering (GAWBS) was experimentally observed in one of the side cores of an uncoated multicore fiber (MCF). The frequency bandwidth in the side core was up to ∼400 MHz, which is 0.5 times that in the central core. The GAWBS spectrum of the side core of the MCF included intrinsic peaks, which had different acoustic resonance frequencies from those of the central core. In addition, the spontaneous depolarized GAWBS in the central/side core was unaffected by that in the other core. These results will lead to the development of polarization/phase modulators using an MCF.

  15. Experimental observation of magnetoelectricity in spin ice Dy 2Ti 2O 7

    DOE PAGES

    Lin, L.; Xie, Y. L.; Wen, J. -J.; ...

    2015-12-14

    The intrinsic noncollinear spin patterns in rare-earth pyrochlore are physically interesting, due to their many emergent properties (e.g., spin-ice and monopole-type excitation). Recent works have suggested that the magnetic monopole excitation of spin-ice systems is magnetoelectric active, but this fact has rarely been confirmed via experiment. In this work, we performed a systematic experimental investigation on the magnetoelectricity of Dy 2Ti 2O 7 by probing the ferroelectricity, spin dynamics, and dielectric behaviors. Two ferroelectric transitions at T c1 = 25 K and T c2 =13 K were observed. Remarkable magnetoelectric coupling was identified below the lower transition temperature, with significantmore » suppression of the electric polarization on applied magnetic field. Our results show that the lower ferroelectric transition temperature coincides with the Ising-spin paramagnetic transition point, below which the quasi-particle-like monopoles are populated, which indicates implicit correlation between electric dipoles and spin moments. The possible magnetoelectric mechanisms are discussed. Our findings can be used for more investigations to explore multiferroicity in these spin-ice systems and other frustrated magnets.« less

  16. Extended Theories of Gravitation. Observation Protocols and Experimental Tests

    NASA Astrophysics Data System (ADS)

    Fatibene, Lorenzo; Ferraris, Marco; Francaviglia, Mauro; Magnano, Guido

    2013-09-01

    Within the framework of extended theories of gravitation we shall discuss physical equivalences among different formalisms and classical tests. As suggested by the Ehlers-Pirani-Schild framework, the conformal invariance will be preserved and its effect on observational protocols discussed. Accordingly, we shall review standard tests showing how Palatini f(R)-theories naturally passes solar system tests. Observation protocols will be discussed in this wider framework.

  17. Observer influences on pain: an experimental series examining same-sex and opposite-sex friends, strangers, and romantic partners.

    PubMed

    Edwards, Rhiannon; Eccleston, Christopher; Keogh, Edmund

    2017-05-01

    Despite the well-documented sex and gender differences, little is known about the relative impact of male-female social interactions on pain. Three experiments were conducted to investigate whether the type of interpersonal relationship men and women have with an observer affects how they respond to experimental pain. Study 1 recruited friends and strangers, study 2 examined the effects of same- and opposite-sex friends, whereas study 3 investigated the differences between opposite-sex friends and opposite-sex romantic partners. One hundred forty-four dyads were recruited (48 in each study). One person from each dyad completed 2 pain tasks, whereas the other person observed in silence. Overall, the presence of another person resulted in an increase in pain threshold and tolerance on the cold-pressor task and algometer. The sex status of the dyads also had a role, but only within the friendship groups. In particular, male friends had the most pronounced effect on men's pain, increasing pain tolerance. We suggest that the presence of an observer, their sex, and the nature of the participant-observer relationship all influence how pain is reported. Further research should focus on dyadic relationships, and their influence on how men and women report and communicate pain in specific contexts.

  18. Experimental observation of chiral magnetic bobbers in B20-type FeGe

    NASA Astrophysics Data System (ADS)

    Zheng, Fengshan; Rybakov, Filipp N.; Borisov, Aleksandr B.; Song, Dongsheng; Wang, Shasha; Li, Zi-An; Du, Haifeng; Kiselev, Nikolai S.; Caron, Jan; Kovács, András; Tian, Mingliang; Zhang, Yuheng; Blügel, Stefan; Dunin-Borkowski, Rafal E.

    2018-06-01

    Chiral magnetic skyrmions1,2 are nanoscale vortex-like spin textures that form in the presence of an applied magnetic field in ferromagnets that support the Dzyaloshinskii-Moriya interaction (DMI) because of strong spin-orbit coupling and broken inversion symmetry of the crystal3,4. In sharp contrast to other systems5,6 that allow for the formation of a variety of two-dimensional (2D) skyrmions, in chiral magnets the presence of the DMI commonly prevents the stability and coexistence of topological excitations of different types7. Recently, a new type of localized particle-like object—the chiral bobber (ChB)—was predicted theoretically in such materials8. However, its existence has not yet been verified experimentally. Here, we report the direct observation of ChBs in thin films of B20-type FeGe by means of quantitative off-axis electron holography (EH). We identify the part of the temperature-magnetic field phase diagram in which ChBs exist and distinguish two mechanisms for their nucleation. Furthermore, we show that ChBs are able to coexist with skyrmions over a wide range of parameters, which suggests their possible practical applications in novel magnetic solid-state memory devices, in which a stream of binary data bits can be encoded by a sequence of skyrmions and bobbers.

  19. Transport of sulfacetamide and levofloxacin in granular porous media under various conditions: Experimental observations and model simulations.

    PubMed

    Dong, Shunan; Gao, Bin; Sun, Yuanyuan; Shi, Xiaoqing; Xu, Hongxia; Wu, Jianfeng; Wu, Jichun

    2016-12-15

    Understanding the fate and transport of antibiotics in porous media can help reduce their contamination risks to soil and groundwater systems. In this work, batch and column experiments were conducted to determine the interactions between two representative antibiotics, sulfacetamide (SA) and levofloxacin (LEV), and sand porous media under various solution pH, humic acid (HA) concentration, grain size, and moisture content conditions. Batch sorption experimental results indicated that the sand had relatively strong bonding affinity to LEV, but little sorption of SA under different pH, HA concentration, grain size conditions. Results from the packed sand column experiments showed that SA had extremely high mobility in the porous media for all combinations of pH, HA concentration, grain size, and moisture content. The mass recovery of SA was higher than 98.5% in all the columns with the exception of the one packed with fine sand (97.2%). The retention of LEV in the columns was much higher and the recovery rates ranged from 0% to 71.1%. Decreases in solution pH, HA concentration, grain size, or moisture content reduced the mobility of LEV in the columns under the tested conditions. These results indicated that type of antibiotics and environmental conditions also played an important role in controlling their fate and transport in porous media. Mathematical models were applied to simulate and interpret experimental data, and model simulations described the interactions between the two antibiotics and sand porous media very well. Findings from this study elucidated the key factors and processes controlling the fate of SA and LEV in porous media, which can inform the prediction and assessment of the environmental risks of antibiotics. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Approaches to a global quantum key distribution network

    NASA Astrophysics Data System (ADS)

    Islam, Tanvirul; Bedington, Robert; Ling, Alexander

    2017-10-01

    Progress in realising quantum computers threatens to weaken existing public key encryption infrastructure. A global quantum key distribution (QKD) network can play a role in computational attack-resistant encryption. Such a network could use a constellation of high altitude platforms such as airships and satellites as trusted nodes to facilitate QKD between any two points on the globe on demand. This requires both space-to-ground and inter-platform links. However, the prohibitive cost of traditional satellite based development limits the experimental work demonstrating relevant technologies. To accelerate progress towards a global network, we use an emerging class of shoe-box sized spacecraft known as CubeSats. We have designed a polarization entangled photon pair source that can operate on board CubeSats. The robustness and miniature form factor of our entanglement source makes it especially suitable for performing pathfinder missions that studies QKD between two high altitude platforms. The technological outcomes of such mission would be the essential building blocks for a global QKD network.

  1. The experimental verification on the shear bearing capacity of exposed steel column foot

    NASA Astrophysics Data System (ADS)

    Xijin, LIU

    2017-04-01

    In terms of the shear bearing capacity of the exposed steel column foot, there are many researches both home and abroad. However, the majority of the researches are limited to the theoretical analysis sector and few of them make the experimental analysis. In accordance with the prototype of an industrial plant in Beijing, this paper designs the experimental model. The experimental model is composed of six steel structural members in two groups, with three members without shear key and three members with shear key. The paper checks the shear bearing capacity of two groups respectively under different axial forces. The experiment shows: The anchor bolt of the exposed steel column foot features relatively large shear bearing capacity which could not be neglected. The results deducted through calculation methods proposed by this paper under two situations match the experimental results in terms of the shear bearing capacity of the steel column foot. Besides, it also proposed suggestions on revising the Code for Design of Steel Structure in the aspect of setting the shear key in the steel column foot.

  2. Quantum key distribution session with 16-dimensional photonic states.

    PubMed

    Etcheverry, S; Cañas, G; Gómez, E S; Nogueira, W A T; Saavedra, C; Xavier, G B; Lima, G

    2013-01-01

    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD.

  3. Quantum key distribution session with 16-dimensional photonic states

    NASA Astrophysics Data System (ADS)

    Etcheverry, S.; Cañas, G.; Gómez, E. S.; Nogueira, W. A. T.; Saavedra, C.; Xavier, G. B.; Lima, G.

    2013-07-01

    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD.

  4. Experimental eavesdropping attack against Ekert's protocol based on Wigner's inequality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovino, F. A.; Colla, A. M.; Castagnoli, G.

    2003-09-01

    We experimentally implemented an eavesdropping attack against the Ekert protocol for quantum key distribution based on the Wigner inequality. We demonstrate a serious lack of security of this protocol when the eavesdropper gains total control of the source. In addition we tested a modified Wigner inequality which should guarantee a secure quantum key distribution.

  5. Engagement in the HIV Care Continuum among Key Populations in Tijuana, Mexico.

    PubMed

    Smith, Laramie R; Patterson, Thomas L; Magis-Rodriguez, Carlos; Ojeda, Victoria D; Burgos, Jose Luis; Rojas, Sarah A; Zúñiga, María Luisa; Strathdee, Steffanie A

    2016-05-01

    In Tijuana, Mexico, HIV is concentrated in sub-epidemics of key populations: persons who inject drugs (PWID), sex workers (SW), and men who have sex with men (MSM). To date, data on engagement in the HIV care continuum among these key populations, particularly in resource-constrained settings, are sparse. We pooled available epidemiological data from six studies (N = 3368) to examine HIV testing and treatment uptake in these key populations; finding an overall HIV prevalence of 5.7 %. Of the 191 identified HIV-positive persons, only 11.5 % knew their HIV-positive status and 3.7 % were on ART. Observed differences between these HIV-positive key populations suggest PWID (vs. non-PWID) were least likely to have previously tested or initiate HIV care. MSM (vs. non-MSM) were more likely to have previously tested but not more likely to know their HIV-positive status. Of persons aware of their HIV-positive status, SW (vs. non-SW) were more likely to initiate HIV care. Findings suggest engagement of key populations in HIV treatment is far below estimates observed for similarly resource-constrained generalized epidemics in sub-Saharan Africa. These data provide one of the first empirical-snapshots highlighting the extent of HIV treatment disparities in key populations.

  6. Experimental investigation of shaping disturbance observer design for motion control of precision mechatronic stages with resonances

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Hu, Chuxiong; Zhu, Yu; Wang, Ze; Zhang, Ming

    2017-08-01

    In this paper, shaping disturbance observer (SDOB) is investigated for precision mechatronic stages with middle-frequency zero/pole type resonance to achieve good motion control performance in practical manufacturing situations. Compared with traditional standard disturbance observer (DOB), in SDOB a pole-zero cancellation based shaping filter is cascaded to the mechatronic stage plant to meet the challenge of motion control performance deterioration caused by actual resonance. Noting that pole-zero cancellation is inevitably imperfect and the controller may even consequently become unstable in practice, frequency domain stability analysis is conducted to find out how each parameter of the shaping filter affects the control stability. Moreover, the robust design criterion of the shaping filter, and the design procedure of SDOB, are both proposed to guide the actual design and facilitate practical implementation. The SDOB with the proposed design criterion is applied to a linear motor driven stage and a voice motor driven stage, respectively. Experimental results consistently validate the effectiveness nature of the proposed SDOB scheme in practical mechatronics motion applications. The proposed SDOB design actually could be an effective unit in the controller design for motion stages of mechanical manufacture equipments.

  7. Sparse Representations-Based Super-Resolution of Key-Frames Extracted from Frames-Sequences Generated by a Visual Sensor Network

    PubMed Central

    Sajjad, Muhammad; Mehmood, Irfan; Baik, Sung Wook

    2014-01-01

    Visual sensor networks (VSNs) usually generate a low-resolution (LR) frame-sequence due to energy and processing constraints. These LR-frames are not very appropriate for use in certain surveillance applications. It is very important to enhance the resolution of the captured LR-frames using resolution enhancement schemes. In this paper, an effective framework for a super-resolution (SR) scheme is proposed that enhances the resolution of LR key-frames extracted from frame-sequences captured by visual-sensors. In a VSN, a visual processing hub (VPH) collects a huge amount of visual data from camera sensors. In the proposed framework, at the VPH, key-frames are extracted using our recent key-frame extraction technique and are streamed to the base station (BS) after compression. A novel effective SR scheme is applied at BS to produce a high-resolution (HR) output from the received key-frames. The proposed SR scheme uses optimized orthogonal matching pursuit (OOMP) for sparse-representation recovery in SR. OOMP does better in terms of detecting true sparsity than orthogonal matching pursuit (OMP). This property of the OOMP helps produce a HR image which is closer to the original image. The K-SVD dictionary learning procedure is incorporated for dictionary learning. Batch-OMP improves the dictionary learning process by removing the limitation in handling a large set of observed signals. Experimental results validate the effectiveness of the proposed scheme and show its superiority over other state-of-the-art schemes. PMID:24566632

  8. Sparse representations-based super-resolution of key-frames extracted from frames-sequences generated by a visual sensor network.

    PubMed

    Sajjad, Muhammad; Mehmood, Irfan; Baik, Sung Wook

    2014-02-21

    Visual sensor networks (VSNs) usually generate a low-resolution (LR) frame-sequence due to energy and processing constraints. These LR-frames are not very appropriate for use in certain surveillance applications. It is very important to enhance the resolution of the captured LR-frames using resolution enhancement schemes. In this paper, an effective framework for a super-resolution (SR) scheme is proposed that enhances the resolution of LR key-frames extracted from frame-sequences captured by visual-sensors. In a VSN, a visual processing hub (VPH) collects a huge amount of visual data from camera sensors. In the proposed framework, at the VPH, key-frames are extracted using our recent key-frame extraction technique and are streamed to the base station (BS) after compression. A novel effective SR scheme is applied at BS to produce a high-resolution (HR) output from the received key-frames. The proposed SR scheme uses optimized orthogonal matching pursuit (OOMP) for sparse-representation recovery in SR. OOMP does better in terms of detecting true sparsity than orthogonal matching pursuit (OMP). This property of the OOMP helps produce a HR image which is closer to the original image. The K-SVD dictionary learning procedure is incorporated for dictionary learning. Batch-OMP improves the dictionary learning process by removing the limitation in handling a large set of observed signals. Experimental results validate the effectiveness of the proposed scheme and show its superiority over other state-of-the-art schemes.

  9. Key issues, observations and goals for coupled, thermodynamic/geodynamic models

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.

    2017-12-01

    In coupled, thermodynamic/geodynamic models, focus should be on processes involving major rock forming minerals and simple fluid compositions, and parameters with first-order effects on likely dynamic processes: In a given setting, will fluid mass increase or decrease? How about solid density? Will flow become localized or diffuse? Will rocks flow or break? How do reactions affect global processes such as formation and evolution of the plates, plate boundary deformation, metamorphism, weathering, climate and geochemical cycles. Important reaction feedbacks in geodynamics include formation of dissolution channels and armored channels; divergence of flow and formation of permeability barriers due to crystallization in pore space; localization of fluid transport and ductile deformation in shear zones; reaction-driven cracking; mechanical channels granular media; shear heating; density instabilities; viscous fluid-weakening; fluid-induced frictional failure; and hydraulic fracture. Density instabilities often lead to melting, and there is an interesting dialectic between porous flow and diapirs. The best models provide a simple but comprehensive framework that can account for the general features in many or most of these phenomena. Ideally, calculations based on thermodynamic data and rheological observations alone should delineate the regimes in which each of these processes will occur and the boundaries between them. These often start with "toy models" and lab experiments on analog systems, with highly approximate scaling to simplified geological conditions and materials. Geologic observations provide the best constraints where `frozen' fluid transport pathways or deformation processes are preserved. Inferences about completed processes based on fluid or solid products alone is more challenging and less unique. Not all important processes have good examples in outcrop, so directed searches for specific phenomena may fail. A highly generalized approach provides a way

  10. Satellite-to-Ground Entanglement-Based Quantum Key Distribution.

    PubMed

    Yin, Juan; Cao, Yuan; Li, Yu-Huai; Ren, Ji-Gang; Liao, Sheng-Kai; Zhang, Liang; Cai, Wen-Qi; Liu, Wei-Yue; Li, Bo; Dai, Hui; Li, Ming; Huang, Yong-Mei; Deng, Lei; Li, Li; Zhang, Qiang; Liu, Nai-Le; Chen, Yu-Ao; Lu, Chao-Yang; Shu, Rong; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei

    2017-11-17

    We report on entanglement-based quantum key distribution between a low-Earth-orbit satellite equipped with a space borne entangled-photon source and a ground observatory. One of the entangled photons is measured locally at the satellite, and the other one is sent via a down link to the receiver in the Delingha ground station. The link attenuation is measured to vary from 29 dB at 530 km to 36 dB at 1000 km. We observe that the two-photon entanglement survives after being distributed between the satellite and the ground, with a measured state fidelity of ≥0.86. We then perform the entanglement-based quantum key distribution protocol and obtain an average final key rate of 3.5  bits/s at the distance range of 530-1000 km.

  11. Efficient key pathway mining: combining networks and OMICS data.

    PubMed

    Alcaraz, Nicolas; Friedrich, Tobias; Kötzing, Timo; Krohmer, Anton; Müller, Joachim; Pauling, Josch; Baumbach, Jan

    2012-07-01

    Systems biology has emerged over the last decade. Driven by the advances in sophisticated measurement technology the research community generated huge molecular biology data sets. These comprise rather static data on the interplay of biological entities, for instance protein-protein interaction network data, as well as quite dynamic data collected for studying the behavior of individual cells or tissues in accordance with changing environmental conditions, such as DNA microarrays or RNA sequencing. Here we bring the two different data types together in order to gain higher level knowledge. We introduce a significantly improved version of the KeyPathwayMiner software framework. Given a biological network modelled as a graph and a set of expression studies, KeyPathwayMiner efficiently finds and visualizes connected sub-networks where most components are expressed in most cases. It finds all maximal connected sub-networks where all nodes but k exceptions are expressed in all experimental studies but at most l exceptions. We demonstrate the power of the new approach by comparing it to similar approaches with gene expression data previously used to study Huntington's disease. In addition, we demonstrate KeyPathwayMiner's flexibility and applicability to non-array data by analyzing genome-scale DNA methylation profiles from colorectal tumor cancer patients. KeyPathwayMiner release 2 is available as a Cytoscape plugin and online at http://keypathwayminer.mpi-inf.mpg.de.

  12. EXPERIMENTAL AND THEORETICAL EVALUATIONS OF OBSERVATIONAL-BASED TECHNIQUES

    EPA Science Inventory

    Observational Based Methods (OBMs) can be used by EPA and the States to develop reliable ozone controls approaches. OBMs use actual measured concentrations of ozone, its precursors, and other indicators to determine the most appropriate strategy for ozone control. The usual app...

  13. Peer Observation: A Key Factor to Improve Iranian EFL Teachers' Professional Development

    ERIC Educational Resources Information Center

    Motallebzadeh, Khalil; Hosseinnia, Mansooreh; Domskey, Javad G. H.

    2017-01-01

    This study reports on the perspectives of a group of Iranian EFL teachers about peer observation effects. The aim was to investigate if peer observation as a reflective tool could significantly affect EFL teachers' professional development. It has been done based on a mixed method approach. The participants have stated their viewpoints on the…

  14. Experimental temporal quantum steering

    PubMed Central

    Bartkiewicz, Karol; Černoch, Antonín; Lemr, Karel; Miranowicz, Adam; Nori, Franco

    2016-01-01

    Temporal steering is a form of temporal correlation between the initial and final state of a quantum system. It is a temporal analogue of the famous Einstein-Podolsky-Rosen (spatial) steering. We demonstrate, by measuring the photon polarization, that temporal steering allows two parties to verify if they have been interacting with the same particle, even if they have no information about what happened with the particle in between the measurements. This is the first experimental study of temporal steering. We also performed experimental tests, based on the violation of temporal steering inequalities, of the security of two quantum key distribution protocols against individual attacks. Thus, these results can lead to applications for secure quantum communications and quantum engineering. PMID:27901121

  15. Key management of the double random-phase-encoding method using public-key encryption

    NASA Astrophysics Data System (ADS)

    Saini, Nirmala; Sinha, Aloka

    2010-03-01

    Public-key encryption has been used to encode the key of the encryption process. In the proposed technique, an input image has been encrypted by using the double random-phase-encoding method using extended fractional Fourier transform. The key of the encryption process have been encoded by using the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. The encoded key has then been transmitted to the receiver side along with the encrypted image. In the decryption process, first the encoded key has been decrypted using the secret key and then the encrypted image has been decrypted by using the retrieved key parameters. The proposed technique has advantage over double random-phase-encoding method because the problem associated with the transmission of the key has been eliminated by using public-key encryption. Computer simulation has been carried out to validate the proposed technique.

  16. The relationship between experimental geometry, heat rate, and ultrasound wave speed measurement while observing phase changes in highly attenuative materials

    NASA Astrophysics Data System (ADS)

    Moore, David G.; Stair, Sarah L.; Jack, David A.

    2018-04-01

    Ultrasound techniques are capable of monitoring changes in the time-of-flight as a material is exposed to different thermal environments. The focus of the present study is to identify the phase of a material via ultrasound compression wave measurements in a through transmission experimental setup as the material is heated from a solid to a liquid and then allowed to re-solidify. The present work seeks to expand upon the authors' previous research, which proved this through transmission phase monitoring technique was possible, by considering different experimental geometries. The relationship between geometry, the measured speed of sound, and the temperature profile is presented. The use of different volumes helps in establishing a baseline understanding of which aspects of the experiment are geometry dependent and which are independent. The present study also investigates the relationship between the heating rate observed in the experiment and the measured speed of sound. The trends identified between the experimental geometry, heat rate and ultrasound wave speed measurement assist in providing a baseline understanding of the applicability of this technique to various industries, including the polymer industry and the oil industry.

  17. The Relationship Between Experimental Geometry Heat Rate and Ultrasound Wave Speed Measurement While Observing Phase Changes in Highly Attenuative Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, David G.; Stair, Sarah Louise; Jack, David A.

    Ultrasound techniques are capable of monitoring changes in the time-of-flight as a material is exposed to different thermal environments. The focus of the present study is to identify the phase of a material via ultrasound compression wave measurements in a through transmission experimental setup as the material is heated from a solid to a liquid and then allowed to re-solidify. The present work seeks to expand upon the authors’ previous research, which proved this through transmission phase monitoring technique was possible, by considering different experimental geometries. The relationship between geometry, the measured speed of sound, and the temperature profile ismore » presented. The use of different volumes helps in establishing a baseline understanding of which aspects of the experiment are geometry dependent and which are independent. The present study also investigates the relationship between the heating rate observed in the experiment and the measured speed of sound. Lastly, the trends identified between the experimental geometry, heat rate and ultrasound wave speed measurement assist in providing a baseline understanding of the applicability of this technique to various industries, including the polymer industry and the oil industry.« less

  18. The Relationship Between Experimental Geometry Heat Rate and Ultrasound Wave Speed Measurement While Observing Phase Changes in Highly Attenuative Materials

    DOE PAGES

    Moore, David G.; Stair, Sarah Louise; Jack, David A.

    2018-04-01

    Ultrasound techniques are capable of monitoring changes in the time-of-flight as a material is exposed to different thermal environments. The focus of the present study is to identify the phase of a material via ultrasound compression wave measurements in a through transmission experimental setup as the material is heated from a solid to a liquid and then allowed to re-solidify. The present work seeks to expand upon the authors’ previous research, which proved this through transmission phase monitoring technique was possible, by considering different experimental geometries. The relationship between geometry, the measured speed of sound, and the temperature profile ismore » presented. The use of different volumes helps in establishing a baseline understanding of which aspects of the experiment are geometry dependent and which are independent. The present study also investigates the relationship between the heating rate observed in the experiment and the measured speed of sound. Lastly, the trends identified between the experimental geometry, heat rate and ultrasound wave speed measurement assist in providing a baseline understanding of the applicability of this technique to various industries, including the polymer industry and the oil industry.« less

  19. Optical key system

    DOEpatents

    Hagans, Karla G.; Clough, Robert E.

    2000-01-01

    An optical key system comprises a battery-operated optical key and an isolated lock that derives both its operating power and unlock signals from the correct optical key. A light emitting diode or laser diode is included within the optical key and is connected to transmit a bit-serial password. The key user physically enters either the code-to-transmit directly, or an index to a pseudorandom number code, in the key. Such person identification numbers can be retained permanently, or ephemeral. When a send button is pressed, the key transmits a beam of light modulated with the password information. The modulated beam of light is received by a corresponding optical lock with a photovoltaic cell that produces enough power from the beam of light to operate a password-screen digital logic. In one application, an acceptable password allows a two watt power laser diode to pump ignition and timing information over a fiberoptic cable into a sealed engine compartment. The receipt of a good password allows the fuel pump, spark, and starter systems to each operate. Therefore, bypassing the lock mechanism as is now routine with automobile thieves is pointless because the engine is so thoroughly disabled.

  20. Thermodynamics of Aqueous Organic Sulfur Compounds: A Key to the Organic Geochemistry of Hydrothermal Systems?

    NASA Technical Reports Server (NTRS)

    Schulte, Mitchell; Rogers, Karyn L.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Hydrothermal environments are locations of varied geochemistry due to the disequilibrium between vent fluids and seawater. The disequilibrium geochemistry has been hypothesized to include reactions to synthesize organic compounds. Observations of the organic geochemistry of hydrothermal vent sites has received little attention. Experimental simulations of these environments, however, indicate that organic compounds may have difficulty forming in a purely aqueous environment. On the other hand, thiols. thioesters and disulfides have been implicated as reaction intermediates between CO or CO2 in experiments of carbon reduction in hydrothermal environments as well as in a variety of biological processes and other abiotic reactions (Wachtershauser, 1990, OLEB 20, 173; Heinen and Lauwers, 1996, OLEB 26, 13 1, Huber and Wachtershauser, 1997, Science 276, 245; Russell et al., 1998, in Thermophiles: The keys to molecular evolution and the origin of life?). The reduction of CO2 to thiols, for example, is observed using the FeS-H2S/FeS2 couple to provide the reducing power (see Schoonen et al., 1999, OLEB 29, 5). In addition, the enzyme involved in final stage of methanogenesis, coenzyme-M, is itself a thiol. Thus, organic sulfur compounds may hold the key to the organic chemistry leading to the origin of life at high temperatures. Understanding the biochemical processes of microorganisms that can live to temperatures at least as high as 113 C (Blochl et al., 1996, Extremophiles 1, 14) requires knowledge of the properties of the chemical reactions involved. In order to assess the role of aqueous organic sulfur compounds in hydrothermal organic geochemistry, we have been attempting to determine their thermodynamic properties. We have culled the literature to obtain the properties of organic sulfur compounds. We are able to calculate a number of essential properties, such as free energies of formation, from solubility data available in the literature together with standard

  1. Experimental extraction of secure correlations from a noisy private state.

    PubMed

    Dobek, K; Karpiński, M; Demkowicz-Dobrzański, R; Banaszek, K; Horodecki, P

    2011-01-21

    We report experimental generation of a noisy entangled four-photon state that exhibits a separation between the secure key contents and distillable entanglement, a hallmark feature of the recently established quantum theory of private states. The privacy analysis, based on the full tomographic reconstruction of the prepared state, is utilized in a proof-of-principle key generation. The inferiority of distillation-based strategies to extract the key is exposed by an implementation of an entanglement distillation protocol for the produced state.

  2. Communicating Herschel Key Programs in Solar System Studies to the Public

    NASA Astrophysics Data System (ADS)

    Rengel, M.; Hartogh, P.; Müller, T.

    2011-10-01

    The Herschel Space Observatory, one of the cornerstone missions of the European Space Agency (ESA) with participation from NASA, is delivering a wealth of far-infrared and sub-millimeter observations of the cold Universe. A considerable part of the observing time for the nominal three year mission lifetime has been awarded in the form of Key Programs. Between the 42 key programs (guaranteed and open times), only two key programs are dedicated to study the Solar System: "Water and Related Chemistry in the Solar System", also known as Herschel Solar System Observations (HssO) project [1], and "TNOs are Cool: A Survey of the Transneptunian Region" [2]. In the framework of these Programs, a serie of public outreach activities and efforts of its results are being carried out. We present some of the outreach strategies developed (e.g. press releases, web pages, logos, public lectures, exhibitions, interviews, reports, etc.) and some plans in this direction. Our activities introduce people to knowledge and beauty of solar system research and wider the opportunities for the public to become more involved in topics like solar system studies, specially in the times of frequent exo-planet discoveries.

  3. Public-key quantum digital signature scheme with one-time pad private-key

    NASA Astrophysics Data System (ADS)

    Chen, Feng-Lin; Liu, Wan-Fang; Chen, Su-Gen; Wang, Zhi-Hua

    2018-01-01

    A quantum digital signature scheme is firstly proposed based on public-key quantum cryptosystem. In the scheme, the verification public-key is derived from the signer's identity information (such as e-mail) on the foundation of identity-based encryption, and the signature private-key is generated by one-time pad (OTP) protocol. The public-key and private-key pair belongs to classical bits, but the signature cipher belongs to quantum qubits. After the signer announces the public-key and generates the final quantum signature, each verifier can verify publicly whether the signature is valid or not with the public-key and quantum digital digest. Analysis results show that the proposed scheme satisfies non-repudiation and unforgeability. Information-theoretic security of the scheme is ensured by quantum indistinguishability mechanics and OTP protocol. Based on the public-key cryptosystem, the proposed scheme is easier to be realized compared with other quantum signature schemes under current technical conditions.

  4. Priorities and developments of sensors, samplers and methods for key marine biological observations.

    NASA Astrophysics Data System (ADS)

    Simmons, Samantha; Chavez, Francisco; Pearlman, Jay

    2016-04-01

    Over the last two decades or more, physical oceanography has seen a significant growth in in-situ sensors and platforms including fixed point and cable observatories, Argo floats, gliders and AUVs to supplement satellites for creating a 3-D view of the time-varying global ocean temperature and salinity structures. There are important developments recently for biogeochemists for monitoring nitrate, chemical contaminants, oxygen and pH that can now be added to these autonomous systems. Biologists are still lagging. Given the importance of biology to ocean health and the future earth, and the present reliance on humans and ships for observing species and abundance, it is paramount that new biological sensor systems be developed. Some promising sensor systems based on, but not limited to acoustic, chemical, genomic or imaging techniques, can sense from microbes to whales, are on the horizon. These techniques can be applied in situ with either real time or recorded data and can be captured and returned to the laboratory using the autonomous systems. The number of samples is limiting, requiring adaptive and smart systems. Two steps are envisioned to meeting the challenges. The first is to identify the priority biological variables to focus observation requirements and planning. The second is to address new sensors that can fill the gaps in current capabilities for biological observations. This abstract will review recent efforts to identify core biological variables for the US Integrated Ocean Observing System and address new sensors and innovations for observing these variables, particularly focused on availability and maturity of sensors.

  5. Coherent evolution of parahydrogen induced polarisation using laser pump, NMR probe spectroscopy: Theoretical framework and experimental observation.

    PubMed

    Halse, Meghan E; Procacci, Barbara; Henshaw, Sarah-Louise; Perutz, Robin N; Duckett, Simon B

    2017-05-01

    We recently reported a pump-probe method that uses a single laser pulse to introduce parahydrogen (p-H 2 ) into a metal dihydride complex and then follows the time-evolution of the p-H 2 -derived nuclear spin states by NMR. We present here a theoretical framework to describe the oscillatory behaviour of the resultant hyperpolarised NMR signals using a product operator formalism. We consider the cases where the p-H 2 -derived protons form part of an AX, AXY, AXYZ or AA'XX' spin system in the product molecule. We use this framework to predict the patterns for 2D pump-probe NMR spectra, where the indirect dimension represents the evolution during the pump-probe delay and the positions of the cross-peaks depend on the difference in chemical shift of the p-H 2 -derived protons and the difference in their couplings to other nuclei. The evolution of the NMR signals of the p-H 2 -derived protons, as well as the transfer of hyperpolarisation to other NMR-active nuclei in the product, is described. The theoretical framework is tested experimentally for a set of ruthenium dihydride complexes representing the different spin systems. Theoretical predictions and experimental results agree to within experimental error for all features of the hyperpolarised 1 H and 31 P pump-probe NMR spectra. Thus we establish the laser pump, NMR probe approach as a robust way to directly observe and quantitatively analyse the coherent evolution of p-H 2 -derived spin order over micro-to-millisecond timescales. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Finite-key analysis for measurement-device-independent quantum key distribution.

    PubMed

    Curty, Marcos; Xu, Feihu; Cui, Wei; Lim, Charles Ci Wen; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2014-04-29

    Quantum key distribution promises unconditionally secure communications. However, as practical devices tend to deviate from their specifications, the security of some practical systems is no longer valid. In particular, an adversary can exploit imperfect detectors to learn a large part of the secret key, even though the security proof claims otherwise. Recently, a practical approach--measurement-device-independent quantum key distribution--has been proposed to solve this problem. However, so far its security has only been fully proven under the assumption that the legitimate users of the system have unlimited resources. Here we fill this gap and provide a rigorous security proof against general attacks in the finite-key regime. This is obtained by applying large deviation theory, specifically the Chernoff bound, to perform parameter estimation. For the first time we demonstrate the feasibility of long-distance implementations of measurement-device-independent quantum key distribution within a reasonable time frame of signal transmission.

  7. Quantum key distribution session with 16-dimensional photonic states

    PubMed Central

    Etcheverry, S.; Cañas, G.; Gómez, E. S.; Nogueira, W. A. T.; Saavedra, C.; Xavier, G. B.; Lima, G.

    2013-01-01

    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD. PMID:23897033

  8. Key Strengths of an Innovative Volunteer Training Workshop

    ERIC Educational Resources Information Center

    Sellick, Angelika; Bournot-Trites, Monique; Reeder, Ken; Scales, Andrew; Smith, Mark; Zappa-Hollman, Sandra

    2011-01-01

    The study involved 14 volunteer facilitators, four UBC staff members, and the researcher as participant; the data collected were observation notes, questionnaires, results from focus groups, and interviews. The study revealed that the key strengths of the training workshop lay in its approach to training, its focus on confidence and capacity…

  9. Optical key system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagans, K.G.; Clough, R.E.

    2000-04-25

    An optical key system comprises a battery-operated optical key and an isolated lock that derives both its operating power and unlock signals from the correct optical key. A light emitting diode or laser diode is included within the optical key and is connected to transmit a bit-serial password. The key user physically enters either the code-to-transmit directly, or an index to a pseudorandom number code, in the key. Such person identification numbers can be retained permanently, or ephemeral. When a send button is pressed, the key transmits a beam of light modulated with the password information. The modulated beam ofmore » light is received by a corresponding optical lock with a photovoltaic cell that produces enough power from the beam of light to operate a password-screen digital logic. In one application, an acceptable password allows a two watt power laser diode to pump ignition and timing information over a fiberoptic cable into a sealed engine compartment. The receipt of a good password allows the fuel pump, spark, and starter systems to each operate. Therefore, bypassing the lock mechanism as is now routine with automobile thieves is pointless because the engine is so thoroughly disabled.« less

  10. Work Keys USA.

    ERIC Educational Resources Information Center

    Work Keys USA, 1998

    1998-01-01

    "Work Keys" is a comprehensive program for assessing and teaching workplace skills. This serial "special issue" features 18 first-hand reports on Work Keys projects in action in states across North America. They show how the Work Keys is helping businesses and educators solve the challenge of building a world-class work force.…

  11. Why Does Experimentation Matter in Teaching Ecology?

    ERIC Educational Resources Information Center

    Finn, Hugh; Maxwell, Marika; Calver, Michael

    2002-01-01

    Suggests that because controlled experiments are used extensively by professional ecologists to solve both theoretical and applied problems, experimentation should be a key component of secondary school ecology curricula. Describes five teaching principles to guide secondary school biology teachers in providing a more realistic view of the…

  12. Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations

    NASA Astrophysics Data System (ADS)

    Reid, M. D.

    2000-12-01

    Correlations of the type discussed by EPR in their original 1935 paradox for continuous variables exist for the quadrature phase amplitudes of two spatially separated fields. These correlations were first experimentally reported in 1992. We propose to use such EPR beams in quantum cryptography, to transmit with high efficiency messages in such a way that the receiver and sender may later determine whether eavesdropping has occurred. The merit of the new proposal is in the possibility of transmitting a reasonably secure yet predetermined key. This would allow relay of a cryptographic key over long distances in the presence of lossy channels.

  13. Finite size effects on the experimental observables of the Glauber model: a theoretical and experimental investigation

    NASA Astrophysics Data System (ADS)

    Vindigni, A.; Bogani, L.; Gatteschi, D.; Sessoli, R.; Rettori, A.; Novak, M. A.

    2004-05-01

    We investigate the relaxation time, τ, of a dilute Glauber kinetic Ising chain obtained by ac susceptibility and SQUID magnetometry on a Co(II)-organic radical Ising 1D ferrimagnet doped with Zn(II). Theoretically we predicted a crossover in the temperature-dependence of τ, when the average segment is of the same order of the correlation length. Comparing the experimental results with theory we conclude that in the investigted temperature range the correlation length exceeds the finite length also in the pure sample.

  14. Finite key analysis for symmetric attacks in quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Tim; Kampermann, Hermann; Kleinmann, Matthias

    2006-10-15

    We introduce a constructive method to calculate the achievable secret key rate for a generic class of quantum key distribution protocols, when only a finite number n of signals is given. Our approach is applicable to all scenarios in which the quantum state shared by Alice and Bob is known. In particular, we consider the six state protocol with symmetric eavesdropping attacks, and show that for a small number of signals, i.e., below n{approx}10{sup 4}, the finite key rate differs significantly from the asymptotic value for n{yields}{infinity}. However, for larger n, a good approximation of the asymptotic value is found.more » We also study secret key rates for protocols using higher-dimensional quantum systems.« less

  15. Key-peck durations under behavioral contrast and differential reinforcement

    PubMed Central

    Whipple, William R.; Fantino, Edmund

    1980-01-01

    Pigeons were maintained on a multiple schedule in which both components were variable-interval one-minute schedules. When they were switched to a condition in which one component was extinction, behavioral contrast was observed. The median durations of the key pecks in the unchanged component did not decrease in size. The results are incompatible with a theory of behavioral contrast which considers the added pecks to be short-duration responses. In a second experiment, pigeons were required to emit short-duration key pecks in one component of a multiple schedule, and long-duration pecks in the other. Two of three pigeons learned to emit responses appropriate to the requirements of the component in effect, suggesting that the duration of the key-peck response is sensitive to differential reinforcement. PMID:16812185

  16. How does light-intensity physical activity associate with adult cardiometabolic health and mortality? Systematic review with meta-analysis of experimental and observational studies.

    PubMed

    Chastin, Sebastien F M; De Craemer, Marieke; De Cocker, Katrien; Powell, Lauren; Van Cauwenberg, Jelle; Dall, Philippa; Hamer, Mark; Stamatakis, Emmanuel

    2018-04-25

    To assess the relationship between time spent in light physical activity and cardiometabolic health and mortality in adults. Systematic review and meta-analysis. Searches in Medline, Embase, PsycInfo, CINAHL and three rounds of hand searches. Experimental (including acute mechanistic studies and physical activity intervention programme) and observational studies (excluding case and case-control studies) conducted in adults (aged ≥18 years) published in English before February 2018 and reporting on the relationship between light physical activity (<3 metabolic equivalents) and cardiometabolic health outcomes or all-cause mortality. Study quality appraisal with QUALSYST tool and random effects inverse variance meta-analysis. Seventy-two studies were eligible including 27 experimental studies (and 45 observational studies). Mechanistic experimental studies showed that short but frequent bouts of light-intensity activity throughout the day reduced postprandial glucose (-17.5%; 95% CI -26.2 to -8.7) and insulin (-25.1%; 95% CI -31.8 to -18.3) levels compared with continuous sitting, but there was very limited evidence for it affecting other cardiometabolic markers. Three light physical activity programme intervention studies (n ranging from 12 to 58) reduced adiposity, improved blood pressure and lipidaemia; the programmes consisted of activity of >150 min/week for at least 12 weeks. Six out of eight prospective observational studies that were entered in the meta-analysis reported that more time spent in daily light activity reduced risk of all-cause mortality (pooled HR 0.71; 95% CI 0.62 to 0.83). Light-intensity physical activity could play a role in improving adult cardiometabolic health and reducing mortality risk. Frequent short bouts of light activity improve glycaemic control. Nevertheless, the modest volume of the prospective epidemiological evidence base and the moderate consistency between observational and laboratory evidence inhibits definitive

  17. Partially Key Distribution with Public Key Cryptosystem Based on Error Control Codes

    NASA Astrophysics Data System (ADS)

    Tavallaei, Saeed Ebadi; Falahati, Abolfazl

    Due to the low level of security in public key cryptosystems based on number theory, fundamental difficulties such as "key escrow" in Public Key Infrastructure (PKI) and a secure channel in ID-based cryptography, a new key distribution cryptosystem based on Error Control Codes (ECC) is proposed . This idea is done by some modification on McEliece cryptosystem. The security of ECC cryptosystem obtains from the NP-Completeness of block codes decoding. The capability of generating public keys with variable lengths which is suitable for different applications will be provided by using ECC. It seems that usage of these cryptosystems because of decreasing in the security of cryptosystems based on number theory and increasing the lengths of their keys would be unavoidable in future.

  18. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): High Angular Resolution Astronomy at Far-Infrared Wavelengths

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission. and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however. is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (-0.5 arcsec) in this band. BETTII will use a double- Fourier instrument to simultaneously obtain both spatial and spectral informatioT. he spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  19. Experimental observations and finite element analysis of the initiation of fiber microbuckling in notched composite laminates

    NASA Technical Reports Server (NTRS)

    Guynn, E. Gail; Bradley, Walter L.

    1989-01-01

    An understanding was developed of the factors that determine the semi-circular edge-notched compressive strength and the associated failure mode(s) were identified of thermoplastic composite laminates with multidirectional stacking sequences. The experimental observations and the detailed literature review suggest at least four factors that affected the determination of the strain levels at which fiber microbuckling initiates and thus, partially control the composite's compression strength. The dependent variables studied are the compressive strength of a reduced gage section compression specimen and the compression strength of a compression specimen with two semi-circular edge notches (no opposite free edges) centered along the gage section. In this research, specimens containing two semi-circular edge notches (no opposite free edges) were loaded in compression at a relatively slow rate to provide more stable development of fiber microbuckling damage. The results indicate that the local constraints (free surfaces, supporting ply orientation, and resin-rich regions) significantly affect the strain level for the initiation of in-plane fiber microbuckling. Preliminary results at an elevated temperature, 77 C, showed the shear stress yield strength of the resin was reduced and consequently, the resistance to fiber microbuckling was also reduced. The finite element analysis of the perfectly straight fiber problem indicates that the free surface effect causes a 10 percent reduction in the critical buckling strain. However, the experimentally measured reduction for fibers with an initial fiber curvature, was 35 percent.

  20. Keys to Scholarship

    ERIC Educational Resources Information Center

    Hebert, Terri

    2011-01-01

    Up ahead, a foreboding wooden door showing wear from passage of earlier travelers is spotted. As the old porch light emits a pale yellow glow, a key ring emerges from deep inside the coat pocket. Searching for just the right key, the voyager settles on one that also shows age. As the key enters its receptacle and begins to turn, a clicking noise…

  1. EAARL Submarine Topography - Northern Florida Keys Reef Tract

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Nayegandhi, Amar; Patterson, Matt; Travers, Laurinda J.; Wilson, Iris

    2007-01-01

    This Web site contains 32 Lidar-derived bare earth topography maps and GIS files for the Northern Florida Keys Reef Tract. These lidar-derived submarine topographic maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program, FISC St. Petersburg, Florida, the National Park Service (NPS) South Florida/Caribbean Network Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. One objective of this research is to create techniques to survey coral reefs and barrier islands for the purposes of geomorphic change studies, habitat mapping, ecological monitoring, change detection, and event assessment. As part of this project, data from an innovative instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Airborne Advanced Research Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring subaerial and submarine topography wthin cross-environment surveys. High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to costal resource managers.

  2. World Key Information Service System Designed For EPCOT Center

    NASA Astrophysics Data System (ADS)

    Kelsey, J. A.

    1984-03-01

    An advanced Bell Laboratories and Western Electric designed electronic information retrieval system utilizing the latest Information Age technologies, and a fiber optic transmission system is featured at the Walt Disney World Resort's newest theme park - The Experimental Prototype Community of Tomorrow (EPCOT Center). The project is an interactive audio, video and text information system that is deployed at key locations within the park. The touch sensitive terminals utilizing the ARIEL (Automatic Retrieval of Information Electronically) System is interconnected by a Western Electric designed and manufactured lightwave transmission system.

  3. Overview of C-2W Field-Reversed Configuration Experimental Program

    NASA Astrophysics Data System (ADS)

    Gota, H.; Binderbauer, M. W.; Tajima, T.; Putvinski, S.; Tuszewski, M.; Dettrick, S.; Korepanov, S.; Romero, J.; Smirnov, A.; Song, Y.; Thompson, M. C.; van Drie, A.; Yang, X.; Ivanov, A. A.; TAE Team

    2017-10-01

    Tri Alpha Energy's research has been devoted to producing a high temperature, stable, long-lived field-reversed configuration (FRC) plasma state by neutral-beam injection (NBI) and edge biasing/control. C-2U experiments have demonstrated drastic improvements in particle and energy confinement properties of FRC's, and the plasma performance obtained via 10 MW NBI has achieved plasma sustainment of up to 5 ms and plasma (diamagnetism) lifetimes of 10 + ms. The emerging confinement scaling, whereby electron energy confinement time is proportional to a positive power of the electron temperature, is very attractive for higher energy plasma confinement; accordingly, verification of the observed Te scaling law will be a key future research objective. The new experimental device, C-2W (now also called ``Norman''), has the following key subsystem upgrades from C-2U: (i) higher injected power, optimum energies, and extended pulse duration of the NBI system; (ii) installation of inner divertors with upgraded edge-biasing systems; (iii) fast external equilibrium/mirror-coil current ramp-up capability; and (iv) installation of trim/saddle coils for active feedback control of the FRC plasma. This paper will review highlights of the C-2W program.

  4. Experimental Implementation of a Quantum Optical State Comparison Amplifier

    NASA Astrophysics Data System (ADS)

    Donaldson, Ross J.; Collins, Robert J.; Eleftheriadou, Electra; Barnett, Stephen M.; Jeffers, John; Buller, Gerald S.

    2015-03-01

    We present an experimental demonstration of a practical nondeterministic quantum optical amplification scheme that employs two mature technologies, state comparison and photon subtraction, to achieve amplification of known sets of coherent states with high fidelity. The amplifier uses coherent states as a resource rather than single photons, which allows for a relatively simple light source, such as a diode laser, providing an increased rate of amplification. The amplifier is not restricted to low amplitude states. With respect to the two key parameters, fidelity and the amplified state production rate, we demonstrate significant improvements over previous experimental implementations, without the requirement of complex photonic components. Such a system may form the basis of trusted quantum repeaters in nonentanglement-based quantum communications systems with known phase alphabets, such as quantum key distribution or quantum digital signatures.

  5. Shell anomalies observed in a population of Archaias angulatus (Foraminifera) from the Florida Keys (USA) sampled in 1982-83 and 2006-07

    USGS Publications Warehouse

    Souder, H.C.; McCloskey, B.; Hallock, P.; Byrne, R.

    2010-01-01

    Archived specimens of Archaias angulatus collected live at a depth of < 2. m in John Pennekamp Coral Reef State Park, Key Largo, Florida, in June, September and December 1982, and March 1983, were compared to specimens collected live from the same site and months in 2006-07. Shells were examined using light microscopy for anomalous features, which were then documented using scanning electron microscopy. Seven different types of morphological abnormalities and five different surface texture anomalies were observed. Physical abnormalities included profoundly deformed, curled, asymmetrical, and uncoiled shells, irregular suture lines, surface protrusions, and breakage/repair. Textural anomalies observed were surface pits, dissolution features, microborings, microbial biofilms, and the presence of epibionts including bryzoans, cyanobacteria and foraminifers. The same kinds of features were found in this A. angulatus population in both 1982-83 collections and 2006-07 collections. Within-date variability was higher in specimens collected in 1982-83, while between-date variability was higher in 2006-07; overall the range of variability was similar. Given that the site was originally chosen for study because these foraminifers were so abundant, the lack of significant change indicates that the variability of the geochemical habitat is still within the range that A. angulatus can thrive. ?? 2010.

  6. Automated secured cost effective key refreshing technique to enhance WiMAX privacy key management

    NASA Astrophysics Data System (ADS)

    Sridevi, B.; Sivaranjani, S.; Rajaram, S.

    2013-01-01

    In all walks of life the way of communication is transformed by the rapid growth of wireless communication and its pervasive use. A wireless network which is fixed and richer in bandwidth is specified as IEEE 802.16, promoted and launched by an industrial forum is termed as Worldwide Interoperability for Microwave Access (WiMAX). This technology enables seamless delivery of wireless broadband service for fixed and/or mobile users. The obscurity is the long delay which occurs during the handoff management in every network. Mobile WiMAX employs an authenticated key management protocol as a part of handoff management in which the Base Station (BS) controls the distribution of keying material to the Mobile Station (MS). The protocol employed is Privacy Key Management Version 2- Extensible Authentication Protocol (PKMV2-EAP) which is responsible for the normal and periodical authorization of MSs, reauthorization as well as key refreshing. Authorization key (AK) and Traffic Encryption key (TEK) plays a vital role in key exchange. When the lifetime of key expires, MS has to request for a new key to BS which in turn leads to repetition of authorization, authentication as well as key exchange. To avoid service interruption during reauthorization , two active keys are transmitted at the same time by BS to MS. The consequences of existing work are hefty amount of bandwidth utilization, time consumption and large storage. It is also endured by Man in the Middle attack and Impersonation due to lack of security in key exchange. This paper designs an automatic mutual refreshing of keys to minimize bandwidth utilization, key storage and time consumption by proposing Previous key and Iteration based Key Refreshing Function (PKIBKRF). By integrating PKIBKRF in key generation, the simulation results indicate that 21.8% of the bandwidth and storage of keys are reduced and PKMV2 mutual authentication time is reduced by 66.67%. The proposed work is simulated with Qualnet model and

  7. Security proof of a three-state quantum-key-distribution protocol without rotational symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fung, C.-H.F.; Lo, H.-K.

    2006-10-15

    Standard security proofs of quantum-key-distribution (QKD) protocols often rely on symmetry arguments. In this paper, we prove the security of a three-state protocol that does not possess rotational symmetry. The three-state QKD protocol we consider involves three qubit states, where the first two states |0{sub z}> and |1{sub z}> can contribute to key generation, and the third state |+>=(|0{sub z}>+|1{sub z}>)/{radical}(2) is for channel estimation. This protocol has been proposed and implemented experimentally in some frequency-based QKD systems where the three states can be prepared easily. Thus, by founding on the security of this three-state protocol, we prove that thesemore » QKD schemes are, in fact, unconditionally secure against any attacks allowed by quantum mechanics. The main task in our proof is to upper bound the phase error rate of the qubits given the bit error rates observed. Unconditional security can then be proved not only for the ideal case of a single-photon source and perfect detectors, but also for the realistic case of a phase-randomized weak coherent light source and imperfect threshold detectors. Our result in the phase error rate upper bound is independent of the loss in the channel. Also, we compare the three-state protocol with the Bennett-Brassard 1984 (BB84) protocol. For the single-photon source case, our result proves that the BB84 protocol strictly tolerates a higher quantum bit error rate than the three-state protocol, while for the coherent-source case, the BB84 protocol achieves a higher key generation rate and secure distance than the three-state protocol when a decoy-state method is used.« less

  8. Provably secure and high-rate quantum key distribution with time-bin qudits

    PubMed Central

    Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton; Kim, Jungsang; Gauthier, Daniel J.

    2017-01-01

    The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. We use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. The security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system. PMID:29202028

  9. Provably secure and high-rate quantum key distribution with time-bin qudits.

    PubMed

    Islam, Nurul T; Lim, Charles Ci Wen; Cahall, Clinton; Kim, Jungsang; Gauthier, Daniel J

    2017-11-01

    The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. We use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. The security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system.

  10. Experimental and theoretical assessment of the multi-domain flow behaviour in a waste body during leachate infiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tinet, A-J., E-mail: tinet@ujf-grenoble.fr; Oxarango, L.; Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban 4041

    2011-08-15

    The optimisation of landfill operation is a key challenge for the upcoming years. A promising solution to improve municipal solid waste (MSW) management is the bioreactor technology. A meso-scale (around 1 m{sup 3}) experimental set-up was performed to study the effect of moisture control in low density conditions with different leachate injection operations and bioreactor monitoring including the use of a neutron probe. The moisture content distribution evolution demonstrates a multi-domain flow behaviour. A classic van Genuchten-Mualem description of the connected porosity proved insufficient to correctly describe the observed phenomena. A bimodal description of the connected porosity is proposed asmore » solution and a connected/non-connected porosities numerical model was applied to the results. The model explains the experimental results reasonably well.« less

  11. The challenge of spin–orbit-tuned ground states in iridates: a key issues review

    NASA Astrophysics Data System (ADS)

    Cao, Gang; Schlottmann, Pedro

    2018-04-01

    Effects of spin–orbit interactions in condensed matter are an important and rapidly evolving topic. Strong competition between spin–orbit, on-site Coulomb and crystalline electric field interactions in iridates drives exotic quantum states that are unique to this group of materials. In particular, the ‘J eff  =  ½’ Mott state served as an early signal that the combined effect of strong spin–orbit and Coulomb interactions in iridates has unique, intriguing consequences. In this Key Issues Review, we survey some current experimental studies of iridates. In essence, these materials tend to defy conventional wisdom: absence of conventional correlations between magnetic and insulating states, avoidance of metallization at high pressures, ‘S-shaped’ I–V characteristic, emergence of an odd-parity hidden order, etc. It is particularly intriguing that there exist conspicuous discrepancies between current experimental results and theoretical proposals that address superconducting, topological and quantum spin liquid phases. This class of materials, in which the lattice degrees of freedom play a critical role seldom seen in other materials, evidently presents some profound intellectual challenges that call for more investigations both experimentally and theoretically. Physical properties unique to these materials may help unlock a world of possibilities for functional materials and devices. We emphasize that, given the rapidly developing nature of this field, this Key Issues Review is by no means an exhaustive report of the current state of experimental studies of iridates.

  12. Experimental Mathematics and Mathematical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, David H.; Borwein, Jonathan M.; Broadhurst, David

    2009-06-26

    One of the most effective techniques of experimental mathematics is to compute mathematical entities such as integrals, series or limits to high precision, then attempt to recognize the resulting numerical values. Recently these techniques have been applied with great success to problems in mathematical physics. Notable among these applications are the identification of some key multi-dimensional integrals that arise in Ising theory, quantum field theory and in magnetic spin theory.

  13. Predicting Key Events in the Popularity Evolution of Online Information.

    PubMed

    Hu, Ying; Hu, Changjun; Fu, Shushen; Fang, Mingzhe; Xu, Wenwen

    2017-01-01

    The popularity of online information generally experiences a rising and falling evolution. This paper considers the "burst", "peak", and "fade" key events together as a representative summary of popularity evolution. We propose a novel prediction task-predicting when popularity undergoes these key events. It is of great importance to know when these three key events occur, because doing so helps recommendation systems, online marketing, and containment of rumors. However, it is very challenging to solve this new prediction task due to two issues. First, popularity evolution has high variation and can follow various patterns, so how can we identify "burst", "peak", and "fade" in different patterns of popularity evolution? Second, these events usually occur in a very short time, so how can we accurately yet promptly predict them? In this paper we address these two issues. To handle the first one, we use a simple moving average to smooth variation, and then a universal method is presented for different patterns to identify the key events in popularity evolution. To deal with the second one, we extract different types of features that may have an impact on the key events, and then a correlation analysis is conducted in the feature selection step to remove irrelevant and redundant features. The remaining features are used to train a machine learning model. The feature selection step improves prediction accuracy, and in order to emphasize prediction promptness, we design a new evaluation metric which considers both accuracy and promptness to evaluate our prediction task. Experimental and comparative results show the superiority of our prediction solution.

  14. Experimental research on the dynamic behaviors of the keyhole and molten pool in laser deep-penetration welding

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Lin, Qida; Yin, Xuni; Li, Simeng; Deng, Jiquan

    2018-04-01

    Both the morphology and temperature are two important characteristics of the keyhole and the molten pool in laser deep-penetration welding. The modified ‘sandwich’ method was adopted to overcome the difficulty in obtaining inner information about the keyhole and the molten pool. Based on this method, experimental platforms were built for observing the variations in the surface morphology, the longitudinal keyhole profile and the internal temperature. The experimental results of three dynamic behaviors exbibit as follows. The key factor, which makes the pool width go into a quasi-steady state, lies in the balance between the vortex and the sideways flows around the keyhole. Experimental observation shows that the keyhole goes through three stages in laser welding: the rapid drilling stage, the slow drilling stage and the quasi-steady state. The time for achieving a relative fixed keyhole depth is close to the formation time of the maximum pool width. The internal temperatures inside the keyhole and the molten pool first experience a rapid increase, then a decrease and finally go into a quasi-steady state. Compared to that in the unstable stage, the liquid–metal uphill formed in the stable stage of laser welding has less influence on the internal temperature.

  15. Core analysis of heterogeneous rocks using experimental observations and digital whole core simulation

    NASA Astrophysics Data System (ADS)

    Jackson, S. J.; Krevor, S. C.; Agada, S.

    2017-12-01

    A number of studies have demonstrated the prevalent impact that small-scale rock heterogeneity can have on larger scale flow in multiphase flow systems including petroleum production and CO2sequestration. Larger scale modeling has shown that this has a significant impact on fluid flow and is possibly a significant source of inaccuracy in reservoir simulation. Yet no core analysis protocol has been developed that faithfully represents the impact of these heterogeneities on flow functions used in modeling. Relative permeability is derived from core floods performed at conditions with high flow potential in which the impact of capillary heterogeneity is voided. A more accurate representation would be obtained if measurements were made at flow conditions where the impact of capillary heterogeneity on flow is scaled to be representative of the reservoir system. This, however, is generally impractical due to laboratory constraints and the role of the orientation of the rock heterogeneity. We demonstrate a workflow of combined observations and simulations, in which the impact of capillary heterogeneity may be faithfully represented in the derivation of upscaled flow properties. Laboratory measurements that are a variation of conventional protocols are used for the parameterization of an accurate digital rock model for simulation. The relative permeability at the range of capillary numbers relevant to flow in the reservoir is derived primarily from numerical simulations of core floods that include capillary pressure heterogeneity. This allows flexibility in the orientation of the heterogeneity and in the range of flow rates considered. We demonstrate the approach in which digital rock models have been developed alongside core flood observations for three applications: (1) A Bentheimer sandstone with a simple axial heterogeneity to demonstrate the validity and limitations of the approach, (2) a set of reservoir rocks from the Captain sandstone in the UK North Sea targeted

  16. Experimental Observations of Multiscale Dynamics of Viscous Fluid Behavior: Implications in Volcanic Systems

    NASA Astrophysics Data System (ADS)

    Arciniega-Ceballos, A.; Spina, L.; Scheu, B.; Dingwell, D. B.

    2015-12-01

    We have investigated the dynamics of Newtonian fluids with viscosities (10-1000 Pa s; corresponding to mafic to intermediate silicate melts) during slow decompression, in a Plexiglas shock tube. As an analogue fluid we used silicon oil saturated with Argon gas for 72 hours. Slow decompression, dropping from 10 MPa to ambient pressure, acts as the excitation mechanism, initiating several processes with their own distinct timescales. The evolution of this multi-timescale phenomenon generates complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit. Correlation analysis of these time series with the associated high-speed imaging enables characterization of distinct phases of the dynamics of these viscous fluids and the extraction of the time and the frequency characteristics of the individual processes. We have identified fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution in space. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the system. Our observations point to the great potential of this experimental approach in the understanding of volcanic processes and volcanic seismicity.

  17. Distributed Factorization Computation on Multiple Volunteered Mobile Resource to Break RSA Key

    NASA Astrophysics Data System (ADS)

    Jaya, I.; Hardi, S. M.; Tarigan, J. T.; Zamzami, E. M.; Sihombing, P.

    2017-01-01

    Similar to common asymmeric encryption, RSA can be cracked by usmg a series mathematical calculation. The private key used to decrypt the massage can be computed using the public key. However, finding the private key may require a massive amount of calculation. In this paper, we propose a method to perform a distributed computing to calculate RSA’s private key. The proposed method uses multiple volunteered mobile devices to contribute during the calculation process. Our objective is to demonstrate how the use of volunteered computing on mobile devices may be a feasible option to reduce the time required to break a weak RSA encryption and observe the behavior and running time of the application on mobile devices.

  18. Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review

    PubMed Central

    2011-01-01

    Nanofluids, i.e., well-dispersed (metallic) nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity, knf, over the base-fluid values. Thus, they are potentially useful for advanced cooling of micro-systems. Focusing mainly on dilute suspensions of well-dispersed spherical nanoparticles in water or ethylene glycol, recent experimental observations, associated measurement techniques, and new theories as well as useful correlations have been reviewed. It is evident that key questions still linger concerning the best nanoparticle-and-liquid pairing and conditioning, reliable measurements of achievable knf values, and easy-to-use, physically sound computer models which fully describe the particle dynamics and heat transfer of nanofluids. At present, experimental data and measurement methods are lacking consistency. In fact, debates on whether the anomalous enhancement is real or not endure, as well as discussions on what are repeatable correlations between knf and temperature, nanoparticle size/shape, and aggregation state. Clearly, benchmark experiments are needed, using the same nanofluids subject to different measurement methods. Such outcomes would validate new, minimally intrusive techniques and verify the reproducibility of experimental results. Dynamic knf models, assuming non-interacting metallic nano-spheres, postulate an enhancement above the classical Maxwell theory and thereby provide potentially additional physical insight. Clearly, it will be necessary to consider not only one possible mechanism but combine several mechanisms and compare predictive results to new benchmark experimental data sets. PMID:21711739

  19. Experimental statistics for biological sciences.

    PubMed

    Bang, Heejung; Davidian, Marie

    2010-01-01

    In this chapter, we cover basic and fundamental principles and methods in statistics - from "What are Data and Statistics?" to "ANOVA and linear regression," which are the basis of any statistical thinking and undertaking. Readers can easily find the selected topics in most introductory statistics textbooks, but we have tried to assemble and structure them in a succinct and reader-friendly manner in a stand-alone chapter. This text has long been used in real classroom settings for both undergraduate and graduate students who do or do not major in statistical sciences. We hope that from this chapter, readers would understand the key statistical concepts and terminologies, how to design a study (experimental or observational), how to analyze the data (e.g., describe the data and/or estimate the parameter(s) and make inference), and how to interpret the results. This text would be most useful if it is used as a supplemental material, while the readers take their own statistical courses or it would serve as a great reference text associated with a manual for any statistical software as a self-teaching guide.

  20. Improved key-rate bounds for practical decoy-state quantum-key-distribution systems

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Zhao, Qi; Razavi, Mohsen; Ma, Xiongfeng

    2017-01-01

    The decoy-state scheme is the most widely implemented quantum-key-distribution protocol in practice. In order to account for the finite-size key effects on the achievable secret key generation rate, a rigorous statistical fluctuation analysis is required. Originally, a heuristic Gaussian-approximation technique was used for this purpose, which, despite its analytical convenience, was not sufficiently rigorous. The fluctuation analysis has recently been made rigorous by using the Chernoff bound. There is a considerable gap, however, between the key-rate bounds obtained from these techniques and that obtained from the Gaussian assumption. Here we develop a tighter bound for the decoy-state method, which yields a smaller failure probability. This improvement results in a higher key rate and increases the maximum distance over which secure key exchange is possible. By optimizing the system parameters, our simulation results show that our method almost closes the gap between the two previously proposed techniques and achieves a performance similar to that of conventional Gaussian approximations.

  1. Key Elements of Observing Practice: A Data Wise DVD and Facilitator's Guide

    ERIC Educational Resources Information Center

    Boudett, Kathryn Parker; City, Elizabeth A.; Russell, Marcia K.

    2010-01-01

    Based on the bestselling book "Data Wise: A Step-by-Step Guide to Using Assessment Results to Improve Teaching and Learning", and its companion volume, "Data Wise in Action", this DVD and Facilitator's Guide offer insight into one of the most challenging steps in capturing data about school performance: observing and analyzing instructional…

  2. Decoy-state quantum key distribution with polarized photons over 200 km.

    PubMed

    Liu, Yang; Chen, Teng-Yun; Wang, Jian; Cai, Wen-Qi; Wan, Xu; Chen, Luo-Kan; Wang, Jin-Hong; Liu, Shu-Bin; Liang, Hao; Yang, Lin; Peng, Cheng-Zhi; Chen, Kai; Chen, Zeng-Bing; Pan, Jian-Wei

    2010-04-12

    We report an implementation of decoy-state quantum key distribution (QKD) over 200 km optical fiber cable through photon polarization encoding. This is achieved by constructing the whole QKD system operating at 320 MHz repetition rate, and developing high-speed transmitter and receiver modules. A novel and economic way of synchronization method is designed and incorporated into the system, which allows to work at a low frequency of 40kHz and removes the use of highly precise clock. A final key rate of 15 Hz is distributed within the experimental time of 3089 seconds, by using super-conducting single photon detectors. This is longest decoy-state QKD yet demonstrated up to date. It helps to make a significant step towards practical secure communication in long-distance scope.

  3. The effects of profound hypothermia on pancreas ischemic injury: a new experimental model.

    PubMed

    Rocha-Santos, Vinicius; Ferro, Oscar Cavalcante; Pantanali, Carlos Andrés; Seixas, Marcel Povlovistsch; Pecora, Rafael Antonio Arruda; Pinheiro, Rafael Soares; Claro, Laura Carolina López; Abdo, Emílio Elias; Chaib, Eleazar; D'Albuquerque, Luiz Augusto Carneiro

    2014-08-01

    Pancreatic ischemia-reperfusion (IR) has a key role in pancreas surgery and transplantation. Most experimental models evaluate the normothermic phase of the IR. We proposed a hypothermic model of pancreas IR to evaluate the benefic effects of the cold ischemic phase. We performed a reproducible model of hypothermic pancreatic IR. The ischemia was induced in the pancreatic tail portion (1-hour ischemia, 4-hour reperfusion) in 36 Wistar rats. They are divided in 3 groups as follows: group 1 (control), sham; group 2, normothermic IR; and group 3, hypothermic IR. In group 3, the temperature was maintained as close to 4.5°C. After reperfusion, serum amylase and lipase levels, inflammatory mediators (tumor necrosis factor α, interleukin 6), and pancreas histology were evaluated. In pancreatic IR groups, amylase, cytokines, and histological damage were significantly increased when compared with group 1. In the group 3, we observed a significant decrease in tumor necrosis factor α (P = 0.004) and interleukin 6 (P = 0.001) when compared with group 2. We did not observe significant difference in amylase (P = 0.867), lipase (P = 0.993), and histology (P = 0.201). In our experimental model, we reproduced the cold phase of pancreas IR, and the pancreas hypothermia reduced the inflammatory mediators after reperfusion.

  4. Observing Teaching. SEDA Paper 79.

    ERIC Educational Resources Information Center

    Brown, Sally, Ed.; And Others

    This publication offers practical support to those in British higher education implementing the Observation of Teaching governmental directives. It provides discussion of key issues as well as a range of materials on how to carry out teaching observation including 23 checklists. The materials are grouped in four main areas: general issues, self…

  5. Matrilineal inheritance of a key mediator of prenatal maternal effects

    PubMed Central

    Ziegler, Ann-Kathrin; Pick, Joel L.; Okuliarová, Monika; Zeman, Michal

    2016-01-01

    Sex-linkage is predicted to evolve in response to sex-specific or sexually antagonistic selection. In line with this prediction, most sex-linked genes are associated with reproduction in the respective sex. In addition to traits directly involved in fertility and fecundity, mediators of maternal effects may be predisposed to evolve sex-linkage, because they indirectly affect female fitness through their effect on offspring phenotype. Here, we test for sex-linked inheritance of a key mediator of prenatal maternal effects in oviparous species, the transfer of maternally derived testosterone to the eggs. Consistent with maternal inheritance, we found that in Japanese quail (Coturnix japonica) granddaughters resemble their maternal (but not their paternal) grandmother in yolk testosterone deposition. This pattern of resemblance was not due to non-genetic priming effects of testosterone exposure during prenatal development, as an experimental manipulation of yolk testosterone levels did not affect the females' testosterone transfer to their own eggs later in life. Instead, W chromosome and/or mitochondrial variation may underlie the observed matrilineal inheritance pattern. Ultimately, the inheritance of mediators of maternal effects along the maternal line will allow for a fast and direct response to female-specific selection, thereby affecting the dynamics of evolutionary processes mediated by maternal effects. PMID:27629040

  6. Optimization of Polyplex Formation between DNA Oligonucleotide and Poly(ʟ-Lysine): Experimental Study and Modeling Approach.

    PubMed

    Vasiliu, Tudor; Cojocaru, Corneliu; Rotaru, Alexandru; Pricope, Gabriela; Pinteala, Mariana; Clima, Lilia

    2017-06-17

    The polyplexes formed by nucleic acids and polycations have received a great attention owing to their potential application in gene therapy. In our study, we report experimental results and modeling outcomes regarding the optimization of polyplex formation between the double-stranded DNA (dsDNA) and poly(ʟ-Lysine) (PLL). The quantification of the binding efficiency during polyplex formation was performed by processing of the images captured from the gel electrophoresis assays. The design of experiments (DoE) and response surface methodology (RSM) were employed to investigate the coupling effect of key factors (pH and N/P ratio) affecting the binding efficiency. According to the experimental observations and response surface analysis, the N/P ratio showed a major influence on binding efficiency compared to pH. Model-based optimization calculations along with the experimental confirmation runs unveiled the maximal binding efficiency (99.4%) achieved at pH 5.4 and N/P ratio 125. To support the experimental data and reveal insights of molecular mechanism responsible for the polyplex formation between dsDNA and PLL, molecular dynamics simulations were performed at pH 5.4 and 7.4.

  7. Optimization of Polyplex Formation between DNA Oligonucleotide and Poly(l-Lysine): Experimental Study and Modeling Approach

    PubMed Central

    Vasiliu, Tudor; Cojocaru, Corneliu; Rotaru, Alexandru; Pricope, Gabriela; Pinteala, Mariana; Clima, Lilia

    2017-01-01

    The polyplexes formed by nucleic acids and polycations have received a great attention owing to their potential application in gene therapy. In our study, we report experimental results and modeling outcomes regarding the optimization of polyplex formation between the double-stranded DNA (dsDNA) and poly(l-Lysine) (PLL). The quantification of the binding efficiency during polyplex formation was performed by processing of the images captured from the gel electrophoresis assays. The design of experiments (DoE) and response surface methodology (RSM) were employed to investigate the coupling effect of key factors (pH and N/P ratio) affecting the binding efficiency. According to the experimental observations and response surface analysis, the N/P ratio showed a major influence on binding efficiency compared to pH. Model-based optimization calculations along with the experimental confirmation runs unveiled the maximal binding efficiency (99.4%) achieved at pH 5.4 and N/P ratio 125. To support the experimental data and reveal insights of molecular mechanism responsible for the polyplex formation between dsDNA and PLL, molecular dynamics simulations were performed at pH 5.4 and 7.4. PMID:28629130

  8. Nanoparticles in Medicine: Selected Observations and Experimental Caveats.

    PubMed

    Thomsen, Sharon; Pearce, John A; Giustini, Andrew; Hoopes, P Jack

    2013-02-26

    Medically useful nanoparticles measure 1-100 nm in at least one dimension and are engineered and manufactured for specific diagnostic and treatment applications. Most nanoparticles used currently used in medicine are engineered and manufactured for specific purposes. Medically significant nanoparticles are composed of a 1) central core that is usually the medically active component, 2) one or more layers of organic or inorganic materials that forms a capsule (corona) covering the core and 3) an outer surface layer that interacts with the environment and/or targeted cells and tissues. Effective nanoparticle function in the living, intact animal or human requires electrochemical stability necessary to bypass the reticuloendothelial system (RES) and avoid filtration through the renal glomerulus into the urine. Nanoparticles are present in "natural" as well as the manufacturing and clinical environments thus could pose as significant toxins because of their small sizes, their chemical and drug content and potential effect of causing long term disease including allergies, chronic inflammation and cancer. Currently published studies have focused on the effects of nanoparticles on cells in the extremely artificial environments of cell cultures. More clinical and preclinical studies documenting the short term and long term effects nanoparticle in the intact experimental animal and human are needed.

  9. Nanoparticles in Medicine: Selected Observations and Experimental Caveats

    PubMed Central

    Thomsen, Sharon; Pearce, John A.; Giustini, Andrew; Hoopes, P. Jack

    2014-01-01

    Medically useful nanoparticles measure 1-100 nm in at least one dimension and are engineered and manufactured for specific diagnostic and treatment applications. Most nanoparticles used currently used in medicine are engineered and manufactured for specific purposes. Medically significant nanoparticles are composed of a 1) central core that is usually the medically active component, 2) one or more layers of organic or inorganic materials that forms a capsule (corona) covering the core and 3) an outer surface layer that interacts with the environment and/or targeted cells and tissues. Effective nanoparticle function in the living, intact animal or human requires electrochemical stability necessary to bypass the reticuloendothelial system (RES) and avoid filtration through the renal glomerulus into the urine. Nanoparticles are present in “natural” as well as the manufacturing and clinical environments thus could pose as significant toxins because of their small sizes, their chemical and drug content and potential effect of causing long term disease including allergies, chronic inflammation and cancer. Currently published studies have focused on the effects of nanoparticles on cells in the extremely artificial environments of cell cultures. More clinical and preclinical studies documenting the short term and long term effects nanoparticle in the intact experimental animal and human are needed. PMID:25301992

  10. Nanoparticles in medicine: selected observations and experimental caveats

    NASA Astrophysics Data System (ADS)

    Thomsen, Sharon; Pearce, John A.; Giustini, Andrew; Hoopes, P. Jack

    2013-02-01

    Medically useful nanoparticles measure 1-100 nm in at least one dimension and are engineered and manufactured for specific diagnostic and treatment applications. Most nanoparticles used currently used in medicine are engineered and manufactured for specific purposes. Medically significant nanoparticles are composed of a 1) central core that is usually the medically active component, 2) one or more layers of organic or inorganic materials that forms a capsule (corona) covering the core and 3) an outer surface layer that interacts with the environment and/or targeted cells and tissues. Effective nanoparticle function in the living, intact animal or human requires electrochemical stability necessary to bypass the reticuloendothelial system (RES) and avoid filtration through the renal glomerulus into the urine. Nanoparticles are present in " natural" as well as the manufacturing and clinical environments thus could pose as significant toxins because of their small sizes, their chemical and drug content and potential effect of causing long term disease including allergies, chronic inflammation and cancer. Currently published studies have focused on the effects of nanoparticles on cells in the extremely artificial environments of cell cultures. More clinical and preclinical studies documenting the short term and long term effects nanoparticle in the intact experimental animal and human are needed.

  11. Experimental observations on noble metal nanonuggets and Fe-Ti oxides, and the transport of platinum group elements in silicate melts

    NASA Astrophysics Data System (ADS)

    Anenburg, Michael; Mavrogenes, John A.

    2016-11-01

    Platinum group element (PGE) nanonuggets are a nuisance in experimental studies designed to measure solubility or partitioning of noble metals in silicate melts. Instead of treating nanonuggets as experimental artifacts, we studied their behaviour motivated by recent discoveries of PGE nanonuggets in a variety of natural settings. We used an experimental setup consisting of AgPd, Pt or AuPd capsules and Fe(-Ti) oxide-saturated hydrous peralkaline silicate melts to maximise nanonugget production. TABS (Te, As, Bi, Sb, Sn) commonly occur in PGM (platinum group minerals), prompting addition of Bi to our experiments to investigate its properties as well. Three-dimensional optical examination by 100× objective and immersion oil reveals variable colour which correlates with nanonugget size and shape due to plasmon resonance effects. We observe two textural types: (1) intermediate-sized nanonuggets dispersed in the glass and adhering to oxides, and (2) abundant fine nanonuggets dispersed in the glass with coarse euhedral crystals in contact with oxides. Slow cooling removes dispersed nanonuggets and greatly coarsens existing oxide-associated metal crystals. Nanonugget-free halos are commonly observed around oxide grains. All metal phases are composed of major (Ag, Pd) and trace (Pt, Ir, Au) capsule material. Our results show reduction processes, imposed by growing oxides, causing local metal saturation in the oxide rich zones with preferential nucleation on smaller oxide grains. The redox gradient then blocks additional metals from diffusing into oxide rich zones, forming halos. As the entire experimental charge is reduced throughout the run, nanonuggets form in the distal glass. Bismuth contents of metal phases do not depend on Bi2O3 amounts dissolved in the melt. Further PGM crystallisation consumes nanonuggets as feedstock. We conclude that the appearance of metallic PGE phases happens in two stages: first as nanonuggets and then as larger PGM. Once formed

  12. Mesoscale Circulation Variability from Five years of Quasi-continuous Glider Observations and Numerical Simulation at a Key Sub-basin 'Choke' Point.

    NASA Astrophysics Data System (ADS)

    Heslop, E. E.; Mourre, B.; Juza, M.; Troupin, C.; Escudier, R.; Torner, M.; Tintore, J.

    2016-02-01

    Quasi-continuous glider observations over 5 years have uniquely characterised a high frequency variability in the circulation through the Ibiza Channel, an important `choke' point in the Western Mediterranean Sea. This `choke' point governs the basin/sub-basin scale circulation and the north/south exchanges of different water masses. The resulting multi-scale variability impacts the regional shelf and open ocean ecosystems, including the spawning grounds of Atlantic bluefin tuna. Through the unique glider record we show the relevance of the weekly/mesoscale variability, which is of same order as the previously established seasonal and inter-annual variability. To understand the drivers of this variability we combine the glider data with numerical simulations (WMOP) and altimetry. Two key drivers are identified; extreme winter events, which cause the formation of a cold winter mode water (Winter Intermediate Water) in the shelf areas to the north of the Ibiza Channel, and mesoscale activity, which to the north produce channel `blocking' eddies and to the south intermittent and vigorous flows of fresher `Atlantic' waters through the Ibiza Channel. Results from the 2 km resolution WMOP are compared with the high-resolution (2 - 3 km.) glider data, giving insight into model validation across different scales, for both circulation and water masses. There is an emerging consensus that gliders can uniquely access critical time and length scales and in this study gliders complement existing satellite measurements and models, while opening up new capabilities for multidisciplinary, autonomous and high-resolution ocean observation.

  13. Key Generation for Fast Inversion of the Paillier Encryption Function

    NASA Astrophysics Data System (ADS)

    Hirano, Takato; Tanaka, Keisuke

    We study fast inversion of the Paillier encryption function. Especially, we focus only on key generation, and do not modify the Paillier encryption function. We propose three key generation algorithms based on the speeding-up techniques for the RSA encryption function. By using our algorithms, the size of the private CRT exponent is half of that of Paillier-CRT. The first algorithm employs the extended Euclidean algorithm. The second algorithm employs factoring algorithms, and can construct the private CRT exponent with low Hamming weight. The third algorithm is a variant of the second one, and has some advantage such as compression of the private CRT exponent and no requirement for factoring algorithms. We also propose the settings of the parameters for these algorithms and analyze the security of the Paillier encryption function by these algorithms against known attacks. Finally, we give experimental results of our algorithms.

  14. LabKey Server: an open source platform for scientific data integration, analysis and collaboration.

    PubMed

    Nelson, Elizabeth K; Piehler, Britt; Eckels, Josh; Rauch, Adam; Bellew, Matthew; Hussey, Peter; Ramsay, Sarah; Nathe, Cory; Lum, Karl; Krouse, Kevin; Stearns, David; Connolly, Brian; Skillman, Tom; Igra, Mark

    2011-03-09

    Broad-based collaborations are becoming increasingly common among disease researchers. For example, the Global HIV Enterprise has united cross-disciplinary consortia to speed progress towards HIV vaccines through coordinated research across the boundaries of institutions, continents and specialties. New, end-to-end software tools for data and specimen management are necessary to achieve the ambitious goals of such alliances. These tools must enable researchers to organize and integrate heterogeneous data early in the discovery process, standardize processes, gain new insights into pooled data and collaborate securely. To meet these needs, we enhanced the LabKey Server platform, formerly known as CPAS. This freely available, open source software is maintained by professional engineers who use commercially proven practices for software development and maintenance. Recent enhancements support: (i) Submitting specimens requests across collaborating organizations (ii) Graphically defining new experimental data types, metadata and wizards for data collection (iii) Transitioning experimental results from a multiplicity of spreadsheets to custom tables in a shared database (iv) Securely organizing, integrating, analyzing, visualizing and sharing diverse data types, from clinical records to specimens to complex assays (v) Interacting dynamically with external data sources (vi) Tracking study participants and cohorts over time (vii) Developing custom interfaces using client libraries (viii) Authoring custom visualizations in a built-in R scripting environment. Diverse research organizations have adopted and adapted LabKey Server, including consortia within the Global HIV Enterprise. Atlas is an installation of LabKey Server that has been tailored to serve these consortia. It is in production use and demonstrates the core capabilities of LabKey Server. Atlas now has over 2,800 active user accounts originating from approximately 36 countries and 350 organizations. It tracks

  15. LabKey Server: An open source platform for scientific data integration, analysis and collaboration

    PubMed Central

    2011-01-01

    Background Broad-based collaborations are becoming increasingly common among disease researchers. For example, the Global HIV Enterprise has united cross-disciplinary consortia to speed progress towards HIV vaccines through coordinated research across the boundaries of institutions, continents and specialties. New, end-to-end software tools for data and specimen management are necessary to achieve the ambitious goals of such alliances. These tools must enable researchers to organize and integrate heterogeneous data early in the discovery process, standardize processes, gain new insights into pooled data and collaborate securely. Results To meet these needs, we enhanced the LabKey Server platform, formerly known as CPAS. This freely available, open source software is maintained by professional engineers who use commercially proven practices for software development and maintenance. Recent enhancements support: (i) Submitting specimens requests across collaborating organizations (ii) Graphically defining new experimental data types, metadata and wizards for data collection (iii) Transitioning experimental results from a multiplicity of spreadsheets to custom tables in a shared database (iv) Securely organizing, integrating, analyzing, visualizing and sharing diverse data types, from clinical records to specimens to complex assays (v) Interacting dynamically with external data sources (vi) Tracking study participants and cohorts over time (vii) Developing custom interfaces using client libraries (viii) Authoring custom visualizations in a built-in R scripting environment. Diverse research organizations have adopted and adapted LabKey Server, including consortia within the Global HIV Enterprise. Atlas is an installation of LabKey Server that has been tailored to serve these consortia. It is in production use and demonstrates the core capabilities of LabKey Server. Atlas now has over 2,800 active user accounts originating from approximately 36 countries and 350

  16. Research Methods in Healthcare Epidemiology and Antimicrobial Stewardship-Quasi-Experimental Designs.

    PubMed

    Schweizer, Marin L; Braun, Barbara I; Milstone, Aaron M

    2016-10-01

    Quasi-experimental studies evaluate the association between an intervention and an outcome using experiments in which the intervention is not randomly assigned. Quasi-experimental studies are often used to evaluate rapid responses to outbreaks or other patient safety problems requiring prompt, nonrandomized interventions. Quasi-experimental studies can be categorized into 3 major types: interrupted time-series designs, designs with control groups, and designs without control groups. This methods paper highlights key considerations for quasi-experimental studies in healthcare epidemiology and antimicrobial stewardship, including study design and analytic approaches to avoid selection bias and other common pitfalls of quasi-experimental studies. Infect Control Hosp Epidemiol 2016;1-6.

  17. Experimental design for evaluating WWTP data by linear mass balances.

    PubMed

    Le, Quan H; Verheijen, Peter J T; van Loosdrecht, Mark C M; Volcke, Eveline I P

    2018-05-15

    A stepwise experimental design procedure to obtain reliable data from wastewater treatment plants (WWTPs) was developed. The proposed procedure aims at determining sets of additional measurements (besides available ones) that guarantee the identifiability of key process variables, which means that their value can be calculated from other, measured variables, based on available constraints in the form of linear mass balances. Among all solutions, i.e. all possible sets of additional measurements allowing the identifiability of all key process variables, the optimal solutions were found taking into account two objectives, namely the accuracy of the identified key variables and the cost of additional measurements. The results of this multi-objective optimization problem were represented in a Pareto-optimal front. The presented procedure was applied to a full-scale WWTP. Detailed analysis of the relation between measurements allowed the determination of groups of overlapping mass balances. Adding measured variables could only serve in identifying key variables that appear in the same group of mass balances. Besides, the application of the experimental design procedure to these individual groups significantly reduced the computational effort in evaluating available measurements and planning additional monitoring campaigns. The proposed procedure is straightforward and can be applied to other WWTPs with or without prior data collection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Evaluation of the durability of 3D printed keys produced by computational processing of image data

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy; Kerlin, Scott

    2016-05-01

    Possession of a working 3D printed key can, for most practical purposes, convince observers that an illicit attempt to gain premises access is authorized. This paper seeks to assess three things. First, work has been performed to determine how easily the data for making models of keys can be obtained through manual measurement. It then presents work done to create a model of the key and determine how easy key modeling could be (particularly after a first key of a given key `blank' has been made). Finally, it seeks to assess the durability of the keys produced using 3D printing.

  19. Effects of experimental protocol on global vegetation model accuracy: a comparison of simulated and observed vegetation patterns for Asia

    USGS Publications Warehouse

    Tang, Guoping; Shafer, Sarah L.; Barlein, Patrick J.; Holman, Justin O.

    2009-01-01

    Prognostic vegetation models have been widely used to study the interactions between environmental change and biological systems. This study examines the sensitivity of vegetation model simulations to: (i) the selection of input climatologies representing different time periods and their associated atmospheric CO2 concentrations, (ii) the choice of observed vegetation data for evaluating the model results, and (iii) the methods used to compare simulated and observed vegetation. We use vegetation simulated for Asia by the equilibrium vegetation model BIOME4 as a typical example of vegetation model output. BIOME4 was run using 19 different climatologies and their associated atmospheric CO2 concentrations. The Kappa statistic, Fuzzy Kappa statistic and a newly developed map-comparison method, the Nomad index, were used to quantify the agreement between the biomes simulated under each scenario and the observed vegetation from three different global land- and tree-cover data sets: the global Potential Natural Vegetation data set (PNV), the Global Land Cover Characteristics data set (GLCC), and the Global Land Cover Facility data set (GLCF). The results indicate that the 30-year mean climatology (and its associated atmospheric CO2 concentration) for the time period immediately preceding the collection date of the observed vegetation data produce the most accurate vegetation simulations when compared with all three observed vegetation data sets. The study also indicates that the BIOME4-simulated vegetation for Asia more closely matches the PNV data than the other two observed vegetation data sets. Given the same observed data, the accuracy assessments of the BIOME4 simulations made using the Kappa, Fuzzy Kappa and Nomad index map-comparison methods agree well when the compared vegetation types consist of a large number of spatially continuous grid cells. The results of this analysis can assist model users in designing experimental protocols for simulating vegetation.

  20. Asymmetry in ecosystem responses to precipitation: Theory, observation and experimentation

    NASA Astrophysics Data System (ADS)

    Sala, O.; Gherardi, L.; Reichmann, L.; Peters, D.

    2017-12-01

    Ecosystem processes such as primary production respond to changes in precipitation that occur annually and at longer time scales. The questions guiding this presentation are whether ecosystem responses to wet and dry years are symmetrical. Is the increase in productivity in a wet year similar in absolute value to the decrease in productivity in a dry year following a wet year? Is the response to one dry or wet year similar tot response of several consecutive wet and dry years? Do all plant-functional groups respond in a similar way to changes in precipitation? To address the questions we explore the theory behind a potential asymmetry and report on experimental results. Analysis of the cost and benefits of plant responses to changes in precipitation support the idea asymmetrical responses because the threshold for abscising organs that have already been deployed should be higher than the threshold to deploy new organs. However, experiments in a desert grassland in New Mexico where we experimentally increased and decreased precipitation from one year to the next showed that the response was symmetrical. Another mechanism that may yield asymmetries is the productivity response to changes in precipitation is associated with the shape of the relationship between precipitation and productivity. Straight-line relationship may yield no asymmetries whereas a saturating or concave up relationship may result in different asymmetries. Here, we report results from an experiment that yielded concave down responses for grasses and concave up for shrubs. Finally, we report results from a 10-year experiment showing asymmetric responses of grasses and shrubs. Moreover, the magnitude of the sign of the responses changed with the time since the beginning of the precipitation manipulation.

  1. Chronic stress induced disruption of the peri-infarct neurovascular unit following experimentally induced photothrombotic stroke.

    PubMed

    Zhao, Zidan; Ong, Lin Kooi; Johnson, Sarah; Nilsson, Michael; Walker, Frederick R

    2017-12-01

    How stress influences brain repair is an issue of considerable importance, as patients recovering from stroke are known to experience high and often unremitting levels of stress post-event. In the current study, we investigated how chronic stress modified the key cellular components of the neurovascular unit. Using an experimental model of focal cortical ischemia in male C57BL/6 mice, we examined how exposure to a persistently aversive environment, induced by the application of chronic restraint stress, altered the cortical remodeling post-stroke. We focused on systematically investigating changes in the key components of the neurovascular unit (i.e. neurons, microglia, astrocytes, and blood vessels) within the peri-infarct territories using both immunohistochemistry and Western blotting. The results from our study indicated that exposure to chronic stress exerted a significant suppressive effect on each of the key cellular components involved in neurovascular remodeling. Co-incident with these cellular changes, we observed that chronic stress was associated with an exacerbation of motor impairment 42 days post-event. Collectively, these results highlight the vulnerability of the peri-infarct neurovascular unit to the negative effects of chronic stress.

  2. Experimental determination of entanglement with a single measurement.

    PubMed

    Walborn, S P; Souto Ribeiro, P H; Davidovich, L; Mintert, F; Buchleitner, A

    2006-04-20

    Nearly all protocols requiring shared quantum information--such as quantum teleportation or key distribution--rely on entanglement between distant parties. However, entanglement is difficult to characterize experimentally. All existing techniques for doing so, including entanglement witnesses or Bell inequalities, disclose the entanglement of some quantum states but fail for other states; therefore, they cannot provide satisfactory results in general. Such methods are fundamentally different from entanglement measures that, by definition, quantify the amount of entanglement in any state. However, these measures suffer from the severe disadvantage that they typically are not directly accessible in laboratory experiments. Here we report a linear optics experiment in which we directly observe a pure-state entanglement measure, namely concurrence. Our measurement set-up includes two copies of a quantum state: these 'twin' states are prepared in the polarization and momentum degrees of freedom of two photons, and concurrence is measured with a single, local measurement on just one of the photons.

  3. Public Key Cryptography.

    ERIC Educational Resources Information Center

    Tapson, Frank

    1996-01-01

    Describes public key cryptography, also known as RSA, which is a system using two keys, one used to put a message into cipher and another used to decipher the message. Presents examples using small prime numbers. (MKR)

  4. Experimental Demonstration of Counterfactual Quantum Communication

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Ju, Lei; Liang, Xiao-Lei; Tang, Shi-Biao; Tu, Guo-Liang Shen; Zhou, Lei; Peng, Cheng-Zhi; Chen, Kai; Chen, Teng-Yun; Chen, Zeng-Bing; Pan, Jian-Wei

    2012-07-01

    Quantum effects, besides offering substantial superiority in many tasks over classical methods, are also expected to provide interesting ways to establish secret keys between remote parties. A striking scheme called “counterfactual quantum cryptography” proposed by Noh [Phys. Rev. Lett. 103, 230501 (2009).PRLTAO0031-900710.1103/PhysRevLett.103.230501] allows one to maintain secure key distributions, in which particles carrying secret information are seemingly not being transmitted through quantum channels. We have experimentally demonstrated, for the first time, a faithful implementation for such a scheme with an on-table realization operating at telecom wavelengths. To verify its feasibility for extension over a long distance, we have furthermore reported an illustration on a 1 km fiber. In both cases, high visibilities of more than 98% are achieved through active stabilization of interferometers. Our demonstration is crucial as a direct verification of such a remarkable application, and this procedure can become a key communication module for revealing fundamental physics through counterfactuals.

  5. Experimental observations on the decay of environmental DNA from bighead and silver carps

    USGS Publications Warehouse

    Lance, Richard F.; Klymus, Katy E.; Richter, Cathy; Guan, Xin; Farrington, Heather L.; Carr, Matthew R.; Thompson, Nathan; Chapman, Duane C.; Baerwaldt, Kelly L.

    2017-01-01

    Interest in the field of environmental DNA (eDNA) is growing rapidly and eDNA surveys are becoming an important consideration for aquatic resource managers dealing with invasive species. However, in order for eDNA monitoring to mature as a research and management tool, there are several critical knowledge gaps that must be filled. One such gap is the fate of eDNA materials in the aquatic environment. Understanding the environmental factors that influence the decay of eDNA and how these factors impact detection probabilities over time and space could have significant implications for eDNA survey design and data interpretation. Here we experimentally explore decay of eDNA associated with bighead carp (Hypophthalmichthys nobilis) biological waste collected from an aquaculture filtration system and with sperm collected from captive silver carp (H. molitrix), and how decay may be influenced by differing levels of water turbulence, temperature, microbial load, and pH. We found that the decay patterns of eDNA associated with both H. nobilis biological waste and H. molitrix milt significantly fit monophasic exponential decay curves. Secondly, we observed that the highest temperature we tested resulted in a decay half-life as much as 5.5× more rapid than the lowest temperature we tested. When we suppressed microbial loads in eDNA samples, we observed that overall losses of eDNA were reduced by about 2.5×. When we amended eDNA samples with pond water the half-life of eDNA was reduced by about 2.25×, despite relatively little apparent increase in the overall microbial load. This pattern indicated that species constituency of the microbial community, in addition to microbial load, might play a critical role in eDNA degradation. A shift in pH from 6.5 to 8.0 in the samples resulted in a 1.6× reduction in eDNA halflife. Water turbulence in our study had no apparent effect on eDNA decay. When we combined different temperature, pH, and microbial load treatments to create a

  6. Provably secure and high-rate quantum key distribution with time-bin qudits

    DOE PAGES

    Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton; ...

    2017-11-24

    The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. Wemore » use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. In conclusion, the security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system.« less

  7. Provably secure and high-rate quantum key distribution with time-bin qudits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton

    The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. Wemore » use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. In conclusion, the security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system.« less

  8. Bibliometric Characteristics of Articles on Key Competences Indexed in ERIC from 1990 to 2013

    ERIC Educational Resources Information Center

    Buscà Donet, Francesc; Ambròs Pallares, Alba; Burset Burillo, Sílvia

    2017-01-01

    This paper analyses the bibliometric characteristics of 616 journal articles on key competences indexed in ERIC in a 23-year-period following documentary analysis. This observation method allowed us to highlight key elements like the population, educational level, topics, etc. to focus whether this literature contributes towards implementing…

  9. Causation, constitution and context. Comment on "Seeing mental states: An experimental strategy for measuring the observability of other minds" by Cristina Becchio et al.

    NASA Astrophysics Data System (ADS)

    Zahavi, Dan

    2018-03-01

    In their new article [1], Becchio and her colleagues argue that recent claims concerning the possibility of directly perceiving other people's mental states will remain speculative as long as one has failed to demonstrate the availability of mentalistic information in observable behavior [p. 4]. The ambitious goal of the authors is then to outline an experimental setup that will permit one to determine whether and to what extent a mental state is observable. Drawing on Becchio's previous work on how regularities in the kinematic patterns specify the mental states of the agent, the authors suggest that a similar approach can be adopted to probe the observability of any mental state instantiated in behavioral patterns [p. 19].

  10. Research Methods in Healthcare Epidemiology and Antimicrobial Stewardship – Quasi-Experimental Designs

    PubMed Central

    Schweizer, Marin L.; Braun, Barbara I.; Milstone, Aaron M.

    2016-01-01

    Quasi-experimental studies evaluate the association between an intervention and an outcome using experiments in which the intervention is not randomly assigned. Quasi-experimental studies are often used to evaluate rapid responses to outbreaks or other patient safety problems requiring prompt non-randomized interventions. Quasi-experimental studies can be categorized into three major types: interrupted time series designs, designs with control groups, and designs without control groups. This methods paper highlights key considerations for quasi-experimental studies in healthcare epidemiology and antimicrobial stewardship including study design and analytic approaches to avoid selection bias and other common pitfalls of quasi-experimental studies. PMID:27267457

  11. Predicting Key Events in the Popularity Evolution of Online Information

    PubMed Central

    Fu, Shushen; Fang, Mingzhe; Xu, Wenwen

    2017-01-01

    The popularity of online information generally experiences a rising and falling evolution. This paper considers the “burst”, “peak”, and “fade” key events together as a representative summary of popularity evolution. We propose a novel prediction task—predicting when popularity undergoes these key events. It is of great importance to know when these three key events occur, because doing so helps recommendation systems, online marketing, and containment of rumors. However, it is very challenging to solve this new prediction task due to two issues. First, popularity evolution has high variation and can follow various patterns, so how can we identify “burst”, “peak”, and “fade” in different patterns of popularity evolution? Second, these events usually occur in a very short time, so how can we accurately yet promptly predict them? In this paper we address these two issues. To handle the first one, we use a simple moving average to smooth variation, and then a universal method is presented for different patterns to identify the key events in popularity evolution. To deal with the second one, we extract different types of features that may have an impact on the key events, and then a correlation analysis is conducted in the feature selection step to remove irrelevant and redundant features. The remaining features are used to train a machine learning model. The feature selection step improves prediction accuracy, and in order to emphasize prediction promptness, we design a new evaluation metric which considers both accuracy and promptness to evaluate our prediction task. Experimental and comparative results show the superiority of our prediction solution. PMID:28046121

  12. A semi-automatic 2D-to-3D video conversion with adaptive key-frame selection

    NASA Astrophysics Data System (ADS)

    Ju, Kuanyu; Xiong, Hongkai

    2014-11-01

    To compensate the deficit of 3D content, 2D to 3D video conversion (2D-to-3D) has recently attracted more attention from both industrial and academic communities. The semi-automatic 2D-to-3D conversion which estimates corresponding depth of non-key-frames through key-frames is more desirable owing to its advantage of balancing labor cost and 3D effects. The location of key-frames plays a role on quality of depth propagation. This paper proposes a semi-automatic 2D-to-3D scheme with adaptive key-frame selection to keep temporal continuity more reliable and reduce the depth propagation errors caused by occlusion. The potential key-frames would be localized in terms of clustered color variation and motion intensity. The distance of key-frame interval is also taken into account to keep the accumulated propagation errors under control and guarantee minimal user interaction. Once their depth maps are aligned with user interaction, the non-key-frames depth maps would be automatically propagated by shifted bilateral filtering. Considering that depth of objects may change due to the objects motion or camera zoom in/out effect, a bi-directional depth propagation scheme is adopted where a non-key frame is interpolated from two adjacent key frames. The experimental results show that the proposed scheme has better performance than existing 2D-to-3D scheme with fixed key-frame interval.

  13. Experimental Observations on the Deformation and Breakup of Water Droplets Near the Leading Edge of an Airfoil

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Feo, Alex

    2011-01-01

    This work presents the results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. An airfoil model placed at the end of the rotating arm was moved at speeds of 50 to 90 m/sec. A monosize droplet generator was employed to produce droplets that were allowed to fall from above, perpendicular to the path of the airfoil at a given location. High speed imaging was employed to observe the interaction between the droplets and the airfoil. The high speed imaging allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. A tracking software program was used to measure from the high speed movies the horizontal and vertical displacement of the droplet against time. The velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of a given droplet from beginning of deformation to breakup and/or hitting the airfoil. Results are presented for droplets with a diameter of 490 micrometers at airfoil speeds of 50, 60, 70, 80 and 90 m/sec

  14. Luquillo Experimental Forest: Research History and Opportunities

    Treesearch

    Nancy L. Harris; Ariel E. Lugo; Sandra Brown; Tamara Heartsill-Scalley

    2012-01-01

    The goals of this Luquillo Experimental Forest: Research History and Opportunities are to synthesize the new research that has emerged from the LEF since the publication of Brown et al. (1983) into a concise summary of key research findings and to highlight opportunities for future research that will contribute to a greater understanding of the structure and function...

  15. 75 FR 17463 - Key West Bank, Key West, Florida; Notice of Appointment of Receiver

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... DEPARTMENT OF THE TREASURY Office of Thrift Supervision Key West Bank, Key West, Florida; Notice of Appointment of Receiver Notice is hereby given that, pursuant to the authority contained in... Federal Deposit Insurance Corporation as sole Receiver for Key West Bank, Key West, Florida, (OTS No...

  16. Key Objectives Bank: Year 9. Key Stage 3: National Strategy.

    ERIC Educational Resources Information Center

    Department for Education and Skills, London (England).

    In each sub-section of the "Framework for Teaching English: Years 7, 8 and 9," certain key objectives are identified in boldface print. These objectives are key because they signify skills or understanding which are crucial to pupils' language development. They are challenging for the age group and are important markers of progress. This…

  17. EAARL submarine topography: Florida Keys National Marine Sanctuary

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Nayegandhi, Amar; Woolard, Jason; Patterson, Matt; Wilson, Iris; Travers, Laurinda J.

    2007-01-01

    This Web site contains 46 Lidar-derived submarine topography maps and GIS files for the Florida Keys National Marine Sanctuary. These Lidar-derived submarine topographic maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program, FISC St. Petersburg, Florida, the National Oceanic and Atmospheric Administration (NOAA), Remote Sensing Division, the National Park Service (NPS) South Florida/Caribbean Network Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. One objective of this research is to create techniques to survey coral reefs and barrier islands for the purposes of geomorphic change studies, habitat mapping, ecological monitoring, change detection, and event assessment. As part of this project, data from an innovative instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Airborne Advanced Research Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring subaerial and submarine topography within cross-environment surveys. High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to coastal resource managers.

  18. Exploring novel key regulators in breast cancer network.

    PubMed

    Ali, Shahnawaz; Malik, Md Zubbair; Singh, Soibam Shyamchand; Chirom, Keilash; Ishrat, Romana; Singh, R K Brojen

    2018-01-01

    The breast cancer network constructed from 70 experimentally verified genes is found to follow hierarchical scale free nature with heterogeneous modular organization and diverge leading hubs. The topological parameters (degree distributions, clustering co-efficient, connectivity and centralities) of this network obey fractal rules indicating absence of centrality lethality rule, and efficient communication among the components. From the network theoretical approach, we identified few key regulators out of large number of leading hubs, which are deeply rooted from top to down of the network, serve as backbone of the network, and possible target genes. However, p53, which is one of these key regulators, is found to be in low rank and keep itself at low profile but directly cross-talks with important genes BRCA2 and BRCA3. The popularity of these hubs gets changed in unpredictable way at various levels of organization thus showing disassortive nature. The local community paradigm approach in this network shows strong correlation of nodes in majority of modules/sub-modules (fast communication among nodes) and weak correlation of nodes only in few modules/sub-modules (slow communication among nodes) at various levels of network organization.

  19. The Contribution of Observation to Apprentices' Learning

    ERIC Educational Resources Information Center

    Chan, Selena

    2015-01-01

    Mimesis, learning through observation, imitation and practice, is held to be the main contributor to human endeavours. In this article, observation is proposed to be a key feature of trades learning through affording ease of entry into trade occupations' practice communities. Observation provides apprentices with significant socio-cultural and…

  20. An experimental aluminum-fueled power plant

    NASA Astrophysics Data System (ADS)

    Vlaskin, M. S.; Shkolnikov, E. I.; Bersh, A. V.; Zhuk, A. Z.; Lisicyn, A. V.; Sorokovikov, A. I.; Pankina, Yu. V.

    2011-10-01

    An experimental co-generation power plant (CGPP-10) using aluminum micron powder (with average particle size up to 70 μm) as primary fuel and water as primary oxidant was developed and tested. Power plant can work in autonomous (unconnected from industrial network) nonstop regime producing hydrogen, electrical energy and heat. One of the key components of experimental plant is aluminum-water high-pressure reactor projected for hydrogen production rate of ∼10 nm3 h-1. Hydrogen from the reactor goes through condenser and dehumidifier and with -25 °C dew-point temperature enters into the air-hydrogen fuel cell 16 kW-battery. From 1 kg of aluminum the experimental plant produces 1 kWh of electrical energy and 5-7 kWh of heat. Power consumer gets about 10 kW of electrical power. Plant electrical and total efficiencies are 12% and 72%, respectively.

  1. Direct Measurements of Quantum Kinetic Energy Tensor in Stable and Metastable Water near the Triple Point: An Experimental Benchmark.

    PubMed

    Andreani, Carla; Romanelli, Giovanni; Senesi, Roberto

    2016-06-16

    This study presents the first direct and quantitative measurement of the nuclear momentum distribution anisotropy and the quantum kinetic energy tensor in stable and metastable (supercooled) water near its triple point, using deep inelastic neutron scattering (DINS). From the experimental spectra, accurate line shapes of the hydrogen momentum distributions are derived using an anisotropic Gaussian and a model-independent framework. The experimental results, benchmarked with those obtained for the solid phase, provide the state of the art directional values of the hydrogen mean kinetic energy in metastable water. The determinations of the direction kinetic energies in the supercooled phase, provide accurate and quantitative measurements of these dynamical observables in metastable and stable phases, that is, key insight in the physical mechanisms of the hydrogen quantum state in both disordered and polycrystalline systems. The remarkable findings of this study establish novel insight into further expand the capacity and accuracy of DINS investigations of the nuclear quantum effects in water and represent reference experimental values for theoretical investigations.

  2. Nonmarket economic user values of the Florida Keys/Key West

    Treesearch

    Vernon R. Leeworthy; J. Michael Bowker

    1997-01-01

    This report provides estimates of the nonmarket economic user values for recreating visitors to the Florida Keys/Key West that participated in natural resource-based activities. Results from estimated travel cost models are presented, including visitor’s responses to prices and estimated per person-trip user values. Annual user values are also calculated and presented...

  3. Direct experimental observation of nonclassicality in ensembles of single-photon emitters

    NASA Astrophysics Data System (ADS)

    Moreva, E.; Traina, P.; Forneris, J.; Degiovanni, I. P.; Ditalia Tchernij, S.; Picollo, F.; Brida, G.; Olivero, P.; Genovese, M.

    2017-11-01

    In this work we experimentally demonstrate a recently proposed criterion addressed to detect nonclassical behavior in the fluorescence emission of ensembles of single-photon emitters. In particular, we apply the method to study clusters of nitrogen-vacancy centers in diamond characterized with single-photon-sensitive confocal microscopy. Theoretical considerations on the behavior of the parameter at any arbitrary order in the presence of Poissonian noise are presented and, finally, the opportunity of detecting manifold coincidences is discussed.

  4. Entangled-coherent-state quantum key distribution with entanglement witnessing

    NASA Astrophysics Data System (ADS)

    Simon, David S.; Jaeger, Gregg; Sergienko, Alexander V.

    2014-01-01

    An entanglement-witness approach to quantum coherent-state key distribution and a system for its practical implementation are described. In this approach, eavesdropping can be detected by a change in sign of either of two witness functions: an entanglement witness S or an eavesdropping witness W. The effects of loss and eavesdropping on system operation are evaluated as a function of distance. Although the eavesdropping witness W does not directly witness entanglement for the system, its behavior remains related to that of the true entanglement witness S. Furthermore, W is easier to implement experimentally than S. W crosses the axis at a finite distance, in a manner reminiscent of entanglement sudden death. The distance at which this occurs changes measurably when an eavesdropper is present. The distance dependence of the two witnesses due to amplitude reduction and due to increased variance resulting from both ordinary propagation losses and possible eavesdropping activity is provided. Finally, the information content and secure key rate of a continuous variable protocol using this witness approach are given.

  5. Experimental observation of carrier-envelope-phase effects by multicycle pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jha, Pankaj K.; Scully, Marlan O.; Mechanical and Aerospace Engineering and the Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544

    2011-03-15

    We present an experimental and theoretical study of carrier-envelope-phase (CEP) effects on the population transfer between two bound atomic states interacting with pulses consisting of many cycles. Using intense radio-frequency pulse with Rabi frequency of the order of the atomic transition frequency, we investigate the influence of the CEP on the control of phase-dependent multiphoton transitions between the Zeeman sublevels of the ground state of {sup 87}Rb. Our scheme has no limitation on the duration of the pulses. Extending the CEP control to longer pulses creates interesting possibilities to generate pulses with accuracy that is better than the period ofmore » optical oscillations.« less

  6. Identification of key micro-organisms involved in Douchi fermentation by statistical analysis and their use in an experimental fermentation.

    PubMed

    Chen, C; Xiang, J Y; Hu, W; Xie, Y B; Wang, T J; Cui, J W; Xu, Y; Liu, Z; Xiang, H; Xie, Q

    2015-11-01

    To screen and identify safe micro-organisms used during Douchi fermentation, and verify the feasibility of producing high-quality Douchi using these identified micro-organisms. PCR-denaturing gradient gel electrophoresis (DGGE) and automatic amino-acid analyser were used to investigate the microbial diversity and free amino acids (FAAs) content of 10 commercial Douchi samples. The correlations between microbial communities and FAAs were analysed by statistical analysis. Ten strains with significant positive correlation were identified. Then an experiment on Douchi fermentation by identified strains was carried out, and the nutritional composition in Douchi was analysed. Results showed that FAAs and relative content of isoflavone aglycones in verification Douchi samples were generally higher than those in commercial Douchi samples. Our study indicated that fungi, yeasts, Bacillus and lactic acid bacteria were the key players in Douchi fermentation, and with identified probiotic micro-organisms participating in fermentation, a higher quality Douchi product was produced. This is the first report to analyse and confirm the key micro-organisms during Douchi fermentation by statistical analysis. This work proves fermentation micro-organisms to be the key influencing factor of Douchi quality, and demonstrates the feasibility of fermenting Douchi using identified starter micro-organisms. © 2015 The Society for Applied Microbiology.

  7. An experimental device for characterizing degassing processes and related elastic fingerprints: Analog volcano seismo-acoustic observations.

    PubMed

    Spina, Laura; Morgavi, Daniele; Cannata, Andrea; Campeggi, Carlo; Perugini, Diego

    2018-05-01

    A challenging objective of modern volcanology is to quantitatively characterize eruptive/degassing regimes from geophysical signals (in particular seismic and infrasonic), for both research and monitoring purposes. However, the outcomes of the attempts made so far are still considered very uncertain because volcanoes remain inaccessible when deriving quantitative information on crucial parameters such as plumbing system geometry and magma viscosity. In order to improve our knowledge of volcanic systems, a novel experimental device, which is capable of mimicking volcanic degassing processes with different regimes and gas flow rates, and allowing for the investigation of the related seismo-acoustic emissions, was designed and developed. The benefits of integrating observations on real volcanoes with seismo-acoustic signals generated in laboratory are many and include (i) the possibility to fix the controlling parameters such as the geometry of the structure where the gas flows, the gas flow rate, and the fluid viscosity; (ii) the possibility of performing acoustic measurements at different azimuthal and zenithal angles around the opening of the analog conduit, hence constraining the radiation pattern of different acoustic sources; (iii) the possibility to measure micro-seismic signals in distinct points of the analog conduit; (iv) finally, thanks to the transparent structure, it is possible to directly observe the degassing pattern through the optically clear analog magma and define the degassing regime producing the seismo-acoustic radiations. The above-described device represents a step forward in the analog volcano seismo-acoustic measurements.

  8. An experimental device for characterizing degassing processes and related elastic fingerprints: Analog volcano seismo-acoustic observations

    NASA Astrophysics Data System (ADS)

    Spina, Laura; Morgavi, Daniele; Cannata, Andrea; Campeggi, Carlo; Perugini, Diego

    2018-05-01

    A challenging objective of modern volcanology is to quantitatively characterize eruptive/degassing regimes from geophysical signals (in particular seismic and infrasonic), for both research and monitoring purposes. However, the outcomes of the attempts made so far are still considered very uncertain because volcanoes remain inaccessible when deriving quantitative information on crucial parameters such as plumbing system geometry and magma viscosity. In order to improve our knowledge of volcanic systems, a novel experimental device, which is capable of mimicking volcanic degassing processes with different regimes and gas flow rates, and allowing for the investigation of the related seismo-acoustic emissions, was designed and developed. The benefits of integrating observations on real volcanoes with seismo-acoustic signals generated in laboratory are many and include (i) the possibility to fix the controlling parameters such as the geometry of the structure where the gas flows, the gas flow rate, and the fluid viscosity; (ii) the possibility of performing acoustic measurements at different azimuthal and zenithal angles around the opening of the analog conduit, hence constraining the radiation pattern of different acoustic sources; (iii) the possibility to measure micro-seismic signals in distinct points of the analog conduit; (iv) finally, thanks to the transparent structure, it is possible to directly observe the degassing pattern through the optically clear analog magma and define the degassing regime producing the seismo-acoustic radiations. The above-described device represents a step forward in the analog volcano seismo-acoustic measurements.

  9. Physical Cryptography: A New Approach to Key Generation and Direct Encryption

    DTIC Science & Technology

    2009-11-18

    has been  further studied theoretically and P a g e  | 4    experimentally to only a limited extent. The second is quantum cryptography [3] based on...Std Z39-18 P a g e  | 2    Abstract: The security of key generation and direct encryption in quantum and physical cryptography have been...investigated. It is found that similar to the situation of conventional mathematics based cryptography , fundamental and meaningful security levels for either

  10. Experimental observation of the 1/3 magnetization plateau in the diamond-chain compound Cu3(CO3)2(OH)2.

    PubMed

    Kikuchi, H; Fujii, Y; Chiba, M; Mitsudo, S; Idehara, T; Tonegawa, T; Okamoto, K; Sakai, T; Kuwai, T; Ohta, H

    2005-06-10

    The magnetic susceptibility, high field magnetization, and specific heat measurements of Cu3(CO3)2(OH)2, which is a model substance for the frustrating diamond spin chain model, have been performed using single crystals. Two broad peaks are observed at around 20 and 5 K in both magnetic susceptibility and specific heat results. The magnetization curve has a clear plateau at one third of the saturation magnetization. The experimental results are examined in terms of theoretical expectations based on exact diagonalization and density matrix renormalization group methods. An origin of magnetic anisotropy is also discussed.

  11. Is fault surface roughness indicative of fault mechanisms? Observations from experimental Limestone faults

    NASA Astrophysics Data System (ADS)

    Sagy, A.; Tesei, T.; Collettini, C.

    2016-12-01

    Geometrical irregularity of contacting surfaces is a fundamental factor controlling friction and energy dissipation during sliding. We performed direct shear experiments on 20x20 cm limestone surfaces by applying constant normal load (40-200 kN) and sliding velocity 1-300 µm/s. Before shearing, the surfaces were polished with maximal measured amplitudes of less than 0.1 mm. After shear, elongated islands of shear zones are observed, characterized by grooves ploughed into the limestone surfaces and by layers of fine grain wear. These structures indicate that the contact areas during shear are scattered and occupy a limited portion of the entire surface area. The surfaces was scanned by a laser profilometer that measures topography using 640 parallel beams in a single run, offer up to 10 µm accuracy and working ranges of 200 mm. Two distinctive types of topographical end members are defined: rough wavy sections and smooth polished ones. The rough zones display ridges with typical amplitudes of 0.1-1 mm that cross the grooves perpendicular to the slip direction. These features are associated with penetrative brittle damage and with fragmentation. The smoother zones display reflective mirror-like surfaces bordered by topographical sharp steps at heights of 0.3-0.5 mm. These sections are localized inside the wear layer or between the wear layer and the host rock, and are not associated with observed penetrative damage. Preliminary statistical analysis suggests that the roughness of the ridges zones can be characterized using a power-low relationship between profile length and mean roughness, with relatively high values of Hurst exponents (e.g. H > 0.65) parallel to the slip direction. The polished zones, on the other hand, corresponded to lower values of Hurst exponents (e.g. H ≤ 0.6). Both structural and roughness measurements indicate that the distinctive topographic variations on the surfaces reflect competing mechanical processes which occur simultaneously

  12. Experimental Basis for IED Particle Model

    NASA Astrophysics Data System (ADS)

    Zheng-Johansson, J.

    2009-03-01

    The internally electrodynamic (IED) particle model is built on three experimental facts: a) electric charges present in all matter particles, b) an accelerated charge generates electromagnetic (EM) waves by Maxwell's equations and Planck energy equation, and c) source motion gives Doppler effect. A set of well-kwon basic particle equations have been predicted based on first-principles solutions for IED particle (e.g. J Phys CS128, 012019, 2008); the equations are long experimentally validated. A critical review of the key experiments suggests that the IED process underlies these equations not just sufficiently but also necessarily. E.g.: 1) A free IED electron solution is a plane wave ψ= Ce^i(kdX-φT) requisite for producing the diffraction fringe in a Davisson-Germer experiment, and of also all basic point-like attributes facilitated by a linear momentum kd and the model structure. It needs not further be a wave packet which produces not a diffraction fringe. 2)The radial partial EM waves, hence the total ψ, of an IED electron will, on both EM theory and experiment basis -not by assumption, enter two slits at the same time, as is requisite for an electron to interfere with itself as shown in double slit experiments. 3) On annihilation, an electron converts (from mass m) to a radiation energy φ without an acceleration which is externally observable and yet requisite by EM theory. So a charge oscillation of frequency φ and its EM waves must regularly present internal of a normal electron, whence the IED model.

  13. Experimental Basis for IED Particle Model

    NASA Astrophysics Data System (ADS)

    Zheng-Johansson, J.

    2009-05-01

    The internally electrodynamic (IED) particle model is built on three experimental facts: a) electric charges present in all matter particles, b) an accelerated charge generates electromagnetic (EM) waves by Maxwell's equations and Planck energy equation, and c) source motion gives Doppler effect. A set of well-kwon basic particle equations have been predicted based on first-principles solutions for IED particle (e.g. arxiv:0812.3951, J Phys CS128, 012019, 2008); the equations are long experimentally validated. A critical review of the key experiments suggests that the IED process underlies these equations not just sufficiently but also necessarily. E.g.: 1) A free IED electron solution is a plane wave ψ= Ce^i(kdX-φT) requisite for producing the diffraction fringe in a Davisson-Germer experiment, and of also all basic point-like attributes facilitated by a linear momentum kd and the model structure. It needs not further be a wave packet which produces not a diffraction fringe. 2)The radial partial EM waves, hence the total ψ, of an IED electron will, on both EM theory and experiment basis -not by assumption, enter two slits at the same time, as is requisite for an electron to interfere with itself as shown in double slit experiments. 3) On annihilation, an electron converts (from mass m) to a radiation energy φ without an acceleration which is externally observable and yet requisite by EM theory. So a charge oscillation of frequency φ and its EM waves must regularly present internal of a normal electron, whence the IED model.

  14. Secure key storage and distribution

    DOEpatents

    Agrawal, Punit

    2015-06-02

    This disclosure describes a distributed, fault-tolerant security system that enables the secure storage and distribution of private keys. In one implementation, the security system includes a plurality of computing resources that independently store private keys provided by publishers and encrypted using a single security system public key. To protect against malicious activity, the security system private key necessary to decrypt the publication private keys is not stored at any of the computing resources. Rather portions, or shares of the security system private key are stored at each of the computing resources within the security system and multiple security systems must communicate and share partial decryptions in order to decrypt the stored private key.

  15. Channel analysis for single photon underwater free space quantum key distribution.

    PubMed

    Shi, Peng; Zhao, Shi-Cheng; Gu, Yong-Jian; Li, Wen-Dong

    2015-03-01

    We investigate the optical absorption and scattering properties of underwater media pertinent to our underwater free space quantum key distribution (QKD) channel model. With the vector radiative transfer theory and Monte Carlo method, we obtain the attenuation of photons, the fidelity of the scattered photons, the quantum bit error rate, and the sifted key generation rate of underwater quantum communication. It can be observed from our simulations that the most secure single photon underwater free space QKD is feasible in the clearest ocean water.

  16. Experimentally testing and assessing the predictive power of species assembly rules for tropical canopy ants

    PubMed Central

    Fayle, Tom M; Eggleton, Paul; Manica, Andrea; Yusah, Kalsum M; Foster, William A

    2015-01-01

    Understanding how species assemble into communities is a key goal in ecology. However, assembly rules are rarely tested experimentally, and their ability to shape real communities is poorly known. We surveyed a diverse community of epiphyte-dwelling ants and found that similar-sized species co-occurred less often than expected. Laboratory experiments demonstrated that invasion was discouraged by the presence of similarly sized resident species. The size difference for which invasion was less likely was the same as that for which wild species exhibited reduced co-occurrence. Finally we explored whether our experimentally derived assembly rules could simulate realistic communities. Communities simulated using size-based species assembly exhibited diversities closer to wild communities than those simulated using size-independent assembly, with results being sensitive to the combination of rules employed. Hence, species segregation in the wild can be driven by competitive species assembly, and this process is sufficient to generate observed species abundance distributions for tropical epiphyte-dwelling ants. PMID:25622647

  17. Artificial cochlea and acoustic black hole travelling waves observation: Model and experimental results

    NASA Astrophysics Data System (ADS)

    Foucaud, Simon; Michon, Guilhem; Gourinat, Yves; Pelat, Adrien; Gautier, François

    2014-07-01

    An inhomogeneous fluid structure waveguide reproducing passive behaviour of the inner ear is modelled with the help of the Wentzel-Kramers-Brillouin method. A physical setup is designed and built. Experimental results are compared with a good correlation to theoretical ones. The experimental setup is a varying width plate immersed in fluid and terminated with an acoustic black hole. The varying width plate provides a spatial repartition of the vibration depending on the excitation frequency. The acoustic black hole is made by decreasing the plate's thickness with a quadratic profile and by covering this region with a thin film of viscoelastic material. Such a termination attenuates the flexural wave reflection at the end of the waveguide, turning standing waves into travelling waves.

  18. Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans

    PubMed Central

    Kuempel, Eileen D.; Jaurand, Marie-Claude; Møller, Peter; Morimoto, Yasuo; Kobayashi, Norihiro; Pinkerton, Kent E.; Sargent, Linda M.; Vermeulen, Roel C. H.; Fubini, Bice; Kane, Agnes B.

    2016-01-01

    In an evaluation of carbon nanotubes (CNTs) for the IARC Monograph 111, the Mechanisms Subgroup was tasked with assessing the strength of evidence on the potential carcinogenicity of CNTs in humans. The mechanistic evidence was considered to be not strong enough to alter the evaluations based on the animal data. In this paper, we provide an extended, in-depth examination of the in vivo and in vitro experimental studies according to current hypotheses on the carcinogenicity of inhaled particles and fibers. We cite additional studies of CNTs that were not available at the time of the IARC meeting in October 2014, and extend our evaluation to include carbon nanofibers (CNFs). Finally, we identify key data gaps and suggest research needs to reduce uncertainty. The focus of this review is on the cancer risk to workers exposed to airborne CNT or CNF during the production and use of these materials. The findings of this review, in general, affirm those of the original evaluation on the inadequate or limited evidence of carcinogenicity for most types of CNTs and CNFs at this time, and possible carcinogenicity of one type of CNT (MWCNT-7). The key evidence gaps to be filled by research include: investigation of possible associations between in vitro and early-stage in vivo events that may be predictive of lung cancer or mesothelioma, and systematic analysis of dose–response relationships across materials, including evaluation of the influence of physico-chemical properties and experimental factors on the observation of nonmalignant and malignant endpoints. PMID:27537422

  19. DFT:B3LYP/3-21G theoretical insights on the confocal Raman experimental observations in skin dermis of healthy young, healthy elderly, and diabetic elderly women

    NASA Astrophysics Data System (ADS)

    Téllez Soto, Claudio Alberto; Pereira, Liliane; dos Santos, Laurita; Rajasekaran, Ramu; Fávero, Priscila; Martin, Airton Abrahão

    2016-12-01

    In the confocal Raman spectra of skin dermis, the band area in the spectral region of proline and hydroxyproline varies according to the age and health condition of the volunteers, classified as healthy young women, healthy elderly women, and diabetic elderly women. Another observation refers to the intensity variation and negative Raman shift of the amide I band. To understand these effects, we adopted a model system using the DFT/B3LYP:3-21G procedure, considering the amino acid chain formed by glycine, hydroxyproline, proline, and alanine, which interacts with two and six water molecules. Through these systems, polarizability variations were analyzed to correlate its values with the observed Raman intensities of the three groups of volunteers and to assign the vibrational spectra of the skin dermis. As a way to correlate other experimental trends, we propose a model of chemical reaction of water interchange between the bonding amino acids, in which water molecules are attached with glucose by hydrogen bonds. The theoretical results are in accordance with the observed experimental trends.

  20. Fundamental finite key limits for one-way information reconciliation in quantum key distribution

    NASA Astrophysics Data System (ADS)

    Tomamichel, Marco; Martinez-Mateo, Jesus; Pacher, Christoph; Elkouss, David

    2017-11-01

    The security of quantum key distribution protocols is guaranteed by the laws of quantum mechanics. However, a precise analysis of the security properties requires tools from both classical cryptography and information theory. Here, we employ recent results in non-asymptotic classical information theory to show that one-way information reconciliation imposes fundamental limitations on the amount of secret key that can be extracted in the finite key regime. In particular, we find that an often used approximation for the information leakage during information reconciliation is not generally valid. We propose an improved approximation that takes into account finite key effects and numerically test it against codes for two probability distributions, that we call binary-binary and binary-Gaussian, that typically appear in quantum key distribution protocols.

  1. Metrological challenges for measurements of key climatological observables: Oceanic salinity and pH, and atmospheric humidity. Part 1: Overview.

    PubMed

    Feistel, R; Wielgosz, R; Bell, S A; Camões, M F; Cooper, J R; Dexter, P; Dickson, A G; Fisicaro, P; Harvey, A H; Heinonen, M; Hellmuth, O; Kretzschmar, H-J; Lovell-Smith, J W; McDougall, T J; Pawlowicz, R; Ridout, P; Seitz, S; Spitzer, P; Stoica, D; Wolf, H

    2016-02-01

    Water in its three ambient phases plays the central thermodynamic role in the terrestrial climate system. Clouds control Earth's radiation balance, atmospheric water vapour is the strongest "greenhouse" gas, and non-equilibrium relative humidity at the air-sea interface drives evaporation and latent heat export from the ocean. On climatic time scales, melting ice caps and regional deviations of the hydrological cycle result in changes of seawater salinity, which in turn may modify the global circulation of the oceans and their ability to store heat and to buffer anthropogenically produced carbon dioxide. In this paper, together with three companion articles, we examine the climatologically relevant quantities ocean salinity, seawater pH and atmospheric relative humidity, noting fundamental deficiencies in the definitions of those key observables, and their lack of secure foundation on the International System of Units, the SI. The metrological histories of those three quantities are reviewed, problems with their current definitions and measurement practices are analysed, and options for future improvements are discussed in conjunction with the recent seawater standard TEOS-10. It is concluded that the International Bureau of Weights and Measures, BIPM, in cooperation with the International Association for the Properties of Water and Steam, IAPWS, along with other international organisations and institutions, can make significant contributions by developing and recommending state-of-the-art solutions for these long standing metrological problems in climatology.

  2. Metrological challenges for measurements of key climatological observables: oceanic salinity and pH, and atmospheric humidity. Part 1: overview

    NASA Astrophysics Data System (ADS)

    Feistel, R.; Wielgosz, R.; Bell, S. A.; Camões, M. F.; Cooper, J. R.; Dexter, P.; Dickson, A. G.; Fisicaro, P.; Harvey, A. H.; Heinonen, M.; Hellmuth, O.; Kretzschmar, H.-J.; Lovell-Smith, J. W.; McDougall, T. J.; Pawlowicz, R.; Ridout, P.; Seitz, S.; Spitzer, P.; Stoica, D.; Wolf, H.

    2016-02-01

    Water in its three ambient phases plays the central thermodynamic role in the terrestrial climate system. Clouds control Earth’s radiation balance, atmospheric water vapour is the strongest ‘greenhouse’ gas, and non-equilibrium relative humidity at the air-sea interface drives evaporation and latent heat export from the ocean. On climatic time scales, melting ice caps and regional deviations of the hydrological cycle result in changes of seawater salinity, which in turn may modify the global circulation of the oceans and their ability to store heat and to buffer anthropogenically produced carbon dioxide. In this paper, together with three companion articles, we examine the climatologically relevant quantities ocean salinity, seawater pH and atmospheric relative humidity, noting fundamental deficiencies in the definitions of those key observables, and their lack of secure foundation on the International System of Units, the SI. The metrological histories of those three quantities are reviewed, problems with their current definitions and measurement practices are analysed, and options for future improvements are discussed in conjunction with the recent seawater standard TEOS-10. It is concluded that the International Bureau of Weights and Measures, BIPM, in cooperation with the International Association for the Properties of Water and Steam, IAPWS, along with other international organizations and institutions, can make significant contributions by developing and recommending state-of-the-art solutions for these long standing metrological problems in climatology.

  3. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Spatially Resolved Spectroscopy in the Far-Infrared

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2009-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths - a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers and for suborbital programs optimized for studying extrasolar planets.

  4. Physical Unclonable Function Hardware Keys Utilizing Kirchhoff-Law Secure Key Exchange and Noise-Based Logic

    NASA Astrophysics Data System (ADS)

    Kish, Laszlo B.; Kwan, Chiman

    Weak unclonable function (PUF) encryption key means that the manufacturer of the hardware can clone the key but not anybody else. Strong unclonable function (PUF) encryption key means that even the manufacturer of the hardware is unable to clone the key. In this paper, first we introduce an "ultra" strong PUF with intrinsic dynamical randomness, which is not only unclonable but also gets renewed to an independent key (with fresh randomness) during each use via the unconditionally secure key exchange. The solution utilizes the Kirchhoff-law-Johnson-noise (KLJN) method for dynamical key renewal and a one-time-pad secure key for the challenge/response process. The secure key is stored in a flash memory on the chip to provide tamper-resistance and nonvolatile storage with zero power requirements in standby mode. Simplified PUF keys are shown: a strong PUF utilizing KLJN protocol during the first run and noise-based logic (NBL) hyperspace vector string verification method for the challenge/response during the rest of its life or until it is re-initialized. Finally, the simplest PUF utilizes NBL without KLJN thus it can be cloned by the manufacturer but not by anybody else.

  5. Experimental observation of optical Weyl points and Fermi arcs

    NASA Astrophysics Data System (ADS)

    Rechtsman, Mikael

    We directly observe the presence type-II Weyl points for optical photons in a three-dimensional dielectric structure comprising arrays of evanescently-coupled, single-mode, helical waveguides. We also observe the corresponding Fermi arc surface states emerging from Weyl points (despite the use of the `Fermi arc' terminology, we are referring to bosons rather than fermions). The Weyl points are manifested by the presence of conical diffraction at the Weyl frequency in the photonic band structure, and the Fermi arc states are manifested by the emergence of surface states as we scan in frequency past the Weyl point. We map the Weyl points to Dirac points of the isofrequency surface, and the Fermi arcs to chiral edge states of an anomalous Floquet insulator. In collaboration with: Jiho Noh, Sheng Huang, Daniel Leykam*, Y. D. Chong, Kevin Chen, and Mikael C. Rechtsman M.C.R. acknowledges the National Science Foundation under Award Number ECCS-1509546, the Penn State MRSEC, Center for Nanoscale Science, under Award Number NSF DMR-1420620, and the Alfred P. Sloan Foundation under fellowship number FG-2016-6418.

  6. ChoiceKey: a real-time speech recognition program for psychology experiments with a small response set.

    PubMed

    Donkin, Christopher; Brown, Scott D; Heathcote, Andrew

    2009-02-01

    Psychological experiments often collect choice responses using buttonpresses. However, spoken responses are useful in many cases-for example, when working with special clinical populations, or when a paradigm demands vocalization, or when accurate response time measurements are desired. In these cases, spoken responses are typically collected using a voice key, which usually involves manual coding by experimenters in a tedious and error-prone manner. We describe ChoiceKey, an open-source speech recognition package for MATLAB. It can be optimized by training for small response sets and different speakers. We show ChoiceKey to be reliable with minimal training for most participants in experiments with two different responses. Problems presented by individual differences, and occasional atypical responses, are examined, and extensions to larger response sets are explored. The ChoiceKey source files and instructions may be downloaded as supplemental materials for this article from brm.psychonomic-journals.org/content/supplemental.

  7. Quantum key distribution with finite resources: Secret key rates via Renyi entropies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abruzzo, Silvestre; Kampermann, Hermann; Mertz, Markus

    A realistic quantum key distribution (QKD) protocol necessarily deals with finite resources, such as the number of signals exchanged by the two parties. We derive a bound on the secret key rate which is expressed as an optimization problem over Renyi entropies. Under the assumption of collective attacks by an eavesdropper, a computable estimate of our bound for the six-state protocol is provided. This bound leads to improved key rates in comparison to previous results.

  8. Experimental quantum fingerprinting with weak coherent pulses.

    PubMed

    Xu, Feihu; Arrazola, Juan Miguel; Wei, Kejin; Wang, Wenyuan; Palacios-Avila, Pablo; Feng, Chen; Sajeed, Shihan; Lütkenhaus, Norbert; Lo, Hoi-Kwong

    2015-10-30

    Quantum communication holds the promise of creating disruptive technologies that will play an essential role in future communication networks. For example, the study of quantum communication complexity has shown that quantum communication allows exponential reductions in the information that must be transmitted to solve distributed computational tasks. Recently, protocols that realize this advantage using optical implementations have been proposed. Here we report a proof-of-concept experimental demonstration of a quantum fingerprinting system that is capable of transmitting less information than the best-known classical protocol. Our implementation is based on a modified version of a commercial quantum key distribution system using off-the-shelf optical components over telecom wavelengths, and is practical for messages as large as 100 Mbits, even in the presence of experimental imperfections. Our results provide a first step in the development of experimental quantum communication complexity.

  9. Experimental quantum fingerprinting with weak coherent pulses

    NASA Astrophysics Data System (ADS)

    Xu, Feihu; Arrazola, Juan Miguel; Wei, Kejin; Wang, Wenyuan; Palacios-Avila, Pablo; Feng, Chen; Sajeed, Shihan; Lütkenhaus, Norbert; Lo, Hoi-Kwong

    2015-10-01

    Quantum communication holds the promise of creating disruptive technologies that will play an essential role in future communication networks. For example, the study of quantum communication complexity has shown that quantum communication allows exponential reductions in the information that must be transmitted to solve distributed computational tasks. Recently, protocols that realize this advantage using optical implementations have been proposed. Here we report a proof-of-concept experimental demonstration of a quantum fingerprinting system that is capable of transmitting less information than the best-known classical protocol. Our implementation is based on a modified version of a commercial quantum key distribution system using off-the-shelf optical components over telecom wavelengths, and is practical for messages as large as 100 Mbits, even in the presence of experimental imperfections. Our results provide a first step in the development of experimental quantum communication complexity.

  10. Experimental observations of Lagrangian sand grain kinematics under bedload transport: statistical description of the step and rest regimes

    NASA Astrophysics Data System (ADS)

    Guala, M.; Liu, M.

    2017-12-01

    The kinematics of sediment particles is investigated by non-intrusive imaging methods to provide a statistical description of bedload transport in conditions near the threshold of motion. In particular, we focus on the cyclic transition between motion and rest regimes to quantify the waiting time statistics inferred to be responsible for anomalous diffusion, and so far elusive. Despite obvious limitations in the spatio-temporal domain of the observations, we are able to identify the probability distributions of the particle step time and length, velocity, acceleration, waiting time, and thus distinguish which quantities exhibit well converged mean values, based on the thickness of their respective tails. The experimental results shown here for four different transport conditions highlight the importance of the waiting time distribution and represent a benchmark dataset for the stochastic modeling of bedload transport.

  11. Strontium ranelate reduces the progression of experimental dog osteoarthritis by inhibiting the expression of key proteases in cartilage and of IL-1β in the synovium.

    PubMed

    Pelletier, Jean-Pierre; Kapoor, Mohit; Fahmi, Hassan; Lajeunesse, Daniel; Blesius, Alexia; Maillet, Juliette; Martel-Pelletier, Johanne

    2013-02-01

    To explore the disease-modifying effect, under therapeutic conditions, of strontium ranelate (SrRan) on the progression of joint structural changes and on the major pathophysiological pathways in an experimental osteoarthritis dog model. Dogs underwent sectioning of the anterior cruciate ligament, and 4 weeks after surgery received oral treatment of SrRan 25, 50 or 75 mg/kg per day, or placebo for 12 weeks. Methods included macroscopy, picrosirius red staining, histology, subchondral bone histomorphometry, quantitative PCR, and ELISA for CTX-II level in serum. Strontium plasma and synovial fluid levels were also measured. At steady state, strontium blood exposures were within the clinical therapeutic range of osteoarthritis patients and correlated with strontium concentrations in synovial fluid. SrRan treatment significantly reduced the osteoarthritis cartilage lesions at all doses tested (p≤0.05). Significantly better preservation of the collagen network was also found in SrRan-treated dogs at 50 and 75 mg/kg per day (p=0.03). The osteoarthritis subchondral bone thickening observed in osteoarthritis-placebo dogs was significantly reduced by SrRan at 50 mg/kg per day (p=0.02). The increased gene expression levels of MMP-1, MMP-13 and cathepsin K in osteoarthritis cartilage were all significantly reduced by SrRan at 75 mg/kg per day (p≤0.03) as were, in osteoarthritis synovium, IL-1β at 50 and 75 mg/kg per day (p=0.05) and MMP-3 at all doses tested (p≤0.02). The serum level of CTX-II was reduced (p≤0.04) by SrRan at 16 weeks in dogs treated with 50 and 75 mg/kg per day. This study is the first to demonstrate in vivo in an animal model that SrRan reduced the progression of osteoarthritis structural changes. The inhibition of several key proteases as well as IL-1β may have contributed to the beneficial effect of SrRan.

  12. An experimental analysis of a doped lithium fluoride direct absorption solar receiver

    NASA Technical Reports Server (NTRS)

    Kesseli, James; Pollak, Tom; Lacy, Dovie

    1988-01-01

    An experimental analysis of two key elements of a direct absorption solar receiver for use with Brayton solar dynamic systems was conducted. Experimental data are presented on LiF crystals doped with dysprosium, samarium, and cobalt fluorides. In addition, a simulation of the cavity/window environment was performed and a posttest inspection was conducted to evaluate chemical reactivity, transmissivity, and condensation rate.

  13. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters.

    PubMed

    Lucamarini, M; Yuan, Z L; Dynes, J F; Shields, A J

    2018-05-01

    Quantum key distribution (QKD) 1,2 allows two distant parties to share encryption keys with security based on physical laws. Experimentally, QKD has been implemented via optical means, achieving key rates of 1.26 megabits per second over 50 kilometres of standard optical fibre 3 and of 1.16 bits per hour over 404 kilometres of ultralow-loss fibre in a measurement-device-independent configuration 4 . Increasing the bit rate and range of QKD is a formidable, but important, challenge. A related target, which is currently considered to be unfeasible without quantum repeaters 5-7 , is overcoming the fundamental rate-distance limit of QKD 8 . This limit defines the maximum possible secret key rate that two parties can distil at a given distance using QKD and is quantified by the secret-key capacity of the quantum channel 9 that connects the parties. Here we introduce an alternative scheme for QKD whereby pairs of phase-randomized optical fields are first generated at two distant locations and then combined at a central measuring station. Fields imparted with the same random phase are 'twins' and can be used to distil a quantum key. The key rate of this twin-field QKD exhibits the same dependence on distance as does a quantum repeater, scaling with the square-root of the channel transmittance, irrespective of who (malicious or otherwise) is in control of the measuring station. However, unlike schemes that involve quantum repeaters, ours is feasible with current technology and presents manageable levels of noise even on 550 kilometres of standard optical fibre. This scheme is a promising step towards overcoming the rate-distance limit of QKD and greatly extending the range of secure quantum communications.

  14. Measuring how typical and atypical minds read other's intentions. Comment on "Seeing mental states: An experimental strategy for measuring the observability of other minds" by Cristina Becchio et al.

    NASA Astrophysics Data System (ADS)

    Parma, Valentina; Sartori, Luisa; Castiello, Umberto

    2018-03-01

    Becchio et al. [1] propose a model to render other's minds observable against the Unobservability Principle. Such model develops over four, distinct steps. First, it provides experimental evidence indicating that mental states (i.e., intentions) can be encoded in behavioral patterns (e.g., movement kinematics). Second, it provides strategies to test the efficiency of the quantification of such intention-related behavioral manifestations (i.e., resolution of the uncertainty between two intentions based on different patterns of accumulation of kinematic parameters). Third, it indicates specific features of the observed behavior that viewers use to detect different intentions (i.e., a series of decision rules based on kinematic features through which intention categorization occurs). Fourth, it proposes a manner to manipulate such specific behavioral features so that an observer can detect different intentions, based on how informative such behavioral features are. We see in this operational/experimental approach a significant contribution to the theoretical debate on the possibility to observe mental states, allowing the direct testing of the unobservability principle and therefore providing falsifiable hypotheses. Besides this already central aspect, we believe this approach holds promise to the elucidation of clinical open questions, such as those posed by autism spectrum disorders (ASD). Indeed, experimentally evaluating the ability to observe and manipulate other's intentions allow us to quantify with high accuracy the deficits in the representation of other people's minds that so chiefly characterize ASD as well as the outcomes of treatment options focusing on this aspect. Here we suggest a few clarifications and extensions of the proposed model which will make it possibly tailored for clinical applications.

  15. Timing of thyroid hormone action in the developing brain: clinical observations and experimental findings.

    PubMed

    Zoeller, R T; Rovet, J

    2004-10-01

    Abstract The original concept of the critical period of thyroid hormone (TH) action on brain development was proposed to identify the postnatal period during which TH supplement must be provided to a child with congenital hypothyroidism to prevent mental retardation. As neuropsychological tools have become more sensitive, it has become apparent that even mild TH insufficiency in humans can produce measurable deficits in very specific neuropsychological functions, and that the specific consequences of TH deficiency depends on the precise developmental timing of the deficiency. Models of maternal hypothyroidism, hypothyroxinaemia and congenital hyperthyroidism have provided these insights. If the TH deficiency occurs early in pregnancy, the offspring display problems in visual attention, visual processing (i.e. acuity and strabismus) and gross motor skills. If it occurs later in pregnancy, children are at additional risk of subnormal visual (i.e. contrast sensitivity) and visuospatial skills, as well as slower response speeds and fine motor deficits. Finally, if TH insufficiency occurs after birth, language and memory skills are most predominantly affected. Although the experimental literature lags behind clinical studies in providing a mechanistic explanation for each of these observations, recent studies confirm that the specific action of TH on brain development depends upon developmental timing, and studies informing us about molecular mechanisms of TH action are generating hypotheses concerning possible mechanisms to account for these pleiotropic actions.

  16. 4′-CyanoPLP presents better prospect for the experimental detection of elusive cyclic intermediate radical in the reaction of lysine 5,6-aminomutase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maity, Amarendra Nath; Ke, Shyue-Chu, E-mail: ke@mail.ndhu.edu.tw

    2015-02-06

    Graphical abstract: The results of our calculations suggest that the reaction of 4′-cyanoPLP with lysine 5,6-aminomutase offers better prospect for the experimental detection of elusive cyclic azacyclopropylcarbinyl radical, which is proposed to be a key intermediate in the reaction of pyridoxal-5′-phosphate dependent radical aminomutases. - Highlights: • 4′-CyanoI{sup ·} is the lowest energy radical intermediate in the reaction of 5,6-LAM. • 4′-CyanoPLP offers good prospect for the experimental observation of elusive I{sup ·}. • The calculated HFCCs would help to characterize 4′-cyanoI{sup ·} by EPR. - Abstract: The results of our calculations suggest that the reaction of 4′-cyanoPLP with lysinemore » 5,6-aminomutase offers better prospect for the experimental detection of elusive cyclic azacyclopropylcarbinyl radical (I{sup ·}), which is proposed to be a key intermediate in the reaction of pyridoxal-5′-phosphate dependent radical aminomutases. We have calculated the corresponding hyperfine coupling constants (HFCCs) for {sup 14}N and {sup 13}C of cyano group using several basis sets to help the characterization of 4′-cyanoI{sup ·}.« less

  17. Entangled quantum key distribution over two free-space optical links.

    PubMed

    Erven, C; Couteau, C; Laflamme, R; Weihs, G

    2008-10-13

    We report on the first real-time implementation of a quantum key distribution (QKD) system using entangled photon pairs that are sent over two free-space optical telescope links. The entangled photon pairs are produced with a type-II spontaneous parametric down-conversion source placed in a central, potentially untrusted, location. The two free-space links cover a distance of 435 m and 1,325 m respectively, producing a total separation of 1,575 m. The system relies on passive polarization analysis units, GPS timing receivers for synchronization, and custom written software to perform the complete QKD protocol including error correction and privacy amplification. Over 6.5 hours during the night, we observed an average raw key generation rate of 565 bits/s, an average quantum bit error rate (QBER) of 4.92%, and an average secure key generation rate of 85 bits/s.

  18. One-sided measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Cao, Wen-Fei; Zhen, Yi-Zheng; Zheng, Yu-Lin; Li, Li; Chen, Zeng-Bing; Liu, Nai-Le; Chen, Kai

    2018-01-01

    Measurement-device-independent quantum key distribution (MDI-QKD) protocol was proposed to remove all the detector side channel attacks, while its security relies on the trusted encoding systems. Here we propose a one-sided MDI-QKD (1SMDI-QKD) protocol, which enjoys detection loophole-free advantage, and at the same time weakens the state preparation assumption in MDI-QKD. The 1SMDI-QKD can be regarded as a modified MDI-QKD, in which Bob's encoding system is trusted, while Alice's is uncharacterized. For the practical implementation, we also provide a scheme by utilizing coherent light source with an analytical two decoy state estimation method. Simulation with realistic experimental parameters shows that the protocol has a promising performance, and thus can be applied to practical QKD applications.

  19. Experimental demonstration of polarization encoding quantum key distribution system based on intrinsically stable polarization-modulated units.

    PubMed

    Wang, Jindong; Qin, Xiaojuan; Jiang, Yinzhu; Wang, Xiaojing; Chen, Liwei; Zhao, Feng; Wei, Zhengjun; Zhang, Zhiming

    2016-04-18

    A proof-of-principle demonstration of a one-way polarization encoding quantum key distribution (QKD) system is demonstrated. This approach can automatically compensate for birefringence and phase drift. This is achieved by constructing intrinsically stable polarization-modulated units (PMUs) to perform the encoding and decoding, which can be used with four-state protocol, six-state protocol, and the measurement-device-independent (MDI) scheme. A polarization extinction ratio of about 30 dB was maintained for several hours over a 50 km optical fiber without any adjustments to our setup, which evidences its potential for use in practical applications.

  20. 33 CFR 110.189a - Key West Harbor, Key West, Fla., naval explosives anchorage area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Key West Harbor, Key West, Fla..., DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.189a Key West Harbor, Key West, Fla., naval explosives anchorage area. (a) The anchorage ground. A circular area with its...

  1. 33 CFR 110.189a - Key West Harbor, Key West, Fla., naval explosives anchorage area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Key West Harbor, Key West, Fla..., DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.189a Key West Harbor, Key West, Fla., naval explosives anchorage area. (a) The anchorage ground. A circular area with its...

  2. 33 CFR 110.189a - Key West Harbor, Key West, Fla., naval explosives anchorage area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Key West Harbor, Key West, Fla..., DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.189a Key West Harbor, Key West, Fla., naval explosives anchorage area. (a) The anchorage ground. A circular area with its...

  3. 33 CFR 110.189a - Key West Harbor, Key West, Fla., naval explosives anchorage area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Key West Harbor, Key West, Fla..., DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.189a Key West Harbor, Key West, Fla., naval explosives anchorage area. (a) The anchorage ground. A circular area with its...

  4. 33 CFR 110.189a - Key West Harbor, Key West, Fla., naval explosives anchorage area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Key West Harbor, Key West, Fla..., DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.189a Key West Harbor, Key West, Fla., naval explosives anchorage area. (a) The anchorage ground. A circular area with its...

  5. Using experimental design to define boundary manikins.

    PubMed

    Bertilsson, Erik; Högberg, Dan; Hanson, Lars

    2012-01-01

    When evaluating human-machine interaction it is central to consider anthropometric diversity to ensure intended accommodation levels. A well-known method is the use of boundary cases where manikins with extreme but likely measurement combinations are derived by mathematical treatment of anthropometric data. The supposition by that method is that the use of these manikins will facilitate accommodation of the expected part of the total, less extreme, population. In literature sources there are differences in how many and in what way these manikins should be defined. A similar field to the boundary case method is the use of experimental design in where relationships between affecting factors of a process is studied by a systematic approach. This paper examines the possibilities to adopt methodology used in experimental design to define a group of manikins. Different experimental designs were adopted to be used together with a confidence region and its axes. The result from the study shows that it is possible to adapt the methodology of experimental design when creating groups of manikins. The size of these groups of manikins depends heavily on the number of key measurements but also on the type of chosen experimental design.

  6. Comment: Spurious Correlation and Other Observations on Experimental Design for Engineering Dimensional Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Gregory F.

    2013-08-01

    This article discusses the paper "Experimental Design for Engineering Dimensional Analysis" by Albrecht et al. (2013, Technometrics). That paper provides and overview of engineering dimensional analysis (DA) for use in developing DA models. The paper proposes methods for generating model-robust experimental designs to supporting fitting DA models. The specific approach is to develop a design that maximizes the efficiency of a specified empirical model (EM) in the original independent variables, subject to a minimum efficiency for a DA model expressed in terms of dimensionless groups (DGs). This discussion article raises several issues and makes recommendations regarding the proposed approach. Also,more » the concept of spurious correlation is raised and discussed. Spurious correlation results from the response DG being calculated using several independent variables that are also used to calculate predictor DGs in the DA model.« less

  7. Teacher's Guide to SERAPHIM Software I. Chemistry: Experimental Foundations.

    ERIC Educational Resources Information Center

    Bogner, Donna J.

    Designed to assist chemistry teachers in selecting appropriate software programs, this publication is the first in a series of six teacher's guides from Project SERAPHIM, a program sponsored by the National Science Foundation. This guide is keyed to the chapters of the text "Chemistry: Experimental Foundations." Program suggestions are…

  8. Foundational Terminal Operations HITL: Experimental Design Slides

    NASA Technical Reports Server (NTRS)

    Rorie, Robert Conrad

    2017-01-01

    The UAS (Unmanned Aircraft Systems) in the NAS (National Airspace System) project is conducting its first investigation of UAS operations in the terminal environment. A workshop is being held to get input from key stakeholders on the experimental design and scenario development occuring for this simulation, which intends to begin data collection in September 2017. These slides cover the proposed design and methodolgy for the experiment.

  9. Image encryption using fingerprint as key based on phase retrieval algorithm and public key cryptography

    NASA Astrophysics Data System (ADS)

    Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing

    2015-09-01

    In this paper, a novel image encryption system with fingerprint used as a secret key is proposed based on the phase retrieval algorithm and RSA public key algorithm. In the system, the encryption keys include the fingerprint and the public key of RSA algorithm, while the decryption keys are the fingerprint and the private key of RSA algorithm. If the users share the fingerprint, then the system will meet the basic agreement of asymmetric cryptography. The system is also applicable for the information authentication. The fingerprint as secret key is used in both the encryption and decryption processes so that the receiver can identify the authenticity of the ciphertext by using the fingerprint in decryption process. Finally, the simulation results show the validity of the encryption scheme and the high robustness against attacks based on the phase retrieval technique.

  10. Experimental observation of ballistic nanofriction on graphene

    NASA Astrophysics Data System (ADS)

    Blue, Brandon; Lodge, Michael; Tang, Chun; Hubbard, William; Martini, Ashlie; Dawson, Ben; Ishigami, Masa

    Recent calculations have predicted that gold nanocrystals slide on graphite with two radically different friction coefficients depending on their speeds. At high sliding speeds in the range of 100?m/s, nanocrystals are expected to behave radically differently in what is known as the ballistic nanofriction regime. In this work, we present a direct measurement of ballistic nanofriction for gold nanocrystals on graphene. Nanocrystals are deposited onto an oscillating graphene-coated quartz crystal microbalance (QCM) in-situ under UHV and allowed to periodically ring down. After deposition, frictional parameters are measured as a function of oscillatory velocity to investigate the predicted velocity dependence of friction. Lubricity beyond even the predictions of ballistic nanofriction is observed at much lower surface velocities than expected, with drag coefficients approaching 8.65*10-14 kg/s. In comparison to the theoretically-predicted value of 2.0*10-13 kg/s, our results suggest a much lower interaction strength than proposed in contemporary models of nanoscopic sliding contacts even at relatively low speeds. This work is based on research supported by the National Science Foundation, Grant No. 0955625 (MLS, BTB, BDD and MI) and Grant No. CMMI-1265594 (CT and AM). BDD and MI were also supported by the Intelligence Community Postdoctoral Fellowship.

  11. Experimental observations of low-velocity collisional systems

    NASA Astrophysics Data System (ADS)

    Jorges, Jeffery; Dove, Adrienne; Colwell, Joshua

    Low-velocity collisions in systems of centimeter-sized objects may result in particle growth by accretion, rebounding, or erosive processes that result in the production of additional smaller particles. Numerical simulations of these systems are limited by a need to understand the collisional parameters governing the outcomes of these collisions over a range of conditions. Here, we present the results from laboratory experiments designed to explore low-velocity collisions by conducting experiments in a vacuum chamber in our 0.8-sec drop tower apparatus. These experiments utilize a variety of impacting spheres, including glass, Teflon, aluminum, stainless steel, and brass. These spheres are either used in their natural state or are ``mantled'' - coated with a few-mm thick layer of a cohesive powder. A high-speed, high-resolution video camera is used to record the motion of the colliding bodies. These videos are then processed and we track the particles to determine impactor speeds before and after collision and the collisional outcome. We determine how the coefficient of restitution varies as a function of material type, morphology, and impact velocity. For impact velocities in the range from about 20-100 cm/s we observe that mantling of particles has the most significant effect, reducing the coefficients of restitution.

  12. Experimental observations of shear band nucleation and propagation in a bulk metallic glass using wedge-like cylindrical indentation

    NASA Astrophysics Data System (ADS)

    Antoniou, Antonia Maki

    2006-12-01

    Bulk metallic glasses (BMGs), or amorphous metal alloys, have a unique combination of properties such as high strength, large elastic strain limit (up to 2%), corrosion resistance and formability. These unique properties make them candidates for precision mechanical elements, hinge supports, contact surfaces as well as miniaturized systems (MEMS). However, their limited ductility hinders further realizations of their industrial potential. Under uniaxial tension tests, metallic glass fails in a brittle manner with unstable propagation of a single shear band. There is a need to understand the conditions for shear band nucleation and propagation in order to achieve a superior material system with adequate toughness to ensure in-service reliability. This dissertation focuses on understanding the nucleation and propagation mechanisms of shear bands in BMGs under constrained deformation. The nature of the work is primarily experimental with integrated finite element simulations to elucidate the observed trends. Wedge indentation with a circular profile of different radii is used to provide a stable loading path for in situ monitoring of shear band nucleation, propagation in Vitreloy-1. Detailed analyses of the in-plane finite deformation fields are carried out using digital image correlation. The incremental surface analysis showed that multiple shear bands are developed beneath the indenter. The observed pattern closely follow the traces of slip line field for a pressure sensitive material. The first shear bands initiate in the bulk beneath the indenter when a critical level of mean pressure is achieved. Two distinct shear band patterns are developed, that conform to either the alpha or beta lines for each sector. The deformation zones developed under indenters with different radii were found to be self-similar. The evolution of shear bands beneath the indenter is also characterized into two different categories. A set of primary bands is identified to evolve with the

  13. Limitations on quantum key repeaters.

    PubMed

    Bäuml, Stefan; Christandl, Matthias; Horodecki, Karol; Winter, Andreas

    2015-04-23

    A major application of quantum communication is the distribution of entangled particles for use in quantum key distribution. Owing to noise in the communication line, quantum key distribution is, in practice, limited to a distance of a few hundred kilometres, and can only be extended to longer distances by use of a quantum repeater, a device that performs entanglement distillation and quantum teleportation. The existence of noisy entangled states that are undistillable but nevertheless useful for quantum key distribution raises the question of the feasibility of a quantum key repeater, which would work beyond the limits of entanglement distillation, hence possibly tolerating higher noise levels than existing protocols. Here we exhibit fundamental limits on such a device in the form of bounds on the rate at which it may extract secure key. As a consequence, we give examples of states suitable for quantum key distribution but unsuitable for the most general quantum key repeater protocol.

  14. Key Exoplanets in the Era of JWST

    NASA Astrophysics Data System (ADS)

    Batalha, Natasha; Mandell, Avi; Lewis, Nikole K.; Pontoppidan, Klaus

    2017-01-01

    In 2018, exoplanet science will enter a new era with the launch of the James Webb Space Telescope (JWST). With JWST's observing power, several studies have sought to characterize how the instruments will perform and what atmospheric spectral features could theoretically be detected using transmission spectroscopy. With just two years left until launch, it is imperative that the exoplanet community begins to digest and integrate these studies into their observing plans and strategies. In order to encourage this and to allow all members of the community access to JWST simulations, we present here an open source tool for creating observation simulations of all observatory-supported time-series spectroscopy modes. We describe our tool, PandExo and use it to calculate the expected signal-to-noise ratio (SNR) for every confirmed planetary system with J<12. Assuming chemical equilibrium, we then determine how many observation hours are needed to attain a SNR of 5 on key molecular absorption bands of H2O, CH4, and CO. We end by determining the number of planets (hot Jupiters, warm Neptunes, super-Earths, etc.) that are currently attainable with JWST.

  15. Extending key sharing: how to generate a key tightly coupled to a network security policy

    NASA Astrophysics Data System (ADS)

    Kazantzidis, Matheos

    2006-04-01

    Current state of the art security policy technologies, besides the small scale limitation and largely manual nature of accompanied management methods, are lacking a) in real-timeliness of policy implementation and b) vulnerabilities and inflexibility stemming from the centralized policy decision making; even if, for example, a policy description or access control database is distributed, the actual decision is often a centralized action and forms a system single point of failure. In this paper we are presenting a new fundamental concept that allows implement a security policy by a systematic and efficient key distribution procedure. Specifically, we extend the polynomial Shamir key splitting. According to this, a global key is split into n parts, any k of which can re-construct the original key. In this paper we present a method that instead of having "any k parts" be able to re-construct the original key, the latter can only be reconstructed if keys are combined as any access control policy describes. This leads into an easily deployable key generation procedure that results a single key per entity that "knows" its role in the specific access control policy from which it was derived. The system is considered efficient as it may be used to avoid expensive PKI operations or pairwise key distributions as well as provides superior security due to its distributed nature, the fact that the key is tightly coupled to the policy, and that policy change may be implemented easier and faster.

  16. Honeybees Learn Odour Mixtures via a Selection of Key Odorants

    PubMed Central

    Reinhard, Judith; Sinclair, Michael; Srinivasan, Mandyam V.; Claudianos, Charles

    2010-01-01

    Background The honeybee has to detect, process and learn numerous complex odours from her natural environment on a daily basis. Most of these odours are floral scents, which are mixtures of dozens of different odorants. To date, it is still unclear how the bee brain unravels the complex information contained in scent mixtures. Methodology/Principal Findings This study investigates learning of complex odour mixtures in honeybees using a simple olfactory conditioning procedure, the Proboscis-Extension-Reflex (PER) paradigm. Restrained honeybees were trained to three scent mixtures composed of 14 floral odorants each, and then tested with the individual odorants of each mixture. Bees did not respond to all odorants of a mixture equally: They responded well to a selection of key odorants, which were unique for each of the three scent mixtures. Bees showed less or very little response to the other odorants of the mixtures. The bees' response to mixtures composed of only the key odorants was as good as to the original mixtures of 14 odorants. A mixture composed of the other, non-key-odorants elicited a significantly lower response. Neither an odorant's volatility or molecular structure, nor learning efficiencies for individual odorants affected whether an odorant became a key odorant for a particular mixture. Odorant concentration had a positive effect, with odorants at high concentration likely to become key odorants. Conclusions/Significance Our study suggests that the brain processes complex scent mixtures by predominantly learning information from selected key odorants. Our observations on key odorant learning lend significant support to previous work on olfactory learning and mixture processing in honeybees. PMID:20161714

  17. Metrological challenges for measurements of key climatological observables: Oceanic salinity and pH, and atmospheric humidity. Part 1: Overview

    PubMed Central

    Feistel, R; Wielgosz, R; Bell, S A; Camões, M F; Cooper, J R; Dexter, P; Dickson, A G; Fisicaro, P; Harvey, A H; Heinonen, M; Hellmuth, O; Kretzschmar, H-J; Lovell-Smith, J W; McDougall, T J; Pawlowicz, R; Ridout, P; Seitz, S; Spitzer, P; Stoica, D; Wolf, H

    2016-01-01

    Water in its three ambient phases plays the central thermodynamic role in the terrestrial climate system. Clouds control Earth’s radiation balance, atmospheric water vapour is the strongest “greenhouse” gas, and non-equilibrium relative humidity at the air-sea interface drives evaporation and latent heat export from the ocean. On climatic time scales, melting ice caps and regional deviations of the hydrological cycle result in changes of seawater salinity, which in turn may modify the global circulation of the oceans and their ability to store heat and to buffer anthropogenically produced carbon dioxide. In this paper, together with three companion articles, we examine the climatologically relevant quantities ocean salinity, seawater pH and atmospheric relative humidity, noting fundamental deficiencies in the definitions of those key observables, and their lack of secure foundation on the International System of Units, the SI. The metrological histories of those three quantities are reviewed, problems with their current definitions and measurement practices are analysed, and options for future improvements are discussed in conjunction with the recent seawater standard TEOS-10. It is concluded that the International Bureau of Weights and Measures, BIPM, in cooperation with the International Association for the Properties of Water and Steam, IAPWS, along with other international organisations and institutions, can make significant contributions by developing and recommending state-of-the-art solutions for these long standing metrological problems in climatology. PMID:26900179

  18. Centrifugal slurry pump wear and hydraulic studies. Phase II report. Experimental studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mistry, D.; Cooper, P.; Biswas, C.

    1983-01-01

    This report describes the work performed by Ingersoll-Rand Research, Inc., under Phase II, Experimental Studies for the contract entitled, Centrifugal Slurry Pump Wear and Hydraulic Studies. This work was carried out for the US Department of Energy under Contract No. DE-AC-82PC50035. The basic development approach pursued this phase is presented, followed by a discussion on wear relationships. The analysis, which resulted in the development of a mathematical wear model relating pump life to some of the key design and operating parameters, is presented. The results, observations, and conclusions of the experimental investigation on small scale pumps that led to themore » selected design features for the prototype pump are discussed. The material investigation was performed at IRRI, ORNL and Battelle. The rationale for selecting the materials for testing, the test methods and apparatus used, and the results obtained are presented followed by a discussion on materials for a prototype pump. In addition, the prototype pump test facility description, as well as the related design and equipment details, are presented. 20 references, 53 figures, 13 tables.« less

  19. Characterization of available light for seagrass and patch reef productivity in Sugarloaf Key, Lower Florida Keys

    USGS Publications Warehouse

    Toro-Farmer, Gerardo; Muller-Karger, Frank E.; Vega-Rodriguez, Maria; Melo, Nelson; Yates, Kimberly K.; Johns, Elizabeth; Cerdeira-Estrada, Sergio; Herwitz, Stan R.

    2016-01-01

    Light availability is an important factor driving primary productivity in benthic ecosystems, but in situ and remote sensing measurements of light quality are limited for coral reefs and seagrass beds. We evaluated the productivity responses of a patch reef and a seagrass site in the Lower Florida Keys to ambient light availability and spectral quality. In situ optical properties were characterized utilizing moored and water column bio-optical and hydrographic measurements. Net ecosystem productivity (NEP) was also estimated for these study sites using benthic productivity chambers. Our results show higher spectral light attenuation and absorption, and lower irradiance during low tide in the patch reef, tracking the influx of materials from shallower coastal areas. In contrast, the intrusion of clearer surface Atlantic Ocean water caused lower values of spectral attenuation and absorption, and higher irradiance in the patch reef during high tide. Storms during the studied period, with winds >10 m·s−1, caused higher spectral attenuation values. A spatial gradient of NEP was observed, from high productivity in the shallow seagrass area, to lower productivity in deeper patch reefs. The highest daytime NEP was observed in the seagrass, with values of almost 0.4 g·O2·m−2·h−1. Productivity at the patch reef area was lower in May than during October 2012 (mean = 0.137 and 0.177 g·O2·m−2·h−1, respectively). Higher photosynthetic active radiation (PAR) levels measured above water and lower light attenuation in the red region of the visible spectrum (~666 to ~699 nm) had a positive correlation with NEP. Our results indicate that changes in light availability and quality by suspended or resuspended particles limit benthic productivity in the Florida Keys.

  20. Using experimental evolution to explore natural patterns between bacterial motility and resistance to bacteriophages

    PubMed Central

    Koskella, Britt; Taylor, Tiffany B; Bates, Jennifer; Buckling, Angus

    2011-01-01

    Resistance of bacteria to phages may be gained by alteration of surface proteins to which phages bind, a mechanism that is likely to be costly as these molecules typically have critical functions such as movement or nutrient uptake. To address this potential trade-off, we combine a systematic study of natural bacteria and phage populations with an experimental evolution approach. We compare motility, growth rate and susceptibility to local phages for 80 bacteria isolated from horse chestnut leaves and, contrary to expectation, find no negative association between resistance to phages and bacterial motility or growth rate. However, because correlational patterns (and their absence) are open to numerous interpretations, we test for any causal association between resistance to phages and bacterial motility using experimental evolution of a subset of bacteria in both the presence and absence of naturally associated phages. Again, we find no clear link between the acquisition of resistance and bacterial motility, suggesting that for these natural bacterial populations, phage-mediated selection is unlikely to shape bacterial motility, a key fitness trait for many bacteria in the phyllosphere. The agreement between the observed natural pattern and the experimental evolution results presented here demonstrates the power of this combined approach for testing evolutionary trade-offs. PMID:21509046

  1. Experimental quantum fingerprinting with weak coherent pulses

    PubMed Central

    Xu, Feihu; Arrazola, Juan Miguel; Wei, Kejin; Wang, Wenyuan; Palacios-Avila, Pablo; Feng, Chen; Sajeed, Shihan; Lütkenhaus, Norbert; Lo, Hoi-Kwong

    2015-01-01

    Quantum communication holds the promise of creating disruptive technologies that will play an essential role in future communication networks. For example, the study of quantum communication complexity has shown that quantum communication allows exponential reductions in the information that must be transmitted to solve distributed computational tasks. Recently, protocols that realize this advantage using optical implementations have been proposed. Here we report a proof-of-concept experimental demonstration of a quantum fingerprinting system that is capable of transmitting less information than the best-known classical protocol. Our implementation is based on a modified version of a commercial quantum key distribution system using off-the-shelf optical components over telecom wavelengths, and is practical for messages as large as 100 Mbits, even in the presence of experimental imperfections. Our results provide a first step in the development of experimental quantum communication complexity. PMID:26515586

  2. Climate warming drives local extinction: Evidence from observation and experimentation.

    PubMed

    Panetta, Anne Marie; Stanton, Maureen L; Harte, John

    2018-02-01

    Despite increasing concern about elevated extinction risk as global temperatures rise, it is difficult to confirm causal links between climate change and extinction. By coupling 25 years of in situ climate manipulation with experimental seed introductions and both historical and current plant surveys, we identify causal, mechanistic links between climate change and the local extinction of a widespread mountain plant ( Androsace septentrionalis ). Climate warming causes precipitous declines in population size by reducing fecundity and survival across multiple life stages. Climate warming also purges belowground seed banks, limiting the potential for the future recovery of at-risk populations under ameliorated conditions. Bolstered by previous reports of plant community shifts in this experiment and in other habitats, our findings not only support the hypothesis that climate change can drive local extinction but also foreshadow potentially widespread species losses in subalpine meadows as climate warming continues.

  3. A Primer on Observational Measurement.

    PubMed

    Girard, Jeffrey M; Cohn, Jeffrey F

    2016-08-01

    Observational measurement plays an integral role in a variety of scientific endeavors within biology, psychology, sociology, education, medicine, and marketing. The current article provides an interdisciplinary primer on observational measurement; in particular, it highlights recent advances in observational methodology and the challenges that accompany such growth. First, we detail the various types of instrument that can be used to standardize measurements across observers. Second, we argue for the importance of validity in observational measurement and provide several approaches to validation based on contemporary validity theory. Third, we outline the challenges currently faced by observational researchers pertaining to measurement drift, observer reactivity, reliability analysis, and time/expense. Fourth, we describe recent advances in computer-assisted measurement, fully automated measurement, and statistical data analysis. Finally, we identify several key directions for future observational research to explore.

  4. Attenuation and Enhancement of Compliance with Experimental Demand Characteristics

    ERIC Educational Resources Information Center

    Navarick, Douglas J.

    2007-01-01

    College students chose between reinforcement schedules in which a key press produced a cartoon video followed by nonreinforcement. The experimenter introduced a demand characteristic by stating a preference for choosing one schedule while indicating that the other schedule was also acceptable. With identical schedules (25 s of reinforcement, 5 s…

  5. Experimental measurement of coil-rod-coil block copolymer tracer diffusion through entangled coil homopolymers

    PubMed Central

    Wang, Muzhou; Timachova, Ksenia; Olsen, Bradley D.

    2014-01-01

    The diffusion of coil-rod-coil triblock copolymers in entangled coil homopolymers is experimentally measured and demonstrated to be significantly slower than rod or coil homopolymers of the same molecular weight. A model coil-rod-coil triblock was prepared by expressing rodlike alanine-rich α-helical polypeptides in E. coli and conjugating coillike poly(ethylene oxide) (PEO) to both ends to form coil-rod-coil triblock copolymers. Tracer diffusion through entangled PEO homopolymer melts was measured using forced Rayleigh scattering at various rod lengths, coil molecular weights, and coil homopolymer concentrations. For rod lengths, L, that are close to the entanglementh length, a, the ratio between triblock diffusivity and coil homopolymer diffusivity decreases monotonically and is only a function of L/a, in quantitative agreement with previous simulation results. For large rod lengths, diffusion follows an arm retraction scaling, which is also consistent with previous theoretical predictions. These experimental results support the key predictions of theory and simulation, suggesting that the mismatch in curvature between rod and coil entanglement tubes leads to the observed diffusional slowing. PMID:25484454

  6. Decoy-state quantum key distribution with more than three types of photon intensity pulses

    NASA Astrophysics Data System (ADS)

    Chau, H. F.

    2018-04-01

    The decoy-state method closes source security loopholes in quantum key distribution (QKD) using a laser source. In this method, accurate estimates of the detection rates of vacuum and single-photon events plus the error rate of single-photon events are needed to give a good enough lower bound of the secret key rate. Nonetheless, the current estimation method for these detection and error rates, which uses three types of photon intensities, is accurate up to about 1 % relative error. Here I report an experimentally feasible way that greatly improves these estimates and hence increases the one-way key rate of the BB84 QKD protocol with unbiased bases selection by at least 20% on average in realistic settings. The major tricks are the use of more than three types of photon intensities plus the fact that estimating bounds of the above detection and error rates is numerically stable, although these bounds are related to the inversion of a high condition number matrix.

  7. 46 CFR 7.100 - Florida Reefs and Keys from Miami, FL to Marquesas Keys, FL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... latitude 24°27.7′ N. longitude 81°48.1′ W. (Key West Entrance Lighted Whistle Buoy); thence to Cosgrove... 46 Shipping 1 2014-10-01 2014-10-01 false Florida Reefs and Keys from Miami, FL to Marquesas Keys... TO THE PUBLIC BOUNDARY LINES Atlantic Coast § 7.100 Florida Reefs and Keys from Miami, FL to...

  8. 46 CFR 7.100 - Florida Reefs and Keys from Miami, FL to Marquesas Keys, FL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... latitude 24°27.7′ N. longitude 81°48.1′ W. (Key West Entrance Lighted Whistle Buoy); thence to Cosgrove... 46 Shipping 1 2012-10-01 2012-10-01 false Florida Reefs and Keys from Miami, FL to Marquesas Keys... TO THE PUBLIC BOUNDARY LINES Atlantic Coast § 7.100 Florida Reefs and Keys from Miami, FL to...

  9. 46 CFR 7.100 - Florida Reefs and Keys from Miami, FL to Marquesas Keys, FL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... latitude 24°27.7′ N. longitude 81°48.1′ W. (Key West Entrance Lighted Whistle Buoy); thence to Cosgrove... 46 Shipping 1 2010-10-01 2010-10-01 false Florida Reefs and Keys from Miami, FL to Marquesas Keys... TO THE PUBLIC BOUNDARY LINES Atlantic Coast § 7.100 Florida Reefs and Keys from Miami, FL to...

  10. 46 CFR 7.100 - Florida Reefs and Keys from Miami, FL to Marquesas Keys, FL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... latitude 24°27.7′ N. longitude 81°48.1′ W. (Key West Entrance Lighted Whistle Buoy); thence to Cosgrove... 46 Shipping 1 2011-10-01 2011-10-01 false Florida Reefs and Keys from Miami, FL to Marquesas Keys... TO THE PUBLIC BOUNDARY LINES Atlantic Coast § 7.100 Florida Reefs and Keys from Miami, FL to...

  11. 46 CFR 7.100 - Florida Reefs and Keys from Miami, FL to Marquesas Keys, FL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... latitude 24°27.7′ N. longitude 81°48.1′ W. (Key West Entrance Lighted Whistle Buoy); thence to Cosgrove... 46 Shipping 1 2013-10-01 2013-10-01 false Florida Reefs and Keys from Miami, FL to Marquesas Keys... TO THE PUBLIC BOUNDARY LINES Atlantic Coast § 7.100 Florida Reefs and Keys from Miami, FL to...

  12. Contributions from associative and explicit sequence knowledge to the execution of discrete keying sequences.

    PubMed

    Verwey, Willem B

    2015-05-01

    Research has provided many indications that highly practiced 6-key sequences are carried out in a chunking mode in which key-specific stimuli past the first are largely ignored. When in such sequences a deviating stimulus occasionally occurs at an unpredictable location, participants fall back to responding to individual stimuli (Verwey & Abrahamse, 2012). The observation that in such a situation execution still benefits from prior practice has been attributed to the possibility to operate in an associative mode. To better understand the contribution to the execution of keying sequences of motor chunks, associative sequence knowledge and also of explicit sequence knowledge, the present study tested three alternative accounts for the earlier finding of an execution rate increase at the end of 6-key sequences performed in the associative mode. The results provide evidence that the earlier observed execution rate increase can be attributed to the use of explicit sequence knowledge. In the present experiment this benefit was limited to sequences that are executed at the moderately fast rates of the associative mode, and occurred at both the earlier and final elements of the sequences. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Depot effect of bioactive components in experimental membrane filtrations

    NASA Astrophysics Data System (ADS)

    Mitev, D.; Peshev, D.; Peev, G.; Peeva, L.

    2017-01-01

    Depot effects were found to be accompanying phenomena of membrane separation processes. Accumulation of target species in the membrane matrix during feasibility tests can hamper proper conclusions or compromise the filtration results. Therefore, we investigated the effects of delayed membrane release of chlorogenic acid and caffeine, considered as key compounds of interest in spent coffee products’ recovery treatment. Permeate fluxes and key components release were studied in course of 24 hours via nanofiltration of pure solvent, both immediately after the mock solution filtration and after idle stay. Conclusions are drawn and recommendations advised for proper analysis of experimental data on membrane screening.

  14. Support of Herschel Key Programme Teams at the NASA Herschel Science Center

    NASA Astrophysics Data System (ADS)

    Shupe, David L.; Appleton, P. N.; Ardila, D.; Bhattacharya, B.; Mei, Y.; Morris, P.; Rector, J.; NHSC Team

    2010-01-01

    The first science data from the Herschel Space Observatory were distributed to Key Programme teams in September 2009. This poster describes a number of resources that have been developed by the NASA Herschel Science Center (NHSC) to support the first users of the observatory. The NHSC webpages and Helpdesk serve as the starting point for information and queries from the US community. Details about the use of the Herschel Common Science Software can be looked up in the Helpdesk Knowledgebase. The capability of real-time remote support through desktop sharing has been implemented. The NHSC continues to host workshops on data analysis and observation planning. Key Programme teams have been provided Wiki sites upon request for their team's private use and for sharing information with other teams. A secure data storage area is in place for troubleshooting purposes and for use by visitors. The NHSC draws upon close working relationships with Instrument Control Centers and the Herschel Science Center in Madrid in order to have the necessary expertise on hand to assist Herschel observers, including both Key Programme teams and respondents to upcoming open time proposal calls.

  15. Demonstration of differential phase-shift keying demodulation at 10 Gbit/s optimal fiber Bragg grating filters.

    PubMed

    Gatti, Davide; Galzerano, Gianluca; Laporta, Paolo; Longhi, Stefano; Janner, Davide; Guglierame, Andrea; Belmonte, Michele

    2008-07-01

    Optimal demodulation of differential phase-shift keying signals at 10 Gbit/s is experimentally demonstrated using a specially designed structured fiber Bragg grating composed by Fabry-Perot coupled cavities. Bit-error-rate measurements show that, as compared with a conventional Gaussian-shaped filter, our demodulator gives approximately 2.8 dB performance improvement.

  16. Overview of topographic effects based on experimental observations: meaning, causes and possible interpretations

    NASA Astrophysics Data System (ADS)

    Massa, Marco; Barani, Simone; Lovati, Sara

    2014-06-01

    The paper presents an extensive review of topographic effects in seismology taking into account the knowledge of 40 yr of scientific literature. An overview of topographic effects based on experimental observations and numerical modelling is presented with the aim of highlighting meaning and causes of these phenomena as well as possible correlations between site response (fundamental frequency, amplification level) and geometrical (width and shape ratio of a relief) parameters. After a thorough summary of topographic effects, the paper focuses on five Italian sites whose seismic response is potentially affected by local morphology, as already evidenced by previous studies. In this study, seismic data recorded at these sites are analysed computing directional spectral ratios both in terms of horizontal to vertical spectral ratios (HVSRs) and, wherever possible, in terms of standard spectral ratios (SSRs). The analysis lead to the conclusion that wavefield tends to be polarized along a direction perpendicular to the main axis of a topographic irregularity, direction along which ground motion amplification is maximum. The final section of the article compares and contrasts different spectral ratio techniques in order to examine their effectiveness and reliability in detecting topographic effects. The examples discussed in the paper show that site responses based on HVSRs rather than SSR measurements could lead to misinterpretation of ground response results, both as concerns the definition of the site fundamental frequency and amplification level. Results and findings of this work will be used as starting point to discuss the influence of topographic effects on ground motion prediction equations and regulations for design. These topics will be discussed in the companion article.

  17. Keys and seats: Spatial response coding underlying the joint spatial compatibility effect.

    PubMed

    Dittrich, Kerstin; Dolk, Thomas; Rothe-Wulf, Annelie; Klauer, Karl Christoph; Prinz, Wolfgang

    2013-11-01

    Spatial compatibility effects (SCEs) are typically observed when participants have to execute spatially defined responses to nonspatial stimulus features (e.g., the color red or green) that randomly appear to the left and the right. Whereas a spatial correspondence of stimulus and response features facilitates response execution, a noncorrespondence impairs task performance. Interestingly, the SCE is drastically reduced when a single participant responds to one stimulus feature (e.g., green) by operating only one response key (individual go/no-go task), whereas a full-blown SCE is observed when the task is distributed between two participants (joint go/no-go task). This joint SCE (a.k.a. the social Simon effect) has previously been explained by action/task co-representation, whereas alternative accounts ascribe joint SCEs to spatial components inherent in joint go/no-go tasks that allow participants to code their responses spatially. Although increasing evidence supports the idea that spatial rather than social aspects are responsible for joint SCEs emerging, it is still unclear to which component(s) the spatial coding refers to: the spatial orientation of response keys, the spatial orientation of responding agents, or both. By varying the spatial orientation of the responding agents (Exp. 1) and of the response keys (Exp. 2), independent of the spatial orientation of the stimuli, in the present study we found joint SCEs only when both the seating and the response key alignment matched the stimulus alignment. These results provide evidence that spatial response coding refers not only to the response key arrangement, but also to the-often neglected-spatial orientation of the responding agents.

  18. Identification of the Key Fields and Their Key Technical Points of Oncology by Patent Analysis.

    PubMed

    Zhang, Ting; Chen, Juan; Jia, Xiaofeng

    2015-01-01

    This paper aims to identify the key fields and their key technical points of oncology by patent analysis. Patents of oncology applied from 2006 to 2012 were searched in the Thomson Innovation database. The key fields and their key technical points were determined by analyzing the Derwent Classification (DC) and the International Patent Classification (IPC), respectively. Patent applications in the top ten DC occupied 80% of all the patent applications of oncology, which were the ten fields of oncology to be analyzed. The number of patent applications in these ten fields of oncology was standardized based on patent applications of oncology from 2006 to 2012. For each field, standardization was conducted separately for each of the seven years (2006-2012) and the mean of the seven standardized values was calculated to reflect the relative amount of patent applications in that field; meanwhile, regression analysis using time (year) and the standardized values of patent applications in seven years (2006-2012) was conducted so as to evaluate the trend of patent applications in each field. Two-dimensional quadrant analysis, together with the professional knowledge of oncology, was taken into consideration in determining the key fields of oncology. The fields located in the quadrant with high relative amount or increasing trend of patent applications are identified as key ones. By using the same method, the key technical points in each key field were identified. Altogether 116,820 patents of oncology applied from 2006 to 2012 were retrieved, and four key fields with twenty-nine key technical points were identified, including "natural products and polymers" with nine key technical points, "fermentation industry" with twelve ones, "electrical medical equipment" with four ones, and "diagnosis, surgery" with four ones. The results of this study could provide guidance on the development direction of oncology, and also help researchers broaden innovative ideas and discover new

  19. Phenobarbital and propiconazole toxicogenomic profiles in mice show major similarities consistent with the key role that constitutive androstane receptor (CAR) activation plays in their mode of action

    PubMed Central

    Currie, Richard A.; Peffer, Richard C.; Goetz, Amber K.; Omiecinski, Curtis J.; Goodman, Jay I.

    2014-01-01

    Toxicogenomics (TGx) is employed frequently to investigate underlying molecular mechanisms of the compound of interest and, thus, has become an aid to mode of action determination. However, the results and interpretation of a TGx dataset are influenced by the experimental design and methods of analysis employed. This article describes an evaluation and reanalysis, by two independent laboratories, of previously published TGx mouse liver microarray data for a triazole fungicide, propiconazole (PPZ), and the anticonvulsant drug phenobarbital (PB). Propiconazole produced an increase incidence of liver tumors in male CD-1 mice only at a dose that exceeded the maximum tolerated dose (2500 ppm). Firstly, we illustrate how experimental design differences between two in vivo studies with PPZ and PB may impact the comparisons of TGx results. Secondly, we demonstrate that different researchers using different pathway analysis tools can come to different conclusions on specific mechanistic pathways, even when using the same datasets. Finally, despite these differences the results across three different analyses also show a striking degree of similarity observed for PPZ and PB treated livers when the expression data are viewed as major signaling pathways and cell processes affected. Additional studies described here show that the postulated key event of hepatocellular proliferation was observed in CD-1 mice for both PPZ and PB, and that PPZ is also a potent activator of the mouse CAR nuclear receptor. Thus, with regard to the events which are hallmarks of CAR-induced effects that are key events in the mode of action (MOA) of mouse liver carcinogenesis with PB, PPZ-induced tumors can be viewed as being promoted by a similar PB-like CAR-dependent MOA. PMID:24675475

  20. Results of the Workshop on Impact Cratering: Bridging the Gap Between Modeling and Observations

    NASA Technical Reports Server (NTRS)

    Herrick, Robert (Editor); Pierazzo, Elisabetta (Editor)

    2003-01-01

    On February 7-9,2003, approximately 60 scientists gathered at the Lunar and Planetary Institute in Houston, Texas, for a workshop devoted to improving knowledge of the impact cratering process. We (co-conveners Elisabetta Pierazzo and Robert Herrick) both focus research efforts on studying the impact cratering process, but the former specializes in numerical modeling while the latter draws inferences from observations of planetary craters. Significant work has been done in several key areas of impact studies over the past several years, but in many respects there seem to be a disconnect between the groups employing different approaches, in particular modeling versus observations. The goal in convening this workshop was to bring together these disparate groups to have an open dialogue for the purposes of answering outstanding questions about the impact process and setting future research directions. We were successful in getting participation from most of the major research groups studying the impact process. Participants gathered from five continents with research specialties ranging from numerical modeling to field geology, and from small-scale experimentation and geochemical sample analysis to seismology and remote sensing.With the assistance of the scientific advisory committee (Bevan French, Kevin Housen, Bill McKinnon, Jay Melosh, and Mike Zolensky), the workshop was divided into a series of sessions devoted to different aspects of the cratering process. Each session was opened by two invited t a b , one given by a specialist in numerical or experimental modeling approaches, and the other by a specialist in geological, geophysical, or geochemical observations. Shorter invited and contributed talks filled out the sessions, which were then concluded with an open discussion time. All modelers were requested to address the question of what observations would better constrain their models, and all observationists were requested to discuss how their observations can