Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning.
He, Zhili; Zhang, Ping; Wu, Linwei; Rocha, Andrea M; Tu, Qichao; Shi, Zhou; Wu, Bo; Qin, Yujia; Wang, Jianjun; Yan, Qingyun; Curtis, Daniel; Ning, Daliang; Van Nostrand, Joy D; Wu, Liyou; Yang, Yunfeng; Elias, Dwayne A; Watson, David B; Adams, Michael W W; Fields, Matthew W; Alm, Eric J; Hazen, Terry C; Adams, Paul D; Arkin, Adam P; Zhou, Jizhong
2018-02-20
Contamination from anthropogenic activities has significantly impacted Earth's biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly ( P < 0.05) as uranium or nitrate increased, and their changes could be used to successfully predict uranium and nitrate contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning. IMPORTANCE Disentangling the relationships between biodiversity and ecosystem functioning is an important but poorly understood topic in ecology. Predicting ecosystem functioning on the basis of biodiversity is even more difficult, particularly with microbial biomarkers. As an exploratory effort, this study used key microbial functional genes as biomarkers to provide predictive understanding of environmental contamination and ecosystem functioning. The results indicated that the overall functional gene richness/diversity decreased as uranium increased in groundwater, while specific key microbial guilds increased significantly as uranium or nitrate increased. These key microbial functional genes could be used to successfully predict environmental contamination and ecosystem functioning. This study represents a significant advance in using functional gene markers to predict the spatial distribution of environmental contaminants and ecosystem functioning toward predictive microbial ecology, which is an ultimate goal of microbial ecology. Copyright © 2018 He et al.
Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D; Deng, Ye; He, Zhili; Gihring, Thomas; Zhang, Gengxin; Schadt, Chris W; Watson, David; Jardine, Phil; Criddle, Craig S; Brooks, Scott; Marsh, Terence L; Tiedje, James M; Arkin, Adam P; Zhou, Jizhong
2015-06-15
A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this study, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using a comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO3 (-), Mn(IV), Fe(III), U(VI), and SO4 (2-) significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO3 (-), Mn(II), Fe(II), U(VI), and SO4 (2-). Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. This study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D.; Deng, Ye; He, Zhili; Gihring, Thomas; Zhang, Gengxin; Schadt, Chris W.; Watson, David; Jardine, Phil; Criddle, Craig S.; Brooks, Scott; Marsh, Terence L.; Tiedje, James M.; Arkin, Adam P.
2015-01-01
A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this study, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using a comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO3−, Mn(IV), Fe(III), U(VI), and SO42− significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO3−, Mn(II), Fe(II), U(VI), and SO42−. Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. This study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction. PMID:25862231
Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D.; ...
2015-04-10
A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this paper, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using amore » comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO 3 -, Mn(IV), Fe(III), U(VI), and SO 4 2- significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO 3 -, Mn(II), Fe(II), U(VI), and SO 4 2-. Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. Finally, this study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D.
A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this paper, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using amore » comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO 3 -, Mn(IV), Fe(III), U(VI), and SO 4 2- significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO 3 -, Mn(II), Fe(II), U(VI), and SO 4 2-. Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. Finally, this study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction.« less
Cong, Jing; Liu, Xueduan; Lu, Hui; Xu, Han; Li, Yide; Deng, Ye; Li, Diqiang; Zhang, Yuguang
2015-08-20
Tropical rainforests cover over 50% of all known plant and animal species and provide a variety of key resources and ecosystem services to humans, largely mediated by metabolic activities of soil microbial communities. A deep analysis of soil microbial communities and their roles in ecological processes would improve our understanding on biogeochemical elemental cycles. However, soil microbial functional gene diversity in tropical rainforests and causative factors remain unclear. GeoChip, contained almost all of the key functional genes related to biogeochemical cycles, could be used as a specific and sensitive tool for studying microbial gene diversity and metabolic potential. In this study, soil microbial functional gene diversity in tropical rainforest was analyzed by using GeoChip technology. Gene categories detected in the tropical rainforest soils were related to different biogeochemical processes, such as carbon (C), nitrogen (N) and phosphorus (P) cycling. The relative abundance of genes related to C and P cycling detected mostly derived from the cultured bacteria. C degradation gene categories for substrates ranging from labile C to recalcitrant C were all detected, and gene abundances involved in many recalcitrant C degradation gene categories were significantly (P < 0.05) different among three sampling sites. The relative abundance of genes related to N cycling detected was significantly (P < 0.05) different, mostly derived from the uncultured bacteria. The gene categories related to ammonification had a high relative abundance. Both canonical correspondence analysis and multivariate regression tree analysis showed that soil available N was the most correlated with soil microbial functional gene structure. Overall high microbial functional gene diversity and different soil microbial metabolic potential for different biogeochemical processes were considered to exist in tropical rainforest. Soil available N could be the key factor in shaping the soil microbial functional gene structure and metabolic potential.
Gong, Cuihua; Sun, Shangtong; Liu, Bing; Wang, Jing; Chen, Xiaodong
2017-06-01
The study aimed to identify the potential target genes and key miRNAs as well as to explore the underlying mechanisms in the pathogenesis of oral lichen planus (OLP) by bioinformatics analysis. The microarray data of GSE38617 were downloaded from Gene Expression Omnibus (GEO) database. A total of 7 OLP and 7 normal samples were used to identify the differentially expressed genes (DEGs) and miRNAs. The DEGs were then performed functional enrichment analyses. Furthermore, DEG-miRNA network and miRNA-function network were constructed by Cytoscape software. Total 1758 DEGs (598 up- and 1160 down-regulated genes) and 40 miRNAs (17 up- and 23 down-regulated miRNAs) were selected. The up-regulated genes were related to nuclear factor-Kappa B (NF-κB) signaling pathway, while down-regulated genes were mainly enriched in the function of ribosome. Tumor necrosis factor (TNF), caspase recruitment domain family, member 11 (CARD11) and mitochondrial ribosomal protein (MRP) genes were identified in these functions. In addition, miR-302 was a hub node in DEG-miRNA network and regulated cyclin D1 (CCND1). MiR-548a-2 was the key miRNA in miRNA-function network by regulating multiple functions including ribosomal function. The NF-κB signaling pathway and ribosome function may be the pathogenic mechanisms of OLP. The genes such as TNF, CARD11, MRP genes and CCND1 may be potential therapeutic target genes in OLP. MiR-548a-2 and miR-302 may play important roles in OLP development. Copyright © 2017 Elsevier Ltd. All rights reserved.
PLAU inferred from a correlation network is critical for suppressor function of regulatory T cells
He, Feng; Chen, Hairong; Probst-Kepper, Michael; Geffers, Robert; Eifes, Serge; del Sol, Antonio; Schughart, Klaus; Zeng, An-Ping; Balling, Rudi
2012-01-01
Human FOXP3+CD25+CD4+ regulatory T cells (Tregs) are essential to the maintenance of immune homeostasis. Several genes are known to be important for murine Tregs, but for human Tregs the genes and underlying molecular networks controlling the suppressor function still largely remain unclear. Here, we describe a strategy to identify the key genes directly from an undirected correlation network which we reconstruct from a very high time-resolution (HTR) transcriptome during the activation of human Tregs/CD4+ T-effector cells. We show that a predicted top-ranked new key gene PLAU (the plasminogen activator urokinase) is important for the suppressor function of both human and murine Tregs. Further analysis unveils that PLAU is particularly important for memory Tregs and that PLAU mediates Treg suppressor function via STAT5 and ERK signaling pathways. Our study demonstrates the potential for identifying novel key genes for complex dynamic biological processes using a network strategy based on HTR data, and reveals a critical role for PLAU in Treg suppressor function. PMID:23169000
Pan, Qian; Peng, Jin; Zhou, Xue; Yang, Hao; Zhang, Wei
2012-07-01
In order to screen out important genes from large gene data of gene microarray after nerve injury, we combine gene ontology (GO) method and computer pattern recognition technology to find key genes responding to nerve injury, and then verify one of these screened-out genes. Data mining and gene ontology analysis of gene chip data GSE26350 was carried out through MATLAB software. Cd44 was selected from screened-out key gene molecular spectrum by comparing genes' different GO terms and positions on score map of principal component. Function interferences were employed to influence the normal binding of Cd44 and one of its ligands, chondroitin sulfate C (CSC), to observe neurite extension. Gene ontology analysis showed that the first genes on score map (marked by red *) mainly distributed in molecular transducer activity, receptor activity, protein binding et al molecular function GO terms. Cd44 is one of six effector protein genes, and attracted us with its function diversity. After adding different reagents into the medium to interfere the normal binding of CSC and Cd44, varying-degree remissions of CSC's inhibition on neurite extension were observed. CSC can inhibit neurite extension through binding Cd44 on the neuron membrane. This verifies that important genes in given physiological processes can be identified by gene ontology analysis of gene chip data.
Development of genome-based anti-virulence therapeutics to control HLB
USDA-ARS?s Scientific Manuscript database
Orthologous gene replacement technique has been developed to confirm functions of key virulence genes in 'Candidatus Liberibacters asiaticus'. These results facilitate the development of antivirulence drugs that specifically target functional domains of virulence gene products to disarm pathogenicit...
Xie, Jianping; He, Zhili; Liu, Xinxing; Liu, Xueduan; Van Nostrand, Joy D.; Deng, Ye; Wu, Liyou; Zhou, Jizhong; Qiu, Guanzhou
2011-01-01
Acid mine drainage (AMD) is an extreme environment, usually with low pH and high concentrations of metals. Although the phylogenetic diversity of AMD microbial communities has been examined extensively, little is known about their functional gene diversity and metabolic potential. In this study, a comprehensive functional gene array (GeoChip 2.0) was used to analyze the functional diversity, composition, structure, and metabolic potential of AMD microbial communities from three copper mines in China. GeoChip data indicated that these microbial communities were functionally diverse as measured by the number of genes detected, gene overlapping, unique genes, and various diversity indices. Almost all key functional gene categories targeted by GeoChip 2.0 were detected in the AMD microbial communities, including carbon fixation, carbon degradation, methane generation, nitrogen fixation, nitrification, denitrification, ammonification, nitrogen reduction, sulfur metabolism, metal resistance, and organic contaminant degradation, which suggested that the functional gene diversity was higher than was previously thought. Mantel test results indicated that AMD microbial communities are shaped largely by surrounding environmental factors (e.g., S, Mg, and Cu). Functional genes (e.g., narG and norB) and several key functional processes (e.g., methane generation, ammonification, denitrification, sulfite reduction, and organic contaminant degradation) were significantly (P < 0.10) correlated with environmental variables. This study presents an overview of functional gene diversity and the structure of AMD microbial communities and also provides insights into our understanding of metabolic potential in AMD ecosystems. PMID:21097602
Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Zhili; Zhang, Ping; Wu, Linwei
Contamination from anthropogenic activities has significantly impacted Earth’s biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminantsmore » would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly (P < 0.05) as uranium or nitrate increased, and their changes could be used to successfully predict uranium and nitrate contamination and ecosystem functioning. Here, this study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning.« less
Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning
Zhang, Ping; Wu, Linwei; Rocha, Andrea M.; Shi, Zhou; Wu, Bo; Qin, Yujia; Wang, Jianjun; Yan, Qingyun; Curtis, Daniel; Ning, Daliang; Van Nostrand, Joy D.; Wu, Liyou; Watson, David B.; Adams, Michael W. W.; Alm, Eric J.; Adams, Paul D.; Arkin, Adam P.
2018-01-01
ABSTRACT Contamination from anthropogenic activities has significantly impacted Earth’s biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly (P < 0.05) as uranium or nitrate increased, and their changes could be used to successfully predict uranium and nitrate contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning. PMID:29463661
Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning
He, Zhili; Zhang, Ping; Wu, Linwei; ...
2018-02-20
Contamination from anthropogenic activities has significantly impacted Earth’s biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminantsmore » would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly (P < 0.05) as uranium or nitrate increased, and their changes could be used to successfully predict uranium and nitrate contamination and ecosystem functioning. Here, this study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning.« less
An adaptive radiation model for the origin of new genefunctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francino, M. Pilar
2004-10-18
The evolution of new gene functions is one of the keys to evolutionary innovation. Most novel functions result from gene duplication followed by divergence. However, the models hitherto proposed to account for this process are not fully satisfactory. The classic model of neofunctionalization holds that the two paralogous gene copies resulting from a duplication are functionally redundant, such that one of them can evolve under no functional constraints and occasionally acquire a new function. This model lacks a convincing mechanism for the new gene copies to increase in frequency in the population and survive the mutational load expected to accumulatemore » under neutrality, before the acquisition of the rare beneficial mutations that would confer new functionality. The subfunctionalization model has been proposed as an alternative way to generate genes with altered functions. This model also assumes that new paralogous gene copies are functionally redundant and therefore neutral, but it predicts that relaxed selection will affect both gene copies such that some of the capabilities of the parent gene will disappear in one of the copies and be retained in the other. Thus, the functions originally present in a single gene will be partitioned between the two descendant copies. However, although this model can explain increases in gene number, it does not really address the main evolutionary question, which is the development of new biochemical capabilities. Recently, a new concept has been introduced into the gene evolution literature which is most likely to help solve this dilemma. The key point is to allow for a period of natural selection for the duplication per se, before new function evolves, rather than considering gene duplication to be neutral as in the previous models. Here, I suggest a new model that draws on the advantage of postulating selection for gene duplication, and proposes that bursts of adaptive gene amplification in response to specific selection pressures provide the raw material for the evolution of new function.« less
Restoration using Azolla imbricata increases nitrogen functional bacterial groups and genes in soil.
Lu, Xiao-Ming; Lu, Peng-Zhen; Yang, Ke
2017-05-01
Microbial groups are major factors that influence soil function. Currently, there is a lack of studies on microbial functional groups. Although soil microorganisms play an important role in the nitrogen cycle, systematic studies of the effects of environmental factors on microbial populations in relation to key metabolic processes in the nitrogen cycle are seldom reported. In this study, we conducted a systematic analysis of the changes in nitrogen functional groups in mandarin orange garden soil treated with Azolla imbricata. The structures of the major functional bacterial groups and the functional gene abundances involved in key processes of the soil nitrogen cycle were analyzed using high-throughput sequencing (HTS) and quantitative real-time PCR, respectively. The results indicated that returning A. imbricata had an important influence on the composition of soil nitrogen functional bacterial communities. Treatment with A. imbricata increased the diversity of the nitrogen functional bacteria. The abundances of nitrogen functional genes were significantly higher in the treated soil compared with the control soil. Both the diversity of the major nitrogen functional bacteria (nifH bacteria, nirK bacteria, and narG bacteria) and the abundances of nitrogen functional genes in the soil showed significant positive correlations with the soil pH, the organic carbon content, available nitrogen, available phosphorus, and NH 4 + -N and NO 3 - -N contents. Treatment with 12.5 kg fresh A. imbricata per mandarin orange tree was effective to improve the quality of the mandarin orange garden soil. This study analyzed the mechanism of the changes in functional bacterial groups and genes involved in key metabolic processes of the nitrogen cycle in soil treated by A. imbricata.
Li, Jin; Zheng, Le; Uchiyama, Akihiko; Bin, Lianghua; Mauro, Theodora M; Elias, Peter M; Pawelczyk, Tadeusz; Sakowicz-Burkiewicz, Monika; Trzeciak, Magdalena; Leung, Donald Y M; Morasso, Maria I; Yu, Peng
2018-06-13
A large volume of biological data is being generated for studying mechanisms of various biological processes. These precious data enable large-scale computational analyses to gain biological insights. However, it remains a challenge to mine the data efficiently for knowledge discovery. The heterogeneity of these data makes it difficult to consistently integrate them, slowing down the process of biological discovery. We introduce a data processing paradigm to identify key factors in biological processes via systematic collection of gene expression datasets, primary analysis of data, and evaluation of consistent signals. To demonstrate its effectiveness, our paradigm was applied to epidermal development and identified many genes that play a potential role in this process. Besides the known epidermal development genes, a substantial proportion of the identified genes are still not supported by gain- or loss-of-function studies, yielding many novel genes for future studies. Among them, we selected a top gene for loss-of-function experimental validation and confirmed its function in epidermal differentiation, proving the ability of this paradigm to identify new factors in biological processes. In addition, this paradigm revealed many key genes in cold-induced thermogenesis using data from cold-challenged tissues, demonstrating its generalizability. This paradigm can lead to fruitful results for studying molecular mechanisms in an era of explosive accumulation of publicly available biological data.
Modularity and evolutionary constraints in a baculovirus gene regulatory network
2013-01-01
Background The structure of regulatory networks remains an open question in our understanding of complex biological systems. Interactions during complete viral life cycles present unique opportunities to understand how host-parasite network take shape and behave. The Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) is a large double-stranded DNA virus, whose genome may encode for 152 open reading frames (ORFs). Here we present the analysis of the ordered cascade of the AgMNPV gene expression. Results We observed an earlier onset of the expression than previously reported for other baculoviruses, especially for genes involved in DNA replication. Most ORFs were expressed at higher levels in a more permissive host cell line. Genes with more than one copy in the genome had distinct expression profiles, which could indicate the acquisition of new functionalities. The transcription gene regulatory network (GRN) for 149 ORFs had a modular topology comprising five communities of highly interconnected nodes that separated key genes that are functionally related on different communities, possibly maximizing redundancy and GRN robustness by compartmentalization of important functions. Core conserved functions showed expression synchronicity, distinct GRN features and significantly less genetic diversity, consistent with evolutionary constraints imposed in key elements of biological systems. This reduced genetic diversity also had a positive correlation with the importance of the gene in our estimated GRN, supporting a relationship between phylogenetic data of baculovirus genes and network features inferred from expression data. We also observed that gene arrangement in overlapping transcripts was conserved among related baculoviruses, suggesting a principle of genome organization. Conclusions Albeit with a reduced number of nodes (149), the AgMNPV GRN had a topology and key characteristics similar to those observed in complex cellular organisms, which indicates that modularity may be a general feature of biological gene regulatory networks. PMID:24006890
[Molecular genetics of functional articulation disorder in children].
Zhao, Yun-Jing; Ma, Hong-Wei
2012-04-01
Genetic factors are an important cause of functional articulation disorder in children. This article reviews some genes and chromosome regions associated with a genetic susceptibility to functional articulation disorders. The forkhead box P2 (FOXP2) gene on chromosome 7 is introduced in details including its structure, expression and function. The relationship between the FOXP2 gene and developmental apraxia of speech is discussed. As a transcription factor, FOXP2 gene regulates the expression of many genes. CNTNAP2 as an important target gene of FOXP2 is a key gene influencing language development. Functional articulation disorder may be developed to dyslexia, therefore some candidate regions and genes related to dyslexia, such as 3p12-13, 15q11-21, 6p22 and 1p34-36, are also introduced. ROBO1 gene in 3p12.3, ZNF280D gene, TCF12 gene, EKN1 gene in 15q21, and KIAA0319 gene in 6p22 have been candidate genes for the study of functional articulation disorder.
Zhang, Shi-tao; Zuo, Chao; Li, Wan-nan; Fu, Xue-qi; Xing, Shu; Zhang, Xiao-ping
2016-02-01
To identify key genes related to the effect of estrogen on ovarian cancer. Microarray data (GSE22600) were downloaded from Gene Expression Omnibus. Eight estrogen and seven placebo treatment samples were obtained using a 2 × 2 factorial designs, which contained 2 cell lines (PEO4 and 2008) and 2 treatments (estrogen and placebo). Differentially expressed genes were identified by Bayesian methods, and the genes with P < 0.05 and |log2FC (fold change)| ≥0.5 were chosen as cut-off criterion. Differentially co-expressed genes (DCGs) and differentially regulated genes (DRGs) were, respectively, identified by DCe function and DRsort function in DCGL package. Topological structure analysis was performed on the important transcriptional factors (TFs) and genes in transcriptional regulatory network using tYNA. Functional enrichment analysis was, respectively, performed for DEGs and the important genes using Gene Ontology and KEGG databases. In total, 465 DEGs were identified. Functional enrichment analysis of DEGs indicated that ACVR2B, LTBP1, BMP7 and MYC involved in TGF-beta signaling pathway. The 2285 DCG pairs and 357 DRGs were identified. Topological structure analysis showed that 52 important TFs and 65 important genes were identified. Functional enrichment analysis of the important genes showed that TP53 and MLH1 participated in DNA damage response and the genes (ACVR2B, LTBP1, BMP7 and MYC) involved in TGF-beta signaling pathway. TP53, MLH1, ACVR2B, LTBP1 and BMP7 might participate in the pathogenesis of ovarian cancer.
Guo, Sheng-Min; Wang, Jian-Xiong; Li, Jin; Xu, Fang-Yuan; Wei, Quan; Wang, Hai-Ming; Huang, Hou-Qiang; Zheng, Si-Lin; Xie, Yu-Jie; Zhang, Chi
2018-06-15
Osteoarthritis (OA) significantly influences the quality life of people around the world. It is urgent to find an effective way to understand the genetic etiology of OA. We used weighted gene coexpression network analysis (WGCNA) to explore the key genes involved in the subchondral bone pathological process of OA. Fifty gene expression profiles of GSE51588 were downloaded from the Gene Expression Omnibus database. The OA-associated genes and gene ontologies were acquired from JuniorDoc. Weighted gene coexpression network analysis was used to find disease-related networks based on 21756 gene expression correlation coefficients, hub-genes with the highest connectivity in each module were selected, and the correlation between module eigengene and clinical traits was calculated. The genes in the traits-related gene coexpression modules were subject to functional annotation and pathway enrichment analysis using ClusterProfiler. A total of 73 gene modules were identified, of which, 12 modules were found with high connectivity with clinical traits. Five modules were found with enriched OA-associated genes. Moreover, 310 OA-associated genes were found, and 34 of them were among hub-genes in each module. Consequently, enrichment results indicated some key metabolic pathways, such as extracellular matrix (ECM)-receptor interaction (hsa04512), focal adhesion (hsa04510), the phosphatidylinositol 3'-kinase (PI3K)-Akt signaling pathway (PI3K-AKT) (hsa04151), transforming growth factor beta pathway, and Wnt pathway. We intended to identify some core genes, collagen (COL)6A3, COL6A1, ITGA11, BAMBI, and HCK, which could influence downstream signaling pathways once they were activated. In this study, we identified important genes within key coexpression modules, which associate with a pathological process of subchondral bone in OA. Functional analysis results could provide important information to understand the mechanism of OA. © 2018 Wiley Periodicals, Inc.
Joshi, Dev Raj; Zhang, Yu; Zhang, Hong; Gao, Yingxin; Yang, Min
2018-01-01
Nitrogenous heterocyclic compounds are key pollutants in coking wastewater; however, the functional potential of microbial communities for biodegradation of such contaminants during biological treatment is still elusive. Herein, a high throughput functional gene array (GeoChip 5.0) in combination with Illumina HiSeq2500 sequencing was used to compare and characterize the microbial community functional structure in a long run (500days) bench scale bioreactor treating coking wastewater, with a control system treating synthetic wastewater. Despite the inhibitory toxic pollutants, GeoChip 5.0 detected almost all key functional gene (average 61,940 genes) categories in the coking wastewater sludge. With higher abundance, aromatic ring cleavage dioxygenase genes including multi ring1,2diox; one ring2,3diox; catechol represented significant functional potential for degradation of aromatic pollutants which was further confirmed by Illumina HiSeq2500 analysis results. Response ratio analysis revealed that three nitrogenous compound degrading genes- nbzA (nitro-aromatics), tdnB (aniline), and scnABC (thiocyanate) were unique for coking wastewater treatment, which might be strong cause to increase ammonia level during the aerobic process. Additionally, HiSeq2500 elucidated carbozole and isoquinoline degradation genes in the system. These findings expanded our understanding on functional potential of microbial communities to remove organic nitrogenous pollutants; hence it will be useful in optimization strategies for biological treatment of coking wastewater. Copyright © 2017. Published by Elsevier B.V.
Liu, Ying; Navathe, Shamkant B; Pivoshenko, Alex; Dasigi, Venu G; Dingledine, Ray; Ciliax, Brian J
2006-01-01
One of the key challenges of microarray studies is to derive biological insights from the gene-expression patterns. Clustering genes by functional keyword association can provide direct information about the functional links among genes. However, the quality of the keyword lists significantly affects the clustering results. We compared two keyword weighting schemes: normalised z-score and term frequency-inverse document frequency (TFIDF). Two gene sets were tested to evaluate the effectiveness of the weighting schemes for keyword extraction for gene clustering. Using established measures of cluster quality, the results produced from TFIDF-weighted keywords outperformed those produced from normalised z-score weighted keywords. The optimised algorithms should be useful for partitioning genes from microarray lists into functionally discrete clusters.
Yoo, Seungyeul; Takikawa, Sachiko; Geraghty, Patrick; Argmann, Carmen; Campbell, Joshua; Lin, Luan; Huang, Tao; Tu, Zhidong; Foronjy, Robert F; Feronjy, Robert; Spira, Avrum; Schadt, Eric E; Powell, Charles A; Zhu, Jun
2015-01-01
Chronic Obstructive Pulmonary Disease (COPD) is a complex disease. Genetic, epigenetic, and environmental factors are known to contribute to COPD risk and disease progression. Therefore we developed a systematic approach to identify key regulators of COPD that integrates genome-wide DNA methylation, gene expression, and phenotype data in lung tissue from COPD and control samples. Our integrative analysis identified 126 key regulators of COPD. We identified EPAS1 as the only key regulator whose downstream genes significantly overlapped with multiple genes sets associated with COPD disease severity. EPAS1 is distinct in comparison with other key regulators in terms of methylation profile and downstream target genes. Genes predicted to be regulated by EPAS1 were enriched for biological processes including signaling, cell communications, and system development. We confirmed that EPAS1 protein levels are lower in human COPD lung tissue compared to non-disease controls and that Epas1 gene expression is reduced in mice chronically exposed to cigarette smoke. As EPAS1 downstream genes were significantly enriched for hypoxia responsive genes in endothelial cells, we tested EPAS1 function in human endothelial cells. EPAS1 knockdown by siRNA in endothelial cells impacted genes that significantly overlapped with EPAS1 downstream genes in lung tissue including hypoxia responsive genes, and genes associated with emphysema severity. Our first integrative analysis of genome-wide DNA methylation and gene expression profiles illustrates that not only does DNA methylation play a 'causal' role in the molecular pathophysiology of COPD, but it can be leveraged to directly identify novel key mediators of this pathophysiology.
Uddin, Raihan; Singh, Shiva M.
2017-01-01
As humans age many suffer from a decrease in normal brain functions including spatial learning impairments. This study aimed to better understand the molecular mechanisms in age-associated spatial learning impairment (ASLI). We used a mathematical modeling approach implemented in Weighted Gene Co-expression Network Analysis (WGCNA) to create and compare gene network models of young (learning unimpaired) and aged (predominantly learning impaired) brains from a set of exploratory datasets in rats in the context of ASLI. The major goal was to overcome some of the limitations previously observed in the traditional meta- and pathway analysis using these data, and identify novel ASLI related genes and their networks based on co-expression relationship of genes. This analysis identified a set of network modules in the young, each of which is highly enriched with genes functioning in broad but distinct GO functional categories or biological pathways. Interestingly, the analysis pointed to a single module that was highly enriched with genes functioning in “learning and memory” related functions and pathways. Subsequent differential network analysis of this “learning and memory” module in the aged (predominantly learning impaired) rats compared to the young learning unimpaired rats allowed us to identify a set of novel ASLI candidate hub genes. Some of these genes show significant repeatability in networks generated from independent young and aged validation datasets. These hub genes are highly co-expressed with other genes in the network, which not only show differential expression but also differential co-expression and differential connectivity across age and learning impairment. The known function of these hub genes indicate that they play key roles in critical pathways, including kinase and phosphatase signaling, in functions related to various ion channels, and in maintaining neuronal integrity relating to synaptic plasticity and memory formation. Taken together, they provide a new insight and generate new hypotheses into the molecular mechanisms responsible for age associated learning impairment, including spatial learning. PMID:29066959
Uddin, Raihan; Singh, Shiva M
2017-01-01
As humans age many suffer from a decrease in normal brain functions including spatial learning impairments. This study aimed to better understand the molecular mechanisms in age-associated spatial learning impairment (ASLI). We used a mathematical modeling approach implemented in Weighted Gene Co-expression Network Analysis (WGCNA) to create and compare gene network models of young (learning unimpaired) and aged (predominantly learning impaired) brains from a set of exploratory datasets in rats in the context of ASLI. The major goal was to overcome some of the limitations previously observed in the traditional meta- and pathway analysis using these data, and identify novel ASLI related genes and their networks based on co-expression relationship of genes. This analysis identified a set of network modules in the young, each of which is highly enriched with genes functioning in broad but distinct GO functional categories or biological pathways. Interestingly, the analysis pointed to a single module that was highly enriched with genes functioning in "learning and memory" related functions and pathways. Subsequent differential network analysis of this "learning and memory" module in the aged (predominantly learning impaired) rats compared to the young learning unimpaired rats allowed us to identify a set of novel ASLI candidate hub genes. Some of these genes show significant repeatability in networks generated from independent young and aged validation datasets. These hub genes are highly co-expressed with other genes in the network, which not only show differential expression but also differential co-expression and differential connectivity across age and learning impairment. The known function of these hub genes indicate that they play key roles in critical pathways, including kinase and phosphatase signaling, in functions related to various ion channels, and in maintaining neuronal integrity relating to synaptic plasticity and memory formation. Taken together, they provide a new insight and generate new hypotheses into the molecular mechanisms responsible for age associated learning impairment, including spatial learning.
Chang, Chia-Ming; Yang, Yi-Ping; Chuang, Jen-Hua; Chuang, Chi-Mu; Lin, Tzu-Wei; Wang, Peng-Hui; Yu, Mu-Hsien
2017-01-01
The clinical characteristics of clear cell carcinoma (CCC) and endometrioid carcinoma EC) are concomitant with endometriosis (ES), which leads to the postulation of malignant transformation of ES to endometriosis-associated ovarian carcinoma (EAOC). Different deregulated functional areas were proposed accounting for the pathogenesis of EAOC transformation, and there is still a lack of a data-driven analysis with the accumulated experimental data in publicly-available databases to incorporate the deregulated functions involved in the malignant transformation of EOAC. We used the microarray gene expression datasets of ES, CCC and EC downloaded from the National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO) database. Then, we investigated the pathogenesis of EAOC by a data-driven, function-based analytic model with the quantified molecular functions defined by 1454 Gene Ontology (GO) term gene sets. This model converts the gene expression profiles to the functionome consisting of 1454 quantified GO functions, and then, the key functions involving the malignant transformation of EOAC can be extracted by a series of filters. Our results demonstrate that the deregulated oxidoreductase activity, metabolism, hormone activity, inflammatory response, innate immune response and cell-cell signaling play the key roles in the malignant transformation of EAOC. These results provide the evidence supporting the specific molecular pathways involved in the malignant transformation of EAOC. PMID:29113136
2011-01-01
Background Natural acquisition of novel genes from other organisms by horizontal or lateral gene transfer is well established for microorganisms. There is now growing evidence that horizontal gene transfer also plays important roles in the evolution of eukaryotes. Genome-sequencing and EST projects of plant and animal associated nematodes such as Brugia, Meloidogyne, Bursaphelenchus and Pristionchus indicate horizontal gene transfer as a key adaptation towards parasitism and pathogenicity. However, little is known about the functional activity and evolutionary longevity of genes acquired by horizontal gene transfer and the mechanisms favoring such processes. Results We examine the transfer of cellulase genes to the free-living and beetle-associated nematode Pristionchus pacificus, for which detailed phylogenetic knowledge is available, to address predictions by evolutionary theory for successful gene transfer. We used transcriptomics in seven Pristionchus species and three other related diplogastrid nematodes with a well-defined phylogenetic framework to study the evolution of ancestral cellulase genes acquired by horizontal gene transfer. We performed intra-species, inter-species and inter-genic analysis by comparing the transcriptomes of these ten species and tested for cellulase activity in each species. Species with cellulase genes in their transcriptome always exhibited cellulase activity indicating functional integration into the host's genome and biology. The phylogenetic profile of cellulase genes was congruent with the species phylogeny demonstrating gene longevity. Cellulase genes show notable turnover with elevated birth and death rates. Comparison by sequencing of three selected cellulase genes in 24 natural isolates of Pristionchus pacificus suggests these high evolutionary dynamics to be associated with copy number variations and positive selection. Conclusion We could demonstrate functional integration of acquired cellulase genes into the nematode's biology as predicted by theory. Thus, functional assimilation, remarkable gene turnover and selection might represent key features of horizontal gene transfer events in nematodes. PMID:21232122
Mayer, Werner E; Schuster, Lisa N; Bartelmes, Gabi; Dieterich, Christoph; Sommer, Ralf J
2011-01-13
Natural acquisition of novel genes from other organisms by horizontal or lateral gene transfer is well established for microorganisms. There is now growing evidence that horizontal gene transfer also plays important roles in the evolution of eukaryotes. Genome-sequencing and EST projects of plant and animal associated nematodes such as Brugia, Meloidogyne, Bursaphelenchus and Pristionchus indicate horizontal gene transfer as a key adaptation towards parasitism and pathogenicity. However, little is known about the functional activity and evolutionary longevity of genes acquired by horizontal gene transfer and the mechanisms favoring such processes. We examine the transfer of cellulase genes to the free-living and beetle-associated nematode Pristionchus pacificus, for which detailed phylogenetic knowledge is available, to address predictions by evolutionary theory for successful gene transfer. We used transcriptomics in seven Pristionchus species and three other related diplogastrid nematodes with a well-defined phylogenetic framework to study the evolution of ancestral cellulase genes acquired by horizontal gene transfer. We performed intra-species, inter-species and inter-genic analysis by comparing the transcriptomes of these ten species and tested for cellulase activity in each species. Species with cellulase genes in their transcriptome always exhibited cellulase activity indicating functional integration into the host's genome and biology. The phylogenetic profile of cellulase genes was congruent with the species phylogeny demonstrating gene longevity. Cellulase genes show notable turnover with elevated birth and death rates. Comparison by sequencing of three selected cellulase genes in 24 natural isolates of Pristionchus pacificus suggests these high evolutionary dynamics to be associated with copy number variations and positive selection. We could demonstrate functional integration of acquired cellulase genes into the nematode's biology as predicted by theory. Thus, functional assimilation, remarkable gene turnover and selection might represent key features of horizontal gene transfer events in nematodes.
Dynamic changes in gene expression during human trophoblast differentiation.
Handwerger, Stuart; Aronow, Bruce
2003-01-01
The genetic program that directs human placental differentiation is poorly understood. In a recent study, we used DNA microarray analyses to determine genes that are dynamically regulated during human placental development in an in vitro model system in which highly purified cytotrophoblast cells aggregate spontaneously and fuse to form a multinucleated syncytium that expresses placental lactogen, human chorionic gonadotropin, and other proteins normally expressed by fully differentiated syncytiotrophoblast cells. Of the 6918 genes present on the Incyte Human GEM V microarray that we analyzed over a 9-day period, 141 were induced and 256 were downregulated by more than 2-fold. The dynamically regulated genes fell into nine distinct kinetic patterns of induction or repression, as detected by the K-means algorithm. Classifying the genes according to functional characteristics, the regulated genes could be divided into six overall categories: cell and tissue structural dynamics, cell cycle and apoptosis, intercellular communication, metabolism, regulation of gene expression, and expressed sequence tags and function unknown. Gene expression changes within key functional categories were tightly coupled to the morphological changes that occurred during trophoblast differentiation. Within several key gene categories (e.g., cell and tissue structure), many genes were strongly activated, while others with related function were strongly repressed. These findings suggest that trophoblast differentiation is augmented by "categorical reprogramming" in which the ability of induced genes to function is enhanced by diminished synthesis of other genes within the same category. We also observed categorical reprogramming in human decidual fibroblasts decidualized in vitro in response to progesterone, estradiol, and cyclic AMP. While there was little overlap between genes that are dynamically regulated during trophoblast differentiation versus decidualization, many of the categories in which genes were strongly activated also contained genes whose expression was strongly diminished. Taken together, these findings point to a fundamental role for simultaneous induction and repression of mRNAs that encode functionally related proteins during the differentiation process.
GENIUS: web server to predict local gene networks and key genes for biological functions.
Puelma, Tomas; Araus, Viviana; Canales, Javier; Vidal, Elena A; Cabello, Juan M; Soto, Alvaro; Gutiérrez, Rodrigo A
2017-03-01
GENIUS is a user-friendly web server that uses a novel machine learning algorithm to infer functional gene networks focused on specific genes and experimental conditions that are relevant to biological functions of interest. These functions may have different levels of complexity, from specific biological processes to complex traits that involve several interacting processes. GENIUS also enriches the network with new genes related to the biological function of interest, with accuracies comparable to highly discriminative Support Vector Machine methods. GENIUS currently supports eight model organisms and is freely available for public use at http://networks.bio.puc.cl/genius . genius.psbl@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Microarray-based analysis of survival of soil microbial community during ozonation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian; Van Nostrand, Joy D.; He, Zhili
A 15 h ozonation was performed on bioremediated soil to remove recalcitrant residual oil. To monitor the survival of indigenous microorganisms in the soil during in-situ chemical oxidation(ISCO) culturing and a functional genearray, GeoChip, was used to examine the functional genes and structure of the microbial community during ozonation (0h, 2h, 4h, 6h, 10hand15h). Breakthrough ozonation decreased the population of cultivable heterotrophic bacteria by about 3 orders of magnitude. The total functional gene abundance and diversity decreased during ozonation, as the number of functional genes was reduced by 48percent after 15 h. However, functional genes were evenly distributed during ozonationmore » as judged by the Shannon-Weaver Evenness index. A sharp decrease in gene number was observed in the first 6 h of ozonation followed by a slower decrease in the next 9 h, which was consistent with microbial populations measured by a culture based method. Functional genes involved in carbon, nitrogen, phosphors and sulfur cycling, metal resistance and organic remediation were detected in all samples. Though the pattern of gene categories detected was similar for all time points, hierarchica lcluster of all functional genes and major functional categories all showed a time-serial pattern. Bacteria, archaea and fungi decreased by 96.1percent, 95.1percent and 91.3percent, respectively, after 15 h ozonation. Delta proteobacteria, which were reduced by 94.3percent, showed the highest resistance to ozonation while Actinobacteria, reduced by 96.3percent, showed the lowest resistance. Microorganisms similar to Rhodothermus, Obesumbacterium, Staphylothermus, Gluconobacter, and Enterococcus were dominant at all time points. Functional genes related to petroleum degradation decreased 1~;;2 orders of magnitude. Most of the key functional genes were still detected after ozonation, allowing a rapid recovery of the microbial community after ozonation. While ozone had a large impact on the indigenous soil microorganisms, a fraction of the key functional gene-containing microorganisms survived during ozonation and kept the community functional.« less
Remote Control of Gene Function by Local Translation
Jung, Hosung; Gkogkas, Christos G.; Sonenberg, Nahum; Holt, Christine E.
2014-01-01
The subcellular position of a protein is a key determinant of its function. Mounting evidence indicates that RNA localization, where specific mRNAs are transported subcellularly and subsequently translated in response to localized signals, is an evolutionarily conserved mechanism to control protein localization. On-site synthesis confers novel signaling properties to a protein and helps to maintain local proteome homeostasis. Local translation plays particularly important roles in distal neuronal compartments, and dysregulated RNA localization and translation cause defects in neuronal wiring and survival. Here, we discuss key findings in this area and possible implications of this adaptable and swift mechanism for spatial control of gene function. PMID:24679524
Bai, Gaobo; Zheng, Wenling; Ma, Wenli
2018-05-01
Hepatitis C virus (HCV)-induced human hepatocellular carcinoma (HCC) progression may be due to a complex multi-step processes. The developmental mechanism of these processes is worth investigating for the prevention, diagnosis and therapy of HCC. The aim of the present study was to investigate the molecular mechanism underlying the progression of HCV-induced hepatocarcinogenesis. First, the dynamic gene module, consisting of key genes associated with progression between the normal stage and HCC, was identified using the Weighted Gene Co-expression Network Analysis tool from R language. By defining those genes in the module as seeds, the change of co-expression in differentially expressed gene sets in two consecutive stages of pathological progression was examined. Finally, interaction pairs of HCV viral proteins and their directly targeted proteins in the identified module were extracted from the literature and a comprehensive interaction dataset from yeast two-hybrid experiments. By combining the interactions between HCV and their targets, and protein-protein interactions in the Search Tool for the Retrieval of Interacting Genes database (STRING), the HCV-key genes interaction network was constructed and visualized using Cytoscape software 3.2. As a result, a module containing 44 key genes was identified to be associated with HCC progression, due to the dynamic features and functions of those genes in the module. Several important differentially co-expressed gene pairs were identified between non-HCC and HCC stages. In the key genes, cyclin dependent kinase 1 (CDK1), NDC80, cyclin A2 (CCNA2) and rac GTPase activating protein 1 (RACGAP1) were shown to be targeted by the HCV nonstructural proteins NS5A, NS3 and NS5B, respectively. The four genes perform an intermediary role between the HCV viral proteins and the dysfunctional module in the HCV key genes interaction network. These findings provided valuable information for understanding the mechanism of HCV-induced HCC progression and for seeking drug targets for the therapy and prevention of HCC.
Microarray analysis reveals key genes and pathways in Tetralogy of Fallot
He, Yue-E; Qiu, Hui-Xian; Jiang, Jian-Bing; Wu, Rong-Zhou; Xiang, Ru-Lian; Zhang, Yuan-Hai
2017-01-01
The aim of the present study was to identify key genes that may be involved in the pathogenesis of Tetralogy of Fallot (TOF) using bioinformatics methods. The GSE26125 microarray dataset, which includes cardiovascular tissue samples derived from 16 children with TOF and five healthy age-matched control infants, was downloaded from the Gene Expression Omnibus database. Differential expression analysis was performed between TOF and control samples to identify differentially expressed genes (DEGs) using Student's t-test, and the R/limma package, with a log2 fold-change of >2 and a false discovery rate of <0.01 set as thresholds. The biological functions of DEGs were analyzed using the ToppGene database. The ReactomeFIViz application was used to construct functional interaction (FI) networks, and the genes in each module were subjected to pathway enrichment analysis. The iRegulon plugin was used to identify transcription factors predicted to regulate the DEGs in the FI network, and the gene-transcription factor pairs were then visualized using Cytoscape software. A total of 878 DEGs were identified, including 848 upregulated genes and 30 downregulated genes. The gene FI network contained seven function modules, which were all comprised of upregulated genes. Genes enriched in Module 1 were enriched in the following three neurological disorder-associated signaling pathways: Parkinson's disease, Alzheimer's disease and Huntington's disease. Genes in Modules 0, 3 and 5 were dominantly enriched in pathways associated with ribosomes and protein translation. The Xbox binding protein 1 transcription factor was demonstrated to be involved in the regulation of genes encoding the subunits of cytoplasmic and mitochondrial ribosomes, as well as genes involved in neurodegenerative disorders. Therefore, dysfunction of genes involved in signaling pathways associated with neurodegenerative disorders, ribosome function and protein translation may contribute to the pathogenesis of TOF. PMID:28713939
Dynamic gene expression analysis in a H1N1 influenza virus mouse pneumonia model.
Bao, Yanyan; Gao, Yingjie; Shi, Yujing; Cui, Xiaolan
2017-06-01
H1N1, a major pathogenic subtype of influenza A virus, causes a respiratory infection in humans and livestock that can range from a mild infection to more severe pneumonia associated with acute respiratory distress syndrome. Understanding the dynamic changes in the genome and the related functional changes induced by H1N1 influenza virus infection is essential to elucidating the pathogenesis of this virus and thereby determining strategies to prevent future outbreaks. In this study, we filtered the significantly expressed genes in mouse pneumonia using mRNA microarray analysis. Using STC analysis, seven significant gene clusters were revealed, and using STC-GO analysis, we explored the significant functions of these seven gene clusters. The results revealed GOs related to H1N1 virus-induced inflammatory and immune functions, including innate immune response, inflammatory response, specific immune response, and cellular response to interferon-beta. Furthermore, the dynamic regulation relationships of the key genes in mouse pneumonia were revealed by dynamic gene network analysis, and the most important genes were filtered, including Dhx58, Cxcl10, Cxcl11, Zbp1, Ifit1, Ifih1, Trim25, Mx2, Oas2, Cd274, Irgm1, and Irf7. These results suggested that during mouse pneumonia, changes in the expression of gene clusters and the complex interactions among genes lead to significant changes in function. Dynamic gene expression analysis revealed key genes that performed important functions. These results are a prelude to advancements in mouse H1N1 influenza virus infection biology, as well as the use of mice as a model organism for human H1N1 influenza virus infection studies.
Yoo, Seungyeul; Takikawa, Sachiko; Geraghty, Patrick; Argmann, Carmen; Campbell, Joshua; Lin, Luan; Huang, Tao; Tu, Zhidong; Feronjy, Robert; Spira, Avrum; Schadt, Eric E.; Powell, Charles A.; Zhu, Jun
2015-01-01
Chronic Obstructive Pulmonary Disease (COPD) is a complex disease. Genetic, epigenetic, and environmental factors are known to contribute to COPD risk and disease progression. Therefore we developed a systematic approach to identify key regulators of COPD that integrates genome-wide DNA methylation, gene expression, and phenotype data in lung tissue from COPD and control samples. Our integrative analysis identified 126 key regulators of COPD. We identified EPAS1 as the only key regulator whose downstream genes significantly overlapped with multiple genes sets associated with COPD disease severity. EPAS1 is distinct in comparison with other key regulators in terms of methylation profile and downstream target genes. Genes predicted to be regulated by EPAS1 were enriched for biological processes including signaling, cell communications, and system development. We confirmed that EPAS1 protein levels are lower in human COPD lung tissue compared to non-disease controls and that Epas1 gene expression is reduced in mice chronically exposed to cigarette smoke. As EPAS1 downstream genes were significantly enriched for hypoxia responsive genes in endothelial cells, we tested EPAS1 function in human endothelial cells. EPAS1 knockdown by siRNA in endothelial cells impacted genes that significantly overlapped with EPAS1 downstream genes in lung tissue including hypoxia responsive genes, and genes associated with emphysema severity. Our first integrative analysis of genome-wide DNA methylation and gene expression profiles illustrates that not only does DNA methylation play a ‘causal’ role in the molecular pathophysiology of COPD, but it can be leveraged to directly identify novel key mediators of this pathophysiology. PMID:25569234
Zhang, Xin; Wan, Jin-Xiang; Ke, Zun-Ping; Wang, Feng; Chai, Hai-Xia; Liu, Jia-Qiang
2017-07-01
Hepatocellular carcinoma is one of the most mortal and prevalent cancers with increasing incidence worldwide. Elucidating genetic driver genes for prognosis and palindromia of hepatocellular carcinoma helps managing clinical decisions for patients. In this study, the high-throughput RNA sequencing data on platform IlluminaHiSeq of hepatocellular carcinoma were downloaded from The Cancer Genome Atlas with 330 primary hepatocellular carcinoma patient samples. Stable key genes with differential expressions were identified with which Kaplan-Meier survival analysis was performed using Cox proportional hazards test in R language. Driver genes influencing the prognosis of this disease were determined using clustering analysis. Functional analysis of driver genes was performed by literature search and Gene Set Enrichment Analysis. Finally, the selected driver genes were verified using external dataset GSE40873. A total of 5781 stable key genes were identified, including 156 genes definitely related to prognoses of hepatocellular carcinoma. Based on the significant key genes, samples were grouped into five clusters which were further integrated into high- and low-risk classes based on clinical features. TMEM88, CCL14, and CLEC3B were selected as driver genes which clustered high-/low-risk patients successfully (generally, p = 0.0005124445). Finally, survival analysis of the high-/low-risk samples from external database illustrated significant difference with p value 0.0198. In conclusion, TMEM88, CCL14, and CLEC3B genes were stable and available in predicting the survival and palindromia time of hepatocellular carcinoma. These genes could function as potential prognostic genes contributing to improve patients' outcomes and survival.
Cuesta, Ines H; Lahiri, Kajori; Lopez-Olmeda, Jose Fernando; Loosli, Felix; Foulkes, Nicholas S; Vallone, Daniela
2014-05-01
One key challenge for the field of chronobiology is to identify how circadian clock function emerges during early embryonic development. Teleosts such as the zebrafish are ideal models for studying circadian clock ontogeny since the entire process of development occurs ex utero in an optically transparent chorion. Medaka (Oryzias latipes) represents another powerful fish model for exploring early clock function with, like the zebrafish, many tools available for detailed genetic analysis. However, to date there have been no reports documenting circadian clock gene expression during medaka development. Here we have characterized the expression of key clock genes in various developmental stages and in adult tissues of medaka. As previously reported for other fish, light dark cycles are required for the emergence of clock gene expression rhythms in this species. While rhythmic expression of per and cry genes is detected very early during development and seems to be light driven, rhythmic clock and bmal expression appears much later around hatching time. Furthermore, the maturation of clock function seems to correlate with the appearance of rhythmic expression of these positive elements of the clock feedback loop. By accelerating development through elevated temperatures or by artificially removing the chorion, we show an earlier onset of rhythmicity in clock and bmal expression. Thus, differential maturation of key elements of the medaka clock mechanism depends on the developmental stage and the presence of the chorion.
Liang, Yuting; Van Nostrand, Joy D.; N′Guessan, Lucie A.; Peacock, Aaron D.; Deng, Ye; Long, Philip E.; Resch, C. Tom; Wu, Liyou; He, Zhili; Li, Guanghe; Hazen, Terry C.; Lovley, Derek R.
2012-01-01
To better understand the microbial functional diversity changes with subsurface redox conditions during in situ uranium bioremediation, key functional genes were studied with GeoChip, a comprehensive functional gene microarray, in field experiments at a uranium mill tailings remedial action (UMTRA) site (Rifle, CO). The results indicated that functional microbial communities altered with a shift in the dominant metabolic process, as documented by hierarchical cluster and ordination analyses of all detected functional genes. The abundance of dsrAB genes (dissimilatory sulfite reductase genes) and methane generation-related mcr genes (methyl coenzyme M reductase coding genes) increased when redox conditions shifted from Fe-reducing to sulfate-reducing conditions. The cytochrome genes detected were primarily from Geobacter sp. and decreased with lower subsurface redox conditions. Statistical analysis of environmental parameters and functional genes indicated that acetate, U(VI), and redox potential (Eh) were the most significant geochemical variables linked to microbial functional gene structures, and changes in microbial functional diversity were strongly related to the dominant terminal electron-accepting process following acetate addition. The study indicates that the microbial functional genes clearly reflect the in situ redox conditions and the dominant microbial processes, which in turn influence uranium bioreduction. Microbial functional genes thus could be very useful for tracking microbial community structure and dynamics during bioremediation. PMID:22327592
[Transcriptome analysis of Dunaliella viridis].
Zhu, Shuai-qi; Gong, Yi-fu; Hang, Yu-qing; Liu, Hao; Wang, He-yu
2015-08-01
In order to understand the gene information, function, haloduric pathway (glycerolipid metabolism) and related key genes for Dunaliella viridis, we used Illumina HiSeqTM 2000 high-throughput sequencing technology to sequence its transcriptome. Trinity soft was used to assemble the data to form transcripts. Based on the Clusters of Orthologous Groups (COG), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG ) databases, we carried out functional annotation and classification, pathway annotation, and the opening reading fragment (ORF) sequence prediction of transcripts. The key genes in the glycerolipid metabolism were analyzed. The results suggested that 81,593 transcripts were found, and 77,117 ORF sequences were predicted, accounting for 94.50% of all transcripts. COG classification results showed that 16,569 transcripts were assigned to 24 categories. GO classification annotated 76,436 transcripts. The number of transcripts for biologcial processes was 30,678, accounting for 40.14% of all transcripts. KEGG pathway analysis showed that 26,428 transcripts were annotated to 317 pathways, and 131 pathways were related to metabolism, accounting for 41.32% of all annotated pathways. Only one transcript was annotated as coding the key enzyme dihydroxyacetone kinase involved in the glycerolipid pathway. This enzyme could be related to glycerol biosynthesis under salt stress. This study further improved the gene information and laid the foundation of metabolic pathway research for Dunaliella viridis.
FunGene: the functional gene pipeline and repository.
Fish, Jordan A; Chai, Benli; Wang, Qiong; Sun, Yanni; Brown, C Titus; Tiedje, James M; Cole, James R
2013-01-01
Ribosomal RNA genes have become the standard molecular markers for microbial community analysis for good reasons, including universal occurrence in cellular organisms, availability of large databases, and ease of rRNA gene region amplification and analysis. As markers, however, rRNA genes have some significant limitations. The rRNA genes are often present in multiple copies, unlike most protein-coding genes. The slow rate of change in rRNA genes means that multiple species sometimes share identical 16S rRNA gene sequences, while many more species share identical sequences in the short 16S rRNA regions commonly analyzed. In addition, the genes involved in many important processes are not distributed in a phylogenetically coherent manner, potentially due to gene loss or horizontal gene transfer. While rRNA genes remain the most commonly used markers, key genes in ecologically important pathways, e.g., those involved in carbon and nitrogen cycling, can provide important insights into community composition and function not obtainable through rRNA analysis. However, working with ecofunctional gene data requires some tools beyond those required for rRNA analysis. To address this, our Functional Gene Pipeline and Repository (FunGene; http://fungene.cme.msu.edu/) offers databases of many common ecofunctional genes and proteins, as well as integrated tools that allow researchers to browse these collections and choose subsets for further analysis, build phylogenetic trees, test primers and probes for coverage, and download aligned sequences. Additional FunGene tools are specialized to process coding gene amplicon data. For example, FrameBot produces frameshift-corrected protein and DNA sequences from raw reads while finding the most closely related protein reference sequence. These tools can help provide better insight into microbial communities by directly studying key genes involved in important ecological processes.
Kleinmanns, Julia A; Schatlowski, Nicole; Heckmann, David; Schubert, Daniel
2017-01-01
HIGHLIGHTS The PRC2 interacting protein BLISTER likely acts downstream of PRC2 to silence Polycomb target genes and is a key regulator of specific stress responses in Arabidopsis . Polycomb group (PcG) proteins are key epigenetic regulators of development. The highly conserved Polycomb repressive complex 2 (PRC2) represses thousands of target genes by trimethylating H3K27 (H3K27me3). Plant specific PcG components and functions are largely unknown, however, we previously identified the plant-specific protein BLISTER (BLI) as a PRC2 interactor. BLI regulates PcG target genes and promotes cold stress resistance. To further understand the function of BLI , we analyzed the transcriptional profile of bli-1 mutants. Approximately 40% of the up-regulated genes in bli are PcG target genes, however, bli-1 mutants did not show changes in H3K27me3 levels at all tested genes, indicating that BLI regulates PcG target genes downstream of or in parallel to PRC2. Interestingly, a significant number of BLI regulated H3K27me3 target genes is regulated by the stress hormone absciscic acid (ABA). We further reveal an overrepresentation of genes responding to abiotic stresses such as drought, high salinity, or heat stress among the up-regulated genes in bli mutants. Consistently, bli mutants showed reduced desiccation stress tolerance. We conclude that the PRC2 associated protein BLI is a key regulator of stress-responsive genes in Arabidopsis : it represses ABA-responsive PcG target genes, likely downstream of PRC2, and promotes resistance to several stresses such as cold and drought.
Genes uniquely expressed in human growth plate chondrocytes uncover a distinct regulatory network.
Li, Bing; Balasubramanian, Karthika; Krakow, Deborah; Cohn, Daniel H
2017-12-20
Chondrogenesis is the earliest stage of skeletal development and is a highly dynamic process, integrating the activities and functions of transcription factors, cell signaling molecules and extracellular matrix proteins. The molecular mechanisms underlying chondrogenesis have been extensively studied and multiple key regulators of this process have been identified. However, a genome-wide overview of the gene regulatory network in chondrogenesis has not been achieved. In this study, employing RNA sequencing, we identified 332 protein coding genes and 34 long non-coding RNA (lncRNA) genes that are highly selectively expressed in human fetal growth plate chondrocytes. Among the protein coding genes, 32 genes were associated with 62 distinct human skeletal disorders and 153 genes were associated with skeletal defects in knockout mice, confirming their essential roles in skeletal formation. These gene products formed a comprehensive physical interaction network and participated in multiple cellular processes regulating skeletal development. The data also revealed 34 transcription factors and 11,334 distal enhancers that were uniquely active in chondrocytes, functioning as transcriptional regulators for the cartilage-selective genes. Our findings revealed a complex gene regulatory network controlling skeletal development whereby transcription factors, enhancers and lncRNAs participate in chondrogenesis by transcriptional regulation of key genes. Additionally, the cartilage-selective genes represent candidate genes for unsolved human skeletal disorders.
Gain-of-function mutations in beet DODA2 identify key residues for betalain pigment evolution.
Bean, Alexander; Sunnadeniya, Rasika; Akhavan, Neda; Campbell, Annabelle; Brown, Matthew; Lloyd, Alan
2018-05-13
The key enzymatic step in betalain biosynthesis involves conversion of l-3,4-dihydroxyphenylalanine (l-DOPA) to betalamic acid. One class of enzymes capable of this is 3,4-dihydroxyphenylalanine 4,5-dioxygenase (DODA). In betalain-producing species, multiple paralogs of this gene are maintained. This study demonstrates which paralogs function in the betalain pathway and determines the residue changes required to evolve a betalain-nonfunctional DODA into a betalain-functional DODA. Functionalities of two pairs of DODAs were tested by expression in beets, Arabidopsis and yeast, and gene silencing was performed by virus-induced gene silencing. Site-directed mutagenesis identified amino acid residues essential for betalamic acid production. Beta vulgaris and Mirabilis jalapa both possess a DODA1 lineage that functions in the betalain pathway and at least one other lineage, DODA2, that does not. Site-directed mutagenesis resulted in betalain biosynthesis by a previously nonfunctional DODA, revealing key residues required for evolution of the betalain pathway. Divergent functionality of DODA paralogs, one clade involved in betalain biosynthesis but others not, is present in various Caryophyllales species. A minimum of seven amino acid residue changes conferred betalain enzymatic activity to a betalain-nonfunctional DODA paralog, providing insight into the evolution of the betalain pigment pathway in plants. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Highlighting the Need for Systems-Level Experimental Characterization of Plant Metabolic Enzymes.
Engqvist, Martin K M
2016-01-01
The biology of living organisms is determined by the action and interaction of a large number of individual gene products, each with specific functions. Discovering and annotating the function of gene products is key to our understanding of these organisms. Controlled experiments and bioinformatic predictions both contribute to functional gene annotation. For most species it is difficult to gain an overview of what portion of gene annotations are based on experiments and what portion represent predictions. Here, I survey the current state of experimental knowledge of enzymes and metabolism in Arabidopsis thaliana as well as eleven economically important crops and forestry trees - with a particular focus on reactions involving organic acids in central metabolism. I illustrate the limited availability of experimental data for functional annotation of enzymes in most of these species. Many enzymes involved in metabolism of citrate, malate, fumarate, lactate, and glycolate in crops and forestry trees have not been characterized. Furthermore, enzymes involved in key biosynthetic pathways which shape important traits in crops and forestry trees have not been characterized. I argue for the development of novel high-throughput platforms with which limited functional characterization of gene products can be performed quickly and relatively cheaply. I refer to this approach as systems-level experimental characterization. The data collected from such platforms would form a layer intermediate between bioinformatic gene function predictions and in-depth experimental studies of these functions. Such a data layer would greatly aid in the pursuit of understanding a multiplicity of biological processes in living organisms.
Joo, Jihoon E; Hiden, Ursula; Lassance, Luciana; Gordon, Lavinia; Martino, David J; Desoye, Gernot; Saffery, Richard
2013-07-15
The endothelial compartment, comprising arterial, venous and lymphatic cell types, is established prenatally in association with rapid phenotypic and functional changes. The molecular mechanisms underpinning this process in utero have yet to be fully elucidated. The aim of this study was to investigate the potential for DNA methylation to act as a driver of the specific gene expression profiles of arterial and venous endothelial cells. Placenta-derived venous and arterial endothelial cells were collected at birth prior to culturing. DNA methylation was measured at >450,000 CpG sites in parallel with expression measurements taken from 25,000 annotated genes. A consistent set of genomic loci was found to show coordinate differential methylation between the arterial and venous cell types. This included many loci previously not investigated in relation to endothelial function. An inverse relationship was observed between gene expression and promoter methylation levels for a limited subset of genes implicated in endothelial function, including NOS3, encoding endothelial Nitric Oxide Synthase. Endothelial cells derived from the placental vasculature at birth contain widespread methylation of key regulatory genes. These are candidates involved in the specification of different endothelial cell types and represent potential target genes for environmentally mediated epigenetic disruption in utero in association with cardiovascular disease risk later in life.
Yang, Tianquan; Xu, Ronghua; Chen, Jianghua; Liu, Aizhong
2016-01-01
Fatty acids serve many functions in plants, but the effects of some key genes involved in fatty acids biosynthesis on plants growth and development are not well understood yet. To understand the functions of 3-ketoacyl-acyl-carrier protein synthase I (KASI) in tobacco, we isolated two KASI homologs, which we have designated NtKASI-1 and NtKASI-2. Expression analysis showed that these two KASI genes were transcribed constitutively in all tissues examined. Over-expression of NtKASI-1 in tobacco changed the fatty acid content in leaves, whereas over-expressed lines of NtKASI-2 exhibited distinct phenotypic features such as slightly variegated leaves and reduction of the fatty acid content in leaves, similar to the silencing plants of NtKASI-1 gene. Interestingly, the silencing of NtKASI-2 gene had no discernibly altered phenotypes compared to wild type. The double silencing plants of these two genes enhanced the phenotypic changes during vegetative and reproductive growth compared to wild type. These results uncovered that these two KASI genes had the partially functional redundancy, and that the KASI genes played a key role in regulating fatty acids synthesis and in mediating plant growth and development in tobacco. PMID:27509494
funRNA: a fungi-centered genomics platform for genes encoding key components of RNAi.
Choi, Jaeyoung; Kim, Ki-Tae; Jeon, Jongbum; Wu, Jiayao; Song, Hyeunjeong; Asiegbu, Fred O; Lee, Yong-Hwan
2014-01-01
RNA interference (RNAi) is involved in genome defense as well as diverse cellular, developmental, and physiological processes. Key components of RNAi are Argonaute, Dicer, and RNA-dependent RNA polymerase (RdRP), which have been functionally characterized mainly in model organisms. The key components are believed to exist throughout eukaryotes; however, there is no systematic platform for archiving and dissecting these important gene families. In addition, few fungi have been studied to date, limiting our understanding of RNAi in fungi. Here we present funRNA http://funrna.riceblast.snu.ac.kr/, a fungal kingdom-wide comparative genomics platform for putative genes encoding Argonaute, Dicer, and RdRP. To identify and archive genes encoding the abovementioned key components, protein domain profiles were determined from reference sequences obtained from UniProtKB/SwissProt. The domain profiles were searched using fungal, metazoan, and plant genomes, as well as bacterial and archaeal genomes. 1,163, 442, and 678 genes encoding Argonaute, Dicer, and RdRP, respectively, were predicted. Based on the identification results, active site variation of Argonaute, diversification of Dicer, and sequence analysis of RdRP were discussed in a fungus-oriented manner. funRNA provides results from diverse bioinformatics programs and job submission forms for BLAST, BLASTMatrix, and ClustalW. Furthermore, sequence collections created in funRNA are synced with several gene family analysis portals and databases, offering further analysis opportunities. funRNA provides identification results from a broad taxonomic range and diverse analysis functions, and could be used in diverse comparative and evolutionary studies. It could serve as a versatile genomics workbench for key components of RNAi.
Short, Michael D.; Abell, Guy C. J.; Bodrossy, Levente; van den Akker, Ben
2013-01-01
We report on the first study trialling a newly-developed, functional gene microarray (FGA) for characterising bacterial and archaeal ammonia oxidisers in activated sludge. Mixed liquor (ML) and media biofilm samples from a full-scale integrated fixed-film activated sludge (IFAS) plant were analysed with the FGA to profile the diversity and relative abundance of ammonia-oxidising archaea and bacteria (AOA and AOB respectively). FGA analyses of AOA and AOB communities revealed ubiquitous distribution of AOA across all samples – an important finding for these newly-discovered and poorly characterised organisms. Results also revealed striking differences in the functional ecology of attached versus suspended communities within the IFAS reactor. Quantitative assessment of AOB and AOA functional gene abundance revealed a dominance of AOB in the ML and approximately equal distribution of AOA and AOB in the media-attached biofilm. Subsequent correlations of functional gene abundance data with key water quality parameters suggested an important functional role for media-attached AOB in particular for IFAS reactor nitrification performance and indicate possible functional redundancy in some IFAS ammonia oxidiser communities. Results from this investigation demonstrate the capacity of the FGA to resolve subtle ecological shifts in key microbial communities in nitrifying activated sludge and indicate its value as a tool for better understanding the linkages between the ecology and performance of these engineered systems. PMID:24155925
Hernández-Hernández, Tania; Martínez-Castilla, León Patricio; Alvarez-Buylla, Elena R
2007-02-01
B-class MADS-box genes have been shown to be the key regulators of petal and stamen specification in several eudicot model species such as Arabidopsis thaliana, Antirrhinum majus, and Petunia hybrida. Orthologs of these genes have been found across angiosperms and gymnosperms, and it is thought that the basic regulatory function of B proteins is conserved in seed plant lineages. The evolution of B genes is characterized by numerous duplications that might represent key elements fostering the functional diversification of duplicates with a deep impact on their role in the evolution of the floral developmental program. To evaluate this, we performed a rigorous statistical analysis with B gene sequences. Using maximum likelihood and Bayesian methods, we estimated molecular substitution rates and determined the selective regimes operating at each residue of B proteins. We implemented tests that rely on phylogenetic hypotheses and codon substitution models to detect significant differences in substitution rates (DSRs) and sites under positive adaptive selection (PS) in specific lineages before and after duplication events. With these methods, we identified several protein residues fixed by PS shortly after the origin of PISTILLATA-like and APETALA3-like lineages in angiosperms and shortly after the origin of the euAP3-like lineage in core eudicots, the 2 main B gene duplications. The residues inferred to have been fixed by positive selection lie mostly within the K domain of the protein, which is key to promote heterodimerization. Additionally, we used a likelihood method that accommodates DSRs among lineages to estimate duplication dates for AP3-PI and euAP3-TM6, calibrating with data from the fossil record. The dates obtained are consistent with angiosperm origins and diversification of core eudicots. Our results strongly suggest that novel multimer formation with other MADS proteins could have been crucial for the functional divergence of B MADS-box genes. We thus propose a mechanism of functional diversification and persistence of gene duplicates by the appearance of novel multimerization capabilities after duplications. Multimer formation in different combinations of regulatory proteins can be a mechanistic basis for the origin of novel regulatory functions and a gene regulatory mechanism for the appearance of morphological innovations.
Hook, Sharon E; Skillman, Ann D; Gopalan, Banu; Small, Jack A; Schultz, Irvin R
2008-03-01
Among proposed uses for microarrays in environmental toxiciology is the identification of key contributors to toxicity within a mixture. However, it remains uncertain whether the transcriptomic profiles resulting from exposure to a mixture have patterns of altered gene expression that contain identifiable contributions from each toxicant component. We exposed isogenic rainbow trout Onchorynchus mykiss, to sublethal levels of ethynylestradiol, 2,2,4,4-tetrabromodiphenyl ether, and chromium VI or to a mixture of all three toxicants Fluorescently labeled complementary DNA (cDNA) were generated and hybridized against a commercially available Salmonid array spotted with 16,000 cDNAs. Data were analyzed using analysis of variance (p<0.05) with a Benjamani-Hochberg multiple test correction (Genespring [Agilent] software package) to identify up and downregulated genes. Gene clustering patterns that can be used as "expression signatures" were determined using hierarchical cluster analysis. The gene ontology terms associated with significantly altered genes were also used to identify functional groups that were associated with toxicant exposure. Cross-ontological analytics approach was used to assign functional annotations to genes with "unknown" function. Our analysis indicates that transcriptomic profiles resulting from the mixture exposure resemble those of the individual contaminant exposures, but are not a simple additive list. However, patterns of altered genes representative of each component of the mixture are clearly discernible, and the functional classes of genes altered represent the individual components of the mixture. These findings indicate that the use of microarrays to identify transcriptomic profiles may aid in the identification of key stressors within a chemical mixture, ultimately improving environmental assessment.
Integrative Genomics Reveals Novel Molecular Pathways and Gene Networks for Coronary Artery Disease
Mäkinen, Ville-Petteri; Civelek, Mete; Meng, Qingying; Zhang, Bin; Zhu, Jun; Levian, Candace; Huan, Tianxiao; Segrè, Ayellet V.; Ghosh, Sujoy; Vivar, Juan; Nikpay, Majid; Stewart, Alexandre F. R.; Nelson, Christopher P.; Willenborg, Christina; Erdmann, Jeanette; Blakenberg, Stefan; O'Donnell, Christopher J.; März, Winfried; Laaksonen, Reijo; Epstein, Stephen E.; Kathiresan, Sekar; Shah, Svati H.; Hazen, Stanley L.; Reilly, Muredach P.; Lusis, Aldons J.; Samani, Nilesh J.; Schunkert, Heribert; Quertermous, Thomas; McPherson, Ruth; Yang, Xia; Assimes, Themistocles L.
2014-01-01
The majority of the heritability of coronary artery disease (CAD) remains unexplained, despite recent successes of genome-wide association studies (GWAS) in identifying novel susceptibility loci. Integrating functional genomic data from a variety of sources with a large-scale meta-analysis of CAD GWAS may facilitate the identification of novel biological processes and genes involved in CAD, as well as clarify the causal relationships of established processes. Towards this end, we integrated 14 GWAS from the CARDIoGRAM Consortium and two additional GWAS from the Ottawa Heart Institute (25,491 cases and 66,819 controls) with 1) genetics of gene expression studies of CAD-relevant tissues in humans, 2) metabolic and signaling pathways from public databases, and 3) data-driven, tissue-specific gene networks from a multitude of human and mouse experiments. We not only detected CAD-associated gene networks of lipid metabolism, coagulation, immunity, and additional networks with no clear functional annotation, but also revealed key driver genes for each CAD network based on the topology of the gene regulatory networks. In particular, we found a gene network involved in antigen processing to be strongly associated with CAD. The key driver genes of this network included glyoxalase I (GLO1) and peptidylprolyl isomerase I (PPIL1), which we verified as regulatory by siRNA experiments in human aortic endothelial cells. Our results suggest genetic influences on a diverse set of both known and novel biological processes that contribute to CAD risk. The key driver genes for these networks highlight potential novel targets for further mechanistic studies and therapeutic interventions. PMID:25033284
Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Lorsch, Zachary S; Walker, Deena M; Wang, Junshi; Huang, Xiaojie; Schlüter, Oliver M; Maze, Ian; Peña, Catherine J; Heller, Elizabeth A; Issler, Orna; Wang, Minghui; Song, Won-Min; Stein, Jason L; Liu, Xiaochuan; Doyle, Marie A; Scobie, Kimberly N; Sun, Hao Sheng; Neve, Rachael L; Geschwind, Daniel; Dong, Yan; Shen, Li; Zhang, Bin; Nestler, Eric J
2016-06-01
Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here, we performed RNA sequencing on four brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation, and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, Sean P.; Contreras-Moreira, Bruno; Woods, Daniel P.
While prokaryotic pan-genomes have been shown to contain many more genes than any individual organism, the prevalence and functional significance of differentially present genes in eukaryotes remains poorly understood. Whole-genome de novo assembly and annotation of 54 lines of the grass Brachypodium distachyon yield a pan-genome containing nearly twice the number of genes found in any individual genome. Genes present in all lines are enriched for essential biological functions, while genes present in only some lines are enriched for conditionally beneficial functions (e.g., defense and development), display faster evolutionary rates, lie closer to transposable elements and are less likely tomore » be syntenic with orthologous genes in other grasses. Our data suggest that differentially present genes contribute substantially to phenotypic variation within a eukaryote species, these genes have a major influence in population genetics, and transposable elements play a key role in pan-genome evolution.« less
Gordon, Sean P; Contreras-Moreira, Bruno; Woods, Daniel P; Des Marais, David L; Burgess, Diane; Shu, Shengqiang; Stritt, Christoph; Roulin, Anne C; Schackwitz, Wendy; Tyler, Ludmila; Martin, Joel; Lipzen, Anna; Dochy, Niklas; Phillips, Jeremy; Barry, Kerrie; Geuten, Koen; Budak, Hikmet; Juenger, Thomas E; Amasino, Richard; Caicedo, Ana L; Goodstein, David; Davidson, Patrick; Mur, Luis A J; Figueroa, Melania; Freeling, Michael; Catalan, Pilar; Vogel, John P
2017-12-19
While prokaryotic pan-genomes have been shown to contain many more genes than any individual organism, the prevalence and functional significance of differentially present genes in eukaryotes remains poorly understood. Whole-genome de novo assembly and annotation of 54 lines of the grass Brachypodium distachyon yield a pan-genome containing nearly twice the number of genes found in any individual genome. Genes present in all lines are enriched for essential biological functions, while genes present in only some lines are enriched for conditionally beneficial functions (e.g., defense and development), display faster evolutionary rates, lie closer to transposable elements and are less likely to be syntenic with orthologous genes in other grasses. Our data suggest that differentially present genes contribute substantially to phenotypic variation within a eukaryote species, these genes have a major influence in population genetics, and transposable elements play a key role in pan-genome evolution.
Gordon, Sean P.; Contreras-Moreira, Bruno; Woods, Daniel P.; ...
2017-12-19
While prokaryotic pan-genomes have been shown to contain many more genes than any individual organism, the prevalence and functional significance of differentially present genes in eukaryotes remains poorly understood. Whole-genome de novo assembly and annotation of 54 lines of the grass Brachypodium distachyon yield a pan-genome containing nearly twice the number of genes found in any individual genome. Genes present in all lines are enriched for essential biological functions, while genes present in only some lines are enriched for conditionally beneficial functions (e.g., defense and development), display faster evolutionary rates, lie closer to transposable elements and are less likely tomore » be syntenic with orthologous genes in other grasses. Our data suggest that differentially present genes contribute substantially to phenotypic variation within a eukaryote species, these genes have a major influence in population genetics, and transposable elements play a key role in pan-genome evolution.« less
Of the currently known reductive dehalogenase genes, few have functions assigned, and it seems likely that many more remain to be discovered. Very little is known of the ecology of the organisms that harbor these genes, that encode enzymes that are key to the anaerobic dechlorina...
Identification of Key Transcription Factors Associated with Lung Squamous Cell Carcinoma
Zhang, Feng; Chen, Xia; Wei, Ke; Liu, Daoming; Xu, Xiaodong; Zhang, Xing; Shi, Hong
2017-01-01
Background Lung squamous cell carcinoma (lung SCC) is a common type of lung cancer, but its mechanism of pathogenesis is unclear. The aim of this study was to identify key transcription factors in lung SCC and elucidate its mechanism. Material/Methods Six published microarray datasets of lung SCC were downloaded from Gene Expression Omnibus (GEO) for integrated bioinformatics analysis. Significance analysis of microarrays was used to identify differentially expressed genes (DEGs) between lung SCC and normal controls. The biological functions and signaling pathways of DEGs were mapped in the Gene Otology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, respectively. A transcription factor gene regulatory network was used to obtain insights into the functions of DEGs. Results A total of 1,011 genes, including 539 upregulated genes and 462 downregulated genes, were filtered as DEGs between lung SCC and normal controls. DEGs were significantly enriched in cell cycle, DNA replication, p53 signaling pathway, pathways in cancer, adherens junction, and cell adhesion molecules signaling pathways. There were 57 transcription factors identified, which were used to construct a regulatory network. The network consisted of 736 interactions between 49 transcription factors and 486 DEGs. NFIC, BRCA1, and NFATC2 were the top 3 transcription factors that had the highest connectivity with DEGs and that regulated 83, 82, and 75 DEGs in the network, respectively. Conclusions NFIC, BRCA1, and NFATC2 might be the key transcription factors in the development of lung SCC by regulating the genes involved in cell cycle and DNA replication pathways. PMID:28081052
Yang, Jialiang; Qiu, Jing; Wang, Kejing; Zhu, Lijuan; Fan, Jingjing; Zheng, Deyin; Meng, Xiaodi; Yang, Jiasheng; Peng, Lihong; Fu, Yu; Zhang, Dahan; Peng, Shouneng; Huang, Haiyun; Zhang, Yi
2017-01-01
Obesity is a primary risk factor for many diseases such as certain cancers. In this study, we have developed three algorithms including a random-walk based method OBNet, a shortest-path based method OBsp and a direct-overlap method OBoverlap, to reveal obesity-disease connections at protein-interaction subnetworks corresponding to thousands of biological functions and pathways. Through literature mining, we also curated an obesity-associated disease list, by which we compared the methods. As a result, OBNet outperforms other two methods. OBNet can predict whether a disease is obesity-related based on its associated genes. Meanwhile, OBNet identifies extensive connections between obesity genes and genes associated with a few diseases at various functional modules and pathways. Using breast cancer and Type 2 diabetes as two examples, OBNet identifies meaningful genes that may play key roles in connecting obesity and the two diseases. For example, TGFB1 and VEGFA are inferred to be the top two key genes mediating obesity-breast cancer connection in modules associated with brain development. Finally, the top modules identified by OBNet in breast cancer significantly overlap with modules identified from TCGA breast cancer gene expression study, revealing the power of OBNet in identifying biological processes involved in the disease. PMID:29156709
A chronological expression profile of gene activity during embryonic mouse brain development.
Goggolidou, P; Soneji, S; Powles-Glover, N; Williams, D; Sethi, S; Baban, D; Simon, M M; Ragoussis, I; Norris, D P
2013-12-01
The brain is a functionally complex organ, the patterning and development of which are key to adult health. To help elucidate the genetic networks underlying mammalian brain patterning, we conducted detailed transcriptional profiling during embryonic development of the mouse brain. A total of 2,400 genes were identified as showing differential expression between three developmental stages. Analysis of the data identified nine gene clusters to demonstrate analogous expression profiles. A significant group of novel genes of as yet undiscovered biological function were detected as being potentially relevant to brain development and function, in addition to genes that have previously identified roles in the brain. Furthermore, analysis for genes that display asymmetric expression between the left and right brain hemispheres during development revealed 35 genes as putatively asymmetric from a combined data set. Our data constitute a valuable new resource for neuroscience and neurodevelopment, exposing possible functional associations between genes, including novel loci, and encouraging their further investigation in human neurological and behavioural disorders.
Functional diversity and redundancy across fish gut, sediment and water bacterial communities.
Escalas, Arthur; Troussellier, Marc; Yuan, Tong; Bouvier, Thierry; Bouvier, Corinne; Mouchet, Maud A; Flores Hernandez, Domingo; Ramos Miranda, Julia; Zhou, Jizhong; Mouillot, David
2017-08-01
This article explores the functional diversity and redundancy in a bacterial metacommunity constituted of three habitats (sediment, water column and fish gut) in a coastal lagoon under anthropogenic pressure. Comprehensive functional gene arrays covering a wide range of ecological processes and stress resistance genes to estimate the functional potential of bacterial communities were used. Then, diversity partitioning was used to characterize functional diversity and redundancy within (α), between (β) and across (γ) habitats. It was showed that all local communities exhibit a highly diversified potential for the realization of key ecological processes and resistance to various environmental conditions, supporting the growing evidence that macro-organisms microbiomes harbour a high functional potential and are integral components of functional gene dynamics in aquatic bacterial metacommunities. Several levels of functional redundancy at different scales of the bacterial metacommunity were observed (within local communities, within habitats and at the metacommunity level). The results suggested a high potential for the realization of spatial ecological insurance within this ecosystem, that is, the functional compensation among microorganisms for the realization and maintenance of key ecological processes, within and across habitats. Finally, the role of macro-organisms as dispersal vectors of microbes and their potential influence on marine metacommunity dynamics were discussed. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.)
Abdurakhmonov, Ibrokhim Y.; Ayubov, Mirzakamol S.; Ubaydullaeva, Khurshida A.; Buriev, Zabardast T.; Shermatov, Shukhrat E.; Ruziboev, Haydarali S.; Shapulatov, Umid M.; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z.; Percy, Richard G.; Devor, Eric J.; Sharma, Govind C.; Sripathi, Venkateswara R.; Kumpatla, Siva P.; van der Krol, Alexander; Kater, Hake D.; Khamidov, Khakimdjan; Salikhov, Shavkat I.; Jenkins, Johnie N.; Abdukarimov, Abdusattor; Pepper, Alan E.
2016-01-01
RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization. PMID:26941765
RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.).
Abdurakhmonov, Ibrokhim Y; Ayubov, Mirzakamol S; Ubaydullaeva, Khurshida A; Buriev, Zabardast T; Shermatov, Shukhrat E; Ruziboev, Haydarali S; Shapulatov, Umid M; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z; Percy, Richard G; Devor, Eric J; Sharma, Govind C; Sripathi, Venkateswara R; Kumpatla, Siva P; van der Krol, Alexander; Kater, Hake D; Khamidov, Khakimdjan; Salikhov, Shavkat I; Jenkins, Johnie N; Abdukarimov, Abdusattor; Pepper, Alan E
2016-01-01
RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization.
Ding, Fangrui; Tan, Aidi; Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie
2016-01-01
Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet contributes to improving the understanding of normal glomerular function and will be useful for detecting target cytoskeleton molecules of interest that may be involved in glomerular diseases in future studies.
Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie
2016-01-01
Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet contributes to improving the understanding of normal glomerular function and will be useful for detecting target cytoskeleton molecules of interest that may be involved in glomerular diseases in future studies. PMID:27227331
Yan, Zaisheng; He, Yuhong; Cai, Haiyuan; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Krumholz, Lee R; Jiang, He-Long
2017-08-01
Sediment microbial fuel cells (SMFCs) can stimulate the degradation of polycyclic aromatic hydrocarbons in sediments, but the mechanism of this process is poorly understood at the microbial functional gene level. Here, the use of SMFC resulted in 92% benzo[a]pyrene (BaP) removal over 970 days relative to 54% in the controls. Sediment functions, microbial community structure, and network interactions were dramatically altered by the SMFC employment. Functional gene analysis showed that c-type cytochrome genes for electron transfer, aromatic degradation genes, and extracellular ligninolytic enzymes involved in lignin degradation were significantly enriched in bulk sediments during SMFC operation. Correspondingly, chemical analysis of the system showed that these genetic changes resulted in increases in the levels of easily oxidizable organic carbon and humic acids which may have resulted in increased BaP bioavailability and increased degradation rates. Tracking microbial functional genes and corresponding organic matter responses should aid mechanistic understanding of BaP enhanced biodegradation by microbial electrochemistry and development of sustainable bioremediation strategies.
Ma, Min; Chen, Xiaofei; Lu, Liangyu; Yuan, Feng; Zeng, Wen; Luo, Shulin; Yin, Feng; Cai, Junfeng
2016-12-01
Postmenopausal osteoporosis is a common bone disease and characterized by low bone mineral density. This study aimed to reveal key genes associated with postmenopausal osteoporosis (PMO), and provide a theoretical basis for subsequent experiments. The dataset GSE7429 was obtained from Gene Expression Omnibus. A total of 20 B cell samples (ten ones, respectively from postmenopausal women with low or high bone mineral density (BMD) were included in this dataset. Following screening of differentially expressed genes (DEGs), coexpression analysis of all genes was performed, and key genes in the coexpression network were screened using the random walk algorithm. Afterwards, functional and pathway analyses were conducted. Additionally, protein-protein interactions (PPIs) between DEGs and key genes were analyzed. A set of 308 DEGs (170 up-regulated ones and 138 down-regulated ones) between low BMD and high BMD samples were identified, and 101 key genes in the coexpression network were screened out. In the coexpression network, some genes had a higher score and degree, such as CSTA. The key genes in the coexpression network were mainly enriched in GO terms of the defense response (e.g., SERPINA1 and CST3), immune response (e.g., IL32 and CLEC7A); while, the DEGs were mainly enriched in structural constituent of cytoskeleton (e.g., CYLC2 and TUBA1B) and membrane-enclosed lumen (e.g., CCNE1 and INTS5). In the PPI network, CCNE1 interacted with REL; and TUBA1B interacted with ESR1. A series of interactions, such as CSTA/TYROBP, CCNE1/REL and TUBA1B/ESR1 might play pivotal roles in the occurrence and development of PMO.
SNP discovery in candidate adaptive genes using exon capture in a free-ranging alpine ungulate
Gretchen H. Roffler; Stephen J. Amish; Seth Smith; Ted Cosart; Marty Kardos; Michael K. Schwartz; Gordon Luikart
2016-01-01
Identification of genes underlying genomic signatures of natural selection is key to understanding adaptation to local conditions. We used targeted resequencing to identify SNP markers in 5321 candidate adaptive genes associated with known immunological, metabolic and growth functions in ovids and other ungulates. We selectively targeted 8161 exons in protein-coding...
Guo, Zhiqiang; Zhao, Chuncheng; Wang, Zheng
2014-09-26
To identify critical genes and biological pathways in acute lung injury (ALI), a comparative analysis of gene expression profiles of patients with ALI + sepsis compared with patients with sepsis alone were performed with bioinformatic tools. GSE10474 was downloaded from Gene Expression Omnibus, including a collective of 13 whole blood samples with ALI + sepsis and 21 whole blood samples with sepsis alone. After pre-treatment with robust multichip averaging (RMA) method, differential analysis was conducted using simpleaffy package based upon t-test and fold change. Hierarchical clustering was also performed using function hclust from package stats. Beisides, functional enrichment analysis was conducted using iGepros. Moreover, the gene regulatory network was constructed with information from Kyoto Encyclopedia of Genes and Genomes (KEGG) and then visualized by Cytoscape. A total of 128 differentially expressed genes (DEGs) were identified, including 47 up- and 81 down-regulated genes. The significantly enriched functions included negative regulation of cell proliferation, regulation of response to stimulus and cellular component morphogenesis. A total of 27 DEGs were significantly enriched in 16 KEGG pathways, such as protein digestion and absorption, fatty acid metabolism, amoebiasis, etc. Furthermore, the regulatory network of these 27 DEGs was constructed, which involved several key genes, including protein tyrosine kinase 2 (PTK2), v-src avian sarcoma (SRC) and Caveolin 2 (CAV2). PTK2, SRC and CAV2 may be potential markers for diagnosis and treatment of ALI. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5865162912987143.
Phylogenomics databases for facilitating functional genomics in rice.
Jung, Ki-Hong; Cao, Peijian; Sharma, Rita; Jain, Rashmi; Ronald, Pamela C
2015-12-01
The completion of whole genome sequence of rice (Oryza sativa) has significantly accelerated functional genomics studies. Prior to the release of the sequence, only a few genes were assigned a function each year. Since sequencing was completed in 2005, the rate has exponentially increased. As of 2014, 1,021 genes have been described and added to the collection at The Overview of functionally characterized Genes in Rice online database (OGRO). Despite this progress, that number is still very low compared with the total number of genes estimated in the rice genome. One limitation to progress is the presence of functional redundancy among members of the same rice gene family, which covers 51.6 % of all non-transposable element-encoding genes. There remain a significant portion or rice genes that are not functionally redundant, as reflected in the recovery of loss-of-function mutants. To more accurately analyze functional redundancy in the rice genome, we have developed a phylogenomics databases for six large gene families in rice, including those for glycosyltransferases, glycoside hydrolases, kinases, transcription factors, transporters, and cytochrome P450 monooxygenases. In this review, we introduce key features and applications of these databases. We expect that they will serve as a very useful guide in the post-genomics era of research.
Luo, Weiwei; Cao, Xiaojuan; Xu, Xiuwen; Huang, Songqian; Liu, Chuanshu; Tomljanovic, Tea
2016-01-01
Dojo loach, Misgurnus anguillicaudatus is a freshwater fish species of the loach family Cobitidae, using its posterior intestine as an accessory air-breathing organ. Little is known about the molecular regulatory mechanisms in the formation of intestinal air-breathing function of M. anguillicaudatus. Here high-throughput sequencing of mRNAs was performed from six developmental stages of posterior intestine of M. anguillicaudatus: 4-Dph (days post hatch) group, 8-Dph group, 12-Dph group, 20-Dph group, 40-Dph group and Oyd (one-year-old) group. These six libraries were assembled into 81300 unigenes. Totally 40757 unigenes were annotated. Subsequently, 35291 differentially expressed genes (DEGs) were scanned among different developmental stages and clustered into 20 gene expression profiles. Finally, 15 key pathways and 25 key genes were mined, providing potential targets for candidate gene selection involved in formation of intestinal air-breathing function in M. anguillicaudatus. This is the first report of developmental transcriptome of posterior intestine in M. anguillicaudatus, offering a substantial contribution to the sequence resources for this species and providing a deep insight into the formation mechanism of its intestinal air-breathing function. This report demonstrates that M. anguillicaudatus is a good model for studies to identify and characterize the molecular basis of accessory air-breathing organ development in fish. PMID:27545457
Liu, Shujun; Sun, Yonghua; Du, Xiaoqiu; Xu, Qijiang; Wu, Feng; Meng, Zheng
2013-01-01
Background and Aims According to the floral ABC model, B-function genes appear to play a key role in the origin and diversification of the perianth during the evolution of angiosperms. The basal angiosperm Hedyosmum orientale (Chloranthaceae) has unisexual inflorescences associated with a seemingly primitive reproductive morphology and a reduced perianth structure in female flowers. The aim of this study was to investigate the nature of the perianth and the evolutionary state of the B-function programme in this species. Methods A series of experiments were conducted to characterize B-gene homologues isolated from H. orientale, including scanning electron microscopy to observe the development of floral organs, phylogenetic analysis to reconstruct gene evolutionary history, reverse transcription–PCR, quantitative real-time PCR and in situ hybridization to identify gene expression patterns, the yeast two-hybrid assay to explore protein dimerization affinities, and transgenic analyses in Arabidopsis thaliana to determine activities of the encoded proteins. Key Results The expression of HoAP3 genes was restricted to stamens, whereas HoPI genes were broadly expressed in all floral organs. HoAP3 was able to partially restore the stamen but not petal identity in Arabidopsis ap3-3 mutants. In contrast, HoPI could rescue aspects of both stamen and petal development in Arabidopsis pi-1 mutants. When the complete C-terminal sequence of HoPI was deleted, however, no or weak transgenic phenotypes were observed and homodimerization capability was completely abolished. Conclusions The results suggest that Hedyosmum AP3-like genes have an ancestral function in specifying male reproductive organs, and that the activity of the encoded PI-like proteins is highly conserved between Hedyosmum and Arabidopsis. Moreover, there is evidence that the C-terminal region is important for the function of HoPI. Our findings indicate that the development of the proposed perianth in Hedyosmum does not rely on the B homeotic function. PMID:23956161
Genome-Wide Detection and Analysis of Multifunctional Genes
Pritykin, Yuri; Ghersi, Dario; Singh, Mona
2015-01-01
Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms—H. sapiens, D. melanogaster, and S. cerevisiae—and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality. PMID:26436655
Microbial metatranscriptomics in a permanent marine oxygen minimum zone.
Stewart, Frank J; Ulloa, Osvaldo; DeLong, Edward F
2012-01-01
Simultaneous characterization of taxonomic composition, metabolic gene content and gene expression in marine oxygen minimum zones (OMZs) has potential to broaden perspectives on the microbial and biogeochemical dynamics in these environments. Here, we present a metatranscriptomic survey of microbial community metabolism in the Eastern Tropical South Pacific OMZ off northern Chile. Community RNA was sampled in late austral autumn from four depths (50, 85, 110, 200 m) extending across the oxycline and into the upper OMZ. Shotgun pyrosequencing of cDNA yielded 180,000 to 550,000 transcript sequences per depth. Based on functional gene representation, transcriptome samples clustered apart from corresponding metagenome samples from the same depth, highlighting the discrepancies between metabolic potential and actual transcription. BLAST-based characterizations of non-ribosomal RNA sequences revealed a dominance of genes involved with both oxidative (nitrification) and reductive (anammox, denitrification) components of the marine nitrogen cycle. Using annotations of protein-coding genes as proxies for taxonomic affiliation, we observed depth-specific changes in gene expression by key functional taxonomic groups. Notably, transcripts most closely matching the genome of the ammonia-oxidizing archaeon Nitrosopumilus maritimus dominated the transcriptome in the upper three depths, representing one in five protein-coding transcripts at 85 m. In contrast, transcripts matching the anammox bacterium Kuenenia stuttgartiensis dominated at the core of the OMZ (200 m; 1 in 12 protein-coding transcripts). The distribution of N. maritimus-like transcripts paralleled that of transcripts matching ammonia monooxygenase genes, which, despite being represented by both bacterial and archaeal sequences in the community DNA, were dominated (> 99%) by archaeal sequences in the RNA, suggesting a substantial role for archaeal nitrification in the upper OMZ. These data, as well as those describing other key OMZ metabolic processes (e.g. sulfur oxidation), highlight gene-specific expression patterns in the context of the entire community transcriptome, as well as identify key functional groups for taxon-specific genomic profiling. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Hong, Chenlu; Chen, Yangyang; Li, Lu; Chen, Shouwen; Wei, Xuetuan
2017-03-01
Natto as a fermented soybean product has many health benefits for human due to its rich nutritional and functional components. However, the unpleasant odor of natto, caused by the formation of branched-chain short fatty acids (BCFAs), prohibits the wide acceptance of natto products. This work is to identify the key gene of BCFAs formation and develop the guidance to reduce natto odor. Transcriptional analysis of BCFAs synthesis pathway genes was conducted in two Bacillus subtilis strains with obvious different BCFAs synthesis abilities. The transcriptional levels of bcd, bkdAA, and ptb in B. subtilis H-9 were 2.7-fold, 0.7-fold, and 8.9-fold higher than that of B. subtilis H-4, respectively. Therefore, the ptb gene with the highest transcriptional change was considered as the key gene in BCFAs synthesis. The ptb encoded enzyme Ptb was further characterized by inducible expression in Escherichia coli. The recombinant Ptb protein (about 32 kDa) was verified by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis analysis. The catalysis functions of Ptb were confirmed on substrates of isovaleryl-CoA and isobutyryl-CoA, and the higher catalysis efficiency of Ptb on isovaleryl-CoA explained the higher level of isovaleric acid in natto. The optimal activities of Ptb were observed at 50 °C and pH 8.0, and the enzymatic activity was inhibited by Ca 2+ , Zn 2+ , Ba 2+ , Mn 2+ , Cu 2+ , SDS, and EDTA. Collectively, this study reports a key gene responsible for BCFAs formation in natto fermentation and provides potential strategies to solve the odor problem.
Mishra, Abhishek Kumar; Bargmann, Bastiaan O R; Tsachaki, Maria; Fritsch, Cornelia; Sprecher, Simon G
2016-02-15
Sensory perception of light is mediated by specialized Photoreceptor neurons (PRs) in the eye. During development all PRs are genetically determined to express a specific Rhodopsin (Rh) gene and genes mediating a functional phototransduction pathway. While the genetic and molecular mechanisms of PR development is well described in the adult compound eye, it remains unclear how the expression of Rhodopsins and the phototransduction cascade is regulated in other visual organs in Drosophila, such as the larval eye and adult ocelli. Using transcriptome analysis of larval PR-subtypes and ocellar PRs we identify and study new regulators required during PR differentiation or necessary for the expression of specific signaling molecules of the functional phototransduction pathway. We found that the transcription factor Krüppel (Kr) is enriched in the larval eye and controls PR differentiation by promoting Rh5 and Rh6 expression. We also identified Camta, Lola, Dve and Hazy as key genes acting during ocellar PR differentiation. Further we show that these transcriptional regulators control gene expression of the phototransduction cascade in both larval eye and adult ocelli. Our results show that PR cell type-specific transcriptome profiling is a powerful tool to identify key transcriptional regulators involved during several aspects of PR development and differentiation. Our findings greatly contribute to the understanding of how combinatorial action of key transcriptional regulators control PR development and the regulation of a functional phototransduction pathway in both larval eye and adult ocelli. Copyright © 2015 Elsevier Inc. All rights reserved.
Porcine Tissue-Specific Regulatory Networks Derived from Meta-Analysis of the Transcriptome
Pérez-Montarelo, Dafne; Hudson, Nicholas J.; Fernández, Ana I.; Ramayo-Caldas, Yuliaxis; Dalrymple, Brian P.; Reverter, Antonio
2012-01-01
The processes that drive tissue identity and differentiation remain unclear for most tissue types. So are the gene networks and transcription factors (TF) responsible for the differential structure and function of each particular tissue, and this is particularly true for non model species with incomplete genomic resources. To better understand the regulation of genes responsible for tissue identity in pigs, we have inferred regulatory networks from a meta-analysis of 20 gene expression studies spanning 480 Porcine Affymetrix chips for 134 experimental conditions on 27 distinct tissues. We developed a mixed-model normalization approach with a covariance structure that accommodated the disparity in the origin of the individual studies, and obtained the normalized expression of 12,320 genes across the 27 tissues. Using this resource, we constructed a network, based on the co-expression patterns of 1,072 TF and 1,232 tissue specific genes. The resulting network is consistent with the known biology of tissue development. Within the network, genes clustered by tissue and tissues clustered by site of embryonic origin. These clusters were significantly enriched for genes annotated in key relevant biological processes and confirm gene functions and interactions from the literature. We implemented a Regulatory Impact Factor (RIF) metric to identify the key regulators in skeletal muscle and tissues from the central nervous systems. The normalization of the meta-analysis, the inference of the gene co-expression network and the RIF metric, operated synergistically towards a successful search for tissue-specific regulators. Novel among these findings are evidence suggesting a novel key role of ERCC3 as a muscle regulator. Together, our results recapitulate the known biology behind tissue specificity and provide new valuable insights in a less studied but valuable model species. PMID:23049964
Pathway modulations and epigenetic alterations in ovarian tumorbiogenesis
Saldanha, Sabita N.; Tollefsbol, Trygve O.
2013-01-01
Cellular pathways are numerous and are highly integrated in function in the control of cellular systems. They collectively regulate cell division, proliferation, survival and apoptosis of cells and mutagenesis of key genes that control these pathways can initiate neoplastic transformations. Understanding these pathways is crucial to future therapeutic and preventive strategies of the disease. Ovarian cancers are of three major types; epithelial, germ-cell and stromal. However, ovarian cancers of epithelial origin, arising from the mesothelium, are the predominant form. Of the subtypes of ovarian cancer, the high-grade serous tumors are fatal, with low survival rate due to late detection and poor response to treatments. Close examination of preserved ovarian tissues and in vitro studies have provided insights into the mechanistic changes occurring in cells mediated by a few key genes. This review will focus on pathways and key genes of the pathways that are mutated or have aberrant functions in the pathology of ovarian cancer. Non-genetic mechanisms that are gaining prominence in the pathology of ovarian cancer, miRNAs and epigenetics, will also be discussed in the review. PMID:24105793
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verreth, Wim; Verhamme, Peter; Pelat, Michael
2003-09-01
Weight-loss in obese insulin-resistant, but not in insulin-sensitive, persons reduces CHD risk. It is not known to what extent changes in the adipose gene expression profile are important for reducing CHD risk. We studied the effect of diet restriction-induced weight-loss on gene expression in adipose tissue, atherosclerosis and cardiovascular function in mice with combined leptin and LDL-receptor deficiency. Obesity, hypertriglyceridemia and insulin-resistance are associated with hypertension, impaired left ventricle function and accelerated atherosclerosis in those mice. Diet restriction during 12 weeks caused a 45% weight-loss and changes in the gene expression in adipose tissue of PPARa and PPAR? and ofmore » key genes regulating glucose transport and insulin sensitivity, lipid metabolism, oxidative stress and inflammation, most of which are under the transcriptional control of PPARs. These changes were associated with increased insulin-sensitivity, decreased hypertriglyceridemia, reduced mean 24-hour blood pressure and heart rate, restored circadian variations of blood pressure and heart rate, increased ejection fraction, and reduced atherosclerosis. Thus, induction of PPARa and PPAR? in adipose tissue is a key mechanism for reducing atherosclerosis and improving cardiovascular function resulting from weight-loss. Our observations point to the critical role of PPARs in the pathogenesis of cardiovascular features of the metabolic syndrome.« less
Conserved noncoding sequences conserve biological networks and influence genome evolution.
Xie, Jianbo; Qian, Kecheng; Si, Jingna; Xiao, Liang; Ci, Dong; Zhang, Deqiang
2018-05-01
Comparative genomics approaches have identified numerous conserved cis-regulatory sequences near genes in plant genomes. Despite the identification of these conserved noncoding sequences (CNSs), our knowledge of their functional importance and selection remains limited. Here, we used a combination of DNA methylome analysis, microarray expression analyses, and functional annotation to study these sequences in the model tree Populus trichocarpa. Methylation in CG contexts and non-CG contexts was lower in CNSs, particularly CNSs in the 5'-upstream regions of genes, compared with other sites in the genome. We observed that CNSs are enriched in genes with transcription and binding functions, and this also associated with syntenic genes and those from whole-genome duplications, suggesting that cis-regulatory sequences play a key role in genome evolution. We detected a significant positive correlation between CNS number and protein interactions, suggesting that CNSs may have roles in the evolution and maintenance of biological networks. The divergence of CNSs indicates that duplication-degeneration-complementation drives the subfunctionalization of a proportion of duplicated genes from whole-genome duplication. Furthermore, population genomics confirmed that most CNSs are under strong purifying selection and only a small subset of CNSs shows evidence of adaptive evolution. These findings provide a foundation for future studies exploring these key genomic features in the maintenance of biological networks, local adaptation, and transcription.
Verma, Jitendra Kumar; Wardhan, Vijay; Singh, Deepali; Chakraborty, Subhra; Chakraborty, Niranjan
2018-03-28
Architectural proteins play key roles in genome construction and regulate the expression of many genes, albeit the modulation of genome plasticity by these proteins is largely unknown. A critical screening of the architectural proteins in five crop species, viz., Oryza sativa , Zea mays , Sorghum bicolor , Cicer arietinum , and Vitis vinifera , and in the model plant Arabidopsis thaliana along with evolutionary relevant species such as Chlamydomonas reinhardtii , Physcomitrella patens , and Amborella trichopoda , revealed 9, 20, 10, 7, 7, 6, 1, 4, and 4 Alba (acetylation lowers binding affinity) genes, respectively. A phylogenetic analysis of the genes and of their counterparts in other plant species indicated evolutionary conservation and diversification. In each group, the structural components of the genes and motifs showed significant conservation. The chromosomal location of the Alba genes of rice ( OsAlba ), showed an unequal distribution on 8 of its 12 chromosomes. The expression profiles of the OsAlba genes indicated a distinct tissue-specific expression in the seedling, vegetative, and reproductive stages. The quantitative real-time PCR (qRT-PCR) analysis of the OsAlba genes confirmed their stress-inducible expression under multivariate environmental conditions and phytohormone treatments. The evaluation of the regulatory elements in 68 Alba genes from the 9 species studied led to the identification of conserved motifs and overlapping microRNA (miRNA) target sites, suggesting the conservation of their function in related proteins and a divergence in their biological roles across species. The 3D structure and the prediction of putative ligands and their binding sites for OsAlba proteins offered a key insight into the structure-function relationship. These results provide a comprehensive overview of the subtle genetic diversification of the OsAlba genes, which will help in elucidating their functional role in plants.
Levels of Lycopene β-Cyclase 1 Modulate Carotenoid Gene Expression and Accumulation in Daucus carota
Moreno, Juan Camilo; Pizarro, Lorena; Fuentes, Paulina; Handford, Michael; Cifuentes, Victor; Stange, Claudia
2013-01-01
Plant carotenoids are synthesized and accumulated in plastids through a highly regulated pathway. Lycopene β-cyclase (LCYB) is a key enzyme involved directly in the synthesis of α-carotene and β-carotene through the cyclization of lycopene. Carotenoids are produced in both carrot (Daucus carota) leaves and reserve roots, and high amounts of α-carotene and β-carotene accumulate in the latter. In some plant models, the presence of different isoforms of carotenogenic genes is associated with an organ-specific function. D. carota harbors two Lcyb genes, of which DcLcyb1 is expressed in leaves and storage roots during carrot development, correlating with an increase in carotenoid levels. In this work, we show that DcLCYB1 is localized in the plastid and that it is a functional enzyme, as demonstrated by heterologous complementation in Escherichia coli and over expression and post transcriptional gene silencing in carrot. Transgenic plants with higher or reduced levels of DcLcyb1 had incremented or reduced levels of chlorophyll, total carotenoids and β-carotene in leaves and in the storage roots, respectively. In addition, changes in the expression of DcLcyb1 are accompanied by a modulation in the expression of key endogenous carotenogenic genes. Our results indicate that DcLcyb1 does not possess an organ specific function and modulate carotenoid gene expression and accumulation in carrot leaves and storage roots. PMID:23555569
Essential RNA-Based Technologies and Their Applications in Plant Functional Genomics.
Teotia, Sachin; Singh, Deepali; Tang, Xiaoqing; Tang, Guiliang
2016-02-01
Genome sequencing has not only extended our understanding of the blueprints of many plant species but has also revealed the secrets of coding and non-coding genes. We present here a brief introduction to and personal account of key RNA-based technologies, as well as their development and applications for functional genomics of plant coding and non-coding genes, with a focus on short tandem target mimics (STTMs), artificial microRNAs (amiRNAs), and CRISPR/Cas9. In addition, their use in multiplex technologies for the functional dissection of gene networks is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
The excludon: a new concept in bacterial antisense RNA-mediated gene regulation.
Sesto, Nina; Wurtzel, Omri; Archambaud, Cristel; Sorek, Rotem; Cossart, Pascale
2013-02-01
In recent years, non-coding RNAs have emerged as key regulators of gene expression. Among these RNAs, the antisense RNAs (asRNAs) are particularly abundant, but in most cases the function and mechanism of action for a particular asRNA remains elusive. Here, we highlight a recently discovered paradigm termed the excludon, which defines a genomic locus encoding an unusually long asRNA that spans divergent genes or operons with related or opposing functions. Because these asRNAs can inhibit the expression of one operon while functioning as an mRNA for the adjacent operon, they act as fine-tuning regulatory switches in bacteria.
Manoharan, Lokeshwaran; Kushwaha, Sandeep K.; Hedlund, Katarina; Ahrén, Dag
2015-01-01
Microbial enzyme diversity is a key to understand many ecosystem processes. Whole metagenome sequencing (WMG) obtains information on functional genes, but it is costly and inefficient due to large amount of sequencing that is required. In this study, we have applied a captured metagenomics technique for functional genes in soil microorganisms, as an alternative to WMG. Large-scale targeting of functional genes, coding for enzymes related to organic matter degradation, was applied to two agricultural soil communities through captured metagenomics. Captured metagenomics uses custom-designed, hybridization-based oligonucleotide probes that enrich functional genes of interest in metagenomic libraries where only probe-bound DNA fragments are sequenced. The captured metagenomes were highly enriched with targeted genes while maintaining their target diversity and their taxonomic distribution correlated well with the traditional ribosomal sequencing. The captured metagenomes were highly enriched with genes related to organic matter degradation; at least five times more than similar, publicly available soil WMG projects. This target enrichment technique also preserves the functional representation of the soils, thereby facilitating comparative metagenomics projects. Here, we present the first study that applies the captured metagenomics approach in large scale, and this novel method allows deep investigations of central ecosystem processes by studying functional gene abundances. PMID:26490729
Down-Regulation of Gene Expression by RNA-Induced Gene Silencing
NASA Astrophysics Data System (ADS)
Travella, Silvia; Keller, Beat
Down-regulation of endogenous genes via post-transcriptional gene silencing (PTGS) is a key to the characterization of gene function in plants. Many RNA-based silencing mechanisms such as post-transcriptional gene silencing, co-suppression, quelling, and RNA interference (RNAi) have been discovered among species of different kingdoms (plants, fungi, and animals). One of the most interesting discoveries was RNAi, a sequence-specific gene-silencing mechanism initiated by the introduction of double-stranded RNA (dsRNA), homologous in sequence to the silenced gene, which triggers degradation of mRNA. Infection of plants with modified viruses can also induce RNA silencing and is referred to as virus-induced gene silencing (VIGS). In contrast to insertional mutagenesis, these emerging new reverse genetic approaches represent a powerful tool for exploring gene function and for manipulating gene expression experimentally in cereal species such as barley and wheat. We examined how RNAi and VIGS have been used to assess gene function in barley and wheat, including molecular mechanisms involved in the process and available methodological elements, such as vectors, inoculation procedures, and analysis of silenced phenotypes.
Continuum theory of gene expression waves during vertebrate segmentation.
Jörg, David J; Morelli, Luis G; Soroldoni, Daniele; Oates, Andrew C; Jülicher, Frank
2015-09-01
The segmentation of the vertebrate body plan during embryonic development is a rhythmic and sequential process governed by genetic oscillations. These genetic oscillations give rise to traveling waves of gene expression in the segmenting tissue. Here we present a minimal continuum theory of vertebrate segmentation that captures the key principles governing the dynamic patterns of gene expression including the effects of shortening of the oscillating tissue. We show that our theory can quantitatively account for the key features of segmentation observed in zebrafish, in particular the shape of the wave patterns, the period of segmentation and the segment length as a function of time.
Continuum theory of gene expression waves during vertebrate segmentation
Jörg, David J; Morelli, Luis G; Soroldoni, Daniele; Oates, Andrew C; Jülicher, Frank
2015-01-01
Abstract The segmentation of the vertebrate body plan during embryonic development is a rhythmic and sequential process governed by genetic oscillations. These genetic oscillations give rise to traveling waves of gene expression in the segmenting tissue. Here we present a minimal continuum theory of vertebrate segmentation that captures the key principles governing the dynamic patterns of gene expression including the effects of shortening of the oscillating tissue. We show that our theory can quantitatively account for the key features of segmentation observed in zebrafish, in particular the shape of the wave patterns, the period of segmentation and the segment length as a function of time. PMID:28725158
Braberg, Hannes; Moehle, Erica A.; Shales, Michael; Guthrie, Christine; Krogan, Nevan J.
2014-01-01
We have achieved a residue-level resolution of genetic interaction mapping – a technique that measures how the function of one gene is affected by the alteration of a second gene – by analyzing point mutations. Here, we describe how to interpret point mutant genetic interactions, and outline key applications for the approach, including interrogation of protein interaction interfaces and active sites, and examination of post-translational modifications. Genetic interaction analysis has proven effective for characterizing cellular processes; however, to date, systematic high-throughput genetic interaction screens have relied on gene deletions or knockdowns, which limits the resolution of gene function analysis and poses problems for multifunctional genes. Our point mutant approach addresses these issues, and further provides a tool for in vivo structure-function analysis that complements traditional biophysical methods. We also discuss the potential for genetic interaction mapping of point mutations in human cells and its application to personalized medicine. PMID:24842270
Magalhães, Alexandre P.; Verde, Nuno; Reis, Francisca; Martins, Inês; Costa, Daniela; Lino-Neto, Teresa; Castro, Pedro H.; Tavares, Rui M.; Azevedo, Herlânder
2016-01-01
Quercus suber (cork oak) is a West Mediterranean species of key economic interest, being extensively explored for its ability to generate cork. Like other Mediterranean plants, Q. suber is significantly threatened by climatic changes, imposing the need to quickly understand its physiological and molecular adaptability to drought stress imposition. In the present report, we uncovered the differential transcriptome of Q. suber roots exposed to long-term drought, using an RNA-Seq approach. 454-sequencing reads were used to de novo assemble a reference transcriptome, and mapping of reads allowed the identification of 546 differentially expressed unigenes. These were enriched in both effector genes (e.g., LEA, chaperones, transporters) as well as regulatory genes, including transcription factors (TFs) belonging to various different classes, and genes associated with protein turnover. To further extend functional characterization, we identified the orthologs of differentially expressed unigenes in the model species Arabidopsis thaliana, which then allowed us to perform in silico functional inference, including gene network analysis for protein function, protein subcellular localization and gene co-expression, and in silico enrichment analysis for TFs and cis-elements. Results indicated the existence of extensive transcriptional regulatory events, including activation of ABA-responsive genes and ABF-dependent signaling. We were then able to establish that a core ABA-signaling pathway involving PP2C-SnRK2-ABF components was induced in stressed Q. suber roots, identifying a key mechanism in this species’ response to drought. PMID:26793200
Song, Hyun-Seob; McClure, Ryan S.; Bernstein, Hans C.; ...
2015-03-27
Cyanobacteria dynamically relay environmental inputs to intracellular adaptations through a coordinated adjustment of photosynthetic efficiency and carbon processing rates. The output of such adaptations is reflected through changes in transcriptional patterns and metabolic flux distributions that ultimately define growth strategy. To address interrelationships between metabolism and regulation, we performed integrative analyses of metabolic and gene co-expression networks in a model cyanobacterium, Synechococcus sp. PCC 7002. Centrality analyses using the gene co-expression network identified a set of key genes, which were defined here as ‘topologically important.’ Parallel in silico gene knock-out simulations, using the genome-scale metabolic network, classified what we termedmore » as ‘functionally important’ genes, deletion of which affected growth or metabolism. A strong positive correlation was observed between topologically and functionally important genes. Functionally important genes exhibited variable levels of topological centrality; however, the majority of topologically central genes were found to be functionally essential for growth. Subsequent functional enrichment analysis revealed that both functionally and topologically important genes in Synechococcus sp. PCC 7002 are predominantly associated with translation and energy metabolism, two cellular processes critical for growth. This research demonstrates how synergistic network-level analyses can be used for reconciliation of metabolic and gene expression data to uncover fundamental biological principles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Hyun-Seob; McClure, Ryan S.; Bernstein, Hans C.
Cyanobacteria dynamically relay environmental inputs to intracellular adaptations through a coordinated adjustment of photosynthetic efficiency and carbon processing rates. The output of such adaptations is reflected through changes in transcriptional patterns and metabolic flux distributions that ultimately define growth strategy. To address interrelationships between metabolism and regulation, we performed integrative analyses of metabolic and gene co-expression networks in a model cyanobacterium, Synechococcus sp. PCC 7002. Centrality analyses using the gene co-expression network identified a set of key genes, which were defined here as ‘topologically important.’ Parallel in silico gene knock-out simulations, using the genome-scale metabolic network, classified what we termedmore » as ‘functionally important’ genes, deletion of which affected growth or metabolism. A strong positive correlation was observed between topologically and functionally important genes. Functionally important genes exhibited variable levels of topological centrality; however, the majority of topologically central genes were found to be functionally essential for growth. Subsequent functional enrichment analysis revealed that both functionally and topologically important genes in Synechococcus sp. PCC 7002 are predominantly associated with translation and energy metabolism, two cellular processes critical for growth. This research demonstrates how synergistic network-level analyses can be used for reconciliation of metabolic and gene expression data to uncover fundamental biological principles.« less
Comparative genomics of the lactic acid bacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarova, K.; Slesarev, A.; Wolf, Y.
Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive genemore » loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.« less
NASA Astrophysics Data System (ADS)
Liu, Xiaoming; Yang, Jiasheng; Zhang, Yi; Fang, Yun; Wang, Fayou; Wang, Jun; Zheng, Xiaoqi; Yang, Jialiang
2016-03-01
We have studied drug-response associated (DRA) gene expressions by applying a systems biology framework to the Cancer Cell Line Encyclopedia data. More than 4,000 genes are inferred to be DRA for at least one drug, while the number of DRA genes for each drug varies dramatically from almost 0 to 1,226. Functional enrichment analysis shows that the DRA genes are significantly enriched in genes associated with cell cycle and plasma membrane. Moreover, there might be two patterns of DRA genes between genders. There are significantly shared DRA genes between male and female for most drugs, while very little DRA genes tend to be shared between the two genders for a few drugs targeting sex-specific cancers (e.g., PD-0332991 for breast cancer and ovarian cancer). Our analyses also show substantial difference for DRA genes between young and old samples, suggesting the necessity of considering the age effects for personalized medicine in cancers. Lastly, differential module and key driver analyses confirm cell cycle related modules as top differential ones for drug sensitivity. The analyses also reveal the role of TSPO, TP53, and many other immune or cell cycle related genes as important key drivers for DRA network modules. These key drivers provide new drug targets to improve the sensitivity of cancer therapy.
Genome sequence and analysis of Lactobacillus helveticus
Cremonesi, Paola; Chessa, Stefania; Castiglioni, Bianca
2013-01-01
The microbiological characterization of lactobacilli is historically well developed, but the genomic analysis is recent. Because of the widespread use of Lactobacillus helveticus in cheese technology, information concerning the heterogeneity in this species is accumulating rapidly. Recently, the genome of five L. helveticus strains was sequenced to completion and compared with other genomically characterized lactobacilli. The genomic analysis of the first sequenced strain, L. helveticus DPC 4571, isolated from cheese and selected for its characteristics of rapid lysis and high proteolytic activity, has revealed a plethora of genes with industrial potential including those responsible for key metabolic functions such as proteolysis, lipolysis, and cell lysis. These genes and their derived enzymes can facilitate the production of cheese and cheese derivatives with potential for use as ingredients in consumer foods. In addition, L. helveticus has the potential to produce peptides with a biological function, such as angiotensin converting enzyme (ACE) inhibitory activity, in fermented dairy products, demonstrating the therapeutic value of this species. A most intriguing feature of the genome of L. helveticus is the remarkable similarity in gene content with many intestinal lactobacilli. Comparative genomics has allowed the identification of key gene sets that facilitate a variety of lifestyles including adaptation to food matrices or the gastrointestinal tract. As genome sequence and functional genomic information continues to explode, key features of the genomes of L. helveticus strains continue to be discovered, answering many questions but also raising many new ones. PMID:23335916
Zhao, Feng; Meng, Songsong; Zhou, Deqing
2016-02-04
To construct heptyl glycosyltransferase gene II (waaF) gene deletion mutant of Vibrio parahaemolyticus, and explore the function of the waaF gene in Vibrio parahaemolyticus. The waaF gene deletion mutant was constructed by chitin-based transformation technology using clinical isolates, and then the growth rate, morphology and serotypes were identified. The different sources (O3, O5 and O10) waaF gene complementations were constructed through E. coli S17λpir strains conjugative transferring with Vibrio parahaemolyticus, and the function of the waaF gene was further verified by serotypes. The waaF gene deletion mutant strain was successfully constructed and it grew normally. The growth rate and morphology of mutant were similar with the wild type strains (WT), but the mutant could not occurred agglutination reaction with O antisera. The O3 and O5 sources waaF gene complementations occurred agglutination reaction with O antisera, but the O10 sources waaF gene complementations was not. The waaF gene was related with O-antigen synthesis and it was the key gene of O-antigen synthesis pathway in Vibrio parahaemolyticus. The function of different sources waaF gene were not the same.
Robinson, Gene E.; Fernald, Russell D.; Clayton, David F.
2011-01-01
What specific genes and regulatory sequences contribute to the organization and functioning of brain circuits that support social behavior? How does social experience interact with information in the genome to modulate these brain circuits? Here we address these questions by highlighting progress that has been made in identifying and understanding two key “vectors of influence” that link genes, brain, and social behavior: 1) social information alters gene readout in the brain to influence behavior; and 2) genetic variation influences brain function and social behavior. We also briefly discuss how evolutionary changes in genomic elements influence social behavior and outline prospects for a systems biology of social behavior. PMID:18988841
Cooperative Regulatory Functions of miR858 and MYB83 during Cyst Nematode Parasitism1[OPEN
Piya, Sarbottam; Kihm, Christina; Baum, Thomas J.
2017-01-01
MicroRNAs (miRNAs) recently have been established as key regulators of transcriptome reprogramming that define cell function and identity. Nevertheless, the molecular functions of the greatest number of miRNA genes remain to be determined. Here, we report cooperative regulatory functions of miR858 and its MYB83 transcription factor target gene in transcriptome reprogramming during Heterodera cyst nematode parasitism of Arabidopsis (Arabidopsis thaliana). Gene expression analyses and promoter-GUS fusion assays documented a role of miR858 in posttranscriptional regulation of MYB83 in the Heterodera schachtii-induced feeding sites, the syncytia. Constitutive overexpression of miR858 interfered with H. schachtii parasitism of Arabidopsis, leading to reduced susceptibility, while reduced miR858 abundance enhanced plant susceptibility. Similarly, MYB83 expression increases were conducive to nematode infection because overexpression of a noncleavable coding sequence of MYB83 significantly increased plant susceptibility, whereas a myb83 mutation rendered the plants less susceptible. In addition, RNA-seq analysis revealed that genes involved in hormone signaling pathways, defense response, glucosinolate biosynthesis, cell wall modification, sugar transport, and transcriptional control are the key etiological factors by which MYB83 facilitates nematode parasitism of Arabidopsis. Furthermore, we discovered that miR858-mediated silencing of MYB83 is tightly regulated through a feedback loop that might contribute to fine-tuning the expression of more than a thousand of MYB83-regulated genes in the H. schachtii-induced syncytium. Together, our results suggest a role of the miR858-MYB83 regulatory system in finely balancing gene expression patterns during H. schachtii parasitism of Arabidopsis to ensure optimal cellular function. PMID:28512179
Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways.
Chen, Lei; Zhang, Yu-Hang; Wang, ShaoPeng; Zhang, YunHua; Huang, Tao; Cai, Yu-Dong
2017-01-01
Identifying essential genes in a given organism is important for research on their fundamental roles in organism survival. Furthermore, if possible, uncovering the links between core functions or pathways with these essential genes will further help us obtain deep insight into the key roles of these genes. In this study, we investigated the essential and non-essential genes reported in a previous study and extracted gene ontology (GO) terms and biological pathways that are important for the determination of essential genes. Through the enrichment theory of GO and KEGG pathways, we encoded each essential/non-essential gene into a vector in which each component represented the relationship between the gene and one GO term or KEGG pathway. To analyze these relationships, the maximum relevance minimum redundancy (mRMR) was adopted. Then, the incremental feature selection (IFS) and support vector machine (SVM) were employed to extract important GO terms and KEGG pathways. A prediction model was built simultaneously using the extracted GO terms and KEGG pathways, which yielded nearly perfect performance, with a Matthews correlation coefficient of 0.951, for distinguishing essential and non-essential genes. To fully investigate the key factors influencing the fundamental roles of essential genes, the 21 most important GO terms and three KEGG pathways were analyzed in detail. In addition, several genes was provided in this study, which were predicted to be essential genes by our prediction model. We suggest that this study provides more functional and pathway information on the essential genes and provides a new way to investigate related problems.
NASA Astrophysics Data System (ADS)
Holtorf, Hauke; Guitton, Marie-Christine; Reski, Ralf
2002-04-01
Functional genome analysis of plants has entered the high-throughput stage. The complete genome information from key species such as Arabidopsis thaliana and rice is now available and will further boost the application of a range of new technologies to functional plant gene analysis. To broadly assign functions to unknown genes, different fast and multiparallel approaches are currently used and developed. These new technologies are based on known methods but are adapted and improved to accommodate for comprehensive, large-scale gene analysis, i.e. such techniques are novel in the sense that their design allows researchers to analyse many genes at the same time and at an unprecedented pace. Such methods allow analysis of the different constituents of the cell that help to deduce gene function, namely the transcripts, proteins and metabolites. Similarly the phenotypic variations of entire mutant collections can now be analysed in a much faster and more efficient way than before. The different methodologies have developed to form their own fields within the functional genomics technological platform and are termed transcriptomics, proteomics, metabolomics and phenomics. Gene function, however, cannot solely be inferred by using only one such approach. Rather, it is only by bringing together all the information collected by different functional genomic tools that one will be able to unequivocally assign functions to unknown plant genes. This review focuses on current technical developments and their impact on the field of plant functional genomics. The lower plant Physcomitrella is introduced as a new model system for gene function analysis, owing to its high rate of homologous recombination.
Airway inflammation is the hallmark of asthma and suggests a dysregulation of homeostatic mechanisms. MicroRNAs (miRNAs) are key regulators of gene expression, necessary for the proper function of cellular processes. Here, we tested the hypothesis that differences between healthy...
Soybean kinome: functional classification and gene expression patterns
Liu, Jinyi; Chen, Nana; Grant, Joshua N.; Cheng, Zong-Ming (Max); Stewart, C. Neal; Hewezi, Tarek
2015-01-01
The protein kinase (PK) gene family is one of the largest and most highly conserved gene families in plants and plays a role in nearly all biological functions. While a large number of genes have been predicted to encode PKs in soybean, a comprehensive functional classification and global analysis of expression patterns of this large gene family is lacking. In this study, we identified the entire soybean PK repertoire or kinome, which comprised 2166 putative PK genes, representing 4.67% of all soybean protein-coding genes. The soybean kinome was classified into 19 groups, 81 families, and 122 subfamilies. The receptor-like kinase (RLK) group was remarkably large, containing 1418 genes. Collinearity analysis indicated that whole-genome segmental duplication events may have played a key role in the expansion of the soybean kinome, whereas tandem duplications might have contributed to the expansion of specific subfamilies. Gene structure, subcellular localization prediction, and gene expression patterns indicated extensive functional divergence of PK subfamilies. Global gene expression analysis of soybean PK subfamilies revealed tissue- and stress-specific expression patterns, implying regulatory functions over a wide range of developmental and physiological processes. In addition, tissue and stress co-expression network analysis uncovered specific subfamilies with narrow or wide interconnected relationships, indicative of their association with particular or broad signalling pathways, respectively. Taken together, our analyses provide a foundation for further functional studies to reveal the biological and molecular functions of PKs in soybean. PMID:25614662
Bedell, Victoria M; Person, Anthony D; Larson, Jon D; McLoon, Anna; Balciunas, Darius; Clark, Karl J; Neff, Kevin I; Nelson, Katie E; Bill, Brent R; Schimmenti, Lisa A; Beiraghi, Soraya; Ekker, Stephen C
2012-02-01
The Homeobox (Hox) and Paired box (Pax) gene families are key determinants of animal body plans and organ structure. In particular, they function within regulatory networks that control organogenesis. How these conserved genes elicit differences in organ form and function in response to evolutionary pressures is incompletely understood. We molecularly and functionally characterized one member of an evolutionarily dynamic gene family, plac8 onzin related protein 1 (ponzr1), in the zebrafish. ponzr1 mRNA is expressed early in the developing kidney and pharyngeal arches. Using ponzr1-targeting morpholinos, we show that ponzr1 is required for formation of the glomerulus. Loss of ponzr1 results in a nonfunctional glomerulus but retention of a functional pronephros, an arrangement similar to the aglomerular kidneys found in a subset of marine fish. ponzr1 is integrated into the pax2a pathway, with ponzr1 expression requiring pax2a gene function, and proper pax2a expression requiring normal ponzr1 expression. In addition to pronephric function, ponzr1 is required for pharyngeal arch formation. We functionally demonstrate that ponzr1 can act as a transcription factor or co-factor, providing the first molecular mode of action for this newly described gene family. Together, this work provides experimental evidence of an additional mechanism that incorporates evolutionarily dynamic, lineage-specific gene families into conserved regulatory gene networks to create functional organ diversity.
Revealing the Strong Functional Association of adipor2 and cdh13 with adipoq: A Gene Network Study.
Bag, Susmita; Anbarasu, Anand
2015-04-01
In the present study, we have analyzed functional gene interactions of adiponectin gene (adipoq). The key role of adipoq is in regulating energy homeostasis and it functions as a novel signaling molecule for adipose tissue. Modules of highly inter-connected genes in disease-specific adipoq network are derived by integrating gene function and protein interaction data. Among twenty genes in adipoq web, adipoq is effectively conjoined with two genes: Adiponectin receptor 2 (adipor2) and cadherin 13 (cdh13). The functional analysis is done via ontological briefing and candidate disease identification. We observed that the highly efficient-interlinked genes connected with adipoq are adipor2 and cdh13. Interestingly, the ontological aspect of adipor2 and cdh13 in the adipoq network reveal the fact that adipoq and adipor2 are involved mostly in glucose and lipid metabolic processes. The gene cdh13 indulge in cell adhesion process with adipoq and adipor2. Our computational gene web analysis also predicts potential candidate disease recognition, thus indicating the involvement of adipoq, adipor2, and cdh13 with not only with obesity but also with breast cancer, leukemia, renal cancer, lung cancer, and cervical cancer. The current study provides researchers a comprehensible layout of adipoq network, its functional strategies and candidate disease approach associated with adipoq network.
Functional characterization of p53 pathway components in the ancient metazoan Trichoplax adhaerens
NASA Astrophysics Data System (ADS)
Siau, Jia Wei; Coffill, Cynthia R.; Zhang, Weiyun Villien; Tan, Yaw Sing; Hundt, Juliane; Lane, David; Verma, Chandra; Ghadessy, Farid
2016-09-01
The identification of genes encoding a p53 family member and an Mdm2 ortholog in the ancient placozoan Trichoplax adhaerens advocates for the evolutionary conservation of a pivotal stress-response pathway observed in all higher eukaryotes. Here, we recapitulate several key functionalities ascribed to this known interacting protein pair by analysis of the placozoan proteins (Tap53 and TaMdm2) using both in vitro and cellular assays. In addition to interacting with each other, the Tap53 and TaMdm2 proteins are also able to respectively bind human Mdm2 and p53, providing strong evidence for functional conservation. The key p53-degrading function of Mdm2 is also conserved in TaMdm2. Tap53 retained DNA binding associated with p53 transcription activation function. However, it lacked transactivation function in reporter genes assays using a heterologous cell line, suggesting a cofactor incompatibility. Overall, the data supports functional roles for TaMdm2 and Tap53, and further defines the p53 pathway as an evolutionary conserved fulcrum mediating cellular response to stress.
By Stuart G. Baker The program requires Mathematica 7.01.0 The key function is Classify [datalist,options] where datalist={data, genename, dataname} data ={matrix for class 0, matrix for class 1}, matrix is gene expression by specimen genename a list of names of genes, dataname ={name of data set, name of class0, name of class1} |
Development of studies of TPO gene and its application in nuclear medicine.
Xing, Y; Kuang, A
2003-08-01
Thyroperoxidase (TPO) is a glycosylated protein bound to the apical plasma membrane of thyrocytes. It is the key enzyme in the synthesis of thyroid hormones. Its gene structure and transcriptional regulation have been studied in detail. This article reviews the structure, function and transcriptional regulation of the TPO gene, and the relationship between TPO, thyroid diseases and radioactive iodide therapy.
Differential Sensitivity of Target Genes to Translational Repression by miR-17~92
Jin, Hyun Yong; Oda, Hiroyo; Chen, Pengda; Kang, Seung Goo; Valentine, Elizabeth; Liao, Lujian; Zhang, Yaoyang; Gonzalez-Martin, Alicia; Shepherd, Jovan; Head, Steven R.; Kim, Pyeung-Hyeun; Fu, Guo; Liu, Wen-Hsien; Han, Jiahuai
2017-01-01
MicroRNAs (miRNAs) are thought to exert their functions by modulating the expression of hundreds of target genes and each to a small degree, but it remains unclear how small changes in hundreds of target genes are translated into the specific function of a miRNA. Here, we conducted an integrated analysis of transcriptome and translatome of primary B cells from mutant mice expressing miR-17~92 at three different levels to address this issue. We found that target genes exhibit differential sensitivity to miRNA suppression and that only a small fraction of target genes are actually suppressed by a given concentration of miRNA under physiological conditions. Transgenic expression and deletion of the same miRNA gene regulate largely distinct sets of target genes. miR-17~92 controls target gene expression mainly through translational repression and 5’UTR plays an important role in regulating target gene sensitivity to miRNA suppression. These findings provide molecular insights into a model in which miRNAs exert their specific functions through a small number of key target genes. PMID:28241004
A P-Norm Robust Feature Extraction Method for Identifying Differentially Expressed Genes
Liu, Jian; Liu, Jin-Xing; Gao, Ying-Lian; Kong, Xiang-Zhen; Wang, Xue-Song; Wang, Dong
2015-01-01
In current molecular biology, it becomes more and more important to identify differentially expressed genes closely correlated with a key biological process from gene expression data. In this paper, based on the Schatten p-norm and Lp-norm, a novel p-norm robust feature extraction method is proposed to identify the differentially expressed genes. In our method, the Schatten p-norm is used as the regularization function to obtain a low-rank matrix and the Lp-norm is taken as the error function to improve the robustness to outliers in the gene expression data. The results on simulation data show that our method can obtain higher identification accuracies than the competitive methods. Numerous experiments on real gene expression data sets demonstrate that our method can identify more differentially expressed genes than the others. Moreover, we confirmed that the identified genes are closely correlated with the corresponding gene expression data. PMID:26201006
A P-Norm Robust Feature Extraction Method for Identifying Differentially Expressed Genes.
Liu, Jian; Liu, Jin-Xing; Gao, Ying-Lian; Kong, Xiang-Zhen; Wang, Xue-Song; Wang, Dong
2015-01-01
In current molecular biology, it becomes more and more important to identify differentially expressed genes closely correlated with a key biological process from gene expression data. In this paper, based on the Schatten p-norm and Lp-norm, a novel p-norm robust feature extraction method is proposed to identify the differentially expressed genes. In our method, the Schatten p-norm is used as the regularization function to obtain a low-rank matrix and the Lp-norm is taken as the error function to improve the robustness to outliers in the gene expression data. The results on simulation data show that our method can obtain higher identification accuracies than the competitive methods. Numerous experiments on real gene expression data sets demonstrate that our method can identify more differentially expressed genes than the others. Moreover, we confirmed that the identified genes are closely correlated with the corresponding gene expression data.
Canales, Javier; Moyano, Tomás C.; Villarroel, Eva; Gutiérrez, Rodrigo A.
2014-01-01
Nitrogen (N) is an essential macronutrient for plant growth and development. Plants adapt to changes in N availability partly by changes in global gene expression. We integrated publicly available root microarray data under contrasting nitrate conditions to identify new genes and functions important for adaptive nitrate responses in Arabidopsis thaliana roots. Overall, more than 2000 genes exhibited changes in expression in response to nitrate treatments in Arabidopsis thaliana root organs. Global regulation of gene expression by nitrate depends largely on the experimental context. However, despite significant differences from experiment to experiment in the identity of regulated genes, there is a robust nitrate response of specific biological functions. Integrative gene network analysis uncovered relationships between nitrate-responsive genes and 11 highly co-expressed gene clusters (modules). Four of these gene network modules have robust nitrate responsive functions such as transport, signaling, and metabolism. Network analysis hypothesized G2-like transcription factors are key regulatory factors controlling transport and signaling functions. Our meta-analysis highlights the role of biological processes not studied before in the context of the nitrate response such as root hair development and provides testable hypothesis to advance our understanding of nitrate responses in plants. PMID:24570678
Okamura-Oho, Yuko; Shimokawa, Kazuro; Nishimura, Masaomi; Takemoto, Satoko; Sato, Akira; Furuichi, Teiichi; Yokota, Hideo
2014-01-01
Using a recently invented technique for gene expression mapping in the whole-anatomy context, termed transcriptome tomography, we have generated a dataset of 36,000 maps of overall gene expression in the adult-mouse brain. Here, using an informatics approach, we identified a broad co-expression network that follows an inverse power law and is rich in functional interaction and gene-ontology terms. Our framework for the integrated analysis of expression maps and graphs of co-expression networks revealed that groups of combinatorially expressed genes, which regulate cell differentiation during development, were present in the adult brain and each of these groups was associated with a discrete cell types. These groups included non-coding genes of unknown function. We found that these genes specifically linked developmentally conserved groups in the network. A previously unrecognized robust expression pattern covering the whole brain was related to the molecular anatomy of key biological processes occurring in particular areas. PMID:25382412
Sleeping Beauty transposon system for genetic etiological research and gene therapy of cancers.
Hou, Xiaomei; Du, Yan; Deng, Yang; Wu, Jianfeng; Cao, Guangwen
2015-01-01
Carcinogenesis is etiologically associated with somatic mutations of critical genes. Recently, a number of somatic mutations and key molecules have been found to be involved in functional networks affecting cancer progression. Suitable animal models are required to validate cancer-promoting or -inhibiting capacities of these mutants and molecules. Sleeping Beauty transposon system consists of a transposon that carries gene(s) of interest and a transposase that recognizes, excises, and reinserts genes in given location of the genome. It can create both gain-of-function and loss-of-function mutations, thus being frequently chosen to investigate the etiological mechanisms and gene therapy for cancers in animal models. In this review, we summarized current advances of Sleeping Beauty transposon system in revealing molecular mechanism of cancers and improving gene therapy. Understanding molecular mechanisms by which driver mutations contribute to carcinogenesis and metastasis may pave the way for the development of innovative prophylactic and therapeutic strategies against malignant diseases.
Guidelines for the functional annotation of microRNAs using the Gene Ontology
D'Eustachio, Peter; Smith, Jennifer R.; Zampetaki, Anna
2016-01-01
MicroRNA regulation of developmental and cellular processes is a relatively new field of study, and the available research data have not been organized to enable its inclusion in pathway and network analysis tools. The association of gene products with terms from the Gene Ontology is an effective method to analyze functional data, but until recently there has been no substantial effort dedicated to applying Gene Ontology terms to microRNAs. Consequently, when performing functional analysis of microRNA data sets, researchers have had to rely instead on the functional annotations associated with the genes encoding microRNA targets. In consultation with experts in the field of microRNA research, we have created comprehensive recommendations for the Gene Ontology curation of microRNAs. This curation manual will enable provision of a high-quality, reliable set of functional annotations for the advancement of microRNA research. Here we describe the key aspects of the work, including development of the Gene Ontology to represent this data, standards for describing the data, and guidelines to support curators making these annotations. The full microRNA curation guidelines are available on the GO Consortium wiki (http://wiki.geneontology.org/index.php/MicroRNA_GO_annotation_manual). PMID:26917558
Analysis of multiplex gene expression maps obtained by voxelation.
An, Li; Xie, Hongbo; Chin, Mark H; Obradovic, Zoran; Smith, Desmond J; Megalooikonomou, Vasileios
2009-04-29
Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in cortex and corpus callosum. The experimental results confirm the hypothesis that genes with similar gene expression maps might have similar gene functions. The voxelation data takes into account the location information of gene expression level in mouse brain, which is novel in related research. The proposed approach can potentially be used to predict gene functions and provide helpful suggestions to biologists.
Zhao, W M; Qin, Y L; Niu, Z P; Chang, C F; Yang, J; Li, M H; Zhou, Y; Xu, C S
2016-03-24
The NF-kB (nuclear factor kB) pathway is involved in the proliferation of many cell types. To explore the mechanism of the NF-kB signaling pathway underlying the oval cell proliferation during rat liver regeneration, the Rat Genome 230 2.0 Array was used to detect expression changes of NF-kB signaling pathway-related genes in oval cells. The results revealed that the expression levels of many genes in the NF-kB pathway were significantly changed. This included 48 known genes and 16 homologous genes, as well as 370 genes and 85 homologous genes related to cell proliferation. To further understand the biological significance of these changes, an expression profile function was used to analyze the potential biological processes. The results showed that the NF-kB pathway promoted oval cell proliferation mainly through three signaling branches; the tumor necrosis factor alpha branch (TNF-a pathway), the growth factor branch, and the chemokine branch. An integrated statistics method was used to define the key genes in the NF-kB pathway. Seven genes were identified to play vital roles in the NF-kB pathway. To confirm these results, the protein content, including two key genes (TNF and FGF11) and two non-key genes (CCL2 and TNFRSF12A), were analyzed using two-dimensional gel electrophoresis and MALDI-TOF/TOF mass spectrometry. The results were generally consistent with those of the array data. To conclude, three branches and seven key genes were involved in the NF-kB signaling pathway that regulates oval cell proliferation during rat liver regeneration.
RNA interference can be used to disrupt gene function in tardigrades
Tenlen, Jennifer R.; McCaskill, Shaina; Goldstein, Bob
2012-01-01
How morphological diversity arises is a key question in evolutionary developmental biology. As a long-term approach to address this question, we are developing the water bear Hypsibius dujardini (Phylum Tardigrada) as a model system. We expect that using a close relative of two well-studied models, Drosophila (Phylum Arthropoda) and Caenorhabditis elegans (Phylum Nematoda), will facilitate identifying genetic pathways relevant to understanding the evolution of development. Tardigrades are also valuable research subjects for investigating how organisms and biological materials can survive extreme conditions. Methods to disrupt gene activity are essential to each of these efforts, but no such method yet exists for the Phylum Tardigrada. We developed a protocol to disrupt tardigrade gene functions by double-stranded RNA-mediated RNA interference (RNAi). We show that targeting tardigrade homologs of essential developmental genes by RNAi produced embryonic lethality, whereas targeting green fluorescent protein did not. Disruption of gene functions appears to be relatively specific by two criteria: targeting distinct genes resulted in distinct phenotypes that were consistent with predicted gene functions, and by RT-PCR, RNAi reduced the level of a target mRNA and not a control mRNA. These studies represent the first evidence that gene functions can be disrupted by RNAi in the phylum Tardigrada. Our results form a platform for dissecting tardigrade gene functions for understanding the evolution of developmental mechanisms and survival in extreme environments. PMID:23187800
RNA interference can be used to disrupt gene function in tardigrades.
Tenlen, Jennifer R; McCaskill, Shaina; Goldstein, Bob
2013-05-01
How morphological diversity arises is a key question in evolutionary developmental biology. As a long-term approach to address this question, we are developing the water bear Hypsibius dujardini (Phylum Tardigrada) as a model system. We expect that using a close relative of two well-studied models, Drosophila (Phylum Arthropoda) and Caenorhabditis elegans (Phylum Nematoda), will facilitate identifying genetic pathways relevant to understanding the evolution of development. Tardigrades are also valuable research subjects for investigating how organisms and biological materials can survive extreme conditions. Methods to disrupt gene activity are essential to each of these efforts, but no such method yet exists for the Phylum Tardigrada. We developed a protocol to disrupt tardigrade gene functions by double-stranded RNA-mediated RNA interference (RNAi). We showed that targeting tardigrade homologs of essential developmental genes by RNAi produced embryonic lethality, whereas targeting green fluorescent protein did not. Disruption of gene functions appears to be relatively specific by two criteria: targeting distinct genes resulted in distinct phenotypes that were consistent with predicted gene functions and by RT-PCR, RNAi reduced the level of a target mRNA and not a control mRNA. These studies represent the first evidence that gene functions can be disrupted by RNAi in the phylum Tardigrada. Our results form a platform for dissecting tardigrade gene functions for understanding the evolution of developmental mechanisms and survival in extreme environments.
Pashaiasl, Maryam; Ebrahimi, Mansour; Ebrahimie, Esmaeil
2016-09-01
Diminished ovarian reserve (DOR) is one of the reasons for infertility that not only affects both older and young women. Ovarian reserve assessment can be used as a new prognostic tool for infertility treatment decision making. Here, up- and down-regulated gene expression profiles of granulosa cells were analysed to generate a putative interaction map of the involved genes. In addition, gene ontology (GO) analysis was used to get insight intol the biological processes and molecular functions of involved proteins in DOR. Eleven up-regulated genes and nine down-regulated genes were identified and assessed by constructing interaction networks based on their biological processes. PTGS2, CTGF, LHCGR, CITED, SOCS2, STAR and FSTL3 were the key nodes in the up-regulated networks, while the IGF2, AMH, GREM, and FOXC1 proteins were key in the down-regulated networks. MIRN101-1, MIRN153-1 and MIRN194-1 inhibited the expression of SOCS2, while CSH1 and BMP2 positively regulated IGF1 and IGF2. Ossification, ovarian follicle development, vasculogenesis, sequence-specific DNA binding transcription factor activity, and golgi apparatus are the major differential groups between up-regulated and down-regulated genes in DOR. Meta-analysis of publicly available transcriptomic data highlighted the high coexpression of CTGF, connective tissue growth factor, with the other key regulators of DOR. CTGF is involved in organ senescence and focal adhesion pathway according to GO analysis. These findings provide a comprehensive system biology based insight into the aetiology of DOR through network and gene ontology analyses.
Su, Jian-Qiang; Ding, Long-Jun; Xue, Kai; Yao, Huai-Ying; Quensen, John; Bai, Shi-Jie; Wei, Wen-Xue; Wu, Jin-Shui; Zhou, Jizhong; Tiedje, James M; Zhu, Yong-Guan
2015-01-01
The influence of long-term chemical fertilization on soil microbial communities has been one of the frontier topics of agricultural and environmental sciences and is critical for linking soil microbial flora with soil functions. In this study, 16S rRNA gene pyrosequencing and a functional gene array, geochip 4.0, were used to investigate the shifts in microbial composition and functional gene structure in paddy soils with different fertilization treatments over a 22-year period. These included a control without fertilizers; chemical nitrogen fertilizer (N); N and phosphate (NP); N and potassium (NK); and N, P and K (NPK). Based on 16S rRNA gene data, both species evenness and key genera were affected by P fertilization. Functional gene array-based analysis revealed that long-term fertilization significantly changed the overall microbial functional structures. Chemical fertilization significantly increased the diversity and abundance of most genes involved in C, N, P and S cycling, especially for the treatments NK and NPK. Significant correlations were found among functional gene structure and abundance, related soil enzymatic activities and rice yield, suggesting that a fertilizer-induced shift in the microbial community may accelerate the nutrient turnover in soil, which in turn influenced rice growth. The effect of N fertilization on soil microbial functional genes was mitigated by the addition of P fertilizer in this P-limited paddy soil, suggesting that balanced chemical fertilization is beneficial to the soil microbial community and its functions. © 2014 John Wiley & Sons Ltd.
Guo, Leilei; Song, Chunhua; Wang, Peng; Dai, Liping; Zhang, Jianying; Wang, Kaijuan
2015-11-01
The aim of the present study was to explore key molecular pathways contributing to gastric cancer (GC) and to construct an interaction network between significant pathways and potential biomarkers. Publicly available gene expression profiles of GSE29272 for GC, and data for the corresponding normal tissue, were downloaded from Gene Expression Omnibus. Pre‑processing and differential analysis were performed with R statistical software packages, and a number of differentially expressed genes (DEGs) were obtained. A functional enrichment analysis was performed for all the DEGs with a BiNGO plug‑in in Cytoscape. Their correlation was analyzed in order to construct a network. The modularity analysis and pathway identification operations were used to identify graph clusters and associated pathways. The underlying molecular mechanisms involving these DEGs were also assessed by data mining. A total of 249 DEGs, which were markedly upregulated and downregulated, were identified. The extracellular region contained the most significantly over‑represented functional terms, with respect to upregulated and downregulated genes, and the closest topological matches were identified for taste transduction and regulation of autophagy. In addition, extracellular matrix‑receptor interactions were identified as the most relevant pathway associated with the progression of GC. The genes for fibronectin 1, secreted phosphoprotein 1, collagen type 4 variant α‑1/2 and thrombospondin 1, which are involved in the pathways, may be considered as potential therapeutic targets for GC. A series of associations between candidate genes and key pathways were also identified for GC, and their correlation may provide novel insights into the pathogenesis of GC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ping; Van Nostrand, Joy D.; He, Zhili
Cr(VI) is a widespread environmental contaminant that is highly toxic and soluble. Previous work indicated that a one-time amendment of polylactate hydrogen-release compound (HRC) reduced groundwater Cr(VI) concentrations for >3.5 years at a contaminated aquifer; however, microbial communities responsible for Cr(VI) reduction are poorly understood. Here in this study, we hypothesized that HRC amendment would significantly change the composition and structure of groundwater microbial communities, and that the abundance of key functional genes involved in HRC degradation and electron acceptor reduction would increase long-term in response to this slowly degrading, complex substrate. To test these hypotheses, groundwater microbial communities weremore » monitored after HRC amendment for >1 year using a comprehensive functional gene microarray. The results showed that the overall functional composition and structure of groundwater microbial communities underwent sequential shifts after HRC amendment. Particularly, the abundance of functional genes involved in acetate oxidation, denitrification, dissimilatory nitrate reduction, metal reduction, and sulfate reduction significantly increased. The overall community dynamics was significantly correlated with changes in groundwater concentrations of microbial biomass, acetate, NO 3 -, Cr(VI), Fe(II) and SO 4 2-. Finally, our results suggest that HRC amendment primarily stimulated key functional processes associated with HRC degradation and reduction of multiple electron acceptors in the aquifer toward long-term Cr(VI) reduction.« less
Monks, D. Ashley; Zovkic, Iva B.; Holmes, Melissa M.
2018-01-01
The social environment can alter pubertal timing through neuroendocrine mechanisms that are not fully understood; it is thought that stress hormones (e.g., glucocorticoids or corticotropin-releasing hormone) influence the hypothalamic-pituitary-gonadal axis to inhibit puberty. Here, we use the eusocial naked mole-rat, a unique species in which social interactions in a colony (i.e. dominance of a breeding female) suppress puberty in subordinate animals. Removing subordinate naked mole-rats from this social context initiates puberty, allowing for experimental control of pubertal timing. The present study quantified gene expression for reproduction- and stress-relevant genes acting upstream of gonadotropin-releasing hormone in brain regions with reproductive and social functions in pre-pubertal, post-pubertal, and opposite sex-paired animals (which are in various stages of pubertal transition). Results indicate sex differences in patterns of neural gene expression. Known functions of genes in brain suggest stress as a key contributing factor in regulating male pubertal delay. Network analysis implicates neurokinin B (Tac3) in the arcuate nucleus of the hypothalamus as a key node in this pathway. Results also suggest an unappreciated role for the nucleus accumbens in regulating puberty. PMID:29474488
Comparative functional characterization of the CSR-1 22G-RNA pathway in Caenorhabditis nematodes
Tu, Shikui; Wu, Monica Z.; Wang, Jie; Cutter, Asher D.; Weng, Zhiping; Claycomb, Julie M.
2015-01-01
As a champion of small RNA research for two decades, Caenorhabditis elegans has revealed the essential Argonaute CSR-1 to play key nuclear roles in modulating chromatin, chromosome segregation and germline gene expression via 22G-small RNAs. Despite CSR-1 being preserved among diverse nematodes, the conservation and divergence in function of the targets of small RNA pathways remains poorly resolved. Here we apply comparative functional genomic analysis between C. elegans and Caenorhabditis briggsae to characterize the CSR-1 pathway, its targets and their evolution. C. briggsae CSR-1-associated small RNAs that we identified by immunoprecipitation-small RNA sequencing overlap with 22G-RNAs depleted in cbr-csr-1 RNAi-treated worms. By comparing 22G-RNAs and target genes between species, we defined a set of CSR-1 target genes with conserved germline expression, enrichment in operons and more slowly evolving coding sequences than other genes, along with a small group of evolutionarily labile targets. We demonstrate that the association of CSR-1 with chromatin is preserved, and show that depletion of cbr-csr-1 leads to chromosome segregation defects and embryonic lethality. This first comparative characterization of a small RNA pathway in Caenorhabditis establishes a conserved nuclear role for CSR-1 and highlights its key role in germline gene regulation across multiple animal species. PMID:25510497
ERIC Educational Resources Information Center
Birnbaum, Mark J.; Picco, Jenna; Clements, Meghan; Witwicka, Hanna; Yang, Meiheng; Hoey, Margaret T.; Odgren, Paul R.
2010-01-01
A key goal of molecular/cell biology/biotechnology is to identify essential genes in virtually every physiological process to uncover basic mechanisms of cell function and to establish potential targets of drug therapy combating human disease. This article describes a semester-long, project-oriented molecular/cellular/biotechnology laboratory…
USDA-ARS?s Scientific Manuscript database
Interferons (IFNs) are key cytokines identified in vertebrates, and evolutionary dominance of intronless IFN genes in amniotes is a signature event in IFN evolution. For the first time, we show that the emergence and expansion of intronless IFN genes is evident in amphibians, shown by 24-37 intronle...
Discover mouse gene coexpression landscapes using dictionary learning and sparse coding.
Li, Yujie; Chen, Hanbo; Jiang, Xi; Li, Xiang; Lv, Jinglei; Peng, Hanchuan; Tsien, Joe Z; Liu, Tianming
2017-12-01
Gene coexpression patterns carry rich information regarding enormously complex brain structures and functions. Characterization of these patterns in an unbiased, integrated, and anatomically comprehensive manner will illuminate the higher-order transcriptome organization and offer genetic foundations of functional circuitry. Here using dictionary learning and sparse coding, we derived coexpression networks from the space-resolved anatomical comprehensive in situ hybridization data from Allen Mouse Brain Atlas dataset. The key idea is that if two genes use the same dictionary to represent their original signals, then their gene expressions must share similar patterns, thereby considering them as "coexpressed." For each network, we have simultaneous knowledge of spatial distributions, the genes in the network and the extent a particular gene conforms to the coexpression pattern. Gene ontologies and the comparisons with published gene lists reveal biologically identified coexpression networks, some of which correspond to major cell types, biological pathways, and/or anatomical regions.
The Potential for Tumor Suppressor Gene Therapy in Head and Neck Cancer
Birkeland, Andrew C.; Ludwig, Megan L.; Spector, Matthew E.; Brenner, J. Chad
2016-01-01
Head and neck squamous cell carcinoma remains a highly morbid and fatal disease. Importantly, genomic sequencing of head and neck cancers has identified frequent mutations in tumor suppressor genes. While targeted therapeutics increasingly are being investigated in head and neck cancer, the majority of these agents are against overactive/overexpressed oncogenes. Therapy to restore lost tumor suppressor gene function remains a key and under-addressed niche in trials for head and neck cancer. Recent advances in gene editing have captured the interest of both the scientific community and the public. As our technology for gene editing and gene expression modulation improves, addressing lost tumor suppressor gene function in head and neck cancers is becoming a reality. This review will summarize new techniques, challenges to implementation, future directions, and ethical ramifications of gene therapy in head and neck cancer. PMID:26896601
O’Connor, Sean Timothy Francis; Lan, Jiaqi; North, Matthew; Loguinov, Alexandre; Zhang, Luoping; Smith, Martyn T.; Gu, April Z.; Vulpe, Chris
2012-01-01
Benzo[a]pyrene (BaP) is a ubiquitous, potent, and complete carcinogen resulting from incomplete organic combustion. BaP can form DNA adducts but other mechanisms may play a role in toxicity. We used a functional toxicology approach in S. cerevisiae to assess the genetic requirements for cellular resistance to BaP. In addition, we examined translational activities of key genes involved in various stress response pathways. We identified multiple genes and processes involved in modulating BaP toxicity in yeast which support DNA damage as a primary mechanism of toxicity, but also identify other potential toxicity pathways. Gene ontology enrichment analysis indicated that DNA damage and repair as well as redox homeostasis and oxidative stress are key processes in cellular response to BaP suggesting a similar mode of action of BaP in yeast and mammals. Interestingly, toxicant export is also implicated as a potential novel modulator of cellular susceptibility. In particular, we identified several transporters with human orthologs (solute carrier family 22) which may play a role in mammalian systems. PMID:23403841
Evolutionary analysis of the jacalin-related lectin family genes in 11 fishes.
Cao, Jun; Lv, Yueqing
2016-09-01
Jacalin-related lectins are a type of carbohydrate-binding proteins, which are distributed across a wide variety of organisms and involved in some important biological processes. The evolution of this gene family in fishes is unknown. Here, 47 putative jacalin genes in 11 fish species were identified and divided into 4 groups through phylogenetic analysis. Conserved gene organization and motif distribution existed in each group, suggesting their functional conservation. Some fishes have eleven jacalin genes, while others have only one or zero gene in their genomes, suggesting dynamic changes in the number of jacalin genes during the evolution of fishes. Intragenic recombination played a key role in the evolution of jacalin genes. Synteny analyses of jacalin genes in some fishes implied conserved and dynamic evolution characteristics of this gene family and related genome segments. Moreover, a few functional divergence sites were identified within each group pairs. Divergent expression profiles of the zebra fish jacalin genes were further investigated in different stresses. The results provided a foundation for exploring the characterization of the jacalin genes in fishes and will offer insights for additional functional studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reduced Abd-B Hox function during kidney development results in lineage infidelity.
Magella, Bliss; Mahoney, Robert; Adam, Mike; Potter, S Steven
2018-06-15
Hox genes can function as key drivers of segment identity, with Hox mutations in Drosophila often resulting in dramatic homeotic transformations. In addition, however, they can serve other essential functions. In mammals, the study of Hox gene roles in development is complicated by the presence of four Hox clusters with a total of 39 genes showing extensive functional overlap. In this study, in order to better understand shared core Hox functions, we examined kidney development in mice with frameshift mutations of multiple Abd-B type Hox genes. The resulting phenotypes included dramatically reduced branching morphogenesis of the ureteric bud, premature depletion of nephron progenitors and abnormal development of the stromal compartment. Most unexpected, however, we also observed a cellular level lineage infidelity in nephron segments. Scattered cells within the proximal tubules, for example, expressed genes normally expressed only in collecting ducts. Multiple combinations of inappropriate nephron segment specific marker expression were found. In some cases, cells within a tubule showed incorrect identity, while in other cases cells showed ambiguous character, with simultaneous expression of genes associated with more than one nephron segment. These results give evidence that Hox genes have an overlapping core function at the cellular level in driving and/or maintaining correct differentiation decisions. Copyright © 2018 Elsevier Inc. All rights reserved.
g:Profiler-a web server for functional interpretation of gene lists (2016 update).
Reimand, Jüri; Arak, Tambet; Adler, Priit; Kolberg, Liis; Reisberg, Sulev; Peterson, Hedi; Vilo, Jaak
2016-07-08
Functional enrichment analysis is a key step in interpreting gene lists discovered in diverse high-throughput experiments. g:Profiler studies flat and ranked gene lists and finds statistically significant Gene Ontology terms, pathways and other gene function related terms. Translation of hundreds of gene identifiers is another core feature of g:Profiler. Since its first publication in 2007, our web server has become a popular tool of choice among basic and translational researchers. Timeliness is a major advantage of g:Profiler as genome and pathway information is synchronized with the Ensembl database in quarterly updates. g:Profiler supports 213 species including mammals and other vertebrates, plants, insects and fungi. The 2016 update of g:Profiler introduces several novel features. We have added further functional datasets to interpret gene lists, including transcription factor binding site predictions, Mendelian disease annotations, information about protein expression and complexes and gene mappings of human genetic polymorphisms. Besides the interactive web interface, g:Profiler can be accessed in computational pipelines using our R package, Python interface and BioJS component. g:Profiler is freely available at http://biit.cs.ut.ee/gprofiler/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Kulkarni, Manoj; Soolanayakanahally, Raju; Ogawa, Satoshi; Uga, Yusaku; Selvaraj, Michael G.; Kagale, Sateesh
2017-12-01
Abiotic stresses such as drought, heat, salinity and flooding threaten global food security. Crop genetic improvement with increased resilience to abiotic stresses is a critical component of crop breeding strategies. Wheat is an important cereal crop and a staple food source globally. Enhanced drought tolerance in wheat is critical for sustainable food production and global food security. Recent advances in drought tolerance research have uncovered many key genes and transcription regulators governing morpho-physiological traits. Genes controlling root architecture and stomatal development play an important role in soil moisture extraction and its retention, and therefore have been targets of molecular breeding strategies for improving drought tolerance. In this systematic review, we have summarized evidence of beneficial contributions of root and stomatal traits to plant adaptation to drought stress. Specifically, we discuss a few key genes such as DRO1 in rice and ERECTA in Arabidopsis and rice that were identified to be the enhancers of drought tolerance via regulation of root traits and transpiration efficiency. Additionally, we highlight several transcription factor families, such as ERF (ethylene response factors), DREB (dehydration responsive element binding), ZFP (zinc finger proteins), WRKY and MYB that were identified to be both positive and negative regulators of drought responses in wheat, rice, maize and/or Arabidopsis. The overall aim of this review was to provide an overview of candidate genes that have been tested as regulators of drought response in plants. The lack of a reference genome sequence for wheat and nontransgenic approaches for manipulation of gene functions in the past had impeded high-resolution interrogation of functional elements, including genes and QTLs, and their application in cultivar improvement. The recent developments in wheat genomics and reverse genetics, including the availability of a gold-standard reference genome sequence and advent genome editing technologies, are expected to aid in deciphering of the functional roles of genes and regulatory networks underlying adaptive phenological traits, and utilizing the outcomes of such studies in developing drought tolerance cultivars.
Kulkarni, Manoj; Soolanayakanahally, Raju; Ogawa, Satoshi; Uga, Yusaku; Selvaraj, Michael G; Kagale, Sateesh
2017-01-01
Abiotic stresses such as, drought, heat, salinity, and flooding threaten global food security. Crop genetic improvement with increased resilience to abiotic stresses is a critical component of crop breeding strategies. Wheat is an important cereal crop and a staple food source globally. Enhanced drought tolerance in wheat is critical for sustainable food production and global food security. Recent advances in drought tolerance research have uncovered many key genes and transcription regulators governing morpho-physiological traits. Genes controlling root architecture and stomatal development play an important role in soil moisture extraction and its retention, and therefore have been targets of molecular breeding strategies for improving drought tolerance. In this systematic review, we have summarized evidence of beneficial contributions of root and stomatal traits to plant adaptation to drought stress. Specifically, we discuss a few key genes such as, DRO1 in rice and ERECTA in Arabidopsis and rice that were identified to be the enhancers of drought tolerance via regulation of root traits and transpiration efficiency. Additionally, we highlight several transcription factor families, such as, ERF (ethylene response factors), DREB (dehydration responsive element binding), ZFP (zinc finger proteins), WRKY, and MYB that were identified to be both positive and negative regulators of drought responses in wheat, rice, maize, and/or Arabidopsis. The overall aim of this review is to provide an overview of candidate genes that have been identified as regulators of drought response in plants. The lack of a reference genome sequence for wheat and non-transgenic approaches for manipulation of gene functions in wheat in the past had impeded high-resolution interrogation of functional elements, including genes and QTLs, and their application in cultivar improvement. The recent developments in wheat genomics and reverse genetics, including the availability of a gold-standard reference genome sequence and advent of genome editing technologies, are expected to aid in deciphering of the functional roles of genes and regulatory networks underlying adaptive phenological traits, and utilizing the outcomes of such studies in developing drought tolerant cultivars.
Bedell, Victoria M.; Person, Anthony D.; Larson, Jon D.; McLoon, Anna; Balciunas, Darius; Clark, Karl J.; Neff, Kevin I.; Nelson, Katie E.; Bill, Brent R.; Schimmenti, Lisa A.; Beiraghi, Soraya; Ekker, Stephen C.
2012-01-01
The Homeobox (Hox) and Paired box (Pax) gene families are key determinants of animal body plans and organ structure. In particular, they function within regulatory networks that control organogenesis. How these conserved genes elicit differences in organ form and function in response to evolutionary pressures is incompletely understood. We molecularly and functionally characterized one member of an evolutionarily dynamic gene family, plac8 onzin related protein 1 (ponzr1), in the zebrafish. ponzr1 mRNA is expressed early in the developing kidney and pharyngeal arches. Using ponzr1-targeting morpholinos, we show that ponzr1 is required for formation of the glomerulus. Loss of ponzr1 results in a nonfunctional glomerulus but retention of a functional pronephros, an arrangement similar to the aglomerular kidneys found in a subset of marine fish. ponzr1 is integrated into the pax2a pathway, with ponzr1 expression requiring pax2a gene function, and proper pax2a expression requiring normal ponzr1 expression. In addition to pronephric function, ponzr1 is required for pharyngeal arch formation. We functionally demonstrate that ponzr1 can act as a transcription factor or co-factor, providing the first molecular mode of action for this newly described gene family. Together, this work provides experimental evidence of an additional mechanism that incorporates evolutionarily dynamic, lineage-specific gene families into conserved regulatory gene networks to create functional organ diversity. PMID:22274699
Genome-wide identification, functional and evolutionary analysis of terpene synthases in pineapple.
Chen, Xiaoe; Yang, Wei; Zhang, Liqin; Wu, Xianmiao; Cheng, Tian; Li, Guanglin
2017-10-01
Terpene synthases (TPSs) are vital for the biosynthesis of active terpenoids, which have important physiological, ecological and medicinal value. Although terpenoids have been reported in pineapple (Ananas comosus), genome-wide investigations of the TPS genes responsible for pineapple terpenoid synthesis are still lacking. By integrating pineapple genome and proteome data, twenty-one putative terpene synthase genes were found in pineapple and divided into five subfamilies. Tandem duplication is the cause of TPS gene family duplication. Furthermore, functional differentiation between each TPS subfamily may have occurred for several reasons. Sixty-two key amino acid sites were identified as being type-II functionally divergence between TPS-a and TPS-c subfamily. Finally, coevolution analysis indicated that multiple amino acid residues are involved in coevolutionary processes. In addition, the enzyme activity of two TPSs were tested. This genome-wide identification, functional and evolutionary analysis of pineapple TPS genes provide a new insight into understanding the roles of TPS family and lay the basis for further characterizing the function and evolution of TPS gene family. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kim, Yoonhee; Zhang, Yinhua; Pang, Kaifang; Kang, Hyojin; Park, Heejoo; Lee, Yeunkum; Lee, Bokyoung; Lee, Heon-Jeong; Kim, Won-Ki; Geum, Dongho
2016-01-01
Bipolar disorder (BD), characterized by recurrent mood swings between depression and mania, is a highly heritable and devastating mental illness with poorly defined pathophysiology. Recent genome-wide molecular genetic studies have identified several protein-coding genes and microRNAs (miRNAs) significantly associated with BD. Notably, some of the proteins expressed from BD-associated genes function in neuronal synapses, suggesting that abnormalities in synaptic function could be one of the key pathogenic mechanisms of BD. In contrast, however, the role of BD-associated miRNAs in disease pathogenesis remains largely unknown, mainly because of a lack of understanding about their target mRNAs and pathways in neurons. To address this problem, in this study, we focused on a recently identified BD-associated but uncharacterized miRNA, miR-1908-5p. We identified and validated its novel target genes including DLGAP4, GRIN1, STX1A, CLSTN1 and GRM4, which all function in neuronal glutamatergic synapses. Moreover, bioinformatic analyses of human brain expression profiles revealed that the expression levels of miR-1908-5p and its synaptic target genes show an inverse-correlation in many brain regions. In our preliminary experiments, the expression of miR-1908-5p was increased after chronic treatment with valproate but not lithium in control human neural progenitor cells. In contrast, it was decreased by valproate in neural progenitor cells derived from dermal fibroblasts of a BD subject. Together, our results provide new insights into the potential role of miR-1908-5p in the pathogenesis of BD and also propose a hypothesis that neuronal synapses could be a key converging pathway of some BD-associated protein-coding genes and miRNAs. PMID:28035180
Yamaguchi, Shinji; Fujii-Taira, Ikuko; Katagiri, Sachiko; Izawa, Ei-Ichi; Fujimoto, Yasuyuki; Takeuchi, Hideaki; Takano, Tatsuya; Matsushima, Toshiya; Homma, Koichi J
2008-06-15
In newly hatched chicks, gene expression in the brain has previously been shown to be up-regulated following filial imprinting. By applying cDNA microarrays containing 13,007 expressed sequence tags, we examined the comprehensive gene expression profiling of the intermediate medial mesopallium in the chick cerebrum, which has been shown to play a key role in filial imprinting. We found 52 up-regulated genes and 6 down-regulated genes of at least 2.0-fold changes 3h after the training of filial imprinting, compared to the gene expression of the dark-reared chick brain. The up-regulated genes are known to be involved in a variety of pathways, including signal transduction, cytoskeletal organization, nuclear function, cell metabolism, RNA binding, endoplasmic reticulum or Golgi function, synaptic function, ion channel, and transporter. In contrast, fewer genes were down-regulated in the imprinting, coinciding with the previous data that the total RNA synthesis increased associated with filial imprinting. Our data suggests that the filial imprinting involves the modulation of multiple signaling pathways.
Blesson, Chellakkan Selvanesan; Sahlin, Lena
2012-09-25
Estrogens play a role in the regulation of genes associated with inflammation and immunity in neutrophils. Estrogen signalling is mediated by estrogen receptor (ER)α, ERβ, and G-protein-coupled estrogen receptor-1 (GPER). The mechanisms by which estrogen regulate genes in neutrophils are poorly understood. Our aim was to identify the presence of ERs and to characterize estrogen responsive genes in terminally differentiated neutrophil like HL-60 (nHL-60) cells using estradiol and selective ER agonists. ERs were identified by Western blotting and immunocytochemistry. Microarray technique was used to screen for differentially expressed genes and the selected genes were verified by quantitative PCR. We show the presence of functional ERα, ERβ and GPER. Microarray analysis showed the presence of genes that are uniquely regulated by a single ligand and also genes that are regulated by multiple ligands. We conclude that ERs are functionally active in nHL-60 cells regulating genes involved in key physiological functions. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Phylogenetically informed logic relationships improve detection of biological network organization
2011-01-01
Background A "phylogenetic profile" refers to the presence or absence of a gene across a set of organisms, and it has been proven valuable for understanding gene functional relationships and network organization. Despite this success, few studies have attempted to search beyond just pairwise relationships among genes. Here we search for logic relationships involving three genes, and explore its potential application in gene network analyses. Results Taking advantage of a phylogenetic matrix constructed from the large orthologs database Roundup, we invented a method to create balanced profiles for individual triplets of genes that guarantee equal weight on the different phylogenetic scenarios of coevolution between genes. When we applied this idea to LAPP, the method to search for logic triplets of genes, the balanced profiles resulted in significant performance improvement and the discovery of hundreds of thousands more putative triplets than unadjusted profiles. We found that logic triplets detected biological network organization and identified key proteins and their functions, ranging from neighbouring proteins in local pathways, to well separated proteins in the whole pathway, and to the interactions among different pathways at the system level. Finally, our case study suggested that the directionality in a logic relationship and the profile of a triplet could disclose the connectivity between the triplet and surrounding networks. Conclusion Balanced profiles are superior to the raw profiles employed by traditional methods of phylogenetic profiling in searching for high order gene sets. Gene triplets can provide valuable information in detection of biological network organization and identification of key genes at different levels of cellular interaction. PMID:22172058
Msx homeobox gene family and craniofacial development.
Alappat, Sylvia; Zhang, Zun Yi; Chen, Yi Ping
2003-12-01
Vertebrate Msx genes are unlinked, homeobox-containing genes that bear homology to the Drosophila muscle segment homeobox gene. These genes are expressed at multiple sites of tissue-tissue interactions during vertebrate embryonic development. Inductive interactions mediated by the Msx genes are essential for normal craniofacial, limb and ectodermal organ morphogenesis, and are also essential to survival in mice, as manifested by the phenotypic abnormalities shown in knockout mice and in humans. This review summarizes studies on the expression, regulation, and functional analysis of Msx genes that bear relevance to craniofacial development in humans and mice. Key words: Msx genes, craniofacial, tooth, cleft palate, suture, development, transcription factor, signaling molecule.
Gene Ontology Terms and Automated Annotation for Energy-Related Microbial Genomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Biswarup; Tyler, Brett M.; Setubal, Joao
Gene Ontology (GO) is one of the more widely used functional ontologies for describing gene functions at various levels. The project developed 660 GO terms for describing energy-related microbial processes and filled the known gaps in this area of the GO system, and then used these terms to describe functions of 179 genes to showcase the utilities of the new resources. It hosted a series of workshops and made presentations at key meetings to inform and train scientific community members on these terms and to receive inputs from them for the GO term generation efforts. The project has developed amore » website for storing and displaying the resources (http://www.mengo.biochem.vt.edu/). The outcome of the project was further disseminated through peer-reviewed publications and poster and seminar presentations.« less
Verma, Jitendra Kumar; Wardhan, Vijay; Singh, Deepali; Chakraborty, Subhra; Chakraborty, Niranjan
2018-01-01
Architectural proteins play key roles in genome construction and regulate the expression of many genes, albeit the modulation of genome plasticity by these proteins is largely unknown. A critical screening of the architectural proteins in five crop species, viz., Oryza sativa, Zea mays, Sorghum bicolor, Cicer arietinum, and Vitis vinifera, and in the model plant Arabidopsis thaliana along with evolutionary relevant species such as Chlamydomonas reinhardtii, Physcomitrella patens, and Amborella trichopoda, revealed 9, 20, 10, 7, 7, 6, 1, 4, and 4 Alba (acetylation lowers binding affinity) genes, respectively. A phylogenetic analysis of the genes and of their counterparts in other plant species indicated evolutionary conservation and diversification. In each group, the structural components of the genes and motifs showed significant conservation. The chromosomal location of the Alba genes of rice (OsAlba), showed an unequal distribution on 8 of its 12 chromosomes. The expression profiles of the OsAlba genes indicated a distinct tissue-specific expression in the seedling, vegetative, and reproductive stages. The quantitative real-time PCR (qRT-PCR) analysis of the OsAlba genes confirmed their stress-inducible expression under multivariate environmental conditions and phytohormone treatments. The evaluation of the regulatory elements in 68 Alba genes from the 9 species studied led to the identification of conserved motifs and overlapping microRNA (miRNA) target sites, suggesting the conservation of their function in related proteins and a divergence in their biological roles across species. The 3D structure and the prediction of putative ligands and their binding sites for OsAlba proteins offered a key insight into the structure–function relationship. These results provide a comprehensive overview of the subtle genetic diversification of the OsAlba genes, which will help in elucidating their functional role in plants. PMID:29597290
atBioNet--an integrated network analysis tool for genomics and biomarker discovery.
Ding, Yijun; Chen, Minjun; Liu, Zhichao; Ding, Don; Ye, Yanbin; Zhang, Min; Kelly, Reagan; Guo, Li; Su, Zhenqiang; Harris, Stephen C; Qian, Feng; Ge, Weigong; Fang, Hong; Xu, Xiaowei; Tong, Weida
2012-07-20
Large amounts of mammalian protein-protein interaction (PPI) data have been generated and are available for public use. From a systems biology perspective, Proteins/genes interactions encode the key mechanisms distinguishing disease and health, and such mechanisms can be uncovered through network analysis. An effective network analysis tool should integrate different content-specific PPI databases into a comprehensive network format with a user-friendly platform to identify key functional modules/pathways and the underlying mechanisms of disease and toxicity. atBioNet integrates seven publicly available PPI databases into a network-specific knowledge base. Knowledge expansion is achieved by expanding a user supplied proteins/genes list with interactions from its integrated PPI network. The statistically significant functional modules are determined by applying a fast network-clustering algorithm (SCAN: a Structural Clustering Algorithm for Networks). The functional modules can be visualized either separately or together in the context of the whole network. Integration of pathway information enables enrichment analysis and assessment of the biological function of modules. Three case studies are presented using publicly available disease gene signatures as a basis to discover new biomarkers for acute leukemia, systemic lupus erythematosus, and breast cancer. The results demonstrated that atBioNet can not only identify functional modules and pathways related to the studied diseases, but this information can also be used to hypothesize novel biomarkers for future analysis. atBioNet is a free web-based network analysis tool that provides a systematic insight into proteins/genes interactions through examining significant functional modules. The identified functional modules are useful for determining underlying mechanisms of disease and biomarker discovery. It can be accessed at: http://www.fda.gov/ScienceResearch/BioinformaticsTools/ucm285284.htm.
Schwank, S; Hoffmann, B; Sch-uller, H J
1997-06-01
Expression of structural genes of phospholipid biosynthesis in yeast is mediated by the inositol/choline-responsive element (ICRE). ICRE-dependent gene activation, requiring the regulatory genes INO2 and INO4, is repressed in the presence of the phospholipid precursors inositol and choline. INO2 and, to a less extent, INO4 are positively autoregulated by functional ICRE sequences in the respective upstream regions. However, an INO2 allele devoid of its ICRE functionally complemented an ino2 mutation and completely restored inositol/choline regulation of Ino2p-dependent reporter genes. Low-level expression of INO2 and INO4 genes, each under control of the heterologous MET25 promoter, did not alter the regulatory pattern of target genes. Thus, upstream regions of INO2 and INO4 are not crucial for transcriptional control of ICRE-dependent genes by inositol and choline. Interestingly, over-expression of INO2, but not of INO4, counteracted repression by phospholipid precursors. Possibly, a functional antagonism between INO2 and a negative regulator is the key event responsible for repression or de-repression.
USDA-ARS?s Scientific Manuscript database
Genetic modification of lignin biosynthesis in the cell wall of biofuel feedstocks is likely one of the most effective ways to improve the conversion efficiency of cellulosic biomass to biofuel for the bioenergy industry. As a key enzyme that catalyzes the last step of monolignol synthesis, cinnamy...
SPP1 and AGER as potential prognostic biomarkers for lung adenocarcinoma.
Zhang, Weiguo; Fan, Junli; Chen, Qiang; Lei, Caipeng; Qiao, Bin; Liu, Qin
2018-05-01
Overdue treatment and prognostic evaluation lead to low survival rates in patients with lung adenocarcinoma (LUAD). To date, effective biomarkers for prognosis are still required. The aim of the present study was to screen differentially expressed genes (DEGs) as biomarkers for prognostic evaluation of LUAD. DEGs in tumor and normal samples were identified and analyzed for Kyoto Encyclopedia of Genes and Genomes/Gene Ontology functional enrichments. The common genes that are up and downregulated were selected for prognostic analysis using RNAseq data in The Cancer Genome Atlas. Differential expression analysis was performed with 164 samples in GSE10072 and GSE7670 datasets. A total of 484 DEGs that were present in GSE10072 and GSE7670 datasets were screened, including secreted phosphoprotein 1 (SPP1) that was highly expressed and DEGs ficolin 3, advanced glycosylation end-product specific receptor (AGER), transmembrane protein 100 that were lowly expressed in tumor tissues. These four key genes were subsequently verified using an independent dataset, GSE19804. The gene expression model was consistent with GSE10072 and GSE7670 datasets. The dysregulation of highly expressed SPP1 and lowly expressed AGER significantly reduced the median survival time of patients with LUAD. These findings suggest that SPP1 and AGER are risk factors for LUAD, and these two genes may be utilized in the prognostic evaluation of patients with LUAD. Additionally, the key genes and functional enrichments may provide a reference for investigating the molecular expression mechanisms underlying LUAD.
Generation of genetically modified mice using CRISPR/Cas9 and haploid embryonic stem cell systems
JIN, Li-Fang; LI, Jin-Song
2016-01-01
With the development of high-throughput sequencing technology in the post-genomic era, researchers have concentrated their efforts on elucidating the relationships between genes and their corresponding functions. Recently, important progress has been achieved in the generation of genetically modified mice based on CRISPR/Cas9 and haploid embryonic stem cell (haESC) approaches, which provide new platforms for gene function analysis, human disease modeling, and gene therapy. Here, we review the CRISPR/Cas9 and haESC technology for the generation of genetically modified mice and discuss the key challenges in the application of these approaches. PMID:27469251
Liu, Yan-Yan; Yang, Ke-Zhen; Wei, Xiao-Xin; Wang, Xiao-Quan
2016-11-01
Angiosperms and gymnosperms are two major groups of extant seed plants. It has been suggested that gymnosperms lack FLOWERING LOCUS T (FT), a key integrator at the core of flowering pathways in angiosperms. Taking advantage of newly released gymnosperm genomes, we revisited the evolutionary history of the plant phosphatidylethanolamine-binding protein (PEBP) gene family through phylogenetic reconstruction. Expression patterns in three gymnosperm taxa and heterologous expression in Arabidopsis were studied to investigate the functions of gymnosperm FT-like and TERMINAL FLOWER 1 (TFL1)-like genes. Phylogenetic reconstruction suggests that an ancient gene duplication predating the divergence of seed plants gave rise to the FT and TFL1 genes. Expression patterns indicate that gymnosperm TFL1-like genes play a role in the reproductive development process, while GymFT1 and GymFT2, the FT-like genes resulting from a duplication event in the common ancestor of gymnosperms, function in both growth rhythm and sexual development pathways. When expressed in Arabidopsis, both spruce FT-like and TFL1-like genes repressed flowering. Our study demonstrates that gymnosperms do have FT-like and TFL1-like genes. Frequent gene and genome duplications contributed significantly to the expansion of the plant PEBP gene family. The expression patterns of gymnosperm PEBP genes provide novel insight into the functional evolution of this gene family. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Salas, Briana Hauff; Haslun, Joshua A; Strychar, Kevin B; Ostrom, Peggy H; Cervino, James M
2017-01-01
Scleractinian coral are experiencing unprecedented rates of mortality due to increases in sea surface temperatures in response to global climate change. Some coral species however, survive high temperature events due to a reduced susceptibility to bleaching. We investigated the relationship between bleaching susceptibility and expression of five metabolically related genes of Symbiodinium spp. from the coral Porites astreoides originating from an inshore and offshore reef in the Florida Keys. The acclimatization potential of Symbiodinium spp. to changing temperature regimes was also measured via a two-year reciprocal transplant between the sites. Offshore coral fragments displayed significantly higher expression in Symbiodinium spp. genes PCNA, SCP2, G3PDH, PCP and psaE than their inshore counterparts (p<0.05), a pattern consistent with increased bleaching susceptibility in offshore corals. Additionally, gene expression patterns in Symbiodinium spp. from site of origin were conserved throughout the two-year reciprocal transplant, indicating acclimatization did not occur within this multi-season time frame. Further, laboratory experiments were used to investigate the influence of acute high temperature (32°C for eight hours) and disease (lipopolysaccharide of Serratia marcescens) on the five metabolically related symbiont genes from the same offshore and inshore P. astreoides fragments. Gene expression did not differ between reef fragments, or as a consequence of acute exposure to heat or heat and disease, contrasting to results found in the field. Gene expression reported here indicates functional variation in populations of Symbiodinium spp. associated with P. astreoides in the Florida Keys, and is likely a result of localized adaptation. However, gene expression patterns observed in the lab imply that functional variation in zooxanthellae observed under conditions of chronic moderate stress is lost under the acute extreme conditions studied here.
Haslun, Joshua A.; Strychar, Kevin B.; Ostrom, Peggy H.; Cervino, James M.
2017-01-01
Scleractinian coral are experiencing unprecedented rates of mortality due to increases in sea surface temperatures in response to global climate change. Some coral species however, survive high temperature events due to a reduced susceptibility to bleaching. We investigated the relationship between bleaching susceptibility and expression of five metabolically related genes of Symbiodinium spp. from the coral Porites astreoides originating from an inshore and offshore reef in the Florida Keys. The acclimatization potential of Symbiodinium spp. to changing temperature regimes was also measured via a two-year reciprocal transplant between the sites. Offshore coral fragments displayed significantly higher expression in Symbiodinium spp. genes PCNA, SCP2, G3PDH, PCP and psaE than their inshore counterparts (p<0.05), a pattern consistent with increased bleaching susceptibility in offshore corals. Additionally, gene expression patterns in Symbiodinium spp. from site of origin were conserved throughout the two-year reciprocal transplant, indicating acclimatization did not occur within this multi-season time frame. Further, laboratory experiments were used to investigate the influence of acute high temperature (32°C for eight hours) and disease (lipopolysaccharide of Serratia marcescens) on the five metabolically related symbiont genes from the same offshore and inshore P. astreoides fragments. Gene expression did not differ between reef fragments, or as a consequence of acute exposure to heat or heat and disease, contrasting to results found in the field. Gene expression reported here indicates functional variation in populations of Symbiodinium spp. associated with P. astreoides in the Florida Keys, and is likely a result of localized adaptation. However, gene expression patterns observed in the lab imply that functional variation in zooxanthellae observed under conditions of chronic moderate stress is lost under the acute extreme conditions studied here. PMID:28355291
Petersen, Romina; Krost, Clemens
2013-07-01
Plant architecture is regulated by a complex interplay of some key players (often transcription factors), phytohormones and other signaling molecules such as microRNAs. The columnar growth habit of apple trees is a unique form of plant architecture characterized by thick and upright stems showing a compaction of internodes and carrying short fruit spurs instead of lateral branches. The molecular basis for columnar growth is a single dominant allele of the gene Columnar, whose identity, function and gene product are unknown. As a result of marker analyses, this gene has recently been fine-mapped to chromosome 10 at 18.51-19.09 Mb [according to the annotation of the apple genome by Velasco (2010)], a region containing a cluster of quantitative trait loci associated with plant architecture, but no homologs to the well-known key regulators of plant architecture. Columnar apple trees have a higher auxin/cytokinin ratio and lower levels of gibberellins and abscisic acid than normal apple trees. Transcriptome analyses corroborate these results and additionally show differences in cell membrane and cell wall function. It can be expected that within the next year or two, an integration of these different research methodologies will reveal the identity of the Columnar gene. Besides enabling breeders to efficiently create new apple (and maybe related pear, peach, cherry, etc.) cultivars which combine desirable characteristics of commercial cultivars with the advantageous columnar growth habit using gene technology, this will also provide new insights into an elevated level of plant growth regulation.
A Conserved Cytochrome P450 Evolved in Seed Plants Regulates Flower Maturation.
Liu, Zhenhua; Boachon, Benoît; Lugan, Raphaël; Tavares, Raquel; Erhardt, Mathieu; Mutterer, Jérôme; Demais, Valérie; Pateyron, Stéphanie; Brunaud, Véronique; Ohnishi, Toshiyuki; Pencik, Ales; Achard, Patrick; Gong, Fan; Hedden, Peter; Werck-Reichhart, Danièle; Renault, Hugues
2015-12-07
Global inspection of plant genomes identifies genes maintained in low copies across taxa and under strong purifying selection, which are likely to have essential functions. Based on this rationale, we investigated the function of the low-duplicated CYP715 cytochrome P450 gene family that appeared early in seed plants and evolved under strong negative selection. Arabidopsis CYP715A1 showed a restricted tissue-specific expression in the tapetum of flower buds and in the anther filaments upon anthesis. cyp715a1 insertion lines showed a strong defect in petal development, and transient alteration of pollen intine deposition. Comparative expression analysis revealed the downregulated expression of genes involved in pollen development, cell wall biogenesis, hormone homeostasis, and floral sesquiterpene biosynthesis, especially TPS21 and several key genes regulating floral development such as MYB21, MYB24, and MYC2. Accordingly, floral sesquiterpene emission was suppressed in the cyp715a1 mutants. Flower hormone profiling, in addition, indicated a modification of gibberellin homeostasis and a strong disturbance of the turnover of jasmonic acid derivatives. Petal growth was partially restored by the active gibberellin GA3 or the functional analog of jasmonoyl-isoleucine, coronatine. CYP715 appears to function as a key regulator of flower maturation, synchronizing petal expansion and volatile emission. It is thus expected to be an important determinant of flower-insect interaction. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.
The functional genomic studies of curcumin.
Huminiecki, Lukasz; Horbańczuk, Jarosław; Atanasov, Atanas G
2017-10-01
Curcumin is a natural plant-derived compound that has attracted a lot of attention for its anti-cancer activities. Curcumin can slow proliferation of and induce apoptosis in cancer cell lines, but the precise mechanisms of these effects are not fully understood. However, many lines of evidence suggested that curcumin has a potent impact on gene expression profiles; thus, functional genomics should be the key to understanding how curcumin exerts its anti-cancer activities. Here, we review the published functional genomic studies of curcumin focusing on cancer. Typically, a cancer cell line or a grafted tumor were exposed to curcumin and profiled with microarrays, methylation assays, or RNA-seq. Crucially, these studies are in agreement that curcumin has a powerful effect on gene expression. In the majority of the studies, among differentially expressed genes we found genes involved in cell signaling, apoptosis, and the control of cell cycle. Curcumin can also induce specific methylation changes, and is a powerful regulator of the expression of microRNAs which control oncogenesis. We also reflect on how the broader technological progress in transcriptomics has been reflected on the field of curcumin. We conclude by discussing the areas where more functional genomic studies are highly desirable. Integrated OMICS approaches will clearly be the key to understanding curcumin's anticancer and chemopreventive effects. Such strategies may become a template for elucidating the mode of action of other natural products; many natural products have pleiotropic effects that are well suited for a systems-level analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Comparative functional characterization of the CSR-1 22G-RNA pathway in Caenorhabditis nematodes.
Tu, Shikui; Wu, Monica Z; Wang, Jie; Cutter, Asher D; Weng, Zhiping; Claycomb, Julie M
2015-01-01
As a champion of small RNA research for two decades, Caenorhabditis elegans has revealed the essential Argonaute CSR-1 to play key nuclear roles in modulating chromatin, chromosome segregation and germline gene expression via 22G-small RNAs. Despite CSR-1 being preserved among diverse nematodes, the conservation and divergence in function of the targets of small RNA pathways remains poorly resolved. Here we apply comparative functional genomic analysis between C. elegans and Caenorhabditis briggsae to characterize the CSR-1 pathway, its targets and their evolution. C. briggsae CSR-1-associated small RNAs that we identified by immunoprecipitation-small RNA sequencing overlap with 22G-RNAs depleted in cbr-csr-1 RNAi-treated worms. By comparing 22G-RNAs and target genes between species, we defined a set of CSR-1 target genes with conserved germline expression, enrichment in operons and more slowly evolving coding sequences than other genes, along with a small group of evolutionarily labile targets. We demonstrate that the association of CSR-1 with chromatin is preserved, and show that depletion of cbr-csr-1 leads to chromosome segregation defects and embryonic lethality. This first comparative characterization of a small RNA pathway in Caenorhabditis establishes a conserved nuclear role for CSR-1 and highlights its key role in germline gene regulation across multiple animal species. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Zhang, Peixiang; Takeuchi, Kazuharu; Csaki, Lauren S.; Reue, Karen
2012-01-01
Adipose tissue plays a key role in metabolic homeostasis. Disruption of the Lpin1 gene encoding lipin-1 causes impaired adipose tissue development and function in rodents. Lipin-1 functions as a phosphatidate phosphatase (PAP) enzyme in the glycerol 3-phosphate pathway for triglyceride storage and as a transcriptional coactivator/corepressor for metabolic nuclear receptors. Previous studies established that lipin-1 is required at an early step in adipocyte differentiation for induction of the adipogenic gene transcription program, including the key regulator peroxisome proliferator-activated receptor γ (PPARγ). Here, we investigate the requirement of lipin-1 PAP versus coactivator function in the establishment of Pparg expression during adipocyte differentiation. We demonstrate that PAP activity supplied by lipin-1, lipin-2, or lipin-3, but not lipin-1 coactivator activity, can rescue Pparg gene expression and lipogenesis during adipogenesis in lipin-1-deficient preadipocytes. In adipose tissue from lipin-1-deficient mice, there is an accumulation of phosphatidate species containing a range of medium chain fatty acids and an activation of the MAPK/extracellular signal-related kinase (ERK) signaling pathway. Phosphatidate inhibits differentiation of cultured adipocytes, and this can be rescued by the expression of lipin-1 PAP activity or by inhibition of ERK signaling. These results emphasize the importance of lipid intermediates as choreographers of gene regulation during adipogenesis, and the results highlight a specific role for lipins as determinants of levels of a phosphatidic acid pool that influences Pparg expression. PMID:22157014
Nicholson, Matthew J.; Eaton, Carla J.; Stärkel, Cornelia; Tapper, Brian A.; Cox, Murray P.; Scott, Barry
2015-01-01
The penitremane and janthitremane families of indole-diterpenes are abundant natural products synthesized by Penicillium crustosum and P. janthinellum. Using a combination of PCR, cosmid library screening, and Illumina sequencing we have identified gene clusters encoding enzymes for the synthesis of these compounds. Targeted deletion of penP in P. crustosum abolished the synthesis of penitrems A, B, D, E, and F, and led to accumulation of paspaline, a key intermediate for paxilline biosynthesis in P. paxilli. Similarly, deletion of janP and janD in P. janthinellum abolished the synthesis of prenyl-elaborated indole-diterpenes, and led to accumulation in the latter of 13-desoxypaxilline, a key intermediate for the synthesis of the structurally related aflatremanes synthesized by Aspergillus flavus. This study helps resolve the genetic basis for the complexity of indole-diterpene natural products found within the Penicillium and Aspergillus species. All indole-diterpene gene clusters identified to date have a core set of genes for the synthesis of paspaline and a suite of genes encoding multi-functional cytochrome P450 monooxygenases, FAD dependent monooxygenases, and prenyl transferases that catalyse various regio- and stereo- specific oxidations that give rise to the diversity of indole-diterpene products synthesized by this group of fungi. PMID:26213965
Shen, Changbing; Gao, Jing; Sheng, Yujun; Dou, Jinfa; Zhou, Fusheng; Zheng, Xiaodong; Ko, Randy; Tang, Xianfa; Zhu, Caihong; Yin, Xianyong; Sun, Liangdan; Cui, Yong; Zhang, Xuejun
2016-01-01
Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association study (GWAS). More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWAS. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in the development of vitiligo. PMID:26870082
Thyroid hormone and cerebellar development.
Anderson, Grant W
2008-01-01
Thyroid hormone (TH) plays a key role in mammalian brain development. The developing brain is sensitive to both TH deficiency and excess. Brain development in the absence of TH results in motor skill deficiencies and reduced intellectual development. These functional abnormalities can be attributed to maldevelopment of specific cell types and regions of the brain including the cerebellum. TH functions at the molecular level by regulating gene transcription. Therefore, understanding how TH regulates cerebellar development requires identification of TH-regulated gene targets and the cells expressing these genes. Additionally, the process of TH-dependent regulation of gene expression is tightly controlled by mechanisms including regulation of TH transport, TH metabolism, toxicologic inhibition of TH signaling, and control of the nuclear TH response apparatus. This review will describe the functional, cellular, and molecular effects of TH deficit in the developing cerebellum and emphasize the most recent findings regarding TH action in this important brain region.
Moin, Mazahar; Bakshi, Achala; Saha, Anusree; Dutta, Mouboni; Kirti, P B
2017-07-01
The epitome of any genome research is to identify all the existing genes in a genome and investigate their roles. Various techniques have been applied to unveil the functions either by silencing or over-expressing the genes by targeted expression or random mutagenesis. Rice is the most appropriate model crop for generating a mutant resource for functional genomic studies because of the availability of high-quality genome sequence and relatively smaller genome size. Rice has syntenic relationships with members of other cereals. Hence, characterization of functionally unknown genes in rice will possibly provide key genetic insights and can lead to comparative genomics involving other cereals. The current review attempts to discuss the available gain-of-function mutagenesis techniques for functional genomics, emphasizing the contemporary approach, activation tagging and alterations to this method for the enhancement of yield and productivity of rice. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Luo, Xiongjian; Huang, Liang; Han, Leng; Luo, Zhenwu; Hu, Fang; Tieu, Roger; Gan, Lin
2014-01-01
Schizophrenia is a common mental disorder with high heritability and strong genetic heterogeneity. Common disease-common variants hypothesis predicts that schizophrenia is attributable in part to common genetic variants. However, recent studies have clearly demonstrated that copy number variations (CNVs) also play pivotal roles in schizophrenia susceptibility and explain a proportion of missing heritability. Though numerous CNVs have been identified, many of the regions affected by CNVs show poor overlapping among different studies, and it is not known whether the genes disrupted by CNVs contribute to the risk of schizophrenia. By using cumulative scoring, we systematically prioritized the genes affected by CNVs in schizophrenia. We identified 8 top genes that are frequently disrupted by CNVs, including NRXN1, CHRNA7, BCL9, CYFIP1, GJA8, NDE1, SNAP29, and GJA5. Integration of genes affected by CNVs with known schizophrenia susceptibility genes (from previous genetic linkage and association studies) reveals that many genes disrupted by CNVs are also associated with schizophrenia. Further protein-protein interaction (PPI) analysis indicates that protein products of genes affected by CNVs frequently interact with known schizophrenia-associated proteins. Finally, systematic integration of CNVs prioritization data with genetic association and PPI data identifies key schizophrenia candidate genes. Our results provide a global overview of genes impacted by CNVs in schizophrenia and reveal a densely interconnected molecular network of de novo CNVs in schizophrenia. Though the prioritized top genes represent promising schizophrenia risk genes, further work with different prioritization methods and independent samples is needed to confirm these findings. Nevertheless, the identified key candidate genes may have important roles in the pathogenesis of schizophrenia, and further functional characterization of these genes may provide pivotal targets for future therapeutics and diagnostics. PMID:24664977
Fernandes, Alinda R; Chari, Divya M
2016-09-28
Genetically engineered neural stem cell (NSC) transplant populations offer key benefits in regenerative neurology, for release of therapeutic biomolecules in ex vivo gene therapy. NSCs are 'hard-to-transfect' but amenable to 'magnetofection'. Despite the high clinical potential of this approach, the low and transient transfection associated with the large size of therapeutic DNA constructs is a critical barrier to translation. We demonstrate for the first time that DNA minicircles (small DNA vectors encoding essential gene expression components but devoid of a bacterial backbone, thereby reducing construct size versus conventional plasmids) deployed with magnetofection achieve the highest, safe non-viral DNA transfection levels (up to 54%) reported so far for primary NSCs. Minicircle-functionalized magnetic nanoparticle (MNP)-mediated gene delivery also resulted in sustained gene expression for up to four weeks. All daughter cell types of engineered NSCs (neurons, astrocytes and oligodendrocytes) were transfected (in contrast to conventional plasmids which usually yield transfected astrocytes only), offering advantages for targeted cell engineering. In addition to enhancing MNP functionality as gene delivery vectors, minicircle technology provides key benefits from safety/scale up perspectives. Therefore, we consider the proof-of-concept of fusion of technologies used here offers high potential as a clinically translatable genetic modification strategy for cell therapy. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Ying; Ciliax, Brian J; Borges, Karin; Dasigi, Venu; Ram, Ashwin; Navathe, Shamkant B; Dingledine, Ray
2004-01-01
One of the key challenges of microarray studies is to derive biological insights from the unprecedented quatities of data on gene-expression patterns. Clustering genes by functional keyword association can provide direct information about the nature of the functional links among genes within the derived clusters. However, the quality of the keyword lists extracted from biomedical literature for each gene significantly affects the clustering results. We extracted keywords from MEDLINE that describes the most prominent functions of the genes, and used the resulting weights of the keywords as feature vectors for gene clustering. By analyzing the resulting cluster quality, we compared two keyword weighting schemes: normalized z-score and term frequency-inverse document frequency (TFIDF). The best combination of background comparison set, stop list and stemming algorithm was selected based on precision and recall metrics. In a test set of four known gene groups, a hierarchical algorithm correctly assigned 25 of 26 genes to the appropriate clusters based on keywords extracted by the TDFIDF weighting scheme, but only 23 og 26 with the z-score method. To evaluate the effectiveness of the weighting schemes for keyword extraction for gene clusters from microarray profiles, 44 yeast genes that are differentially expressed during the cell cycle were used as a second test set. Using established measures of cluster quality, the results produced from TFIDF-weighted keywords had higher purity, lower entropy, and higher mutual information than those produced from normalized z-score weighted keywords. The optimized algorithms should be useful for sorting genes from microarray lists into functionally discrete clusters.
Properties of genes essential for mouse development
Kabir, Mitra; Barradas, Ana; Tzotzos, George T.; Hentges, Kathryn E.
2017-01-01
Essential genes are those that are critical for life. In the specific case of the mouse, they are the set of genes whose deletion means that a mouse is unable to survive after birth. As such, they are the key minimal set of genes needed for all the steps of development to produce an organism capable of life ex utero. We explored a wide range of sequence and functional features to characterise essential (lethal) and non-essential (viable) genes in mice. Experimental data curated manually identified 1301 essential genes and 3451 viable genes. Very many sequence features show highly significant differences between essential and viable mouse genes. Essential genes generally encode complex proteins, with multiple domains and many introns. These genes tend to be: long, highly expressed, old and evolutionarily conserved. These genes tend to encode ligases, transferases, phosphorylated proteins, intracellular proteins, nuclear proteins, and hubs in protein-protein interaction networks. They are involved with regulating protein-protein interactions, gene expression and metabolic processes, cell morphogenesis, cell division, cell proliferation, DNA replication, cell differentiation, DNA repair and transcription, cell differentiation and embryonic development. Viable genes tend to encode: membrane proteins or secreted proteins, and are associated with functions such as cellular communication, apoptosis, behaviour and immune response, as well as housekeeping and tissue specific functions. Viable genes are linked to transport, ion channels, signal transduction, calcium binding and lipid binding, consistent with their location in membranes and involvement with cell-cell communication. From the analysis of the composite features of essential and viable genes, we conclude that essential genes tend to be required for intracellular functions, and viable genes tend to be involved with extracellular functions and cell-cell communication. Knowledge of the features that are over-represented in essential genes allows for a deeper understanding of the functions and processes implemented during mammalian development. PMID:28562614
USDA-ARS?s Scientific Manuscript database
Acetylcholinesterase (AChE) is a key neural enzyme of both vertebrates and invertebrates, and is the biochemical target of organophosphate and carbamate pesticides for invertebrates, as well as vertebrate nerve agents, e.g., soman, tabun, VX, and others. AChE inhibitors are also key drugs among thos...
Rajamani, Deepa; Bhasin, Manoj K
2016-05-03
Pancreatic cancer is an aggressive cancer with dismal prognosis, urgently necessitating better biomarkers to improve therapeutic options and early diagnosis. Traditional approaches of biomarker detection that consider only one aspect of the biological continuum like gene expression alone are limited in their scope and lack robustness in identifying the key regulators of the disease. We have adopted a multidimensional approach involving the cross-talk between the omics spaces to identify key regulators of disease progression. Multidimensional domain-specific disease signatures were obtained using rank-based meta-analysis of individual omics profiles (mRNA, miRNA, DNA methylation) related to pancreatic ductal adenocarcinoma (PDAC). These domain-specific PDAC signatures were integrated to identify genes that were affected across multiple dimensions of omics space in PDAC (genes under multiple regulatory controls, GMCs). To further pin down the regulators of PDAC pathophysiology, a systems-level network was generated from knowledge-based interaction information applied to the above identified GMCs. Key regulators were identified from the GMC network based on network statistics and their functional importance was validated using gene set enrichment analysis and survival analysis. Rank-based meta-analysis identified 5391 genes, 109 miRNAs and 2081 methylation-sites significantly differentially expressed in PDAC (false discovery rate ≤ 0.05). Bimodal integration of meta-analysis signatures revealed 1150 and 715 genes regulated by miRNAs and methylation, respectively. Further analysis identified 189 altered genes that are commonly regulated by miRNA and methylation, hence considered GMCs. Systems-level analysis of the scale-free GMCs network identified eight potential key regulator hubs, namely E2F3, HMGA2, RASA1, IRS1, NUAK1, ACTN1, SKI and DLL1, associated with important pathways driving cancer progression. Survival analysis on individual key regulators revealed that higher expression of IRS1 and DLL1 and lower expression of HMGA2, ACTN1 and SKI were associated with better survival probabilities. It is evident from the results that our hierarchical systems-level multidimensional analysis approach has been successful in isolating the converging regulatory modules and associated key regulatory molecules that are potential biomarkers for pancreatic cancer progression.
House, Carrie D.; Vaske, Charles J.; Schwartz, Arnold M.; Obias, Vincent; Frank, Bryan; Luu, Truong; Sarvazyan, Narine; Irby, Rosalyn; Strausberg, Robert L.; Hales, Tim G.; Stuart, Joshua M.; Lee, Norman H.
2010-01-01
Voltage-gated Na+ channels (VGSCs) have been implicated in the metastatic potential of human breast, prostate and lung cancer cells. Specifically, the SCN5A gene encoding the VGSC isotype Nav1.5 has been defined as a key driver of human cancer cell invasion. In this study, we examined the expression and function of VGSCs in a panel of colon cancer cell lines by electrophysiological recordings. Na+ channel activity and invasive potential were inhibited pharmacologically by tetrodotoxin or genetically by siRNAs specifically targeting SCN5A. Clinical relevance was established by immunohistochemistry of patient biopsies, where there was strong Nav1.5 protein staining in colon cancer specimens but little to no staining in matched-paired normal colon tissues. We explored the mechanism of VGSC-mediated invasive potential on the basis of reported links between VGSC activity and gene expression in excitable cells. Probabilistic modeling of loss-of-function screens and microarray data established an unequivocal role of VGSC SCN5A as a high level regulator of a colon cancer invasion network, involving genes that encompass Wnt signaling, cell migration, ectoderm development, response to biotic stimulus, steroid metabolic process and cell cycle control. siRNA-mediated knockdown of predicted downstream network components caused a loss of invasive behavior, demonstrating network connectivity and its function in driving colon cancer invasion. PMID:20651255
Moon, Sunok; Oo, Moe Moe; Kim, Backki; Koh, Hee-Jong; Oh, Sung Aeong; Yi, Gihwan; An, Gynheung; Park, Soon Ki; Jung, Ki-Hong
2018-04-23
Understanding late pollen development, including the maturation and pollination process, is a key component in maintaining crop yields. Transcriptome data obtained through microarray or RNA-seq technologies can provide useful insight into those developmental processes. Six series of microarray data from a public transcriptome database, the Gene Expression Omnibus of the National Center for Biotechnology Information, are related to anther and pollen development. We performed a systematic and functional study across the rice genome of genes that are preferentially expressed in the late stages of pollen development, including maturation and germination. By comparing the transcriptomes of sporophytes and male gametes over time, we identified 627 late pollen-preferred genes that are conserved among japonica and indica rice cultivars. Functional classification analysis with a MapMan tool kit revealed a significant association between cell wall organization/metabolism and mature pollen grains. Comparative analysis of rice and Arabidopsis demonstrated that genes involved in cell wall modifications and the metabolism of major carbohydrates are unique to rice. We used the GUS reporter system to monitor the expression of eight of those genes. In addition, we evaluated the significance of our candidate genes, using T-DNA insertional mutant population and the CRISPR/Cas9 system. Mutants from T-DNA insertion and CRISPR/Cas9 systems of a rice gene encoding glycerophosphoryl diester phosphodiesterase are defective in their male gamete transfer. Through the global analyses of the late pollen-preferred genes from rice, we found several biological features of these genes. First, biological process related to cell wall organization and modification is over-represented in these genes to support rapid tube growth. Second, comparative analysis of late pollen preferred genes between rice and Arabidopsis provide a significant insight on the evolutional disparateness in cell wall biogenesis and storage reserves of pollen. In addition, these candidates might be useful targets for future examinations of late pollen development, and will be a valuable resource for accelerating the understanding of molecular mechanisms for pollen maturation and germination processes in rice.
He, H; Chen, C; Xie, Y; Asea, A; Calderwood, S K
2000-11-01
Heat shock protein 70 (HSP70) is a molecular chaperone involved in protein folding and resistance to the deleterious effects of stress. Here we show that HSP70 suppresses transcription of c-fos, an early response gene that is a key component of the ubiquitous AP-1 transcription factor complex. HSP70 repressed Ras-induced c-fos transcription only in the presence of functional heat shock factor1 (HSF1). This suggests that HSP70 functions as a corepressor with HSF1 to inhibit c-fos gene transcription. Therefore, besides its known function in the stress response, HSP70 also has the property of a corepressor and combines with HSF1 to antagonize Fos expression and may thus impact multiple aspects of cell regulation.
Emms, David M.; Covshoff, Sarah; Hibberd, Julian M.; Kelly, Steven
2016-01-01
C4 photosynthesis is considered one of the most remarkable examples of evolutionary convergence in eukaryotes. However, it is unknown whether the evolution of C4 photosynthesis required the evolution of new genes. Genome-wide gene-tree species-tree reconciliation of seven monocot species that span two origins of C4 photosynthesis revealed that there was significant parallelism in the duplication and retention of genes coincident with the evolution of C4 photosynthesis in these lineages. Specifically, 21 orthologous genes were duplicated and retained independently in parallel at both C4 origins. Analysis of this gene cohort revealed that the set of parallel duplicated and retained genes is enriched for genes that are preferentially expressed in bundle sheath cells, the cell type in which photosynthesis was activated during C4 evolution. Furthermore, functional analysis of the cohort of parallel duplicated genes identified SWEET-13 as a potential key transporter in the evolution of C4 photosynthesis in grasses, and provides new insight into the mechanism of phloem loading in these C4 species. Key words: C4 photosynthesis, gene duplication, gene families, parallel evolution. PMID:27016024
Zhou, Yingbiao; Zhu, Yueming; Dai, Longhai; Men, Yan; Wu, Jinhai; Zhang, Juankun; Sun, Yuanxia
2017-01-01
Melibiose is widely used as a functional carbohydrate. Whole-cell biocatalytic production of melibiose from raffinose could reduce its cost. However, characteristics of strains for whole-cell biocatalysis and mechanism of such process are unclear. We compared three different Saccharomyces cerevisiae strains (liquor, wine, and baker's yeasts) in terms of concentration variations of substrate (raffinose), target product (melibiose), and by-products (fructose and galactose) in whole-cell biocatalysis process. Distinct difference was observed in whole-cell catalytic efficiency among three strains. Furthermore, activities of key enzymes (invertase, α-galactosidase, and fructose transporter) involved in process and expression levels of their coding genes (suc2, mel1, and fsy1) were investigated. Conservation of key genes in S. cerevisiae strains was also evaluated. Results show that whole-cell catalytic efficiency of S. cerevisiae in the raffinose substrate was closely related to activity of key enzymes and expression of their coding genes. Finally, we summarized characteristics of producing strain that offered advantages, as well as contributions of key genes to excellent strains. Furthermore, we presented a dynamic mechanism model to achieve some mechanism insight for this whole-cell biocatalytic process. This pioneering study should contribute to improvement of whole-cell biocatalytic production of melibiose from raffinose.
Zhang, Yu; Xie, Jianping; Liu, Miaomiao; Tian, Zhe; He, Zhili; van Nostrand, Joy D; Ren, Liren; Zhou, Jizhong; Yang, Min
2013-10-15
It is widely demonstrated that antibiotics in the environment affect microbial community structure. However, direct evidence regarding the impacts of antibiotics on microbial functional structures in wastewater treatment systems is limited. Herein, a high-throughput functional gene array (GeoChip 3.0) in combination with quantitative PCR and clone libraries were used to evaluate the microbial functional structures in two biological wastewater treatment systems, which treat antibiotic production wastewater mainly containing oxytetracycline. Despite the bacteriostatic effects of antibiotics, the GeoChip detected almost all key functional gene categories, including carbon cycling, nitrogen cycling, etc., suggesting that these microbial communities were functionally diverse. Totally 749 carbon-degrading genes belonging to 40 groups (24 from bacteria and 16 from fungi) were detected. The abundance of several fungal carbon-degrading genes (e.g., glyoxal oxidase (glx), lignin peroxidase or ligninase (lip), manganese peroxidase (mnp), endochitinase, exoglucanase_genes) was significantly correlated with antibiotic concentrations (Mantel test; P < 0.05), showing that the fungal functional genes have been enhanced by the presence of antibiotics. However, from the fact that the majority of carbon-degrading genes were derived from bacteria and diverse antibiotic resistance genes were detected in bacteria, it was assumed that many bacteria could survive in the environment by acquiring antibiotic resistance and may have maintained the position as a main player in nutrient removal. Variance partitioning analysis showed that antibiotics could explain 24.4% of variations in microbial functional structure of the treatment systems. This study provides insights into the impacts of antibiotics on microbial functional structure of a unique system receiving antibiotic production wastewater, and reveals the potential importance of the cooperation between fungi and bacteria with antibiotic resistance in maintaining the stability and performance of the systems. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bragalini, Claudia; Ribière, Céline; Parisot, Nicolas; Vallon, Laurent; Prudent, Elsa; Peyretaillade, Eric; Girlanda, Mariangela; Peyret, Pierre; Marmeisse, Roland; Luis, Patricia
2014-01-01
Eukaryotic microbial communities play key functional roles in soil biology and potentially represent a rich source of natural products including biocatalysts. Culture-independent molecular methods are powerful tools to isolate functional genes from uncultured microorganisms. However, none of the methods used in environmental genomics allow for a rapid isolation of numerous functional genes from eukaryotic microbial communities. We developed an original adaptation of the solution hybrid selection (SHS) for an efficient recovery of functional complementary DNAs (cDNAs) synthesized from soil-extracted polyadenylated mRNAs. This protocol was tested on the Glycoside Hydrolase 11 gene family encoding endo-xylanases for which we designed 35 explorative 31-mers capture probes. SHS was implemented on four soil eukaryotic cDNA pools. After two successive rounds of capture, >90% of the resulting cDNAs were GH11 sequences, of which 70% (38 among 53 sequenced genes) were full length. Between 1.5 and 25% of the cloned captured sequences were expressed in Saccharomyces cerevisiae. Sequencing of polymerase chain reaction-amplified GH11 gene fragments from the captured sequences highlighted hundreds of phylogenetically diverse sequences that were not yet described, in public databases. This protocol offers the possibility of performing exhaustive exploration of eukaryotic gene families within microbial communities thriving in any type of environment. PMID:25281543
The structure of a gene co-expression network reveals biological functions underlying eQTLs.
Villa-Vialaneix, Nathalie; Liaubet, Laurence; Laurent, Thibault; Cherel, Pierre; Gamot, Adrien; SanCristobal, Magali
2013-01-01
What are the commonalities between genes, whose expression level is partially controlled by eQTL, especially with regard to biological functions? Moreover, how are these genes related to a phenotype of interest? These issues are particularly difficult to address when the genome annotation is incomplete, as is the case for mammalian species. Moreover, the direct link between gene expression and a phenotype of interest may be weak, and thus difficult to handle. In this framework, the use of a co-expression network has proven useful: it is a robust approach for modeling a complex system of genetic regulations, and to infer knowledge for yet unknown genes. In this article, a case study was conducted with a mammalian species. It showed that the use of a co-expression network based on partial correlation, combined with a relevant clustering of nodes, leads to an enrichment of biological functions of around 83%. Moreover, the use of a spatial statistics approach allowed us to superimpose additional information related to a phenotype; this lead to highlighting specific genes or gene clusters that are related to the network structure and the phenotype. Three main results are worth noting: first, key genes were highlighted as a potential focus for forthcoming biological experiments; second, a set of biological functions, which support a list of genes under partial eQTL control, was set up by an overview of the global structure of the gene expression network; third, pH was found correlated with gene clusters, and then with related biological functions, as a result of a spatial analysis of the network topology.
USDA-ARS?s Scientific Manuscript database
The Asian longhorned beetle (Anoplophora glabripennis; AGLAB) is a globally significant invasive species capable of inflicting severe feeding damage on many important orchard, ornamental and forest trees. Genome sequencing, annotation, gene expression assays, and functional and comparative genomic s...
Heavy metals can inhibit nitrification, a key process for nitrogen removal in wastewater treatment. The transcriptional responses of functional genes (amoA, hao, nirK and norB) were measured in conjunction with specific oxygen uptake rate (sOUR) for nitrifying enrichment cultures...
Livernois, Alexandra; Hardy, Kristine; Domaschenz, Renae; Papanicolaou, Alexie; Georges, Arthur; Sarre, Stephen D; Rao, Sudha; Ezaz, Tariq; Deakin, Janine E
2016-10-01
Interleukins are a group of cytokines with complex immunomodulatory functions that are important for regulating immunity in vertebrate species. Reptiles and mammals last shared a common ancestor more than 350 million years ago, so it is not surprising that low sequence identity has prevented divergent interleukin genes from being identified in the central bearded dragon lizard, Pogona vitticeps, in its genome assembly. To determine the complete nucleotide sequences of key interleukin genes, we constructed full-length transcripts, using the Trinity platform, from short paired-end read RNA sequences from stimulated spleen cells. De novo transcript reconstruction and analysis allowed us to identify interleukin genes that are missing from the published P. vitticeps assembly. Identification of key cytokines in P. vitticeps will provide insight into the essential molecular mechanisms and evolution of interleukin gene families and allow for characterization of the immune response in a lizard for comparison with mammals.
Mouse Genome Database: From sequence to phenotypes and disease models
Richardson, Joel E.; Kadin, James A.; Smith, Cynthia L.; Blake, Judith A.; Bult, Carol J.
2015-01-01
Summary The Mouse Genome Database (MGD, www.informatics.jax.org) is the international scientific database for genetic, genomic, and biological data on the laboratory mouse to support the research requirements of the biomedical community. To accomplish this goal, MGD provides broad data coverage, serves as the authoritative standard for mouse nomenclature for genes, mutants, and strains, and curates and integrates many types of data from literature and electronic sources. Among the key data sets MGD supports are: the complete catalog of mouse genes and genome features, comparative homology data for mouse and vertebrate genes, the authoritative set of Gene Ontology (GO) annotations for mouse gene functions, a comprehensive catalog of mouse mutations and their phenotypes, and a curated compendium of mouse models of human diseases. Here, we describe the data acquisition process, specifics about MGD's key data areas, methods to access and query MGD data, and outreach and user help facilities. genesis 53:458–473, 2015. © 2015 The Authors. Genesis Published by Wiley Periodicals, Inc. PMID:26150326
Predicting taxonomic and functional structure of microbial communities in acid mine drainage
Kuang, Jialiang; Huang, Linan; He, Zhili; Chen, Linxing; Hua, Zhengshuang; Jia, Pu; Li, Shengjin; Liu, Jun; Li, Jintian; Zhou, Jizhong; Shu, Wensheng
2016-01-01
Predicting the dynamics of community composition and functional attributes responding to environmental changes is an essential goal in community ecology but remains a major challenge, particularly in microbial ecology. Here, by targeting a model system with low species richness, we explore the spatial distribution of taxonomic and functional structure of 40 acid mine drainage (AMD) microbial communities across Southeast China profiled by 16S ribosomal RNA pyrosequencing and a comprehensive microarray (GeoChip). Similar environmentally dependent patterns of dominant microbial lineages and key functional genes were observed regardless of the large-scale geographical isolation. Functional and phylogenetic β-diversities were significantly correlated, whereas functional metabolic potentials were strongly influenced by environmental conditions and community taxonomic structure. Using advanced modeling approaches based on artificial neural networks, we successfully predicted the taxonomic and functional dynamics with significantly higher prediction accuracies of metabolic potentials (average Bray–Curtis similarity 87.8) as compared with relative microbial abundances (similarity 66.8), implying that natural AMD microbial assemblages may be better predicted at the functional genes level rather than at taxonomic level. Furthermore, relative metabolic potentials of genes involved in many key ecological functions (for example, nitrogen and phosphate utilization, metals resistance and stress response) were extrapolated to increase under more acidic and metal-rich conditions, indicating a critical strategy of stress adaptation in these extraordinary communities. Collectively, our findings indicate that natural selection rather than geographic distance has a more crucial role in shaping the taxonomic and functional patterns of AMD microbial community that readily predicted by modeling methods and suggest that the model-based approach is essential to better understand natural acidophilic microbial communities. PMID:26943622
Predicting taxonomic and functional structure of microbial communities in acid mine drainage.
Kuang, Jialiang; Huang, Linan; He, Zhili; Chen, Linxing; Hua, Zhengshuang; Jia, Pu; Li, Shengjin; Liu, Jun; Li, Jintian; Zhou, Jizhong; Shu, Wensheng
2016-06-01
Predicting the dynamics of community composition and functional attributes responding to environmental changes is an essential goal in community ecology but remains a major challenge, particularly in microbial ecology. Here, by targeting a model system with low species richness, we explore the spatial distribution of taxonomic and functional structure of 40 acid mine drainage (AMD) microbial communities across Southeast China profiled by 16S ribosomal RNA pyrosequencing and a comprehensive microarray (GeoChip). Similar environmentally dependent patterns of dominant microbial lineages and key functional genes were observed regardless of the large-scale geographical isolation. Functional and phylogenetic β-diversities were significantly correlated, whereas functional metabolic potentials were strongly influenced by environmental conditions and community taxonomic structure. Using advanced modeling approaches based on artificial neural networks, we successfully predicted the taxonomic and functional dynamics with significantly higher prediction accuracies of metabolic potentials (average Bray-Curtis similarity 87.8) as compared with relative microbial abundances (similarity 66.8), implying that natural AMD microbial assemblages may be better predicted at the functional genes level rather than at taxonomic level. Furthermore, relative metabolic potentials of genes involved in many key ecological functions (for example, nitrogen and phosphate utilization, metals resistance and stress response) were extrapolated to increase under more acidic and metal-rich conditions, indicating a critical strategy of stress adaptation in these extraordinary communities. Collectively, our findings indicate that natural selection rather than geographic distance has a more crucial role in shaping the taxonomic and functional patterns of AMD microbial community that readily predicted by modeling methods and suggest that the model-based approach is essential to better understand natural acidophilic microbial communities.
Gaji, Rajshekhar Y; Howe, Daniel K
2009-07-01
The apicomplexan parasite Sarcocystis neurona undergoes a complex process of intracellular development, during which many genes are temporally regulated. The described study was undertaken to begin identifying the basic promoter elements that control gene expression in S. neurona. Sequence analysis of the 5'-flanking region of five S. neurona genes revealed a conserved heptanucleotide motif GAGACGC that is similar to the WGAGACG motif described upstream of multiple genes in Toxoplasma gondii. The promoter region for the major surface antigen gene SnSAG1, which contains three heptanucleotide motifs within 135 bases of the transcription start site, was dissected by functional analysis using a dual luciferase reporter assay. These analyses revealed that a minimal promoter fragment containing all three motifs was sufficient to drive reporter molecule expression, with the presence and orientation of the 5'-most heptanucleotide motif being absolutely critical for promoter function. Further studies should help to identify additional sequence elements important for promoter function and for controlling gene expression during intracellular development by this apicomplexan pathogen.
Recent advances in the Laboratory of Molecular and Cellular Cardiology.
Breitbart, R E; London, B; Nguyen, H T; Satler, C A
1995-12-01
This article highlights some of the research in cardiac molecular biology in progress in the Department of Cardiology at Children's Hospital. It provides a sampling of investigative approaches to key questions in cardiovascular development and function and, as such, is intended as an overview rather than a comprehensive treatment of these problems. The featured projects, encompassing four different "model" systems, include (1) genetic analysis of the mef2 gene required for fruit fly cardial cell differentiation, (2) cardiac-specific homeobox factors in zebrafish cardiovascular development, (3) mouse transgenic and gene knockout models of cardiac potassium ion channel function, and (4) mapping and identification of human gene mutations causing long QT syndrome.
SorghumFDB: sorghum functional genomics database with multidimensional network analysis.
Tian, Tian; You, Qi; Zhang, Liwei; Yi, Xin; Yan, Hengyu; Xu, Wenying; Su, Zhen
2016-01-01
Sorghum (Sorghum bicolor [L.] Moench) has excellent agronomic traits and biological properties, such as heat and drought-tolerance. It is a C4 grass and potential bioenergy-producing plant, which makes it an important crop worldwide. With the sorghum genome sequence released, it is essential to establish a sorghum functional genomics data mining platform. We collected genomic data and some functional annotations to construct a sorghum functional genomics database (SorghumFDB). SorghumFDB integrated knowledge of sorghum gene family classifications (transcription regulators/factors, carbohydrate-active enzymes, protein kinases, ubiquitins, cytochrome P450, monolignol biosynthesis related enzymes, R-genes and organelle-genes), detailed gene annotations, miRNA and target gene information, orthologous pairs in the model plants Arabidopsis, rice and maize, gene loci conversions and a genome browser. We further constructed a dynamic network of multidimensional biological relationships, comprised of the co-expression data, protein-protein interactions and miRNA-target pairs. We took effective measures to combine the network, gene set enrichment and motif analyses to determine the key regulators that participate in related metabolic pathways, such as the lignin pathway, which is a major biological process in bioenergy-producing plants.Database URL: http://structuralbiology.cau.edu.cn/sorghum/index.html. © The Author(s) 2016. Published by Oxford University Press.
Hsiao, Tzu-Hung; Chiu, Yu-Chiao; Hsu, Pei-Yin; Lu, Tzu-Pin; Lai, Liang-Chuan; Tsai, Mong-Hsun; Huang, Tim H.-M.; Chuang, Eric Y.; Chen, Yidong
2016-01-01
Several mutual information (MI)-based algorithms have been developed to identify dynamic gene-gene and function-function interactions governed by key modulators (genes, proteins, etc.). Due to intensive computation, however, these methods rely heavily on prior knowledge and are limited in genome-wide analysis. We present the modulated gene/gene set interaction (MAGIC) analysis to systematically identify genome-wide modulation of interaction networks. Based on a novel statistical test employing conjugate Fisher transformations of correlation coefficients, MAGIC features fast computation and adaption to variations of clinical cohorts. In simulated datasets MAGIC achieved greatly improved computation efficiency and overall superior performance than the MI-based method. We applied MAGIC to construct the estrogen receptor (ER) modulated gene and gene set (representing biological function) interaction networks in breast cancer. Several novel interaction hubs and functional interactions were discovered. ER+ dependent interaction between TGFβ and NFκB was further shown to be associated with patient survival. The findings were verified in independent datasets. Using MAGIC, we also assessed the essential roles of ER modulation in another hormonal cancer, ovarian cancer. Overall, MAGIC is a systematic framework for comprehensively identifying and constructing the modulated interaction networks in a whole-genome landscape. MATLAB implementation of MAGIC is available for academic uses at https://github.com/chiuyc/MAGIC. PMID:26972162
Effect of Estrogen on Mutagenesis in Human Mammary Epithelial Cells
2005-06-01
instability remains undefined in most human cancers, it appears to arise from subtle, intragenic mutations of the genes , whose products play a key role in...cells and is less labor-intensive. A G-G or T-G mismatch was introduced into ATG start codon of the enhanced green fluorescent protein (EGFP) gene ...Repair of the G-G or T-G mismatch to G-C or T-A, respectively in the heteroduplex plasmid generates a functional EGFP gene expression. The heteroduplex
Tamplin, Owen J; Cox, Brian J; Rossant, Janet
2011-12-15
The node and notochord are key tissues required for patterning of the vertebrate body plan. Understanding the gene regulatory network that drives their formation and function is therefore important. Foxa2 is a key transcription factor at the top of this genetic hierarchy and finding its targets will help us to better understand node and notochord development. We performed an extensive microarray-based gene expression screen using sorted embryonic notochord cells to identify early notochord-enriched genes. We validated their specificity to the node and notochord by whole mount in situ hybridization. This provides the largest available resource of notochord-expressed genes, and therefore candidate Foxa2 target genes in the notochord. Using existing Foxa2 ChIP-seq data from adult liver, we were able to identify a set of genes expressed in the notochord that had associated regions of Foxa2-bound chromatin. Given that Foxa2 is a pioneer transcription factor, we reasoned that these sites might represent notochord-specific enhancers. Candidate Foxa2-bound regions were tested for notochord specific enhancer function in a zebrafish reporter assay and 7 novel notochord enhancers were identified. Importantly, sequence conservation or predictive models could not have readily identified these regions. Mutation of putative Foxa2 binding elements in two of these novel enhancers abrogated reporter expression and confirmed their Foxa2 dependence. The combination of highly specific gene expression profiling and genome-wide ChIP analysis is a powerful means of understanding developmental pathways, even for small cell populations such as the notochord. Copyright © 2011 Elsevier Inc. All rights reserved.
Manijak, Mieszko P; Nielsen, Henrik B
2011-06-11
Although, systematic analysis of gene annotation is a powerful tool for interpreting gene expression data, it sometimes is blurred by incomplete gene annotation, missing expression response of key genes and secondary gene expression responses. These shortcomings may be partially circumvented by instead matching gene expression signatures to signatures of other experiments. To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700 Arabidopsis microarray experiments. Hereby we present a publicly available tool for robust characterization of Arabidopsis gene expression experiments which can point to similar experimental factors in other experiments. The server is available at http://www.cbs.dtu.dk/services/faro/.
Kikuchi, Akira; Nakazato, Takeru; Ito, Katsuhiko; Nojima, Yosui; Yokoyama, Takeshi; Iwabuchi, Kikuo; Bono, Hidemasa; Toyoda, Atsushi; Fujiyama, Asao; Sato, Ryoichi; Tabunoki, Hiroko
2017-01-13
Various insect species have been added to genomic databases over the years. Thus, researchers can easily obtain online genomic information on invertebrates and insects. However, many incorrectly annotated genes are included in these databases, which can prevent the correct interpretation of subsequent functional analyses. To address this problem, we used a combination of dry and wet bench processes to select functional genes from public databases. Enolase is an important glycolytic enzyme in all organisms. We used a combination of dry and wet bench processes to identify functional enolases in the silkworm Bombyx mori (BmEno). First, we detected five annotated enolases from public databases using a Hidden Markov Model (HMM) search, and then through cDNA cloning, Northern blotting, and RNA-seq analysis, we revealed three functional enolases in B. mori: BmEno1, BmEno2, and BmEnoC. BmEno1 contained a conserved key amino acid residue for metal binding and substrate binding in other species. However, BmEno2 and BmEnoC showed a change in this key amino acid. Phylogenetic analysis showed that BmEno2 and BmEnoC were distinct from BmEno1 and other enolases, and were distributed only in lepidopteran clusters. BmEno1 was expressed in all of the tissues used in our study. In contrast, BmEno2 was mainly expressed in the testis with some expression in the ovary and suboesophageal ganglion. BmEnoC was weakly expressed in the testis. Quantitative RT-PCR showed that the mRNA expression of BmEno2 and BmEnoC correlated with testis development; thus, BmEno2 and BmEnoC may be related to lepidopteran-specific spermiogenesis. We identified and characterized three functional enolases from public databases with a combination of dry and wet bench processes in the silkworm B. mori. In addition, we determined that BmEno2 and BmEnoC had species-specific functions. Our strategy could be helpful for the detection of minor genes and functional genes in non-model organisms from public databases.
Colonic Butyrate-Producing Communities in Humans: an Overview Using Omics Data
Pieper, Dietmar H.
2017-01-01
ABSTRACT Given the key role of butyrate for host health, understanding the ecology of intestinal butyrate-producing communities is a top priority for gut microbiota research. To this end, we performed a pooled analysis on 2,387 metagenomic/transcriptomic samples from 15 publicly available data sets that originated from three continents and encompassed eight diseases as well as specific interventions. For analyses, a gene catalogue was constructed from gene-targeted assemblies of all genes from butyrate synthesis pathways of all samples and from an updated reference database derived from genome screenings. We demonstrate that butyrate producers establish themselves within the first year of life and display high abundances (>20% of total bacterial community) in adults regardless of origin. Various bacteria form this functional group, exhibiting a biochemical diversity including different pathways and terminal enzymes, where one carbohydrate-fueled pathway was dominant with butyryl coenzyme A (CoA):acetate CoA transferase as the main terminal enzyme. Subjects displayed a high richness of butyrate producers, and 17 taxa, primarily members of the Lachnospiraceae and Ruminococcaceae along with some Bacteroidetes, were detected in >70% of individuals, encompassing ~85% of the total butyrate-producing potential. Most of these key taxa were also found to express genes for butyrate formation, indicating that butyrate producers occupy various niches in the gut ecosystem, concurrently synthesizing that compound. Furthermore, results from longitudinal analyses propose that diversity supports functional stability during ordinary life disturbances and during interventions such as antibiotic treatment. A reduction of the butyrate-producing potential along with community alterations was detected in various diseases, where patients suffering from cardiometabolic disorders were particularly affected. IMPORTANCE Studies focusing on taxonomic compositions of the gut microbiota are plentiful, whereas its functional capabilities are still poorly understood. Specific key functions deserve detailed investigations, as they regulate microbiota-host interactions and promote host health and disease. The production of butyrate is among the top targets since depletion of this microbe-derived metabolite is linked to several emerging noncommunicable diseases and was shown to facilitate establishment of enteric pathogens by disrupting colonization resistance. In this study, we established a workflow to investigate in detail the composition of the polyphyletic butyrate-producing community from omics data extracting its biochemical and taxonomic diversity. By combining information from various publicly available data sets, we identified universal ecological key features of this functional group and shed light on its role in health and disease. Our results will assist the development of precision medicine to combat functional dysbiosis. PMID:29238752
Martinez, Emily M.; Yoshida, Miya C.; Candelario, Tara Lynne T.
2015-01-01
Healthy immune function depends on precise regulation of lymphocyte activation. During the National Aeronautics and Space Administration (NASA) Apollo and Shuttle eras, multiple spaceflight studies showed depressed lymphocyte activity under microgravity (μg) conditions. Scientists on the ground use two models of simulated μg (sμg): 1) the rotating wall vessel (RWV) and 2) the random positioning machine (RPM), to study the effects of altered gravity on cell function before advancing research to the true μg when spaceflight opportunities become available on the International Space Station (ISS). The objective of this study is to compare the effects of true μg and sμg on the expression of key early T-cell activation genes in mouse splenocytes from spaceflight and ground animals. For the first time, we compared all three conditions of microgravity spaceflight, RPM, and RWV during immune gene activation of Il2, Il2rα, Ifnγ, and Tagap; moreover, we confirm two new early T-cell activation genes, Iigp1 and Slamf1. Gene expression for all samples was analyzed using quantitative real-time PCR (qRT-PCR). Our results demonstrate significantly increased gene expression in activated ground samples with suppression of mouse immune function in spaceflight, RPM, and RWV samples. These findings indicate that sμg models provide an excellent test bed for scientists to develop baseline studies and augment true μg in spaceflight experiments. Ultimately, sμg and spaceflight studies in lymphocytes may provide insight into novel regulatory pathways, benefiting both future astronauts and those here on earth suffering from immune disorders. PMID:25568077
Martinez, Emily M; Yoshida, Miya C; Candelario, Tara Lynne T; Hughes-Fulford, Millie
2015-03-15
Healthy immune function depends on precise regulation of lymphocyte activation. During the National Aeronautics and Space Administration (NASA) Apollo and Shuttle eras, multiple spaceflight studies showed depressed lymphocyte activity under microgravity (μg) conditions. Scientists on the ground use two models of simulated μg (sμg): 1) the rotating wall vessel (RWV) and 2) the random positioning machine (RPM), to study the effects of altered gravity on cell function before advancing research to the true μg when spaceflight opportunities become available on the International Space Station (ISS). The objective of this study is to compare the effects of true μg and sμg on the expression of key early T-cell activation genes in mouse splenocytes from spaceflight and ground animals. For the first time, we compared all three conditions of microgravity spaceflight, RPM, and RWV during immune gene activation of Il2, Il2rα, Ifnγ, and Tagap; moreover, we confirm two new early T-cell activation genes, Iigp1 and Slamf1. Gene expression for all samples was analyzed using quantitative real-time PCR (qRT-PCR). Our results demonstrate significantly increased gene expression in activated ground samples with suppression of mouse immune function in spaceflight, RPM, and RWV samples. These findings indicate that sμg models provide an excellent test bed for scientists to develop baseline studies and augment true μg in spaceflight experiments. Ultimately, sμg and spaceflight studies in lymphocytes may provide insight into novel regulatory pathways, benefiting both future astronauts and those here on earth suffering from immune disorders.
USDA-ARS?s Scientific Manuscript database
The JAK-STAT signaling pathway plays a key role in cytokine and growth factor activation and is involved in several cellular functions and diseases. The main objective of this study was to investigate and evaluate the expression of candidate JAK-STAT pathway genes and their regulators and interactor...
The genomic signature of dog domestication reveals adaptation to a starch-rich diet.
Axelsson, Erik; Ratnakumar, Abhirami; Arendt, Maja-Louise; Maqbool, Khurram; Webster, Matthew T; Perloski, Michele; Liberg, Olof; Arnemo, Jon M; Hedhammar, Ake; Lindblad-Toh, Kerstin
2013-03-21
The domestication of dogs was an important episode in the development of human civilization. The precise timing and location of this event is debated and little is known about the genetic changes that accompanied the transformation of ancient wolves into domestic dogs. Here we conduct whole-genome resequencing of dogs and wolves to identify 3.8 million genetic variants used to identify 36 genomic regions that probably represent targets for selection during dog domestication. Nineteen of these regions contain genes important in brain function, eight of which belong to nervous system development pathways and potentially underlie behavioural changes central to dog domestication. Ten genes with key roles in starch digestion and fat metabolism also show signals of selection. We identify candidate mutations in key genes and provide functional support for an increased starch digestion in dogs relative to wolves. Our results indicate that novel adaptations allowing the early ancestors of modern dogs to thrive on a diet rich in starch, relative to the carnivorous diet of wolves, constituted a crucial step in the early domestication of dogs.
Mueller, A J; Tew, S R; Vasieva, O; Clegg, P D; Canty-Laird, E G
2016-09-27
Phenotypic plasticity of adult somatic cells has provided emerging avenues for the development of regenerative therapeutics. In musculoskeletal biology the mechanistic regulatory networks of genes governing the phenotypic plasticity of cartilage and tendon cells has not been considered systematically. Additionally, a lack of strategies to effectively reproduce in vitro functional models of cartilage and tendon is retarding progress in this field. De- and redifferentiation represent phenotypic transitions that may contribute to loss of function in ageing musculoskeletal tissues. Applying a systems biology network analysis approach to global gene expression profiles derived from common in vitro culture systems (monolayer and three-dimensional cultures) this study demonstrates common regulatory mechanisms governing de- and redifferentiation transitions in cartilage and tendon cells. Furthermore, evidence of convergence of gene expression profiles during monolayer expansion of cartilage and tendon cells, and the expression of key developmental markers, challenges the physiological relevance of this culture system. The study also suggests that oxidative stress and PI3K signalling pathways are key modulators of in vitro phenotypes for cells of musculoskeletal origin.
Transfection of Capsaspora owczarzaki, a close unicellular relative of animals.
Parra-Acero, Helena; Ros-Rocher, Núria; Perez-Posada, Alberto; Kożyczkowska, Aleksandra; Sánchez-Pons, Núria; Nakata, Azusa; Suga, Hiroshi; Najle, Sebastián R; Ruiz-Trillo, Iñaki
2018-05-11
How animals emerged from their unicellular ancestor remains a major evolutionary question. New genome data from the closest unicellular relatives of animals has provided important insights into animal origins. We know that the unicellular ancestor of animals had an unexpectedly complex genetic repertoire, including many genes key to animal development and multicellularity. Thus, assessing the function of these genes among unicellular relatives of animals is key to understand how were they co-opted at the onset of Metazoa. However, those analyses have been hampered by the lack of genetic tools. Progress has been made in choanoflagellates and teretosporeans, two of the three lineages closely related to animals, while in filastereans no tools are yet available for functional analysis. Importantly, filastereans possess a striking repertoire of genes involved in transcriptional regulation and other developmental processes. Here, we describe a reliable transfection method for the filasterean Capsaspora owczarzaki We also provide a set of constructs for visualizing subcellular structures in live cells. These tools convert Capsaspora into a unique experimentally tractable organism to address the origin and evolution of animal multicellularity. © 2018. Published by The Company of Biologists Ltd.
Identification and functional analysis of secreted effectors from phytoparasitic nematodes.
Rehman, Sajid; Gupta, Vijai K; Goyal, Aakash K
2016-03-21
Plant parasitic nematodes develop an intimate and long-term feeding relationship with their host plants. They induce a multi-nucleate feeding site close to the vascular bundle in the roots of their host plant and remain sessile for the rest of their life. Nematode secretions, produced in the oesophageal glands and secreted through a hollow stylet into the host plant cytoplasm, are believed to play key role in pathogenesis. To combat these persistent pathogens, the identity and functional analysis of secreted effectors can serve as a key to devise durable control measures. In this review, we will recapitulate the knowledge over the identification and functional characterization of secreted nematode effector repertoire from phytoparasitic nematodes. Despite considerable efforts, the identity of genes encoding nematode secreted proteins has long been severely hampered because of their microscopic size, long generation time and obligate biotrophic nature. The methodologies such as bioinformatics, protein structure modeling, in situ hybridization microscopy, and protein-protein interaction have been used to identify and to attribute functions to the effectors. In addition, RNA interference (RNAi) has been instrumental to decipher the role of the genes encoding secreted effectors necessary for parasitism and genes attributed to normal development. Recent comparative and functional genomic approaches have accelerated the identification of effectors from phytoparasitic nematodes and offers opportunities to control these pathogens. Plant parasitic nematodes pose a serious threat to global food security of various economically important crops. There is a wealth of genomic and transcriptomic information available on plant parasitic nematodes and comparative genomics has identified many effectors. Bioengineering crops with dsRNA of phytonematode genes can disrupt the life cycle of parasitic nematodes and therefore holds great promise to develop resistant crops against plant-parasitic nematodes.
Keshri, Jitendra; Mishra, Avinash; Jha, Bhavanath
2013-03-30
Population indices of bacteria and archaea were investigated from saline-alkaline soil and a possible microbe-environment pattern was established using gene targeted metagenomics. Clone libraries were constructed using 16S rRNA and functional gene(s) involved in carbon fixation (cbbL), nitrogen fixation (nifH), ammonia oxidation (amoA) and sulfur metabolism (apsA). Molecular phylogeny revealed the dominance of Actinobacteria, Firmicutes and Proteobacteria along with archaeal members of Halobacteraceae. The library consisted of novel bacterial (20%) and archaeal (38%) genera showing ≤95% similarity to previously retrieved sequences. Phylogenetic analysis indicated ability of inhabitant to survive in stress condition. The 16S rRNA gene libraries contained novel gene sequences and were distantly homologous with cultured bacteria. Functional gene libraries were found unique and most of the clones were distantly related to Proteobacteria, while clones of nifH gene library also showed homology with Cyanobacteria and Firmicutes. Quantitative real-time PCR exhibited that bacterial abundance was two orders of magnitude higher than archaeal. The gene(s) quantification indicated the size of the functional guilds harboring relevant key genes. The study provides insights on microbial ecology and different metabolic interactions occurring in saline-alkaline soil, possessing phylogenetically diverse groups of bacteria and archaea, which may be explored further for gene cataloging and metabolic profiling. Copyright © 2012 Elsevier GmbH. All rights reserved.
mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Pengpeng; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907; Liang, Xinrong
The serine/threonine kinase mammalian target of rapamycin (mTOR) is a key regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive deletion of Mtor gene results in embryonic lethality, the function of mTOR in muscle stem cells (satellite cells) and skeletal muscle regeneration remains to be determined. In this study, we established a satellite cell specific Mtor conditional knockout (cKO) mouse model by crossing Pax7{sup CreER} and Mtor{sup flox/flox} mice. Skeletal muscle regeneration after injury was severely compromised in the absence of Mtor, indicated by increased number of necrotic myofibers infiltrated by Evans blue dye, and reduced number andmore » size of regenerated myofibers in the Mtor cKO mice compared to wild type (WT) littermates. To dissect the cellular mechanism, we analyzed satellite cell-derived primary myoblasts grown on single myofibers or adhered to culture plates. The Mtor cKO myoblasts exhibited defective proliferation and differentiation kinetics when compared to myoblasts derived from WT littermates. At the mRNA and protein levels, the Mtor cKO myoblasts expressed lower levels of key myogenic determinant genes Pax7, Myf5, Myod, Myog than did the WT myoblasts. These results suggest that mTOR is essential for satellite cell function and skeletal muscle regeneration through controlling the expression of myogenic genes. - Highlights: • Pax7{sup CreER} was used to delete Mtor gene in satellite cells. • Satellite cell specific deletion of Mtor impairs muscle regeneration. • mTOR is necessary for satellite cell proliferation and differentiation. • Deletion of Mtor leads to reduced expression of key myogenic genes.« less
Arjunan, P; El-Awady, A; Dannebaum, R O; Kunde-Ramamoorthy, G; Cutler, C W
2016-02-01
The human microbiome consists of highly diverse microbial communities that colonize our skin and mucosal surfaces, aiding in maintenance of immune homeostasis. The keystone pathogen Porphyromonas gingivalis induces a dysbiosis and disrupts immune homeostasis through as yet unclear mechanisms. The fimbrial adhesins of P. gingivalis facilitate biofilm formation, invasion of and dissemination by blood dendritic cells; hence, fimbriae may be key factors in disruption of immune homeostasis. In this study we employed RNA-sequencing transcriptome profiling to identify differentially expressed genes (DEGs) in human monocyte-derived dendritic cells (MoDCs) in response to in vitro infection/exposure by Pg381 or its isogenic mutant strains that solely express minor-Mfa1 fimbriae (DPG3), major-FimA fimbriae (MFI) or are deficient in both fimbriae (MFB) relative to uninfected control. Our results yielded a total of 479 DEGs that were at least two-fold upregulated and downregulated in MoDCs significantly (P ≤ 0.05) by all four strains and certain DEGs that were strain-specific. Interestingly, the gene ontology biological and functional analysis shows that the upregulated genes in DPG3-induced MoDCs were more significant than other strains and associated with inflammation, immune response, anti-apoptosis, cell proliferation, and other homeostatic functions. Both transcriptome and quantitative polymerase chain reaction results show that DPG3, which solely expresses Mfa1, increased ZNF366, CD209, LOX1, IDO1, IL-10, CCL2, SOCS3, STAT3 and FOXO1 gene expression. In conclusion, we have identified key DC-mediated immune homeostatic pathways that could contribute to dysbiosis in periodontal infection with P. gingivalis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
[The application of genome editing in identification of plant gene function and crop breeding].
Zhou, Xiang-chun; Xing, Yong-zhong
2016-03-01
Plant genome can be modified via current biotechnology with high specificity and excellent efficiency. Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system are the key engineered nucleases used in the genome editing. Genome editing techniques enable gene targeted mutagenesis, gene knock-out, gene insertion or replacement at the target sites during the endogenous DNA repair process, including non-homologous end joining (NHEJ) and homologous recombination (HR), triggered by the induction of DNA double-strand break (DSB). Genome editing has been successfully applied in the genome modification of diverse plant species, such as Arabidopsis thaliana, Oryza sativa, and Nicotiana tabacum. In this review, we summarize the application of genome editing in identification of plant gene function and crop breeding. Moreover, we also discuss the improving points of genome editing in crop precision genetic improvement for further study.
Chao, Yu-Hsin; Giagtzoglou, Nikolaos; Putluri, Nagireddy; Coarfa, Cristian; Donti, Taraka; Faust, Joseph E.; McNew, James A.; Sardiello, Marco; Baes, Myriam; Bellen, Hugo J.
2017-01-01
Peroxisome biogenesis disorders (PBD) are a group of multi-system human diseases due to mutations in the PEX genes that are responsible for peroxisome assembly and function. These disorders lead to global defects in peroxisomal function and result in severe brain, liver, bone and kidney disease. In order to study their pathogenesis we undertook a systematic genetic and biochemical study of Drosophila pex16 and pex2 mutants. These mutants are short-lived with defects in locomotion and activity. Moreover these mutants exhibit severe morphologic and functional peroxisomal defects. Using metabolomics we uncovered defects in multiple biochemical pathways including defects outside the canonical specialized lipid pathways performed by peroxisomal enzymes. These included unanticipated changes in metabolites in glycolysis, glycogen metabolism, and the pentose phosphate pathway, carbohydrate metabolic pathways that do not utilize known peroxisomal enzymes. In addition, mutant flies are starvation sensitive and are very sensitive to glucose deprivation exhibiting dramatic shortening of lifespan and hyperactivity on low-sugar food. We use bioinformatic transcriptional profiling to examine gene co-regulation between peroxisomal genes and other metabolic pathways and we observe that the expression of peroxisomal and carbohydrate pathway genes in flies and mouse are tightly correlated. Indeed key steps in carbohydrate metabolism were found to be strongly co-regulated with peroxisomal genes in flies and mice. Moreover mice lacking peroxisomes exhibit defective carbohydrate metabolism at the same key steps in carbohydrate breakdown. Our data indicate an unexpected link between these two metabolic processes and suggest metabolism of carbohydrates could be a new therapeutic target for patients with PBD. PMID:28640802
Yergeau, Etienne; Arbour, Mélanie; Brousseau, Roland; Juck, David; Lawrence, John R.; Masson, Luke; Whyte, Lyle G.; Greer, Charles W.
2009-01-01
High-Arctic soils have low nutrient availability, low moisture content, and very low temperatures and, as such, they pose a particular problem in terms of hydrocarbon bioremediation. An in-depth knowledge of the microbiology involved in this process is likely to be crucial to understand and optimize the factors most influencing bioremediation. Here, we compared two distinct large-scale field bioremediation experiments, located at the Canadian high-Arctic stations of Alert (ex situ approach) and Eureka (in situ approach). Bacterial community structure and function were assessed using microarrays targeting the 16S rRNA genes of bacteria found in cold environments and hydrocarbon degradation genes as well as quantitative reverse transcriptase PCR targeting key functional genes. The results indicated a large difference between sampling sites in terms of both soil microbiology and decontamination rates. A rapid reorganization of the bacterial community structure and functional potential as well as rapid increases in the expression of alkane monooxygenases and polyaromatic hydrocarbon-ring-hydroxylating dioxygenases were observed 1 month after the bioremediation treatment commenced in the Alert soils. In contrast, no clear changes in community structure were observed in Eureka soils, while key gene expression increased after a relatively long lag period (1 year). Such discrepancies are likely caused by differences in bioremediation treatments (i.e., ex situ versus in situ), weathering of the hydrocarbons, indigenous microbial communities, and environmental factors such as soil humidity and temperature. In addition, this study demonstrates the value of molecular tools for the monitoring of polar bacteria and their associated functions during bioremediation. PMID:19684169
Martínez-del Campo, Ana; Bodea, Smaranda; Hamer, Hilary A; Marks, Jonathan A; Haiser, Henry J; Turnbaugh, Peter J; Balskus, Emily P
2015-04-14
Elucidation of the molecular mechanisms underlying the human gut microbiota's effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches. Quantitative reverse transcription-PCR analysis and in vitro biochemical characterization of two cut gene products linked the entire cluster to growth on choline and supported a model for this pathway. Analyses of sequenced bacterial genomes revealed that the cut cluster is present in many human gut bacteria, is predictive of choline utilization in sequenced isolates, and is widely but discontinuously distributed across multiple bacterial phyla. Given that bacterial phylogeny is a poor marker for choline utilization, we were prompted to develop a degenerate PCR-based method for detecting the key functional gene choline TMA-lyase (cutC) in genomic and metagenomic DNA. Using this tool, we found that new choline-metabolizing gut isolates universally possessed cutC. We also demonstrated that this gene is widespread in stool metagenomic data sets. Overall, this work represents a crucial step toward understanding anaerobic choline metabolism in the human gut microbiota and underscores the importance of examining this microbial community from a function-oriented perspective. Anaerobic choline utilization is a bacterial metabolic activity that occurs in the human gut and is linked to multiple diseases. While bacterial genes responsible for choline fermentation (the cut gene cluster) have been recently identified, there has been no characterization of these genes in human gut isolates and microbial communities. In this work, we use multiple approaches to demonstrate that the pathway encoded by the cut genes is present and functional in a diverse range of human gut bacteria and is also widespread in stool metagenomes. We also developed a PCR-based strategy to detect a key functional gene (cutC) involved in this pathway and applied it to characterize newly isolated choline-utilizing strains. Both our analyses of the cut gene cluster and this molecular tool will aid efforts to further understand the role of choline metabolism in the human gut microbiota and its link to disease. Copyright © 2015 Martínez-del Campo et al.
Homeobox genes in the rodent pineal gland: roles in development and phenotype maintenance.
Rath, Martin F; Rohde, Kristian; Klein, David C; Møller, Morten
2013-06-01
The pineal gland is a neuroendocrine gland responsible for nocturnal synthesis of melatonin. During early development of the rodent pineal gland from the roof of the diencephalon, homeobox genes of the orthodenticle homeobox (Otx)- and paired box (Pax)-families are expressed and are essential for normal pineal development consistent with the well-established role that homeobox genes play in developmental processes. However, the pineal gland appears to be unusual because strong homeobox gene expression persists in the pineal gland of the adult brain. Accordingly, in addition to developmental functions, homeobox genes appear to be key regulators in postnatal phenotype maintenance in this tissue. In this paper, we review ontogenetic and phylogenetic aspects of pineal development and recent progress in understanding the involvement of homebox genes in rodent pineal development and adult function. A working model is proposed for understanding the sequential action of homeobox genes in controlling development and mature circadian function of the mammalian pinealocyte based on knowledge from detailed developmental and daily gene expression analyses in rats, the pineal phenotypes of homebox gene-deficient mice and studies on development of the retinal photoreceptor; the pinealocyte and retinal photoreceptor share features not seen in other tissues and are likely to have evolved from the same ancestral photodetector cell.
Homeobox genes in the rodent pineal gland: roles in development and phenotype maintenance
Rath, Martin F.; Rohde, Kristian; Klein, David C.; Møller, Morten
2012-01-01
The pineal gland is a neuroendocrine gland responsible for nocturnal synthesis of melatonin. During early development of the rodent pineal gland from the roof of the diencephalon, homeobox genes of the orthodenticle homeobox (Otx)- and paired box (Pax)-families are expressed and are essential for normal pineal development consistent with the well-established role that homeobox genes play in developmental processes. However, the pineal gland appears to be unusual because strong homeobox gene expression persists in the pineal gland of the adult brain. Accordingly, in addition to developmental functions, homeobox genes appear to be key regulators in postnatal phenotype maintenance in this tissue. In this paper, we review ontogenetic and phylogenetic aspects of pineal development and recent progress in understanding the involvement of homebox genes in rodent pineal development and adult function. A working model is proposed for understanding the sequential action of homeobox genes in controlling development and mature circadian function of the mammalian pinealocyte based on knowledge from detailed developmental and daily gene expression analyses in rats, the pineal phenotypes of homebox gene-deficient mice and studies on development of the retinal photoreceptor; the pinealocyte and retinal photoreceptor share features not seen in other tissues and are likely to have evolved from the same ancestral photodetector cell. PMID:23076630
Piontkivska, Helen; Chung, J. Sook; Ivanina, Anna V.; Sokolov, Eugene P.; Techa, Sirinart; Sokolova, Inna M.
2010-01-01
Oxygen homeostasis is crucial for development, survival and normal function of all metazoans. A family of transcription factors called hypoxia-inducible factors (HIF) is critical in mediating the adaptive responses to reduced oxygen availability. The HIF transcription factor consists of a constitutively expressed β subunit and an oxygen-dependent α subunit; the abundance of the latter determines the activity of HIF and is regulated by a family of O2- and Fe2+-dependent enzymes prolyl hydroxylases (PHDs). Currently very little is known about the function of this important pathway and the molecular structure of its key players in hypoxia-tolerant intertidal mollusks including oysters, which are among the animal champions of anoxic and hypoxic tolerance and thus can serve as excellent models to study the role of HIF cascade in adaptations to oxygen deficiency. We have isolated transcripts of two key components of the oxygen sensing pathway - the oxygen-regulated HIF-α subunit and PHD - from an intertidal mollusk, the eastern oyster Crassostrea virginica, and determined the transcriptional responses of these two genes to anoxia, hypoxia and cadmium (Cd) stress. HIF-α and PHD homologs from eastern oysters C. virginica show significant sequence similarity and share key functional domains with the earlier described isoforms from vertebrates and invertebrates. Phylogenetic analysis shows that genetic diversification of HIF and PHD isoforms occurred within the vertebrate lineage indicating functional diversification and specialization of the oxygen-sensing pathways in this group, which parallels situation observed for many other important genes. HIF-α and PHD homologs are broadly expressed at the mRNA level in different oyster tissues and show transcriptional responses to prolonged hypoxia in the gills consistent with their putative role in oxygen sensing and the adaptive response to hypoxia. Similarity in amino acid sequence, domain structure and transcriptional responses between HIF-α and PHD homologs from oysters and other invertebrate and vertebrate species implies the highly conserved functions of these genes throughout the evolutionary history of animals, in accordance with their critical role in oxygen sensing and homeostasis. PMID:21106446
Guo, Nan; Zhang, Nan; Yan, Liqiu; Lian, Zheng; Wang, Jiawang; Lv, Fengfeng; Wang, Yunfei; Cao, Xufen
2018-06-14
Acute myocardial infarction induces ventricular remodeling, which is implicated in dilated heart and heart failure. The pathogenical mechanism of myocardium remodeling remains to be elucidated. The aim of the present study was to identify key genes and networks for myocardium remodeling following ischemia‑reperfusion (IR). First, the mRNA expression data from the National Center for Biotechnology Information database were downloaded to identify differences in mRNA expression of the IR heart at days 2 and 7. Then, weighted gene co‑expression network analysis, hierarchical clustering, protein‑protein interaction (PPI) network, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were used to identify key genes and networks for the heart remodeling process following IR. A total of 3,321 differentially expressed genes were identified during the heart remodeling process. A total of 6 modules were identified through gene co‑expression network analysis. GO and KEGG analysis results suggested that each module represented a different biological function and was associated with different pathways. Finally, hub genes of each module were identified by PPI network construction. The present study revealed that heart remodeling following IR is a complicated process, involving extracellular matrix organization, neural development, apoptosis and energy metabolism. The dysregulated genes, including SRC proto‑oncogene, non‑receptor tyrosine kinase, discs large MAGUK scaffold protein 1, ATP citrate lyase, RAN, member RAS oncogene family, tumor protein p53, and polo like kinase 2, may be essential for heart remodeling following IR and may be used as potential targets for the inhibition of heart remodeling following acute myocardial infarction.
Sox proteins in melanocyte development and melanoma
Harris, Melissa L.; Baxter, Laura L.; Loftus, Stacie K.; Pavan, William J.
2010-01-01
Over ten years has passed since the first Sox gene was implicated in melanocyte development. Since then, we have discovered that SOX5, SOX9, SOX10 and SOX18 all participate as transcription factors that affect key melanocytic genes in both regulatory and modulatory fashions. Both SOX9 and SOX10 play major roles in the establishment and normal function of the melanocyte; SOX10 has been shown to heavily influence melanocyte development and SOX9 has been implicated in melanogenesis in the adult. Despite these advances, the precise cellular and molecular details of how these SOX proteins are regulated and interact during all stages of the melanocyte life cycle remain unknown. Improper regulation of SOX9 or SOX10 is also associated with cancerous transformation, and thus understanding the normal function of SOX proteins in the melanocyte will be key to revealing how these proteins contribute to melanoma. PMID:20444197
The Batten disease gene CLN3 is required for the response to oxidative stress
Tuxworth, Richard I.; Chen, Haiyang; Vivancos, Valerie; Carvajal, Nancy; Huang, Xun; Tear, Guy
2011-01-01
Mutations in the CLN3 gene cause juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), an early onset neurodegenerative disorder. JNCL is the most common of the NCLs, a group of disorders with infant or childhood onset that are caused by single gene mutations. The NCLs, although relatively rare, share many pathological and clinical similarities with the more common late-onset neurodegenerative disorders, while their simple genetic basis makes them an excellent paradigm. The early onset and rapid disease progression in the NCLs suggests that one or more key cellular processes are severely compromised. To identify the functional pathways compromised in JNCL, we have performed a gain-of-function modifier screen in Drosophila. We find that CLN3 interacts genetically with the core stress signalling pathways and components of stress granules, suggesting a function in stress responses. In support of this, we find that Drosophila lacking CLN3 function are hypersensitive to oxidative stress yet they respond normally to other physiological stresses. Overexpression of CLN3 is sufficient to confer increased resistance to oxidative stress. We find that CLN3 mutant flies perceive conditions of increased oxidative stress correctly but are unable to detoxify reactive oxygen species, suggesting that their ability to respond is compromised. Together, our data suggest that the lack of CLN3 function leads to a failure to manage the response to oxidative stress and this may be the key deficit in JNCL that leads to neuronal degeneration. PMID:21372148
Kunkle, Brian W.; Yoo, Changwon; Roy, Deodutta
2013-01-01
In this study we have identified key genes that are critical in development of astrocytic tumors. Meta-analysis of microarray studies which compared normal tissue to astrocytoma revealed a set of 646 differentially expressed genes in the majority of astrocytoma. Reverse engineering of these 646 genes using Bayesian network analysis produced a gene network for each grade of astrocytoma (Grade I–IV), and ‘key genes’ within each grade were identified. Genes found to be most influential to development of the highest grade of astrocytoma, Glioblastoma multiforme were: COL4A1, EGFR, BTF3, MPP2, RAB31, CDK4, CD99, ANXA2, TOP2A, and SERBP1. All of these genes were up-regulated, except MPP2 (down regulated). These 10 genes were able to predict tumor status with 96–100% confidence when using logistic regression, cross validation, and the support vector machine analysis. Markov genes interact with NFkβ, ERK, MAPK, VEGF, growth hormone and collagen to produce a network whose top biological functions are cancer, neurological disease, and cellular movement. Three of the 10 genes - EGFR, COL4A1, and CDK4, in particular, seemed to be potential ‘hubs of activity’. Modified expression of these 10 Markov Blanket genes increases lifetime risk of developing glioblastoma compared to the normal population. The glioblastoma risk estimates were dramatically increased with joint effects of 4 or more than 4 Markov Blanket genes. Joint interaction effects of 4, 5, 6, 7, 8, 9 or 10 Markov Blanket genes produced 9, 13, 20.9, 26.7, 52.8, 53.2, 78.1 or 85.9%, respectively, increase in lifetime risk of developing glioblastoma compared to normal population. In summary, it appears that modified expression of several ‘key genes’ may be required for the development of glioblastoma. Further studies are needed to validate these ‘key genes’ as useful tools for early detection and novel therapeutic options for these tumors. PMID:23737970
PUM1 is a biphasic negative regulator of innate immunity genes by suppressing LGP2.
Liu, Yonghong; Qu, Linlin; Liu, Yuanyuan; Roizman, Bernard; Zhou, Grace Guoying
2017-08-15
PUM1 is an RNA binding protein shown to regulate the stability and function of mRNAs bearing a specific sequence. We report the following: ( i ) A key function of PUM1 is that of a repressor of key innate immunity genes by repressing the expression of LGP2. Thus, between 12 and 48 hours after transfection of human cells with siPUM1 RNA there was an initial (phase 1) upsurge of transcripts encoding LGP2, CXCL10, IL6, and PKR. This was followed 24 hours later (phase 2) by a significant accumulation of mRNAs encoding RIG-I, SP100, MDA5, IFIT1, PML, STING, and IFNβ. The genes that were not activated encoded HDAC4 and NF-κB1. ( ii ) Simultaneous depletion of PUM1 and LGP2, CXCL10, or IL6 revealed that up-regulation of phase 1 and phase 2 genes was the consequence of up-regulation of LGP2. ( iii ) IFNβ produced 48-72 hours after transfection of siPUM1 was effective in up-regulating LGP2 and phase 2 genes and reducing the replication of HSV-1 in untreated cells. ( iv ) Because only half of genes up-regulated in phase 1 and 2 encode mRNAs containing PUM1 binding sites, the upsurge in gene expression could not be attributed solely to stabilization of mRNAs in the absence of PUM1. ( v ) Lastly, depletion of PUM2 does not result in up-regulation of phase 1 or phase 2 genes. The results of the studies presented here indicate that PUM1 is a negative regulator of LGP2, a master regulator of innate immunity genes expressed in a cascade fashion.
Selection signature in domesticated animals.
Pan, Zhang-yuan; He, Xiao-yun; Wang, Xiang-yu; Guo, Xiao-fei; Cao, Xiao-han; Hu, Wen-ping; Di, Ran; Liu, Qiu-yue; Chu, Ming-xing
2016-12-20
Domesticated animals play an important role in the life of humanity. All these domesticated animals undergo same process, first domesticated from wild animals, then after long time natural and artificial selection, formed various breeds that adapted to the local environment and human needs. In this process, domestication, natural and artificial selection will leave the selection signal in the genome. The research on these selection signals can find functional genes directly, is one of the most important strategies in screening functional genes. The current studies of selection signal have been performed in pigs, chickens, cattle, sheep, goats, dogs and other domestic animals, and found a great deal of functional genes. This paper provided an overview of the types and the detected methods of selection signal, and outlined researches of selection signal in domestic animals, and discussed the key issues in selection signal analysis and its prospects.
Retinoid-Related Orphan Receptor β and Transcriptional Control of Neuronal Differentiation.
Liu, Hong; Aramaki, Michihiko; Fu, Yulong; Forrest, Douglas
2017-01-01
The ability to generate neuronal diversity is central to the function of the nervous system. Here we discuss the key neurodevelopmental roles of retinoid-related orphan receptor β (RORβ) encoded by the Rorb (Nr1f2) gene. Recent studies have reported loss of function of the human RORB gene in cases of familial epilepsy and intellectual disability. Principal sites of expression of the Rorb gene in model species include sensory organs, the spinal cord, and brain regions that process sensory and circadian information. Genetic analyses in mice have indicated functions in circadian behavior, vision, and, at the cellular level, the differentiation of specific neuronal cell types. Studies in the retina and sensory areas of the cerebral cortex suggest that this orphan nuclear receptor acts at decisive steps in transcriptional hierarchies that determine neuronal diversity. 2017 Published by Elsevier Inc.
He, Haiying; Chen, Changmin; Xie, Yue; Asea, Alexzander; Calderwood, Stuart K.
2000-01-01
Heat shock protein 70 (HSP70) is a molecular chaperone involved in protein folding and resistance to the deleterious effects of stress. Here we show that HSP70 suppresses transcription of c-fos, an early response gene that is a key component of the ubiquitous AP-1 transcription factor complex. HSP70 repressed Ras-induced c-fos transcription only in the presence of functional heat shock factor1 (HSF1). This suggests that HSP70 functions as a corepressor with HSF1 to inhibit c-fos gene transcription. Therefore, besides its known function in the stress response, HSP70 also has the property of a corepressor and combines with HSF1 to antagonize Fos expression and may thus impact multiple aspects of cell regulation. PMID:11189444
Chandran, Anil Kumar Nalini; Lee, Gang-Seob; Yoo, Yo-Han; Yoon, Ung-Han; Ahn, Byung-Ohg; Yun, Doh-Won; Kim, Jin-Hyun; Choi, Hong-Kyu; An, GynHeung; Kim, Tae-Ho; Jung, Ki-Hong
2016-12-01
Rice is one of the most important food crops for humans. To improve the agronomical traits of rice, the functions of more than 1,000 rice genes have been recently characterized and summarized. The completed, map-based sequence of the rice genome has significantly accelerated the functional characterization of rice genes, but progress remains limited in assigning functions to all predicted non-transposable element (non-TE) genes, estimated to number 37,000-41,000. The International Rice Functional Genomics Consortium (IRFGC) has generated a huge number of gene-indexed mutants by using mutagens such as T-DNA, Tos17 and Ds/dSpm. These mutants have been identified by 246,566 flanking sequence tags (FSTs) and cover 65 % (25,275 of 38,869) of the non-TE genes in rice, while the mutation ratio of TE genes is 25.7 %. In addition, almost 80 % of highly expressed non-TE genes have insertion mutations, indicating that highly expressed genes in rice chromosomes are more likely to have mutations by mutagens such as T-DNA, Ds, dSpm and Tos17. The functions of around 2.5 % of rice genes have been characterized, and studies have mainly focused on transcriptional and post-transcriptional regulation. Slow progress in characterizing the function of rice genes is mainly due to a lack of clues to guide functional studies or functional redundancy. These limitations can be partially solved by a well-categorized functional classification of FST genes. To create this classification, we used the diverse overviews installed in the MapMan toolkit. Gene Ontology (GO) assignment to FST genes supplemented the limitation of MapMan overviews. The functions of 863 of 1,022 known genes can be evaluated by current FST lines, indicating that FST genes are useful resources for functional genomic studies. We assigned 16,169 out of 29,624 FST genes to 34 MapMan classes, including major three categories such as DNA, RNA and protein. To demonstrate the MapMan application on FST genes, transcriptome analysis was done from a rice mutant of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) gene with FST. Mapping of 756 down-regulated genes in dxr mutants and their annotation in terms of various MapMan overviews revealed candidate genes downstream of DXR-mediating light signaling pathway in diverse functional classes such as the methyl-D-erythritol 4-phosphatepathway (MEP) pathway overview, photosynthesis, secondary metabolism and regulatory overview. This report provides a useful guide for systematic phenomics and further applications to enhance the key agronomic traits of rice.
Yang, Yunfeng; Wu, Linwei; Lin, Qiaoyan; Yuan, Mengting; Xu, Depeng; Yu, Hao; Hu, Yigang; Duan, Jichuang; Li, Xiangzhen; He, Zhili; Xue, Kai; van Nostrand, Joy; Wang, Shiping; Zhou, Jizhong
2013-02-01
Microbes play key roles in various biogeochemical processes, including carbon (C) and nitrogen (N) cycling. However, changes of microbial community at the functional gene level by livestock grazing, which is a global land-use activity, remain unclear. Here we use a functional gene array, GeoChip 4.0, to examine the effects of free livestock grazing on the microbial community at an experimental site of Tibet, a region known to be very sensitive to anthropogenic perturbation and global warming. Our results showed that grazing changed microbial community functional structure, in addition to aboveground vegetation and soil geochemical properties. Further statistical tests showed that microbial community functional structures were closely correlated with environmental variables, and variations in microbial community functional structures were mainly controlled by aboveground vegetation, soil C/N ratio, and NH4 (+) -N. In-depth examination of N cycling genes showed that abundances of N mineralization and nitrification genes were increased at grazed sites, but denitrification and N-reduction genes were decreased, suggesting that functional potentials of relevant bioprocesses were changed. Meanwhile, abundances of genes involved in methane cycling, C fixation, and degradation were decreased, which might be caused by vegetation removal and hence decrease in litter accumulation at grazed sites. In contrast, abundances of virulence, stress, and antibiotics resistance genes were increased because of the presence of livestock. In conclusion, these results indicated that soil microbial community functional structure was very sensitive to the impact of livestock grazing and revealed microbial functional potentials in regulating soil N and C cycling, supporting the necessity to include microbial components in evaluating the consequence of land-use and/or climate changes. © 2012 Blackwell Publishing Ltd.
Global functional analyses of cellular responses to pore-forming toxins.
Kao, Cheng-Yuan; Los, Ferdinand C O; Huffman, Danielle L; Wachi, Shinichiro; Kloft, Nicole; Husmann, Matthias; Karabrahimi, Valbona; Schwartz, Jean-Louis; Bellier, Audrey; Ha, Christine; Sagong, Youn; Fan, Hui; Ghosh, Partho; Hsieh, Mindy; Hsu, Chih-Shen; Chen, Li; Aroian, Raffi V
2011-03-01
Here we present the first global functional analysis of cellular responses to pore-forming toxins (PFTs). PFTs are uniquely important bacterial virulence factors, comprising the single largest class of bacterial protein toxins and being important for the pathogenesis in humans of many Gram positive and Gram negative bacteria. Their mode of action is deceptively simple, poking holes in the plasma membrane of cells. The scattered studies to date of PFT-host cell interactions indicate a handful of genes are involved in cellular defenses to PFTs. How many genes are involved in cellular defenses against PFTs and how cellular defenses are coordinated are unknown. To address these questions, we performed the first genome-wide RNA interference (RNAi) screen for genes that, when knocked down, result in hypersensitivity to a PFT. This screen identifies 106 genes (∼0.5% of genome) in seven functional groups that protect Caenorhabditis elegans from PFT attack. Interactome analyses of these 106 genes suggest that two previously identified mitogen-activated protein kinase (MAPK) pathways, one (p38) studied in detail and the other (JNK) not, form a core PFT defense network. Additional microarray, real-time PCR, and functional studies reveal that the JNK MAPK pathway, but not the p38 MAPK pathway, is a key central regulator of PFT-induced transcriptional and functional responses. We find C. elegans activator protein 1 (AP-1; c-jun, c-fos) is a downstream target of the JNK-mediated PFT protection pathway, protects C. elegans against both small-pore and large-pore PFTs and protects human cells against a large-pore PFT. This in vivo RNAi genomic study of PFT responses proves that cellular commitment to PFT defenses is enormous, demonstrates the JNK MAPK pathway as a key regulator of transcriptionally-induced PFT defenses, and identifies AP-1 as the first cellular component broadly important for defense against large- and small-pore PFTs.
Lijun Liu; Matthew S. Zinkgraf; H. Earl Petzold; Eric P. Beers; Vladimir Filkov; Andrew Groover
2014-01-01
The class I KNOX homeodomain transcription factor ARBORKNOX1 (ARK1) is a key regulator of vascular cambium maintenance and cell differentiation in Populus. Currently, basic information is lacking concerning the distribution, functional characteristics, and evolution of ARK1 binding in the Populus genome.
Wang, Yunshu; Hu, Zongli; Zhang, Jianling; Yu, XiaoHui; Guo, Jun-E; Liang, Honglian; Liao, Changguang; Chen, Guoping
2018-02-19
Mediator complex, a conserved multi-protein, is necessary for controlling RNA polymerase II (Pol II) transcription in eukaryotes. Given little is known about them in tomato, a tomato Mediator subunit 18 gene was isolated and named SlMED18. To further explore the function of SlMED18, the transgenic tomato plants targeting SlMED18 by RNAi-mediated gene silencing were generated. The SlMED18-RNAi lines exhibited multiple developmental defects, including smaller size and slower growth rate of plant and significantly smaller compound leaves. The contents of endogenous bioactive GA 3 in SlMED18 silenced lines were slightly less than that in wild type. Furthermore, qRT-PCR analysis indicated that expression of gibberellins biosynthesis genes such as SlGACPS and SlGA20x2, auxin transport genes (PIN1, PIN4, LAX1 and LAX2) and several key regulators, KNOX1, KNOX2, PHAN and LANCEOLATE(LA), which involved in the leaf morphogenesis were significantly down-regulated in SlMED18-RNAi lines. These results illustrated that SlMED18 plays an essential role in regulating plant internode elongation and leaf expansion in tomato plants and it acts as a key positive regulator of gibberellins biosynthesis and signal transduction as well as auxin proper transport signalling. These findings are the basis for understanding the function of the individual Mediator subunits in tomato.
Yoon, Sung Ho; Turkarslan, Serdar; Reiss, David J.; Pan, Min; Burn, June A.; Costa, Kyle C.; Lie, Thomas J.; Slagel, Joseph; Moritz, Robert L.; Hackett, Murray; Leigh, John A.; Baliga, Nitin S.
2013-01-01
Methanogens catalyze the critical methane-producing step (called methanogenesis) in the anaerobic decomposition of organic matter. Here, we present the first predictive model of global gene regulation of methanogenesis in a hydrogenotrophic methanogen, Methanococcus maripaludis. We generated a comprehensive list of genes (protein-coding and noncoding) for M. maripaludis through integrated analysis of the transcriptome structure and a newly constructed Peptide Atlas. The environment and gene-regulatory influence network (EGRIN) model of the strain was constructed from a compendium of transcriptome data that was collected over 58 different steady-state and time-course experiments that were performed in chemostats or batch cultures under a spectrum of environmental perturbations that modulated methanogenesis. Analyses of the EGRIN model have revealed novel components of methanogenesis that included at least three additional protein-coding genes of previously unknown function as well as one noncoding RNA. We discovered that at least five regulatory mechanisms act in a combinatorial scheme to intercoordinate key steps of methanogenesis with different processes such as motility, ATP biosynthesis, and carbon assimilation. Through a combination of genetic and environmental perturbation experiments we have validated the EGRIN-predicted role of two novel transcription factors in the regulation of phosphate-dependent repression of formate dehydrogenase—a key enzyme in the methanogenesis pathway. The EGRIN model demonstrates regulatory affiliations within methanogenesis as well as between methanogenesis and other cellular functions. PMID:24089473
Identification of possible genetic polymorphisms involved in cancer cachexia: a systematic review.
Tan, Benjamin H L; Ross, James A; Kaasa, Stein; Skorpen, Frank; Fearon, Kenneth C H
2011-04-01
Cancer cachexia is a polygenic and complex syndrome. Genetic variations in regulation of the inflammatory response, muscle and fat metabolic pathways, and pathways in appetite regulation are likely to contribute to the susceptibility or resistance to developing cancer cachexia. A systematic search of Medline and EmBase databases, covering 1986-2008 was performed for potential candidate genes/genetic polymorphisms relating to cancer cachexia. Related genes were then identified using pathway functional analysis software. All candidate genes were reviewed for functional polymorphisms or clinically significant polymorphisms associated with cachexia using the OMIM and GeneRIF databases. Genes with variants which had functional or clinical associations with cachexia and replicated in at least one study were entered into pathway analysis software to reveal possible network associations between genes. A total of 184 polymorphisms with functional or clinical relevance to cancer cachexia were identified in 92 candidate genes. Of these, 42 polymorphisms (in 33 genes) were replicated in more than one study with 13 polymorphisms found to influence two or more hallmarks of cachexia (i.e. inflammation, loss of fat mass and/or lean mass and reduced survival). Thirty-three genes were found to be significantly interconnected in two major networks with four genes (ADIPOQ, IL6, NFKB1 and TLR4) interlinking both networks. Selection of candidate genes and polymorphisms is a key element of multigene study design. The present study provides an initial framework to select genes/polymorphisms for further study in cancer cachexia, and to develop their potential as susceptibility biomarkers of developing cachexia.
Li, Yongsheng; Xu, Juan; Chen, Hong; Zhao, Zheng; Li, Shengli; Bai, Jing; Wu, Aiwei; Jiang, Chunjie; Wang, Yuan; Su, Bin; Li, Xia
2013-01-01
DNA methylation is an essential epigenetic mechanism involved in transcriptional control. However, how genes with different methylation patterns are assembled in the protein-protein interaction network (PPIN) remains a mystery. In the present study, we systematically dissected the characterization of genes with different methylation patterns in the PPIN. A negative association was detected between the methylation levels in the brain tissues and topological centralities. By focusing on two classes of genes with considerably different methylation levels in the brain tissues, namely the low methylated genes (LMGs) and high methylated genes (HMGs), we found that their organizing principles in the PPIN are distinct. The LMGs tend to be the center of the PPIN, and attacking them causes a more deleterious effect on the network integrity. Furthermore, the LMGs express their functions in a modular pattern and substantial differences in functions are observed between the two types of genes. The LMGs are enriched in the basic biological functions, such as binding activity and regulation of transcription. More importantly, cancer genes, especially recessive cancer genes, essential genes, and aging-related genes were all found more often in the LMGs. Additionally, our analysis presented that the intra-classes communications are enhanced, but inter-classes communications are repressed. Finally, a functional complementation was revealed between methylation and miRNA regulation in the human genome. We have elucidated the assembling principles of genes with different methylation levels in the context of the PPIN, providing key insights into the complex epigenetic regulation mechanisms.
Zhao, Zheng; Li, Shengli; Bai, Jing; Wu, Aiwei; Jiang, Chunjie; Wang, Yuan; Su, Bin; Li, Xia
2013-01-01
Background DNA methylation is an essential epigenetic mechanism involved in transcriptional control. However, how genes with different methylation patterns are assembled in the protein-protein interaction network (PPIN) remains a mystery. Results In the present study, we systematically dissected the characterization of genes with different methylation patterns in the PPIN. A negative association was detected between the methylation levels in the brain tissues and topological centralities. By focusing on two classes of genes with considerably different methylation levels in the brain tissues, namely the low methylated genes (LMGs) and high methylated genes (HMGs), we found that their organizing principles in the PPIN are distinct. The LMGs tend to be the center of the PPIN, and attacking them causes a more deleterious effect on the network integrity. Furthermore, the LMGs express their functions in a modular pattern and substantial differences in functions are observed between the two types of genes. The LMGs are enriched in the basic biological functions, such as binding activity and regulation of transcription. More importantly, cancer genes, especially recessive cancer genes, essential genes, and aging-related genes were all found more often in the LMGs. Additionally, our analysis presented that the intra-classes communications are enhanced, but inter-classes communications are repressed. Finally, a functional complementation was revealed between methylation and miRNA regulation in the human genome. Conclusions We have elucidated the assembling principles of genes with different methylation levels in the context of the PPIN, providing key insights into the complex epigenetic regulation mechanisms. PMID:23776563
A high resolution atlas of gene expression in the domestic sheep (Ovis aries)
Farquhar, Iseabail L.; Young, Rachel; Lefevre, Lucas; Pridans, Clare; Tsang, Hiu G.; Afrasiabi, Cyrus; Watson, Mick; Whitelaw, C. Bruce; Freeman, Tom C.; Archibald, Alan L.; Hume, David A.
2017-01-01
Sheep are a key source of meat, milk and fibre for the global livestock sector, and an important biomedical model. Global analysis of gene expression across multiple tissues has aided genome annotation and supported functional annotation of mammalian genes. We present a large-scale RNA-Seq dataset representing all the major organ systems from adult sheep and from several juvenile, neonatal and prenatal developmental time points. The Ovis aries reference genome (Oar v3.1) includes 27,504 genes (20,921 protein coding), of which 25,350 (19,921 protein coding) had detectable expression in at least one tissue in the sheep gene expression atlas dataset. Network-based cluster analysis of this dataset grouped genes according to their expression pattern. The principle of ‘guilt by association’ was used to infer the function of uncharacterised genes from their co-expression with genes of known function. We describe the overall transcriptional signatures present in the sheep gene expression atlas and assign those signatures, where possible, to specific cell populations or pathways. The findings are related to innate immunity by focusing on clusters with an immune signature, and to the advantages of cross-breeding by examining the patterns of genes exhibiting the greatest expression differences between purebred and crossbred animals. This high-resolution gene expression atlas for sheep is, to our knowledge, the largest transcriptomic dataset from any livestock species to date. It provides a resource to improve the annotation of the current reference genome for sheep, presenting a model transcriptome for ruminants and insight into gene, cell and tissue function at multiple developmental stages. PMID:28915238
A high resolution atlas of gene expression in the domestic sheep (Ovis aries).
Clark, Emily L; Bush, Stephen J; McCulloch, Mary E B; Farquhar, Iseabail L; Young, Rachel; Lefevre, Lucas; Pridans, Clare; Tsang, Hiu G; Wu, Chunlei; Afrasiabi, Cyrus; Watson, Mick; Whitelaw, C Bruce; Freeman, Tom C; Summers, Kim M; Archibald, Alan L; Hume, David A
2017-09-01
Sheep are a key source of meat, milk and fibre for the global livestock sector, and an important biomedical model. Global analysis of gene expression across multiple tissues has aided genome annotation and supported functional annotation of mammalian genes. We present a large-scale RNA-Seq dataset representing all the major organ systems from adult sheep and from several juvenile, neonatal and prenatal developmental time points. The Ovis aries reference genome (Oar v3.1) includes 27,504 genes (20,921 protein coding), of which 25,350 (19,921 protein coding) had detectable expression in at least one tissue in the sheep gene expression atlas dataset. Network-based cluster analysis of this dataset grouped genes according to their expression pattern. The principle of 'guilt by association' was used to infer the function of uncharacterised genes from their co-expression with genes of known function. We describe the overall transcriptional signatures present in the sheep gene expression atlas and assign those signatures, where possible, to specific cell populations or pathways. The findings are related to innate immunity by focusing on clusters with an immune signature, and to the advantages of cross-breeding by examining the patterns of genes exhibiting the greatest expression differences between purebred and crossbred animals. This high-resolution gene expression atlas for sheep is, to our knowledge, the largest transcriptomic dataset from any livestock species to date. It provides a resource to improve the annotation of the current reference genome for sheep, presenting a model transcriptome for ruminants and insight into gene, cell and tissue function at multiple developmental stages.
A zebrafish model of PINK1 deficiency reveals key pathway dysfunction including HIF signaling.
Priyadarshini, M; Tuimala, J; Chen, Y C; Panula, P
2013-06-01
The PTEN induced putative kinase 1 (PINK1) gene is mutated in patients with hereditary early onset Parkinson's disease (PD). The targets of PINK1 and the mechanisms in PD are still not fully understood. Here, we carried out a high-throughput and unbiased microarray study to identify novel functions and pathways for PINK1. In larval zebrafish, the function of pink1 was inhibited using splice-site morpholino oligonucleotides and the samples were hybridized on a two-color gene expression array. We found 177 significantly altered genes in pink1 morphants compared with the uninjected wildtype controls (log fold change values from -1.6 to +0.9). The five most prominent pathways based on critical biological processes and key toxicological responses were hypoxia-inducible factor (HIF) signaling, TGF-β signaling, mitochondrial dysfunction, RAR activation, and biogenesis of mitochondria. Furthermore, we verified that potentially important genes such as hif1α, catalase, SOD3, and atp1a2a were downregulated in pink1 morphants, whereas genes such as fech, pax2a, and notch1a were upregulated. Some of these genes have been found to play important roles in HIF signaling pathways. The pink1 morphants were found to have heart dysfunction, increased erythropoiesis, increased expression of vascular endothelial growth factors, and increased ROS. Our findings suggest that a lack of pink1 in zebrafish alters many vital and critical pathways in addition to the HIF signaling pathway. Copyright © 2013 Elsevier Inc. All rights reserved.
The expanding regulatory universe of p53 in gastrointestinal cancer.
Fesler, Andrew; Zhang, Ning; Ju, Jingfang
2016-01-01
Tumor suppresser gene TP53 is one of the most frequently deleted or mutated genes in gastrointestinal cancers. As a transcription factor, p53 regulates a number of important protein coding genes to control cell cycle, cell death, DNA damage/repair, stemness, differentiation and other key cellular functions. In addition, p53 is also able to activate the expression of a number of small non-coding microRNAs (miRNAs) through direct binding to the promoter region of these miRNAs. Many miRNAs have been identified to be potential tumor suppressors by regulating key effecter target mRNAs. Our understanding of the regulatory network of p53 has recently expanded to include long non-coding RNAs (lncRNAs). Like miRNA, lncRNAs have been found to play important roles in cancer biology. With our increased understanding of the important functions of these non-coding RNAs and their relationship with p53, we are gaining exciting new insights into the biology and function of cells in response to various growth environment changes. In this review we summarize the current understanding of the ever expanding involvement of non-coding RNAs in the p53 regulatory network and its implications for our understanding of gastrointestinal cancer.
The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions
Merchant, Sabeeha S.; Prochnik, Simon E.; Vallon, Olivier; Harris, Elizabeth H.; Karpowicz, Steven J.; Witman, George B.; Terry, Astrid; Salamov, Asaf; Fritz-Laylin, Lillian K.; Maréchal-Drouard, Laurence; Marshall, Wallace F.; Qu, Liang-Hu; Nelson, David R.; Sanderfoot, Anton A.; Spalding, Martin H.; Kapitonov, Vladimir V.; Ren, Qinghu; Ferris, Patrick; Lindquist, Erika; Shapiro, Harris; Lucas, Susan M.; Grimwood, Jane; Schmutz, Jeremy; Cardol, Pierre; Cerutti, Heriberto; Chanfreau, Guillaume; Chen, Chun-Long; Cognat, Valérie; Croft, Martin T.; Dent, Rachel; Dutcher, Susan; Fernández, Emilio; Ferris, Patrick; Fukuzawa, Hideya; González-Ballester, David; González-Halphen, Diego; Hallmann, Armin; Hanikenne, Marc; Hippler, Michael; Inwood, William; Jabbari, Kamel; Kalanon, Ming; Kuras, Richard; Lefebvre, Paul A.; Lemaire, Stéphane D.; Lobanov, Alexey V.; Lohr, Martin; Manuell, Andrea; Meier, Iris; Mets, Laurens; Mittag, Maria; Mittelmeier, Telsa; Moroney, James V.; Moseley, Jeffrey; Napoli, Carolyn; Nedelcu, Aurora M.; Niyogi, Krishna; Novoselov, Sergey V.; Paulsen, Ian T.; Pazour, Greg; Purton, Saul; Ral, Jean-Philippe; Riaño-Pachón, Diego Mauricio; Riekhof, Wayne; Rymarquis, Linda; Schroda, Michael; Stern, David; Umen, James; Willows, Robert; Wilson, Nedra; Zimmer, Sara Lana; Allmer, Jens; Balk, Janneke; Bisova, Katerina; Chen, Chong-Jian; Elias, Marek; Gendler, Karla; Hauser, Charles; Lamb, Mary Rose; Ledford, Heidi; Long, Joanne C.; Minagawa, Jun; Page, M. Dudley; Pan, Junmin; Pootakham, Wirulda; Roje, Sanja; Rose, Annkatrin; Stahlberg, Eric; Terauchi, Aimee M.; Yang, Pinfen; Ball, Steven; Bowler, Chris; Dieckmann, Carol L.; Gladyshev, Vadim N.; Green, Pamela; Jorgensen, Richard; Mayfield, Stephen; Mueller-Roeber, Bernd; Rajamani, Sathish; Sayre, Richard T.; Brokstein, Peter; Dubchak, Inna; Goodstein, David; Hornick, Leila; Huang, Y. Wayne; Jhaveri, Jinal; Luo, Yigong; Martínez, Diego; Ngau, Wing Chi Abby; Otillar, Bobby; Poliakov, Alexander; Porter, Aaron; Szajkowski, Lukasz; Werner, Gregory; Zhou, Kemin; Grigoriev, Igor V.; Rokhsar, Daniel S.; Grossman, Arthur R.
2010-01-01
Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella. PMID:17932292
Li, Zi-Yu; Li, Bin; Dong, Ai-Wu
2012-01-01
Plant cells frequently undergo endoreduplication, a modified cell cycle in which genome is repeatedly replicated without cytokinesis. As the key step to achieve final size and function for cells, endoreduplication is prevalent during plant development. However, mechanisms to control the balance between endoreduplication and mitotic cell division are still poorly understood. Here, we show that the Arabidopsis TCP (CINCINNATA-like TEOSINTE BRANCHED1-CYCLOIDEA-PCF)-family transcription factor gene AtTCP15 is expressed in trichomes, as well as in rapidly dividing and vascular tissues. Expression of AtTCP15SRDX, AtTCP15 fused with a SRDX repressor domain, induces extra endoreduplication in trichomes and cotyledon cells in transgenic Arabidopsis. On the contrary, overexpression of AtTCP15 suppresses endoreduplication in trichomes and other examined cells. Misregulation of AtTCP15 affects the expression of several important genes involved in cell-cycle regulation. AtTCP15 protein binds directly to the promoter regions of CYCA2;3 and RETINOBLASTOMA-RELATED (RBR) genes, which play key roles in endoreduplication. Taken together, AtTCP15 plays an important role in regulating endoreduplication during Arabidopsis development.
Mitchell, Sabrina; Ellingson, Clint; Coyne, Thomas; Hall, Lynn; Neill, Meaghan; Christian, Natalie; Higham, Catherine; Dobrowolski, Steven F; Tuchman, Mendel; Summar, Marshall
2009-01-01
The urea cycle is the primary means of nitrogen metabolism in humans and other ureotelic organisms. There are five key enzymes in the urea cycle: carbamoyl-phosphate synthetase 1 (CPS1), ornithine transcarbamylase (OTC), argininosuccinate synthetase (ASS1), argininosuccinate lyase (ASL), and arginase 1 (ARG1). Additionally, a sixth enzyme, N-acetylglutamate synthase (NAGS), is critical for urea cycle function, providing CPS1 with its necessary cofactor. Deficiencies in any of these enzymes result in elevated blood ammonia concentrations, which can have detrimental effects, including central nervous system dysfunction, brain damage, coma, and death. Functional variants, which confer susceptibility for disease or dysfunction, have been described for enzymes within the cycle; however, a comprehensive screen of all the urea cycle enzymes has not been performed. We examined the exons and intron/exon boundaries of the five key urea cycle enzymes, NAGS, and two solute carrier transporter genes (SLC25A13 and SLC25A15) for sequence alterations using single-stranded conformational polymorphism (SSCP) analysis and high-resolution melt profiling. SSCP was performed on a set of DNA from 47 unrelated North American individuals with a mixture of ethnic backgrounds. High-resolution melt profiling was performed on a nonoverlapping DNA set of either 47 or 100 unrelated individuals with a mixture of backgrounds. We identified 33 unarchived polymorphisms in this screen that potentially play a role in the variation observed in urea cycle function. Screening all the genes in the pathway provides a catalog of variants that can be used in investigating candidate diseases. Copyright 2008 Wiley-Liss, Inc.
T-Box Genes in Drosophila Mesoderm Development.
Reim, I; Frasch, M; Schaub, C
2017-01-01
In Drosophila there are eight genes encoding transcription factors of the T-box family, which are known to exert a variety of crucial developmental functions during ectodermal patterning processes, neuronal cell specification, mesodermal tissue development, and the development of extraembryonic tissues. In this review, we focus on the prominent roles of Drosophila T-box genes in mesodermal tissues. First, we describe the contributions of brachyenteron (byn) and optomotor-blind-related-gene-1 (org-1) to the development of the visceral mesoderm. Second, we provide an overview on the functions of the three Dorsocross paralogs (Doc1-3) and the two Tbx20-related paralogs (midline and H15) during Drosophila heart development. Third, we portray the roles of org-1 and midline/H15 in the specification of individual body wall and organ-attached muscles, including the function of org-1 in the transdifferentiation of certain heart-attached muscles during metamorphosis. The functional analysis of these evolutionarily conserved T-box genes, along with their interactions with other types of transcription factors and various signaling pathways, has provided key insights into the regulation of Drosophila visceral mesoderm, muscle, and heart development. © 2017 Elsevier Inc. All rights reserved.
Ikram, Sobia; Durandet, Monique; Vesa, Simona; Pereira, Serge; Guerche, Philippe; Bonhomme, Sandrine
2014-06-01
F-box protein genes family is one of the largest gene families in plants, with almost 700 predicted genes in the model plant Arabidopsis. F-box proteins are key components of the ubiquitin proteasome system that allows targeted protein degradation. Transcriptome analyses indicate that half of these F-box protein genes are found expressed in microspore and/or pollen, i.e., during male gametogenesis. To assess the role of F-box protein genes during this crucial developmental step, we selected 34 F-box protein genes recorded as highly and specifically expressed in pollen and isolated corresponding insertion mutants. We checked the expression level of each selected gene by RT-PCR and confirmed pollen expression for 25 genes, but specific expression for only 10 of the 34 F-box protein genes. In addition, we tested the expression level of selected F-box protein genes in 24 mutant lines and showed that 11 of them were null mutants. Transmission analysis of the mutations to the progeny showed that none of the single mutations was gametophytic lethal. These unaffected transmission efficiencies suggested leaky mutations or functional redundancy among F-box protein genes. Cytological observation of the gametophytes in the mutants confirmed these results. Combinations of mutations in F-box protein genes from the same subfamily did not lead to transmission defect either, further highlighting functional redundancy and/or a high proportion of pseudogenes among these F-box protein genes.
MicroRNAs in Control of Stem Cells in Normal and Malignant Hematopoiesis
Roden, Christine; Lu, Jun
2016-01-01
Studies on hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs) have helped to establish the paradigms of normal and cancer stem cell concepts. For both HSCs and LSCs, specific gene expression programs endowed by their epigenome functionally distinguish them from their differentiated progenies. MicroRNAs (miRNAs), as a class of small non-coding RNAs, act to control post-transcriptional gene expression. Research in the past decade has yielded exciting findings elucidating the roles of miRNAs in control of multiple facets of HSC and LSC biology. Here we review recent progresses on the functions of miRNAs in HSC emergence during development, HSC switch from a fetal/neonatal program to an adult program, HSC self-renewal and quiescence, HSC aging, HSC niche, and malignant stem cells. While multiple different miRNAs regulate a diverse array of targets, two common themes emerge in HSC and LSC biology: miRNA mediated regulation of epigenetic machinery and cell signaling pathways. In addition, we propose that miRNAs themselves behave like epigenetic regulators, as they possess key biochemical and biological properties that can provide both stability and alterability to the epigenetic program. Overall, the studies of miRNAs in stem cells in the hematologic contexts not only provide key understandings to post-transcriptional gene regulation mechanisms in HSCs and LSCs, but also will lend key insights for other stem cell fields. PMID:27547713
Gene replacement in Penicillium roqueforti.
Goarin, Anne; Silar, Philippe; Malagnac, Fabienne
2015-05-01
Most cheese-making filamentous fungi lack suitable molecular tools to improve their biotechnology potential. Penicillium roqueforti, a species of high industrial importance, would benefit from functional data yielded by molecular genetic approaches. This work provides the first example of gene replacement by homologous recombination in P. roqueforti, demonstrating that knockout experiments can be performed in this fungus. To do so, we improved the existing transformation method to integrate transgenes into P. roqueforti genome. In the meantime, we cloned the PrNiaD gene, which encodes a NADPH-dependent nitrate reductase that reduces nitrate to nitrite. Then, we performed a deletion of the PrNiaD gene from P. roqueforti strain AGO. The ΔPrNiaD mutant strain is more resistant to chlorate-containing medium than the wild-type strain, but did not grow on nitrate-containing medium. Because genomic data are now available, we believe that generating selective deletions of candidate genes will be a key step to open the way for a comprehensive exploration of gene function in P. roqueforti.
Cell-Autonomous Function of Runx1 Transcriptionally Regulates Mouse Megakaryocytic Maturation
Pencovich, Niv; Jaschek, Ram; Dicken, Joseph; Amit, Ayelet; Lotem, Joseph; Tanay, Amos; Groner, Yoram
2013-01-01
RUNX1 transcription factor (TF) is a key regulator of megakaryocytic development and when mutated is associated with familial platelet disorder and predisposition to acute myeloid leukemia (FPD-AML). We used mice lacking Runx1 specifically in megakaryocytes (MK) to characterized Runx1-mediated transcriptional program during advanced stages of MK differentiation. Gene expression and chromatin-immunoprecipitation-sequencing (ChIP-seq) of Runx1 and p300 identified functional Runx1 bound MK enhancers. Runx1/p300 co-bound regions showed significant enrichment in genes important for MK and platelet homeostasis. Runx1 occupied genomic regions were highly enriched in RUNX and ETS motifs and to a lesser extent in GATA motif. Megakaryocytic specificity of Runx1/P300 bound enhancers was validated by transfection mutagenesis and Runx1/P300 co-bound regions of two key megakaryocytic genes Nfe2 and Selp were tested by in vivo transgenesis. The data provides the first example of genome wide Runx1/p300 occupancy in maturating primary FL-MK, unravel the Runx1-regulated program controlling MK maturation in vivo and identify a subset of its bona fide regulated genes. It advances our understanding of the molecular events that upon RUNX1mutations in human lead to the predisposition to familial platelet disorders and FPD-AML. PMID:23717578
Cong, Ming; Wu, Huifeng; Cao, Tengfei; Lv, Jiasen; Wang, Qing; Ji, Chenglong; Li, Chenghua; Zhao, Jianmin
2018-01-01
Previous study revealed severe toxic effects of ammonia nitrogen on Ruditapes philippinarum including lysosomal instability, disturbed metabolic profiles, gill tissues with damaged structure, and variation of neurotransmitter concentrations. However, the underlying molecular mechanism was not fully understood yet. In the present study, digital gene expression technology (DGE) was applied to globally screen the key genes and pathways involved in the responses to short- and long-term exposures of ammonia nitrogen. Results of DGE analysis indicated that short-term duration of ammonia exposure affected pathways in Dorso-ventral axis formation, Notch signaling, thyroid hormone signaling and protein processing in endoplasmic reticulum. The long-term exposure led to DEGs significantly enriched in gap junction, immunity, signal and hormone transduction, as well as key substance metabolism pathways. Functional research of significantly changed DEGs suggested that the immunity of R. philippinarum was weakened heavily by toxic effects of ammonia nitrogen, as well as neuro-transduction and metabolism of important substances. Taken together, the present study provides a molecular support for the previous results of the detrimental toxicity of ammonia exposure in R. philippinarum, further work will be performed to investigate the specific genes and their certain functions involved in ammonia toxicity to molluscs. Copyright © 2017 Elsevier B.V. All rights reserved.
Sex determination and maintenance: the role of DMRT1 and FOXL2
Huang, Shengsong; Ye, Leping; Chen, Haolin
2017-01-01
In many species, including mammals, sex determination is genetically based. The sex chromosomes that individuals carry determine sex identity. Although the genetic base of phenotypic sex is determined at the moment of fertilization, the development of testes or ovaries in the bipotential early gonads takes place during embryogenesis. During development, sex determination depends upon very few critical genes. When one of these key genes functions inappropriately, sex reversal may happen. Consequently, an individual's sex phenotype may not necessarily be consistent with the sex chromosomes that are present. For some time, it has been assumed that once the fetal choice is made between male and female in mammals, the gonadal sex identity of an individual remains stable. However, recent studies in mice have provided evidence that it is possible for the gonadal sex phenotype to be switched even in adulthood. These studies have shown that two key genes, doublesex and mad-3 related transcription factor 1 (Dmrt1) and forkhead box L2 (Foxl2), function in a Yin and Yang relationship to maintain the fates of testes or ovaries in adult mammals, and that mutations in either gene might have a dramatic effect on gonadal phenotype. Thus, adult gonad maintenance in addition to fetal sex determination may both be important for the fertility. PMID:28091399
Plantier, Laurent; Renaud, Hélène; Respaud, Renaud; Marchand-Adam, Sylvain; Crestani, Bruno
2016-12-13
Heritable profibrotic differentiation of lung fibroblasts is a key mechanism of idiopathic pulmonary fibrosis (IPF). Its mechanisms are yet to be fully understood. In this study, individual data from four independent microarray studies comparing the transcriptome of fibroblasts cultured in vitro from normal (total n = 20) and IPF (total n = 20) human lung were compiled for meta-analysis following normalization to z-scores. One hundred and thirteen transcripts were upregulated and 115 were downregulated in IPF fibroblasts using the Significance Analysis of Microrrays algorithm with a false discovery rate of 5%. Downregulated genes were highly enriched for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional classes related to inflammation and immunity such as Defense response to virus, Influenza A, tumor necrosis factor (TNF) mediated signaling pathway, interferon-inducible absent in melanoma2 (AIM2) inflammasome as well as Apoptosis. Although upregulated genes were not enriched for any functional class, select factors known to play key roles in lung fibrogenesis were overexpressed in IPF fibroblasts, most notably connective tissue growth factor ( CTGF ) and serum response factor ( SRF ), supporting their role as drivers of IPF. The full data table is available as a supplement.
Kaneko-Ishino, Tomoko; Ishino, Fumitoshi
2015-01-01
Mammals, including human beings, have evolved a unique viviparous reproductive system and a highly developed central nervous system. How did these unique characteristics emerge in mammalian evolution, and what kinds of changes did occur in the mammalian genomes as evolution proceeded? A key conceptual term in approaching these issues is "mammalian-specific genomic functions", a concept covering both mammalian-specific epigenetics and genetics. Genomic imprinting and LTR retrotransposon-derived genes are reviewed as the representative, mammalian-specific genomic functions that are essential not only for the current mammalian developmental system, but also mammalian evolution itself. First, the essential roles of genomic imprinting in mammalian development, especially related to viviparous reproduction via placental function, as well as the emergence of genomic imprinting in mammalian evolution, are discussed. Second, we introduce the novel concept of "mammalian-specific traits generated by mammalian-specific genes from LTR retrotransposons", based on the finding that LTR retrotransposons served as a critical driving force in the mammalian evolution via generating mammalian-specific genes.
Wei, Pi-Jing; Zhang, Di; Xia, Junfeng; Zheng, Chun-Hou
2016-12-23
Cancer is a complex disease which is characterized by the accumulation of genetic alterations during the patient's lifetime. With the development of the next-generation sequencing technology, multiple omics data, such as cancer genomic, epigenomic and transcriptomic data etc., can be measured from each individual. Correspondingly, one of the key challenges is to pinpoint functional driver mutations or pathways, which contributes to tumorigenesis, from millions of functional neutral passenger mutations. In this paper, in order to identify driver genes effectively, we applied a generalized additive model to mutation profiles to filter genes with long length and constructed a new gene-gene interaction network. Then we integrated the mutation data and expression data into the gene-gene interaction network. Lastly, greedy algorithm was used to prioritize candidate driver genes from the integrated data. We named the proposed method Length-Net-Driver (LNDriver). Experiments on three TCGA datasets, i.e., head and neck squamous cell carcinoma, kidney renal clear cell carcinoma and thyroid carcinoma, demonstrated that the proposed method was effective. Also, it can identify not only frequently mutated drivers, but also rare candidate driver genes.
Microarray profiling of human white adipose tissue after exogenous leptin injection.
Taleb, S; Van Haaften, R; Henegar, C; Hukshorn, C; Cancello, R; Pelloux, V; Hanczar, B; Viguerie, N; Langin, D; Evelo, C; Zucker, J; Clément, K; Saris, W H M
2006-03-01
Leptin is a secreted adipocyte hormone that plays a key role in the regulation of body weight homeostasis. The leptin effect on human white adipose tissue (WAT) is still debated. The aim of this study was to assess whether the administration of polyethylene glycol-leptin (PEG-OB) in a single supraphysiological dose has transcriptional effects on genes of WAT and to identify its target genes and functional pathways in WAT. Blood samples and WAT biopsies were obtained from 10 healthy nonobese men before treatment and 72 h after the PEG-OB injection, leading to an approximate 809-fold increase in circulating leptin. The WAT gene expression profile before and after the PEG-OB injection was compared using pangenomic microarrays. Functional gene annotations based on the gene ontology of the PEG-OB regulated genes were performed using both an 'in house' automated procedure and GenMAPP (Gene Microarray Pathway Profiler), designed for viewing and analyzing gene expression data in the context of biological pathways. Statistical analysis of microarray data revealed that PEG-OB had a major down-regulated effect on WAT gene expression, as we obtained 1,822 and 100 down- and up-regulated genes, respectively. Microarray data were validated using reverse transcription quantitative PCR. Functional gene annotations of PEG-OB regulated genes revealed that the functional class related to immunity and inflammation was among the most mobilized PEG-OB pathway in WAT. These genes are mainly expressed in the cell of the stroma vascular fraction in comparison with adipocytes. Our observations support the hypothesis that leptin could act on WAT, particularly on genes related to inflammation and immunity, which may suggest a novel leptin target pathway in human WAT.
Liu, Y T; Li, S R; Wang, Z; Xiao, J Z
2016-09-13
Objective: To profile the gene expression changes associated with endoplasmic reticulum stress in INS-1-3 cells induced by thapsigargin (TG) and tunicamycin (TM). Methods: Normal cultured INS-1-3 cells were used as a control. TG and TM were used to induce endoplasmic reticulum stress in INS-1-3 cells. Digital gene expression profiling technique was used to detect differentially expressed gene. The changes of gene expression were detected by expression pattern clustering analysis, gene ontology (GO) function and pathway enrichment analysis. Real time polymerase chain reaction (RT-PCR) was used to verify the key changes of gene expression. Results: Compared with the control group, there were 57 (45 up-regulated, 12 down-regulated) and 135 (99 up-regulated, 36 down-regulated) differentially expressed genes in TG and TM group, respectively. GO function enrichment analyses indicated that the main enrichment was in the endoplasmic reticulum. In signaling pathway analysis, the identified pathways were related with endoplasmic reticulum stress, antigen processing and presentation, protein export, and most of all, the maturity onset diabetes of the young (MODY) pathway. Conclusion: Under the condition of endoplasmic reticulum stress, the related expression changes of transcriptional factors in MODY signaling pathway may be related with the impaired function in islet beta cells.
Watanabe, Mutsumi; Mochida, Keiichi; Kato, Tomohiko; Tabata, Satoshi; Yoshimoto, Naoko; Noji, Masaaki; Saito, Kazuki
2008-01-01
Ser acetyltransferase (SERAT), which catalyzes O-acetyl-Ser (OAS) formation, plays a key role in sulfur assimilation and Cys synthesis. Despite several studies on SERATs from various plant species, the in vivo function of multiple SERAT genes in plant cells remains unaddressed. Comparative genomics studies with the five genes of the SERAT gene family in Arabidopsis thaliana indicated that all three Arabidopsis SERAT subfamilies are conserved across five plant species with available genome sequences. Single and multiple knockout mutants of all Arabidopsis SERAT gene family members were analyzed. All five quadruple mutants with a single gene survived, with three mutants showing dwarfism. However, the quintuple mutant lacking all SERAT genes was embryo-lethal. Thus, all five isoforms show functional redundancy in vivo. The developmental and compartment-specific roles of each SERAT isoform were also demonstrated. Mitochondrial SERAT2;2 plays a predominant role in cellular OAS formation, while plastidic SERAT2;1 contributes less to OAS formation and subsequent Cys synthesis. Three cytosolic isoforms, SERAT1;1, SERAT3;1, and SERAT3;2, may play a major role during seed development. Thus, the evolutionally conserved SERAT gene family is essential in cellular processes, and the substrates and products of SERAT must be exchangeable between the cytosol and organelles. PMID:18776059
Protein Arginine Methylation and Citrullination in Epigenetic Regulation
2015-01-01
The post-translational modification of arginine residues represents a key mechanism for the epigenetic control of gene expression. Aberrant levels of histone arginine modifications have been linked to the development of several diseases including cancer. In recent years, great progress has been made in understanding the physiological role of individual arginine modifications and their effects on chromatin function. The present review aims to summarize the structural and functional aspects of histone arginine modifying enzymes and their impact on gene transcription. We will discuss the potential for targeting these proteins with small molecules in a variety of disease states. PMID:26686581
Ren, Lin-Ling; Liu, Yan-Jing; Liu, Hai-Jing; Qian, Ting-Ting; Qi, Li-Wang; Wang, Xiao-Ru; Zeng, Qing-Yin
2014-01-01
Gene duplication is the primary source of new genes and novel functions. Over the course of evolution, many duplicate genes lose their function and are eventually removed by deletion. However, some duplicates have persisted and evolved diverse functions. A particular challenge is to understand how this diversity arises and whether positive selection plays a role. In this study, we reconstructed the evolutionary history of the class III peroxidase (PRX) genes from the Populus trichocarpa genome. PRXs are plant-specific enzymes that play important roles in cell wall metabolism and in response to biotic and abiotic stresses. We found that two large tandem-arrayed clusters of PRXs evolved from an ancestral cell wall type PRX to vacuole type, followed by tandem duplications and subsequent functional specification. Substitution models identified seven positively selected sites in the vacuole PRXs. These positively selected sites showed significant effects on the biochemical functions of the enzymes. We also found that positive selection acts more frequently on residues adjacent to, rather than directly at, a critical active site of the enzyme, and on flexible regions rather than on rigid structural elements of the protein. Our study provides new insights into the adaptive molecular evolution of plant enzyme families. PMID:24934172
Smith, Cindy J.; Dong, Liang F.; Wilson, John; Stott, Andrew; Osborn, A. Mark; Nedwell, David B.
2015-01-01
This research investigated spatial-temporal variation in benthic bacterial community structure, rates of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) processes and abundances of corresponding genes and transcripts at three sites—the estuary-head, mid-estuary and the estuary mouth (EM) along the nitrate gradient of the Colne estuary over an annual cycle. Denitrification rates declined down the estuary, while DNRA rates were higher at the estuary head and middle than the EM. In four out of the six 2-monthly time-points, rates of DNRA were greater than denitrification at each site. Abundance of gene markers for nitrate-reduction (nitrate reductase narG and napA), denitrification (nitrite reductase nirS) and DNRA (DNRA nitrite reductase nrfA) declined along the estuary with significant relationships between denitrification and nirS abundance, and DNRA and nrfA abundance. Spatially, rates of denitrification, DNRA and corresponding functional gene abundances decreased along the estuary. However, temporal correlations between rate processes and functional gene and transcript abundances were not observed. PMID:26082763
Insect sex determination: it all evolves around transformer.
Verhulst, Eveline C; van de Zande, Louis; Beukeboom, Leo W
2010-08-01
Insects exhibit a variety of sex determining mechanisms including male or female heterogamety and haplodiploidy. The primary signal that starts sex determination is processed by a cascade of genes ending with the conserved switch doublesex that controls sexual differentiation. Transformer is the doublesex splicing regulator and has been found in all examined insects, indicating its ancestral function as a sex-determining gene. Despite this conserved function, the variation in transformer nucleotide sequence, amino acid composition and protein structure can accommodate a multitude of upstream sex determining signals. Transformer regulation of doublesex and its taxonomic distribution indicate that the doublesex-transformer axis is conserved among all insects and that transformer is the key gene around which variation in sex determining mechanisms has evolved.
Core Promoter Functions in the Regulation of Gene Expression of Drosophila Dorsal Target Genes*
Zehavi, Yonathan; Kuznetsov, Olga; Ovadia-Shochat, Avital; Juven-Gershon, Tamar
2014-01-01
Developmental processes are highly dependent on transcriptional regulation by RNA polymerase II. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters consist of core promoter motifs, e.g. the initiator, TATA box, and the downstream core promoter element (DPE), which confer specific properties to the core promoter. Here, we explored the importance of core promoter functions in the dorsal-ventral developmental gene regulatory network. This network includes multiple genes that are activated by different nuclear concentrations of Dorsal, an NFκB homolog transcription factor, along the dorsal-ventral axis. We show that over two-thirds of Dorsal target genes contain DPE sequence motifs, which is significantly higher than the proportion of DPE-containing promoters in Drosophila genes. We demonstrate that multiple Dorsal target genes are evolutionarily conserved and functionally dependent on the DPE. Furthermore, we have analyzed the activation of key Dorsal target genes by Dorsal, as well as by another Rel family transcription factor, Relish, and the dependence of their activation on the DPE motif. Using hybrid enhancer-promoter constructs in Drosophila cells and embryo extracts, we have demonstrated that the core promoter composition is an important determinant of transcriptional activity of Dorsal target genes. Taken together, our results provide evidence for the importance of core promoter composition in the regulation of Dorsal target genes. PMID:24634215
Tissue-Specific Transcriptomic Profiling of Sorghum propinquum using a Rice Genome Array
Zhang, Ting; Zhao, Xiuqin; Huang, Liyu; Liu, Xiaoyue; Zong, Ying; Zhu, Linghua; Yang, Daichang; Fu, Binying
2013-01-01
Sorghum (Sorghum bicolor) is one of the world's most important cereal crops. S. propinquum is a perennial wild relative of S. bicolor with well-developed rhizomes. Functional genomics analysis of S. propinquum, especially with respect to molecular mechanisms related to rhizome growth and development, can contribute to the development of more sustainable grain, forage, and bioenergy cropping systems. In this study, we used a whole rice genome oligonucleotide microarray to obtain tissue-specific gene expression profiles of S. propinquum with special emphasis on rhizome development. A total of 548 tissue-enriched genes were detected, including 31 and 114 unique genes that were expressed predominantly in the rhizome tips (RT) and internodes (RI), respectively. Further GO analysis indicated that the functions of these tissue-enriched genes corresponded to their characteristic biological processes. A few distinct cis-elements, including ABA-responsive RY repeat CATGCA, sugar-repressive TTATCC, and GA-responsive TAACAA, were found to be prevalent in RT-enriched genes, implying an important role in rhizome growth and development. Comprehensive comparative analysis of these rhizome-enriched genes and rhizome-specific genes previously identified in Oryza longistaminata and S. propinquum indicated that phytohormones, including ABA, GA, and SA, are key regulators of gene expression during rhizome development. Co-localization of rhizome-enriched genes with rhizome-related QTLs in rice and sorghum generated functional candidates for future cloning of genes associated with rhizome growth and development. PMID:23536906
Millette, Katelyn; Georgia, Senta
2017-10-05
This review will focus on the multiple approaches to gene editing and address the potential use of genetically modified human pluripotent stem cell-derived beta cells (SC-β) as a tool to study human beta-cell development and model their function in diabetes. We will explore how new variations of CRISPR/Cas9 gene editing may accelerate our understanding of beta-cell developmental biology, elucidate novel mechanisms that establish and regulate beta-cell function, and assist in pioneering new therapeutic modalities for treating diabetes. Improvements in CRISPR/Cas9 target specificity and homology-directed recombination continue to advance its use in engineering stem cells to model and potentially treat disease. We will review how CRISPR/Cas9 gene editing is informing our understanding of beta-cell development and expanding the therapeutic possibilities for treating diabetes and other diseases. Here we focus on the emerging use of gene editing technology, specifically CRISPR/Cas9, as a means of manipulating human gene expression to gain novel insights into the roles of key factors in beta-cell development and function. Taken together, the combined use of SC-β cells and CRISPR/Cas9 gene editing will shed new light on human beta-cell development and function and accelerate our progress towards developing new therapies for patients with diabetes.
Koppik, Mareike; Fricke, Claudia
2017-12-01
Senescence is accompanied by loss of reproductive functions. Here, we studied reproductive ageing in Drosophila melanogaster males and asked whether the expected decline in male reproductive success is due to diminished functionality of the male accessory gland (AG). The male AG produces the majority of seminal fluid proteins (SFPs) transferred to the female at mating. SFPs induce female postmating changes and are key to male reproductive success. We measured age-dependent gene expression changes for five representative SFP genes in males from four different age groups ranging from 1 to 6 weeks after eclosion. Simultaneously, we also measured male reproductive success in postmating traits mediated by transfer of these five SFPs. We found a decreased in male SFP gene expression with advancing age and an accompanying decline in male postmating success. Hence, male reproductive senescence is associated with a decline in functionality of the male AG. While overall individual SFP genes decreased in expression, our results point towards the idea that the composition of an ejaculate might change with male age as the rate of change was variable for those five genes. © 2017 John Wiley & Sons Ltd.
Robust Design of Biological Circuits: Evolutionary Systems Biology Approach
Chen, Bor-Sen; Hsu, Chih-Yuan; Liou, Jing-Jia
2011-01-01
Artificial gene circuits have been proposed to be embedded into microbial cells that function as switches, timers, oscillators, and the Boolean logic gates. Building more complex systems from these basic gene circuit components is one key advance for biologic circuit design and synthetic biology. However, the behavior of bioengineered gene circuits remains unstable and uncertain. In this study, a nonlinear stochastic system is proposed to model the biological systems with intrinsic parameter fluctuations and environmental molecular noise from the cellular context in the host cell. Based on evolutionary systems biology algorithm, the design parameters of target gene circuits can evolve to specific values in order to robustly track a desired biologic function in spite of intrinsic and environmental noise. The fitness function is selected to be inversely proportional to the tracking error so that the evolutionary biological circuit can achieve the optimal tracking mimicking the evolutionary process of a gene circuit. Finally, several design examples are given in silico with the Monte Carlo simulation to illustrate the design procedure and to confirm the robust performance of the proposed design method. The result shows that the designed gene circuits can robustly track desired behaviors with minimal errors even with nontrivial intrinsic and external noise. PMID:22187523
Palumbo, Michael J; Newberg, Lee A
2010-07-01
The transcription of a gene from its DNA template into an mRNA molecule is the first, and most heavily regulated, step in gene expression. Especially in bacteria, regulation is typically achieved via the binding of a transcription factor (protein) or small RNA molecule to the chromosomal region upstream of a regulated gene. The protein or RNA molecule recognizes a short, approximately conserved sequence within a gene's promoter region and, by binding to it, either enhances or represses expression of the nearby gene. Since the sought-for motif (pattern) is short and accommodating to variation, computational approaches that scan for binding sites have trouble distinguishing functional sites from look-alikes. Many computational approaches are unable to find the majority of experimentally verified binding sites without also finding many false positives. Phyloscan overcomes this difficulty by exploiting two key features of functional binding sites: (i) these sites are typically more conserved evolutionarily than are non-functional DNA sequences; and (ii) these sites often occur two or more times in the promoter region of a regulated gene. The website is free and open to all users, and there is no login requirement. Address: (http://bayesweb.wadsworth.org/phyloscan/).
Functional analysis of regulatory single-nucleotide polymorphisms.
Pampín, Sandra; Rodríguez-Rey, José C
2007-04-01
The identification of regulatory polymorphisms has become a key problem in human genetics. In the past few years there has been a conceptual change in the way in which regulatory single-nucleotide polymorphisms are studied. We revise the new approaches and discuss how gene expression studies can contribute to a better knowledge of the genetics of common diseases. New techniques for the association of single-nucleotide polymorphisms with changes in gene expression have been recently developed. This, together with a more comprehensive use of the old in-vitro methods, has produced a great amount of genetic information. When added to current databases, it will help to design better tools for the detection of regulatory single-nucleotide polymorphisms. The identification of functional regulatory single-nucleotide polymorphisms cannot be done by the simple inspection of DNA sequence. In-vivo techniques, based on primer-extension, and the more recently developed 'haploChIP' allow the association of gene variants to changes in gene expression. Gene expression analysis by conventional in-vitro techniques is the only way to identify the functional consequences of regulatory single-nucleotide polymorphisms. The amount of information produced in the last few years will help to refine the tools for the future analysis of regulatory gene variants.
Robust design of biological circuits: evolutionary systems biology approach.
Chen, Bor-Sen; Hsu, Chih-Yuan; Liou, Jing-Jia
2011-01-01
Artificial gene circuits have been proposed to be embedded into microbial cells that function as switches, timers, oscillators, and the Boolean logic gates. Building more complex systems from these basic gene circuit components is one key advance for biologic circuit design and synthetic biology. However, the behavior of bioengineered gene circuits remains unstable and uncertain. In this study, a nonlinear stochastic system is proposed to model the biological systems with intrinsic parameter fluctuations and environmental molecular noise from the cellular context in the host cell. Based on evolutionary systems biology algorithm, the design parameters of target gene circuits can evolve to specific values in order to robustly track a desired biologic function in spite of intrinsic and environmental noise. The fitness function is selected to be inversely proportional to the tracking error so that the evolutionary biological circuit can achieve the optimal tracking mimicking the evolutionary process of a gene circuit. Finally, several design examples are given in silico with the Monte Carlo simulation to illustrate the design procedure and to confirm the robust performance of the proposed design method. The result shows that the designed gene circuits can robustly track desired behaviors with minimal errors even with nontrivial intrinsic and external noise.
Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila
2016-10-20
The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.
Zhao, Min; Li, Zhe; Qu, Hong
2015-01-01
Metastasis suppressor genes (MS genes) are genes that play important roles in inhibiting the process of cancer metastasis without preventing growth of the primary tumor. Identification of these genes and understanding their functions are critical for investigation of cancer metastasis. Recent studies on cancer metastasis have identified many new susceptibility MS genes. However, the comprehensive illustration of diverse cellular processes regulated by metastasis suppressors during the metastasis cascade is lacking. Thus, the relationship between MS genes and cancer risk is still unclear. To unveil the cellular complexity of MS genes, we have constructed MSGene (http://MSGene.bioinfo-minzhao.org/), the first literature-based gene resource for exploring human MS genes. In total, we manually curated 194 experimentally verified MS genes and mapped to 1448 homologous genes from 17 model species. Follow-up functional analyses associated 194 human MS genes with epithelium/tissue morphogenesis and epithelia cell proliferation. In addition, pathway analysis highlights the prominent role of MS genes in activation of platelets and coagulation system in tumor metastatic cascade. Moreover, global mutation pattern of MS genes across multiple cancers may reveal common cancer metastasis mechanisms. All these results illustrate the importance of MSGene to our understanding on cell development and cancer metastasis. PMID:26486520
Floral Initiation and Inflorescence Architecture: A Comparative View
Benlloch, Reyes; Berbel, Ana; Serrano-Mislata, Antonio; Madueño, Francisco
2007-01-01
Background A huge variety of plant forms can be found in nature. This is particularly noticeable for inflorescences, the region of the plant that contains the flowers. The architecture of the inflorescence depends on its branching pattern and on the relative position where flowers are formed. In model species such as Arabidopsis thaliana or Antirrhinum majus the key genes that regulate the initiation of flowers have been studied in detail and much is known about how they work. Studies being carried out in other species of higher plants indicate that the homologues of these genes are also key regulators of the development of their reproductive structures. Further, changes in these gene expression patterns and/or function play a crucial role in the generation of different plant architectures. Scope In this review we aim to present a summarized view on what is known about floral initiation genes in different plants, particularly dicotyledonous species, and aim to emphasize their contribution to plant architecture. PMID:17679690
Pantzartzi, Chrysoula N.; Drosopoulou, Elena; Scouras, Zacharias G.
2013-01-01
Hsp90s, members of the Heat Shock Protein class, protect the structure and function of proteins and play a significant task in cellular homeostasis and signal transduction. In order to determine the number of hsp90 gene copies and encoded proteins in fungal and animal lineages and through that key duplication events that this family has undergone, we collected and evaluated Hsp90 protein sequences and corresponding Expressed Sequence Tags and analyzed available genomes from various taxa. We provide evidence for duplication events affecting either single species or wider taxonomic groups. With regard to Fungi, duplicated genes have been detected in several lineages. In invertebrates, we demonstrate key duplication events in certain clades of Arthropoda and Mollusca, and a possible gene loss event in a hymenopteran family. Finally, we infer that the duplication event responsible for the two (a and b) isoforms in vertebrates occurred probably shortly after the split of Hyperoartia and Gnathostomata. PMID:24066039
Lenka, Sangram K; Lohia, Bikash; Kumar, Abhay; Chinnusamy, Viswanathan; Bansal, Kailash C
2009-02-01
Abscisic acid (ABA), the popular plant stress hormone, plays a key role in regulation of sub-set of stress responsive genes. These genes respond to ABA through specific transcription factors which bind to cis-regulatory elements present in their promoters. We discovered the ABA Responsive Element (ABRE) core (ACGT) containing CGMCACGTGB motif as over-represented motif among the promoters of ABA responsive co-expressed genes in rice. Targeted gene prediction strategy using this motif led to the identification of 402 protein coding genes potentially regulated by ABA-dependent molecular genetic network. RT-PCR analysis of arbitrarily chosen 45 genes from the predicted 402 genes confirmed 80% accuracy of our prediction. Plant Gene Ontology (GO) analysis of ABA responsive genes showed enrichment of signal transduction and stress related genes among diverse functional categories.
[Isolation and function of genes regulating aphB expression in Vibrio cholerae].
Chen, Haili; Zhu, Zhaoqin; Zhong, Zengtao; Zhu, Jun; Kan, Biao
2012-02-04
We identified genes that regulate the expression of aphB, the gene encoding a key virulence regulator in Vibrio cholerae O1 E1 Tor C6706(-). We constructed a transposon library in V. cholerae C6706 strain containing a P(aphB)-luxCDABE and P(aphB)-lacZ transcriptional reporter plasmids. Using a chemiluminescence imager system, we rapidly detected aphB promoter expression level at a large scale. We then sequenced the transposon insertion sites by arbitrary PCR and sequencing analysis. We obtained two candidate mutants T1 and T2 which displayed reduced aphB expression from approximately 40,000 transposon insertion mutants. Sequencing analysis shows that Tn inserted in vc1585 reading frame in the T1 mutant and Tn inserted in the end of coding sequence of vc1602 in the T2 mutant. By using a genetic screen, we identified two potential genes that may involve in regulation of the expression of the key virulence regulator AphB. This study sheds light on our further investigation to fully understand V. cholerae virulence gene regulatory cascades.
Kuznetsova, E S; Zinovieva, O L; Oparina, N Yu; Prokofjeva, M M; Spirin, P V; Favorskaya, I A; Zborovskaya, I B; Lisitsyn, N A; Prassolov, V S; Mashkova, T D
2016-01-01
Retinoids are signaling molecules that control a wide variety of cellular processes and possess antitumor activity. This work presents a comprehensive description of changes in the expression of 23 genes that regulate retinoid metabolism and signaling in non-small-cell lung cancer tumors compared to adjacent normal tissues obtained using RT-PCR. Even at early stages of malignant transformation, a significant decrease in ADH1B, ADH3, RDHL, and RALDH1 mRNA levels was observed in 82, 79, 73, and 64% of tumor specimens, respectively, and a considerable increase in AKR1B10 mRNA content was observed in 80% of tumors. Dramatic changes in the levels of these mRNAs can impair the synthesis of all-trans retinoic acid, a key natural regulatory retinoid. Apart from that, it was found that mRNA levels of nuclear retinoid receptor genes RXRγ, RARα, RXRα, and gene RDH11 were significantly decreased in 80, 67, 57, and 66% of tumor specimens, respectively. Thus, neoplastic transformation of lung tissue cells is accompanied with deregulated expression of key genes of retinoid metabolism and function.
Schlotz, Nina; Roulin, Anne; Ebert, Dieter; Martin-Creuzburg, Dominik
2016-11-01
Eicosanoids derive from essential polyunsaturated fatty acids (PUFA) and play crucial roles in immunity, development, and reproduction. However, potential links between dietary PUFA supply and eicosanoid biosynthesis are poorly understood, especially in invertebrates. Using Daphnia magna and its bacterial parasite Pasteuria ramosa as model system, we studied the expression of genes coding for key enzymes in eicosanoid biosynthesis and of genes related to oogenesis in response to dietary arachidonic acid and eicosapentaenoic acid in parasite-exposed and non-exposed animals. Gene expression related to cyclooxygenase activity was especially responsive to the dietary PUFA supply and parasite challenge, indicating a role for prostanoid eicosanoids in immunity and reproduction. Vitellogenin gene expression was induced upon parasite exposure in all food treatments, suggesting infection-related interference with the host's reproductive system. Our findings highlight the potential of dietary PUFA to modulate the expression of key enzymes involved in eicosanoid biosynthesis and reproduction and thus underpin the idea that the dietary PUFA supply can influence invertebrate immune functions and host-parasite interactions. Copyright © 2016 Elsevier Inc. All rights reserved.
From data to function: functional modeling of poultry genomics data.
McCarthy, F M; Lyons, E
2013-09-01
One of the challenges of functional genomics is to create a better understanding of the biological system being studied so that the data produced are leveraged to provide gains for agriculture, human health, and the environment. Functional modeling enables researchers to make sense of these data as it reframes a long list of genes or gene products (mRNA, ncRNA, and proteins) by grouping based upon function, be it individual molecular functions or interactions between these molecules or broader biological processes, including metabolic and signaling pathways. However, poultry researchers have been hampered by a lack of functional annotation data, tools, and training to use these data and tools. Moreover, this lack is becoming more critical as new sequencing technologies enable us to generate data not only for an increasingly diverse range of species but also individual genomes and populations of individuals. We discuss the impact of these new sequencing technologies on poultry research, with a specific focus on what functional modeling resources are available for poultry researchers. We also describe key strategies for researchers who wish to functionally model their own data, providing background information about functional modeling approaches, the data and tools to support these approaches, and the strengths and limitations of each. Specifically, we describe methods for functional analysis using Gene Ontology (GO) functional summaries, functional enrichment analysis, and pathways and network modeling. As annotation efforts begin to provide the fundamental data that underpin poultry functional modeling (such as improved gene identification, standardized gene nomenclature, temporal and spatial expression data and gene product function), tool developers are incorporating these data into new and existing tools that are used for functional modeling, and cyberinfrastructure is being developed to provide the necessary extendibility and scalability for storing and analyzing these data. This process will support the efforts of poultry researchers to make sense of their functional genomics data sets, and we provide here a starting point for researchers who wish to take advantage of these tools.
Gene Function Hypotheses for the Campylobacter jejuni Glycome Generated by a Logic-Based Approach
Sternberg, Michael J.E.; Tamaddoni-Nezhad, Alireza; Lesk, Victor I.; Kay, Emily; Hitchen, Paul G.; Cootes, Adrian; van Alphen, Lieke B.; Lamoureux, Marc P.; Jarrell, Harold C.; Rawlings, Christopher J.; Soo, Evelyn C.; Szymanski, Christine M.; Dell, Anne; Wren, Brendan W.; Muggleton, Stephen H.
2013-01-01
Increasingly, experimental data on biological systems are obtained from several sources and computational approaches are required to integrate this information and derive models for the function of the system. Here, we demonstrate the power of a logic-based machine learning approach to propose hypotheses for gene function integrating information from two diverse experimental approaches. Specifically, we use inductive logic programming that automatically proposes hypotheses explaining the empirical data with respect to logically encoded background knowledge. We study the capsular polysaccharide biosynthetic pathway of the major human gastrointestinal pathogen Campylobacter jejuni. We consider several key steps in the formation of capsular polysaccharide consisting of 15 genes of which 8 have assigned function, and we explore the extent to which functions can be hypothesised for the remaining 7. Two sources of experimental data provide the information for learning—the results of knockout experiments on the genes involved in capsule formation and the absence/presence of capsule genes in a multitude of strains of different serotypes. The machine learning uses the pathway structure as background knowledge. We propose assignments of specific genes to five previously unassigned reaction steps. For four of these steps, there was an unambiguous optimal assignment of gene to reaction, and to the fifth, there were three candidate genes. Several of these assignments were consistent with additional experimental results. We therefore show that the logic-based methodology provides a robust strategy to integrate results from different experimental approaches and propose hypotheses for the behaviour of a biological system. PMID:23103756
Gene function hypotheses for the Campylobacter jejuni glycome generated by a logic-based approach.
Sternberg, Michael J E; Tamaddoni-Nezhad, Alireza; Lesk, Victor I; Kay, Emily; Hitchen, Paul G; Cootes, Adrian; van Alphen, Lieke B; Lamoureux, Marc P; Jarrell, Harold C; Rawlings, Christopher J; Soo, Evelyn C; Szymanski, Christine M; Dell, Anne; Wren, Brendan W; Muggleton, Stephen H
2013-01-09
Increasingly, experimental data on biological systems are obtained from several sources and computational approaches are required to integrate this information and derive models for the function of the system. Here, we demonstrate the power of a logic-based machine learning approach to propose hypotheses for gene function integrating information from two diverse experimental approaches. Specifically, we use inductive logic programming that automatically proposes hypotheses explaining the empirical data with respect to logically encoded background knowledge. We study the capsular polysaccharide biosynthetic pathway of the major human gastrointestinal pathogen Campylobacter jejuni. We consider several key steps in the formation of capsular polysaccharide consisting of 15 genes of which 8 have assigned function, and we explore the extent to which functions can be hypothesised for the remaining 7. Two sources of experimental data provide the information for learning-the results of knockout experiments on the genes involved in capsule formation and the absence/presence of capsule genes in a multitude of strains of different serotypes. The machine learning uses the pathway structure as background knowledge. We propose assignments of specific genes to five previously unassigned reaction steps. For four of these steps, there was an unambiguous optimal assignment of gene to reaction, and to the fifth, there were three candidate genes. Several of these assignments were consistent with additional experimental results. We therefore show that the logic-based methodology provides a robust strategy to integrate results from different experimental approaches and propose hypotheses for the behaviour of a biological system. Copyright © 2012 Elsevier Ltd. All rights reserved.
Salanova, Michele; Gambara, Guido; Moriggi, Manuela; Vasso, Michele; Ungethuem, Ute; Belavý, Daniel L; Felsenberg, Dieter; Cerretelli, Paolo; Gelfi, Cecilia; Blottner, Dieter
2015-11-24
Disuse-induced muscle atrophy is a major concern in aging, in neuromuscular diseases, post-traumatic injury and in microgravity life sciences affecting health and fitness also of crew members in spaceflight. By using a laboratory analogue to body unloading we perform for the first time global gene expression profiling joined to specific proteomic analysis to map molecular adaptations in disused (60 days of bed rest) human soleus muscle (CTR) and in response to a resistive exercise (RE) countermeasure protocol without and with superimposed vibration mechanosignals (RVE). Adopting Affymetrix GeneChip technology we identified 235 differently transcribed genes in the CTR group (end- vs. pre-bed rest). RE comprised 206 differentially expressed genes, whereas only 51 changed gene transcripts were found in RVE. Most gene transcription and proteomic changes were linked to various key metabolic pathways (glycolysis, oxidative phosphorylation, tricarboxylic acid (TCA) cycle, lipid metabolism) and to functional contractile structures. Gene expression profiling in bed rest identified a novel set of genes explicitly responsive to vibration mechanosignals in human soleus. This new finding highlights the efficacy of RVE protocol in reducing key signs of disuse maladaptation and atrophy, and to maintain a close-to-normal skeletal muscle quality outcome following chronic disuse in bed rest.
Branches of NF-κb signaling pathway regulate hepatocyte proliferation in rat liver regeneration.
Chang, C F; Zhao, W M; Mei, J X; Zhou, Y; Pan, C Y; Xu, T T; Xu, C S
2015-07-13
Previous studies have demonstrated that the nuclear factor κB (NF-κB) pathway is involved in promoting cell proliferation. To further explore the regulatory branches and their sequence in the NF-κB pathway in the promotion of hepatocyte proliferation at the transcriptional level during rat liver regeneration, Rat Genome 230 2.0 array was used to detect the expression changes of the isolated hepatocytes. We found that many genes involved in the NF-κB pathway (including 73 known genes and 19 homologous genes) and cell proliferation (including 484 genes and 104 homologous genes) were associated with liver regeneration. Expression profile function (Ep) was used to analyze the biological processes. It was revealed that the NF-κB pathway promoted hepatocyte proliferation through three branches. Several methods of integrated statistics were applied to extract and screen key genes in liver regeneration, and it indicated that eight genes may play a vital role in rat liver regeneration. To confirm the above predicted results, Ccnd1, Jun and Myc were analyzed using qRT-PCR, and the results were generally consistent with that of microarray data. It is concluded that 3 branches and 8 key genes involved in the NF-κB pathway regulate hepatocyte proliferation during rat liver regeneration.
Gupta, Bhawna; Iancu, Emanuela M; Gannon, Philippe O; Wieckowski, Sébastien; Baitsch, Lukas; Speiser, Daniel E; Rufer, Nathalie
2012-07-01
Phenotypic and functional cell properties are usually analyzed at the level of defined cell populations but not single cells. Yet, large differences between individual cells may have important functional consequences. It is likely that T-cell-mediated immunity depends on the polyfunctionality of individual T cells, rather than the sum of functions of responding T-cell subpopulations. We performed highly sensitive single-cell gene expression profiling, allowing the direct ex vivo characterization of individual virus-specific and tumor-specific T cells from healthy donors and melanoma patients. We have previously shown that vaccination with the natural tumor peptide Melan-A-induced T cells with superior effector functions as compared with vaccination with the analog peptide optimized for enhanced HLA-A*0201 binding. Here we found that natural peptide vaccination induced tumor-reactive CD8 T cells with frequent coexpression of both memory/homing-associated genes (CD27, IL7R, EOMES, CXCR3, and CCR5) and effector-related genes (IFNG, KLRD1, PRF1, and GZMB), comparable with protective Epstein-Barr virus-specific and cytomegalovirus-specific T cells. In contrast, memory/homing-associated and effector-associated genes were less frequently coexpressed after vaccination with the analog peptide. Remarkably, these findings reveal a previously unknown level of gene expression diversity among vaccine-specific and virus-specific T cells with the simultaneous coexpression of multiple memory/homing-related and effector-related genes by the same cell. Such broad functional gene expression signatures within antigen-specific T cells may be critical for mounting efficient responses to pathogens or tumors. In summary, direct ex vivo high-resolution molecular characterization of individual T cells provides key insights into the processes shaping the functional properties of tumor-specific and virus-specific T cells.
Cestelli Guidi, M; Mirri, C; Fratini, E; Licursi, V; Negri, R; Marcelli, A; Amendola, R
2012-09-01
This paper discusses gene expression changes in the skin of mice treated by monoenergetic 14 MeV neutron irradiation and the possibility of monitoring the resultant lipid depletion (cross-validated by functional genomic analysis) as a marker of radiation exposure by high-resolution FT-IR (Fourier transform infrared) imaging spectroscopy. The irradiation was performed at the ENEA Frascati Neutron Generator (FNG), which is specifically dedicated to biological samples. FNG is a linear electrostatic accelerator that produces up to 1.0 × 10(11) 14-MeV neutrons per second via the D-T nuclear reaction. The functional genomic approach was applied to four animals for each experimental condition (unirradiated, 0.2 Gy irradiation, or 1 Gy irradiation) 6 hours or 24 hours after exposure. Coregulation of a subclass of keratin and keratin-associated protein genes that are physically clustered in the mouse genome and functionally related to skin and hair follicle proliferation and differentiation was observed. Most of these genes are transiently upregulated at 6 h after the delivery of the lower dose delivered, and drastically downregulated at 24 h after the delivery of the dose of 1 Gy. In contrast, the gene coding for the leptin protein was consistently upregulated upon irradiation with both doses. Leptin is a key protein that regulates lipid accumulation in tissues, and its absence provokes obesity. The tissue analysis was performed by monitoring the accumulation and the distribution of skin lipids using FT-IR imaging spectroscopy. The overall picture indicates the differential modulation of key genes during epidermis homeostasis that leads to the activation of a self-renewal process at low doses of irradiation.
Divergence and adaptive evolution of the gibberellin oxidase genes in plants.
Huang, Yuan; Wang, Xi; Ge, Song; Rao, Guang-Yuan
2015-09-29
The important phytohormone gibberellins (GAs) play key roles in various developmental processes. GA oxidases (GAoxs) are critical enzymes in GA synthesis pathway, but their classification, evolutionary history and the forces driving the evolution of plant GAox genes remain poorly understood. This study provides the first large-scale evolutionary analysis of GAox genes in plants by using an extensive whole-genome dataset of 41 species, representing green algae, bryophytes, pteridophyte, and seed plants. We defined eight subfamilies under the GAox family, namely C19-GA2ox, C20-GA2ox, GA20ox,GA3ox, GAox-A, GAox-B, GAox-C and GAox-D. Of these, subfamilies GAox-A, GAox-B, GAox-C and GAox-D are described for the first time. On the basis of phylogenetic analyses and characteristic motifs of GAox genes, we demonstrated a rapid expansion and functional divergence of the GAox genes during the diversification of land plants. We also detected the subfamily-specific motifs and potential sites of some GAox genes, which might have evolved under positive selection. GAox genes originated very early-before the divergence of bryophytes and the vascular plants and the diversification of GAox genes is associated with the functional divergence and could be driven by positive selection. Our study not only provides information on the classification of GAox genes, but also facilitates the further functional characterization and analysis of GA oxidases.
Genome-wide differential gene expression in immortalized DF-1 chicken embryo fibroblast cell line
2011-01-01
Background When compared to primary chicken embryo fibroblast (CEF) cells, the immortal DF-1 CEF line exhibits enhanced growth rates and susceptibility to oxidative stress. Although genes responsible for cell cycle regulation and antioxidant functions have been identified, the genome-wide transcription profile of immortal DF-1 CEF cells has not been previously reported. Global gene expression in primary CEF and DF-1 cells was performed using a 4X44K chicken oligo microarray. Results A total of 3876 differentially expressed genes were identified with a 2 fold level cutoff that included 1706 up-regulated and 2170 down-regulated genes in DF-1 cells. Network and functional analyses using Ingenuity Pathways Analysis (IPA, Ingenuity® Systems, http://www.ingenuity.com) revealed that 902 of 3876 differentially expressed genes were classified into a number of functional groups including cellular growth and proliferation, cell cycle, cellular movement, cancer, genetic disorders, and cell death. Also, the top 5 gene networks with intermolecular connections were identified. Bioinformatic analyses suggested that DF-1 cells were characterized by enhanced molecular mechanisms for cell cycle progression and proliferation, suppressing cell death pathways, altered cellular morphogenesis, and accelerated capacity for molecule transport. Key molecules for these functions include E2F1, BRCA1, SRC, CASP3, and the peroxidases. Conclusions The global gene expression profiles provide insight into the cellular mechanisms that regulate the unique characteristics observed in immortal DF-1 CEF cells. PMID:22111699
Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri.
Cornish, Adam J; Green, Robin; Gärtner, Katrin; Mason, Saundra; Hegg, Eric L
2015-01-01
Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.
Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri
Cornish, Adam J.; Green, Robin; Gärtner, Katrin; Mason, Saundra; Hegg, Eric L.
2015-01-01
Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes. PMID:25927230
Genomic Regions in Local Endangered Sheep Encode Potentially Favorable Genes.
Moioli, Bianca; Steri, Roberto; Catillo, Gennaro
2018-01-02
The economic evaluation of farm animal genetic resources plays a key role in developing conservation programs. However, to date, the link between diversity as assessed by neutral genetic markers and the functional diversity is not yet understood. Two genome-wide comparisons, using over 44,000 Single Nucleotide Polymorphisms, identified the markers with the highest difference in allele frequency between the Alpago endangered breed and two clusters, composed of four specialized dairy sheep, and four meat breeds respectively. The genes in proximity of these markers were mapped to known pathways of the Gene Ontology to determine which ones were most represented. Our results indicated that the differences of the Alpago breed from the more productive sheep rely upon genes involved in cellular defense and repair mechanisms. A higher number of different markers and genes were detected in the comparison with the specialized dairy sheep. These genes play a role in complex biological processes: metabolic, homeostatic, neurological system, and macromolecular organization; such processes may possibly explain the evolution of gene function as a result of selection to improve milk yield.
Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri
Cornish, Adam J.; Green, Robin; Gärtner, Katrin; ...
2015-04-30
Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H 2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate undermore » anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.« less
Genome-Wide Association and Functional Follow-Up Reveals New Loci for Kidney Function
Fuchsberger, Christian; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C.; O'Seaghdha, Conall M.; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V.; O'Connell, Jeffrey R.; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D.; Gierman, Hinco J.; Feitosa, Mary; Hwang, Shih-Jen; Atkinson, Elizabeth J.; Lohman, Kurt; Cornelis, Marilyn C.; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Chouraki, Vincent; Holliday, Elizabeth G.; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y.; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B.; Launer, Lenore J.; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D.; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank B.; Demirkan, Ayse; Oostra, Ben A.; de Andrade, Mariza; Turner, Stephen T.; Ding, Jingzhong; Andrews, Jeanette S.; Freedman, Barry I.; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H.-Erich; Kolcic, Ivana; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E.; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H.; Wright, Alan F.; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Endlich, Karlhans; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K.; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Aulchenko, Yurii S.; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Giulianini, Franco; Krämer, Bernhard K.; Portas, Laura; Ford, Ian; Buckley, Brendan M.; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Metzger, Marie; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K.; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J. Wouter; Probst-Hensch, Nicole M.; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S.; van Duijn, Cornelia M.; Borecki, Ingrid; Kardia, Sharon L. R.; Liu, Yongmei; Curhan, Gary C.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Franke, Andre; Pramstaller, Peter P.; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline C. M.; Hayward, Caroline; Ridker, Paul; Parsa, Afshin; Bochud, Murielle; Heid, Iris M.; Goessling, Wolfram; Chasman, Daniel I.; Kao, W. H. Linda; Fox, Caroline S.
2012-01-01
Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD. PMID:22479191
Karmaus, Peer W.F.; Chi, Hongbo
2014-01-01
Dendritic cells (DCs) are a heterogeneous cell population of great importance in the immune system. The emergence of new genetic technology utilizing the CD11c promoter and Cre recombinase has facilitated the dissection of functional significance and molecular regulation of DCs in immune responses and homeostasis in vivo. For the first time, this strategy allows observation of the effects of DC-specific gene deletion on immune system function in an intact organism. In this review, we present the latest findings from studies using the Cre recombinase system for cell type–specific deletion of key molecules that mediate DC homeostasis and function. Our focus is on the molecular pathways that orchestrate DC life span, migration, antigen presentation, pattern recognition, and cytokine production and signaling. PMID:24366237
Genome-wide association and functional follow-up reveals new loci for kidney function.
Pattaro, Cristian; Köttgen, Anna; Teumer, Alexander; Garnaas, Maija; Böger, Carsten A; Fuchsberger, Christian; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; O'Seaghdha, Conall M; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D; Gierman, Hinco J; Feitosa, Mary; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Chouraki, Vincent; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank B; Demirkan, Ayse; Oostra, Ben A; de Andrade, Mariza; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H-Erich; Kolcic, Ivana; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Endlich, Karlhans; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Giulianini, Franco; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Metzger, Marie; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S; van Duijn, Cornelia M; Borecki, Ingrid; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline C M; Hayward, Caroline; Ridker, Paul; Parsa, Afshin; Bochud, Murielle; Heid, Iris M; Goessling, Wolfram; Chasman, Daniel I; Kao, W H Linda; Fox, Caroline S
2012-01-01
Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD.
A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize.
Mei, Yu; Zhang, Chunquan; Kernodle, Bliss M; Hill, John H; Whitham, Steven A
2016-06-01
Plant viruses have been widely used as vectors for foreign gene expression and virus-induced gene silencing (VIGS). A limited number of viruses have been developed into viral vectors for the purposes of gene expression or VIGS in monocotyledonous plants, and among these, the tripartite viruses Brome mosaic virus and Cucumber mosaic virus have been shown to induce VIGS in maize (Zea mays). We describe here a new DNA-based VIGS system derived from Foxtail mosaic virus (FoMV), a monopartite virus that is able to establish systemic infection and silencing of endogenous maize genes homologous to gene fragments inserted into the FoMV genome. To demonstrate VIGS applications of this FoMV vector system, four genes, phytoene desaturase (functions in carotenoid biosynthesis), lesion mimic22 (encodes a key enzyme of the porphyrin pathway), iojap (functions in plastid development), and brown midrib3 (caffeic acid O-methyltransferase), were silenced and characterized in the sweet corn line Golden × Bantam. Furthermore, we demonstrate that the FoMV infectious clone establishes systemic infection in maize inbred lines, sorghum (Sorghum bicolor), and green foxtail (Setaria viridis), indicating the potential wide applications of this viral vector system for functional genomics studies in maize and other monocots. © 2016 American Society of Plant Biologists. All Rights Reserved.
A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize1[OPEN
Mei, Yu; Kernodle, Bliss M.; Hill, John H.
2016-01-01
Plant viruses have been widely used as vectors for foreign gene expression and virus-induced gene silencing (VIGS). A limited number of viruses have been developed into viral vectors for the purposes of gene expression or VIGS in monocotyledonous plants, and among these, the tripartite viruses Brome mosaic virus and Cucumber mosaic virus have been shown to induce VIGS in maize (Zea mays). We describe here a new DNA-based VIGS system derived from Foxtail mosaic virus (FoMV), a monopartite virus that is able to establish systemic infection and silencing of endogenous maize genes homologous to gene fragments inserted into the FoMV genome. To demonstrate VIGS applications of this FoMV vector system, four genes, phytoene desaturase (functions in carotenoid biosynthesis), lesion mimic22 (encodes a key enzyme of the porphyrin pathway), iojap (functions in plastid development), and brown midrib3 (caffeic acid O-methyltransferase), were silenced and characterized in the sweet corn line Golden × Bantam. Furthermore, we demonstrate that the FoMV infectious clone establishes systemic infection in maize inbred lines, sorghum (Sorghum bicolor), and green foxtail (Setaria viridis), indicating the potential wide applications of this viral vector system for functional genomics studies in maize and other monocots. PMID:27208311
Wang, James K. T.; Langfelder, Peter; Horvath, Steve; Palazzolo, Michael J.
2017-01-01
Huntington's disease (HD) is a progressive and autosomal dominant neurodegeneration caused by CAG expansion in the huntingtin gene (HTT), but the pathophysiological mechanism of mutant HTT (mHTT) remains unclear. To study HD using systems biological methodologies on all published data, we undertook the first comprehensive curation of two key PubMed HD datasets: perturbation genes that impact mHTT-driven endpoints and therefore are putatively linked causally to pathogenic mechanisms, and the protein interactome of HTT that reflects its biology. We perused PubMed articles containing co-citation of gene IDs and MeSH terms of interest to generate mechanistic gene sets for iterative enrichment analyses and rank ordering. The HD Perturbation database of 1,218 genes highly overlaps the HTT Interactome of 1,619 genes, suggesting links between normal HTT biology and mHTT pathology. These two HD datasets are enriched for protein networks of key genes underlying two mechanisms not previously implicated in HD nor in each other: exosome synaptic functions and homeostatic synaptic plasticity. Moreover, proteins, possibly including HTT, and miRNA detected in exosomes from a wide variety of sources also highly overlap the HD datasets, suggesting both mechanistic and biomarker links. Finally, the HTT Interactome highly intersects protein networks of pathogenic genes underlying Parkinson's, Alzheimer's and eight non-HD polyglutamine diseases, ALS, and spinal muscular atrophy. These protein networks in turn highly overlap the exosome and homeostatic synaptic plasticity gene sets. Thus, we hypothesize that HTT and other neurodegeneration pathogenic genes form a large interlocking protein network involved in exosome and homeostatic synaptic functions, particularly where the two mechanisms intersect. Mutant pathogenic proteins cause dysfunctions at distinct points in this network, each altering the two mechanisms in specific fashion that contributes to distinct disease pathologies, depending on the gene mutation and the cellular and biological context. This protein network is rich with drug targets, and exosomes may provide disease biomarkers, thus enabling drug discovery. All the curated datasets are made available for other investigators. Elucidating the roles of pathogenic neurodegeneration genes in exosome and homeostatic synaptic functions may provide a unifying framework for the age-dependent, progressive and tissue selective nature of multiple neurodegenerative diseases. PMID:28611571
Wang, James K T; Langfelder, Peter; Horvath, Steve; Palazzolo, Michael J
2017-01-01
Huntington's disease (HD) is a progressive and autosomal dominant neurodegeneration caused by CAG expansion in the huntingtin gene ( HTT ), but the pathophysiological mechanism of mutant HTT (mHTT) remains unclear. To study HD using systems biological methodologies on all published data, we undertook the first comprehensive curation of two key PubMed HD datasets: perturbation genes that impact mHTT-driven endpoints and therefore are putatively linked causally to pathogenic mechanisms, and the protein interactome of HTT that reflects its biology. We perused PubMed articles containing co-citation of gene IDs and MeSH terms of interest to generate mechanistic gene sets for iterative enrichment analyses and rank ordering. The HD Perturbation database of 1,218 genes highly overlaps the HTT Interactome of 1,619 genes, suggesting links between normal HTT biology and mHTT pathology. These two HD datasets are enriched for protein networks of key genes underlying two mechanisms not previously implicated in HD nor in each other: exosome synaptic functions and homeostatic synaptic plasticity. Moreover, proteins, possibly including HTT, and miRNA detected in exosomes from a wide variety of sources also highly overlap the HD datasets, suggesting both mechanistic and biomarker links. Finally, the HTT Interactome highly intersects protein networks of pathogenic genes underlying Parkinson's, Alzheimer's and eight non-HD polyglutamine diseases, ALS, and spinal muscular atrophy. These protein networks in turn highly overlap the exosome and homeostatic synaptic plasticity gene sets. Thus, we hypothesize that HTT and other neurodegeneration pathogenic genes form a large interlocking protein network involved in exosome and homeostatic synaptic functions, particularly where the two mechanisms intersect. Mutant pathogenic proteins cause dysfunctions at distinct points in this network, each altering the two mechanisms in specific fashion that contributes to distinct disease pathologies, depending on the gene mutation and the cellular and biological context. This protein network is rich with drug targets, and exosomes may provide disease biomarkers, thus enabling drug discovery. All the curated datasets are made available for other investigators. Elucidating the roles of pathogenic neurodegeneration genes in exosome and homeostatic synaptic functions may provide a unifying framework for the age-dependent, progressive and tissue selective nature of multiple neurodegenerative diseases.
A HaemAtlas: characterizing gene expression in differentiated human blood cells.
Watkins, Nicholas A; Gusnanto, Arief; de Bono, Bernard; De, Subhajyoti; Miranda-Saavedra, Diego; Hardie, Debbie L; Angenent, Will G J; Attwood, Antony P; Ellis, Peter D; Erber, Wendy; Foad, Nicola S; Garner, Stephen F; Isacke, Clare M; Jolley, Jennifer; Koch, Kerstin; Macaulay, Iain C; Morley, Sarah L; Rendon, Augusto; Rice, Kate M; Taylor, Niall; Thijssen-Timmer, Daphne C; Tijssen, Marloes R; van der Schoot, C Ellen; Wernisch, Lorenz; Winzer, Thilo; Dudbridge, Frank; Buckley, Christopher D; Langford, Cordelia F; Teichmann, Sarah; Göttgens, Berthold; Ouwehand, Willem H
2009-05-07
Hematopoiesis is a carefully controlled process that is regulated by complex networks of transcription factors that are, in part, controlled by signals resulting from ligand binding to cell-surface receptors. To further understand hematopoiesis, we have compared gene expression profiles of human erythroblasts, megakaryocytes, B cells, cytotoxic and helper T cells, natural killer cells, granulocytes, and monocytes using whole genome microarrays. A bioinformatics analysis of these data was performed focusing on transcription factors, immunoglobulin superfamily members, and lineage-specific transcripts. We observed that the numbers of lineage-specific genes varies by 2 orders of magnitude, ranging from 5 for cytotoxic T cells to 878 for granulocytes. In addition, we have identified novel coexpression patterns for key transcription factors involved in hematopoiesis (eg, GATA3-GFI1 and GATA2-KLF1). This study represents the most comprehensive analysis of gene expression in hematopoietic cells to date and has identified genes that play key roles in lineage commitment and cell function. The data, which are freely accessible, will be invaluable for future studies on hematopoiesis and the role of specific genes and will also aid the understanding of the recent genome-wide association studies.
A HaemAtlas: characterizing gene expression in differentiated human blood cells
Gusnanto, Arief; de Bono, Bernard; De, Subhajyoti; Miranda-Saavedra, Diego; Hardie, Debbie L.; Angenent, Will G. J.; Attwood, Antony P.; Ellis, Peter D.; Erber, Wendy; Foad, Nicola S.; Garner, Stephen F.; Isacke, Clare M.; Jolley, Jennifer; Koch, Kerstin; Macaulay, Iain C.; Morley, Sarah L.; Rendon, Augusto; Rice, Kate M.; Taylor, Niall; Thijssen-Timmer, Daphne C.; Tijssen, Marloes R.; van der Schoot, C. Ellen; Wernisch, Lorenz; Winzer, Thilo; Dudbridge, Frank; Buckley, Christopher D.; Langford, Cordelia F.; Teichmann, Sarah; Göttgens, Berthold; Ouwehand, Willem H.
2009-01-01
Hematopoiesis is a carefully controlled process that is regulated by complex networks of transcription factors that are, in part, controlled by signals resulting from ligand binding to cell-surface receptors. To further understand hematopoiesis, we have compared gene expression profiles of human erythroblasts, megakaryocytes, B cells, cytotoxic and helper T cells, natural killer cells, granulocytes, and monocytes using whole genome microarrays. A bioinformatics analysis of these data was performed focusing on transcription factors, immunoglobulin superfamily members, and lineage-specific transcripts. We observed that the numbers of lineage-specific genes varies by 2 orders of magnitude, ranging from 5 for cytotoxic T cells to 878 for granulocytes. In addition, we have identified novel coexpression patterns for key transcription factors involved in hematopoiesis (eg, GATA3-GFI1 and GATA2-KLF1). This study represents the most comprehensive analysis of gene expression in hematopoietic cells to date and has identified genes that play key roles in lineage commitment and cell function. The data, which are freely accessible, will be invaluable for future studies on hematopoiesis and the role of specific genes and will also aid the understanding of the recent genome-wide association studies. PMID:19228925
MicroRNAs in Palatogenesis and Cleft Palate
Schoen, Christian; Aschrafi, Armaz; Thonissen, Michelle; Poelmans, Geert; Von den Hoff, Johannes W.; Carels, Carine E. L.
2017-01-01
Palatogenesis requires a precise spatiotemporal regulation of gene expression, which is controlled by an intricate network of transcription factors and their corresponding DNA motifs. Even minor perturbations of this network may cause cleft palate, the most common congenital craniofacial defect in humans. MicroRNAs (miRNAs), a class of small regulatory non-coding RNAs, have elicited strong interest as key regulators of embryological development, and as etiological factors in disease. MiRNAs function as post-transcriptional repressors of gene expression and are therefore able to fine-tune gene regulatory networks. Several miRNAs are already identified to be involved in congenital diseases. Recent evidence from research in zebrafish and mice indicates that miRNAs are key factors in both normal palatogenesis and cleft palate formation. Here, we provide an overview of recently identified molecular mechanisms underlying palatogenesis involving specific miRNAs, and discuss how dysregulation of these miRNAs may result in cleft palate. PMID:28420997
The Role of Tomato WRKY Genes in Plant Responses to Combined Abiotic and Biotic Stresses
Bai, Yuling; Sunarti, Sri; Kissoudis, Christos; Visser, Richard G. F.; van der Linden, C. G.
2018-01-01
In the field, plants constantly face a plethora of abiotic and biotic stresses that can impart detrimental effects on plants. In response to multiple stresses, plants can rapidly reprogram their transcriptome through a tightly regulated and highly dynamic regulatory network where WRKY transcription factors can act as activators or repressors. WRKY transcription factors have diverse biological functions in plants, but most notably are key players in plant responses to biotic and abiotic stresses. In tomato there are 83 WRKY genes identified. Here we review recent progress on functions of these tomato WRKY genes and their homologs in other plant species, such as Arabidopsis and rice, with a special focus on their involvement in responses to abiotic and biotic stresses. In particular, we highlight WRKY genes that play a role in plant responses to a combination of abiotic and biotic stresses.
Sutter, Jan-Moritz; Tästensen, Julia-Beate; Johnsen, Ulrike; Soppa, Jörg; Schönheit, Peter
2016-08-15
The halophilic archaeon Haloferax volcanii has been proposed to degrade glucose via the semiphosphorylative Entner-Doudoroff (spED) pathway. So far, the key enzymes of this pathway, glucose dehydrogenase (GDH), gluconate dehydratase (GAD), and 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase (KDPGA), have not been characterized, and their functional involvement in glucose degradation has not been demonstrated. Here we report that the genes HVO_1083 and HVO_0950 encode GDH and KDPGA, respectively. The recombinant enzymes show high specificity for glucose and KDPG and did not convert the corresponding C4 epimers galactose and 2-keto-3-deoxy-6-phosphogalactonate at significant rates. Growth studies of knockout mutants indicate the functional involvement of both GDH and KDPGA in glucose degradation. GAD was purified from H. volcanii, and the encoding gene, gad, was identified as HVO_1488. GAD catalyzed the specific dehydration of gluconate and did not utilize galactonate at significant rates. A knockout mutant of GAD lost the ability to grow on glucose, indicating the essential involvement of GAD in glucose degradation. However, following a prolonged incubation period, growth of the Δgad mutant on glucose was recovered. Evidence is presented that under these conditions, GAD was functionally replaced by xylonate dehydratase (XAD), which uses both xylonate and gluconate as substrates. Together, the characterization of key enzymes and analyses of the respective knockout mutants present conclusive evidence for the in vivo operation of the spED pathway for glucose degradation in H. volcanii The work presented here describes the identification and characterization of the key enzymes glucose dehydrogenase, gluconate dehydratase, and 2-keto-3-deoxy-6-phosphogluconate aldolase and their encoding genes of the proposed semiphosphorylative Entner-Doudoroff pathway in the haloarchaeon Haloferax volcanii The functional involvement of the three enzymes was proven by analyses of the corresponding knockout mutants. These results provide evidence for the in vivo operation of the semiphosphorylative Entner-Doudoroff pathway in haloarchaea and thus expand our understanding of the unusual sugar degradation pathways in the domain Archaea. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Marsollier, Anne-Charlotte; Ciszewski, Lukasz; Mariot, Virginie; Popplewell, Linda; Voit, Thomas; Dickson, George; Dumonceaux, Julie
2016-04-15
Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
2016-01-01
Covering: 2003 to 2016 The last decade has seen the first major discoveries regarding the genomic basis of plant natural product biosynthetic pathways. Four key computationally driven strategies have been developed to identify such pathways, which make use of physical clustering, co-expression, evolutionary co-occurrence and epigenomic co-regulation of the genes involved in producing a plant natural product. Here, we discuss how these approaches can be used for the discovery of plant biosynthetic pathways encoded by both chromosomally clustered and non-clustered genes. Additionally, we will discuss opportunities to prioritize plant gene clusters for experimental characterization, and end with a forward-looking perspective on how synthetic biology technologies will allow effective functional reconstitution of candidate pathways using a variety of genetic systems. PMID:27321668
Insights into social insects from the genome of the honeybee Apis mellifera
2007-01-01
Here we report the genome sequence of the honeybee Apis mellifera, a key model for social behaviour and essential to global ecology through pollination. Compared with other sequenced insect genomes, the A. mellifera genome has high A+T and CpG contents, lacks major transposon families, evolves more slowly, and is more similar to vertebrates for circadian rhythm, RNA interference and DNA methylation genes, among others. Furthermore, A. mellifera has fewer genes for innate immunity, detoxification enzymes, cuticle-forming proteins and gustatory receptors, more genes for odorant receptors, and novel genes for nectar and pollen utilization, consistent with its ecology and social organization. Compared to Drosophila, genes in early developmental pathways differ in Apis, whereas similarities exist for functions that differ markedly, such as sex determination, brain function and behaviour. Population genetics suggests a novel African origin for the species A. mellifera and insights into whether Africanized bees spread throughout the New World via hybridization or displacement. PMID:17073008
Identification and characterization of nuclear genes involved in photosynthesis in Populus
2014-01-01
Background The gap between the real and potential photosynthetic rate under field conditions suggests that photosynthesis could potentially be improved. Nuclear genes provide possible targets for improving photosynthetic efficiency. Hence, genome-wide identification and characterization of the nuclear genes affecting photosynthetic traits in woody plants would provide key insights on genetic regulation of photosynthesis and identify candidate processes for improvement of photosynthesis. Results Using microarray and bulked segregant analysis strategies, we identified differentially expressed nuclear genes for photosynthesis traits in a segregating population of poplar. We identified 515 differentially expressed genes in this population (FC ≥ 2 or FC ≤ 0.5, P < 0.05), 163 up-regulated and 352 down-regulated. Real-time PCR expression analysis confirmed the microarray data. Singular Enrichment Analysis identified 48 significantly enriched GO terms for molecular functions (28), biological processes (18) and cell components (2). Furthermore, we selected six candidate genes for functional examination by a single-marker association approach, which demonstrated that 20 SNPs in five candidate genes significantly associated with photosynthetic traits, and the phenotypic variance explained by each SNP ranged from 2.3% to 12.6%. This revealed that regulation of photosynthesis by the nuclear genome mainly involves transport, metabolism and response to stimulus functions. Conclusions This study provides new genome-scale strategies for the discovery of potential candidate genes affecting photosynthesis in Populus, and for identification of the functions of genes involved in regulation of photosynthesis. This work also suggests that improving photosynthetic efficiency under field conditions will require the consideration of multiple factors, such as stress responses. PMID:24673936
Zeng, Ying; Zhao, Tiehan; Kermode, Allison R
2013-01-01
ABI3 (for ABSCISIC ACID INSENSITIVE3), a transcription factor of the abscisic acid signal transduction pathway, plays a major role during seed development, dormancy inception, and dormancy maintenance. This protein appears to also function in meristematic and vegetative plant tissues and under certain stress conditions. We have isolated the ABI3 gene ortholog (CnABI3) from yellow cedar (Callitropsis nootkatensis) and found that it was functionally similar to other ABI3 genes of angiosperms. Here, we report that using a yeast (Saccharomyces cerevisiae) two-hybrid approach, we have identified another protein of yellow cedar (CnAIP2; for CnABI3 INTERACTING PROTEIN2) that physically interacts with CnABI3. Functional analyses revealed that CnAIP2 plays important roles during key transitions in the plant life cycle: (1) CnAIP2 impaired seed development and reduced seed dormancy; (2) CnAIP2 promoted root development, particularly the initiation of lateral roots, and the CnAIP2 gene promoter was exquisitely auxin sensitive; and (3) CnAIP2 promoted the transition from vegetative growth to reproductive initiation (i.e. flowering). The nature of the effects of CnAIP2 on these processes and other evidence place CnAIP2 in the category of a "global" regulator, whose actions are antagonistic to those of ABI3.
Catry, Emilie; Bindels, Laure B; Tailleux, Anne; Lestavel, Sophie; Neyrinck, Audrey M; Goossens, Jean-François; Lobysheva, Irina; Plovier, Hubert; Essaghir, Ahmed; Demoulin, Jean-Baptiste; Bouzin, Caroline; Pachikian, Barbara D; Cani, Patrice D; Staels, Bart; Dessy, Chantal; Delzenne, Nathalie M
2018-02-01
To investigate the beneficial role of prebiotics on endothelial dysfunction, an early key marker of cardiovascular diseases, in an original mouse model linking steatosis and endothelial dysfunction. We examined the contribution of the gut microbiota to vascular dysfunction observed in apolipoprotein E knockout (Apoe -/- ) mice fed an n-3 polyunsaturated fatty acid (PUFA)-depleted diet for 12 weeks with or without inulin-type fructans (ITFs) supplementation for the last 15 days. Mesenteric and carotid arteries were isolated to evaluate endothelium-dependent relaxation ex vivo. Caecal microbiota composition (Illumina Sequencing of the 16S rRNA gene) and key pathways/mediators involved in the control of vascular function, including bile acid (BA) profiling, gut and liver key gene expression, nitric oxide and gut hormones production were also assessed. ITF supplementation totally reverses endothelial dysfunction in mesenteric and carotid arteries of n-3 PUFA-depleted Apoe -/- mice via activation of the nitric oxide (NO) synthase/NO pathway. Gut microbiota changes induced by prebiotic treatment consist in increased NO-producing bacteria, replenishment of abundance in Akkermansia and decreased abundance in bacterial taxa involved in secondary BA synthesis. Changes in gut and liver gene expression also occur upon ITFs suggesting increased glucagon-like peptide 1 production and BA turnover as drivers of endothelium function preservation. We demonstrate for the first time that ITF improve endothelial dysfunction, implicating a short-term adaptation of both gut microbiota and key gut peptides. If confirmed in humans, prebiotics could be proposed as a novel approach in the prevention of metabolic disorders-related cardiovascular diseases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Yang, Min; Song, Shen; Dong, Kunzhe; Chen, XiaoFei; Liu, Xuexue; Rouzi, Marhaba; Zhao, Qianjun; He, Xiaohong; Pu, Yabin; Guan, Weijun; Ma, Yuehui; Jiang, Lin
2017-10-18
The growth of cashmere exhibits a seasonal pattern arising from photoperiod change. However, the underlying molecular mechanism remains unclear. We profiled the skin transcriptome of six goats at seven time points during hair follicle cycling via RNA-seq. The six goats comprised three goats exposed to a natural photoperiod and three exposed to a shortened photoperiod. During hair cycle transition, 1713 genes showed differential expression, and 332 genes showed a pattern of periodic expression. Moreover, a short photoperiod induced the hair follicle to enter anagen early, and 246 genes overlapped with the periodic genes. Among these key genes, cold-shock domain containing C2 (CSDC2) was highly expressed in the epidermis and dermis of Cashmere goat skin, although its function in hair-follicle development remains unknown. CSDC2 silencing in mouse fibroblasts resulted in the decreased mRNA expression of two key hair-follicle factors, leading to reduced cell numbers and a lower cell density. Cashmere growth or molting might be controlled by a set of periodic regulatory genes. The appropriate management of short light exposure can induce hair follicles to enter full anagen early through the activation of these regulators. The CSDC2 gene is a potentially important transcription factor in the hair growth cycle.
Romero, Roberto; Tarca, Adi; Chaemsaithong, Piya; Miranda, Jezid; Chaiworapongsa, Tinnakorn; Jia, Hui; Hassan, Sonia S.; Kalita, Cynthia A.; Cai, Juan; Yeo, Lami; Lipovich, Leonard
2014-01-01
Objective The mechanisms responsible for normal and abnormal parturition are poorly understood. Myometrial activation leading to regular uterine contractions is a key component of labor. Dysfunctional labor (arrest of dilatation and/or descent) is a leading indication for cesarean delivery. Compelling evidence suggests that most of these disorders are functional in nature, and not the result of cephalopelvic disproportion. The methodology and the datasets afforded by the post-genomic era provide novel opportunities to understand and target gene functions in these disorders. In 2012, the ENCODE Consortium elucidated the extraordinary abundance and functional complexity of long non-coding RNA genes in the human genome. The purpose of the study was to identify differentially expressed long non-coding RNA genes in human myometrium in women in spontaneous labor at term. Materials and Methods Myometrium was obtained from women undergoing cesarean deliveries who were not in labor (n=19) and women in spontaneous labor at term (n=20). RNA was extracted and profiled using an Illumina® microarray platform. The analysis of the protein coding genes from this study has been previously reported. Here, we have used computational approaches to bound the extent of long non-coding RNA representation on this platform, and to identify co-differentially expressed and correlated pairs of long non-coding RNA genes and protein-coding genes sharing the same genomic loci. Results Upon considering more than 18,498 distinct lncRNA genes compiled nonredundantly from public experimental data sources, and interrogating 2,634 that matched Illumina microarray probes, we identified co-differential expression and correlation at two genomic loci that contain coding-lncRNA gene pairs: SOCS2-AK054607 and LMCD1-NR_024065 in women in spontaneous labor at term. This co-differential expression and correlation was validated by qRT-PCR, an independent experimental method. Intriguingly, one of the two lncRNA genes differentially expressed in term labor had a key genomic structure element, a splice site that lacked evolutionary conservation beyond primates. Conclusions We provide for the first time evidence for coordinated differential expression and correlation of cis-encoded antisense lncRNAs and protein-coding genes with known, as well as novel roles in pregnancy in the myometrium of women in spontaneous labor at term. PMID:24168098
Ivanova, Aneta; Millar, A. Harvey; Whelan, James
2016-01-01
Previous studies have identified a range of transcription factors that modulate retrograde regulation of mitochondrial and chloroplast functions in Arabidopsis (Arabidopsis thaliana). However, the relative importance of these regulators and whether they act downstream of separate or overlapping signaling cascades is still unclear. Here, we demonstrate that multiple stress-related signaling pathways, with distinct kinetic signatures, converge on overlapping gene sets involved in energy organelle function. The transcription factor ANAC017 is almost solely responsible for transcript induction of marker genes around 3 to 6 h after chemical inhibition of organelle function and is a key regulator of mitochondrial and specific types of chloroplast retrograde signaling. However, an independent and highly transient gene expression phase, initiated within 10 to 30 min after treatment, also targets energy organelle functions, and is related to touch and wounding responses. Metabolite analysis demonstrates that this early response is concurrent with rapid changes in tricarboxylic acid cycle intermediates and large changes in transcript abundance of genes encoding mitochondrial dicarboxylate carrier proteins. It was further demonstrated that transcription factors AtWRKY15 and AtWRKY40 have repressive regulatory roles in this touch-responsive gene expression. Together, our results show that several regulatory systems can independently affect energy organelle function in response to stress, providing different means to exert operational control. PMID:27208304
Todaka, Daisuke; Nakashima, Kazuo; Maruyama, Kyonoshin; Kidokoro, Satoshi; Osakabe, Yuriko; Ito, Yusuke; Matsukura, Satoko; Fujita, Yasunari; Yoshiwara, Kyouko; Ohme-Takagi, Masaru; Kojima, Mikiko; Sakakibara, Hitoshi; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko
2012-01-01
The mechanisms for plant growth restriction during stress conditions remains unclear. Here, we demonstrate that a phytochrome-interacting factor-like protein, OsPIL1/OsPIL13, acts as a key regulator of reduced internode elongation in rice under drought conditions. The level of OsPIL1 mRNA in rice seedlings grown under nonstressed conditions with light/dark cycles oscillated in a circadian manner with peaks in the middle of the light period. Under drought stress conditions, OsPIL1 expression was inhibited during the light period. We found that OsPIL1 was highly expressed in the node portions of the stem using promoter-glucuronidase analysis. Overexpression of OsPIL1 in transgenic rice plants promoted internode elongation. In contrast, transgenic rice plants with a chimeric repressor resulted in short internode sections. Alteration of internode cell size was observed in OsPIL1 transgenic plants, indicating that differences in cell size cause the change in internode length. Oligoarray analysis revealed OsPIL1 downstream genes, which were enriched for cell wall-related genes responsible for cell elongation. These data suggest that OsPIL1 functions as a key regulatory factor of reduced plant height via cell wall-related genes in response to drought stress. This regulatory system may be important for morphological stress adaptation in rice under drought conditions. PMID:22984180
Integrating Environmental Genomics and Biogeochemical Models: a Gene-centric Approach
NASA Astrophysics Data System (ADS)
Reed, D. C.; Algar, C. K.; Huber, J. A.; Dick, G.
2013-12-01
Rapid advances in molecular microbial ecology have yielded an unprecedented amount of data about the evolutionary relationships and functional traits of microbial communities that regulate global geochemical cycles. Biogeochemical models, however, are trailing in the wake of the environmental genomics revolution and such models rarely incorporate explicit representations of bacteria and archaea, nor are they compatible with nucleic acid or protein sequence data. Here, we present a functional gene-based framework for describing microbial communities in biogeochemical models that uses genomics data and provides predictions that are readily testable using cutting-edge molecular tools. To demonstrate the approach in practice, nitrogen cycling in the Arabian Sea oxygen minimum zone (OMZ) was modelled to examine key questions about cryptic sulphur cycling and dinitrogen production pathways in OMZs. By directly linking geochemical dynamics to the genetic composition of microbial communities, the method provides mechanistic insights into patterns and biogeochemical consequences of marine microbes. Such an approach is critical for informing our understanding of the key role microbes play in modulating Earth's biogeochemistry.
Transcriptional regulation of mammalian selenoprotein expression
Stoytcheva, Zoia R.; Berry, Marla J.
2009-01-01
Background Selenoproteins contain the twenty-first amino acid, selenocysteine, and are involved in cellular defenses against oxidative damage, important metabolic and developmental pathways, and responses to environmental challenges. Elucidating the mechanisms regulating selenoprotein expression at the transcriptional level is key to understanding how these mechanisms are called into play to respond to the changing environment. Methods This review summarizes published studies on transcriptional regulation of selenoprotein genes, focused primarily on genes whose encoded protein functions are at least partially understood. This is followed by in silico analysis of predicted regulatory elements in selenoprotein genes, including those in the aforementioned category as well as the genes whose functions are not known. Results Our findings reveal regulatory pathways common to many selenoprotein genes, including several involved in stress-responses. In addition, tissue-specific regulatory factors are implicated in regulating many selenoprotein genes. Conclusions These studies provide new insights into how selenoprotein genes respond to environmental and other challenges, and the roles these proteins play in allowing cells to adapt to these changes. General Significance Elucidating the regulatory mechanisms affecting selenoprotein expression is essential for understanding their roles in human diseases, and for developing diagnostic and potential therapeutic approaches to address dysregulation of members of this gene family. PMID:19465084
Haas, Brian W; Anderson, Ian W; Smith, Jessica M
2013-11-28
Although cooperation represents a core facet of human social behavior there exists considerable variability across people in terms of the tendency to cooperate. One factor that may contribute to individual differences in cooperation is a key gene within the oxytocin (OT) system, the OT reception gene (OXTR). In this article, we aim to bridge the gap between the OXTR gene and cooperation by using an endophenotype approach. We present evidence that the association between the OXTR gene and cooperation may in part be due to how the OXTR gene affects brain systems involved in emotion recognition, empathy/theory of mind, social communication and social reward seeking. There is evidence that the OXTR gene is associated with the functional anatomy of the amygdala, visual cortex (VC), anterior cingulate and superior temporal gyrus (STG). However, it is currently unknown how the OXTR gene may be linked to the functional anatomy of other relevant brain regions that include the fusiform gyrus (FG), superior temporal sulcus (STS), ventromedial prefrontal cortex (VMPFC), temporoparietal junction (TPJ) and nucleus accumbens (NAcc). We conclude by highlighting potential future research directions that may elucidate the path between OXTR and complex behaviors such as cooperation.
Haas, Brian W.; Anderson, Ian W.; Smith, Jessica M.
2013-01-01
Although cooperation represents a core facet of human social behavior there exists considerable variability across people in terms of the tendency to cooperate. One factor that may contribute to individual differences in cooperation is a key gene within the oxytocin (OT) system, the OT reception gene (OXTR). In this article, we aim to bridge the gap between the OXTR gene and cooperation by using an endophenotype approach. We present evidence that the association between the OXTR gene and cooperation may in part be due to how the OXTR gene affects brain systems involved in emotion recognition, empathy/theory of mind, social communication and social reward seeking. There is evidence that the OXTR gene is associated with the functional anatomy of the amygdala, visual cortex (VC), anterior cingulate and superior temporal gyrus (STG). However, it is currently unknown how the OXTR gene may be linked to the functional anatomy of other relevant brain regions that include the fusiform gyrus (FG), superior temporal sulcus (STS), ventromedial prefrontal cortex (VMPFC), temporoparietal junction (TPJ) and nucleus accumbens (NAcc). We conclude by highlighting potential future research directions that may elucidate the path between OXTR and complex behaviors such as cooperation. PMID:24348360
Petunia, Your Next Supermodel?
Vandenbussche, Michiel; Chambrier, Pierre; Rodrigues Bento, Suzanne; Morel, Patrice
2016-01-01
Plant biology in general, and plant evo–devo in particular would strongly benefit from a broader range of available model systems. In recent years, technological advances have facilitated the analysis and comparison of individual gene functions in multiple species, representing now a fairly wide taxonomic range of the plant kingdom. Because genes are embedded in gene networks, studying evolution of gene function ultimately should be put in the context of studying the evolution of entire gene networks, since changes in the function of a single gene will normally go together with further changes in its network environment. For this reason, plant comparative biology/evo–devo will require the availability of a defined set of ‘super’ models occupying key taxonomic positions, in which performing gene functional analysis and testing genetic interactions ideally is as straightforward as, e.g., in Arabidopsis. Here we review why petunia has the potential to become one of these future supermodels, as a representative of the Asterid clade. We will first detail its intrinsic qualities as a model system. Next, we highlight how the revolution in sequencing technologies will now finally allows exploitation of the petunia system to its full potential, despite that petunia has already a long history as a model in plant molecular biology and genetics. We conclude with a series of arguments in favor of a more diversified multi-model approach in plant biology, and we point out where the petunia model system may further play a role, based on its biological features and molecular toolkit. PMID:26870078
Furumizu, Chihiro; Alvarez, John Paul; Sakakibara, Keiko; Bowman, John L.
2015-01-01
Neofunctionalization following gene duplication is thought to be one of the key drivers in generating evolutionary novelty. A gene duplication in a common ancestor of land plants produced two classes of KNOTTED-like TALE homeobox genes, class I (KNOX1) and class II (KNOX2). KNOX1 genes are linked to tissue proliferation and maintenance of meristematic potentials of flowering plant and moss sporophytes, and modulation of KNOX1 activity is implicated in contributing to leaf shape diversity of flowering plants. While KNOX2 function has been shown to repress the gametophytic (haploid) developmental program during moss sporophyte (diploid) development, little is known about KNOX2 function in flowering plants, hindering syntheses regarding the relationship between two classes of KNOX genes in the context of land plant evolution. Arabidopsis plants harboring loss-of-function KNOX2 alleles exhibit impaired differentiation of all aerial organs and have highly complex leaves, phenocopying gain-of-function KNOX1 alleles. Conversely, gain-of-function KNOX2 alleles in conjunction with a presumptive heterodimeric BELL TALE homeobox partner suppressed SAM activity in Arabidopsis and reduced leaf complexity in the Arabidopsis relative Cardamine hirsuta, reminiscent of loss-of-function KNOX1 alleles. Little evidence was found indicative of epistasis or mutual repression between KNOX1 and KNOX2 genes. KNOX proteins heterodimerize with BELL TALE homeobox proteins to form functional complexes, and contrary to earlier reports based on in vitro and heterologous expression, we find high selectivity between KNOX and BELL partners in vivo. Thus, KNOX2 genes confer opposing activities rather than redundant roles with KNOX1 genes, and together they act to direct the development of all above-ground organs of the Arabidopsis sporophyte. We infer that following the KNOX1/KNOX2 gene duplication in an ancestor of land plants, neofunctionalization led to evolution of antagonistic biochemical activity thereby facilitating the evolution of more complex sporophyte transcriptional networks, providing plasticity for the morphological evolution of land plant body plans. PMID:25671434
Rubino, Francesco; Carberry, Ciara; M Waters, Sinéad; Kenny, David; McCabe, Matthew S; Creevey, Christopher J
2017-04-01
Many microbes in complex competitive environments share genes for acquiring and utilising nutrients, questioning whether niche specialisation exists and if so, how it is maintained. We investigated the genomic signatures of niche specialisation in the rumen microbiome, a highly competitive, anaerobic environment, with limited nutrient availability determined by the biomass consumed by the host. We generated individual metagenomic libraries from 14 cows fed an ad libitum diet of grass silage and calculated functional isoform diversity for each microbial gene identified. The animal replicates were used to calculate confidence intervals to test for differences in diversity of functional isoforms between microbes that may drive niche specialisation. We identified 153 genes with significant differences in functional isoform diversity between the two most abundant bacterial genera in the rumen (Prevotella and Clostridium). We found Prevotella possesses a more diverse range of isoforms capable of degrading hemicellulose, whereas Clostridium for cellulose. Furthermore, significant differences were observed in key metabolic processes indicating that isoform diversity plays an important role in maintaining their niche specialisation. The methods presented represent a novel approach for untangling complex interactions between microorganisms in natural environments and have resulted in an expanded catalogue of gene targets central to rumen cellulosic biomass degradation.
PAX6 maintains β cell identity by repressing genes of alternative islet cell types.
Swisa, Avital; Avrahami, Dana; Eden, Noa; Zhang, Jia; Feleke, Eseye; Dahan, Tehila; Cohen-Tayar, Yamit; Stolovich-Rain, Miri; Kaestner, Klaus H; Glaser, Benjamin; Ashery-Padan, Ruth; Dor, Yuval
2017-01-03
Type 2 diabetes is thought to involve a compromised β cell differentiation state, but the mechanisms underlying this dysfunction remain unclear. Here, we report a key role for the TF PAX6 in the maintenance of adult β cell identity and function. PAX6 was downregulated in β cells of diabetic db/db mice and in WT mice treated with an insulin receptor antagonist, revealing metabolic control of expression. Deletion of Pax6 in β cells of adult mice led to lethal hyperglycemia and ketosis that were attributed to loss of β cell function and expansion of α cells. Lineage-tracing, transcriptome, and chromatin analyses showed that PAX6 is a direct activator of β cell genes, thus maintaining mature β cell function and identity. In parallel, we found that PAX6 binds promoters and enhancers to repress alternative islet cell genes including ghrelin, glucagon, and somatostatin. Chromatin analysis and shRNA-mediated gene suppression experiments indicated a similar function of PAX6 in human β cells. We conclude that reduced expression of PAX6 in metabolically stressed β cells may contribute to β cell failure and α cell dysfunction in diabetes.
PAX6 maintains β cell identity by repressing genes of alternative islet cell types
Swisa, Avital; Avrahami, Dana; Eden, Noa; Zhang, Jia; Feleke, Eseye; Dahan, Tehila; Cohen-Tayar, Yamit; Stolovich-Rain, Miri; Kaestner, Klaus H.; Glaser, Benjamin; Ashery-Padan, Ruth
2016-01-01
Type 2 diabetes is thought to involve a compromised β cell differentiation state, but the mechanisms underlying this dysfunction remain unclear. Here, we report a key role for the TF PAX6 in the maintenance of adult β cell identity and function. PAX6 was downregulated in β cells of diabetic db/db mice and in WT mice treated with an insulin receptor antagonist, revealing metabolic control of expression. Deletion of Pax6 in β cells of adult mice led to lethal hyperglycemia and ketosis that were attributed to loss of β cell function and expansion of α cells. Lineage-tracing, transcriptome, and chromatin analyses showed that PAX6 is a direct activator of β cell genes, thus maintaining mature β cell function and identity. In parallel, we found that PAX6 binds promoters and enhancers to repress alternative islet cell genes including ghrelin, glucagon, and somatostatin. Chromatin analysis and shRNA-mediated gene suppression experiments indicated a similar function of PAX6 in human β cells. We conclude that reduced expression of PAX6 in metabolically stressed β cells may contribute to β cell failure and α cell dysfunction in diabetes. PMID:27941241
Alves, Chrystian J.; Dariolli, Rafael; Jorge, Frederico M.; Monteiro, Matheus R.; Maximino, Jessica R.; Martins, Roberto S.; Strauss, Bryan E.; Krieger, José E.; Callegaro, Dagoberto; Chadi, Gerson
2015-01-01
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that leads to widespread motor neuron death, general palsy and respiratory failure. The most prevalent sporadic ALS form is not genetically inherited. Attempts to translate therapeutic strategies have failed because the described mechanisms of disease are based on animal models carrying specific gene mutations and thus do not address sporadic ALS. In order to achieve a better approach to study the human disease, human induced pluripotent stem cell (hiPSC)-differentiated motor neurons were obtained from motor nerve fibroblasts of sporadic ALS and non-ALS subjects using the STEMCCA Cre-Excisable Constitutive Polycistronic Lentivirus system and submitted to microarray analyses using a whole human genome platform. DAVID analyses of differentially expressed genes identified molecular function and biological process-related genes through Gene Ontology. REVIGO highlighted the related functions mRNA and DNA binding, GTP binding, transcription (co)-repressor activity, lipoprotein receptor binding, synapse organization, intracellular transport, mitotic cell cycle and cell death. KEGG showed pathways associated with Parkinson's disease and oxidative phosphorylation, highlighting iron homeostasis, neurotrophic functions, endosomal trafficking and ERK signaling. The analysis of most dysregulated genes and those representative of the majority of categorized genes indicates a strong association between mitochondrial function and cellular processes possibly related to motor neuron degeneration. In conclusion, iPSC-derived motor neurons from motor nerve fibroblasts of sporadic ALS patients may recapitulate key mechanisms of neurodegeneration and may offer an opportunity for translational investigation of sporadic ALS. Large gene profiling of differentiated motor neurons from sporadic ALS patients highlights mitochondrial participation in the establishment of autonomous mechanisms associated with sporadic ALS. PMID:26300727
ProbFAST: Probabilistic functional analysis system tool.
Silva, Israel T; Vêncio, Ricardo Z N; Oliveira, Thiago Y K; Molfetta, Greice A; Silva, Wilson A
2010-03-30
The post-genomic era has brought new challenges regarding the understanding of the organization and function of the human genome. Many of these challenges are centered on the meaning of differential gene regulation under distinct biological conditions and can be performed by analyzing the Multiple Differential Expression (MDE) of genes associated with normal and abnormal biological processes. Currently MDE analyses are limited to usual methods of differential expression initially designed for paired analysis. We proposed a web platform named ProbFAST for MDE analysis which uses Bayesian inference to identify key genes that are intuitively prioritized by means of probabilities. A simulated study revealed that our method gives a better performance when compared to other approaches and when applied to public expression data, we demonstrated its flexibility to obtain relevant genes biologically associated with normal and abnormal biological processes. ProbFAST is a free accessible web-based application that enables MDE analysis on a global scale. It offers an efficient methodological approach for MDE analysis of a set of genes that are turned on and off related to functional information during the evolution of a tumor or tissue differentiation. ProbFAST server can be accessed at http://gdm.fmrp.usp.br/probfast.
ProbFAST: Probabilistic Functional Analysis System Tool
2010-01-01
Background The post-genomic era has brought new challenges regarding the understanding of the organization and function of the human genome. Many of these challenges are centered on the meaning of differential gene regulation under distinct biological conditions and can be performed by analyzing the Multiple Differential Expression (MDE) of genes associated with normal and abnormal biological processes. Currently MDE analyses are limited to usual methods of differential expression initially designed for paired analysis. Results We proposed a web platform named ProbFAST for MDE analysis which uses Bayesian inference to identify key genes that are intuitively prioritized by means of probabilities. A simulated study revealed that our method gives a better performance when compared to other approaches and when applied to public expression data, we demonstrated its flexibility to obtain relevant genes biologically associated with normal and abnormal biological processes. Conclusions ProbFAST is a free accessible web-based application that enables MDE analysis on a global scale. It offers an efficient methodological approach for MDE analysis of a set of genes that are turned on and off related to functional information during the evolution of a tumor or tissue differentiation. ProbFAST server can be accessed at http://gdm.fmrp.usp.br/probfast. PMID:20353576
Essential Role of Chromatin Remodeling Protein Bptf in Early Mouse Embryos and Embryonic Stem Cells
Landry, Joseph; Sharov, Alexei A.; Piao, Yulan; Sharova, Lioudmila V.; Xiao, Hua; Southon, Eileen; Matta, Jennifer; Tessarollo, Lino; Zhang, Ying E.; Ko, Minoru S. H.; Kuehn, Michael R.; Yamaguchi, Terry P.; Wu, Carl
2008-01-01
We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor), the largest subunit of NURF (Nucleosome Remodeling Factor) in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptf−/− embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptf−/− embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo. PMID:18974875
Colaprico, Antonio; Bontempi, Gianluca; Castiglioni, Isabella
2018-01-01
Like other cancer diseases, prostate cancer (PC) is caused by the accumulation of genetic alterations in the cells that drives malignant growth. These alterations are revealed by gene profiling and copy number alteration (CNA) analysis. Moreover, recent evidence suggests that also microRNAs have an important role in PC development. Despite efforts to profile PC, the alterations (gene, CNA, and miRNA) and biological processes that correlate with disease development and progression remain partially elusive. Many gene signatures proposed as diagnostic or prognostic tools in cancer poorly overlap. The identification of co-expressed genes, that are functionally related, can identify a core network of genes associated with PC with a better reproducibility. By combining different approaches, including the integration of mRNA expression profiles, CNAs, and miRNA expression levels, we identified a gene signature of four genes overlapping with other published gene signatures and able to distinguish, in silico, high Gleason-scored PC from normal human tissue, which was further enriched to 19 genes by gene co-expression analysis. From the analysis of miRNAs possibly regulating this network, we found that hsa-miR-153 was highly connected to the genes in the network. Our results identify a four-gene signature with diagnostic and prognostic value in PC and suggest an interesting gene network that could play a key regulatory role in PC development and progression. Furthermore, hsa-miR-153, controlling this network, could be a potential biomarker for theranostics in high Gleason-scored PC. PMID:29562723
Shen, Yun; Chen, Ri-Dao; Xie, Ke-Bo; Zou, Jian-Hua; Dai, Jun-Gui
2016-12-01
Secoisolariciresinol dehydrogenase (SDH) is a key enzyme involved in the biosynthetic pathway of podophyllotoxin.In this study, two SDH candidate genes,SO282 and SO1223, were cloned from callus of Dysosma versipellis by homology-based PCR and rapid amplification of cDNA end (RACE).The SDH candidate genes were expressed in Escherichia coli and the subsequent enzyme assay in vitro showed that recombinant SO282 had the SDH activity. These results pave the way to the follow-up investigation of the biosynthetic of podophyllotoxin. Copyright© by the Chinese Pharmaceutical Association.
Gene therapy for inherited retinal degenerations: initial successes and future challenges
NASA Astrophysics Data System (ADS)
Gupta, Priya R.; Huckfeldt, Rachel M.
2017-10-01
Inherited retinal degenerations are a clinically and genetically heterogeneous group of conditions that have historically shared an untreatable course. In recent years, however, a wide range of therapeutic strategies have demonstrated efficacy in preclinical studies and entered clinical trials with a common goal of improving visual function for patients affected with these conditions. Gene therapy offers a particularly elegant and precise opportunity to target the causative genetic mutations underlying these monogenic diseases. The present review will provide an overview of gene therapy with particular emphasis on key clinical results to date and challenges for the future.
2011-01-01
Background Understanding polyphenism, the ability of a single genome to express multiple morphologically and behaviourally distinct phenotypes, is an important goal for evolutionary and developmental biology. Polyphenism has been key to the evolution of the Hymenoptera, and particularly the social Hymenoptera where the genome of a single species regulates distinct larval stages, sexual dimorphism and physical castes within the female sex. Transcriptomic analyses of social Hymenoptera will therefore provide unique insights into how changes in gene expression underlie such complexity. Here we describe gene expression in individual specimens of the pre-adult stages, sexes and castes of the key pollinator, the buff-tailed bumblebee Bombus terrestris. Results cDNA was prepared from mRNA from five life cycle stages (one larva, one pupa, one male, one gyne and two workers) and a total of 1,610,742 expressed sequence tags (ESTs) were generated using Roche 454 technology, substantially increasing the sequence data available for this important species. Overlapping ESTs were assembled into 36,354 B. terrestris putative transcripts, and functionally annotated. A preliminary assessment of differences in gene expression across non-replicated specimens from the pre-adult stages, castes and sexes was performed using R-STAT analysis. Individual samples from the life cycle stages of the bumblebee differed in the expression of a wide array of genes, including genes involved in amino acid storage, metabolism, immunity and olfaction. Conclusions Detailed analyses of immune and olfaction gene expression across phenotypes demonstrated how transcriptomic analyses can inform our understanding of processes central to the biology of B. terrestris and the social Hymenoptera in general. For example, examination of immunity-related genes identified high conservation of important immunity pathway components across individual specimens from the life cycle stages while olfactory-related genes exhibited differential expression with a wider repertoire of gene expression within adults, especially sexuals, in comparison to immature stages. As there is an absence of replication across the samples, the results of this study are preliminary but provide a number of candidate genes which may be related to distinct phenotypic stage expression. This comprehensive transcriptome catalogue will provide an important gene discovery resource for directed programmes in ecology, evolution and conservation of a key pollinator. PMID:22185240
Li, Jiajia; Han, Shaohuai; Ding, Xianlong; He, Tingting; Dai, Jinying; Yang, Shouping; Gai, Junyi
2015-01-01
Background The utilization of soybean heterosis is probably one of the potential approaches in future yield breakthrough as was the situation in rice breeding in China. Cytoplasmic male sterility (CMS) plays an important role in the production of hybrid seeds. However, the molecular mechanism of CMS in soybean remains unclear. Results The comparative transcriptome analysis between cytoplasmic male sterile line NJCMS1A and its near-isogenic maintainer NJCMS1B in soybean was conducted using Illumina sequencing technology. A total of 88,643 transcripts were produced in Illumina sequencing. Then 56,044 genes were obtained matching soybean reference genome. Three hundred and sixty five differentially expressed genes (DEGs) between NJCMS1A and NJCMS1B were screened by threshold, among which, 339 down-regulated and 26 up-regulated in NJCMS1A compared to in NJCMS1B. Gene Ontology (GO) annotation showed that 242 DEGs were annotated to 19 functional categories. Clusters of Orthologous Groups of proteins (COG) annotation showed that 265 DEGs were classified into 19 categories. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that 46 DEGs were assigned to 33 metabolic pathways. According to functional and metabolic pathway analysis combined with reported literatures, the relations between some key DEGs and the male sterility of NJCMS1A were discussed. qRT-PCR analysis validated that the gene expression pattern in RNA-Seq was reliable. Finally, enzyme activity assay showed that energy supply was decreased in NJCMS1A compared to in NJCMS1B. Conclusions We concluded that the male sterility of NJCMS1A might be related to the disturbed functions and metabolism pathways of some key DEGs, such as DEGs involved in carbohydrate and energy metabolism, transcription factors, regulation of pollen development, elimination of reactive oxygen species (ROS), cellular signal transduction, and programmed cell death (PCD) etc. Future research will focus on cloning and transgenic function validation of possible candidate genes associated with soybean CMS. PMID:25985300
He, Rong-Quan; Yang, Xia; Liang, Liang; Chen, Gang; Ma, Jie
2018-04-01
The present study aimed to explore the potential clinical significance of microRNA (miR)-124-3p expression in the hepatocarcinogenesis and development of hepatocellular carcinoma (HCC), as well as the potential target genes of functional HCC pathways. Reverse transcription-quantitative polymerase chain reaction was performed to evaluate the expression of miR-124-3p in 101 HCC and adjacent non-cancerous tissue samples. Additionally, the association between miR-124-3p expression and clinical parameters was also analyzed. Differentially expressed genes identified following miR-124-3p transfection, the prospective target genes predicted in silico and the key genes of HCC obtained from Natural Language Processing (NLP) were integrated to obtain potential target genes of miR-124-3p in HCC. Relevant signaling pathways were assessed with protein-protein interaction (PPI) networks, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Protein Annotation Through Evolutionary Relationships (PANTHER) pathway enrichment analysis. miR-124-3p expression was significantly reduced in HCC tissues compared with expression in adjacent non-cancerous liver tissues. In HCC, miR-124-3p was demonstrated to be associated with clinical stage. The mean survival time of the low miR-124-3p expression group was reduced compared with that of the high expression group. A total of 132 genes overlapped from differentially expressed genes, miR-124-3p predicted target genes and NLP identified genes. PPI network construction revealed a total of 109 nodes and 386 edges, and 20 key genes were identified. The major enriched terms of three GO categories included regulation of cell proliferation, positive regulation of cellular biosynthetic processes, cell leading edge, cytosol and cell projection, protein kinase activity, transcription activator activity and enzyme binding. KEGG analysis revealed pancreatic cancer, prostate cancer and non-small cell lung cancer as the top three terms. Angiogenesis, the endothelial growth factor receptor signaling pathway and the fibroblast growth factor signaling pathway were identified as the most significant terms in the PANTHER pathway analysis. The present study confirmed that miR-124-3p acts as a tumor suppressor in HCC. miR-124-3p may target multiple genes, exerting its effect spatiotemporally, or in combination with a diverse range of processes in HCC. Functional characterization of miR-124-3p targets will offer novel insight into the molecular changes that occur in HCC progression.
KANEKO-ISHINO, Tomoko; ISHINO, Fumitoshi
2015-01-01
Mammals, including human beings, have evolved a unique viviparous reproductive system and a highly developed central nervous system. How did these unique characteristics emerge in mammalian evolution, and what kinds of changes did occur in the mammalian genomes as evolution proceeded? A key conceptual term in approaching these issues is “mammalian-specific genomic functions”, a concept covering both mammalian-specific epigenetics and genetics. Genomic imprinting and LTR retrotransposon-derived genes are reviewed as the representative, mammalian-specific genomic functions that are essential not only for the current mammalian developmental system, but also mammalian evolution itself. First, the essential roles of genomic imprinting in mammalian development, especially related to viviparous reproduction via placental function, as well as the emergence of genomic imprinting in mammalian evolution, are discussed. Second, we introduce the novel concept of “mammalian-specific traits generated by mammalian-specific genes from LTR retrotransposons”, based on the finding that LTR retrotransposons served as a critical driving force in the mammalian evolution via generating mammalian-specific genes. PMID:26666304
The genome of Aiptasia, a sea anemone model for coral symbiosis
Baumgarten, Sebastian; Simakov, Oleg; Esherick, Lisl Y.; Liew, Yi Jin; Lehnert, Erik M.; Michell, Craig T.; Li, Yong; Hambleton, Elizabeth A.; Guse, Annika; Oates, Matt E.; Gough, Julian; Weis, Virginia M.; Aranda, Manuel; Pringle, John R.; Voolstra, Christian R.
2015-01-01
The most diverse marine ecosystems, coral reefs, depend upon a functional symbiosis between a cnidarian animal host (the coral) and intracellular photosynthetic dinoflagellate algae. The molecular and cellular mechanisms underlying this endosymbiosis are not well understood, in part because of the difficulties of experimental work with corals. The small sea anemone Aiptasia provides a tractable laboratory model for investigating these mechanisms. Here we report on the assembly and analysis of the Aiptasia genome, which will provide a foundation for future studies and has revealed several features that may be key to understanding the evolution and function of the endosymbiosis. These features include genomic rearrangements and taxonomically restricted genes that may be functionally related to the symbiosis, aspects of host dependence on alga-derived nutrients, a novel and expanded cnidarian-specific family of putative pattern-recognition receptors that might be involved in the animal–algal interactions, and extensive lineage-specific horizontal gene transfer. Extensive integration of genes of prokaryotic origin, including genes for antimicrobial peptides, presumably reflects an intimate association of the animal–algal pair also with its prokaryotic microbiome. PMID:26324906
The Genetics of the Thyroid Stimulating Hormone Receptor: History and Relevance
Yin, Xiaoming; Latif, Rauf
2010-01-01
Background The thyroid stimulating hormone receptor (TSHR) is the key regulator of thyrocyte function. The gene for the TSHR on chromosome 14q31 has been implicated as coding for the major autoantigen in the autoimmune hyperthyroidism of Graves' disease (GD) to which T cells and autoantibodies are directed. Summary The TSHR is a seven-transmembrane domain receptor that undergoes complex posttranslational processing. In this brief review, we look at the genetics of this important autoantigen and its influence on a variety of tissue functions in addition to its role in the induction of GD. Conclusions There is convincing evidence that the TSH receptor gene confers increased susceptibility for GD, but not Hashimoto's thyroiditis. GD is associated with polymorphisms in the intron 1 gene region. How such noncoding nucleotide changes influence disease susceptibility remains uncertain, but is likely to involve TSHR splicing variants and/or microRNAs arising from this gene region. Whether such influences are confined to the thyroid gland or whether they influence cell function in the many extrathyroidal sites of TSHR expression remains unknown. PMID:20578897
Systems Genetic Analysis of Osteoblast-Lineage Cells
Calabrese, Gina; Bennett, Brian J.; Orozco, Luz; Kang, Hyun M.; Eskin, Eleazar; Dombret, Carlos; De Backer, Olivier; Lusis, Aldons J.; Farber, Charles R.
2012-01-01
The osteoblast-lineage consists of cells at various stages of maturation that are essential for skeletal development, growth, and maintenance. Over the past decade, many of the signaling cascades that regulate this lineage have been elucidated; however, little is known of the networks that coordinate, modulate, and transmit these signals. Here, we identify a gene network specific to the osteoblast-lineage through the reconstruction of a bone co-expression network using microarray profiles collected on 96 Hybrid Mouse Diversity Panel (HMDP) inbred strains. Of the 21 modules that comprised the bone network, module 9 (M9) contained genes that were highly correlated with prototypical osteoblast maker genes and were more highly expressed in osteoblasts relative to other bone cells. In addition, the M9 contained many of the key genes that define the osteoblast-lineage, which together suggested that it was specific to this lineage. To use the M9 to identify novel osteoblast genes and highlight its biological relevance, we knocked-down the expression of its two most connected “hub” genes, Maged1 and Pard6g. Their perturbation altered both osteoblast proliferation and differentiation. Furthermore, we demonstrated the mice deficient in Maged1 had decreased bone mineral density (BMD). It was also discovered that a local expression quantitative trait locus (eQTL) regulating the Wnt signaling antagonist Sfrp1 was a key driver of the M9. We also show that the M9 is associated with BMD in the HMDP and is enriched for genes implicated in the regulation of human BMD through genome-wide association studies. In conclusion, we have identified a physiologically relevant gene network and used it to discover novel genes and regulatory mechanisms involved in the function of osteoblast-lineage cells. Our results highlight the power of harnessing natural genetic variation to generate co-expression networks that can be used to gain insight into the function of specific cell-types. PMID:23300464
Truong, Anh Duc; Rengaraj, Deivendran; Hong, Yeojin; Hoang, Cong Thanh; Hong, Yeong Ho; Lillehoj, Hyun S
2017-05-01
The JAK-STAT signaling pathway plays a key role in cytokine and growth factor activation and is involved in several cellular functions and diseases. The main objective of this study was to investigate the expression of candidate JAK-STAT pathway genes and their regulators and interactors in the intestinal mucosal layer of two genetically disparate chicken lines [Marek's disease (MD)-resistant line 6.3 and MD-susceptible line 7.2] induced with necrotic enteritis (NE). Through RNA-sequencing, we investigated 116 JAK-STAT signaling pathway-related genes that were significant and differentially expressed between the intestinal mucosa of the two lines compared with respective uninfected controls. About 15 JAK-STAT pathway genes were further verified by qRT-PCR, and the results were in agreement with our sequencing data. All the identified 116 genes were annotated through Gene Ontology and mapped to the KEGG chicken JAK-STAT signaling pathway. To the best of our knowledge, this is the first study to represent the transcriptional analysis of a large number of candidate genes, regulators, and potential interactors in the JAK-STAT pathway of the two chicken lines induced with NE. Several key genes of the interactome, namely, STAT1/3/4, STAT5B, JAK1-3, TYK2, AKT1/3, SOCS1-5, PIAS1/2/4, PTPN6/11, and PIK3, were determined to be differentially expressed in the two lines. Moreover, we detected 68 known miRNAs variably targeting JAK-STAT pathway genes and differentially expressed in the two lines induced with NE. The RNA-sequencing and bioinformatics analyses in this study provided an abundance of data that will be useful for future studies on JAK-STAT pathways associated with the functions of two genetically disparate chicken lines induced with NE. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhu, Genfa; Yang, Fengxi; Shi, Shanshan; Li, Dongmei; Wang, Zhen; Liu, Hailin; Huang, Dan; Wang, Caiyun
2015-01-01
The highly variable leaf color of Cymbidium sinense significantly improves its horticultural and economic value, and makes it highly desirable in the flower markets in China and Southeast Asia. However, little is understood about the molecular mechanism underlying leaf-color variations. In this study, we found the content of photosynthetic pigments, especially chlorophyll degradation metabolite in the leaf-color mutants is distinguished significantly from that in the wild type of Cymbidium sinense 'Dharma'. To further determine the candidate genes controlling leaf-color variations, we first sequenced the global transcriptome using 454 pyrosequencing. More than 0.7 million expressed sequence tags (ESTs) with an average read length of 445.9 bp were generated and assembled into 103,295 isotigs representing 68,460 genes. Of these isotigs, 43,433 were significantly aligned to known proteins in the public database, of which 29,299 could be categorized into 42 functional groups in the gene ontology system, 10,079 classified into 23 functional classifications in the clusters of orthologous groups system, and 23,092 assigned to 139 clusters of specific metabolic pathways in the Kyoto Encyclopedia of Genes and Genomes. Among these annotations, 95 isotigs were designated as involved in chlorophyll metabolism. On this basis, we identified 16 key enzyme-encoding genes in the chlorophyll metabolism pathway, the full length cDNAs and expressions of which were further confirmed. Expression pattern indicated that the key enzyme-encoding genes for chlorophyll degradation were more highly expressed in the leaf color mutants, as was consistent with their lower chlorophyll contents. This study is the first to supply an informative 454 EST dataset for Cymbidium sinense 'Dharma' and to identify original leaf color-associated genes, which provide important resources to facilitate gene discovery for molecular breeding, marketable trait discovery, and investigating various biological process in this species.
Shi, Shanshan; Li, Dongmei; Wang, Zhen; Liu, Hailin; Huang, Dan; Wang, Caiyun
2015-01-01
The highly variable leaf color of Cymbidium sinense significantly improves its horticultural and economic value, and makes it highly desirable in the flower markets in China and Southeast Asia. However, little is understood about the molecular mechanism underlying leaf-color variations. In this study, we found the content of photosynthetic pigments, especially chlorophyll degradation metabolite in the leaf-color mutants is distinguished significantly from that in the wild type of Cymbidium sinense 'Dharma'. To further determine the candidate genes controlling leaf-color variations, we first sequenced the global transcriptome using 454 pyrosequencing. More than 0.7 million expressed sequence tags (ESTs) with an average read length of 445.9 bp were generated and assembled into 103,295 isotigs representing 68,460 genes. Of these isotigs, 43,433 were significantly aligned to known proteins in the public database, of which 29,299 could be categorized into 42 functional groups in the gene ontology system, 10,079 classified into 23 functional classifications in the clusters of orthologous groups system, and 23,092 assigned to 139 clusters of specific metabolic pathways in the Kyoto Encyclopedia of Genes and Genomes. Among these annotations, 95 isotigs were designated as involved in chlorophyll metabolism. On this basis, we identified 16 key enzyme-encoding genes in the chlorophyll metabolism pathway, the full length cDNAs and expressions of which were further confirmed. Expression pattern indicated that the key enzyme-encoding genes for chlorophyll degradation were more highly expressed in the leaf color mutants, as was consistent with their lower chlorophyll contents. This study is the first to supply an informative 454 EST dataset for Cymbidium sinense 'Dharma' and to identify original leaf color-associated genes, which provide important resources to facilitate gene discovery for molecular breeding, marketable trait discovery, and investigating various biological process in this species. PMID:26042676
Long-Range Control of Gene Expression: Emerging Mechanisms and Disruption in Disease
Kleinjan, Dirk A.; van Heyningen, Veronica
2005-01-01
Transcriptional control is a major mechanism for regulating gene expression. The complex machinery required to effect this control is still emerging from functional and evolutionary analysis of genomic architecture. In addition to the promoter, many other regulatory elements are required for spatiotemporally and quantitatively correct gene expression. Enhancer and repressor elements may reside in introns or up- and downstream of the transcription unit. For some genes with highly complex expression patterns—often those that function as key developmental control genes—the cis-regulatory domain can extend long distances outside the transcription unit. Some of the earliest hints of this came from disease-associated chromosomal breaks positioned well outside the relevant gene. With the availability of wide-ranging genome sequence comparisons, strong conservation of many noncoding regions became obvious. Functional studies have shown many of these conserved sites to be transcriptional regulatory elements that sometimes reside inside unrelated neighboring genes. Such sequence-conserved elements generally harbor sites for tissue-specific DNA-binding proteins. Developmentally variable chromatin conformation can control protein access to these sites and can regulate transcription. Disruption of these finely tuned mechanisms can cause disease. Some regulatory element mutations will be associated with phenotypes distinct from any identified for coding-region mutations. PMID:15549674
Transgenic mouse models in the study of reproduction: insights into GATA protein function.
Tevosian, Sergei G
2014-07-01
For the past 2 decades, transgenic technology in mice has allowed for an unprecedented insight into the transcriptional control of reproductive development and function. The key factor among the mouse genetic tools that made this rapid advance possible is a conditional transgenic approach, a particularly versatile method of creating gene deletions and substitutions in the mouse genome. A centerpiece of this strategy is an enzyme, Cre recombinase, which is expressed from defined DNA regulatory elements that are active in the tissue of choice. The regulatory DNA element (either genetically engineered or natural) assures Cre expression only in predetermined cell types, leading to the guided deletion of genetically modified (flanked by loxP or 'floxed' by loxP) gene loci. This review summarizes and compares the studies in which genes encoding GATA family transcription factors were targeted either globally or by Cre recombinases active in the somatic cells of ovaries and testes. The conditional gene loss experiments require detailed knowledge of the spatial and temporal expression of Cre activity, and the challenges in interpreting the outcomes are highlighted. These studies also expose the complexity of GATA-dependent regulation of gonadal gene expression and suggest that gene function is highly context dependent. © 2014 Society for Reproduction and Fertility.
Broad-Enrich: functional interpretation of large sets of broad genomic regions.
Cavalcante, Raymond G; Lee, Chee; Welch, Ryan P; Patil, Snehal; Weymouth, Terry; Scott, Laura J; Sartor, Maureen A
2014-09-01
Functional enrichment testing facilitates the interpretation of Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) data in terms of pathways and other biological contexts. Previous methods developed and used to test for key gene sets affected in ChIP-seq experiments treat peaks as points, and are based on the number of peaks associated with a gene or a binary score for each gene. These approaches work well for transcription factors, but histone modifications often occur over broad domains, and across multiple genes. To incorporate the unique properties of broad domains into functional enrichment testing, we developed Broad-Enrich, a method that uses the proportion of each gene's locus covered by a peak. We show that our method has a well-calibrated false-positive rate, performing well with ChIP-seq data having broad domains compared with alternative approaches. We illustrate Broad-Enrich with 55 ENCODE ChIP-seq datasets using different methods to define gene loci. Broad-Enrich can also be applied to other datasets consisting of broad genomic domains such as copy number variations. http://broad-enrich.med.umich.edu for Web version and R package. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.
The zebrafish reference genome sequence and its relationship to the human genome.
Howe, Kerstin; Clark, Matthew D; Torroja, Carlos F; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T; Guerra-Assunção, José A; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F; Laird, Gavin K; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Elliot, David; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Begum, Sharmin; Mortimore, Beverley; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Lloyd, Christine; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James D; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Lanz, Christa; Raddatz, Günter; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Schuster, Stephan C; Carter, Nigel P; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M J; Enright, Anton; Geisler, Robert; Plasterk, Ronald H A; Lee, Charles; Westerfield, Monte; de Jong, Pieter J; Zon, Leonard I; Postlethwait, John H; Nüsslein-Volhard, Christiane; Hubbard, Tim J P; Roest Crollius, Hugues; Rogers, Jane; Stemple, Derek L
2013-04-25
Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.
The zebrafish reference genome sequence and its relationship to the human genome
Howe, Kerstin; Clark, Matthew D.; Torroja, Carlos F.; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E.; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C.; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T.; Guerra-Assunção, José A.; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F.; Laird, Gavin K.; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M.; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Carter, Nigel P.; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M. J.; Enright, Anton; Geisler, Robert; Plasterk, Ronald H. A.; Lee, Charles; Westerfield, Monte; de Jong, Pieter J.; Zon, Leonard I.; Postlethwait, John H.; Nüsslein-Volhard, Christiane; Hubbard, Tim J. P.; Crollius, Hugues Roest; Rogers, Jane; Stemple, Derek L.
2013-01-01
Zebrafish have become a popular organism for the study of vertebrate gene function1,2. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease3–5. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes6, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination. PMID:23594743
Pandey, Dhananjay K; Chaudhary, Bhupendra
2016-05-13
Plant profilin genes encode core cell-wall structural proteins and are evidenced for their up-regulation under cotton domestication. Notwithstanding striking discoveries in the genetics of cell-wall organization in plants, little is explicit about the manner in which profilin-mediated molecular interplay and corresponding networks are altered, especially during cellular signalling of apical meristem determinacy and flower development. Here we show that the ectopic expression of GhPRF1 gene in tobacco resulted in the hyperactivation of apical meristem and early flowering phenotype with increased flower number in comparison to the control plants. Spatial expression alteration in CLV1, a key meristem-determinacy gene, is induced by the GhPRF1 overexpression in a WUS-dependent manner and mediates cell signalling to promote flowering. But no such expression alterations are recorded in the GhPRF1-RNAi lines. The GhPRF1 transduces key positive flowering regulator AP1 gene via coordinated expression of FT4, SOC1, FLC1 and FT1 genes involved in the apical-to-floral meristem signalling cascade which is consistent with our in silico profilin interaction data. Remarkably, these positive and negative flowering regulators are spatially controlled by the Actin-Related Protein (ARP) genes, specifically ARP4 and ARP6 in proximate association with profilins. This study provides a novel and systematic link between GhPRF1 gene expression and the flower primordium initiation via up-regulation of the ARP genes, and an insight into the functional characterization of GhPRF1 gene acting upstream to the flowering mechanism. Also, the transgenic plants expressing GhPRF1 gene show an increase in the plant height, internode length, leaf size and plant vigor. Overexpression of GhPRF1 gene induced early and increased flowering in tobacco with enhanced plant vigor. During apical meristem determinacy and flower development, the GhPRF1 gene directly influences key flowering regulators through ARP-genes, indicating for its role upstream in the apical-to-floral meristem signalling cascade.
Knockdown of Rice microRNA166 by Short Tandem Target Mimic (STTM).
Teotia, Sachin; Zhang, Dabing; Tang, Guiliang
2017-01-01
Small RNAs, including microRNAs (miRNAs), are abundant in plants and play key roles in controlling plant development and physiology. miRNAs regulate the expression of the target genes involved in key plant processes. Due to functional redundancy among miRNA family members in plants, an ideal approach to silence the expression of all members simultaneously, for their functional characterization, is desirable. Target mimic (TM) was the first approach to achieve this goal. Short tandem target mimic (STTM) is a potent approach complementing TM for silencing miRNAs in plants. STTMs have been successfully used in dicots to block miRNA functions. Here, we describe in detail the protocol for designing STTM construct to block miRNA functions in rice. Such approach can be applied to silence miRNAs in other monocots as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Jizhong; He, Zhili
2010-02-28
Project Title: Deduction and Analysis of the Interacting Stress Response Pathways of Metal/Radionuclide-reducing Bacteria DOE Grant Number: DE-FG02-06ER64205 Principal Investigator: Jizhong (Joe) Zhou (University of Oklahoma) Key members: Zhili He, Aifen Zhou, Christopher Hemme, Joy Van Nostrand, Ye Deng, and Qichao Tu Collaborators: Terry Hazen, Judy Wall, Adam Arkin, Matthew Fields, Aindrila Mukhopadhyay, and David Stahl Summary Three major objectives have been conducted in the Zhou group at the University of Oklahoma (OU): (i) understanding of gene function, regulation, network and evolution of Desulfovibrio vugaris Hildenborough in response to environmental stresses, (ii) development of metagenomics technologies for microbial community analysis,more » and (iii) functional characterization of microbial communities with metagenomic approaches. In the past a few years, we characterized four CRP/FNR regulators, sequenced ancestor and evolved D. vulgaris strains, and functionally analyzed those mutated genes identified in salt-adapted strains. Also, a new version of GeoChip 4.0 has been developed, which also includes stress response genes (StressChip), and a random matrix theory-based conceptual framework for identifying functional molecular ecological networks has been developed with the high throughput functional gene array hybridization data as well as pyrosequencing data from 16S rRNA genes. In addition, GeoChip and sequencing technologies as well as network analysis approaches have been used to analyze microbial communities from different habitats. Those studies provide a comprehensive understanding of gene function, regulation, network, and evolution in D. vulgaris, and microbial community diversity, composition and structure as well as their linkages with environmental factors and ecosystem functioning, which has resulted in more than 60 publications.« less
Thomas, Paul D; Kejariwal, Anish; Campbell, Michael J; Mi, Huaiyu; Diemer, Karen; Guo, Nan; Ladunga, Istvan; Ulitsky-Lazareva, Betty; Muruganujan, Anushya; Rabkin, Steven; Vandergriff, Jody A; Doremieux, Olivier
2003-01-01
The PANTHER database was designed for high-throughput analysis of protein sequences. One of the key features is a simplified ontology of protein function, which allows browsing of the database by biological functions. Biologist curators have associated the ontology terms with groups of protein sequences rather than individual sequences. Statistical models (Hidden Markov Models, or HMMs) are built from each of these groups. The advantage of this approach is that new sequences can be automatically classified as they become available. To ensure accurate functional classification, HMMs are constructed not only for families, but also for functionally distinct subfamilies. Multiple sequence alignments and phylogenetic trees, including curator-assigned information, are available for each family. The current version of the PANTHER database includes training sequences from all organisms in the GenBank non-redundant protein database, and the HMMs have been used to classify gene products across the entire genomes of human, and Drosophila melanogaster. The ontology terms and protein families and subfamilies, as well as Drosophila gene c;assifications, can be browsed and searched for free. Due to outstanding contractual obligations, access to human gene classifications and to protein family trees and multiple sequence alignments will temporarily require a nominal registration fee. PANTHER is publicly available on the web at http://panther.celera.com.
Di Narzo, Antonio Fabio; Kozlenkov, Alexey; Roussos, Panos; Hao, Ke; Hurd, Yasmin; Lewis, David A.; Sibille, Etienne; Siever, Larry J.; Koonin, Eugene; Dracheva, Stella
2014-01-01
Editing of the pre-mRNA for the serotonin receptor 2C (5-HT2CR) by site-specific adenosine deamination (A-to-I pre-mRNA editing) substantially increases the functional plasticity of this key neurotransmitter receptor and is thought to contribute to homeostatic mechanisms in neurons. 5-HT2CR mRNA editing generates up to 24 different receptor isoforms. The extent of editing correlates with 5-HT2CR functional activity: more highly edited isoforms exhibit the least function. Altered 5-HT2CR editing has been reported in postmortem brains of suicide victims. We report a comparative analysis of the connections among 5-HT2CR editing, genome-wide gene expression and DNA methylation in suicide victims, individuals with major depressive disorder and non-psychiatric controls. The results confirm previous findings of an overrepresentation of highly edited mRNA variants (which encode hypoactive 5-HT2CR receptors) in the brains of suicide victims. A large set of genes for which the expression level is associated with editing was detected. This signature set of editing-associated genes is significantly enriched for genes that are involved in synaptic transmission, genes that are preferentially expressed in neurons, and genes whose expression is correlated with the level of DNA methylation. Notably, we report that the link between 5-HT2CR editing and gene expression is disrupted in suicide victims. The results suggest that the postulated homeostatic function of 5-HT2CR editing is dysregulated in individuals who committed suicide. PMID:24781207
A roadmap for functional structural variants in the soybean genome
USDA-ARS?s Scientific Manuscript database
Gene structural variation (SV) has recently emerged as a key genetic mechanism underlying several important phenotypic traits in crop species. We screened a panel of 41 soybean accessions serving as parents in a soybean nested association mapping population for deletions and duplications in over 53...
Rashid, M Mamunur; Ikawa, Yumi; Tsuge, Seiji
2016-07-01
Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight of rice. For the virulence of the bacterium, the hrp genes, encoding components of the type III secretion system, are indispensable. The expression of hrp genes is regulated by two key hrp regulators, HrpG and HrpX: HrpG regulates hrpX, and HrpX regulates other hrp genes. Several other regulators have been shown to be involved in the regulation of hrp genes. Here, we found that a LysR-type transcriptional regulator that we named GamR, encoded by XOO_2767 of X. oryzae pv. oryzae strain MAFF311018, positively regulated the transcription of both hrpG and hrpX, which are adjacent to each other but have opposite orientations, with an intergenic upstream region in common. In a gel electrophoresis mobility shift assay, GamR bound directly to the middle of the upstream region common to hrpG and hrpX The loss of either GamR or its binding sites decreased hrpG and hrpX expression. Also, GamR bound to the upstream region of either a galactose metabolism-related gene (XOO_2768) or a galactose metabolism-related operon (XOO_2768 to XOO_2771) located next to gamR itself and positively regulated the genes. The deletion of the regulator gene resulted in less bacterial growth in a synthetic medium with galactose as a sole sugar source. Interestingly, induction of the galactose metabolism-related gene was dependent on galactose, while that of the hrp regulator genes was galactose independent. Our results indicate that the LysR-type transcriptional regulator that regulates the galactose metabolism-related gene(s) also acts in positive regulation of two key hrp regulators and the following hrp genes in X. oryzae pv. oryzae. The expression of hrp genes encoding components of the type III secretion system is essential for the virulence of many plant-pathogenic bacteria, including Xanthomonas oryzae pv. oryzae. It is specifically induced during infection. Research has revealed that in this bacterium, hrp gene expression is controlled by two key hrp regulators, HrpG and HrpX, along with several other regulators in the complex regulatory network, but the details remain unclear. Here, we found that a novel LysR-type transcriptional activator, named GamR, functions as an hrp regulator by directly activating the transcription of both hrpG and hrpX Interestingly, GamR also regulates a galactose metabolism-related gene (or operon) in a galactose-dependent manner, while the regulation of hrpG and hrpX is independent of the sugar. Our finding of a novel hrp regulator that directly and simultaneously regulates two key hrp regulators provides new insights into an important and complex regulation system of X. oryzae pv. oryzae hrp genes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Karn, Robert C; Laukaitis, Christina M
2014-08-01
In the present article, we summarize two aspects of our work on mouse ABP (androgen-binding protein): (i) the sexual selection function producing incipient reinforcement on the European house mouse hybrid zone, and (ii) the mechanism behind the dramatic expansion of the Abp gene region in the mouse genome. Selection unifies these two components, although the ways in which selection has acted differ. At the functional level, strong positive selection has acted on key sites on the surface of one face of the ABP dimer, possibly to influence binding to a receptor. A different kind of selection has apparently driven the recent and rapid expansion of the gene region, probably by increasing the amount of Abp transcript, in one or both of two ways. We have shown previously that groups of Abp genes behave as LCRs (low-copy repeats), duplicating as relatively large blocks of genes by NAHR (non-allelic homologous recombination). The second type of selection involves the close link between the accumulation of L1 elements and the expansion of the Abp gene family by NAHR. It is probably predicated on an initial selection for increased transcription of existing Abp genes and/or an increase in Abp gene number providing more transcriptional sites. Either or both could increase initial transcript production, a quantitative change similar to increasing the volume of a radio transmission. In closing, we also provide a note on Abp gene nomenclature.
Bourguignon, Natalia; Bargiela, Rafael; Rojo, David; Chernikova, Tatyana N; de Rodas, Sara A López; García-Cantalejo, Jesús; Näther, Daniela J; Golyshin, Peter N; Barbas, Coral; Ferrero, Marcela; Ferrer, Manuel
2016-12-01
The analysis of catabolic capacities of microorganisms is currently often achieved by cultivation approaches and by the analysis of genomic or metagenomic datasets. Recently, a microarray system designed from curated key aromatic catabolic gene families and key alkane degradation genes was designed. The collection of genes in the microarray can be exploited to indicate whether a given microbe or microbial community is likely to be functionally connected with certain degradative phenotypes, without previous knowledge of genome data. Herein, this microarray was applied to capture new insights into the catabolic capacities of copper-resistant actinomycete Amycolatopsis tucumanensis DSM 45259. The array data support the presumptive ability of the DSM 45259 strain to utilize single alkanes (n-decane and n-tetradecane) and aromatics such as benzoate, phthalate and phenol as sole carbon sources, which was experimentally validated by cultivation and mass spectrometry. Interestingly, while in strain DSM 45259 alkB gene encoding an alkane hydroxylase is most likely highly similar to that found in other actinomycetes, the genes encoding benzoate 1,2-dioxygenase, phthalate 4,5-dioxygenase and phenol hydroxylase were homologous to proteobacterial genes. This suggests that strain DSM 45259 contains catabolic genes distantly related to those found in other actinomycetes. Together, this study not only provided new insight into the catabolic abilities of strain DSM 45259, but also suggests that this strain contains genes uncommon within actinomycetes.
Ruocco, Nadia; Maria Fedele, Anna; Costantini, Susan; Romano, Giovanna; Ianora, Adrianna; Costantini, Maria
2017-08-01
The marine environment is continually subjected to the action of stressors (including natural toxins), which represent a constant danger for benthic communities. In the present work using network analysis we identified ten genes on the basis of associated functions (FOXA, FoxG, GFI-1, nodal, JNK, OneCut/Hnf6, TAK1, tcf4, TCF7, VEGF) in the sea urchin Paracentrotus lividus, having key roles in different processes, such as embryonic development and asymmetry, cell fate specification, cell differentiation and morphogenesis, and skeletogenesis. These genes are correlated with three HUB genes, Foxo, Jun and HIF1A. Real Time qPCR revealed that during sea urchin embryonic development the expression levels of these genes were modulated by three diatom-derived polyunsaturated aldehydes (PUAs), decadienal, heptadienal and octadienal. Our findings show how changes in gene expression levels may be used as an early indicator of stressful conditions in the marine environment. The identification of key genes and the molecular pathways in which they are involved represents a fundamental tool in understanding how marine organisms try to afford protection against toxicants, to avoid deleterious consequences and irreversible damages. The genes identified in this work as targets for PUAs can be considered as possible biomarkers to detect exposure to different environmental pollutants. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Controlling transcription in human pluripotent stem cells using CRISPR-effectors.
Genga, Ryan M; Kearns, Nicola A; Maehr, René
2016-05-15
The ability to manipulate transcription in human pluripotent stem cells (hPSCs) is fundamental for the discovery of key genes and mechanisms governing cellular state and differentiation. Recently developed CRISPR-effector systems provide a systematic approach to rapidly test gene function in mammalian cells, including hPSCs. In this review, we discuss recent advances in CRISPR-effector technologies that have been employed to control transcription through gene activation, gene repression, and epigenome engineering. We describe an application of CRISPR-effector mediated transcriptional regulation in hPSCs by targeting a synthetic promoter driving a GFP transgene, demonstrating the ease and effectiveness of CRISPR-effector mediated transcriptional regulation in hPSCs. Copyright © 2015 Elsevier Inc. All rights reserved.
A Key Gene, PLIN1, Can Affect Porcine Intramuscular Fat Content Based on Transcriptome Analysis
Li, Bojiang; Weng, Qiannan; Dong, Chao; Zhang, Zengkai; Li, Rongyang; Liu, Jingge; Jiang, Aiwen; Li, Qifa; Jia, Chao; Wu, Wangjun; Liu, Honglin
2018-01-01
Intramuscular fat (IMF) content is an important indicator for meat quality evaluation. However, the key genes and molecular regulatory mechanisms affecting IMF deposition remain unclear. In the present study, we identified 75 differentially expressed genes (DEGs) between the higher (H) and lower (L) IMF content of pigs using transcriptome analysis, of which 27 were upregulated and 48 were downregulated. Notably, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the DEG perilipin-1 (PLIN1) was significantly enriched in the fat metabolism-related peroxisome proliferator-activated receptor (PPAR) signaling pathway. Furthermore, we determined the expression patterns and functional role of porcine PLIN1. Our results indicate that PLIN1 was highly expressed in porcine adipose tissue, and its expression level was significantly higher in the H IMF content group when compared with the L IMF content group, and expression was increased during adipocyte differentiation. Additionally, our results confirm that PLIN1 knockdown decreases the triglyceride (TG) level and lipid droplet (LD) size in porcine adipocytes. Overall, our data identify novel candidate genes affecting IMF content and provide new insight into PLIN1 in porcine IMF deposition and adipocyte differentiation. PMID:29617344
A Key Gene, PLIN1, Can Affect Porcine Intramuscular Fat Content Based on Transcriptome Analysis.
Li, Bojiang; Weng, Qiannan; Dong, Chao; Zhang, Zengkai; Li, Rongyang; Liu, Jingge; Jiang, Aiwen; Li, Qifa; Jia, Chao; Wu, Wangjun; Liu, Honglin
2018-04-04
Intramuscular fat (IMF) content is an important indicator for meat quality evaluation. However, the key genes and molecular regulatory mechanisms affecting IMF deposition remain unclear. In the present study, we identified 75 differentially expressed genes (DEGs) between the higher (H) and lower (L) IMF content of pigs using transcriptome analysis, of which 27 were upregulated and 48 were downregulated. Notably, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the DEG perilipin-1 ( PLIN1 ) was significantly enriched in the fat metabolism-related peroxisome proliferator-activated receptor (PPAR) signaling pathway. Furthermore, we determined the expression patterns and functional role of porcine PLIN1. Our results indicate that PLIN1 was highly expressed in porcine adipose tissue, and its expression level was significantly higher in the H IMF content group when compared with the L IMF content group, and expression was increased during adipocyte differentiation. Additionally, our results confirm that PLIN1 knockdown decreases the triglyceride (TG) level and lipid droplet (LD) size in porcine adipocytes. Overall, our data identify novel candidate genes affecting IMF content and provide new insight into PLIN1 in porcine IMF deposition and adipocyte differentiation.
Methylation of miRNA genes and oncogenesis.
Loginov, V I; Rykov, S V; Fridman, M V; Braga, E A
2015-02-01
Interaction between microRNA (miRNA) and messenger RNA of target genes at the posttranscriptional level provides fine-tuned dynamic regulation of cell signaling pathways. Each miRNA can be involved in regulating hundreds of protein-coding genes, and, conversely, a number of different miRNAs usually target a structural gene. Epigenetic gene inactivation associated with methylation of promoter CpG-islands is common to both protein-coding genes and miRNA genes. Here, data on functions of miRNAs in development of tumor-cell phenotype are reviewed. Genomic organization of promoter CpG-islands of the miRNA genes located in inter- and intragenic areas is discussed. The literature and our own results on frequency of CpG-island methylation in miRNA genes from tumors are summarized, and data regarding a link between such modification and changed activity of miRNA genes and, consequently, protein-coding target genes are presented. Moreover, the impact of miRNA gene methylation on key oncogenetic processes as well as affected signaling pathways is discussed.
Xiong, Wei; Gao, Depei; Li, Yunfeng; Liu, Xin; Dai, Peiling; Qin, Jiyong; Wang, Guanshun; Li, Kangming; Bai, Han; Li, Wenhui
2016-10-01
Alternative splicing is a key mechanism that regulates protein diversity and has been found to be associated with colon cancer progression and metastasis. However, the function of alternative splicing in chemoradiation‑resistant colon cancer remains elusive. In this study, we constructed a chemoradiation‑resistant colon cancer cell line. Through RNA-sequencing of normal and chemoradiation‑resistant colon cancer cells (HCT116), we found 818 genes that were highly expressed in the normal HCT116 cells, whereas 285 genes were highly expressed in the chemoradiation-resistant HCT116 (RCR-HCT116) cells. Gene ontology (GO) analysis showed that genes that were highly expressed in the HCT116 cells were enriched in GO categories related to cell cycle and cell division, whereas genes that were highly expressed in the RCR-HCT116 cells were associated with regulation of system processes and response to wounding. Analysis of alternative splicing events revealed that exon skipping was significantly increased in the chemoradiation‑resistant colon cancer cells. Moreover, we identified 323 alternative splicing events in 293 genes that were significantly different between the two different HCT116 cell types. These alternative splicing‑related genes were clustered functionally into several groups related with DNA replication, such as deoxyribonucleotide metabolic/catabolic processes, response to DNA damage stimulus and helicase activity. These findings enriched our knowledge by elucidating the function of alternative splicing in chemoradiation-resistant colon cancer.
Yang, Ji; Gu, Hongya; Yang, Ziheng
2004-01-01
Chalcone synthase (CHS) is a key enzyme in the biosynthesis of flavonoides, which are important for the pigmentation of flowers and act as attractants to pollinators. Genes encoding CHS constitute a multigene family in which the copy number varies among plant species and functional divergence appears to have occurred repeatedly. In morning glories (Ipomoea), five functional CHS genes (A-E) have been described. Phylogenetic analysis of the Ipomoea CHS gene family revealed that CHS A, B, and C experienced accelerated rates of amino acid substitution relative to CHS D and E. To examine whether the CHS genes of the morning glories underwent adaptive evolution, maximum-likelihood models of codon substitution were used to analyze the functional sequences in the Ipomoea CHS gene family. These models used the nonsynonymous/synonymous rate ratio (omega = d(N)/ d(S)) as an indicator of selective pressure and allowed the ratio to vary among lineages or sites. Likelihood ratio test suggested significant variation in selection pressure among amino acid sites, with a small proportion of them detected to be under positive selection along the branches ancestral to CHS A, B, and C. Positive Darwinian selection appears to have promoted the divergence of subfamily ABC and subfamily DE and is at least partially responsible for a rate increase following gene duplication.
Structural polymorphism at LCR and its role in beta-globin gene regulation.
Kukreti, Shrikant; Kaur, Harpreet; Kaushik, Mahima; Bansal, Aparna; Saxena, Sarika; Kaushik, Shikha; Kukreti, Ritushree
2010-09-01
Information on the secondary structures and conformational manifestations of eukaryotic DNA and their biological significance with reference to gene regulation and expression is limited. The human beta-globin gene Locus Control Region (LCR), a dominant regulator of globin gene expression, is a contiguous piece of DNA with five tissue-specific DNase I-hypersensitive sites (HSs). Since these HSs have a high density of transcription factor binding sites, structural interdependencies between HSs and different promoters may directly or indirectly regulate LCR functions. Mutations and SNPs may stabilize or destabilize the local secondary structures, affecting the gene expression by changes in the protein-DNA recognition patterns. Various palindromic or quasi-palindromic segments within LCR, could cause structural polymorphism and geometrical switching of DNA. This emphasizes the importance of understanding of the sequence-dependent variations of the DNA structure. Such structural motifs might act as regulatory elements. The local conformational variability of a DNA segment or action of a DNA specific protein is key to create and maintain active chromatin domains and affect transcription of various tissue specific beta-globin genes. We, summarize here the current status of beta-globin LCR structure and function. Further structural studies at molecular level and functional genomics might solve the regulatory puzzles that control the beta-globin gene locus. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.
Muto, Masaki; Kubota, Chihiro; Tanaka, Masayoshi; Satoh, Akira; Matsumoto, Mitsufumi; Yoshino, Tomoko; Tanaka, Tsuyoshi
2013-01-01
Oleaginous microalgae are one of the promising resource of nonedible biodiesel fuel (BDF) feed stock alternatives. Now a challenge task is the decrease of the long-chain polyunsaturated fatty acids (PUFAs) content affecting on the BDF oxidative stability by using gene manipulation techniques. However, only the limited knowledge has been available concerning the fatty acid and PUFA synthesis pathways in microalgae. Especially, the function of Δ9 desaturase, which is a key enzyme in PUFA synthesis pathway, has not been determined in diatom. In this study, 4 Δ(9) desaturase genes (fD9desA, fD9desB, fD9desC and fD9desD) from the oleaginous diatom Fistulifera were newly isolated and functionally characterized. The putative Δ(9) acyl-CoA desaturases in the endoplasmic reticulum (ER) showed 3 histidine clusters that are well-conserved motifs in the typical Δ(9) desaturase. Furthermore, the function of these Δ(9) desaturases was confirmed in the Saccharomyces cerevisiae ole1 gene deletion mutant (Δole1). All the putative Δ(9) acyl-CoA desaturases showed Δ(9) desaturation activity for C16∶0 fatty acids; fD9desA and fD9desB also showed desaturation activity for C18∶0 fatty acids. This study represents the first functional analysis of Δ(9) desaturases from oleaginous microalgae and from diatoms as the first enzyme to introduce a double bond in saturated fatty acids during PUFA synthesis. The findings will provide beneficial insights into applying metabolic engineering processes to suppressing PUFA synthesis in this oleaginous microalgal strain.
Neuronal DNA Methyltransferases: Epigenetic Mediators between Synaptic Activity and Gene Expression?
Bayraktar, Gonca; Kreutz, Michael R.
2017-01-01
DNMT3A and 3B are the main de novo DNA methyltransferases (DNMTs) in the brain that introduce new methylation marks to non-methylated DNA in postmitotic neurons. DNA methylation is a key epigenetic mark that is known to regulate important cellular processes in neuronal development and brain plasticity. Accumulating evidence disclosed rapid and dynamic changes in DNA methylation of plasticity-relevant genes that are important for learning and memory formation. To understand how DNMTs contribute to brain function and how they are regulated by neuronal activity is a prerequisite for a deeper appreciation of activity-dependent gene expression in health and disease. This review discusses the functional role of de novo methyltransferases and in particular DNMT3A1 in the adult brain with special emphasis on synaptic plasticity, memory formation, and brain disorders. PMID:28513272
A TALE of shrimps: Genome-wide survey of homeobox genes in 120 species from diverse crustacean taxa.
Chang, Wai Hoong; Lai, Alvina G
2018-01-01
The homeodomain-containing proteins are an important group of transcription factors found in most eukaryotes including animals, plants and fungi. Homeobox genes are responsible for a wide range of critical developmental and physiological processes, ranging from embryonic development, innate immune homeostasis to whole-body regeneration. With continued fascination on this key class of proteins by developmental and evolutionary biologists, multiple efforts have thus far focused on the identification and characterization of homeobox orthologs from key model organisms in attempts to infer their evolutionary origin and how this underpins the evolution of complex body plans. Despite their importance, the genetic complement of homeobox genes has yet been described in one of the most valuable groups of animals representing economically important food crops. With crustacean aquaculture being a growing industry worldwide, it is clear that systematic and cross-species identification of crustacean homeobox orthologs is necessary in order to harness this genetic circuitry for the improvement of aquaculture sustainability. Using publicly available transcriptome data sets, we identified a total of 4183 putative homeobox genes from 120 crustacean species that include food crop species, such as lobsters, shrimps, crayfish and crabs. Additionally, we identified 717 homeobox orthologs from 6 other non-crustacean arthropods, which include the scorpion, deer tick, mosquitoes and centipede. This high confidence set of homeobox genes will now serve as a key resource to the broader community for future functional and comparative genomics studies.
Völzke, Henry; Bornhorst, Alexa; Rimmbach, Christian; Petersenn, Holger; Geissler, Ingrid; Nauck, Matthias; Wallaschofski, Henri; Kroemer, Heyo K; Rosskopf, Dieter
2009-10-01
Heterotrimeric G proteins are key mediators of signals from membrane receptors-including the thyroid-stimulating hormone (TSH) receptor-to cellular effectors. Gain-of-function mutations in the TSH receptor and the Galpha(S) subunit occur frequently in hyperfunctioning thyroid nodules and differentiated thyroid carcinomas, whereby the T allele of a common polymorphism (825C>T, rs5443) in the G protein beta3 subunit gene (GNB3) is associated with increased G protein-mediated signal transduction and a complex phenotype. The aim of this study was to investigate whether this common polymorphism affects key parameters of thyroid function and morphology and influences the pathogenesis of thyroid diseases in the general population. The population-based cross-sectional Study of Health in Pomerania is a general health survey with focus on thyroid diseases in northeast Germany, a formerly iodine-deficient area. Data from 3428 subjects (1800 men and 1628 women) were analyzed for an association of the GNB3 genotype with TSH, free triiodothyronine and thyroxine levels, urine iodine and thiocyanate excretion, and thyroid ultrasound morphology including thyroid volume, presence of goiter, and thyroid nodules. There was no association between GNB3 genotype status and the functional or morphological thyroid parameters investigated, neither in crude analyses nor upon multivariable analyses including known confounders of thyroid disorders. Based on the data from this large population-based survey, we conclude that the GNB3 825C>T polymorphism does not affect key parameters of thyroid function and morphology in the general population of a formerly iodine-deficient area.
Detection of Metastatic Potential in Breast Cancer by RhoC-GTPase and WISP3 Proteins
2005-05-01
clinical utility of RhoC- GTPase and WISP3 proteins in breast cancer patients. These two genes were identified as key genetic determinants of...information, linked to a clinical database, and to better understand the functional significance of the WISP3 gene in Inflammatory Breast Cancer (IBC), to...pathological and clinical information. The idea behind this decision was to be able to link the results of the TMA scoring with the patient pathological
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payyavula, Raja S.; Tschaplinski, Timothy J.; Jawdy, Sara
Background: UDP-glucose pyrophopharylase (UGPase) is a sugar metabolizing enzyme (E.C. 2.7.7.9) that catalyzes a reversible reaction of UDP-glucose and pyrophosphate from glucose-1-phosphate and uridine triphosphate glucose. UDP-glucose is a key intermediate sugar that is channeled to multiple metabolic pathways. The functional role of UGPase in woody plants such as Populus is poorly understood. Results: We characterized the functional role of UGPase in Populus deltoides by overexpressing a native gene. Overexpression of the native gene resulted in increased leaf area and leaf-to-shoot biomass ratio but decreased shoot and root growth. Metabolomic analyses showed that manipulation of UGPase results in perturbations inmore » primary as well as secondary metabolism resulting in reduced sugar and starch levels and increased phenolics such as caffeoyl- and feruloyl conjugates. While cellulose and lignin levels in the cell walls were not significantly altered, the syringyl-to-guaiacyl ratio was significantly reduced. Conclusions: These results demonstrate that UGPase plays a key role in the tightly coupled primary and secondary metabolic pathways and perturbation in its function results in pronounced effects on growth and metabolism outside of cell wall biosynthesis of Populus.« less
Payyavula, Raja S.; Tschaplinski, Timothy J.; Jawdy, Sara; ...
2014-10-07
Background: UDP-glucose pyrophopharylase (UGPase) is a sugar metabolizing enzyme (E.C. 2.7.7.9) that catalyzes a reversible reaction of UDP-glucose and pyrophosphate from glucose-1-phosphate and uridine triphosphate glucose. UDP-glucose is a key intermediate sugar that is channeled to multiple metabolic pathways. The functional role of UGPase in woody plants such as Populus is poorly understood. Results: We characterized the functional role of UGPase in Populus deltoides by overexpressing a native gene. Overexpression of the native gene resulted in increased leaf area and leaf-to-shoot biomass ratio but decreased shoot and root growth. Metabolomic analyses showed that manipulation of UGPase results in perturbations inmore » primary as well as secondary metabolism resulting in reduced sugar and starch levels and increased phenolics such as caffeoyl- and feruloyl conjugates. While cellulose and lignin levels in the cell walls were not significantly altered, the syringyl-to-guaiacyl ratio was significantly reduced. Conclusions: These results demonstrate that UGPase plays a key role in the tightly coupled primary and secondary metabolic pathways and perturbation in its function results in pronounced effects on growth and metabolism outside of cell wall biosynthesis of Populus.« less
Plank-Bazinet, Jennifer L; Mundell, Nathan A
2016-01-01
Uncommitted cells of the early mammalian embryo transition through distinct stages of pluripotency, including establishment of ground state "naïve" pluripotency in the early epiblast, transition to a post-implantation "primed" state, and subsequent lineage commitment of the gastrulating epiblast. Previous transcriptional profiling of in vitro models to recapitulate early to late epiblast transition and differentiation suggest that distinct gene regulatory networks are likely to function in each of these states. While the mechanisms underlying transition between pluripotent states are poorly understood, the forkhead family transcription factor Foxd3 has emerged as a key regulatory factor. Foxd3 is required to maintain pluripotent cells of the murine epiblast and for survival, self-renewal and pluripotency of embryonic stem cells (ESCs). Two recent, simultaneous studies have shed light on how Foxd3 regulates gene expression in early cell fate transitions of progenitor cells. While the two publications shared some common findings, they also presented some conflicting results and suggest different models for the mechanisms underlying Foxd3 function. Here, we discuss the key similarities and differences between the publications, highlight data from the literature relevant to their findings, and hypothesize a potential mechanism of Foxd3 action.
Rijnkels, Monique; Freeman-Zadrowski, Courtneay; Hernandez, Joseph; Potluri, Vani; Wang, Liguo; Li, Wei; Lemay, Danielle G.
2013-01-01
Background Unlike other tissues, development and differentiation of the mammary gland occur mostly after birth. The roles of systemic hormones and local growth factors important for this development and functional differentiation are well-studied. In other tissues, it has been shown that chromatin organization plays a key role in transcriptional regulation and underlies epigenetic regulation during development and differentiation. However, the role of chromatin organization in mammary gland development and differentiation is less well-defined. Here, we have studied the changes in chromatin organization at the milk protein gene loci (casein, whey acidic protein, and others) in the mouse mammary gland before and after functional differentiation. Methodology/Principal Findings Distal regulatory elements within the casein gene cluster and whey acidic protein gene region have an open chromatin organization after pubertal development, while proximal promoters only gain open-chromatin marks during pregnancy in conjunction with the major induction of their expression. In contrast, other milk protein genes, such as alpha-lactalbumin, already have an open chromatin organization in the mature virgin gland. Changes in chromatin organization in the casein gene cluster region that are present after puberty persisted after lactation has ceased, while the changes which occurred during pregnancy at the gene promoters were not maintained. In general, mammary gland expressed genes and their regulatory elements exhibit developmental stage- and tissue-specific chromatin organization. Conclusions/Significance A progressive gain of epigenetic marks indicative of open/active chromatin on genes marking functional differentiation accompanies the development of the mammary gland. These results support a model in which a chromatin organization is established during pubertal development that is then poised to respond to the systemic hormonal signals of pregnancy and lactation to achieve the full functional capacity of the mammary gland. PMID:23301053
Toward an understanding of the pathophysiology of clear cell carcinoma of the ovary (Review)
UEKURI, CHIHARU; SHIGETOMI, HIROSHI; ONO, SUMIRE; SASAKI, YOSHIKAZU; MATSUURA, MIYUKI; KOBAYASHI, HIROSHI
2013-01-01
Endometriosis-associated ovarian cancers demonstrate substantial morphological and genetic diversity. The transcription factor, hepatocyte nuclear factor (HNF)-1β, may be one of several key genes involved in the identity of ovarian clear cell carcinoma (CCC). The present study reviews a considerably expanded set of HNF-1β-associated genes and proteins that determine the pathophysiology of CCC. The current literature was reviewed by searching MEDLINE/PubMed. Functional interpretations of gene expression profiling in CCC are provided. Several important CCC-related genes overlap with those known to be regulated by the upregulation of HNF-1β expression, along with a lack of estrogen receptor (ER) expression. Furthermore, the genetic expression pattern in CCC resembles that of the Arias-Stella reaction, decidualization and placentation. HNF-1β regulates a subset of progesterone target genes. HNF-1β may also act as a modulator of female reproduction, playing a role in endometrial regeneration, differentiation, decidualization, glycogen synthesis, detoxification, cell cycle regulation, implantation, uterine receptivity and a successful pregnancy. In conclusion, the present study focused on reviewing the aberrant expression of CCC-specific genes and provided an update on the pathological implications and molecular functions of well-characterized CCC-specific genes. PMID:24179489
Schneider, Lizette M; Adamski, Nikolai M; Christensen, Caspar Elo; Stuart, David B; Vautrin, Sonia; Hansson, Mats; Uauy, Cristobal; von Wettstein-Knowles, Penny
2016-03-09
Aliphatic compounds on plant surfaces, called epicuticular waxes, are the first line of defense against pathogens and pests, contribute to reducing water loss and determine other important phenotypes. Aliphatics can form crystals affecting light refraction, resulting in a color change and allowing identification of mutants in their synthesis or transport. The present study discloses three such Eceriferum (cer) genes in barley - Cer-c, Cer-q and Cer-u - known to be tightly linked and functioning in a biochemical pathway forming dominating amounts of β-diketone and hydroxy-β-diketones plus some esterified alkan-2-ols. These aliphatics are present in many Triticeae as well as dicotyledons such as Eucalyptus and Dianthus. Recently developed genomic resources and mapping populations in barley defined these genes to a small region on chromosome arm 2HS. Exploiting Cer-c and -u potential functions pinpointed five candidates, of which three were missing in apparent cer-cqu triple mutants. Sequencing more than 50 independent mutants for each gene confirmed their identification. Cer-c is a chalcone synthase-like polyketide synthase, designated diketone synthase (DKS), Cer-q is a lipase/carboxyl transferase and Cer-u is a P450 enzyme. All were highly expressed in pertinent leaf sheath tissue of wild type. A physical map revealed the order Cer-c, Cer-u, Cer-q with the flanking genes 101kb apart, confirming they are a gene cluster, Cer-cqu. Homology-based modeling suggests that many of the mutant alleles affect overall protein structure or specific active site residues. The rich diversity of identified mutations will facilitate future studies of three key enzymes involved in synthesis of plant apoplast waxes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Schneider, Lizette M; Adamski, Nikolai M; Christensen, Caspar Elo; Stuart, David B; Vautrin, Sonia; Hansson, Mats; Uauy, Cristobal; von Wettstein-Knowles, Penny
2016-01-01
Aliphatic compounds on plant surfaces, called epicuticular waxes, are the first line of defense against pathogens and pests, contribute to reducing water loss and determine other important phenotypes. Aliphatics can form crystals affecting light refraction, resulting in a color change and allowing identification of mutants in their synthesis or transport. The present study discloses three such Eceriferum (cer) genes in barley – Cer-c, Cer-q and Cer-u – known to be tightly linked and functioning in a biochemical pathway forming dominating amounts of β-diketone and hydroxy-β-diketones plus some esterified alkan-2-ols. These aliphatics are present in many Triticeae as well as dicotyledons such as Eucalyptus and Dianthus. Recently developed genomic resources and mapping populations in barley defined these genes to a small region on chromosome arm 2HS. Exploiting Cer-c and -u potential functions pinpointed five candidates, of which three were missing in apparent cer-cqu triple mutants. Sequencing more than 50 independent mutants for each gene confirmed their identification. Cer-c is a chalcone synthase-like polyketide synthase, designated diketone synthase (DKS), Cer-q is a lipase/carboxyl transferase and Cer-u is a P450 enzyme. All were highly expressed in pertinent leaf sheath tissue of wild type. A physical map revealed the order Cer-c, Cer-u, Cer-q with the flanking genes 101kb apart, confirming they are a gene cluster, Cer-cqu. Homology-based modeling suggests that many of the mutant alleles affect overall protein structure or specific active site residues. The rich diversity of identified mutations will facilitate future studies of three key enzymes involved in synthesis of plant apoplast waxes. PMID:26962211
Partners in crime: The role of tandem modules in gene transcription.
Sharma, Rajal; Zhou, Ming-Ming
2015-09-01
Histones and their modifications play an important role in the regulation of gene transcription. Numerous modifications, such as acetylation, phosphorylation, methylation, ubiquitination, and SUMOylation, have been described. These modifications almost always co-occur and thereby increase the combinatorial complexity of post-translational modification detection. The domains that recognize these histone modifications often occur in tandem in the context of larger proteins and complexes. The presence of multiple modifications can positively or negatively regulate the binding of these tandem domains, influencing downstream cellular function. Alternatively, these tandem domains can have novel functions from their independent parts. Here we summarize structural and functional information known about major tandem domains and their histone binding properties. An understanding of these interactions is key for the development of epigenetic therapy. © 2015 The Protein Society.
Johns, N; Tan, B H; MacMillan, M; Solheim, T S; Ross, J A; Baracos, V E; Damaraju, S; Fearon, K C H
2014-12-01
Cancer cachexia is a complex and multifactorial disease. Evolving definitions highlight the fact that a diverse range of biological processes contribute to cancer cachexia. Part of the variation in who will and who will not develop cancer cachexia may be genetically determined. As new definitions, classifications and biological targets continue to evolve, there is a need for reappraisal of the literature for future candidate association studies. This review summarizes genes identified or implicated as well as putative candidate genes contributing to cachexia, identified through diverse technology platforms and model systems to further guide association studies. A systematic search covering 1986-2012 was performed for potential candidate genes / genetic polymorphisms relating to cancer cachexia. All candidate genes were reviewed for functional polymorphisms or clinically significant polymorphisms associated with cachexia using the OMIM and GeneRIF databases. Pathway analysis software was used to reveal possible network associations between genes. Functionality of SNPs/genes was explored based on published literature, algorithms for detecting putative deleterious SNPs and interrogating the database for expression of quantitative trait loci (eQTLs). A total of 154 genes associated with cancer cachexia were identified and explored for functional polymorphisms. Of these 154 genes, 119 had a combined total of 281 polymorphisms with functional and/or clinical significance in terms of cachexia associated with them. Of these, 80 polymorphisms (in 51 genes) were replicated in more than one study with 24 polymorphisms found to influence two or more hallmarks of cachexia (i.e., inflammation, loss of fat mass and/or lean mass and reduced survival). Selection of candidate genes and polymorphisms is a key element of multigene study design. The present study provides a contemporary basis to select genes and/or polymorphisms for further association studies in cancer cachexia, and to develop their potential as susceptibility biomarkers of cachexia.
Rapid diversification of five Oryza AA genomes associated with rice adaptation.
Zhang, Qun-Jie; Zhu, Ting; Xia, En-Hua; Shi, Chao; Liu, Yun-Long; Zhang, Yun; Liu, Yuan; Jiang, Wen-Kai; Zhao, You-Jie; Mao, Shu-Yan; Zhang, Li-Ping; Huang, Hui; Jiao, Jun-Ying; Xu, Ping-Zhen; Yao, Qiu-Yang; Zeng, Fan-Chun; Yang, Li-Li; Gao, Ju; Tao, Da-Yun; Wang, Yue-Ju; Bennetzen, Jeffrey L; Gao, Li-Zhi
2014-11-18
Comparative genomic analyses among closely related species can greatly enhance our understanding of plant gene and genome evolution. We report de novo-assembled AA-genome sequences for Oryza nivara, Oryza glaberrima, Oryza barthii, Oryza glumaepatula, and Oryza meridionalis. Our analyses reveal massive levels of genomic structural variation, including segmental duplication and rapid gene family turnover, with particularly high instability in defense-related genes. We show, on a genomic scale, how lineage-specific expansion or contraction of gene families has led to their morphological and reproductive diversification, thus enlightening the evolutionary process of speciation and adaptation. Despite strong purifying selective pressures on most Oryza genes, we documented a large number of positively selected genes, especially those genes involved in flower development, reproduction, and resistance-related processes. These diversifying genes are expected to have played key roles in adaptations to their ecological niches in Asia, South America, Africa and Australia. Extensive variation in noncoding RNA gene numbers, function enrichment, and rates of sequence divergence might also help account for the different genetic adaptations of these rice species. Collectively, these resources provide new opportunities for evolutionary genomics, numerous insights into recent speciation, a valuable database of functional variation for crop improvement, and tools for efficient conservation of wild rice germplasm.
Rapid diversification of five Oryza AA genomes associated with rice adaptation
Zhang, Qun-Jie; Zhu, Ting; Xia, En-Hua; Shi, Chao; Liu, Yun-Long; Zhang, Yun; Liu, Yuan; Jiang, Wen-Kai; Zhao, You-Jie; Mao, Shu-Yan; Zhang, Li-Ping; Huang, Hui; Jiao, Jun-Ying; Xu, Ping-Zhen; Yao, Qiu-Yang; Zeng, Fan-Chun; Yang, Li-Li; Gao, Ju; Tao, Da-Yun; Wang, Yue-Ju; Bennetzen, Jeffrey L.; Gao, Li-Zhi
2014-01-01
Comparative genomic analyses among closely related species can greatly enhance our understanding of plant gene and genome evolution. We report de novo-assembled AA-genome sequences for Oryza nivara, Oryza glaberrima, Oryza barthii, Oryza glumaepatula, and Oryza meridionalis. Our analyses reveal massive levels of genomic structural variation, including segmental duplication and rapid gene family turnover, with particularly high instability in defense-related genes. We show, on a genomic scale, how lineage-specific expansion or contraction of gene families has led to their morphological and reproductive diversification, thus enlightening the evolutionary process of speciation and adaptation. Despite strong purifying selective pressures on most Oryza genes, we documented a large number of positively selected genes, especially those genes involved in flower development, reproduction, and resistance-related processes. These diversifying genes are expected to have played key roles in adaptations to their ecological niches in Asia, South America, Africa and Australia. Extensive variation in noncoding RNA gene numbers, function enrichment, and rates of sequence divergence might also help account for the different genetic adaptations of these rice species. Collectively, these resources provide new opportunities for evolutionary genomics, numerous insights into recent speciation, a valuable database of functional variation for crop improvement, and tools for efficient conservation of wild rice germplasm. PMID:25368197
In Vivo Regulation of Human Skeletal Muscle Gene Expression by Thyroid Hormone
Clément, Karine; Viguerie, Nathalie; Diehn, Maximilian; Alizadeh, Ash; Barbe, Pierre; Thalamas, Claire; Storey, John D.; Brown, Patrick O.; Barsh, Greg S.; Langin, Dominique
2002-01-01
Thyroid hormones are key regulators of metabolism that modulate transcription via nuclear receptors. Hyperthyroidism is associated with increased metabolic rate, protein breakdown, and weight loss. Although the molecular actions of thyroid hormones have been studied thoroughly, their pleiotropic effects are mediated by complex changes in expression of an unknown number of target genes. Here, we measured patterns of skeletal muscle gene expression in five healthy men treated for 14 days with 75 μg of triiodothyronine, using 24,000 cDNA element microarrays. To analyze the data, we used a new statistical method that identifies significant changes in expression and estimates the false discovery rate. The 381 up-regulated genes were involved in a wide range of cellular functions including transcriptional control, mRNA maturation, protein turnover, signal transduction, cellular trafficking, and energy metabolism. Only two genes were down-regulated. Most of the genes are novel targets of thyroid hormone. Cluster analysis of triiodothyronine-regulated gene expression among 19 different human tissues or cell lines revealed sets of coregulated genes that serve similar biologic functions. These results define molecular signatures that help to understand the physiology and pathophysiology of thyroid hormone action. [The list of transcripts corresponding to up-regulated and down-regulated genes is available as a web supplement at http://www.genome.org.] PMID:11827947
Pan, Lei; Liu, Yan; Wei, Qiang; Xiao, Chenwen; Ji, Quanan; Bao, Guolian; Wu, Xinsheng
2015-01-01
Background Fur is an important genetically-determined characteristic of domestic rabbits; rabbit furs are of great economic value. We used the Solexa sequencing technology to assess gene expression in skin tissues from full-sib Rex rabbits of different phenotypes in order to explore the molecular mechanisms associated with fur determination. Methodology/Principal Findings Transcriptome analysis included de novo assembly, gene function identification, and gene function classification and enrichment. We obtained 74,032,912 and 71,126,891 short reads of 100 nt, which were assembled into 377,618 unique sequences by Trinity strategy (N50=680 nt). Based on BLAST results with known proteins, 50,228 sequences were identified at a cut-off E-value ≥ 10-5. Using Blast to Gene Ontology (GO), Clusters of Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG), we obtained several genes with important protein functions. A total of 308 differentially expressed genes were obtained by transcriptome analysis of plaice and un-plaice phenotype animals; 209 additional differentially expressed genes were not found in any database. These genes included 49 that were only expressed in plaice skin rabbits. The novel genes may play important roles during skin growth and development. In addition, 99 known differentially expressed genes were assigned to PI3K-Akt signaling, focal adhesion, and ECM-receptor interactin, among others. Growth factors play a role in skin growth and development by regulating these signaling pathways. We confirmed the altered expression levels of seven target genes by qRT-PCR. And chosen a key gene for SNP to found the differentially between plaice and un-plaice phenotypes rabbit. Conclusions/Significance The rabbit transcriptome profiling data provide new insights in understanding the molecular mechanisms underlying rabbit skin growth and development. PMID:25955442
Zuo, Mingxin; Rashid, Asif; Wang, Ying; Jain, Apurva; Li, Donghui; Behari, Anu; Kapoor, Vinay Kumar; Koay, Eugene J.; Chang, Ping; Vauthey, Jean Nicholas; Li, Yanan; Espinoza, Jaime A.; Roa, Juan Carlos; Javle, Milind
2016-01-01
Gallbladder cancer (GBC) is an aggressive malignancy. Although surgical resection may be curable, most patients are diagnosed at an advanced unresectable disease stage. Cholelithiasis is the major risk factor; however the pathogenesis of the disease, from gallstone cholecystitis to cancer, is still not understood. To understand the molecular genetic underpinnings of this cancer and explore novel therapeutic targets for GBC, we examined the key genes and pathways involved in GBC using RNA sequencing. We performed gene expression analysis of 32 cases of surgically-resected GBC along with normal gallbladder tissue controls. We observed that 519 genes were differentially expressed between GBC and normal GB mucosal controls. The liver X receptor (LXR)/retinoid X receptor (RXR) and farnesoid X receptor (FXR) /RXR pathways were the top canonical pathways involved in GBC. Key genes in these pathways, including SERPINB3 and KLK1, were overexpressed in GBC, especially in female GBC patients. Additionally, ApoA1 gene expression suppressed in GBC as compared with normal control tissues. LXR and FXR genes, known to be important in lipid metabolism also function as tumor suppressors and their down regulation appears to be critical for GBC pathogenesis. LXR agonists may have therapeutic value and as potential therapeutic targets. PMID:27167107
Krajcik, Rasti; Jung, Adrian; Hirsch, Andreas; Neuhuber, Winfried; Zolk, Oliver
2008-05-02
The lipophilic nature of biological membranes restricts the direct intracellular delivery of potential drugs and molecular probes and makes intracellular transport one of the key problems in gene therapy. Because of their ability to cross cell membranes, single walled carbon nanotubes (SWNTs) are of interest as carriers of biologically active molecules, such as small interfering RNAs (siRNAs). We developed a strategy for chemical functionalization of SWNTs with hexamethylenediamine (HMDA) and poly(diallyldimethylammonium)chloride (PDDA) to obtain a material that was able to bind negatively charged siRNA by electrostatic interactions. PDDA-HMDA-SWNTs exhibited negligible cytotoxic effects on isolated rat heart cells at concentrations up to 10mg/l. PDDA-HMDA-SWNTs loaded with extracellular signal-regulated kinase (ERK) siRNA were able to cross the cell membrane and to suppress expression of the ERK target proteins in primary cardiomyocytes by about 75%. PDDA-functionalized SWNTs thus present an effective carrier system for applications in siRNA-mediated gene silencing.
Chen, Shuowen; Khan, Muhammad J.; Loor, Juan J.
2013-01-01
Characterization and biological roles of the peroxisome proliferator-activated receptor (PPAR) isotypes are well known in monogastrics, but not in ruminants. However, a wealth of information has accumulated in little more than a decade on ruminant PPARs including isotype tissue distribution, response to synthetic and natural agonists, gene targets, and factors affecting their expression. Functional characterization demonstrated that, as in monogastrics, the PPAR isotypes control expression of genes involved in lipid metabolism, anti-inflammatory response, development, and growth. Contrary to mouse, however, the PPARγ gene network appears to controls milk fat synthesis in lactating ruminants. As in monogastrics, PPAR isotypes in ruminants are activated by long-chain fatty acids, therefore, making them ideal candidates for fine-tuning metabolism in this species via nutrients. In this regard, using information accumulated in ruminants and monogastrics, we propose a model of PPAR isotype-driven biological functions encompassing key tissues during the peripartal period in dairy cattle. PMID:23737762
Ladam, Franck; Stanney, William; Donaldson, Ian J; Yildiz, Ozge; Bobola, Nicoletta; Sagerström, Charles G
2018-06-18
TALE factors are broadly expressed embryonically and known to function in complexes with transcription factors (TFs) like Hox proteins at gastrula/segmentation stages, but it is unclear if such generally expressed factors act by the same mechanism throughout embryogenesis. We identify a TALE-dependent gene regulatory network (GRN) required for anterior development and detect TALE occupancy associated with this GRN throughout embryogenesis. At blastula stages, we uncover a novel functional mode for TALE factors, where they occupy genomic DECA motifs with nearby NF-Y sites. We demonstrate that TALE and NF-Y form complexes and regulate chromatin state at genes of this GRN. At segmentation stages, GRN-associated TALE occupancy expands to include HEXA motifs near PBX:HOX sites. Hence, TALE factors control a key GRN, but utilize distinct DNA motifs and protein partners at different stages - a strategy that may also explain their oncogenic potential and may be employed by other broadly expressed TFs. © 2018, Ladam et al.
CORUM: the comprehensive resource of mammalian protein complexes
Ruepp, Andreas; Brauner, Barbara; Dunger-Kaltenbach, Irmtraud; Frishman, Goar; Montrone, Corinna; Stransky, Michael; Waegele, Brigitte; Schmidt, Thorsten; Doudieu, Octave Noubibou; Stümpflen, Volker; Mewes, H. Werner
2008-01-01
Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. The CORUM (http://mips.gsf.de/genre/proj/corum/index.html) database is a collection of experimentally verified mammalian protein complexes. Information is manually derived by critical reading of the scientific literature from expert annotators. Information about protein complexes includes protein complex names, subunits, literature references as well as the function of the complexes. For functional annotation, we use the FunCat catalogue that enables to organize the protein complex space into biologically meaningful subsets. The database contains more than 1750 protein complexes that are built from 2400 different genes, thus representing 12% of the protein-coding genes in human. A web-based system is available to query, view and download the data. CORUM provides a comprehensive dataset of protein complexes for discoveries in systems biology, analyses of protein networks and protein complex-associated diseases. Comparable to the MIPS reference dataset of protein complexes from yeast, CORUM intends to serve as a reference for mammalian protein complexes. PMID:17965090
Wang, Lan; Zhu, Jiang; Deng, Fei-Yan; Wu, Long-Fei; Mo, Xing-Bo; Zhu, Xiao-Wei; Xia, Wei; Xie, Fang-Fei; He, Pei; Bing, Peng-Fei; Qiu, Ying-Hua; Lin, Xiang; Lu, Xin; Zhang, Lei; Yi, Neng-Jun; Zhang, Yong-Hong; Lei, Shu-Feng
2018-02-01
MicroRNAs (miRNAs) can regulate gene expression through binding to complementary sites in the 3'-untranslated regions of target mRNAs, which will lead to existence of correlation in expression between miRNA and mRNA. However, the miRNA-mRNA correlation patterns are complex and remain largely unclear yet. To establish the global correlation patterns in human peripheral blood mononuclear cells (PBMCs), multiple miRNA-mRNA correlation analyses and expression quantitative trait locus (eQTL) analysis were conducted in this study. We predicted and achieved 861 miRNA-mRNA pairs (65 miRNAs, 412 mRNAs) using multiple bioinformatics programs, and found global negative miRNA-mRNA correlations in PBMC from all 46 study subjects. Among the 861 pairs of correlations, 19.5% were significant (P < 0.05) and ~70% were negative. The correlation network was complex and highlighted key miRNAs/genes in PBMC. Some miRNAs, such as hsa-miR-29a, hsa-miR-148a, regulate a cluster of target genes. Some genes, e.g., TNRC6A, are regulated by multiple miRNAs. The identified genes tend to be enriched in molecular functions of DNA and RNA binding, and biological processes such as protein transport, regulation of translation and chromatin modification. The results provided a global view of the miRNA-mRNA expression correlation profile in human PBMCs, which would facilitate in-depth investigation of biological functions of key miRNAs/mRNAs and better understanding of the pathogenesis underlying PBMC-related diseases.
Kittelmann, Sebastian; Buffry, Alexandra D; Franke, Franziska A; Almudi, Isabel; Yoth, Marianne; Sabaris, Gonzalo; Couso, Juan Pablo; Nunes, Maria D S; Frankel, Nicolás; Gómez-Skarmeta, José Luis; Pueyo-Marques, Jose; Arif, Saad; McGregor, Alistair P
2018-05-01
Convergent phenotypic evolution is often caused by recurrent changes at particular nodes in the underlying gene regulatory networks (GRNs). The genes at such evolutionary 'hotspots' are thought to maximally affect the phenotype with minimal pleiotropic consequences. This has led to the suggestion that if a GRN is understood in sufficient detail, the path of evolution may be predictable. The repeated evolutionary loss of larval trichomes among Drosophila species is caused by the loss of shavenbaby (svb) expression. svb is also required for development of leg trichomes, but the evolutionary gain of trichomes in the 'naked valley' on T2 femurs in Drosophila melanogaster is caused by reduced microRNA-92a (miR-92a) expression rather than changes in svb. We compared the expression and function of components between the larval and leg trichome GRNs to investigate why the genetic basis of trichome pattern evolution differs in these developmental contexts. We found key differences between the two networks in both the genes employed, and in the regulation and function of common genes. These differences in the GRNs reveal why mutations in svb are unlikely to contribute to leg trichome evolution and how instead miR-92a represents the key evolutionary switch in this context. Our work shows that variability in GRNs across different developmental contexts, as well as whether a morphological feature is lost versus gained, influence the nodes at which a GRN evolves to cause morphological change. Therefore, our findings have important implications for understanding the pathways and predictability of evolution.
Insights into wild-type and mutant p53 functions provided by genetically engineered mice.
Donehower, Lawrence A
2014-06-01
Recent whole-exome sequencing studies of numerous human cancers have now conclusively shown that the TP53 tumor-suppressor gene is the most frequently mutated gene in human cancers. Despite extensive studies of the TP53 gene and its encoded protein (p53), our understanding of how TP53 mutations contribute to cancer initiation and progression remain incomplete. Genetically engineered mice with germline or inducible Trp53 somatic mutations have provided important insights into the mechanisms by which different types of p53 mutation influence cancer development. Trp53 germline mutations that alter specific p53 structural domains or posttranslation modification sites have benefitted our understanding of wild-type p53 functions in a whole organism context. Moreover, genetic approaches to reestablish functional wild-type p53 to p53-deficient tissues and tumors have increased our understanding of the therapeutic potential of restoring functional p53 signaling to cancers. This review outlines many of the key insights provided by the various categories of Trp53 mutant mice that have been generated by multiple genetic engineering approaches. © 2014 WILEY PERIODICALS, INC.
Identification and Functional Analysis of Healing Regulators in Drosophila
Álvarez-Fernández, Carmen; Tamirisa, Srividya; Prada, Federico; Chernomoretz, Ariel; Podhajcer, Osvaldo; Blanco, Enrique; Martín-Blanco, Enrique
2015-01-01
Wound healing is an essential homeostatic mechanism that maintains the epithelial barrier integrity after tissue damage. Although we know the overall steps in wound healing, many of the underlying molecular mechanisms remain unclear. Genetically amenable systems, such as wound healing in Drosophila imaginal discs, do not model all aspects of the repair process. However, they do allow the less understood aspects of the healing response to be explored, e.g., which signal(s) are responsible for initiating tissue remodeling? How is sealing of the epithelia achieved? Or, what inhibitory cues cancel the healing machinery upon completion? Answering these and other questions first requires the identification and functional analysis of wound specific genes. A variety of different microarray analyses of murine and humans have identified characteristic profiles of gene expression at the wound site, however, very few functional studies in healing regulation have been carried out. We developed an experimentally controlled method that is healing-permissive and that allows live imaging and biochemical analysis of cultured imaginal discs. We performed comparative genome-wide profiling between Drosophila imaginal cells actively involved in healing versus their non-engaged siblings. Sets of potential wound-specific genes were subsequently identified. Importantly, besides identifying and categorizing new genes, we functionally tested many of their gene products by genetic interference and overexpression in healing assays. This non-saturated analysis defines a relevant set of genes whose changes in expression level are functionally significant for proper tissue repair. Amongst these we identified the TCP1 chaperonin complex as a key regulator of the actin cytoskeleton essential for the wound healing response. There is promise that our newly identified wound-healing genes will guide future work in the more complex mammalian wound healing response. PMID:25647511
Gene regulation by noncoding RNAs
Patil, Veena S.; Zhou, Rui; Rana, Tariq M.
2015-01-01
The past two decades have seen an explosion in research on noncoding RNAs and their physiological and pathological functions. Several classes of small (20–30 nucleotides) and long (>200 nucleotides) noncoding RNAs have been firmly established as key regulators of gene expression in myriad processes ranging from embryonic development to innate immunity. In this review, we focus on our current understanding of the molecular mechanisms underlying the biogenesis and function of small interfering RNAs (siRNAs), microRNAs (miRNAs), and Piwi-interacting RNAs (piRNAs). In addition, we briefly review the relevance of small and long noncoding RNAs to human physiology and pathology and their potential to be exploited as therapeutic agents. PMID:24164576
PCK1 expression is correlated with the plasma glucose level in the duck.
Chen, L; Zeng, T; Li, G Q; Liu, R; Tian, Y; Li, Q H; Lu, L Z
2017-06-01
Phosphoenolpyruvate carboxykinase 1 (soluble) (PCK1) is a key gene in gluconeogenesis and glyceroneogenesis. Although its functions have been extensively studied in mice, bats and humans, little is known in ducks. Here, PCK1 functions were studied using a duck domestication model and a 48-h fasting experiment. We found PCK1 expression significantly decreased in two breeds of domestic ducks (Jinyun Pockmark ducks and Cherry Valley ducks) as compared with wild ducks (Anas platyrhynchos). Simultaneously, plasma levels of glucose, triglycerides and free fatty acid in domestic ducks were lower than in wild ducks. When compared with fed ducks, the plasma triglyceride level was observed to be significantly decreased, while the glucose and free fatty acid levels remained constant in 48-h fasting ducks. The expression analysis of gluconeogenic genes revealed that fructose-1,6-bisphosphatase genes (FBP1 and FBP2) and the glucose-6-phosphatase gene (G6PC2) were not changed, whereas PCK1 was significantly upregulated. In addition, the reported regulators of PCK1, including forkhead box A2 (FOXA2) gene and orphan nuclear receptor NR4A family genes (NR4A1, NR4A2 and NR4A3), exhibited similar expression levels between 48-h fasting ducks and fed ducks, suggesting that PCK1 is not regulated by these genes in the duck under fasting conditions. In conclusion, PCK1 expression may affect plasma levels of glucose, triglycerides and free fatty acid during the duck domestication process. This work demonstrates for the first time in duck that PCK1 is a key gene in maintaining plasma glucose homeostasis during fasting and that the upregulated expression of PCK1 may be responsible for constant plasma free fatty acid level by the glyceroneogenesis process. © 2017 Stichting International Foundation for Animal Genetics.
Identification of the Core Set of Carbon-Associated Genes in a Bioenergy Grassland Soil
Howe, Adina; Yang, Fan; Williams, Ryan J.; ...
2016-11-17
Despite the central role of soil microbial communities in global carbon (C) cycling, little is known about soil microbial community structure and even less about their metabolic pathways. Efforts to characterize soil communities often focus on identifying differences in gene content across environmental gradients, but an alternative question is what genes are similar in soils. These genes may indicate critical species or potential functions that are required in all soils. Here we identified the “core” set of C cycling sequences widely present in multiple soil metagenomes from a fertilized prairie (FP). Of 226,887 sequences associated with known enzymes involved inmore » the synthesis, metabolism, and transport of carbohydrates, 843 were identified to be consistently prevalent across four replicate soil metagenomes. This core metagenome was functionally and taxonomically diverse, representing five enzyme classes and 99 enzyme families within the CAZy database. Though it only comprised 0.4% of all CAZy-associated genes identified in FP metagenomes, the core was found to be comprised of functions similar to those within cumulative soils. The FP CAZy-associated core sequences were present in multiple publicly available soil metagenomes and most similar to soils sharing geographic proximity. As a result, in soil ecosystems, where high diversity remains a key challenge for metagenomic investigations, these core genes represent a subset of critical functions necessary for carbohydrate metabolism, which can be targeted to evaluate important C fluxes in these and other similar soils.« less
DIANA-microT web server: elucidating microRNA functions through target prediction.
Maragkakis, M; Reczko, M; Simossis, V A; Alexiou, P; Papadopoulos, G L; Dalamagas, T; Giannopoulos, G; Goumas, G; Koukis, E; Kourtis, K; Vergoulis, T; Koziris, N; Sellis, T; Tsanakas, P; Hatzigeorgiou, A G
2009-07-01
Computational microRNA (miRNA) target prediction is one of the key means for deciphering the role of miRNAs in development and disease. Here, we present the DIANA-microT web server as the user interface to the DIANA-microT 3.0 miRNA target prediction algorithm. The web server provides extensive information for predicted miRNA:target gene interactions with a user-friendly interface, providing extensive connectivity to online biological resources. Target gene and miRNA functions may be elucidated through automated bibliographic searches and functional information is accessible through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The web server offers links to nomenclature, sequence and protein databases, and users are facilitated by being able to search for targeted genes using different nomenclatures or functional features, such as the genes possible involvement in biological pathways. The target prediction algorithm supports parameters calculated individually for each miRNA:target gene interaction and provides a signal-to-noise ratio and a precision score that helps in the evaluation of the significance of the predicted results. Using a set of miRNA targets recently identified through the pSILAC method, the performance of several computational target prediction programs was assessed. DIANA-microT 3.0 achieved there with 66% the highest ratio of correctly predicted targets over all predicted targets. The DIANA-microT web server is freely available at www.microrna.gr/microT.
Transcript Analysis and Regulative Events during Flower Development in Olive (Olea europaea L.).
Alagna, Fiammetta; Cirilli, Marco; Galla, Giulio; Carbone, Fabrizio; Daddiego, Loretta; Facella, Paolo; Lopez, Loredana; Colao, Chiara; Mariotti, Roberto; Cultrera, Nicolò; Rossi, Martina; Barcaccia, Gianni; Baldoni, Luciana; Muleo, Rosario; Perrotta, Gaetano
2016-01-01
The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia), included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided.
Transcript Analysis and Regulative Events during Flower Development in Olive (Olea europaea L.)
Alagna, Fiammetta; Cirilli, Marco; Galla, Giulio; Carbone, Fabrizio; Daddiego, Loretta; Facella, Paolo; Lopez, Loredana; Colao, Chiara; Mariotti, Roberto; Cultrera, Nicolò; Rossi, Martina; Barcaccia, Gianni; Baldoni, Luciana; Muleo, Rosario; Perrotta, Gaetano
2016-01-01
The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia), included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided. PMID:27077738
Prediction and Testing of Biological Networks Underlying Intestinal Cancer
Mariadason, John M.; Wang, Donghai; Augenlicht, Leonard H.; Chance, Mark R.
2010-01-01
Colorectal cancer progresses through an accumulation of somatic mutations, some of which reside in so-called “driver” genes that provide a growth advantage to the tumor. To identify points of intersection between driver gene pathways, we implemented a network analysis framework using protein interactions to predict likely connections – both precedented and novel – between key driver genes in cancer. We applied the framework to find significant connections between two genes, Apc and Cdkn1a (p21), known to be synergistic in tumorigenesis in mouse models. We then assessed the functional coherence of the resulting Apc-Cdkn1a network by engineering in vivo single node perturbations of the network: mouse models mutated individually at Apc (Apc1638N+/−) or Cdkn1a (Cdkn1a−/−), followed by measurements of protein and gene expression changes in intestinal epithelial tissue. We hypothesized that if the predicted network is biologically coherent (functional), then the predicted nodes should associate more specifically with dysregulated genes and proteins than stochastically selected genes and proteins. The predicted Apc-Cdkn1a network was significantly perturbed at the mRNA-level by both single gene knockouts, and the predictions were also strongly supported based on physical proximity and mRNA coexpression of proteomic targets. These results support the functional coherence of the proposed Apc-Cdkn1a network and also demonstrate how network-based predictions can be statistically tested using high-throughput biological data. PMID:20824133
Strigolactone- and Karrikin-Independent SMXL Proteins Are Central Regulators of Phloem Formation.
Wallner, Eva-Sophie; López-Salmerón, Vadir; Belevich, Ilya; Poschet, Gernot; Jung, Ilona; Grünwald, Karin; Sevilem, Iris; Jokitalo, Eija; Hell, Rüdiger; Helariutta, Yrjö; Agustí, Javier; Lebovka, Ivan; Greb, Thomas
2017-04-24
Plant stem cell niches, the meristems, require long-distance transport of energy metabolites and signaling molecules along the phloem tissue. However, currently it is unclear how specification of phloem cells is controlled. Here we show that the genes SUPPRESSOR OF MAX2 1-LIKE3 (SMXL3), SMXL4, and SMXL5 act as cell-autonomous key regulators of phloem formation in Arabidopsis thaliana. The three genes form an uncharacterized subclade of the SMXL gene family that mediates hormonal strigolactone and karrikin signaling. Strigolactones are endogenous signaling molecules regulating shoot and root branching [1] whereas exogenous karrikin molecules induce germination after wildfires [2]. Both activities depend on the F-box protein and SCF (Skp, Cullin, F-box) complex component MORE AXILLARY GROWTH2 (MAX2) [3-5]. Strigolactone and karrikin perception leads to MAX2-dependent degradation of distinct SMXL protein family members, which is key for mediating hormonal effects [6-12]. However, the nature of events immediately downstream of SMXL protein degradation and whether all SMXL proteins mediate strigolactone or karrikin signaling is unknown. In this study we demonstrate that, within the SMXL gene family, specifically SMXL3/4/5 deficiency results in strong defects in phloem formation, altered sugar accumulation, and seedling lethality. By comparing protein stabilities, we show that SMXL3/4/5 proteins function differently to canonical strigolactone and karrikin signaling mediators, although being functionally interchangeable with those under low strigolactone/karrikin signaling conditions. Our observations reveal a fundamental mechanism of phloem formation and indicate that diversity of SMXL protein functions is essential for a steady fuelling of plant meristems. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Tarallo, Roberta; Giurato, Giorgio; Bruno, Giuseppina; Ravo, Maria; Rizzo, Francesca; Salvati, Annamaria; Ricciardi, Luca; Marchese, Giovanna; Cordella, Angela; Rocco, Teresa; Gigantino, Valerio; Pierri, Biancamaria; Cimmino, Giovanni; Milanesi, Luciano; Ambrosino, Concetta; Nyman, Tuula A; Nassa, Giovanni; Weisz, Alessandro
2017-10-06
The RNA-binding protein Argonaute 2 (AGO2) is a key effector of RNA-silencing pathways It exerts a pivotal role in microRNA maturation and activity and can modulate chromatin remodeling, transcriptional gene regulation and RNA splicing. Estrogen receptor beta (ERβ) is endowed with oncosuppressive activities, antagonizing hormone-induced carcinogenesis and inhibiting growth and oncogenic functions in luminal-like breast cancers (BCs), where its expression correlates with a better prognosis of the disease. Applying interaction proteomics coupled to mass spectrometry to characterize nuclear factors cooperating with ERβ in gene regulation, we identify AGO2 as a novel partner of ERβ in human BC cells. ERβ-AGO2 association was confirmed in vitro and in vivo in both the nucleus and cytoplasm and is shown to be RNA-mediated. ChIP-Seq demonstrates AGO2 association with a large number of ERβ binding sites, and total and nascent RNA-Seq in ERβ + vs ERβ - cells, and before and after AGO2 knock-down in ERβ + cells, reveals a widespread involvement of this factor in ERβ-mediated regulation of gene transcription rate and RNA splicing. Moreover, isolation and sequencing by RIP-Seq of ERβ-associated long and small RNAs in the cytoplasm suggests involvement of the nuclear receptor in RISC loading, indicating that it may also be able to directly control mRNA translation efficiency and stability. These results demonstrate that AGO2 can act as a pleiotropic functional partner of ERβ, indicating that both factors are endowed with multiple roles in the control of key cellular functions.
Genetic framework for GATA factor function in vascular biology.
Linnemann, Amelia K; O'Geen, Henriette; Keles, Sunduz; Farnham, Peggy J; Bresnick, Emery H
2011-08-16
Vascular endothelial dysfunction underlies the genesis and progression of numerous diseases. Although the GATA transcription factor GATA-2 is expressed in endothelial cells and is implicated in coronary heart disease, it has been studied predominantly as a master regulator of hematopoiesis. Because many questions regarding GATA-2 function in the vascular biology realm remain unanswered, we used ChIP sequencing and loss-of-function strategies to define the GATA-2-instigated genetic network in human endothelial cells. In contrast to erythroid cells, GATA-2 occupied a unique target gene ensemble consisting of genes encoding key determinants of endothelial cell identity and inflammation. GATA-2-occupied sites characteristically contained motifs that bind activator protein-1 (AP-1), a pivotal regulator of inflammatory genes. GATA-2 frequently occupied the same chromatin sites as c-JUN and c-FOS, heterodimeric components of AP-1. Although all three components were required for maximal AP-1 target gene expression, GATA-2 was not required for AP-1 chromatin occupancy. GATA-2 conferred maximal phosphorylation of chromatin-bound c-JUN at Ser-73, which stimulates AP-1-dependent transactivation, in a chromosomal context-dependent manner. This work establishes a link between a GATA factor and inflammatory genes, mechanistic insights underlying GATA-2-AP-1 cooperativity and a rigorous genetic framework for understanding GATA-2 function in normal and pathophysiological vascular states.
Makita, Yuko; Kobayashi, Norio; Mochizuki, Yoshiki; Yoshida, Yuko; Asano, Satomi; Heida, Naohiko; Deshpande, Mrinalini; Bhatia, Rinki; Matsushima, Akihiro; Ishii, Manabu; Kawaguchi, Shuji; Iida, Kei; Hanada, Kosuke; Kuromori, Takashi; Seki, Motoaki; Shinozaki, Kazuo; Toyoda, Tetsuro
2009-07-01
Molecular breeding of crops is an efficient way to upgrade plant functions useful to mankind. A key step is forward genetics or positional cloning to identify the genes that confer useful functions. In order to accelerate the whole research process, we have developed an integrated database system powered by an intelligent data-retrieval engine termed PosMed-plus (Positional Medline for plant upgrading science), allowing us to prioritize highly promising candidate genes in a given chromosomal interval(s) of Arabidopsis thaliana and rice, Oryza sativa. By inferentially integrating cross-species information resources including genomes, transcriptomes, proteomes, localizomes, phenomes and literature, the system compares a user's query, such as phenotypic or functional keywords, with the literature associated with the relevant genes located within the interval. By utilizing orthologous and paralogous correspondences, PosMed-plus efficiently integrates cross-species information to facilitate the ranking of rice candidate genes based on evidence from other model species such as Arabidopsis. PosMed-plus is a plant science version of the PosMed system widely used by mammalian researchers, and provides both a powerful integrative search function and a rich integrative display of the integrated databases. PosMed-plus is the first cross-species integrated database that inferentially prioritizes candidate genes for forward genetics approaches in plant science, and will be expanded for wider use in plant upgrading in many species.
Improving information retrieval in functional analysis.
Rodriguez, Juan C; González, Germán A; Fresno, Cristóbal; Llera, Andrea S; Fernández, Elmer A
2016-12-01
Transcriptome analysis is essential to understand the mechanisms regulating key biological processes and functions. The first step usually consists of identifying candidate genes; to find out which pathways are affected by those genes, however, functional analysis (FA) is mandatory. The most frequently used strategies for this purpose are Gene Set and Singular Enrichment Analysis (GSEA and SEA) over Gene Ontology. Several statistical methods have been developed and compared in terms of computational efficiency and/or statistical appropriateness. However, whether their results are similar or complementary, the sensitivity to parameter settings, or possible bias in the analyzed terms has not been addressed so far. Here, two GSEA and four SEA methods and their parameter combinations were evaluated in six datasets by comparing two breast cancer subtypes with well-known differences in genetic background and patient outcomes. We show that GSEA and SEA lead to different results depending on the chosen statistic, model and/or parameters. Both approaches provide complementary results from a biological perspective. Hence, an Integrative Functional Analysis (IFA) tool is proposed to improve information retrieval in FA. It provides a common gene expression analytic framework that grants a comprehensive and coherent analysis. Only a minimal user parameter setting is required, since the best SEA/GSEA alternatives are integrated. IFA utility was demonstrated by evaluating four prostate cancer and the TCGA breast cancer microarray datasets, which showed its biological generalization capabilities. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howe, Adina; Yang, Fan; Williams, Ryan J.
Despite the central role of soil microbial communities in global carbon (C) cycling, little is known about soil microbial community structure and even less about their metabolic pathways. Efforts to characterize soil communities often focus on identifying differences in gene content across environmental gradients, but an alternative question is what genes are similar in soils. These genes may indicate critical species or potential functions that are required in all soils. Here we identified the “core” set of C cycling sequences widely present in multiple soil metagenomes from a fertilized prairie (FP). Of 226,887 sequences associated with known enzymes involved inmore » the synthesis, metabolism, and transport of carbohydrates, 843 were identified to be consistently prevalent across four replicate soil metagenomes. This core metagenome was functionally and taxonomically diverse, representing five enzyme classes and 99 enzyme families within the CAZy database. Though it only comprised 0.4% of all CAZy-associated genes identified in FP metagenomes, the core was found to be comprised of functions similar to those within cumulative soils. The FP CAZy-associated core sequences were present in multiple publicly available soil metagenomes and most similar to soils sharing geographic proximity. As a result, in soil ecosystems, where high diversity remains a key challenge for metagenomic investigations, these core genes represent a subset of critical functions necessary for carbohydrate metabolism, which can be targeted to evaluate important C fluxes in these and other similar soils.« less
SinEx DB: a database for single exon coding sequences in mammalian genomes.
Jorquera, Roddy; Ortiz, Rodrigo; Ossandon, F; Cárdenas, Juan Pablo; Sepúlveda, Rene; González, Carolina; Holmes, David S
2016-01-01
Eukaryotic genes are typically interrupted by intragenic, noncoding sequences termed introns. However, some genes lack introns in their coding sequence (CDS) and are generally known as 'single exon genes' (SEGs). In this work, a SEG is defined as a nuclear, protein-coding gene that lacks introns in its CDS. Whereas, many public databases of Eukaryotic multi-exon genes are available, there are only two specialized databases for SEGs. The present work addresses the need for a more extensive and diverse database by creating SinEx DB, a publicly available, searchable database of predicted SEGs from 10 completely sequenced mammalian genomes including human. SinEx DB houses the DNA and protein sequence information of these SEGs and includes their functional predictions (KOG) and the relative distribution of these functions within species. The information is stored in a relational database built with My SQL Server 5.1.33 and the complete dataset of SEG sequences and their functional predictions are available for downloading. SinEx DB can be interrogated by: (i) a browsable phylogenetic schema, (ii) carrying out BLAST searches to the in-house SinEx DB of SEGs and (iii) via an advanced search mode in which the database can be searched by key words and any combination of searches by species and predicted functions. SinEx DB provides a rich source of information for advancing our understanding of the evolution and function of SEGs.Database URL: www.sinex.cl. © The Author(s) 2016. Published by Oxford University Press.
Lessons from the canine Oxtr gene: populations, variants and functional aspects.
Bence, M; Marx, P; Szantai, E; Kubinyi, E; Ronai, Z; Banlaki, Z
2017-04-01
Oxytocin receptor (OXTR) acts as a key behavioral modulator of the central nervous system, affecting social behavior, stress, affiliation and cognitive functions. Variants of the Oxtr gene are known to influence behavior both in animals and humans; however, canine Oxtr polymorphisms are less characterized in terms of possible relevance to function, selection criteria in breeding and domestication. In this report, we provide a detailed characterization of common variants of the canine Oxtr gene. In particular (1) novel polymorphisms were identified by direct sequencing of wolf and dog samples, (2) allelic distributions and pairwise linkage disequilibrium patterns of several canine populations were compared, (3) neighbor joining (NJ) tree based on common single nucleotide polymorphisms (SNPs) was constructed, (4) mRNA expression features were assessed, (5) a novel splice variant was detected and (6) in vitro functional assays were performed. Results indicate marked differences regarding Oxtr variations between purebred dogs of different breeds, free-ranging dog populations, wolf subspecies and golden jackals. This, together with existence of explicitly dog-specific alleles and data obtained from the NJ tree implies that Oxtr could indeed have been a target gene during domestication and selection for human preferred aspects of temperament and social behavior. This assumption is further supported by the present observations on gene expression patterns within the brain and luciferase reporter experiments, providing a molecular level link between certain canine Oxtr polymorphisms and differences in nervous system function and behavior. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
FMAP: Functional Mapping and Analysis Pipeline for metagenomics and metatranscriptomics studies.
Kim, Jiwoong; Kim, Min Soo; Koh, Andrew Y; Xie, Yang; Zhan, Xiaowei
2016-10-10
Given the lack of a complete and comprehensive library of microbial reference genomes, determining the functional profile of diverse microbial communities is challenging. The available functional analysis pipelines lack several key features: (i) an integrated alignment tool, (ii) operon-level analysis, and (iii) the ability to process large datasets. Here we introduce our open-sourced, stand-alone functional analysis pipeline for analyzing whole metagenomic and metatranscriptomic sequencing data, FMAP (Functional Mapping and Analysis Pipeline). FMAP performs alignment, gene family abundance calculations, and statistical analysis (three levels of analyses are provided: differentially-abundant genes, operons and pathways). The resulting output can be easily visualized with heatmaps and functional pathway diagrams. FMAP functional predictions are consistent with currently available functional analysis pipelines. FMAP is a comprehensive tool for providing functional analysis of metagenomic/metatranscriptomic sequencing data. With the added features of integrated alignment, operon-level analysis, and the ability to process large datasets, FMAP will be a valuable addition to the currently available functional analysis toolbox. We believe that this software will be of great value to the wider biology and bioinformatics communities.
Gao, Haiyan; Yang, Mei; Zhang, Xiaolan
2018-04-01
The present study aimed to investigate potential recurrence-risk biomarkers based on significant pathways for Luminal A breast cancer through gene expression profile analysis. Initially, the gene expression profiles of Luminal A breast cancer patients were downloaded from The Cancer Genome Atlas database. The differentially expressed genes (DEGs) were identified using a Limma package and the hierarchical clustering analysis was conducted for the DEGs. In addition, the functional pathways were screened using Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses and rank ratio calculation. The multigene prognostic assay was exploited based on the statistically significant pathways and its prognostic function was tested using train set and verified using the gene expression data and survival data of Luminal A breast cancer patients downloaded from the Gene Expression Omnibus. A total of 300 DEGs were identified between good and poor outcome groups, including 176 upregulated genes and 124 downregulated genes. The DEGs may be used to effectively distinguish Luminal A samples with different prognoses verified by hierarchical clustering analysis. There were 9 pathways screened as significant pathways and a total of 18 DEGs involved in these 9 pathways were identified as prognostic biomarkers. According to the survival analysis and receiver operating characteristic curve, the obtained 18-gene prognostic assay exhibited good prognostic function with high sensitivity and specificity to both the train and test samples. In conclusion the 18-gene prognostic assay including the key genes, transcription factor 7-like 2, anterior parietal cortex and lymphocyte enhancer factor-1 may provide a new method for predicting outcomes and may be conducive to the promotion of precision medicine for Luminal A breast cancer.
Genome biogeography reveals the intraspecific spread of adaptive mutations for a complex trait.
Olofsson, Jill K; Bianconi, Matheus; Besnard, Guillaume; Dunning, Luke T; Lundgren, Marjorie R; Holota, Helene; Vorontsova, Maria S; Hidalgo, Oriane; Leitch, Ilia J; Nosil, Patrik; Osborne, Colin P; Christin, Pascal-Antoine
2016-12-01
Physiological novelties are often studied at macro-evolutionary scales such that their micro-evolutionary origins remain poorly understood. Here, we test the hypothesis that key components of a complex trait can evolve in isolation and later be combined by gene flow. We use C 4 photosynthesis as a study system, a derived physiology that increases plant productivity in warm, dry conditions. The grass Alloteropsis semialata includes C 4 and non-C 4 genotypes, with some populations using laterally acquired C 4 -adaptive loci, providing an outstanding system to track the spread of novel adaptive mutations. Using genome data from C 4 and non-C 4 A. semialata individuals spanning the species' range, we infer and date past migrations of different parts of the genome. Our results show that photosynthetic types initially diverged in isolated populations, where key C 4 components were acquired. However, rare but recurrent subsequent gene flow allowed the spread of adaptive loci across genetic pools. Indeed, laterally acquired genes for key C 4 functions were rapidly passed between populations with otherwise distinct genomic backgrounds. Thus, our intraspecific study of C 4 -related genomic variation indicates that components of adaptive traits can evolve separately and later be combined through secondary gene flow, leading to the assembly and optimization of evolutionary innovations. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
McGregor, Nicholas; Yin, Victor; Tung, Ching-Chieh; Van Petegem, Filip; Brumer, Harry
2016-01-01
SUMMARY The xyloglucan endo-transglycosylase/hydrolase (XTH) gene family encodes enzymes of central importance to plant cell wall remodelling. The evolutionary history of plant XTH gene products is incompletely understood vis-à-vis the larger body of bacterial endo-glycanases in Glycoside Hydrolase Family 16 (GH16). To provide molecular insight into this issue, high-resolution X-ray crystal structures and detailed enzyme kinetics of an extant transitional plant endo-glucanase (EG) were determined. Functionally intermediate between plant XTH gene products and bacterial licheninases of GH16, Vitis vinifera EG16 (VvEG16) effectively catalyzes the hydrolysis of the backbones of two dominant plant cell wall matrix glycans, xyloglucan (XyG) and β(1,3)/β(1,4)-mixed-linkage glucan (MLG). Crystallographic complexes with extended oligosaccharide substrates reveal the structural basis for the accommodation of both unbranched, mixed-linked (MLG) and highly decorated, linear (XyG) polysaccharide chains in a broad, extended active-site cleft. Structural comparison with representative bacterial licheninases, a xyloglucan endo-tranglycosylase (XET), and a xyloglucan endo-hydrolase (XEH) outline the functional ramifications of key sequence deletions and insertions across the phylogenetic landscape of GH16. Although the biological role(s) of EG16 orthologs remains to be fully resolved, the present biochemical and tertiary structural characterization provides key insight into plant cell wall enzyme evolution, which will continue to inform genomic analyses and functional studies across species. PMID:27859885
Shakoor, Nadia; Nair, Ramesh; Crasta, Oswald; Morris, Geoffrey; Feltus, Alex; Kresovich, Stephen
2014-01-23
Effective improvement in sorghum crop development necessitates a genomics-based approach to identify functional genes and QTLs. Sequenced in 2009, a comprehensive annotation of the sorghum genome and the development of functional genomics resources is key to enable the discovery and deployment of regulatory and metabolic genes and gene networks for crop improvement. This study utilizes the first commercially available whole-transcriptome sorghum microarray (Sorgh-WTa520972F) to identify tissue and genotype-specific expression patterns for all identified Sorghum bicolor exons and UTRs. The genechip contains 1,026,373 probes covering 149,182 exons (27,577 genes) across the Sorghum bicolor nuclear, chloroplast, and mitochondrial genomes. Specific probesets were also included for putative non-coding RNAs that may play a role in gene regulation (e.g., microRNAs), and confirmed functional small RNAs in related species (maize and sugarcane) were also included in our array design. We generated expression data for 78 samples with a combination of four different tissue types (shoot, root, leaf and stem), two dissected stem tissues (pith and rind) and six diverse genotypes, which included 6 public sorghum lines (R159, Atlas, Fremont, PI152611, AR2400 and PI455230) representing grain, sweet, forage, and high biomass ideotypes. Here we present a summary of the microarray dataset, including analysis of tissue-specific gene expression profiles and associated expression profiles of relevant metabolic pathways. With an aim to enable identification and functional characterization of genes in sorghum, this expression atlas presents a new and valuable resource to the research community.
2014-01-01
Background Effective improvement in sorghum crop development necessitates a genomics-based approach to identify functional genes and QTLs. Sequenced in 2009, a comprehensive annotation of the sorghum genome and the development of functional genomics resources is key to enable the discovery and deployment of regulatory and metabolic genes and gene networks for crop improvement. Results This study utilizes the first commercially available whole-transcriptome sorghum microarray (Sorgh-WTa520972F) to identify tissue and genotype-specific expression patterns for all identified Sorghum bicolor exons and UTRs. The genechip contains 1,026,373 probes covering 149,182 exons (27,577 genes) across the Sorghum bicolor nuclear, chloroplast, and mitochondrial genomes. Specific probesets were also included for putative non-coding RNAs that may play a role in gene regulation (e.g., microRNAs), and confirmed functional small RNAs in related species (maize and sugarcane) were also included in our array design. We generated expression data for 78 samples with a combination of four different tissue types (shoot, root, leaf and stem), two dissected stem tissues (pith and rind) and six diverse genotypes, which included 6 public sorghum lines (R159, Atlas, Fremont, PI152611, AR2400 and PI455230) representing grain, sweet, forage, and high biomass ideotypes. Conclusions Here we present a summary of the microarray dataset, including analysis of tissue-specific gene expression profiles and associated expression profiles of relevant metabolic pathways. With an aim to enable identification and functional characterization of genes in sorghum, this expression atlas presents a new and valuable resource to the research community. PMID:24456189
Telonis-Scott, Marina; Sgrò, Carla M.; Hoffmann, Ary A.; Griffin, Philippa C.
2016-01-01
Repeated attempts to map the genomic basis of complex traits often yield different outcomes because of the influence of genetic background, gene-by-environment interactions, and/or statistical limitations. However, where repeatability is low at the level of individual genes, overlap often occurs in gene ontology categories, genetic pathways, and interaction networks. Here we report on the genomic overlap for natural desiccation resistance from a Pool-genome-wide association study experiment and a selection experiment in flies collected from the same region in southeastern Australia in different years. We identified over 600 single nucleotide polymorphisms associated with desiccation resistance in flies derived from almost 1,000 wild-caught genotypes, a similar number of loci to that observed in our previous genomic study of selected lines, demonstrating the genetic complexity of this ecologically important trait. By harnessing the power of cross-study comparison, we narrowed the candidates from almost 400 genes in each study to a core set of 45 genes, enriched for stimulus, stress, and defense responses. In addition to gene-level overlap, there was higher order congruence at the network and functional levels, suggesting genetic redundancy in key stress sensing, stress response, immunity, signaling, and gene expression pathways. We also identified variants linked to different molecular aspects of desiccation physiology previously verified from functional experiments. Our approach provides insight into the genomic basis of a complex and ecologically important trait and predicts candidate genetic pathways to explore in multiple genetic backgrounds and related species within a functional framework. PMID:26733490
Niu, Xin; Guan, Yuxiang; Chen, Shoukun; Li, Haifeng
2017-08-15
As a superfamily of transcription factors (TFs), the basic helix-loop-helix (bHLH) proteins have been characterized functionally in many plants with a vital role in the regulation of diverse biological processes including growth, development, response to various stresses, and so on. However, no systemic analysis of the bHLH TFs has been reported in Brachypodium distachyon, an emerging model plant in Poaceae. A total of 146 bHLH TFs were identified in the Brachypodium distachyon genome and classified into 24 subfamilies. BdbHLHs in the same subfamily share similar protein motifs and gene structures. Gene duplication events showed a close relationship to rice, maize and sorghum, and segment duplications might play a key role in the expansion of this gene family. The amino acid sequence of the bHLH domains were quite conservative, especially Leu-27 and Leu-54. Based on the predicted binding activities, the BdbHLHs were divided into DNA binding and non-DNA binding types. According to the gene ontology (GO) analysis, BdbHLHs were speculated to function in homodimer or heterodimer manner. By integrating the available high throughput data in public database and results of quantitative RT-PCR, we found the expression profiles of BdbHLHs were different, implying their differentiated functions. One hundred fourty-six BdbHLHs were identified and their conserved domains, sequence features, phylogenetic relationship, chromosomal distribution, GO annotations, gene structures, gene duplication and expression profiles were investigated. Our findings lay a foundation for further evolutionary and functional elucidation of BdbHLH genes.
Zinke, Ingo; Schütz, Christina S.; Katzenberger, Jörg D.; Bauer, Matthias; Pankratz, Michael J.
2002-01-01
We have identified genes regulated by starvation and sugar signals in Drosophila larvae using whole-genome microarrays. Based on expression profiles in the two nutrient conditions, they were organized into different categories that reflect distinct physiological pathways mediating sugar and fat metabolism, and cell growth. In the category of genes regulated in sugar-fed, but not in starved, animals, there is an upregulation of genes encoding key enzymes of the fat biosynthesis pathway and a downregulation of genes encoding lipases. The highest and earliest activated gene upon sugar ingestion is sugarbabe, a zinc finger protein that is induced in the gut and the fat body. Identification of potential targets using microarrays suggests that sugarbabe functions to repress genes involved in dietary fat breakdown and absorption. The current analysis provides a basis for studying the genetic mechanisms underlying nutrient signalling. PMID:12426388
Kiehart, D P; Lutz, M S; Chan, D; Ketchum, A S; Laymon, R A; Nguyen, B; Goldstein, L S
1989-01-01
In contrast to vertebrate species Drosophila has a single myosin heavy chain gene that apparently encodes all sarcomeric heavy chain polypeptides. Flies also contain a cytoplasmic myosin heavy chain polypeptide that by immunological and peptide mapping criteria is clearly different from the major thoracic muscle isoform. Here, we identify the gene that encodes this cytoplasmic isoform and demonstrate that it is distinct from the muscle myosin heavy chain gene. Thus, fly myosin heavy chains are the products of a gene family. Our data suggest that the contractile function required to power myosin based movement in non-muscle cells requires myosin diversity beyond that available in a single heavy chain gene. In addition, we show, that accumulation of cytoplasmic myosin transcripts is regulated in a developmental stage specific fashion, consistent with a key role for this protein in the movements of early embryogenesis. Images PMID:2498088
Kohl, Susanne; Zobor, Ditta; Chiang, Wei-Chieh; Weisschuh, Nicole; Staller, Jennifer; Menendez, Irene Gonzalez; Chang, Stanley; Beck, Susanne C; Garrido, Marina Garcia; Sothilingam, Vithiyanjali; Seeliger, Mathias W; Stanzial, Franco; Benedicenti, Francesco; Inzana, Francesca; Héon, Elise; Vincent, Ajoy; Beis, Jill; Strom, Tim M; Rudolph, Günther; Roosing, Susanne; den Hollander, Anneke I; Cremers, Frans P M; Lopez, Irma; Ren, Huanan; Moore, Anthony T; Webster, Andrew R; Michaelides, Michel; Koenekoop, Robert K; Zrenner, Eberhart; Kaufman, Randal J; Tsang, Stephen H; Wissinger, Bernd; Lin, Jonathan H
2015-01-01
Achromatopsia (ACHM) is an autosomal recessive disorder characterized by color blindness, photophobia, nystagmus and severely reduced visual acuity. Using homozygosity mapping and whole-exome and candidate gene sequencing, we identified ten families carrying six homozygous and two compound-heterozygous mutations in the ATF6 gene (encoding activating transcription factor 6A), a key regulator of the unfolded protein response (UPR) and cellular endoplasmic reticulum (ER) homeostasis. Patients had evidence of foveal hypoplasia and disruption of the cone photoreceptor layer. The ACHM-associated ATF6 mutations attenuate ATF6 transcriptional activity in response to ER stress. Atf6−/− mice have normal retinal morphology and function at a young age but develop rod and cone dysfunction with increasing age. This new ACHM-related gene suggests a crucial and unexpected role for ATF6A in human foveal development and cone function and adds to the list of genes that, despite ubiquitous expression, when mutated can result in an isolated retinal photoreceptor phenotype. PMID:26029869
Wang, Ting; McDonald, Caitlin; Petrenko, Nataliya B.; Leblanc, Mathias; Wang, Tao; Giguere, Vincent; Evans, Ronald M.; Patel, Vickas V.
2015-01-01
Almost all cellular functions are powered by a continuous energy supply derived from cellular metabolism. However, it is little understood how cellular energy production is coordinated with diverse energy-consuming cellular functions. Here, using the cardiac muscle system, we demonstrate that nuclear receptors estrogen-related receptor α (ERRα) and ERRγ are essential transcriptional coordinators of cardiac energy production and consumption. On the one hand, ERRα and ERRγ together are vital for intact cardiomyocyte metabolism by directly controlling expression of genes important for mitochondrial functions and dynamics. On the other hand, ERRα and ERRγ influence major cardiomyocyte energy consumption functions through direct transcriptional regulation of key contraction, calcium homeostasis, and conduction genes. Mice lacking both ERRα and cardiac ERRγ develop severe bradycardia, lethal cardiomyopathy, and heart failure featuring metabolic, contractile, and conduction dysfunctions. These results illustrate that the ERR transcriptional pathway is essential to couple cellular energy metabolism with energy consumption processes in order to maintain normal cardiac function. PMID:25624346
Pan-cancer transcriptomic analysis associates long non-coding RNAs with key mutational driver events
Ashouri, Arghavan; Sayin, Volkan I.; Van den Eynden, Jimmy; Singh, Simranjit X.; Papagiannakopoulos, Thales; Larsson, Erik
2016-01-01
Thousands of long non-coding RNAs (lncRNAs) lie interspersed with coding genes across the genome, and a small subset has been implicated as downstream effectors in oncogenic pathways. Here we make use of transcriptome and exome sequencing data from thousands of tumours across 19 cancer types, to identify lncRNAs that are induced or repressed in relation to somatic mutations in key oncogenic driver genes. Our screen confirms known coding and non-coding effectors and also associates many new lncRNAs to relevant pathways. The associations are often highly reproducible across cancer types, and while many lncRNAs are co-expressed with their protein-coding hosts or neighbours, some are intergenic and independent. We highlight lncRNAs with possible functions downstream of the tumour suppressor TP53 and the master antioxidant transcription factor NFE2L2. Our study provides a comprehensive overview of lncRNA transcriptional alterations in relation to key driver mutational events in human cancers. PMID:28959951
Cardiogenic Genes Expressed in Cardiac Fibroblasts Contribute to Heart Development and Repair
Furtado, Milena B.; Costa, Mauro W.; Pranoto, Edward Adi; Salimova, Ekaterina; Pinto, Alex; Lam, Nicholas T.; Park, Anthony; Snider, Paige; Chandran, Anjana; Harvey, Richard P.; Boyd, Richard; Conway, Simon J.; Pearson, James; Kaye, David M.; Rosenthal, Nadia A.
2014-01-01
Rationale Cardiac fibroblasts are critical to proper heart function through multiple interactions with the myocardial compartment but appreciation of their contribution has suffered from incomplete characterization and lack of cell-specific markers. Objective To generate an unbiased comparative gene expression profile of the cardiac fibroblast pool, identify and characterize the role of key genes in cardiac fibroblast function, and determine their contribution to myocardial development and regeneration. Methods and Results High-throughput cell surface and intracellular profiling of cardiac and tail fibroblasts identified canonical MSC and a surprising number of cardiogenic genes, some expressed at higher levels than in whole heart. Whilst genetically marked fibroblasts contributed heterogeneously to interstitial but not cardiomyocyte compartments in infarcted hearts, fibroblast-restricted depletion of one highly expressed cardiogenic marker, Tbx20, caused marked myocardial dysmorphology and perturbations in scar formation upon myocardial infarction. Conclusions The surprising transcriptional identity of cardiac fibroblasts, the adoption of cardiogenic gene programs and direct contribution to cardiac development and repair provokes alternative interpretations for studies on more specialized cardiac progenitors, offering a novel perspective for reinterpreting cardiac regenerative therapies. PMID:24650916
Differential nuclear scaffold/matrix attachment marks expressed genes.
Linnemann, Amelia K; Platts, Adrian E; Krawetz, Stephen A
2009-02-15
It is well established that nuclear architecture plays a key role in poising regions of the genome for transcription. This may be achieved using scaffold/matrix attachment regions (S/MARs) that establish loop domains. However, the relationship between changes in the physical structure of the genome as mediated by attachment to the nuclear scaffold/matrix and gene expression is not clearly understood. To define the role of S/MARs in organizing our genome and to resolve the often contradictory loci-specific studies, we have surveyed the S/MARs in HeLa S3 cells on human chromosomes 14-18 by array comparative genomic hybridization. Comparison of LIS (lithium 3,5-diiodosalicylate) extraction to identify SARs and 2 m NaCl extraction to identify MARs revealed that approximately one-half of the sites were in common. The results presented in this study suggest that SARs 5' of a gene are associated with transcript presence whereas MARs contained within a gene are associated with silenced genes. The varied functions of the S/MARs as revealed by the different extraction methods highlights their unique functional contribution.
Every which way--nanos gene regulation in echinoderms.
Oulhen, Nathalie; Wessel, Gary M
2014-03-01
Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio binds to and changes the fate of several known transcripts. We summarize here the documented functions of Nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos expression appears to be regulated at every step of transcription, and post-transcriptional activity, making this gene product exciting, every which way. Copyright © 2013 Wiley Periodicals, Inc.
Every which way – nanos gene regulation in echinoderms
Oulhen, Nathalie; Wessel, Gary M.
2014-01-01
Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio, binds to and changes the fate of several known transcripts. We summarize here the documented functions of nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos expression appears to be regulated at every step of transcription, and post-transcriptional activity, making this gene product exciting, every which way. PMID:24376110
Moyroud, Edwige; Kusters, Elske; Monniaux, Marie; Koes, Ronald; Parcy, François
2010-06-01
The LEAFY (LFY) gene of Arabidopsis and its homologs in other angiosperms encode a unique plant-specific transcription factor that assigns the floral fate of meristems and plays a key role in the patterning of flowers, probably since the origin of flowering plants. LFY-like genes are also found in gymnosperms, ferns and mosses that do not produce flowers, but their role in these plants is poorly understood. Here, we review recent findings explaining how the LFY protein works and how it could have evolved throughout land plant history. We propose that LFY homologs have an ancestral role in regulating cell division and arrangement, and acquired novel functions in seed plants, such as activating reproductive gene networks.
Poon, Betty P.K
2011-01-01
Interactions between genetic regions located across the genome maintain its three-dimensional organization and function. Recent studies point to key roles for a set of coiled-coil domain-containing complexes (cohibin, cohesin, condensin and monopolin) and related factors in the regulation of DNA-DNA connections across the genome. These connections are critical to replication, recombination, gene expression as well as chromosome segregation. PMID:21822055
Genome-Wide Analysis of the NADK Gene Family in Plants
Li, Wen-Yan; Wang, Xiang; Li, Ri; Li, Wen-Qiang; Chen, Kun-Ming
2014-01-01
Background NAD(H) kinase (NADK) is the key enzyme that catalyzes de novo synthesis of NADP(H) from NAD(H) for NADP(H)-based metabolic pathways. In plants, NADKs form functional subfamilies. Studies of these families in Arabidopsis thaliana indicate that they have undergone considerable evolutionary selection; however, the detailed evolutionary history and functions of the various NADKs in plants are not clearly understood. Principal Findings We performed a comparative genomic analysis that identified 74 NADK gene homologs from 24 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots and eudicots. Phylogenetic and structural analysis classified these NADK genes into four well-conserved subfamilies with considerable variety in the domain organization and gene structure among subfamily members. In addition to the typical NAD_kinase domain, additional domains, such as adenylate kinase, dual-specificity phosphatase, and protein tyrosine phosphatase catalytic domains, were found in subfamily II. Interestingly, NADKs in subfamily III exhibited low sequence similarity (∼30%) in the kinase domain within the subfamily and with the other subfamilies. These observations suggest that gene fusion and exon shuffling may have occurred after gene duplication, leading to specific domain organization seen in subfamilies II and III, respectively. Further analysis of the exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures, during the process of structural evolution of NADK family genes. Finally, both available global microarray data analysis and qRT-RCR experiments revealed that the NADK genes in Arabidopsis and Oryza sativa show different expression patterns in different developmental stages and under several different abiotic/biotic stresses and hormone treatments, underscoring the functional diversity and functional divergence of the NADK family in plants. Conclusions These findings will facilitate further studies of the NADK family and provide valuable information for functional validation of this family in plants. PMID:24968225
Wang, Bo; Chen, Yanhong; Guo, Baojian; Kabir, Muhammad Rezaul; Yao, Yingyin; Peng, Huiru; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu
2014-08-01
Cytokinin signaling is vital for plant growth and development which function via the two-component system (TCS). As one of the key component of TCS, transmembrane histidine kinases (HK) are encoded by a small gene family in plants. In this study, we focused on expression and functional analysis of cytokinin receptor-like HK genes (ZmHK) in maize. Firstly, bioinformatics analysis revealed that seven cloned ZmHK genes have different expression patterns during maize development. Secondly, ectopic expression by CaMV35S promoter in Arabidopsis further revealed that functional differentiation exists among these seven members. Among them, the ZmHK1a2-OX transgenic line has the lowest germination rate in the dark, ZmHK1-OX and ZmHK2a2-OX can delay leaf senescence, and seed size of ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX was obviously reduced as compared to wild type. Additionally, ZmHK genes play opposite roles in shoot and root development; all ZmHK-OX transgenic lines display obvious shorter root length and reduced number of lateral roots, but enhanced shoot development compared with the wild type. Most notably, Arabidopsis response regulator ARR5 gene was up-regulated in ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX as compared to wild type. Although the causal link between ZmHK genes and cytokinin signaling pathway is still an area to be further elucidated, these findings reflected that the diversification of ZmHK genes expression patterns and functions occurred in the course of maize evolution, indicating that some ZmHK genes might play different roles during maize development.
Functional relevance of intestinal epithelial cells in inflammatory bowel disease.
Okamoto, Ryuichi; Watanabe, Mamoru
2016-01-01
The intestinal epithelium constitutes a physical barrier between inner and outer side of our body. It also functions as a "hub" which connects factors that determine the development of inflammatory bowel disease, such as microbiota, susceptibility genes, and host immune response. Accordingly, recent studies have implicated and further featured the role of intestinal epithelial cell dysfunction in the pathophysiology of inflammatory bowel disease. For example, mucin producing goblet cells are usually "depleted" in ulcerative colitis patients. Studies have shown that those goblet cells exhibit various immune-regulatory functions in addition to mucin production, such as antigen presentation or cytokine production. Paneth cells are another key cell lineage that has been deeply implicated in the pathophysiology of Crohn's disease. Several susceptibility genes for Crohn's disease may lead to impairment of anti-bacterial peptide production and secretion by Paneth cells. Also, other susceptibility genes may determine the survival of Paneth cells, which leads to reduced Paneth cell function in the patient small intestinal mucosa. Further studies may reveal other unexpected roles of the intestinal epithelium in the pathophysiology of inflammatory bowel disease, and may help to develop alternative therapies targeted to intestinal epithelial cell functions.
Piyatrakul, Piyanuch; Yang, Meng; Putranto, Riza-Arief; Pirrello, Julien; Dessailly, Florence; Hu, Songnian; Summo, Marilyne; Theeravatanasuk, Kannikar; Leclercq, Julie; Kuswanhadi; Montoro, Pascal
2014-01-01
The AP2/ERF superfamily encodes transcription factors that play a key role in plant development and responses to abiotic and biotic stress. In Hevea brasiliensis, ERF genes have been identified by RNA sequencing. This study set out to validate the number of HbERF genes, and identify ERF genes involved in the regulation of latex cell metabolism. A comprehensive Hevea transcriptome was improved using additional RNA reads from reproductive tissues. Newly assembled contigs were annotated in the Gene Ontology database and were assigned to 3 main categories. The AP2/ERF superfamily is the third most represented compared with other transcription factor families. A comparison with genomic scaffolds led to an estimation of 114 AP2/ERF genes and 1 soloist in Hevea brasiliensis. Based on a phylogenetic analysis, functions were predicted for 26 HbERF genes. A relative transcript abundance analysis was performed by real-time RT-PCR in various tissues. Transcripts of ERFs from group I and VIII were very abundant in all tissues while those of group VII were highly accumulated in latex cells. Seven of the thirty-five ERF expression marker genes were highly expressed in latex. Subcellular localization and transactivation analyses suggested that HbERF-VII candidate genes encoded functional transcription factors. PMID:24971876
Liu, Jun-Jun; Xiang, Yu
2011-01-01
WRKY transcription factors are key regulators of numerous biological processes in plant growth and development, as well as plant responses to abiotic and biotic stresses. Research on biological functions of plant WRKY genes has focused in the past on model plant species or species with largely characterized transcriptomes. However, a variety of non-model plants, such as forest conifers, are essential as feed, biofuel, and wood or for sustainable ecosystems. Identification of WRKY genes in these non-model plants is equally important for understanding the evolutionary and function-adaptive processes of this transcription factor family. Because of limited genomic information, the rarity of regulatory gene mRNAs in transcriptomes, and the sequence divergence to model organism genes, identification of transcription factors in non-model plants using methods similar to those generally used for model plants is difficult. This chapter describes a gene family discovery strategy for identification of WRKY transcription factors in conifers by a combination of in silico-based prediction and PCR-based experimental approaches. Compared to traditional cDNA library screening or EST sequencing at transcriptome scales, this integrated gene discovery strategy provides fast, simple, reliable, and specific methods to unveil the WRKY gene family at both genome and transcriptome levels in non-model plants.
Piyatrakul, Piyanuch; Yang, Meng; Putranto, Riza-Arief; Pirrello, Julien; Dessailly, Florence; Hu, Songnian; Summo, Marilyne; Theeravatanasuk, Kannikar; Leclercq, Julie; Kuswanhadi; Montoro, Pascal
2014-01-01
The AP2/ERF superfamily encodes transcription factors that play a key role in plant development and responses to abiotic and biotic stress. In Hevea brasiliensis, ERF genes have been identified by RNA sequencing. This study set out to validate the number of HbERF genes, and identify ERF genes involved in the regulation of latex cell metabolism. A comprehensive Hevea transcriptome was improved using additional RNA reads from reproductive tissues. Newly assembled contigs were annotated in the Gene Ontology database and were assigned to 3 main categories. The AP2/ERF superfamily is the third most represented compared with other transcription factor families. A comparison with genomic scaffolds led to an estimation of 114 AP2/ERF genes and 1 soloist in Hevea brasiliensis. Based on a phylogenetic analysis, functions were predicted for 26 HbERF genes. A relative transcript abundance analysis was performed by real-time RT-PCR in various tissues. Transcripts of ERFs from group I and VIII were very abundant in all tissues while those of group VII were highly accumulated in latex cells. Seven of the thirty-five ERF expression marker genes were highly expressed in latex. Subcellular localization and transactivation analyses suggested that HbERF-VII candidate genes encoded functional transcription factors.
Genome-Wide Identification of the Invertase Gene Family in Populus.
Chen, Zhong; Gao, Kai; Su, Xiaoxing; Rao, Pian; An, Xinmin
2015-01-01
Invertase plays a crucial role in carbohydrate partitioning and plant development as it catalyses the irreversible hydrolysis of sucrose into glucose and fructose. The invertase family in plants is composed of two sub-families: acid invertases, which are targeted to the cell wall and vacuole; and neutral/alkaline invertases, which function in the cytosol. In this study, 5 cell wall invertase genes (PtCWINV1-5), 3 vacuolar invertase genes (PtVINV1-3) and 16 neutral/alkaline invertase genes (PtNINV1-16) were identified in the Populus genome and found to be distributed on 14 chromosomes. A comprehensive analysis of poplar invertase genes was performed, including structures, chromosome location, phylogeny, evolutionary pattern and expression profiles. Phylogenetic analysis indicated that the two sub-families were both divided into two clades. Segmental duplication is contributed to neutral/alkaline sub-family expansion. Furthermore, the Populus invertase genes displayed differential expression in roots, stems, leaves, leaf buds and in response to salt/cold stress and pathogen infection. In addition, the analysis of enzyme activity and sugar content revealed that invertase genes play key roles in the sucrose metabolism of various tissues and organs in poplar. This work lays the foundation for future functional analysis of the invertase genes in Populus and other woody perennials.
Genome-Wide Identification of the Invertase Gene Family in Populus
Su, Xiaoxing; Rao, Pian; An, Xinmin
2015-01-01
Invertase plays a crucial role in carbohydrate partitioning and plant development as it catalyses the irreversible hydrolysis of sucrose into glucose and fructose. The invertase family in plants is composed of two sub-families: acid invertases, which are targeted to the cell wall and vacuole; and neutral/alkaline invertases, which function in the cytosol. In this study, 5 cell wall invertase genes (PtCWINV1-5), 3 vacuolar invertase genes (PtVINV1-3) and 16 neutral/alkaline invertase genes (PtNINV1-16) were identified in the Populus genome and found to be distributed on 14 chromosomes. A comprehensive analysis of poplar invertase genes was performed, including structures, chromosome location, phylogeny, evolutionary pattern and expression profiles. Phylogenetic analysis indicated that the two sub-families were both divided into two clades. Segmental duplication is contributed to neutral/alkaline sub-family expansion. Furthermore, the Populus invertase genes displayed differential expression in roots, stems, leaves, leaf buds and in response to salt/cold stress and pathogen infection. In addition, the analysis of enzyme activity and sugar content revealed that invertase genes play key roles in the sucrose metabolism of various tissues and organs in poplar. This work lays the foundation for future functional analysis of the invertase genes in Populus and other woody perennials. PMID:26393355
Kovalchuk, Nataliya; Chew, William; Sornaraj, Pradeep; Borisjuk, Nikolai; Yang, Nannan; Singh, Rohan; Bazanova, Natalia; Shavrukov, Yuri; Guendel, Andre; Munz, Eberhard; Borisjuk, Ljudmilla; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy
2016-07-01
Homeodomain leucine zipper class I (HD-Zip I) transcription factors (TFs) play key roles in the regulation of plant growth and development under stresses. Functions of the TaHDZipI-2 gene isolated from the endosperm of developing wheat grain were revealed. Molecular characterization of TaHDZipI-2 protein included studies of its dimerisation, protein-DNA interactions and gene activation properties using pull-down assays, in-yeast methods and transient expression assays in wheat cells. The analysis of TaHDZipI-2 gene functions was performed using transgenic barley plants. It included comparison of developmental phenotypes, yield components, grain quality, frost tolerance and the levels of expression of potential target genes in transgenic and control plants. Transgenic TaHDZipI-2 lines showed characteristic phenotypic features that included reduced growth rates, reduced biomass, early flowering, light-coloured leaves and narrowly elongated spikes. Transgenic lines produced 25-40% more seeds per spike than control plants, but with 50-60% smaller grain size. In vivo lipid imaging exposed changes in the distribution of lipids between the embryo and endosperm in transgenic seeds. Transgenic lines were significantly more tolerant to frost than control plants. Our data suggest the role of TaHDZipI-2 in controlling several key processes underlying frost tolerance, transition to flowering and spike development. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Di Narzo, Antonio Fabio; Kozlenkov, Alexey; Roussos, Panos; Hao, Ke; Hurd, Yasmin; Lewis, David A; Sibille, Etienne; Siever, Larry J; Koonin, Eugene; Dracheva, Stella
2014-09-15
Editing of the pre-mRNA for the serotonin receptor 2C (5-HT2CR) by site-specific adenosine deamination (A-to-I pre-mRNA editing) substantially increases the functional plasticity of this key neurotransmitter receptor and is thought to contribute to homeostatic mechanisms in neurons. 5-HT2CR mRNA editing generates up to 24 different receptor isoforms. The extent of editing correlates with 5-HT2CR functional activity: more highly edited isoforms exhibit the least function. Altered 5-HT2CR editing has been reported in postmortem brains of suicide victims. We report a comparative analysis of the connections among 5-HT2CR editing, genome-wide gene expression and DNA methylation in suicide victims, individuals with major depressive disorder and non-psychiatric controls. The results confirm previous findings of an overrepresentation of highly edited mRNA variants (which encode hypoactive 5-HT2CR receptors) in the brains of suicide victims. A large set of genes for which the expression level is associated with editing was detected. This signature set of editing-associated genes is significantly enriched for genes that are involved in synaptic transmission, genes that are preferentially expressed in neurons, and genes whose expression is correlated with the level of DNA methylation. Notably, we report that the link between 5-HT2CR editing and gene expression is disrupted in suicide victims. The results suggest that the postulated homeostatic function of 5-HT2CR editing is dysregulated in individuals who committed suicide. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaiboonchoe, Amphun; Ghamsari, Lila; Dohai, Bushra
Metabolic networks, which are mathematical representations of organismal metabolism, are reconstructed to provide computational platforms to guide metabolic engineering experiments and explore fundamental questions on metabolism. Systems level analyses, such as interrogation of phylogenetic relationships within the network, can provide further guidance on the modification of metabolic circuitries. Chlamydomonas reinhardtii, a biofuel relevant green alga that has retained key genes with plant, animal, and protist affinities, serves as an ideal model organism to investigate the interplay between gene function and phylogenetic affinities at multiple organizational levels. Here, using detailed topological and functional analyses, coupled with transcriptomics studies on a metabolicmore » network that we have reconstructed for C. reinhardtii, we show that network connectivity has a significant concordance with the co-conservation of genes; however, a distinction between topological and functional relationships is observable within the network. Dynamic and static modes of co-conservation were defined and observed in a subset of gene-pairs across the network topologically. In contrast, genes with predicted synthetic interactions, or genes involved in coupled reactions, show significant enrichment for both shorter and longer phylogenetic distances. Based on our results, we propose that the metabolic network of C. reinhardtii is assembled with an architecture to minimize phylogenetic profile distances topologically, while it includes an expansion of such distances for functionally interacting genes. This arrangement may increase the robustness of C. reinhardtii's network in dealing with varied environmental challenges that the species may face. As a result, the defined evolutionary constraints within the network, which identify important pairings of genes in metabolism, may offer guidance on synthetic biology approaches to optimize the production of desirable metabolites.« less
Chaiboonchoe, Amphun; Ghamsari, Lila; Dohai, Bushra; Ng, Patrick; Khraiwesh, Basel; Jaiswal, Ashish; Jijakli, Kenan; Koussa, Joseph; Nelson, David R; Cai, Hong; Yang, Xinping; Chang, Roger L; Papin, Jason; Yu, Haiyuan; Balaji, Santhanam; Salehi-Ashtiani, Kourosh
2016-07-19
Metabolic networks, which are mathematical representations of organismal metabolism, are reconstructed to provide computational platforms to guide metabolic engineering experiments and explore fundamental questions on metabolism. Systems level analyses, such as interrogation of phylogenetic relationships within the network, can provide further guidance on the modification of metabolic circuitries. Chlamydomonas reinhardtii, a biofuel relevant green alga that has retained key genes with plant, animal, and protist affinities, serves as an ideal model organism to investigate the interplay between gene function and phylogenetic affinities at multiple organizational levels. Here, using detailed topological and functional analyses, coupled with transcriptomics studies on a metabolic network that we have reconstructed for C. reinhardtii, we show that network connectivity has a significant concordance with the co-conservation of genes; however, a distinction between topological and functional relationships is observable within the network. Dynamic and static modes of co-conservation were defined and observed in a subset of gene-pairs across the network topologically. In contrast, genes with predicted synthetic interactions, or genes involved in coupled reactions, show significant enrichment for both shorter and longer phylogenetic distances. Based on our results, we propose that the metabolic network of C. reinhardtii is assembled with an architecture to minimize phylogenetic profile distances topologically, while it includes an expansion of such distances for functionally interacting genes. This arrangement may increase the robustness of C. reinhardtii's network in dealing with varied environmental challenges that the species may face. The defined evolutionary constraints within the network, which identify important pairings of genes in metabolism, may offer guidance on synthetic biology approaches to optimize the production of desirable metabolites.
Chaiboonchoe, Amphun; Ghamsari, Lila; Dohai, Bushra; ...
2016-06-14
Metabolic networks, which are mathematical representations of organismal metabolism, are reconstructed to provide computational platforms to guide metabolic engineering experiments and explore fundamental questions on metabolism. Systems level analyses, such as interrogation of phylogenetic relationships within the network, can provide further guidance on the modification of metabolic circuitries. Chlamydomonas reinhardtii, a biofuel relevant green alga that has retained key genes with plant, animal, and protist affinities, serves as an ideal model organism to investigate the interplay between gene function and phylogenetic affinities at multiple organizational levels. Here, using detailed topological and functional analyses, coupled with transcriptomics studies on a metabolicmore » network that we have reconstructed for C. reinhardtii, we show that network connectivity has a significant concordance with the co-conservation of genes; however, a distinction between topological and functional relationships is observable within the network. Dynamic and static modes of co-conservation were defined and observed in a subset of gene-pairs across the network topologically. In contrast, genes with predicted synthetic interactions, or genes involved in coupled reactions, show significant enrichment for both shorter and longer phylogenetic distances. Based on our results, we propose that the metabolic network of C. reinhardtii is assembled with an architecture to minimize phylogenetic profile distances topologically, while it includes an expansion of such distances for functionally interacting genes. This arrangement may increase the robustness of C. reinhardtii's network in dealing with varied environmental challenges that the species may face. As a result, the defined evolutionary constraints within the network, which identify important pairings of genes in metabolism, may offer guidance on synthetic biology approaches to optimize the production of desirable metabolites.« less
Plasencia, Anna; Soler, Marçal; Dupas, Annabelle; Ladouce, Nathalie; Silva-Martins, Guilherme; Martinez, Yves; Lapierre, Catherine; Franche, Claudine; Truchet, Isabelle; Grima-Pettenati, Jacqueline
2016-06-01
Eucalyptus are of tremendous economic importance being the most planted hardwoods worldwide for pulp and paper, timber and bioenergy. The recent release of the Eucalyptus grandis genome sequence pointed out many new candidate genes potentially involved in secondary growth, wood formation or lineage-specific biosynthetic pathways. Their functional characterization is, however, hindered by the tedious, time-consuming and inefficient transformation systems available hitherto for eucalypts. To overcome this limitation, we developed a fast, reliable and efficient protocol to obtain and easily detect co-transformed E. grandis hairy roots using fluorescent markers, with an average efficiency of 62%. We set up conditions both to cultivate excised roots in vitro and to harden composite plants and verified that hairy root morphology and vascular system anatomy were similar to wild-type ones. We further demonstrated that co-transformed hairy roots are suitable for medium-throughput functional studies enabling, for instance, protein subcellular localization, gene expression patterns through RT-qPCR and promoter expression, as well as the modulation of endogenous gene expression. Down-regulation of the Eucalyptus cinnamoyl-CoA reductase1 (EgCCR1) gene, encoding a key enzyme in lignin biosynthesis, led to transgenic roots with reduced lignin levels and thinner cell walls. This gene was used as a proof of concept to demonstrate that the function of genes involved in secondary cell wall biosynthesis and wood formation can be elucidated in transgenic hairy roots using histochemical, transcriptomic and biochemical approaches. The method described here is timely because it will accelerate gene mining of the genome for both basic research and industry purposes. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Wan, Cen; Lees, Jonathan G; Minneci, Federico; Orengo, Christine A; Jones, David T
2017-10-01
Accurate gene or protein function prediction is a key challenge in the post-genome era. Most current methods perform well on molecular function prediction, but struggle to provide useful annotations relating to biological process functions due to the limited power of sequence-based features in that functional domain. In this work, we systematically evaluate the predictive power of temporal transcription expression profiles for protein function prediction in Drosophila melanogaster. Our results show significantly better performance on predicting protein function when transcription expression profile-based features are integrated with sequence-derived features, compared with the sequence-derived features alone. We also observe that the combination of expression-based and sequence-based features leads to further improvement of accuracy on predicting all three domains of gene function. Based on the optimal feature combinations, we then propose a novel multi-classifier-based function prediction method for Drosophila melanogaster proteins, FFPred-fly+. Interpreting our machine learning models also allows us to identify some of the underlying links between biological processes and developmental stages of Drosophila melanogaster.
2011-01-01
Background Skeletal muscle growth and development from embryo to adult consists of a series of carefully regulated changes in gene expression. Understanding these developmental changes in agriculturally important species is essential to the production of high quality meat products. For example, consumer demand for lean, inexpensive meat products has driven the turkey industry to unprecedented production through intensive genetic selection. However, achievements of increased body weight and muscle mass have been countered by an increased incidence of myopathies and meat quality defects. In a previous study, we developed and validated a turkey skeletal muscle-specific microarray as a tool for functional genomics studies. The goals of the current study were to utilize this microarray to elucidate functional pathways of genes responsible for key events in turkey skeletal muscle development and to compare differences in gene expression between two genetic lines of turkeys. To achieve these goals, skeletal muscle samples were collected at three critical stages in muscle development: 18d embryo (hyperplasia), 1d post-hatch (shift from myoblast-mediated growth to satellite cell-modulated growth by hypertrophy), and 16wk (market age) from two genetic lines: a randombred control line (RBC2) maintained without selection pressure, and a line (F) selected from the RBC2 line for increased 16wk body weight. Array hybridizations were performed in two experiments: Experiment 1 directly compared the developmental stages within genetic line, while Experiment 2 directly compared the two lines within each developmental stage. Results A total of 3474 genes were differentially expressed (false discovery rate; FDR < 0.001) by overall effect of development, while 16 genes were differentially expressed (FDR < 0.10) by overall effect of genetic line. Ingenuity Pathways Analysis was used to group annotated genes into networks, functions, and canonical pathways. The expression of 28 genes involved in extracellular matrix regulation, cell death/apoptosis, and calcium signaling/muscle function, as well as genes with miscellaneous function was confirmed by qPCR. Conclusions The current study identified gene pathways and uncovered novel genes important in turkey muscle growth and development. Future experiments will focus further on several of these candidate genes and the expression and mechanism of action of their protein products. PMID:21385442
Dual Roles for Ikaros in Regulation of Macrophage Chromatin State and Inflammatory Gene Expression.
Oh, Kyu-Seon; Gottschalk, Rachel A; Lounsbury, Nicolas W; Sun, Jing; Dorrington, Michael G; Baek, Songjoon; Sun, Guangping; Wang, Ze; Krauss, Kathleen S; Milner, Joshua D; Dutta, Bhaskar; Hager, Gordon L; Sung, Myong-Hee; Fraser, Iain D C
2018-06-13
Macrophage activation by bacterial LPS leads to induction of a complex inflammatory gene program dependent on numerous transcription factor families. The transcription factor Ikaros has been shown to play a critical role in lymphoid cell development and differentiation; however, its function in myeloid cells and innate immune responses is less appreciated. Using comprehensive genomic analysis of Ikaros-dependent transcription, DNA binding, and chromatin accessibility, we describe unexpected dual repressor and activator functions for Ikaros in the LPS response of murine macrophages. Consistent with the described function of Ikaros as transcriptional repressor, Ikzf1 -/- macrophages showed enhanced induction for select responses. In contrast, we observed a dramatic defect in expression of many delayed LPS response genes, and chromatin immunoprecipitation sequencing analyses support a key role for Ikaros in sustained NF-κB chromatin binding. Decreased Ikaros expression in Ikzf1 +/- mice and human cells dampens these Ikaros-enhanced inflammatory responses, highlighting the importance of quantitative control of Ikaros protein level for its activator function. In the absence of Ikaros, a constitutively open chromatin state was coincident with dysregulation of LPS-induced chromatin remodeling, gene expression, and cytokine responses. Together, our data suggest a central role for Ikaros in coordinating the complex macrophage transcriptional program in response to pathogen challenge.
Rubino, Francesco; Carberry, Ciara; M Waters, Sinéad; Kenny, David; McCabe, Matthew S; Creevey, Christopher J
2017-01-01
Many microbes in complex competitive environments share genes for acquiring and utilising nutrients, questioning whether niche specialisation exists and if so, how it is maintained. We investigated the genomic signatures of niche specialisation in the rumen microbiome, a highly competitive, anaerobic environment, with limited nutrient availability determined by the biomass consumed by the host. We generated individual metagenomic libraries from 14 cows fed an ad libitum diet of grass silage and calculated functional isoform diversity for each microbial gene identified. The animal replicates were used to calculate confidence intervals to test for differences in diversity of functional isoforms between microbes that may drive niche specialisation. We identified 153 genes with significant differences in functional isoform diversity between the two most abundant bacterial genera in the rumen (Prevotella and Clostridium). We found Prevotella possesses a more diverse range of isoforms capable of degrading hemicellulose, whereas Clostridium for cellulose. Furthermore, significant differences were observed in key metabolic processes indicating that isoform diversity plays an important role in maintaining their niche specialisation. The methods presented represent a novel approach for untangling complex interactions between microorganisms in natural environments and have resulted in an expanded catalogue of gene targets central to rumen cellulosic biomass degradation. PMID:28085156
Wang, Runze; Ming, Meiling; Li, Jiaming; Shi, Dongqing; Qiao, Xin; Li, Leiting; Zhang, Shaoling; Wu, Jun
2017-01-01
MADS-box transcription factors play significant roles in plant developmental processes such as floral organ conformation, flowering time, and fruit development. Pear ( Pyrus ), as the third-most crucial temperate fruit crop, has been fully sequenced. However, there is limited information about the MADS family and its functional divergence in pear. In this study, a total of 95 MADS-box genes were identified in the pear genome, and classified into two types by phylogenetic analysis. Type I MADS-box genes were divided into three subfamilies and type II genes into 14 subfamilies. Synteny analysis suggested that whole-genome duplications have played key roles in the expansion of the MADS family, followed by rearrangement events. Purifying selection was the primary force driving MADS-box gene evolution in pear, and one gene pairs presented three codon sites under positive selection. Full-scale expression information for PbrMADS genes in vegetative and reproductive organs was provided and proved by transcriptional and reverse transcription PCR analysis. Furthermore, the PbrMADS11(12) gene, together with partners PbMYB10 and PbbHLH3 was confirmed to activate the promoters of the structural genes in anthocyanin pathway of red pear through dual luciferase assay. In addition, the PbrMADS11 and PbrMADS12 were deduced involving in the regulation of anthocyanin synthesis response to light and temperature changes. These results provide a solid foundation for future functional analysis of PbrMADS genes in different biological processes, especially of pigmentation in pear.
Li, Jiaming; Shi, Dongqing; Qiao, Xin; Li, Leiting; Zhang, Shaoling
2017-01-01
MADS-box transcription factors play significant roles in plant developmental processes such as floral organ conformation, flowering time, and fruit development. Pear (Pyrus), as the third-most crucial temperate fruit crop, has been fully sequenced. However, there is limited information about the MADS family and its functional divergence in pear. In this study, a total of 95 MADS-box genes were identified in the pear genome, and classified into two types by phylogenetic analysis. Type I MADS-box genes were divided into three subfamilies and type II genes into 14 subfamilies. Synteny analysis suggested that whole-genome duplications have played key roles in the expansion of the MADS family, followed by rearrangement events. Purifying selection was the primary force driving MADS-box gene evolution in pear, and one gene pairs presented three codon sites under positive selection. Full-scale expression information for PbrMADS genes in vegetative and reproductive organs was provided and proved by transcriptional and reverse transcription PCR analysis. Furthermore, the PbrMADS11(12) gene, together with partners PbMYB10 and PbbHLH3 was confirmed to activate the promoters of the structural genes in anthocyanin pathway of red pear through dual luciferase assay. In addition, the PbrMADS11 and PbrMADS12 were deduced involving in the regulation of anthocyanin synthesis response to light and temperature changes. These results provide a solid foundation for future functional analysis of PbrMADS genes in different biological processes, especially of pigmentation in pear. PMID:28924499
Poorebrahim, Mansour; Salarian, Ali; Najafi, Saeideh; Abazari, Mohammad Foad; Aleagha, Maryam Nouri; Dadras, Mohammad Nasr; Jazayeri, Seyed Mohammad; Ataei, Atousa; Poortahmasebi, Vahdat
2017-05-01
Epstein-Barr virus (EBV) is the most common cause of infectious mononucleosis (IM) and establishes lifetime infection associated with a variety of cancers and autoimmune diseases. The aim of this study was to develop an integrative gene regulatory network (GRN) approach and overlying gene expression data to identify the representative subnetworks for IM and EBV latent infection (LI). After identifying differentially expressed genes (DEGs) in both IM and LI gene expression profiles, functional annotations were applied using gene ontology (GO) and BiNGO tools, and construction of GRNs, topological analysis and identification of modules were carried out using several plugins of Cytoscape. In parallel, a human-EBV GRN was generated using the Hu-Vir database for further analyses. Our analysis revealed that the majority of DEGs in both IM and LI were involved in cell-cycle and DNA repair processes. However, these genes showed a significant negative correlation in the IM and LI states. Furthermore, cyclin-dependent kinase 2 (CDK2) - a hub gene with the highest centrality score - appeared to be the key player in cell cycle regulation in IM disease. The most significant functional modules in the IM and LI states were involved in the regulation of the cell cycle and apoptosis, respectively. Human-EBV network analysis revealed several direct targets of EBV proteins during IM disease. Our study provides an important first report on the response to IM/LI EBV infection in humans. An important aspect of our data was the upregulation of genes associated with cell cycle progression and proliferation.
2014-01-01
Introduction The MRE11A-RAD50-Nibrin (MRN) complex plays several critical roles related to repair of DNA double-strand breaks. Inherited mutations in the three components predispose to genetic instability disorders and the MRN genes have been implicated in breast cancer susceptibility, but the underlying data are not entirely convincing. Here, we address two related questions: (1) are some rare MRN variants intermediate-risk breast cancer susceptibility alleles, and if so (2) do the MRN genes follow a BRCA1/BRCA2 pattern wherein most susceptibility alleles are protein-truncating variants, or do they follow an ATM/CHEK2 pattern wherein half or more of the susceptibility alleles are missense substitutions? Methods Using high-resolution melt curve analysis followed by Sanger sequencing, we mutation screened the coding exons and proximal splice junction regions of the MRN genes in 1,313 early-onset breast cancer cases and 1,123 population controls. Rare variants in the three genes were pooled using bioinformatics methods similar to those previously applied to ATM, BRCA1, BRCA2, and CHEK2, and then assessed by logistic regression. Results Re-analysis of our ATM, BRCA1, and BRCA2 mutation screening data revealed that these genes do not harbor pathogenic alleles (other than modest-risk SNPs) with minor allele frequencies >0.1% in Caucasian Americans, African Americans, or East Asians. Limiting our MRN analyses to variants with allele frequencies of <0.1% and combining protein-truncating variants, likely spliceogenic variants, and key functional domain rare missense substitutions, we found significant evidence that the MRN genes are indeed intermediate-risk breast cancer susceptibility genes (odds ratio (OR) = 2.88, P = 0.0090). Key domain missense substitutions were more frequent than the truncating variants (24 versus 12 observations) and conferred a slightly higher OR (3.07 versus 2.61) with a lower P value (0.029 versus 0.14). Conclusions These data establish that MRE11A, RAD50, and NBN are intermediate-risk breast cancer susceptibility genes. Like ATM and CHEK2, their spectrum of pathogenic variants includes a relatively high proportion of missense substitutions. However, the data neither establish whether variants in each of the three genes are best evaluated under the same analysis model nor achieve clinically actionable classification of individual variants observed in this study. PMID:24894818
Deng, Qian-Wen; Luo, Xiang-Dong; Chen, Ya-Ling; Zhou, Yi; Zhang, Fan-Tao; Hu, Biao-Lin; Xie, Jian-Kun
2018-03-15
Low phosphorus availability is a major factor restricting rice growth. Dongxiang wild rice (Oryza rufipogon Griff.) has many useful genes lacking in cultivated rice, including stress resistance to phosphorus deficiency, cold, salt and drought, which is considered to be a precious germplasm resource for rice breeding. However, the molecular mechanism of regulation of phosphorus deficiency tolerance is not clear. In this study, cDNA libraries were constructed from the leaf and root tissues of phosphorus stressed and untreated Dongxiang wild rice seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in phosphorus stress response. The results indicated that 1184 transcripts were differentially expressed in the leaves (323 up-regulated and 861 down-regulated) and 986 transcripts were differentially expressed in the roots (756 up-regulated and 230 down-regulated). 43 genes were up-regulated both in leaves and roots, 38 genes were up-regulated in roots but down-regulated in leaves, and only 2 genes were down-regulated in roots but up-regulated in leaves. Among these differentially expressed genes, the detection of many transcription factors and functional genes demonstrated that multiple regulatory pathways were involved in phosphorus deficiency tolerance. Meanwhile, the differentially expressed genes were also annotated with gene ontology terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes pathway mapping, respectively. A set of the most important candidate genes was then identified by combining the differentially expressed genes found in the present study with previously identified phosphorus deficiency tolerance quantitative trait loci. The present work provides abundant genomic information for functional dissection of the phosphorus deficiency resistance of Dongxiang wild rice, which will be help to understand the biological regulatory mechanisms of phosphorus deficiency tolerance in Dongxiang wild rice.
Chai, Hui; Yan, Zhaoyuan; Huang, Ke; Jiang, Yuanqing; Zhang, Lin
2018-02-01
This study aimed to systematically investigate the relationship between miRNA expression and the occurrence of ventricular septal defect (VSD), and characterize the miRNA target genes and pathways that can lead to VSD. The miRNAs that were differentially expressed in blood samples from VSD and normal infants were screened and validated by implementing miRNA microarrays and qRT-PCR. The target genes regulated by differentially expressed miRNAs were predicted using three target gene databases. The functions and signaling pathways of the target genes were enriched using the GO database and KEGG database, respectively. The transcription and protein expression of specific target genes in critical pathways were compared in the VSD and normal control groups using qRT-PCR and western blotting, respectively. Compared with the normal control group, the VSD group had 22 differentially expressed miRNAs; 19 were downregulated and three were upregulated. The 10,677 predicted target genes participated in many biological functions related to cardiac development and morphogenesis. Four target genes (mGLUR, Gq, PLC, and PKC) were involved in the PKC pathway and four (ECM, FAK, PI3 K, and PDK1) were involved in the PI3 K-Akt pathway. The transcription and protein expression of these eight target genes were significantly upregulated in the VSD group. The 22 miRNAs that were dysregulated in the VSD group were mainly downregulated, which may result in the dysregulation of several key genes and biological functions related to cardiac development. These effects could also be exerted via the upregulation of eight specific target genes, the subsequent over-activation of the PKC and PI3 K-Akt pathways, and the eventual abnormal cardiac development and VSD.
Promoter CpG methylation of multiple genes in pituitary adenomas: frequent involvement of caspase-8.
Bello, M Josefa; De Campos, Jose M; Isla, Alberto; Casartelli, Cacilda; Rey, Juan A
2006-02-01
The epigenetic changes in pituitary adenomas were identified by evaluating the methylation status of nine genes (RB1, p14(ARF), p16(INK4a), p73, TIMP-3, MGMT, DAPK, THBS1 and caspase-8) in a series of 35 tumours using methylation-specific PCR analysis plus sequencing. The series included non-functional adenomas (n=23), prolactinomas (n=6), prolactinoma plus thyroid-stimulating hormone adenoma (n=1), growth hormone adenomas (n=4), and adrenocorticotropic adenoma (n=1). All of the tumours had methylation of at least one of these genes and 40% of samples (14 of 35) displayed concurrent methylation of at least three genes. The frequencies of aberrant methylation were: 20% for RB1, 17% for p14(ARF), 34% for p16(INK4a), 29% for p73, 11% for TIMP-3, 23% for MGMT, 6% for DAPK, 43% for THBS1 and 54% for caspase-8. No aberrant methylation was observed in two non-malignant pituitary samples from healthy controls. Although some differences in the frequency of gene methylation between functional and non-functional adenomas were detected, these differences did not reach statistical significance. Our results suggest that promoter methylation is a frequent event in pituitary adenoma tumourigenesis, a process in which inactivation of apoptosis-related genes (DAPK, caspase-8) might play a key role.
Oshiki, Mamoru; Segawa, Takahiro; Ishii, Satoshi
2018-02-02
Various microorganisms play key roles in the Nitrogen (N) cycle. Quantitative PCR (qPCR) and PCR-amplicon sequencing of the N cycle functional genes allow us to analyze the abundance and diversity of microbes responsible in the N transforming reactions in various environmental samples. However, analysis of multiple target genes can be cumbersome and expensive. PCR-independent analysis, such as metagenomics and metatranscriptomics, is useful but expensive especially when we analyze multiple samples and try to detect N cycle functional genes present at relatively low abundance. Here, we present the application of microfluidic qPCR chip technology to simultaneously quantify and prepare amplicon sequence libraries for multiple N cycle functional genes as well as taxon-specific 16S rRNA gene markers for many samples. This approach, named as N cycle evaluation (NiCE) chip, was evaluated by using DNA from pure and artificially mixed bacterial cultures and by comparing the results with those obtained by conventional qPCR and amplicon sequencing methods. Quantitative results obtained by the NiCE chip were comparable to those obtained by conventional qPCR. In addition, the NiCE chip was successfully applied to examine abundance and diversity of N cycle functional genes in wastewater samples. Although non-specific amplification was detected on the NiCE chip, this could be overcome by optimizing the primer sequences in the future. As the NiCE chip can provide high-throughput format to quantify and prepare sequence libraries for multiple N cycle functional genes, this tool should advance our ability to explore N cycling in various samples. Importance. We report a novel approach, namely Nitrogen Cycle Evaluation (NiCE) chip by using microfluidic qPCR chip technology. By sequencing the amplicons recovered from the NiCE chip, we can assess diversities of the N cycle functional genes. The NiCE chip technology is applicable to analyze the temporal dynamics of the N cycle gene transcriptions in wastewater treatment bioreactors. The NiCE chip can provide high-throughput format to quantify and prepare sequence libraries for multiple N cycle functional genes. While there is a room for future improvement, this tool should significantly advance our ability to explore the N cycle in various environmental samples. Copyright © 2018 American Society for Microbiology.
Hox Genes: Choreographers in Neural Development, Architects of Circuit Organization
Philippidou, Polyxeni; Dasen, Jeremy S.
2013-01-01
Summary The neural circuits governing vital behaviors, such as respiration and locomotion, are comprised of discrete neuronal populations residing within the brainstem and spinal cord. Work over the past decade has provided a fairly comprehensive understanding of the developmental pathways that determine the identity of major neuronal classes within the neural tube. However, the steps through which neurons acquire the subtype diversities necessary for their incorporation into a particular circuit are still poorly defined. Studies on the specification of motor neurons indicate that the large family of Hox transcription factors has a key role in generating the subtypes required for selective muscle innervation. There is also emerging evidence that Hox genes function in multiple neuronal classes to shape synaptic specificity during development, suggesting a broader role in circuit assembly. This review highlights the functions and mechanisms of Hox gene networks, and their multifaceted roles during neuronal specification and connectivity. PMID:24094100
Androgen Receptor Gene Polymorphisms and Alterations in Prostate Cancer: Of Humanized Mice and Men
Robins, Diane M.
2011-01-01
Germline polymorphisms and somatic mutations of the androgen receptor (AR) have been intensely investigated in prostate cancer but even with genomic approaches their impact remains controversial. To assess the functional significance of AR genetic variation, we converted the mouse gene to the human sequence by germline recombination and engineered alleles to query the role of a polymorphic glutamine (Q) tract implicated in cancer risk. In a prostate cancer model, AR Q tract length influences progression and castration response. Mutation profiling in mice provides direct evidence that somatic AR variants are selected by therapy, a finding validated in human metastases from distinct treatment groups. Mutant ARs exploit multiple mechanisms to resist hormone ablation, including alterations in ligand specificity, target gene selectivity, chaperone interaction and nuclear localization. Regardless of their frequency, these variants permute normal function to reveal novel means to target wild type AR and its key interacting partners. PMID:21689727
SAUR Proteins as Effectors of Hormonal and Environmental Signals in Plant Growth
Ren, Hong; Gray, William M.
2016-01-01
The plant hormone auxin regulates numerous aspects of plant growth and development. Early auxin response genes mediate its genomic effects on plant growth and development. Discovered in 1987, SMALL AUXIN UP RNAs (SAURs) are the largest family of early auxin response genes. SAUR functions have remained elusive, however, presumably due to extensive genetic redundancy. However, recent molecular, genetic, biochemical, and genomic studies have implicated SAURs in the regulation of a wide range of cellular, physiological, and developmental processes. Recently, crucial mechanistic insight into SAUR function was provided by the demonstration that SAURs inhibit PP2C.D phosphatases to activate plasma membrane (PM) H+-ATPases and promote cell expansion. In addition to auxin, several other hormones and environmental factors also regulate SAUR gene expression. We propose that SAURs are key effector outputs of hormonal and environmental signals that regulate plant growth and development. PMID:25983207
Decoding sORF translation - from small proteins to gene regulation.
Cabrera-Quio, Luis Enrique; Herberg, Sarah; Pauli, Andrea
2016-11-01
Translation is best known as the fundamental mechanism by which the ribosome converts a sequence of nucleotides into a string of amino acids. Extensive research over many years has elucidated the key principles of translation, and the majority of translated regions were thought to be known. The recent discovery of wide-spread translation outside of annotated protein-coding open reading frames (ORFs) came therefore as a surprise, raising the intriguing possibility that these newly discovered translated regions might have unrecognized protein-coding or gene-regulatory functions. Here, we highlight recent findings that provide evidence that some of these newly discovered translated short ORFs (sORFs) encode functional, previously missed small proteins, while others have regulatory roles. Based on known examples we will also speculate about putative additional roles and the potentially much wider impact that these translated regions might have on cellular homeostasis and gene regulation.
Johnson, Howard M.; Noon-Song, Ezra; Ahmed, Chulbul M.
2011-01-01
The mechanism of specific gene activation by cytokines that use JAK/STAT signalling pathway is unknown. There are four different types of JAKs and seven different types of STATs. In the classical model of signaling, ligand interacts solely with the receptor extracellular domain, which triggers JAK activation at the receptor cytoplasmic domain. Activated STATs are then said to carry out nuclear events of specific gene activation, including associated epigenetic changes that cause heterochromatin destabilization. Ligand, receptor, and JAKs play no further role in the classical model. Given the limited number of STATs and the activation of the same STATs by cytokines with different functions, the mechanism of the specificity of their signalling is not obvious. Focusing on gamma interferon (IFNγ), we have shown that ligand, receptor, and activated JAKs are involved in nuclear events that are associated with specific gene activation. In this model, receptor subunit IFNGR1 functions as a transcription/cotranscription factor and the JAKs are involved in key epigenetic events that are required for specific gene activation. The model has implications for gene activation in cancer as well as stem cell differentiation. PMID:22924155
Johnson, Howard M; Noon-Song, Ezra; Ahmed, Chulbul M
2011-09-03
The mechanism of specific gene activation by cytokines that use JAK/STAT signalling pathway is unknown. There are four different types of JAKs and seven different types of STATs. In the classical model of signaling, ligand interacts solely with the receptor extracellular domain, which triggers JAK activation at the receptor cytoplasmic domain. Activated STATs are then said to carry out nuclear events of specific gene activation, including associated epigenetic changes that cause heterochromatin destabilization. Ligand, receptor, and JAKs play no further role in the classical model. Given the limited number of STATs and the activation of the same STATs by cytokines with different functions, the mechanism of the specificity of their signalling is not obvious. Focusing on gamma interferon (IFNγ), we have shown that ligand, receptor, and activated JAKs are involved in nuclear events that are associated with specific gene activation. In this model, receptor subunit IFNGR1 functions as a transcription/cotranscription factor and the JAKs are involved in key epigenetic events that are required for specific gene activation. The model has implications for gene activation in cancer as well as stem cell differentiation.
A Roadmap for Functional Structural Variants in the Soybean Genome
Anderson, Justin E.; Kantar, Michael B.; Kono, Thomas Y.; Fu, Fengli; Stec, Adrian O.; Song, Qijian; Cregan, Perry B.; Specht, James E.; Diers, Brian W.; Cannon, Steven B.; McHale, Leah K.; Stupar, Robert M.
2014-01-01
Gene structural variation (SV) has recently emerged as a key genetic mechanism underlying several important phenotypic traits in crop species. We screened a panel of 41 soybean (Glycine max) accessions serving as parents in a soybean nested association mapping population for deletions and duplications in more than 53,000 gene models. Array hybridization and whole genome resequencing methods were used as complementary technologies to identify SV in 1528 genes, or approximately 2.8%, of the soybean gene models. Although SV occurs throughout the genome, SV enrichment was noted in families of biotic defense response genes. Among accessions, SV was nearly eightfold less frequent for gene models that have retained paralogs since the last whole genome duplication event, compared with genes that have not retained paralogs. Increases in gene copy number, similar to that described at the Rhg1 resistance locus, account for approximately one-fourth of the genic SV events. This assessment of soybean SV occurrence presents a target list of genes potentially responsible for rapidly evolving and/or adaptive traits. PMID:24855315
Naumenko, Vladimir S; Bazovkina, Daria V; Semenova, Alina A; Tsybko, Anton S; Il'chibaeva, Tatyana V; Kondaurova, Elena M; Popova, Nina K
2013-12-01
The effect of glial cell line-derived neurotrophic factor (GDNF) on behavior and on the serotonin (5-HT) system of a mouse strain predisposed to depressive-like behavior, ASC/Icg (Antidepressant Sensitive Cataleptics), in comparison with the parental "nondepressive" CBA/Lac mice was studied. Within 7 days after acute administration, GDNF (800 ng, i.c.v.) decreased cataleptic immobility but increased depressive-like behavioral traits in both investigated mouse strains and produced anxiolytic effects in ASC mice. The expression of the gene encoding the key enzyme for 5-HT biosynthesis in the brain, tryptophan hydroxylase-2 (Tph-2), and 5-HT1A receptor gene in the midbrain as well as 5-HT2A receptor gene in the frontal cortex were increased in GDNF-treated ASC mice. At the same time, GDNF decreased 5-HT1A and 5-HT2A receptor gene expression in the hippocampus of ASC mice. GDNF failed to change Tph2, 5-HT1A , or 5-HT2A receptor mRNA levels in CBA mice as well as 5-HT transporter gene expression and 5-HT1A and 5-HT2A receptor functional activity in both investigated mouse strains. The results show 1) a GDNF-induced increase in the expression of key genes of the brain 5-HT system, Tph2, 5-HT1A , and 5-HT2A receptors, and 2) significant genotype-dependent differences in the 5-HT system response to GDNF treatment. The data suggest that genetically defined cross-talk between neurotrophic factors and the brain 5-HT system underlies the variability in behavioral response to GDNF. Copyright © 2013 Wiley Periodicals, Inc.
" Exploration into the roles of genes, the proteins that they encode, and the functions that they carry out within the cell is a founding pillar in the field of toxicology. Recent breakthroughs in clustered, regularly interspaced, short palindromic repeat (CRISPR) technology...
Systematic network assessment of the carcinogenic activities of cadmium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Peizhan; Duan, Xiaohua; Li, Mian
Cadmium has been defined as type I carcinogen for humans, but the underlying mechanisms of its carcinogenic activity and its influence on protein-protein interactions in cells are not fully elucidated. The aim of the current study was to evaluate, systematically, the carcinogenic activity of cadmium with systems biology approaches. From a literature search of 209 studies that performed with cellular models, 208 proteins influenced by cadmium exposure were identified. All of these were assessed by Western blotting and were recognized as key nodes in network analyses. The protein-protein functional interaction networks were constructed with NetBox software and visualized with Cytoscapemore » software. These cadmium-rewired genes were used to construct a scale-free, highly connected biological protein interaction network with 850 nodes and 8770 edges. Of the network, nine key modules were identified and 60 key signaling pathways, including the estrogen, RAS, PI3K-Akt, NF-κB, HIF-1α, Jak-STAT, and TGF-β signaling pathways, were significantly enriched. With breast cancer, colorectal and prostate cancer cellular models, we validated the key node genes in the network that had been previously reported or inferred form the network by Western blotting methods, including STAT3, JNK, p38, SMAD2/3, P65, AKT1, and HIF-1α. These results suggested the established network was robust and provided a systematic view of the carcinogenic activities of cadmium in human. - Highlights: • A cadmium-influenced network with 850 nodes and 8770 edges was established. • The cadmium-rewired gene network was scale-free and highly connected. • Nine modules were identified, and 60 key signaling pathways related to cadmium-induced carcinogenesis were found. • Key mediators in the network were validated in multiple cellular models.« less
PlantTFDB: a comprehensive plant transcription factor database
Guo, An-Yuan; Chen, Xin; Gao, Ge; Zhang, He; Zhu, Qi-Hui; Liu, Xiao-Chuan; Zhong, Ying-Fu; Gu, Xiaocheng; He, Kun; Luo, Jingchu
2008-01-01
Transcription factors (TFs) play key roles in controlling gene expression. Systematic identification and annotation of TFs, followed by construction of TF databases may serve as useful resources for studying the function and evolution of transcription factors. We developed a comprehensive plant transcription factor database PlantTFDB (http://planttfdb.cbi.pku.edu.cn), which contains 26 402 TFs predicted from 22 species, including five model organisms with available whole genome sequence and 17 plants with available EST sequences. To provide comprehensive information for those putative TFs, we made extensive annotation at both family and gene levels. A brief introduction and key references were presented for each family. Functional domain information and cross-references to various well-known public databases were available for each identified TF. In addition, we predicted putative orthologs of those TFs among the 22 species. PlantTFDB has a simple interface to allow users to search the database by IDs or free texts, to make sequence similarity search against TFs of all or individual species, and to download TF sequences for local analysis. PMID:17933783
Actions of plant Argonautes: predictable or unpredictable?
Ma, Zeyang; Zhang, Xiuren
2018-05-29
Argonaute (AGO) proteins are the key effector of RNA-induced silencing complex (RISC). Land plants typically encode numerous AGO proteins, and they can be typically divided into two major functional groups based on the species of their housed small RNAs (sRNAs). One group of AGOs, guided by 24-nucleotide (nt) sRNAs, canonically function in nuclei to implement transcriptional gene silencing (TGS), whereas the other group of AGOs, guided by 21-nt sRNAs, act in the cytoplasm to fulfill posttranscriptional gene silencing (PTGS). Many new discoveries have been recently made on functions and mechanisms of AGO proteins in plants, and some of the findings change our views on the conventional classification and roles of AGO proteins. In this review, we summarize our current knowledge of AGO proteins in plants. Copyright © 2018 Elsevier Ltd. All rights reserved.
Noh, Hyun Ji; Tang, Ruqi; Flannick, Jason; O'Dushlaine, Colm; Swofford, Ross; Howrigan, Daniel; Genereux, Diane P; Johnson, Jeremy; van Grootheest, Gerard; Grünblatt, Edna; Andersson, Erik; Djurfeldt, Diana R; Patel, Paresh D; Koltookian, Michele; M Hultman, Christina; Pato, Michele T; Pato, Carlos N; Rasmussen, Steven A; Jenike, Michael A; Hanna, Gregory L; Stewart, S Evelyn; Knowles, James A; Ruhrmann, Stephan; Grabe, Hans-Jörgen; Wagner, Michael; Rück, Christian; Mathews, Carol A; Walitza, Susanne; Cath, Daniëlle C; Feng, Guoping; Karlsson, Elinor K; Lindblad-Toh, Kerstin
2017-10-17
Obsessive-compulsive disorder is a severe psychiatric disorder linked to abnormalities in glutamate signaling and the cortico-striatal circuit. We sequenced coding and regulatory elements for 608 genes potentially involved in obsessive-compulsive disorder in human, dog, and mouse. Using a new method that prioritizes likely functional variants, we compared 592 cases to 560 controls and found four strongly associated genes, validated in a larger cohort. NRXN1 and HTR2A are enriched for coding variants altering postsynaptic protein-binding domains. CTTNBP2 (synapse maintenance) and REEP3 (vesicle trafficking) are enriched for regulatory variants, of which at least six (35%) alter transcription factor-DNA binding in neuroblastoma cells. NRXN1 achieves genome-wide significance (p = 6.37 × 10 -11 ) when we include 33,370 population-matched controls. Our findings suggest synaptic adhesion as a key component in compulsive behaviors, and show that targeted sequencing plus functional annotation can identify potentially causative variants, even when genomic data are limited.Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder with symptoms including intrusive thoughts and time-consuming repetitive behaviors. Here Noh and colleagues identify genes enriched for functional variants associated with increased risk of OCD.
Transcription regulation by the Mediator complex.
Soutourina, Julie
2018-04-01
Alterations in the regulation of gene expression are frequently associated with developmental diseases or cancer. Transcription activation is a key phenomenon in the regulation of gene expression. In all eukaryotes, mediator of RNA polymerase II transcription (Mediator), a large complex with modular organization, is generally required for transcription by RNA polymerase II, and it regulates various steps of this process. The main function of Mediator is to transduce signals from the transcription activators bound to enhancer regions to the transcription machinery, which is assembled at promoters as the preinitiation complex (PIC) to control transcription initiation. Recent functional studies of Mediator with the use of structural biology approaches and functional genomics have revealed new insights into Mediator activity and its regulation during transcription initiation, including how Mediator is recruited to transcription regulatory regions and how it interacts and cooperates with PIC components to assist in PIC assembly. Novel roles of Mediator in the control of gene expression have also been revealed by showing its connection to the nuclear pore and linking Mediator to the regulation of gene positioning in the nuclear space. Clear links between Mediator subunits and disease have also encouraged studies to explore targeting of this complex as a potential therapeutic approach in cancer and fungal infections.
Identifying key genes in glaucoma based on a benchmarked dataset and the gene regulatory network.
Chen, Xi; Wang, Qiao-Ling; Zhang, Meng-Hui
2017-10-01
The current study aimed to identify key genes in glaucoma based on a benchmarked dataset and gene regulatory network (GRN). Local and global noise was added to the gene expression dataset to produce a benchmarked dataset. Differentially-expressed genes (DEGs) between patients with glaucoma and normal controls were identified utilizing the Linear Models for Microarray Data (Limma) package based on benchmarked dataset. A total of 5 GRN inference methods, including Zscore, GeneNet, context likelihood of relatedness (CLR) algorithm, Partial Correlation coefficient with Information Theory (PCIT) and GEne Network Inference with Ensemble of Trees (Genie3) were evaluated using receiver operating characteristic (ROC) and precision and recall (PR) curves. The interference method with the best performance was selected to construct the GRN. Subsequently, topological centrality (degree, closeness and betweenness) was conducted to identify key genes in the GRN of glaucoma. Finally, the key genes were validated by performing reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A total of 176 DEGs were detected from the benchmarked dataset. The ROC and PR curves of the 5 methods were analyzed and it was determined that Genie3 had a clear advantage over the other methods; thus, Genie3 was used to construct the GRN. Following topological centrality analysis, 14 key genes for glaucoma were identified, including IL6 , EPHA2 and GSTT1 and 5 of these 14 key genes were validated by RT-qPCR. Therefore, the current study identified 14 key genes in glaucoma, which may be potential biomarkers to use in the diagnosis of glaucoma and aid in identifying the molecular mechanism of this disease.
Miller, David J.; Hayward, David C.; Reece-Hoyes, John S.; Scholten, Ingo; Catmull, Julian; Gehring, Walter J.; Callaerts, Patrick; Larsen, Jill E.; Ball, Eldon E.
2000-01-01
Pax genes encode a family of transcription factors, many of which play key roles in animal embryonic development but whose evolutionary relationships and ancestral functions are unclear. To address these issues, we are characterizing the Pax gene complement of the coral Acropora millepora, an anthozoan cnidarian. As the simplest animals at the tissue level of organization, cnidarians occupy a key position in animal evolution, and the Anthozoa are the basal class within this diverse phylum. We have identified four Pax genes in Acropora: two (Pax-Aam and Pax-Bam) are orthologs of genes identified in other cnidarians; the others (Pax-Cam and Pax-Dam) are unique to Acropora. Pax-Aam may be orthologous with Drosophila Pox neuro, and Pax-Bam clearly belongs to the Pax-2/5/8 class. The Pax-Bam Paired domain binds specifically and preferentially to Pax-2/5/8 binding sites. The recently identified Acropora gene Pax-Dam belongs to the Pax-3/7 class. Clearly, substantial diversification of the Pax family occurred before the Cnidaria/higher Metazoa split. The fourth Acropora Pax gene, Pax-Cam, may correspond to the ancestral vertebrate Pax gene and most closely resembles Pax-6. The expression pattern of Pax-Cam, in putative neurons, is consistent with an ancestral role of the Pax family in neural differentiation and patterning. We have determined the genomic structure of each Acropora Pax gene and show that some splice sites are shared both between the coral genes and between these and Pax genes in triploblastic metazoans. Together, these data support the monophyly of the Pax family and indicate ancient origins of several introns. PMID:10781047
Lee, Ji-Yeon; Kim, Lee-Han; Kim, Ha-Eun; Park, Jae-Sin; Han, Kap-Hoon; Han, Dong-Min
2013-12-01
The nsdD gene encoding a GATA type transcription factor positively controls sexual development in Aspergillus nidulans. According to microarray data, 20 genes that were upregulated by deleting nsdD during various life cycle stages were randomly selected and deleted for functional analysis. None of the mutants showed apparent changes in growth or development compared with those of the wild-type except the AN3154 gene that encodes a putative APSES transcription factor and is an ortholog of Saccharomyces cerevisiae swi4. Deleting AN3154 resulted in retarded growth and development, and the gene was named rgdA (retared growth and development). The rgdA deletion mutant developed a reduced number of conidia even under favorable conditions for asexual development. The retarded growth and development was partially suppressed by the veA1 mutation. The conidial heads of the mutant aborted, showing reduced and irregular shaped phialides. Fruiting body development was delayed compared with that in the wild-type. The mutant did not respond to various nutritional or environmental factors that affected the development patterns. The rgdA gene was expressed at low levels throughout the life cycle and was not significantly affected by several regulators of sexual and asexual development such as nsdD, veA, stuA, or brlA. However, the rgdA gene affected brlA and abaA expression, which function as key regulators of asexual sporulation, suggesting that rgdA functions upstream of those genes.
Cuf2 Is a Novel Meiosis-Specific Regulatory Factor of Meiosis Maturation
Ioannoni, Raphael; Beaudoin, Jude; Lopez-Maury, Luis; Codlin, Sandra; Bahler, Jurg; Labbe, Simon
2012-01-01
Background Meiosis is the specialized form of the cell cycle by which diploid cells produce the haploid gametes required for sexual reproduction. Initiation and progression through meiosis requires that the expression of the meiotic genes is precisely controlled so as to provide the correct gene products at the correct times. During meiosis, four temporal gene clusters are either induced or repressed by a cascade of transcription factors. Principal Findings In this report a novel copper-fist-type regulator, Cuf2, is shown to be expressed exclusively during meiosis. The expression profile of the cuf2+ mRNA revealed that it was induced during middle-phase meiosis. Both cuf2+ mRNA and protein levels are unregulated by copper addition or starvation. The transcription of cuf2+ required the presence of a functional mei4+ gene encoding a key transcription factor that activates the expression of numerous middle meiotic genes. Microscopic analyses of cells expressing a functional Cuf2-GFP protein revealed that Cuf2 co-localized with both homologous chromosomes and sister chromatids during the meiotic divisions. Cells lacking Cuf2 showed an elevated and sustained expression of several of the middle meiotic genes that persisted even during late meiosis. Moreover, cells carrying disrupted cuf2Δ/cuf2Δ alleles displayed an abnormal morphology of the forespore membranes and a dramatic reduction of spore viability. Significance Collectively, the results revealed that Cuf2 functions in the timely repression of the middle-phase genes during meiotic differentiation. PMID:22558440
RNAseq Analysis of the Drosophila Response to the Entomopathogenic Nematode Steinernema
Yadav, Shruti; Daugherty, Sean; Shetty, Amol Carl; Eleftherianos, Ioannis
2017-01-01
Drosophila melanogaster is an outstanding model to study the molecular and functional basis of host–pathogen interactions. Currently, our knowledge of microbial infections in D. melanogaster is well understood; however, the response of flies to nematode infections is still in its infancy. Here, we have used the potent parasitic nematode Steinernema carpocapsae, which lives in mutualism with its endosymbiotic bacteria Xenorhabdus nematophila, to examine the transcriptomic basis of the interaction between D. melanogaster and entomopathogenic nematodes. We have employed next-generation RNA sequencing (RNAseq) to investigate the transcriptomic profile of D. melanogaster larvae in response to infection by S. carpocapsae symbiotic (carrying X. nematophila) or axenic (lacking X. nematophila) nematodes. Bioinformatic analyses have identified the strong induction of genes that are associated with the peritrophic membrane and the stress response, as well as several genes that participate in developmental processes. We have also found that genes with different biological functions are enriched in D. melanogaster larvae responding to either symbiotic or axenic nematodes. We further show that while symbiotic nematode infection enriched certain known immune-related genes, axenic nematode infection enriched several genes associated with chitin binding, lipid metabolic functions, and neuroactive ligand receptors. In addition, we have identified genes with a potential role in nematode recognition and genes with potential antinematode activity. Findings from this study will undoubtedly set the stage for the identification of key regulators of antinematode immune mechanisms in D. melanogaster, as well as in other insects of socioeconomic importance. PMID:28450373
RNAseq Analysis of the Drosophila Response to the Entomopathogenic Nematode Steinernema.
Yadav, Shruti; Daugherty, Sean; Shetty, Amol Carl; Eleftherianos, Ioannis
2017-06-07
Drosophila melanogaster is an outstanding model to study the molecular and functional basis of host-pathogen interactions. Currently, our knowledge of microbial infections in D. melanogaster is well understood; however, the response of flies to nematode infections is still in its infancy. Here, we have used the potent parasitic nematode Steinernema carpocapsae , which lives in mutualism with its endosymbiotic bacteria Xenorhabdus nematophila , to examine the transcriptomic basis of the interaction between D. melanogaster and entomopathogenic nematodes. We have employed next-generation RNA sequencing (RNAseq) to investigate the transcriptomic profile of D. melanogaster larvae in response to infection by S. carpocapsae symbiotic (carrying X. nematophila ) or axenic (lacking X. nematophila ) nematodes. Bioinformatic analyses have identified the strong induction of genes that are associated with the peritrophic membrane and the stress response, as well as several genes that participate in developmental processes. We have also found that genes with different biological functions are enriched in D. melanogaster larvae responding to either symbiotic or axenic nematodes. We further show that while symbiotic nematode infection enriched certain known immune-related genes, axenic nematode infection enriched several genes associated with chitin binding, lipid metabolic functions, and neuroactive ligand receptors. In addition, we have identified genes with a potential role in nematode recognition and genes with potential antinematode activity. Findings from this study will undoubtedly set the stage for the identification of key regulators of antinematode immune mechanisms in D. melanogaster , as well as in other insects of socioeconomic importance. Copyright © 2017 Yadav et al.
Evolution and Classification of Myosins, a Paneukaryotic Whole-Genome Approach
Sebé-Pedrós, Arnau; Grau-Bové, Xavier; Richards, Thomas A.; Ruiz-Trillo, Iñaki
2014-01-01
Myosins are key components of the eukaryotic cytoskeleton, providing motility for a broad diversity of cargoes. Therefore, understanding the origin and evolutionary history of myosin classes is crucial to address the evolution of eukaryote cell biology. Here, we revise the classification of myosins using an updated taxon sampling that includes newly or recently sequenced genomes and transcriptomes from key taxa. We performed a survey of eukaryotic genomes and phylogenetic analyses of the myosin gene family, reconstructing the myosin toolkit at different key nodes in the eukaryotic tree of life. We also identified the phylogenetic distribution of myosin diversity in terms of number of genes, associated protein domains and number of classes in each taxa. Our analyses show that new classes (i.e., paralogs) and domain architectures were continuously generated throughout eukaryote evolution, with a significant expansion of myosin abundance and domain architectural diversity at the stem of Holozoa, predating the origin of animal multicellularity. Indeed, single-celled holozoans have the most complex myosin complement among eukaryotes, with paralogs of most myosins previously considered animal specific. We recover a dynamic evolutionary history, with several lineage-specific expansions (e.g., the myosin III-like gene family diversification in choanoflagellates), convergence in protein domain architectures (e.g., fungal and animal chitin synthase myosins), and important secondary losses. Overall, our evolutionary scheme demonstrates that the ancestral eukaryote likely had a complex myosin repertoire that included six genes with different protein domain architectures. Finally, we provide an integrative and robust classification, useful for future genomic and functional studies on this crucial eukaryotic gene family. PMID:24443438
Su, Fei; Ou, Hong-Yu; Tao, Fei; Tang, Hongzhi; Xu, Ping
2013-12-27
With genomic sequences of many closely related bacterial strains made available by deep sequencing, it is now possible to investigate trends in prokaryotic microevolution. Positive selection is a sub-process of microevolution, in which a particular mutation is favored, causing the allele frequency to continuously shift in one direction. Wide scanning of prokaryotic genomes has shown that positive selection at the molecular level is much more frequent than expected. Genes with significant positive selection may play key roles in bacterial adaption to different environmental pressures. However, selection pressure analyses are computationally intensive and awkward to configure. Here we describe an open access web server, which is designated as PSP (Positive Selection analysis for Prokaryotic genomes) for performing evolutionary analysis on orthologous coding genes, specially designed for rapid comparison of dozens of closely related prokaryotic genomes. Remarkably, PSP facilitates functional exploration at the multiple levels by assignments and enrichments of KO, GO or COG terms. To illustrate this user-friendly tool, we analyzed Escherichia coli and Bacillus cereus genomes and found that several genes, which play key roles in human infection and antibiotic resistance, show significant evidence of positive selection. PSP is freely available to all users without any login requirement at: http://db-mml.sjtu.edu.cn/PSP/. PSP ultimately allows researchers to do genome-scale analysis for evolutionary selection across multiple prokaryotic genomes rapidly and easily, and identify the genes undergoing positive selection, which may play key roles in the interactions of host-pathogen and/or environmental adaptation.
Final Technical Report to DOE for the Award DE-SC0004601
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Jizhong
Understanding the responses, adaptations and feedback mechanisms of biological communities to climate change is critical to project future state of earth and climate systems. Although significant amount of knowledge is available on the feedback responses of aboveground communities to climate change, little is known about the responses of belowground microbial communities due to the challenges in analyzing soil microbial community structure. Thus the goal overall goal of this study is to provide system-level, predictive mechanistic understanding of the temperature sensitivity of soil carbon (C) decomposition to climate warming by using cutting-edge integrated metagenomic technologies. Towards this goal, the following fourmore » objectives will be pursued: (i) To determine phylogenetic composition and metabolic diversity of microbial communities in the temperate grassland and tundra ecosystems; (ii) To delineate the responses of microbial community structure, functions and activities to climate change in the temperate grassland and tundra ecosystems; (iii) To determine the temperature sensitivity of microbial respiration in soils with different mixtures of labile versus recalcitrant C, and the underlying microbiological basis for temperature sensitivity of these pools; and (iv) To synthesize all experimental data for revealing microbial control of ecosystem carbon processes in responses to climate change. We have achieved our goals for all four proposed objectives. First, we determined the phylogenetic composition and metabolic diversity of microbial communities in the temperate grassland and tundra ecosystems. For this objective, we have developed a novel phasing amplicon sequencing (PAS) approach for MiSeq sequencing of amplicons. This approach has been used for sequencing various phylogenetic and functional genes related to ecosystem functioning. A comprehensive functional gene array (e.g., GeoChip 5.0) has also been developed and used for soil microbial community analysis in this study. In addition, shot-gun metagenome sequencing along with the above approaches have been used to understand the phylogenetic and functional diversity, composition, and structure of soil microbial communities in both temperature grassland and tundra ecosystems. Second, we determined the response of soil microbial communities to climate warming in both temperate grassland and tundra ecosystems using various methods. Our major findings are: (i) Microorganisms are very rapid to respond to climate warming in the tundra ecosystem, AK, which is vulnerable, too. (ii) Climate warming also significantly shifted the metabolic diversity, composition and structure of microbial communities, and key metabolic pathways related to carbon turnover, such as cellulose degradation (~13%) and CO2 production (~10%), and to nitrogen cycling, including denitrification (~12%) were enriched by warming. (iii) Warming also altered the expression patterns of microbial functional genes important to ecosystem functioning and stability through GeoChip and metatranscriptomic analysis of soil microbial communities at the OK site. Third, we analyzed temperature sensitivity of C decomposition to climate warming for both AK and OK soils through laboratory incubations. Key results include: (i) Alaska tundra soils showed that after one year of incubation, CT in the top 15 cm could be as high as 25% and 15% of the initial soil C content at 25°C and 15°C incubations, respectively. (ii) analysis of 456 incubated soil samples with 16S rRNA gene, ITS and GeoChip hybridization showed that warming shifted the phylogenretic and functional diversity, composition, structure and metabolic potential of soil microbial communities, and at different stages of incubation, key populations and functional genes significantly changed along with soil substrate changes. Functional gene diversity and functional genes for degrading labile C components decrease along incubation when labile C components are exhausting, but the genes related to degrading recalcitrant C increase. These molecular data will be directly used for modeling. Fourth, we have developed novel approaches to integrate and model experimental data to understand microbial control of ecosystem C processes in response to climate change. We compared different methods to calculate Q10 for estimating temperature sensitivity, and new approaches for Q10 calculation and molecular ecological network analysis were also developed. Using those newly developed approaches, our result indicated that Q10s increased with the recalcitrance of C pools, suggesting that longer incubation studies are needed in order to assess the temperature sensitivity of slower C pools, especially at low temperature regimes. This project has been very productive, resulting in 42 papers published or in press, 4 submitted, and 13 in preparation.« less
Co-acting gene networks predict TRAIL responsiveness of tumour cells with high accuracy.
O'Reilly, Paul; Ortutay, Csaba; Gernon, Grainne; O'Connell, Enda; Seoighe, Cathal; Boyce, Susan; Serrano, Luis; Szegezdi, Eva
2014-12-19
Identification of differentially expressed genes from transcriptomic studies is one of the most common mechanisms to identify tumor biomarkers. This approach however is not well suited to identify interaction between genes whose protein products potentially influence each other, which limits its power to identify molecular wiring of tumour cells dictating response to a drug. Due to the fact that signal transduction pathways are not linear and highly interlinked, the biological response they drive may be better described by the relative amount of their components and their functional relationships than by their individual, absolute expression. Gene expression microarray data for 109 tumor cell lines with known sensitivity to the death ligand cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was used to identify genes with potential functional relationships determining responsiveness to TRAIL-induced apoptosis. The machine learning technique Random Forest in the statistical environment "R" with backward elimination was used to identify the key predictors of TRAIL sensitivity and differentially expressed genes were identified using the software GeneSpring. Gene co-regulation and statistical interaction was assessed with q-order partial correlation analysis and non-rejection rate. Biological (functional) interactions amongst the co-acting genes were studied with Ingenuity network analysis. Prediction accuracy was assessed by calculating the area under the receiver operator curve using an independent dataset. We show that the gene panel identified could predict TRAIL-sensitivity with a very high degree of sensitivity and specificity (AUC=0·84). The genes in the panel are co-regulated and at least 40% of them functionally interact in signal transduction pathways that regulate cell death and cell survival, cellular differentiation and morphogenesis. Importantly, only 12% of the TRAIL-predictor genes were differentially expressed highlighting the importance of functional interactions in predicting the biological response. The advantage of co-acting gene clusters is that this analysis does not depend on differential expression and is able to incorporate direct- and indirect gene interactions as well as tissue- and cell-specific characteristics. This approach (1) identified a descriptor of TRAIL sensitivity which performs significantly better as a predictor of TRAIL sensitivity than any previously reported gene signatures, (2) identified potential novel regulators of TRAIL-responsiveness and (3) provided a systematic view highlighting fundamental differences between the molecular wiring of sensitive and resistant cell types.
O’Callaghan, Maureen; Condron, Leo M.; Kowalchuk, George A.; Van Nostrand, Joy D.; Zhou, Jizhong; Wakelin, Steven A.
2018-01-01
Cropping soils vary in extent of natural suppression of soil-borne plant diseases. However, it is unknown whether similar variation occurs across pastoral agricultural systems. We examined soil microbial community properties known to be associated with disease suppression across 50 pastoral fields varying in management intensity. The composition and abundance of the disease-suppressive community were assessed from both taxonomic and functional perspectives. Pseudomonas bacteria were selected as a general taxonomic indicator of disease suppressive potential, while genes associated with the biosynthesis of a suite of secondary metabolites provided functional markers (GeoChip 5.0 microarray analysis). The composition of both the Pseudomonas communities and disease suppressive functional genes were responsive to land use. Underlying soil properties explained 37% of the variation in Pseudomonas community structure and up to 61% of the variation in the abundance of disease suppressive functional genes. Notably, measures of soil organic matter quality, C:P ratio, and aromaticity of the dissolved organic matter content (carbon recalcitrance), influenced both the taxonomic and functional disease suppressive potential of the pasture soils. Our results suggest that key components of the soil microbial community may be managed on-farm to enhance disease suppression and plant productivity. PMID:29734390
Dignam, Bryony E A; O'Callaghan, Maureen; Condron, Leo M; Kowalchuk, George A; Van Nostrand, Joy D; Zhou, Jizhong; Wakelin, Steven A
2018-01-01
Cropping soils vary in extent of natural suppression of soil-borne plant diseases. However, it is unknown whether similar variation occurs across pastoral agricultural systems. We examined soil microbial community properties known to be associated with disease suppression across 50 pastoral fields varying in management intensity. The composition and abundance of the disease-suppressive community were assessed from both taxonomic and functional perspectives. Pseudomonas bacteria were selected as a general taxonomic indicator of disease suppressive potential, while genes associated with the biosynthesis of a suite of secondary metabolites provided functional markers (GeoChip 5.0 microarray analysis). The composition of both the Pseudomonas communities and disease suppressive functional genes were responsive to land use. Underlying soil properties explained 37% of the variation in Pseudomonas community structure and up to 61% of the variation in the abundance of disease suppressive functional genes. Notably, measures of soil organic matter quality, C:P ratio, and aromaticity of the dissolved organic matter content (carbon recalcitrance), influenced both the taxonomic and functional disease suppressive potential of the pasture soils. Our results suggest that key components of the soil microbial community may be managed on-farm to enhance disease suppression and plant productivity.
More Than Cholesterol Transporters: Lipoprotein Receptors in CNS Function and Neurodegeneration
Lane-Donovan, Courtney E.; Philips, Gary T.; Herz, Joachim
2014-01-01
Members of the low-density lipoprotein (LDL) receptor gene family have a diverse set of biological functions that transcend lipid metabolism. Lipoprotein receptors have broad effects in both the developing and adult brain and participate in synapse development, cargo trafficking, and signal transduction. In addition, several family members play key roles in Alzheimer's disease pathogenesis and neurodegeneration. This review summarizes our current understanding of the role lipoprotein receptors play in CNS function and AD pathology, with a special emphasis on amyloid-independent roles in endocytosis and synaptic dysfunction. PMID:25144875
[Elucidation of key genes in sex determination in genetics teaching].
Li, Meng; He, Zhumei
2014-06-01
Sex is an important and complex feature of organisms, which is controlled by the genetic and environmental factors. The genetic factors, i.e., genes, are vital in sex determination. However, not all the related genes play the same roles, and some key genes play a vital role in the sex determination and differentiation. With the development of the modern genetics, a great progress on the key genes has been made in sex determination. In this review, we summarize the mechanism of sex determination and the strategy of how to study the key genes in sex determination. It will help us to understand the mechanism of sex determination better in the teaching of genetics.
Kringel, Dario; Lippmann, Catharina; Parnham, Michael J; Kalso, Eija; Ultsch, Alfred; Lötsch, Jörn
2018-06-19
Human genetic research has implicated functional variants of more than one hundred genes in the modulation of persisting pain. Artificial intelligence and machine learning techniques may combine this knowledge with results of genetic research gathered in any context, which permits the identification of the key biological processes involved in chronic sensitization to pain. Based on published evidence, a set of 110 genes carrying variants reported to be associated with modulation of the clinical phenotype of persisting pain in eight different clinical settings was submitted to unsupervised machine-learning aimed at functional clustering. Subsequently, a mathematically supported subset of genes, comprising those most consistently involved in persisting pain, was analyzed by means of computational functional genomics in the Gene Ontology knowledgebase. Clustering of genes with evidence for a modulation of persisting pain elucidated a functionally heterogeneous set. The situation cleared when the focus was narrowed to a genetic modulation consistently observed throughout several clinical settings. On this basis, two groups of biological processes, the immune system and nitric oxide signaling, emerged as major players in sensitization to persisting pain, which is biologically highly plausible and in agreement with other lines of pain research. The present computational functional genomics-based approach provided a computational systems-biology perspective on chronic sensitization to pain. Human genetic control of persisting pain points to the immune system as a source of potential future targets for drugs directed against persisting pain. Contemporary machine-learned methods provide innovative approaches to knowledge discovery from previous evidence. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Gene Editing Vectors for Studying Nicotinic Acetylcholine Receptors in Cholinergic Transmission.
Peng, Can; Yan, Yijin; Kim, Veronica J; Engle, Staci E; Berry, Jennifer N; McIntosh, J Michael; Neve, Rachael L; Drenan, Ryan M
2018-05-19
Nicotinic acetylcholine receptors (nAChRs), prototype members of the cys-loop ligand gated ion channel family, are key mediators of cholinergic transmission in the central nervous system. Despite their importance, technical gaps exist in our ability to dissect the function of individual subunits in the brain. To overcome these barriers, we designed CRISPR/Cas9 small guide RNA sequences (sgRNAs) for production of loss-of-function alleles in mouse nAChR genes. These sgRNAs were validated in vitro via deep sequencing. We subsequently targeted candidate nAChR genes in vivo by creating herpes simplex virus (HSV) vectors delivering sgRNAs and Cas9 expression to mouse brain. Production of loss-of-function insertions or deletions (indels) by these "all-in-one" HSV vectors was confirmed using brain slice patch clamp electrophysiology coupled with pharmacological analysis. Next, we developed a scheme for cell type-specific gene editing in mouse brain. Knockin mice expressing Cas9 in a Cre-dependent manner were validated using viral microinjections and genetic crosses to common Cre-driver mouse lines. We subsequently confirmed functional Cas9 activity by targeting the ubiquitous neuronal protein, NeuN, using adeno associated virus (AAV) delivery of sgRNAs. Finally, the mouse β2 nAChR gene was successfully targeted in dopamine transporter (DAT) positive neurons via CRISPR/Cas9. The sgRNA sequences and viral vectors, including our scheme for Cre-dependent gene editing, should be generally useful to the scientific research community. These tools could lead to new discoveries related to the function of nAChRs in neurotransmission and behavioral processes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters
Blin, Kai; Duddela, Srikanth; Krug, Daniel; Kim, Hyun Uk; Bruccoleri, Robert; Lee, Sang Yup; Fischbach, Michael A; Müller, Rolf; Wohlleben, Wolfgang; Breitling, Rainer; Takano, Eriko
2015-01-01
Abstract Microbial secondary metabolism constitutes a rich source of antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. In 2011, we introduced antiSMASH, a web server and stand-alone tool for the automatic genomic identification and analysis of biosynthetic gene clusters, available at http://antismash.secondarymetabolites.org. Here, we present version 3.0 of antiSMASH, which has undergone major improvements. A full integration of the recently published ClusterFinder algorithm now allows using this probabilistic algorithm to detect putative gene clusters of unknown types. Also, a new dereplication variant of the ClusterBlast module now identifies similarities of identified clusters to any of 1172 clusters with known end products. At the enzyme level, active sites of key biosynthetic enzymes are now pinpointed through a curated pattern-matching procedure and Enzyme Commission numbers are assigned to functionally classify all enzyme-coding genes. Additionally, chemical structure prediction has been improved by incorporating polyketide reduction states. Finally, in order for users to be able to organize and analyze multiple antiSMASH outputs in a private setting, a new XML output module allows offline editing of antiSMASH annotations within the Geneious software. PMID:25948579
Development of the cardiac pacemaker
Liang, Xingqun; Evans, Sylvia M.
2017-01-01
The sinoatrial node (SAN) is the dominant pacemaker of the heart. Abnormalities in SAN formation and function can cause sinus arrhythmia, including sick sinus syndrome and sudden death. A better understanding of genes and signaling pathways that regulate SAN development and function is essential to develop more effective treatment to sinus arrhythmia, including biological pacemakers. In this review, we briefly summarize the key processes of SAN morphogenesis during development, and focus on the transcriptional network that drives SAN development. PMID:27770149
Phylogenetics and evolution of Trx SET genes in fully sequenced land plants.
Zhu, Xinyu; Chen, Caoyi; Wang, Baohua
2012-04-01
Plant Trx SET proteins are involved in H3K4 methylation and play a key role in plant floral development. Genes encoding Trx SET proteins constitute a multigene family in which the copy number varies among plant species and functional divergence appears to have occurred repeatedly. To investigate the evolutionary history of the Trx SET gene family, we made a comprehensive evolutionary analysis on this gene family from 13 major representatives of green plants. A novel clustering (here named as cpTrx clade), which included the III-1, III-2, and III-4 orthologous groups, previously resolved was identified. Our analysis showed that plant Trx proteins possessed a variety of domain organizations and gene structures among paralogs. Additional domains such as PHD, PWWP, and FYR were early integrated into primordial SET-PostSET domain organization of cpTrx clade. We suggested that the PostSET domain was lost in some members of III-4 orthologous group during the evolution of land plants. At least four classes of gene structures had been formed at the early evolutionary stage of land plants. Three intronless orphan Trx SET genes from the Physcomitrella patens (moss) were identified, and supposedly, their parental genes have been eliminated from the genome. The structural differences among evolutionary groups of plant Trx SET genes with different functions were described, contributing to the design of further experimental studies.
A Protocol for Multiple Gene Knockout in Mouse Small Intestinal Organoids Using a CRISPR-concatemer.
Merenda, Alessandra; Andersson-Rolf, Amanda; Mustata, Roxana C; Li, Taibo; Kim, Hyunki; Koo, Bon-Kyoung
2017-07-12
CRISPR/Cas9 technology has greatly improved the feasibility and speed of loss-of-function studies that are essential in understanding gene function. In higher eukaryotes, paralogous genes can mask a potential phenotype by compensating the loss of a gene, thus limiting the information that can be obtained from genetic studies relying on single gene knockouts. We have developed a novel, rapid cloning method for guide RNA (gRNA) concatemers in order to create multi-gene knockouts following a single round of transfection in mouse small intestinal organoids. Our strategy allows for the concatemerization of up to four individual gRNAs into a single vector by performing a single Golden Gate shuffling reaction with annealed gRNA oligos and a pre-designed retroviral vector. This allows either the simultaneous knockout of up to four different genes, or increased knockout efficiency following the targeting of one gene by multiple gRNAs. In this protocol, we show in detail how to efficiently clone multiple gRNAs into the retroviral CRISPR-concatemer vector and how to achieve highly efficient electroporation in intestinal organoids. As an example, we show that simultaneous knockout of two pairs of genes encoding negative regulators of the Wnt signaling pathway (Axin1/2 and Rnf43/Znrf3) renders intestinal organoids resistant to the withdrawal of key growth factors.
The Multiple Origins of Complex Multicellularity
NASA Astrophysics Data System (ADS)
Knoll, Andrew H.
2011-05-01
Simple multicellularity has evolved numerous times within the Eukarya, but complex multicellular organisms belong to only six clades: animals, embryophytic land plants, florideophyte red algae, laminarialean brown algae, and two groups of fungi. Phylogeny and genomics suggest a generalized trajectory for the evolution of complex multicellularity, beginning with the co-optation of existing genes for adhesion. Molecular channels to facilitate cell-cell transfer of nutrients and signaling molecules appear to be critical, as this trait occurs in all complex multicellular organisms but few others. Proliferation of gene families for transcription factors and cell signals accompany the key functional innovation of complex multicellular clades: differentiated cells and tissues for the bulk transport of oxygen, nutrients, and molecular signals that enable organisms to circumvent the physical limitations of diffusion. The fossil records of animals and plants document key stages of this trajectory.
Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1.
Gawantka, V; Delius, H; Hirschfeld, K; Blumenstock, C; Niehrs, C
1995-01-01
We have identified a novel homeobox gene, Xvent-1, that is differentially expressed in the ventral marginal zone of the early Xenopus gastrula. Evidence is presented from mRNA microinjection experiments for a role for this gene in dorsoventral patterning of mesoderm. First, Xvent-1 is induced by BMP-4, a gene known to be a key regulator of ventral mesoderm development. Second, Xvent-1 and the organizer-specific gene goosecoid are able to interact, directly or indirectly, in a cross-regulatory loop suppressing each other's expression, consistent with their mutually exclusive expression in the marginal zone. Third, microinjection of Xvent-1 mRNA ventralizes dorsal mesoderm. The results suggest that Xvent-1 functions in a ventral signaling pathway that maintains the ventral mesodermal state and antagonizes the Spemann organizer. Images PMID:8557046
Tran, Frances; Penniket, Carolyn; Patel, Rohan V; Provart, Nicholas J; Laroche, André; Rowland, Owen; Robert, Laurian S
2013-06-01
Despite their importance, there remains a paucity of large-scale gene expression-based studies of reproductive development in species belonging to the Triticeae. As a first step to address this deficiency, a gene expression atlas of triticale reproductive development was generated using the 55K Affymetrix GeneChip(®) wheat genome array. The global transcriptional profiles of the anther/pollen, ovary and stigma were analyzed at concurrent developmental stages, and co-expressed as well as preferentially expressed genes were identified. Data analysis revealed both novel and conserved regulatory factors underlying Triticeae floral development and function. This comprehensive resource rests upon detailed gene annotations, and the expression profiles are readily accessible via a web browser. © 2013 Her Majesty the Queen in Right of Canada as represented by the Minister of Agriculture and Agri-Food Canada.
Multi‐layered inhibition of Streptomyces development: BldO is a dedicated repressor of whiB
Chandra, Govind; Findlay, Kim C.; Buttner, Mark J.
2017-01-01
Summary BldD‐(c‐di‐GMP) sits on top of the regulatory network that controls differentiation in Streptomyces, repressing a large regulon of developmental genes when the bacteria are growing vegetatively. In this way, BldD functions as an inhibitor that blocks the initiation of sporulation. Here, we report the identification and characterisation of BldO, an additional developmental repressor that acts to sustain vegetative growth and prevent entry into sporulation. However, unlike the pleiotropic regulator BldD, we show that BldO functions as the dedicated repressor of a single key target gene, whiB, and that deletion of bldO or constitutive expression of whiB is sufficient to induce precocious hypersporulation. PMID:28271577
MSX1 cooperates with histone H1b for inhibition of transcription and myogenesis.
Lee, Hansol; Habas, Raymond; Abate-Shen, Cory
2004-06-11
During embryogenesis, differentiation of skeletal muscle is regulated by transcription factors that include members of the Msx homeoprotein family. By investigating Msx1 function in repression of myogenic gene expression, we identified a physical interaction between Msx1 and H1b, a specific isoform of mouse histone H1. We found that Msx1 and H1b bind to a key regulatory element of MyoD, a central regulator of skeletal muscle differentiation, where they induce repressed chromatin. Moreover, Msx1 and H1b cooperate to inhibit muscle differentiation in cell culture and in Xenopus animal caps. Our findings define a previously unknown function for "linker" histones in gene-specific transcriptional regulation.
Erdelyi, Peter; Wang, Xing; Suleski, Marina; Wicky, Chantal
2016-01-01
Mi2 proteins are evolutionarily conserved, ATP-dependent chromatin remodelers of the CHD family that play key roles in stem cell differentiation and reprogramming. In Caenorhabditis elegans, the let-418 gene encodes one of the two Mi2 homologs, which is part of at least two chromatin complexes, namely the Nucleosome Remodeling and histone Deacetylase (NuRD) complex and the MEC complex, and functions in larval development, vulval morphogenesis, lifespan regulation, and cell fate determination. To explore the mechanisms involved in the action of LET-418/Mi2, we performed a genome-wide RNA interference (RNAi) screen for suppressors of early larval arrest associated with let-418 mutations. We identified 29 suppressor genes, of which 24 encode chromatin regulators, mostly orthologs of proteins present in transcriptional activator complexes. The remaining five genes vary broadly in their predicted functions. All suppressor genes could suppress multiple aspects of the let-418 phenotype, including developmental arrest and ectopic expression of germline genes in the soma. Analysis of available transcriptomic data and quantitative PCR revealed that LET-418 and the suppressors of early larval arrest are regulating common target genes. These suppressors might represent direct competitors of LET-418 complexes for chromatin regulation of crucial genes involved in the transition to postembryonic development. PMID:28007841
Erdelyi, Peter; Wang, Xing; Suleski, Marina; Wicky, Chantal
2017-02-09
Mi2 proteins are evolutionarily conserved, ATP-dependent chromatin remodelers of the CHD family that play key roles in stem cell differentiation and reprogramming. In Caenorhabditis elegans , the let-418 gene encodes one of the two Mi2 homologs, which is part of at least two chromatin complexes, namely the Nucleosome Remodeling and histone Deacetylase (NuRD) complex and the MEC complex, and functions in larval development, vulval morphogenesis, lifespan regulation, and cell fate determination. To explore the mechanisms involved in the action of LET-418/Mi2, we performed a genome-wide RNA interference (RNAi) screen for suppressors of early larval arrest associated with let-418 mutations. We identified 29 suppressor genes, of which 24 encode chromatin regulators, mostly orthologs of proteins present in transcriptional activator complexes. The remaining five genes vary broadly in their predicted functions. All suppressor genes could suppress multiple aspects of the let-418 phenotype, including developmental arrest and ectopic expression of germline genes in the soma. Analysis of available transcriptomic data and quantitative PCR revealed that LET-418 and the suppressors of early larval arrest are regulating common target genes. These suppressors might represent direct competitors of LET-418 complexes for chromatin regulation of crucial genes involved in the transition to postembryonic development. Copyright © 2017 Erdelyi et al.
Zhang, Huiqing; Guo, Xu; Dai, Jingyao; Wu, Yousheng; Ge, Naijian; Yang, Yefa; Ji, Jiansong; Zhang, Hongxin
2014-11-01
Metabolic reprogramming is an important hallmark of cancer cells, including the alterations of activity and expression in tricarboxylic acid (TCA) cycle key enzymes. Previous studies have reported the associations between tumor formation and three core enzymes involved in the TCA cycle. However, the association between functional single nucleotide polymorphisms (SNPs) in one of TCA cycle key gene isocitrate dehydrogenase (IDH) and the overall survival of hepatocellular carcinoma (HCC) patients treated with transcatheter arterial chemoembolization (TACE) has never been investigated. Five functional SNPs in IDH1 and IDH2 genes were genotyped using the Sequenom iPLEX genotyping system in a cohort of 419 unresectable Chinese HCC patients treated with TACE. Multivariate Cox proportional hazards model and Kaplan-Meier curve were used for the prognosis analysis. We found that SNPs rs12478635 in IDH1 and rs11632348 in IDH2 gene exhibited significant associations with death risk in HCC patients in the dominant model (HR 1.33; 95 % CI 1.02-1.73; P = 0.037) and in recessive model (HR 1.87; 95 % CI 1.27-2.75; P = 0.001), respectively. Moreover, we observed a cumulative effect of these two SNPs on HCC overall survival, indicating a significant trend of death risk increase with increasing number of unfavorable genotypes (P for trend = 0.001). Additionally, our data suggest that unfavorable genotypes of two SNPs may be used as an independent prognostic marker in those with advanced stage and patients with serum AFP <200 μg/L. Our results for the first time suggest that IDH gene polymorphisms may serve as an independent prognostic marker for HCC patients treated with TACE.
Evolving Tale of TCPs: New Paradigms and Old Lacunae
Dhaka, Namrata; Bhardwaj, Vasudha; Sharma, Manoj K.; Sharma, Rita
2017-01-01
Teosinte Branched1/Cycloidea/Proliferating cell factors (TCP) genes are key mediators of genetic innovations underlying morphological novelties, stress adaptation, and evolution of immune response in plants. They have a remarkable ability to integrate and translate diverse endogenous, and environmental signals with high fidelity. Compilation of studies, aimed at elucidating the mechanism of TCP functions, shows that it takes an amalgamation and interplay of several different factors, regulatory processes and pathways, instead of individual components, to achieve the incredible functional diversity and specificity, demonstrated by TCP proteins. Through this minireview, we provide a brief description of key structural features and molecular components, known so far, that operate this conglomerate, and highlight the important conceptual challenges and lacunae in TCP research. PMID:28421104
Evolving Tale of TCPs: New Paradigms and Old Lacunae.
Dhaka, Namrata; Bhardwaj, Vasudha; Sharma, Manoj K; Sharma, Rita
2017-01-01
Teosinte Branched1/Cycloidea/Proliferating cell factors (TCP) genes are key mediators of genetic innovations underlying morphological novelties, stress adaptation, and evolution of immune response in plants. They have a remarkable ability to integrate and translate diverse endogenous, and environmental signals with high fidelity. Compilation of studies, aimed at elucidating the mechanism of TCP functions, shows that it takes an amalgamation and interplay of several different factors, regulatory processes and pathways, instead of individual components, to achieve the incredible functional diversity and specificity, demonstrated by TCP proteins. Through this minireview, we provide a brief description of key structural features and molecular components, known so far, that operate this conglomerate, and highlight the important conceptual challenges and lacunae in TCP research.
NASA Technical Reports Server (NTRS)
Costa, Michael A.; Collins, R. Eric; Anterola, Aldwin M.; Cochrane, Fiona C.; Davin, Laurence B.; Lewis, Norman G.
2003-01-01
The Arabidopsis genome sequencing in 2000 gave to science the first blueprint of a vascular plant. Its successful completion also prompted the US National Science Foundation to launch the Arabidopsis 2010 initiative, the goal of which is to identify the function of each gene by 2010. In this study, an exhaustive analysis of The Institute for Genomic Research (TIGR) and The Arabidopsis Information Resource (TAIR) databases, together with all currently compiled EST sequence data, was carried out in order to determine to what extent the various metabolic networks from phenylalanine ammonia lyase (PAL) to the monolignols were organized and/or could be predicted. In these databases, there are some 65 genes which have been annotated as encoding putative enzymatic steps in monolignol biosynthesis, although many of them have only very low homology to monolignol pathway genes of known function in other plant systems. Our detailed analysis revealed that presently only 13 genes (two PALs, a cinnamate-4-hydroxylase, a p-coumarate-3-hydroxylase, a ferulate-5-hydroxylase, three 4-coumarate-CoA ligases, a cinnamic acid O-methyl transferase, two cinnamoyl-CoA reductases) and two cinnamyl alcohol dehydrogenases can be classified as having a bona fide (definitive) function; the remaining 52 genes currently have undetermined physiological roles. The EST database entries for this particular set of genes also provided little new insight into how the monolignol pathway was organized in the different tissues and organs, this being perhaps a consequence of both limitations in how tissue samples were collected and in the incomplete nature of the EST collections. This analysis thus underscores the fact that even with genomic sequencing, presumed to provide the entire suite of putative genes in the monolignol-forming pathway, a very large effort needs to be conducted to establish actual catalytic roles (including enzyme versatility), as well as the physiological function(s) for each member of the (multi)gene families present and the metabolic networks that are operative. Additionally, one key to identifying physiological functions for many of these (and other) unknown genes, and their corresponding metabolic networks, awaits the development of technologies to comprehensively study molecular processes at the single cell level in particular tissues and organs, in order to establish the actual metabolic context.
Rai, Amit; Nakaya, Taiki; Shimizu, Yohei; Rai, Megha; Nakamura, Michimi; Suzuki, Hideyuki; Saito, Kazuki; Yamazaki, Mami
2018-05-29
Lithospermum officinale is a valuable source of bioactive metabolites with medicinal and industrial values. However, little is known about genes involved in the biosynthesis of these metabolites, primarily due to the lack of genome or transcriptome resources. This study presents the first effort to establish and characterize de novo transcriptome assembly resource for L. officinale and expression analysis for three of its tissues, namely leaf, stem, and root. Using over 4Gbps of RNA-sequencing datasets, we obtained de novo transcriptome assembly of L. officinale , consisting of 77,047 unigenes with assembly N50 value as 1524 bps. Based on transcriptome annotation and functional classification, 52,766 unigenes were assigned with putative genes functions, gene ontology terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. KEGG pathway and gene ontology enrichment analysis using highly expressed unigenes across three tissues and targeted metabolome analysis showed active secondary metabolic processes enriched specifically in the root of L. officinale . Using co-expression analysis, we also identified 20 and 48 unigenes representing different enzymes of lithospermic/chlorogenic acid and shikonin biosynthesis pathways, respectively. We further identified 15 candidate unigenes annotated as cytochrome P450 with the highest expression in the root of L. officinale as novel genes with a role in key biochemical reactions toward shikonin biosynthesis. Thus, through this study, we not only generated a high-quality genomic resource for L. officinale but also propose candidate genes to be involved in shikonin biosynthesis pathways for further functional characterization. Georg Thieme Verlag KG Stuttgart · New York.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emms, David M.; Covshoff, Sarah; Hibberd, Julian M.
C4 photosynthesis is considered one of the most remarkable examples of evolutionary convergence in eukaryotes. However, it is unknown whether the evolution of C4 photosynthesis required the evolution of new genes. Genome-wide gene-tree species-tree reconciliation of seven monocot species that span two origins of C4 photosynthesis revealed that there was significant parallelism in the duplication and retention of genes coincident with the evolution of C4 photosynthesis in these lineages. Specifically, 21 orthologous genes were duplicated and retained independently in parallel at both C4 origins. Analysis of this gene cohort revealed that the set of parallel duplicated and retained genes ismore » enriched for genes that are preferentially expressed in bundle sheath cells, the cell type in which photosynthesis was activated during C4 evolution. Moreover, functional analysis of the cohort of parallel duplicated genes identified SWEET-13 as a potential key transporter in the evolution of C4 photosynthesis in grasses, and provides new insight into the mechanism of phloem loading in these C4 species.« less
Yin, Huaqun; Zhang, Xian; Li, Xiaoqi; He, Zhili; Liang, Yili; Guo, Xue; Hu, Qi; Xiao, Yunhua; Cong, Jing; Ma, Liyuan; Niu, Jiaojiao; Liu, Xueduan
2014-07-04
Acidithiobacillus thiooxidans (A. thiooxidans), a chemolithoautotrophic extremophile, is widely used in the industrial recovery of copper (bioleaching or biomining). The organism grows and survives by autotrophically utilizing energy derived from the oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs). However, the lack of genetic manipulation systems has restricted our exploration of its physiology. With the development of high-throughput sequencing technology, the whole genome sequence analysis of A. thiooxidans has allowed preliminary models to be built for genes/enzymes involved in key energy pathways like sulfur oxidation. The genome of A. thiooxidans A01 was sequenced and annotated. It contains key sulfur oxidation enzymes involved in the oxidation of elemental sulfur and RISCs, such as sulfur dioxygenase (SDO), sulfide quinone reductase (SQR), thiosulfate:quinone oxidoreductase (TQO), tetrathionate hydrolase (TetH), sulfur oxidizing protein (Sox) system and their associated electron transport components. Also, the sulfur oxygenase reductase (SOR) gene was detected in the draft genome sequence of A. thiooxidans A01, and multiple sequence alignment was performed to explore the function of groups of related protein sequences. In addition, another putative pathway was found in the cytoplasm of A. thiooxidans, which catalyzes sulfite to sulfate as the final product by phosphoadenosine phosphosulfate (PAPS) reductase and adenylylsulfate (APS) kinase. This differs from its closest relative Acidithiobacillus caldus, which is performed by sulfate adenylyltransferase (SAT). Furthermore, real-time quantitative PCR analysis showed that most of sulfur oxidation genes were more strongly expressed in the S0 medium than that in the Na2S2O3 medium at the mid-log phase. Sulfur oxidation model of A. thiooxidans A01 has been constructed based on previous studies from other sulfur oxidizing strains and its genome sequence analyses, providing insights into our understanding of its physiology and further analysis of potential functions of key sulfur oxidation genes.
2014-01-01
Background Acidithiobacillus thiooxidans (A. thiooxidans), a chemolithoautotrophic extremophile, is widely used in the industrial recovery of copper (bioleaching or biomining). The organism grows and survives by autotrophically utilizing energy derived from the oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs). However, the lack of genetic manipulation systems has restricted our exploration of its physiology. With the development of high-throughput sequencing technology, the whole genome sequence analysis of A. thiooxidans has allowed preliminary models to be built for genes/enzymes involved in key energy pathways like sulfur oxidation. Results The genome of A. thiooxidans A01 was sequenced and annotated. It contains key sulfur oxidation enzymes involved in the oxidation of elemental sulfur and RISCs, such as sulfur dioxygenase (SDO), sulfide quinone reductase (SQR), thiosulfate:quinone oxidoreductase (TQO), tetrathionate hydrolase (TetH), sulfur oxidizing protein (Sox) system and their associated electron transport components. Also, the sulfur oxygenase reductase (SOR) gene was detected in the draft genome sequence of A. thiooxidans A01, and multiple sequence alignment was performed to explore the function of groups of related protein sequences. In addition, another putative pathway was found in the cytoplasm of A. thiooxidans, which catalyzes sulfite to sulfate as the final product by phosphoadenosine phosphosulfate (PAPS) reductase and adenylylsulfate (APS) kinase. This differs from its closest relative Acidithiobacillus caldus, which is performed by sulfate adenylyltransferase (SAT). Furthermore, real-time quantitative PCR analysis showed that most of sulfur oxidation genes were more strongly expressed in the S0 medium than that in the Na2S2O3 medium at the mid-log phase. Conclusion Sulfur oxidation model of A. thiooxidans A01 has been constructed based on previous studies from other sulfur oxidizing strains and its genome sequence analyses, providing insights into our understanding of its physiology and further analysis of potential functions of key sulfur oxidation genes. PMID:24993543
Singh, Pratichi; Dass, J Febin Prabhu
2018-05-07
IFNL3 gene plays a crucial role in immune defense against viruses. It induces the interferon stimulated genes (ISGs) with antiviral properties by activating the JAK-STAT pathway. In this study, we investigated the evolutionary force involved in shaping the IFNL3 gene to perform its downstream function as a regulatory gene in HCV clearance. We have selected 25 IFNL3 coding sequences with human gene as a reference sequence and constructed a phylogeny. Furthermore, rate of variation, substitution saturation test, phylogenetic informativeness and differential selection were also analysed. The codon evolution result suggests that nearly neutral mutation is the key pattern in shaping the IFNL3 evolution. The results were validated by subjecting the human IFNL3 protein variants to that of the native through a molecular dynamics simulation study. The molecular dynamics simulation clearly depicts the negative impact on the reported variants in human IFNL3 protein. However, these detrimental mutations (R157Q and R157W) were shown to be negatively selected in the evolutionary study of the mammals. Hence, the variation revealed a mild impact on the IFNL3 function and may be removed from the population through negative selection due to its high functional constraints. In a nutshell, our study may contribute the overall evidence in phylotyping and structural transformation that takes place in the non-synonymous substitutions of IFNL3 protein. Substantially, our obtained theoretical knowledge will lay the path to extend the experimental validation in HCV clearance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Analysis of gene expression profile microarray data in complex regional pain syndrome.
Tan, Wulin; Song, Yiyan; Mo, Chengqiang; Jiang, Shuangjian; Wang, Zhongxing
2017-09-01
The aim of the present study was to predict key genes and proteins associated with complex regional pain syndrome (CRPS) using bioinformatics analysis. The gene expression profiling microarray data, GSE47603, which included peripheral blood samples from 4 patients with CRPS and 5 healthy controls, was obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) in CRPS patients compared with healthy controls were identified using the GEO2R online tool. Functional enrichment analysis was then performed using The Database for Annotation Visualization and Integrated Discovery online tool. Protein‑protein interaction (PPI) network analysis was subsequently performed using Search Tool for the Retrieval of Interaction Genes database and analyzed with Cytoscape software. A total of 257 DEGs were identified, including 243 upregulated genes and 14 downregulated ones. Genes in the human leukocyte antigen (HLA) family were most significantly differentially expressed. Enrichment analysis demonstrated that signaling pathways, including immune response, cell motion, adhesion and angiogenesis were associated with CRPS. PPI network analysis revealed that key genes, including early region 1A binding protein p300 (EP300), CREB‑binding protein (CREBBP), signal transducer and activator of transcription (STAT)3, STAT5A and integrin α M were associated with CRPS. The results suggest that the immune response may therefore serve an important role in CRPS development. In addition, genes in the HLA family, such as HLA‑DQB1 and HLA‑DRB1, may present potential biomarkers for the diagnosis of CRPS. Furthermore, EP300, its paralog CREBBP, and the STAT family genes, STAT3 and STAT5 may be important in the development of CRPS.
Liu, Yanqing; Wang, Yueqiu; Zhang, Yanxia; Liu, Zhiyong; Xiang, Hongfei; Peng, Xianbo
2017-01-01
Objectives. We aimed to find the key pathways associated with the development of osteoporosis. Methods. We downloaded expression profile data of GSE35959 and analyzed the differentially expressed genes (DEGs) in 3 comparison groups (old_op versus middle, old_op versus old, and old_op versus senescent). KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analyses were carried out. Besides, Venn diagram analysis and gene functional interaction (FI) network analysis were performed. Results. Totally 520 DEGs, 966 DEGs, and 709 DEGs were obtained in old_op versus middle, old_op versus old, and old_op versus senescent groups, respectively. Lysosome pathway was the significantly enriched pathways enriched by intersection genes. The pathways enriched by subnetwork modules suggested that mitotic metaphase and anaphase and signaling by Rho GTPases in module 1 had more proteins from module. Conclusions. Lysosome pathway, mitotic metaphase and anaphase, and signaling by Rho GTPases may be involved in the development of osteoporosis. Furthermore, Rho GTPases may regulate the balance of bone resorption and bone formation via controlling osteoclast and osteoblast. These 3 pathways may be regarded as the treatment targets for osteoporosis. PMID:28466021
Zhang, Junjie; Zhang, Shuangshuang; Li, Hui; Du, Hai; Huang, Huanhuan; Li, Yangping; Hu, Yufeng; Liu, Hanmei; Liu, Yinghong; Yu, Guowu; Huang, Yubi
2016-01-01
Maize is the leading crop worldwide in terms of both planting area and total yields, but environmental stresses cause significant losses in productivity. Phenylpropanoid compounds play an important role in plant stress resistance; however, the mechanism of their synthesis is not fully understood, especially in regard to the expression and regulation of key genes. Phenylalanine ammonia-lyase (PAL) is the first key enzyme involved in phenylpropanoid metabolism, and it has a significant effect on the synthesis of important phenylpropanoid compounds. According to the results of sequence alignments and functional prediction, we selected two conserved R2R3-MYB transcription factors as candidate genes for the regulation of phenylpropanoid metabolism. The two candidate R2R3-MYB genes, which we named ZmMYB111 and ZmMYB148, were cloned, and then their structural characteristics and phylogenetic placement were predicted and analyzed. In addition, a series of evaluations were performed, including expression profiles, subcellular localization, transcription activation, protein-DNA interaction, and transient expression in maize endosperm. Our results indicated that both ZmMYB111 and ZmMYB148 are indeed R2R3-MYB transcription factors and that they may play a regulatory role in PAL gene expression.
microRNA regulation of T-cell differentiation and function
Jeker, Lukas T.; Bluestone, Jeffrey A.
2013-01-01
Summary microRNAs (miRNAs) are emerging as key controllers of T-cell differentiation and function. Their expression is dynamically regulated by extracellular signals such as costimulation and cytokine signals. miRNAs set thresholds for gene expression and optimize protein concentrations of genetic networks. Absence of individual miRNAs can lead to severe immune dysfunction. Here we review emerging principles and provide examples of important functions exerted by miRNAs. Although our understanding of miRNA function in T-cell differentiation is still rudimentary, the available evidence leaves no doubt that these small posttranscriptional regulators are indispensable for proper functioning of the immune system. PMID:23550639
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shakoor, N; Nair, R; Crasta, O
2014-01-23
Background: Effective improvement in sorghum crop development necessitates a genomics-based approach to identify functional genes and QTLs. Sequenced in 2009, a comprehensive annotation of the sorghum genome and the development of functional genomics resources is key to enable the discovery and deployment of regulatory and metabolic genes and gene networks for crop improvement. Results: This study utilizes the first commercially available whole-transcriptome sorghum microarray (Sorgh-WTa520972F) to identify tissue and genotype-specific expression patterns for all identified Sorghum bicolor exons and UTRs. The genechip contains 1,026,373 probes covering 149,182 exons (27,577 genes) across the Sorghum bicolor nuclear, chloroplast, and mitochondrial genomes. Specificmore » probesets were also included for putative non-coding RNAs that may play a role in gene regulation (e. g., microRNAs), and confirmed functional small RNAs in related species (maize and sugarcane) were also included in our array design. We generated expression data for 78 samples with a combination of four different tissue types (shoot, root, leaf and stem), two dissected stem tissues (pith and rind) and six diverse genotypes, which included 6 public sorghum lines (R159, Atlas, Fremont, PI152611, AR2400 and PI455230) representing grain, sweet, forage, and high biomass ideotypes. Conclusions: Here we present a summary of the microarray dataset, including analysis of tissue-specific gene expression profiles and associated expression profiles of relevant metabolic pathways. With an aim to enable identification and functional characterization of genes in sorghum, this expression atlas presents a new and valuable resource to the research community.« less
Coagulation factor VII is regulated by androgen receptor in breast cancer.
Naderi, Ali
2015-02-01
Androgen receptor (AR) is widely expressed in breast cancer; however, there is limited information on the key molecular functions and gene targets of AR in this disease. In this study, gene expression data from a cohort of 52 breast cancer cell lines was analyzed to identify a network of AR co-expressed genes. A total of 300 genes, which were significantly enriched for cell cycle and metabolic functions, showed absolute correlation coefficients (|CC|) of more than 0.5 with AR expression across the dataset. In this network, a subset of 35 "AR-signature" genes were highly co-expressed with AR (|CC|>0.6) that included transcriptional regulators PATZ1, NFATC4, and SPDEF. Furthermore, gene encoding coagulation factor VII (F7) demonstrated the closest expression pattern with AR (CC=0.716) in the dataset and factor VII protein expression was significantly associated to that of AR in a cohort of 209 breast tumors. Moreover, functional studies demonstrated that AR activation results in the induction of factor VII expression at both transcript and protein levels and AR directly binds to a proximal region of F7 promoter in breast cancer cells. Importantly, AR activation in breast cancer cells induced endogenous factor VII activity to convert factor X to Xa in conjunction with tissue factor. In summary, F7 is a novel AR target gene and AR activation regulates the ectopic expression and activity of factor VII in breast cancer cells. These findings have functional implications in the pathobiology of thromboembolic events and regulation of factor VII/tissue factor signaling in breast cancer. Copyright © 2014 Elsevier Inc. All rights reserved.
Cytokinin Production by the Rice Blast Fungus Is a Pivotal Requirement for Full Virulence
Chanclud, Emilie; Kisiala, Anna; Emery, Neil R. J; Chalvon, Véronique; Ducasse, Aurélie; Romiti-Michel, Corinne; Gravot, Antoine; Kroj, Thomas; Morel, Jean-Benoit
2016-01-01
Plants produce cytokinin (CK) hormones for controlling key developmental processes like source/sink distribution, cell division or programmed cell-death. Some plant pathogens have been shown to produce CKs but the function of this mimicry production by non-tumor inducing pathogens, has yet to be established. Here we identify a gene required for CK biosynthesis, CKS1, in the rice blast fungus Magnaporthe oryzae. The fungal-secreted CKs are likely perceived by the plant during infection since the transcriptional regulation of rice CK-responsive genes is altered in plants infected by the mutants in which CKS1 gene was deleted. Although cks1 mutants showed normal in vitro growth and development, they were severely affected for in planta growth and virulence. Moreover, we showed that the cks1 mutant triggered enhanced induction of plant defenses as manifested by an elevated oxidative burst and expression of defense-related markers. In addition, the contents of sugars and key amino acids for fungal growth were altered in and around the infection site by the cks1 mutant in a different manner than by the control strain. These results suggest that fungal-derived CKs are key effectors required for dampening host defenses and affecting sugar and amino acid distribution in and around the infection site. PMID:26900703
Zhao, Man; Gu, Yongzhe; He, Lingli; Chen, Qingshan; He, Chaoying
2015-05-15
The DA1 gene family is plant-specific and Arabidopsis DA1 regulates seed and organ size, but the functions in soybeans are unknown. The cultivated soybean (Glycine max) is believed to be domesticated from the annual wild soybeans (Glycine soja). To evaluate whether DA1-like genes were involved in the evolution of soybeans, we compared variation at both sequence and expression levels of DA1-like genes from G. max (GmaDA1) and G. soja (GsoDA1). Sequence identities were extremely high between the orthologous pairs between soybeans, while the paralogous copies in a soybean species showed a relatively high divergence. Moreover, the expression variation of DA1-like paralogous genes in soybean was much greater than the orthologous gene pairs between the wild and cultivated soybeans during development and challenging abiotic stresses such as salinity. We further found that overexpressing GsoDA1 genes did not affect seed size. Nevertheless, overexpressing them reduced transgenic Arabidopsis seed germination sensitivity to salt stress. Moreover, most of these genes could improve salt tolerance of the transgenic Arabidopsis plants, corroborated by a detection of expression variation of several key genes in the salt-tolerance pathways. Our work suggested that expression diversification of DA1-like genes is functionally associated with adaptive radiation of soybeans, reinforcing that the plant-specific DA1 gene family might have contributed to the successful adaption to complex environments and radiation of the plants.
Lam, L T; Pickeral, O K; Peng, A C; Rosenwald, A; Hurt, E M; Giltnane, J M; Averett, L M; Zhao, H; Davis, R E; Sathyamoorthy, M; Wahl, L M; Harris, E D; Mikovits, J A; Monks, A P; Hollingshead, M G; Sausville, E A; Staudt, L M
2001-01-01
Flavopiridol, a flavonoid currently in cancer clinical trials, inhibits cyclin-dependent kinases (CDKs) by competitively blocking their ATP-binding pocket. However, the mechanism of action of flavopiridol as an anti-cancer agent has not been fully elucidated. Using DNA microarrays, we found that flavopiridol inhibited gene expression broadly, in contrast to two other CDK inhibitors, roscovitine and 9-nitropaullone. The gene expression profile of flavopiridol closely resembled the profiles of two transcription inhibitors, actinomycin D and 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole (DRB), suggesting that flavopiridol inhibits transcription globally. We were therefore able to use flavopiridol to measure mRNA turnover rates comprehensively and we found that different functional classes of genes had distinct distributions of mRNA turnover rates. In particular, genes encoding apoptosis regulators frequently had very short half-lives, as did several genes encoding key cell-cycle regulators. Strikingly, genes that were transcriptionally inducible were disproportionately represented in the class of genes with rapid mRNA turnover. The present genomic-scale measurement of mRNA turnover uncovered a regulatory logic that links gene function with mRNA half-life. The observation that transcriptionally inducible genes often have short mRNA half-lives demonstrates that cells have a coordinated strategy to rapidly modulate the mRNA levels of these genes. In addition, the present results suggest that flavopiridol may be more effective against types of cancer that are highly dependent on genes with unstable mRNAs.
Marra, Nicholas J; Eo, Soo Hyung; Hale, Matthew C; Waser, Peter M; DeWoody, J Andrew
2012-12-01
One common goal in evolutionary biology is the identification of genes underlying adaptive traits of evolutionary interest. Recently next-generation sequencing techniques have greatly facilitated such evolutionary studies in species otherwise depauperate of genomic resources. Kangaroo rats (Dipodomys sp.) serve as exemplars of adaptation in that they inhabit extremely arid environments, yet require no drinking water because of ultra-efficient kidney function and osmoregulation. As a basis for identifying water conservation genes in kangaroo rats, we conducted a priori bioinformatics searches in model rodents (Mus musculus and Rattus norvegicus) to identify candidate genes with known or suspected osmoregulatory function. We then obtained 446,758 reads via 454 pyrosequencing to characterize genes expressed in the kidney of banner-tailed kangaroo rats (Dipodomys spectabilis). We also determined candidates a posteriori by identifying genes that were overexpressed in the kidney. The kangaroo rat sequences revealed nine different a priori candidate genes predicted from our Mus and Rattus searches, as well as 32 a posteriori candidate genes that were overexpressed in kidney. Mutations in two of these genes, Slc12a1 and Slc12a3, cause human renal diseases that result in the inability to concentrate urine. These genes are likely key determinants of physiological water conservation in desert rodents. Copyright © 2012 Elsevier Inc. All rights reserved.
Prospecting for Microelement Function and Biosafety Assessment of Transgenic Cereal Plants
Yu, Xiaofen; Luo, Qingchen; Huang, Kaixun; Yang, Guangxiao; He, Guangyuan
2018-01-01
Microelement contents and metabolism are vitally important for cereal plant growth and development as well as end-use properties. While minerals phytotoxicity harms plants, microelement deficiency also affects human health. Genetic engineering provides a promising way to solve these problems. As plants vary in abilities to uptake, transport, and accumulate minerals, and the key enzymes acting on that process is primarily presented in this review. Subsequently, microelement function and biosafety assessment of transgenic cereal plants have become a key issue to be addressed. Progress in genetic engineering of cereal plants has been made with the introduction of quality, high-yield, and resistant genes since the first transgenic rice, corn, and wheat were born in 1988, 1990, and 1992, respectively. As the biosafety issue of transgenic cereal plants has now risen to be a top concern, many studies on transgenic biosafety have been carried out. Transgenic cereal biosafety issues mainly include two subjects, environmental friendliness and end-use safety. Different levels of gene confirmation, genomics, proteomics, metabolomics and nutritiomics, absorption, metabolism, and function have been investigated. Also, the different levels of microelement contents have been measured in transgenic plants. Based on the motivation of the requested biosafety, systematic designs, and analysis of transgenic cereal are also presented in this review paper. PMID:29599791
Plank-Bazinet, Jennifer L.
2016-01-01
Uncommitted cells of the early mammalian embryo transition through distinct stages of pluripotency, including establishment of ground state “naïve” pluripotency in the early epiblast, transition to a post-implantation “primed” state, and subsequent lineage commitment of the gastrulating epiblast. Previous transcriptional profiling of in vitro models to recapitulate early to late epiblast transition and differentiation suggest that distinct gene regulatory networks are likely to function in each of these states. While the mechanisms underlying transition between pluripotent states are poorly understood, the forkhead family transcription factor Foxd3 has emerged as a key regulatory factor. Foxd3 is required to maintain pluripotent cells of the murine epiblast and for survival, self-renewal and pluripotency of embryonic stem cells (ESCs). Two recent, simultaneous studies have shed light on how Foxd3 regulates gene expression in early cell fate transitions of progenitor cells. While the two publications shared some common findings, they also presented some conflicting results and suggest different models for the mechanisms underlying Foxd3 function. Here, we discuss the key similarities and differences between the publications, highlight data from the literature relevant to their findings, and hypothesize a potential mechanism of Foxd3 action. PMID:27868055
Liu, Taibo; Huang, Binbin; Chen, Lin; Xian, Zhiqiang; Song, Shiwei; Chen, Riyuan; Hao, Yanwei
2018-06-30
Polyamines (PAs), including putrescine (Put), spermidine (Spd), spermine (Spm), and thermospermine (T-Spm), play key roles in plant development, including fruit setting and ripening, morphogenesis, and abiotic/biotic stress. Their functions appear to be intimately related to their synthesis, which occurs via arginine/ornithine decarboxylase (ADC/ODC), Spd synthase (SPDS), Spm synthase (SPMS), and Acaulis5 (ACL5), respectively. Unfortunately, the expression and function of these PA synthesis-relate genes during specific developmental process or under stress have not been fully elucidated. Here, we present the results of a genome-wide analysis of the PA synthesis genes (ADC, ODC, SPDS, SPMS, ACL5) in the tomato (Solanum lycopersicum). In total, 14 PA synthesis-related genes were identified. Further analysis of their structures, conserved domains, phylogenetic trees, predicted subcellular localization, and promoter cis-regulatory elements were analyzed. Furthermore, we also performed experiments to evaluate their tissue expression patterns and under hormone and various stress treatments. To our knowledge, this is the first study to elucidate the mechanisms underlying PA function in this variety of tomato. Taken together, these data provide valuable information for future functional characterization of specific genes in the PA synthesis pathway in this and other plant species. Although additional research is required, the insight gained by this and similar studies can be used to improve our understanding of PA metabolism ultimately leading to more effective and consistent plant cultivation. Copyright © 2018 Elsevier B.V. All rights reserved.
Extensive Local Gene Duplication and Functional Divergence among Paralogs in Atlantic Salmon
Warren, Ian A.; Ciborowski, Kate L.; Casadei, Elisa; Hazlerigg, David G.; Martin, Sam; Jordan, William C.; Sumner, Seirian
2014-01-01
Many organisms can generate alternative phenotypes from the same genome, enabling individuals to exploit diverse and variable environments. A prevailing hypothesis is that such adaptation has been favored by gene duplication events, which generate redundant genomic material that may evolve divergent functions. Vertebrate examples of recent whole-genome duplications are sparse although one example is the salmonids, which have undergone a whole-genome duplication event within the last 100 Myr. The life-cycle of the Atlantic salmon, Salmo salar, depends on the ability to produce alternating phenotypes from the same genome, to facilitate migration and maintain its anadromous life history. Here, we investigate the hypothesis that genome-wide and local gene duplication events have contributed to the salmonid adaptation. We used high-throughput sequencing to characterize the transcriptomes of three key organs involved in regulating migration in S. salar: Brain, pituitary, and olfactory epithelium. We identified over 10,000 undescribed S. salar sequences and designed an analytic workflow to distinguish between paralogs originating from local gene duplication events or from whole-genome duplication events. These data reveal that substantial local gene duplications took place shortly after the whole-genome duplication event. Many of the identified paralog pairs have either diverged in function or become noncoding. Future functional genomics studies will reveal to what extent this rich source of divergence in genetic sequence is likely to have facilitated the evolution of extreme phenotypic plasticity required for an anadromous life-cycle. PMID:24951567
Morton, Nicholas M.; Nelson, Yvonne B.; Michailidou, Zoi; Di Rollo, Emma M.; Ramage, Lynne; Hadoke, Patrick W. F.; Seckl, Jonathan R.; Bunger, Lutz; Horvat, Simon; Kenyon, Christopher J.; Dunbar, Donald R.
2011-01-01
Background Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F) mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L) strain. Results To enrich for adipose tissue obesity genes a ‘snap-shot’ pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney) was performed. Known obesity quantitative trait loci (QTL) information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r) as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr) that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity. Conclusions A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes contributing to obesity. PMID:21915269
Morton, Nicholas M; Nelson, Yvonne B; Michailidou, Zoi; Di Rollo, Emma M; Ramage, Lynne; Hadoke, Patrick W F; Seckl, Jonathan R; Bunger, Lutz; Horvat, Simon; Kenyon, Christopher J; Dunbar, Donald R
2011-01-01
Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F) mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L) strain. To enrich for adipose tissue obesity genes a 'snap-shot' pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney) was performed. Known obesity quantitative trait loci (QTL) information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r) as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr) that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity. A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes contributing to obesity.