Sample records for key functional role

  1. Predicting materials for sustainable energy sources: The key role of density functional theory

    NASA Astrophysics Data System (ADS)

    Galli, Giulia

    Climate change and the related need for sustainable energy sources replacing fossil fuels are pressing societal problems. The development of advanced materials is widely recognized as one of the key elements for new technologies that are required to achieve a sustainable environment and provide clean and adequate energy for our planet. We discuss the key role played by Density Functional Theory, and its implementations in high performance computer codes, in understanding, predicting and designing materials for energy applications.

  2. Function key and shortcut key use in airway facilities.

    DOT National Transportation Integrated Search

    2003-02-01

    This document provides information on the function keys and shortcut keys used by systems in the Federal Aviation Administration : Airway Facilities (AF) work environment. It includes a catalog of the function keys and shortcut keys used by each syst...

  3. Analyzing key ecological functions for transboundary subbasin assessments.

    Treesearch

    B.G Marcot; T.A. O' Neil; J.B. Nyberg; A. MacKinnon; P.J. Paquet; D.H. Johnson

    2007-01-01

    We present an evaluation of the ecological roles ("key ecological functions" or KEFs) of 618 wildlife species as one facet of subbasin assessment in the Columbia River basin (CRB) of the United States and Canada. Using a wildlife-habitat relationships database (IBIS) and geographic information system, we have mapped KEFs as levels of functional redundancy (...

  4. The key role of extracellular vesicles in the metastatic process.

    PubMed

    Zhao, Hongyun; Achreja, Abhinav; Iessi, Elisabetta; Logozzi, Mariantonia; Mizzoni, Davide; Di Raimo, Rossella; Nagrath, Deepak; Fais, Stefano

    2018-01-01

    Extracellular vesicles (EVs), including exosomes, have a key role in the paracrine communication between organs and compartments. EVs shuttle virtually all types of biomolecules such as proteins, lipids, nucleic acids, metabolites and even pharmacological compounds. Their ability to transfer their biomolecular cargo into target cells enables EVs to play a key role in intercellular communication that can regulate cellular functions such as proliferation, apoptosis and migration. This has led to the emergence of EVs as a key player in tumor growth and metastasis through the formation of "tumor niches" in target organs. Recent data have also been shown that EVs may transform the microenvironment of primary tumors thus favoring the selection of cancer cells with a metastatic behavior. The release of EVs from resident non-malignant cells may contribute to the metastatic processes as well. However, cancer EVs may induce malignant transformation in resident mesenchymal stem cells, suggesting that the metastatic process is not exclusively due to circulating tumor cells. In this review, we outline and discuss evidence-based roles of EVs in actively regulating multiple steps of the metastatic process and how we can leverage EVs to impair metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Marine reserves lag behind wilderness in the conservation of key functional roles

    PubMed Central

    D'agata, Stéphanie; Mouillot, David; Wantiez, Laurent; Friedlander, Alan M.; Kulbicki, Michel; Vigliola, Laurent

    2016-01-01

    Although marine reserves represent one of the most effective management responses to human impacts, their capacity to sustain the same diversity of species, functional roles and biomass of reef fishes as wilderness areas remains questionable, in particular in regions with deep and long-lasting human footprints. Here we show that fish functional diversity and biomass of top predators are significantly higher on coral reefs located at more than 20 h travel time from the main market compared with even the oldest (38 years old), largest (17,500 ha) and most restrictive (no entry) marine reserve in New Caledonia (South-Western Pacific). We further demonstrate that wilderness areas support unique ecological values with no equivalency as one gets closer to humans, even in large and well-managed marine reserves. Wilderness areas may therefore serve as benchmarks for management effectiveness and act as the last refuges for the most vulnerable functional roles. PMID:27354026

  6. Same pattern, different mechanism: Locking onto the role of key species in seafloor ecosystem process

    PubMed Central

    Woodin, Sarah Ann; Volkenborn, Nils; Pilditch, Conrad A.; Lohrer, Andrew M.; Wethey, David S.; Hewitt, Judi E.; Thrush, Simon F.

    2016-01-01

    Seafloor biodiversity is a key mediator of ecosystem functioning, but its role is often excluded from global budgets or simplified to black boxes in models. New techniques allow quantification of the behavior of animals living below the sediment surface and assessment of the ecosystem consequences of complex interactions, yielding a better understanding of the role of seafloor animals in affecting key processes like primary productivity. Combining predictions based on natural history, behavior of key benthic species and environmental context allow assessment of differences in functioning and process, even when the measured ecosystem property in different systems is similar. Data from three sedimentary systems in New Zealand illustrate this. Analysis of the behaviors of the infaunal ecosystem engineers in each system revealed three very different mechanisms driving ecosystem function: density and excretion, sediment turnover and surface rugosity, and hydraulic activities and porewater bioadvection. Integrative metrics of ecosystem function in some cases differentiate among the systems (gross primary production) and in others do not (photosynthetic efficiency). Analyses based on behaviors and activities revealed important ecosystem functional differences and can dramatically improve our ability to model the impact of stressors on ecosystem and global processes. PMID:27230562

  7. Same pattern, different mechanism: Locking onto the role of key species in seafloor ecosystem process.

    PubMed

    Woodin, Sarah Ann; Volkenborn, Nils; Pilditch, Conrad A; Lohrer, Andrew M; Wethey, David S; Hewitt, Judi E; Thrush, Simon F

    2016-05-27

    Seafloor biodiversity is a key mediator of ecosystem functioning, but its role is often excluded from global budgets or simplified to black boxes in models. New techniques allow quantification of the behavior of animals living below the sediment surface and assessment of the ecosystem consequences of complex interactions, yielding a better understanding of the role of seafloor animals in affecting key processes like primary productivity. Combining predictions based on natural history, behavior of key benthic species and environmental context allow assessment of differences in functioning and process, even when the measured ecosystem property in different systems is similar. Data from three sedimentary systems in New Zealand illustrate this. Analysis of the behaviors of the infaunal ecosystem engineers in each system revealed three very different mechanisms driving ecosystem function: density and excretion, sediment turnover and surface rugosity, and hydraulic activities and porewater bioadvection. Integrative metrics of ecosystem function in some cases differentiate among the systems (gross primary production) and in others do not (photosynthetic efficiency). Analyses based on behaviors and activities revealed important ecosystem functional differences and can dramatically improve our ability to model the impact of stressors on ecosystem and global processes.

  8. Heme oxygenase: the key to renal function regulation

    PubMed Central

    Cao, Jian; Sacerdoti, David; Li, Xiaoying; Drummond, George

    2009-01-01

    Heme oxygenase (HO) plays a critical role in attenuating the production of reactive oxygen species through its ability to degrade heme in an enzymatic process that leads to the production of equimolar amounts of carbon monoxide and biliverdin/bilirubin and the release of free iron. The present review examines the beneficial role of HO-1 (inducible form of HO) that is achieved by increased expression of this enzyme in renal tissue. The influence of the HO system on renal physiology, obesity, vascular dysfunction, and blood pressure regulation is reviewed, and the clinical potential of increased levels of HO-1 protein, HO activity, and HO-derived end products of heme degradation is discussed relative to renal disease. The use of pharmacological and genetic approaches to investigate the role of the HO system in the kidney is key to the development of therapeutic approaches to prevent the adverse effects that accrue due to an impairment in renal function. PMID:19570878

  9. AMP-Activated Protein Kinase: An Ubiquitous Signaling Pathway With Key Roles in the Cardiovascular System.

    PubMed

    Salt, Ian P; Hardie, D Grahame

    2017-05-26

    The AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole-body energy homeostasis, which acts to restore energy homoeostasis whenever cellular energy charge is depleted. Over the last 2 decades, it has become apparent that AMPK regulates several other cellular functions and has specific roles in cardiovascular tissues, acting to regulate cardiac metabolism and contractile function, as well as promoting anticontractile, anti-inflammatory, and antiatherogenic actions in blood vessels. In this review, we discuss the role of AMPK in the cardiovascular system, including the molecular basis of mutations in AMPK that alter cardiac physiology and the proposed mechanisms by which AMPK regulates vascular function under physiological and pathophysiological conditions. © 2017 American Heart Association, Inc.

  10. Physical Unclonable Function Hardware Keys Utilizing Kirchhoff-Law Secure Key Exchange and Noise-Based Logic

    NASA Astrophysics Data System (ADS)

    Kish, Laszlo B.; Kwan, Chiman

    Weak unclonable function (PUF) encryption key means that the manufacturer of the hardware can clone the key but not anybody else. Strong unclonable function (PUF) encryption key means that even the manufacturer of the hardware is unable to clone the key. In this paper, first we introduce an "ultra" strong PUF with intrinsic dynamical randomness, which is not only unclonable but also gets renewed to an independent key (with fresh randomness) during each use via the unconditionally secure key exchange. The solution utilizes the Kirchhoff-law-Johnson-noise (KLJN) method for dynamical key renewal and a one-time-pad secure key for the challenge/response process. The secure key is stored in a flash memory on the chip to provide tamper-resistance and nonvolatile storage with zero power requirements in standby mode. Simplified PUF keys are shown: a strong PUF utilizing KLJN protocol during the first run and noise-based logic (NBL) hyperspace vector string verification method for the challenge/response during the rest of its life or until it is re-initialized. Finally, the simplest PUF utilizes NBL without KLJN thus it can be cloned by the manufacturer but not by anybody else.

  11. Pericytes of the neurovascular unit: Key functions and signaling pathways

    PubMed Central

    Sweeney, Melanie D.; Ayyadurai, Shiva; Zlokovic, Berislav V.

    2017-01-01

    Pericytes are vascular mural cells embedded in the basement membrane of blood microvessels. They extend their processes along capillaries, pre-capillary arterioles, and post-capillary venules. The central nervous system (CNS) pericytes are uniquely positioned within the neurovascular unit between endothelial cells, astrocytes, and neurons. They integrate, coordinate, and process signals from their neighboring cells to generate diverse functional responses that are critical for CNS functions in health and disease including regulation of the blood-brain barrier permeability, angiogenesis, clearance of toxic metabolites, capillary hemodynamic responses, neuroinflammation, and stem cell activity. Here, we examine the key signaling pathways between pericytes and their neighboring endothelial cells, astrocytes, and neurons that control neurovascular functions. We also review the role of pericytes in different CNS disorders including rare monogenic diseases and complex neurological disorders such as Alzheimer's disease and brain tumors. Finally, we discuss directions for future studies. PMID:27227366

  12. Middle School Principals' Perceptions of Middle School Counselors' Roles and Functions

    ERIC Educational Resources Information Center

    Zalaquett, Carlos P.; Chatters, Seriashia J.

    2012-01-01

    The findings of this study expand current knowledge regarding principals' perceptions of school counselors. School principals play a key role in school counselors hiring or dismissal, and their perceptions of school counselors' roles and functions may influence their decisions. Reflecting on their views may also assist school principals in…

  13. The Key Roles in the Informal Organization: A Network Analysis Perspective

    ERIC Educational Resources Information Center

    de Toni, Alberto F.; Nonino, Fabio

    2010-01-01

    Purpose: The purpose of this paper is to identify the key roles embedded in the informal organizational structure (informal networks) and to outline their contribution in the companies' performance. A major objective of the research is to find and characterize a new key informal role that synthesises problem solving, expertise, and accessibility…

  14. AMP-Activated Protein Kinase – A Ubiquitous Signalling Pathway with Key Roles in the Cardiovascular System

    PubMed Central

    Salt, Ian P.; Hardie, D. Grahame

    2017-01-01

    The AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole body energy homeostasis, which acts to restore energy homoeostasis whenever cellular energy charge is depleted. Over the last two decades, it has become apparent that AMPK regulates a number of other cellular functions and has specific roles in cardiovascular tissues, acting to regulate cardiac metabolism and contractile function as well as promoting anti-contractile, anti-inflammatory and anti-atherogenic actions in blood vessels. In this review, we will discuss the role of AMPK in the cardiovascular system, including the molecular basis of mutations in AMPK that alter cardiac physiology and the proposed mechanisms by which AMPK regulates vascular function under physiological and pathophysiological conditions. PMID:28546359

  15. Aquaporins in the eye: Expression, function, and roles in ocular disease☆

    PubMed Central

    Schey, Kevin L.; Wang, Zhen; Wenke, Jamie L.; Qi, Ying

    2015-01-01

    Background All thirteen known mammalian aquaporins have been detected in the eye. Moreover, aquaporins have been identified as playing essential roles in ocular functions ranging from maintenance of lens and corneal transparency to production of aqueous humor to maintenance of cellular homeostasis and regulation of signal transduction in the retina. Scope of review This review summarizes the expression and known functions of ocular aquaporins and discusses their known and potential roles in ocular diseases. Major conclusions Aquaporins play essential roles in all ocular tissues. Remarkably, not all aquaporin function as a water permeable channel and the functions of many aquaporins in ocular tissues remain unknown. Given their vital roles in maintaining ocular function and their roles in disease, aquaporins represent potential targets for future therapeutic development. General significance Since aquaporins play key roles in ocular physiology, an understanding of these functions is important to improving ocular health and treating diseases of the eye. It is likely that future therapies for ocular diseases will rely on modulation of aquaporin expression and/or function. This article is part of a Special Issue entitled Aquaporins. PMID:24184915

  16. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing.

    PubMed

    Piperigkou, Zoi; Götte, Martin; Theocharis, Achilleas D; Karamanos, Nikos K

    2017-10-24

    Extracellular matrix (ECM) is a dynamic network of macromolecules, playing a regulatory role in cell functions, tissue regeneration and remodeling. Wound healing is a tissue repair process necessary for the maintenance of the functionality of tissues and organs. This highly orchestrated process is divided into four temporally overlapping phases, including hemostasis, inflammation, proliferation and tissue remodeling. The dynamic interplay between ECM and resident cells exerts its critical role in many aspects of wound healing, including cell proliferation, migration, differentiation, survival, matrix degradation and biosynthesis. Several epigenetic regulatory factors, such as the endogenous non-coding microRNAs (miRNAs), are the drivers of the wound healing response. microRNAs have pivotal roles in regulating ECM composition during wound healing and dermal regeneration. Their expression is associated with the distinct phases of wound healing and they serve as target biomarkers and targets for systematic regulation of wound repair. In this article we critically present the importance of epigenetics with particular emphasis on miRNAs regulating ECM components (i.e. glycoproteins, proteoglycans and matrix proteases) that are key players in wound healing. The clinical relevance of miRNA targeting as well as the delivery strategies designed for clinical applications are also presented and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Middle Leadership: A Key Role of Numeracy Reform

    ERIC Educational Resources Information Center

    Jorgensen, Robyn

    2016-01-01

    This paper reports on a large national project that explored successful numeracy practices in remote and very remote schools. While there have been a number of significant findings, the middle leader has been identified as a key role in the development of successful numeracy/mathematics practices in schools. The middle leader plays a critical role…

  18. Key functional role of the optical properties of coral skeletons in coral ecology and evolution.

    PubMed

    Enríquez, Susana; Méndez, Eugenio R; Hoegh-Guldberg, Ove; Iglesias-Prieto, Roberto

    2017-04-26

    Multiple scattering of light on coral skeleton enhances light absorption efficiency of coral symbionts and plays a key role in the regulation of their internal diffuse light field. To understand the dependence of this enhancement on skeleton meso- and macrostructure, we analysed the scattering abilities of naked coral skeletons for 74 Indo-Pacific species. Sensitive morphotypes to thermal and light stress, flat-extraplanate and branching corals, showed the most efficient structures, while massive-robust species were less efficient. The lowest light-enhancing scattering abilities were found for the most primitive colonial growth form: phaceloid. Accordingly, the development of highly efficient light-collecting structures versus the selection of less efficient but more robust holobionts to cope with light stress may constitute a trade-off in the evolution of modern symbiotic scleractinian corals, characterizing two successful adaptive solutions. The coincidence of the most important structural modifications with epitheca decline supports the importance of the enhancement of light transmission across coral skeleton in modern scleractinian diversification, and the central role of these symbioses in the design and optimization of coral skeleton. Furthermore, the same ability that lies at the heart of the success of symbiotic corals as coral-reef-builders can also explain the 'Achilles's heel' of these symbioses in a warming ocean. © 2017 The Author(s).

  19. A more secure parallel keyed hash function based on chaotic neural network

    NASA Astrophysics Data System (ADS)

    Huang, Zhongquan

    2011-08-01

    Although various hash functions based on chaos or chaotic neural network were proposed, most of them can not work efficiently in parallel computing environment. Recently, an algorithm for parallel keyed hash function construction based on chaotic neural network was proposed [13]. However, there is a strict limitation in this scheme that its secret keys must be nonce numbers. In other words, if the keys are used more than once in this scheme, there will be some potential security flaw. In this paper, we analyze the cause of vulnerability of the original one in detail, and then propose the corresponding enhancement measures, which can remove the limitation on the secret keys. Theoretical analysis and computer simulation indicate that the modified hash function is more secure and practical than the original one. At the same time, it can keep the parallel merit and satisfy the other performance requirements of hash function, such as good statistical properties, high message and key sensitivity, and strong collision resistance, etc.

  20. An essential role for IL-2 receptor in regulatory T cell function

    PubMed Central

    Levine, Andrew G; Fan, Xiying; Klein, Ulf; Zheng, Ye; Gasteiger, Georg; Feng, Yongqiang; Fontenot, Jason D.; Rudensky, Alexander Y.

    2016-01-01

    Regulatory T (Treg) cells, expressing abundant amounts of the IL-2 receptor (IL-2R), are reliant on IL-2 produced by activated T cells. This feature implied a key role for a simple network based on IL-2 consumption by Treg cells in their suppressor function. However, congenital deficiency in IL-2R results in reduced expression of the Treg cell lineage specification factor Foxp3, confounding experimental efforts to understand the role of IL-2R expression and signaling in Treg suppressor function. Using genetic gain and loss of function approaches, we demonstrate that IL-2 capture is dispensable for control of CD4+ T cells, but is important for limiting CD8+ T cell activation, and that IL-2R dependent STAT5 transcription factor activation plays an essential role in Treg cell suppressor function separable from T cell receptor signaling. PMID:27595233

  1. Movement dynamics reflect a functional role for weak coupling and role structure in dyadic problem solving.

    PubMed

    Abney, Drew H; Paxton, Alexandra; Dale, Rick; Kello, Christopher T

    2015-11-01

    Successful interaction requires complex coordination of body movements. Previous research has suggested a functional role for coordination and especially synchronization (i.e., time-locked movement across individuals) in different types of human interaction contexts. Although such coordination has been shown to be nearly ubiquitous in human interaction, less is known about its function. One proposal is that synchrony supports and facilitates communication (Topics Cogn Sci 1:305-319, 2009). However, questions still remain about what the properties of coordination for optimizing communication might look like. In the present study, dyads worked together to construct towers from uncooked spaghetti and marshmallows. Using cross-recurrence quantification analysis, we found that dyads with loosely coupled gross body movements performed better, supporting recent work suggesting that simple synchrony may not be the key to effective performance (Riley et al. 2011). We also found evidence that leader-follower dynamics-when sensitive to the specific role structure of the interaction-impact task performance. We discuss our results with respect to the functional role of coordination in human interaction.

  2. Morphology predicts species' functional roles and their degree of specialization in plant-frugivore interactions.

    PubMed

    Dehling, D Matthias; Jordano, Pedro; Schaefer, H Martin; Böhning-Gaese, Katrin; Schleuning, Matthias

    2016-01-27

    Species' functional roles in key ecosystem processes such as predation, pollination or seed dispersal are determined by the resource use of consumer species. An interaction between resource and consumer species usually requires trait matching (e.g. a congruence in the morphologies of interaction partners). Species' morphology should therefore determine species' functional roles in ecological processes mediated by mutualistic or antagonistic interactions. We tested this assumption for Neotropical plant-bird mutualisms. We used a new analytical framework that assesses a species's functional role based on the analysis of the traits of its interaction partners in a multidimensional trait space. We employed this framework to test (i) whether there is correspondence between the morphology of bird species and their functional roles and (ii) whether morphologically specialized birds fulfil specialized functional roles. We found that morphological differences between bird species reflected their functional differences: (i) bird species with different morphologies foraged on distinct sets of plant species and (ii) morphologically distinct bird species fulfilled specialized functional roles. These findings encourage further assessments of species' functional roles through the analysis of their interaction partners, and the proposed analytical framework facilitates a wide range of novel analyses for network and community ecology. © 2016 The Author(s).

  3. Available nitrogen is the key factor influencing soil microbial functional gene diversity in tropical rainforest.

    PubMed

    Cong, Jing; Liu, Xueduan; Lu, Hui; Xu, Han; Li, Yide; Deng, Ye; Li, Diqiang; Zhang, Yuguang

    2015-08-20

    Tropical rainforests cover over 50% of all known plant and animal species and provide a variety of key resources and ecosystem services to humans, largely mediated by metabolic activities of soil microbial communities. A deep analysis of soil microbial communities and their roles in ecological processes would improve our understanding on biogeochemical elemental cycles. However, soil microbial functional gene diversity in tropical rainforests and causative factors remain unclear. GeoChip, contained almost all of the key functional genes related to biogeochemical cycles, could be used as a specific and sensitive tool for studying microbial gene diversity and metabolic potential. In this study, soil microbial functional gene diversity in tropical rainforest was analyzed by using GeoChip technology. Gene categories detected in the tropical rainforest soils were related to different biogeochemical processes, such as carbon (C), nitrogen (N) and phosphorus (P) cycling. The relative abundance of genes related to C and P cycling detected mostly derived from the cultured bacteria. C degradation gene categories for substrates ranging from labile C to recalcitrant C were all detected, and gene abundances involved in many recalcitrant C degradation gene categories were significantly (P < 0.05) different among three sampling sites. The relative abundance of genes related to N cycling detected was significantly (P < 0.05) different, mostly derived from the uncultured bacteria. The gene categories related to ammonification had a high relative abundance. Both canonical correspondence analysis and multivariate regression tree analysis showed that soil available N was the most correlated with soil microbial functional gene structure. Overall high microbial functional gene diversity and different soil microbial metabolic potential for different biogeochemical processes were considered to exist in tropical rainforest. Soil available N could be the key factor in shaping the

  4. A Novel Re-keying Function Protocol (NRFP) For Wireless Sensor Network Security

    PubMed Central

    Abdullah, Maan Younis; Hua, Gui Wei; Alsharabi, Naif

    2008-01-01

    This paper describes a novel re-keying function protocol (NRFP) for wireless sensor network security. A re-keying process management system for sensor networks is designed to support in-network processing. The design of the protocol is motivated by decentralization key management for wireless sensor networks (WSNs), covering key deployment, key refreshment, and key establishment. NRFP supports the establishment of novel administrative functions for sensor nodes that derive/re-derive a session key for each communication session. The protocol proposes direct connection, in-direct connection and hybrid connection. NRFP also includes an efficient protocol for local broadcast authentication based on the use of one-way key chains. A salient feature of the authentication protocol is that it supports source authentication without precluding innetwork processing. Security and performance analysis shows that it is very efficient in computation, communication and storage and, that NRFP is also effective in defending against many sophisticated attacks. PMID:27873963

  5. A Novel Re-keying Function Protocol (NRFP) For Wireless Sensor Network Security.

    PubMed

    Abdullah, Maan Younis; Hua, Gui Wei; Alsharabi, Naif

    2008-12-04

    This paper describes a novel re-keying function protocol (NRFP) for wireless sensor network security. A re-keying process management system for sensor networks is designed to support in-network processing. The design of the protocol is motivated by decentralization key management for wireless sensor networks (WSNs), covering key deployment, key refreshment, and key establishment. NRFP supports the establishment of novel administrative functions for sensor nodes that derive/re-derive a session key for each communication session. The protocol proposes direct connection, in-direct connection and hybrid connection. NRFP also includes an efficient protocol for local broadcast authentication based on the use of one-way key chains. A salient feature of the authentication protocol is that it supports source authentication without precluding in-network processing. Security and performance analysis shows that it is very efficient in computation, communication and storage and, that NRFP is also effective in defending against many sophisticated attacks.

  6. miR-181c-BRK1 axis plays a key role in actin cytoskeleton-dependent T cell function.

    PubMed

    Lim, Shok Ping; Ioannou, Nikolaos; Ramsay, Alan G; Darling, David; Gäken, Joop; Mufti, Ghulam J

    2018-05-01

    MicroRNAs are short endogenous noncoding RNAs that play pivotal roles in a diverse range of cellular processes. The miR-181 family is important in T cell development, proliferation, and activation. In this study, we have identified BRK1 as a potential target of miR-181c using a dual selection functional assay and have showed that miR-181c regulates BRK1 by translational inhibition. Given the importance of miR-181 in T cell function and the potential role of BRK1 in the involvement of WAVE2 complex and actin polymerization in T cells, we therefore investigated the influence of miR-181c-BRK1 axis in T cell function. Stimulation of PBMC derived CD3 + T cells resulted in reduced miR-181c expression and up-regulation of BRK1 protein expression, suggesting that miR-181c-BRK1 axis is important in T cell activation. We further showed that overexpression of miR-181c or suppression of BRK1 resulted in inhibition of T cell activation and actin polymerization coupled with defective lamellipodia generation and immunological synapse formation. Additionally, we found that BRK1 silencing led to reduced expressions of other proteins in the WAVE2 complex, suggesting that the impairment of T cell actin dynamics was a result of the instability of the WAVE2 complex following BRK1 depletion. Collectively, we demonstrated that miR-181c reduces BRK1 protein expression level and highlighted the important role of miR-181c-BRK1 axis in T cell activation and actin polymerization-mediated T cell functions. ©2018 Society for Leukocyte Biology.

  7. Key Generation for Fast Inversion of the Paillier Encryption Function

    NASA Astrophysics Data System (ADS)

    Hirano, Takato; Tanaka, Keisuke

    We study fast inversion of the Paillier encryption function. Especially, we focus only on key generation, and do not modify the Paillier encryption function. We propose three key generation algorithms based on the speeding-up techniques for the RSA encryption function. By using our algorithms, the size of the private CRT exponent is half of that of Paillier-CRT. The first algorithm employs the extended Euclidean algorithm. The second algorithm employs factoring algorithms, and can construct the private CRT exponent with low Hamming weight. The third algorithm is a variant of the second one, and has some advantage such as compression of the private CRT exponent and no requirement for factoring algorithms. We also propose the settings of the parameters for these algorithms and analyze the security of the Paillier encryption function by these algorithms against known attacks. Finally, we give experimental results of our algorithms.

  8. Health and role functioning: the use of focus groups in the development of an item bank.

    PubMed

    Anatchkova, Milena D; Bjorner, Jakob B

    2010-02-01

    Role functioning is an important part of health-related quality of life. However, assessment of role functioning is complicated by the wide definition of roles and by fluctuations in role participation across the life-span. The aim of this study is to explore variations in role functioning across the lifespan using qualitative approaches, to inform the development of a role functioning item bank and to pilot test sample items from the bank. Eight focus groups were conducted with a convenience sample of 38 English-speaking adults recruited in Rhode Island. Participants were stratified by gender and four age groups. Focus groups were taped, transcribed, and analyzed for thematic content. Participants of all ages identified family roles as the most important. There was age variation in the importance of social life roles, with younger and older adults rating them as more important. Occupational roles were identified as important by younger and middle-aged participants. The potential of health problems to affect role participation was recognized. Participants found the sample items easy to understand, response options identical in meaning and preferred five response choices. Participants identified key aspects of role functioning and provided insights on their perception of the impact of health on their role participation. These results will inform item bank generation.

  9. Intracellular GPCRs Play Key Roles in Synaptic Plasticity.

    PubMed

    Jong, Yuh-Jiin I; Harmon, Steven K; O'Malley, Karen L

    2018-02-16

    The trillions of synaptic connections within the human brain are shaped by experience and neuronal activity, both of which underlie synaptic plasticity and ultimately learning and memory. G protein-coupled receptors (GPCRs) play key roles in synaptic plasticity by strengthening or weakening synapses and/or shaping dendritic spines. While most studies of synaptic plasticity have focused on cell surface receptors and their downstream signaling partners, emerging data point to a critical new role for the very same receptors to signal from inside the cell. Intracellular receptors have been localized to the nucleus, endoplasmic reticulum, lysosome, and mitochondria. From these intracellular positions, such receptors may couple to different signaling systems, display unique desensitization patterns, and/or show distinct patterns of subcellular distribution. Intracellular GPCRs can be activated at the cell surface, endocytosed, and transported to an intracellular site or simply activated in situ by de novo ligand synthesis, diffusion of permeable ligands, or active transport of non-permeable ligands. Current findings reinforce the notion that intracellular GPCRs play a dynamic role in synaptic plasticity and learning and memory. As new intracellular GPCR roles are defined, the need to selectively tailor agonists and/or antagonists to both intracellular and cell surface receptors may lead to the development of more effective therapeutic tools.

  10. Development of an item bank and computer adaptive test for role functioning.

    PubMed

    Anatchkova, Milena D; Rose, Matthias; Ware, John E; Bjorner, Jakob B

    2012-11-01

    Role functioning (RF) is a key component of health and well-being and an important outcome in health research. The aim of this study was to develop an item bank to measure impact of health on role functioning. A set of different instruments including 75 newly developed items asking about the impact of health on role functioning was completed by 2,500 participants. Established item response theory methods were used to develop an item bank based on the generalized partial credit model. Comparison of group mean bank scores of participants with different self-reported general health status and chronic conditions was used to test the external validity of the bank. After excluding items that did not meet established requirements, the final item bank consisted of a total of 64 items covering three areas of role functioning (family, social, and occupational). Slopes in the bank ranged between .93 and 4.37; the mean threshold range was -1.09 to -2.25. Item bank-based scores were significantly different for participants with and without chronic conditions and with different levels of self-reported general health. An item bank assessing health impact on RF across three content areas has been successfully developed. The bank can be used for development of short forms or computerized adaptive tests to be applied in the assessment of role functioning as one of the common denominators across applications of generic health assessment.

  11. Cutting Edge: A Critical Functional Role for IL-23 in Psoriasis

    PubMed Central

    Tonel, Giulia; Conrad, Curdin; Laggner, Ute; Di Meglio, Paola; Grys, Katarzyna; McClanahan, Terrill K.; Blumenschein, Wendy M.; Qin, Jian-Zhong; Xin, Hong; Oldham, Elizabeth; Kastelein, Robert; Nickoloff, Brian J.; Nestle, Frank O.

    2013-01-01

    Interleukin-23 is a key cytokine involved in the generation of Th17 effector cells. Clinical efficacy of an anti-p40 mAb blocking both IL-12 and IL-23 and disease association with single nucleotide polymorphisms in the IL23R gene raise the question of a functional role of IL-23 in psoriasis. In this study, we provide a comprehensive analysis of IL-23 and its receptor in psoriasis and demonstrate its functional importance in a disease-relevant model system. The expression of IL-23 and its receptor was increased in the tissues of patients with psoriasis. Injection of a mAb specifically neutralizing human IL-23 showed IL-23–dependent inhibition of psoriasis development comparable to the use of anti-TNF blockers in a clinically relevant xenotransplant mouse model of psoriasis. Together, our results identify a critical functional role for IL-23 in psoriasis and provide the rationale for new treatment strategies in chronic epithelial inflammatory disorders. PMID:20956338

  12. Cutting edge: A critical functional role for IL-23 in psoriasis.

    PubMed

    Tonel, Giulia; Conrad, Curdin; Laggner, Ute; Di Meglio, Paola; Grys, Katarzyna; McClanahan, Terrill K; Blumenschein, Wendy M; Qin, Jian-Zhong; Xin, Hong; Oldham, Elizabeth; Kastelein, Robert; Nickoloff, Brian J; Nestle, Frank O

    2010-11-15

    Interleukin-23 is a key cytokine involved in the generation of Th17 effector cells. Clinical efficacy of an anti-p40 mAb blocking both IL-12 and IL-23 and disease association with single nucleotide polymorphisms in the IL23R gene raise the question of a functional role of IL-23 in psoriasis. In this study, we provide a comprehensive analysis of IL-23 and its receptor in psoriasis and demonstrate its functional importance in a disease-relevant model system. The expression of IL-23 and its receptor was increased in the tissues of patients with psoriasis. Injection of a mAb specifically neutralizing human IL-23 showed IL-23-dependent inhibition of psoriasis development comparable to the use of anti-TNF blockers in a clinically relevant xenotransplant mouse model of psoriasis. Together, our results identify a critical functional role for IL-23 in psoriasis and provide the rationale for new treatment strategies in chronic epithelial inflammatory disorders.

  13. Circadian clock gene plays a key role on ovarian cycle and spontaneous abortion.

    PubMed

    Li, Ruiwen; Cheng, Shuting; Wang, Zhengrong

    2015-01-01

    Circadian locomotor output cycles protein kaput (CLOCK) plays a key role in maintaining circadian rhythms and activation of downstream elements. However, its function on human female reproductive system remains unknown. To investigate the potential role of CLOCK, CLOCK-shRNAs were transfected into mouse 129 ES cells or injected into the ovaries of adult female mice. Western blotting was utilized to analyze the protein interactions and flow cytometry was used to assess apoptosis. The expression of CLOCK peaked at the 6th week in the healthy fetuses. However, an abnormal expression of CLOCK was detected in fetuses from spontaneous miscarriage. To determine the effect of CLOCK on female fertility, a small hairpin RNA (shRNA) strategy was used to specifically knockdown the CLOCK gene expression in vitro and in vivo. Knockdown of CLOCK induced apoptosis in mouse embryonic stem (mES) cells and inhibited the proliferation in mES cells in vitro. CLOCK knockdown also led to decreased release of oocytes and smaller litter size compared with control in vivo. Collectively, theses findings indicate that CLOCK plays an important role in fertility and that the CLOCK knockdown leads to reduction in reproduction and increased miscarriage risk. © 2015 S. Karger AG, Basel.

  14. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2016-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  15. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2015-01-01

    The purpose of this presentation is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  16. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2015-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  17. The physiological functions of central nervous system pericytes and a potential role in pain

    PubMed Central

    Beazley-Long, Nicholas; Durrant, Alexandra M; Swift, Matthew N; Donaldson, Lucy F

    2018-01-01

    Central nervous system (CNS) pericytes regulate critical functions of the neurovascular unit in health and disease. CNS pericytes are an attractive pharmacological target for their position within the neurovasculature and for their role in neuroinflammation. Whether the function of CNS pericytes also affects pain states and nociceptive mechanisms is currently not understood. Could it be that pericytes hold the key to pain associated with CNS blood vessel dysfunction? This article reviews recent findings on the important physiological functions of CNS pericytes and highlights how these neurovascular functions could be linked to pain states. PMID:29623199

  18. Resilience in homeless youth: the key role of self-esteem.

    PubMed

    Kidd, Sean; Shahar, Golan

    2008-04-01

    This study examined the protective role of self-esteem, social involvement, and secure attachment among homeless youths. These protective factors were examined as they ameliorate risks among 208 homeless youths surveyed in New York City and Toronto. Both mental and physical health indicators were employed in this study, including loneliness, feeling trapped, suicidal ideation, subjective health status, and substance use. Self-esteem emerged as a key protective factor, predicting levels of loneliness, feeling trapped, and suicide ideation, and buffering against the deleterious effect of fearful attachment on loneliness. Findings highlight the role of the self-concept in risk and resilience among homeless youth. Copyright 2008 APA, all rights reserved.

  19. Differing Roles of Functional Movement Variability as Experience Increases in Gymnastics

    PubMed Central

    Busquets, Albert; Marina, Michel; Davids, Keith; Angulo-Barroso, Rosa

    2016-01-01

    Current theories, like Ecological Dynamics, propose that inter-trial movement variability is functional when acquiring or refining movement coordination. Here, we examined how age-based experience levels of gymnasts constrained differences in emergent movement pattern variability during task performance. Specifically, we investigated different roles of movement pattern variability when gymnasts in different age groups performed longswings on a high bar, capturing the range of experience from beginner to advanced status. We also investigated the functionality of the relationships between levels of inter-trial variability and longswing amplitude during performance. One-hundred and thirteen male gymnasts in five age groups were observed performing longswings (with three different experience levels: beginners, intermediates and advanced performers). Performance was evaluated by analysis of key events in coordination of longswing focused on the arm-trunk and trunk-thigh segmental relations. Results revealed that 10 of 18 inter-trial variability measures changed significantly as a function of increasing task experience. Four of ten variability measures conformed to a U-shaped function with age implying exploratory strategies amongst beginners and functional adaptive variability amongst advanced performers. Inter-trial variability of arm-trunk coordination variables (6 of 10) conformed to a \\-shaped curve, as values were reduced to complete the longswings. Changes in coordination variability from beginner to intermediate status were largely restrictive, with only one variability measure related to exploration. Data revealed how inter-trial movement variability in gymnastics, relative to performance outcomes, needs careful interpretation, implying different roles as task experience changes. Key points Inter-trial variability while performing longswings on a high bar was assessed in a large sample (113 participants) divided into five age groups (form beginners to advanced

  20. Key Role of CRF in the Skin Stress Response System

    PubMed Central

    Zmijewski, Michal A.; Zbytek, Blazej; Tobin, Desmond J.; Theoharides, Theoharis C.; Rivier, Jean

    2013-01-01

    The discovery of corticotropin-releasing factor (CRF) or CRH defining the upper regulatory arm of the hypothalamic-pituitary-adrenal (HPA) axis, along with the identification of the corresponding receptors (CRFRs 1 and 2), represents a milestone in our understanding of central mechanisms regulating body and local homeostasis. We focused on the CRF-led signaling systems in the skin and offer a model for regulation of peripheral homeostasis based on the interaction of CRF and the structurally related urocortins with corresponding receptors and the resulting direct or indirect phenotypic effects that include regulation of epidermal barrier function, skin immune, pigmentary, adnexal, and dermal functions necessary to maintain local and systemic homeostasis. The regulatory modes of action include the classical CRF-led cutaneous equivalent of the central HPA axis, the expression and function of CRF and related peptides, and the stimulation of pro-opiomelanocortin peptides or cytokines. The key regulatory role is assigned to the CRFR-1α receptor, with other isoforms having modulatory effects. CRF can be released from sensory nerves and immune cells in response to emotional and environmental stressors. The expression sequence of peptides includes urocortin/CRF→pro-opiomelanocortin→ACTH, MSH, and β-endorphin. Expression of these peptides and of CRFR-1α is environmentally regulated, and their dysfunction can lead to skin and systemic diseases. Environmentally stressed skin can activate both the central and local HPA axis through either sensory nerves or humoral factors to turn on homeostatic responses counteracting cutaneous and systemic environmental damage. CRF and CRFR-1 may constitute novel targets through the use of specific agonists or antagonists, especially for therapy of skin diseases that worsen with stress, such as atopic dermatitis and psoriasis. PMID:23939821

  1. Phosphoinositides: Key modulators of energy metabolism☆

    PubMed Central

    Bridges, Dave; Saltiel, Alan R.

    2014-01-01

    Phosphoinositides are key players in many trafficking and signaling pathways. Recent advances regarding the synthesis, location and functions of these lipids have dramatically improved our understanding of how and when these lipids are generated and what their roles are in animal physiology. In particular, phosphoinositides play a central role in insulin signaling, and manipulation of PtdIns(3,4,5)P3 levels in particular, may be an important potential therapeutic target for the alleviation of insulin resistance associated with obesity and the metabolic syndrome. In this article we review the metabolism, regulation and functional roles of phosphoinositides in insulin signaling and the regulation of energy metabolism. This article is part of a Special Issue entitled Phosphoinositides. PMID:25463477

  2. Fungal endophytes: diversity and functional roles

    USGS Publications Warehouse

    Rodriguez, R.J.; White, J.F.; Arnold, A.E.; Redman, R.S.

    2009-01-01

    All plants in natural ecosystems appear to be symbiotic with fungal endophytes. This highly diverse group of fungi can have profound impacts on plant communities through increasing fitness by conferring abiotic and biotic stress tolerance, increasing biomass and decreasing water consumption, or decreasing fitness by altering resource allocation. Despite more than 100 yr of research resulting in thousands of journal articles, the ecological significance of these fungi remains poorly characterized. Historically, two endophytic groups (clavicipitaceous (C) and nonclavicipitaceous (NC)) have been discriminated based on phylogeny and life history traits. Here, we show that NC-endophytes represent three distinct functional groups based on host colonization and transmission, in planta biodiversity and fitness benefits conferred to hosts. Using this framework, we contrast the life histories, interactions with hosts and potential roles in plant ecophysiology of C- and NC-endophytes, and highlight several key questions for future work in endophyte biology.

  3. Functional roles of flavonoids in photoprotection: new evidence, lessons from the past.

    PubMed

    Agati, Giovanni; Brunetti, Cecilia; Di Ferdinando, Martina; Ferrini, Francesco; Pollastri, Susanna; Tattini, Massimiliano

    2013-11-01

    We discuss on the relative significance of different functional roles potentially served by flavonoids in photoprotection, with special emphasis to their ability to scavenge reactive oxygen species (ROS) and control the development of individual organs and whole plant. We propose a model in which chloroplast-located flavonoids scavenge H2O2 and singlet oxygen generated under excess light-stress, thus avoiding programmed cell death. We also draw a picture in which vacuolar flavonoids in conjunction with peroxidases and ascorbic acid constitute a secondary antioxidant system aimed at detoxifying H2O2, which may diffuse out of the chloroplast at considerable rates and enter the vacuole following excess light stress-induced depletion of ascorbate peroxidase. We hypothesize for flavonols key roles as developmental regulators in early and current-day land-plants, based on their ability to modulate auxin movement and auxin catabolism. We show that antioxidant flavonoids display the greatest capacity to regulate key steps of cell growth and differentiation in eukaryotes. These regulatory functions of flavonoids, which are shared by plants and animals, are fully accomplished in the nM concentration range, as likely occurred in early land plants. We therefore conclude that functions of flavonoids as antioxidants and/or developmental regulators flavonoids are of great value in photoprotection. We also suggest that UV-B screening was just one of the multiple functions served by flavonoids when early land-plants faced an abrupt increase in sunlight irradiance. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. The Role of Key Actors in School Governance: An Italian Evidence

    ERIC Educational Resources Information Center

    Salvioni, Daniela; Gandini, Giuseppina; Franzoni, Simona; Gennari, Francesca

    2012-01-01

    The greater awareness of the role of key actors in the school governance processes and the need to expect a "new leader" in the increasing school complexity are essential conditions to reform the schools from within, so as to provide them with skills related to globalisation, improvement to the educational quality, strengthening of…

  5. Loss of tight junction barrier function and its role in cancer metastasis.

    PubMed

    Martin, Tracey A; Jiang, Wen G

    2009-04-01

    As the most apical structure between epithelial and endothelial cells, tight junctions (TJ) are well known as functioning as a control for the paracellular diffusion of ions and certain molecules. It has however, become increasingly apparent that the TJ has a vital role in maintaining cell to cell integrity and that the loss of cohesion of the structure can lead to invasion and thus metastasis of cancer cells. This article will present data showing how modulation of expression of TJ molecules results in key changes in TJ barrier function leading to the successful metastasis of a number of different cancer types.

  6. The perceptions of key stakeholders of the roles of specialist and advanced nursing and midwifery practitioners.

    PubMed

    Casey, Mary; O'Connor, Laserina; Nicholson, Emma; Smith, Rita; O'Brien, Denise; O'Leary, Denise; Fealy, Gerard M; Mcnamara, Martin S; Stokes, Diarmuid; Egan, Claire

    2017-12-01

    To explore the perceptions of key stakeholders of the roles of specialist and advanced nursing and midwifery practitioners. There is evidence that the contribution of these roles to patient care is poorly understood. This research took place over 2 months in 2015 and is part of a larger study involving a rapid review to inform policy development on the specialist and advanced nursing and midwifery practice in Ireland. As an added value, a qualitative element involving thematic analysis was undertaken with key stakeholders. A phenomenological qualitative study was conducted incorporating semi-structured interviews with key stakeholders (n = 15). Purposive sampling with maximum diversity was used to recruit a wide range of perspectives. Participant's perspectives led to seven themes: Impact of these roles; role preparation, experience and organizational support; specialist and advanced practice roles in an interdisciplinary context; different folks but not such different roles; impact of specialist and advanced practice roles on patient outcomes; barriers and facilitators to enacting specialist and advanced practice roles; future development of these roles. There is acknowledgement of the positive impact of specialist and advanced practitioners; however, the evidence is currently not conclusive. Preparation for these roles needs to reflect changes in the calibre of today's professional applicants, and organizational support is paramount to their successful execution. The contribution of their activity to patient outcome needs to be made visible to enhance these roles and to justify the development of new roles across a variety of healthcare areas. © 2017 John Wiley & Sons Ltd.

  7. Hidden keys to survival: the type, density, pattern and functional role of emperor penguin body feathers.

    PubMed

    Williams, Cassondra L; Hagelin, Julie C; Kooyman, Gerald L

    2015-10-22

    Antarctic penguins survive some of the harshest conditions on the planet. Emperor penguins breed on the sea ice where temperatures drop below -40°C and forage in -1.8°C waters. Their ability to maintain 38°C body temperature in these conditions is due in large part to their feathered coat. Penguins have been reported to have the highest contour feather density of any bird, and both filoplumes and plumules (downy feathers) are reported absent in penguins. In studies modelling the heat transfer properties and the potential biomimetic applications of penguin plumage design, the insulative properties of penguin plumage have been attributed to the single afterfeather attached to contour feathers. This attribution of the afterfeather as the sole insulation component has been repeated in subsequent studies. Our results demonstrate the presence of both plumules and filoplumes in the penguin body plumage. The downy plumules are four times denser than afterfeathers and play a key, previously overlooked role in penguin survival. Our study also does not support the report that emperor penguins have the highest contour feather density. © 2015 The Author(s).

  8. Hidden keys to survival: the type, density, pattern and functional role of emperor penguin body feathers

    PubMed Central

    Williams, Cassondra L.; Hagelin, Julie C.; Kooyman, Gerald L.

    2015-01-01

    Antarctic penguins survive some of the harshest conditions on the planet. Emperor penguins breed on the sea ice where temperatures drop below −40°C and forage in −1.8°C waters. Their ability to maintain 38°C body temperature in these conditions is due in large part to their feathered coat. Penguins have been reported to have the highest contour feather density of any bird, and both filoplumes and plumules (downy feathers) are reported absent in penguins. In studies modelling the heat transfer properties and the potential biomimetic applications of penguin plumage design, the insulative properties of penguin plumage have been attributed to the single afterfeather attached to contour feathers. This attribution of the afterfeather as the sole insulation component has been repeated in subsequent studies. Our results demonstrate the presence of both plumules and filoplumes in the penguin body plumage. The downy plumules are four times denser than afterfeathers and play a key, previously overlooked role in penguin survival. Our study also does not support the report that emperor penguins have the highest contour feather density. PMID:26490794

  9. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

    NASA Astrophysics Data System (ADS)

    Batterman, Sarah A.; Hedin, Lars O.; van Breugel, Michiel; Ransijn, Johannes; Craven, Dylan J.; Hall, Jefferson S.

    2013-10-01

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2), but it is unclear whether this functional group can supply the nitrogen needed as forests recover from disturbance or previous land use, or expand in response to rising CO2 (refs 6, 8). Here we identify a powerful feedback mechanism in which N2 fixation can overcome ecosystem-scale deficiencies in nitrogen that emerge during periods of rapid biomass accumulation in tropical forests. Over a 300-year chronosequence in Panama, N2-fixing tree species accumulated carbon up to nine times faster per individual than their non-fixing neighbours (greatest difference in youngest forests), and showed species-specific differences in the amount and timing of fixation. As a result of fast growth and high fixation, fixers provided a large fraction of the nitrogen needed to support net forest growth (50,000kg carbon per hectare) in the first 12years. A key element of ecosystem functional diversity was ensured by the presence of different N2-fixing tree species across the entire forest age sequence. These findings show that symbiotic N2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO2.

  10. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession.

    PubMed

    Batterman, Sarah A; Hedin, Lars O; van Breugel, Michiel; Ransijn, Johannes; Craven, Dylan J; Hall, Jefferson S

    2013-10-10

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2), but it is unclear whether this functional group can supply the nitrogen needed as forests recover from disturbance or previous land use, or expand in response to rising CO2 (refs 6, 8). Here we identify a powerful feedback mechanism in which N2 fixation can overcome ecosystem-scale deficiencies in nitrogen that emerge during periods of rapid biomass accumulation in tropical forests. Over a 300-year chronosequence in Panama, N2-fixing tree species accumulated carbon up to nine times faster per individual than their non-fixing neighbours (greatest difference in youngest forests), and showed species-specific differences in the amount and timing of fixation. As a result of fast growth and high fixation, fixers provided a large fraction of the nitrogen needed to support net forest growth (50,000 kg carbon per hectare) in the first 12 years. A key element of ecosystem functional diversity was ensured by the presence of different N2-fixing tree species across the entire forest age sequence. These findings show that symbiotic N2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO2.

  11. Role of conformational dynamics in the evolution of novel enzyme function.

    PubMed

    Maria-Solano, Miguel A; Serrano-Hervás, Eila; Romero-Rivera, Adrian; Iglesias-Fernández, Javier; Osuna, Sílvia

    2018-05-21

    The free energy landscape concept that describes enzymes as an ensemble of differently populated conformational sub-states in dynamic equilibrium is key for evaluating enzyme activity, enantioselectivity, and specificity. Mutations introduced in the enzyme sequence can alter the populations of the pre-existing conformational states, thus strongly modifying the enzyme ability to accommodate alternative substrates, revert its enantiopreferences, and even increase the activity for some residual promiscuous reactions. In this feature article, we present an overview of the current experimental and computational strategies to explore the conformational free energy landscape of enzymes. We provide a series of recent publications that highlight the key role of conformational dynamics for the enzyme evolution towards new functions and substrates, and provide some perspectives on how conformational dynamism should be considered in future computational enzyme design protocols.

  12. Kidneys: Key Modulators of HDL Levels and Function

    PubMed Central

    Yang, Haichun; Fogo, Agnes B.; Kon, Valentina

    2016-01-01

    Purpose of review This review will examine advances in our understanding of the role kidneys play in HDL metabolism and the effect on levels, composition, and function of HDL particles. Recent findings Components of the HDL particles can cross the glomerular filtration barrier. Some of these components, including apolipoproteins and enzymes involved in lipid metabolism, are taken up by the proximal tubule and degraded, modified, salvaged/returned to the circulation, or lost in the urine. Injury of the glomerular capillaries or tubules can affect these intrarenal processes and modify HDL. Changes in the plasma and urine levels of HDL may be novel markers of kidney damage and/or mechanism(s) of kidney disease. Summary The kidneys have a significant role in metabolism of individual HDL components, which in turn modulate HDL levels, composition and functionality of HDL particles. These intrarenal effects may be useful markers of kidney damage and have consequences on kidney-related perturbations in HDL. PMID:27008596

  13. Parrots as key multilinkers in ecosystem structure and functioning.

    PubMed

    Blanco, Guillermo; Hiraldo, Fernando; Rojas, Abraham; Dénes, Francisco V; Tella, José L

    2015-09-01

    Mutually enhancing organisms can become reciprocal determinants of their distribution, abundance, and demography and thus influence ecosystem structure and dynamics. In addition to the prevailing view of parrots (Psittaciformes) as plant antagonists, we assessed whether they can act as plant mutualists in the dry tropical forest of the Bolivian inter-Andean valleys, an ecosystem particularly poor in vertebrate frugivores other than parrots (nine species). We hypothesised that if interactions between parrots and their food plants evolved as primarily or facultatively mutualistic, selection should have acted to maximize the strength of their interactions by increasing the amount and variety of resources and services involved in particular pairwise and community-wide interaction contexts. Food plants showed different growth habits across a wide phylogenetic spectrum, implying that parrots behave as super-generalists exploiting resources differing in phenology, type, biomass, and rewards from a high diversity of plants (113 species from 38 families). Through their feeding activities, parrots provided multiple services acting as genetic linkers, seed facilitators for secondary dispersers, and plant protectors, and therefore can be considered key mutualists with a pervasive impact on plant assemblages. The number of complementary and redundant mutualistic functions provided by parrots to each plant species was positively related to the number of different kinds of food extracted from them. These mutually enhancing interactions were reflected in species-level properties (e.g., biomass or dominance) of both partners, as a likely consequence of the temporal convergence of eco-(co)evolutionary dynamics shaping the ongoing structure and organization of the ecosystem. A full assessment of the, thus far largely overlooked, parrot-plant mutualisms and other ecological linkages could change the current perception of the role of parrots in the structure, organization, and

  14. Variations in clinical nurse leaders' confidence with performing the core role functions.

    PubMed

    Gilmartin, Mattia J

    2014-01-01

    Clinical nurse leader (CNL) practice, by definition, requires individuals to make career transitions. CNLs must adjust to their new work role and responsibilities and doing so also entails individual adjustment. Prior work has not examined the role of individual-level factors in effective CNL role transition. This study contributes to CNL implementation efforts by developing understanding of personal and contextual factors that explain variation in individuals' levels of self-confidence with performing the key functions of the CNL role. Data were gathered using a cross-sectional survey from a national sample of registered nurses (RNs) certified as CNLs. Respondents' perceptions of their confidence in performing CNL role competencies were measured with the Clinical Nurse Leader Self-Efficacy Scale (CNLSES; Gilmartin MJ, Nokes, K. (in press). The Clinical Nurse Leader Self Efficacy Scale: Results of a pilot study. Nursing Economic$). The CNLSES is a 35-item state-specific self-efficacy scale with established measurement properties that assesses nurses' perceptions of their ability to function effectively as a CNL. Demographic data were also collected. Data were analyzed using a general linear regression model. One hundred forty-seven certified CNLs participated in the survey. Results indicate that respondents vary in their confidence with performing the nine role competencies associated with CNL practice. Results from regression analyses also show that respondents' confidence in their abilities to carry out the core functions associated with the CNL role varied significantly across geographic region, organizational type, and by CNL graduate program model. The results of this study show important differences in CNLs' levels of self-confidence with the core competencies of their role. As a result, it may be important to develop targeted career transition interventions to gain the full benefit of CNL practice. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. A conifer ABI3-interacting protein plays important roles during key transitions of the plant life cycle.

    PubMed

    Zeng, Ying; Zhao, Tiehan; Kermode, Allison R

    2013-01-01

    ABI3 (for ABSCISIC ACID INSENSITIVE3), a transcription factor of the abscisic acid signal transduction pathway, plays a major role during seed development, dormancy inception, and dormancy maintenance. This protein appears to also function in meristematic and vegetative plant tissues and under certain stress conditions. We have isolated the ABI3 gene ortholog (CnABI3) from yellow cedar (Callitropsis nootkatensis) and found that it was functionally similar to other ABI3 genes of angiosperms. Here, we report that using a yeast (Saccharomyces cerevisiae) two-hybrid approach, we have identified another protein of yellow cedar (CnAIP2; for CnABI3 INTERACTING PROTEIN2) that physically interacts with CnABI3. Functional analyses revealed that CnAIP2 plays important roles during key transitions in the plant life cycle: (1) CnAIP2 impaired seed development and reduced seed dormancy; (2) CnAIP2 promoted root development, particularly the initiation of lateral roots, and the CnAIP2 gene promoter was exquisitely auxin sensitive; and (3) CnAIP2 promoted the transition from vegetative growth to reproductive initiation (i.e. flowering). The nature of the effects of CnAIP2 on these processes and other evidence place CnAIP2 in the category of a "global" regulator, whose actions are antagonistic to those of ABI3.

  16. Social Cognition and Executive Functions As Key Factors for Effective Pedagogy in Higher Education.

    PubMed

    Correia, Rut; Navarrete, Gorka

    2017-01-01

    Higher education (HE) faces the challenge of responding to an increasing diversity. In this context, more attention is being paid to teachers and teaching skills positively related to students learning. Beyond the knowledges identified as key components of an effective teacher, teachers also need to be capable of unraveling what their students think and believe, and how they accommodate the new information. More importantly, teachers need to be able to adapt their own teaching to their audience's needs. In learners, social cognition (SC) has been related to a better receptivity to the different teacher-student interactions. Since these interactions are bidirectional, SC could also help to explain teachers' receptiveness to the information available in feedback situations. However, little is known about how SC is related to teacher development, and therefore teaching effectiveness, in HE. In addition, executive functions (EFs), closely related to SC, could play a key role in the ability to self-regulate their own teaching to better answering their students emerging needs. Although there is wide evidence regarding the association of EFs to performance in high demanding settings, as far as we know, there are no studies exploring the relationship between teachers' EFs and teaching effectiveness in HE. Establishing a positive association between teaching effectiveness and these socio-cognitive functions could be a promising first step in designing professional development programs that promote HE academics' ability to understand and care about students thoughts and emotions, to eventually adapt their teaching to their students needs for a better learning.

  17. Seaweed-microbial interactions: key functions of seaweed-associated bacteria.

    PubMed

    Singh, Ravindra Pal; Reddy, C R K

    2014-05-01

    Seaweed-associated bacteria play a crucial role in morphogenesis and growth of seaweeds (macroalgae) in direct and/or indirect ways. Bacterial communities belonging to the phyla Proteobacteria and Firmicutes are generally the most abundant on seaweed surfaces. Associated bacterial communities produce plant growth-promoting substances, quorum sensing signalling molecules, bioactive compounds and other effective molecules that are responsible for normal morphology, development and growth of seaweeds. Also, bioactive molecules of associated bacteria determine the presence of other bacterial strains on seaweeds and protect the host from harmful entities present in the pelagic realm. The ecological functions of cross-domain signalling between seaweeds and bacteria have been reported as liberation of carpospores in the red seaweeds and settlement of zoospores in the green seaweeds. In the present review, the role of extracellular polymeric substances in growth and settlement of seaweeds spores is also highlighted. To elucidate the functional roles of associated bacteria and the molecular mechanisms underlying reported ecological phenomena in seaweeds requires a combined ecological, microbiological and biochemical approach. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. Unexpected function of the phagocyte NADPH oxidase in supporting hyperglycolysis in stimulated neutrophils: key role of 6-phosphofructo-2-kinase.

    PubMed

    Baillet, Athan; Hograindleur, Marc-André; El Benna, Jamel; Grichine, Alexei; Berthier, Sylvie; Morel, Françoise; Paclet, Marie-Hélène

    2017-02-01

    The phagocyte NADPH oxidase 2 (Nox2) is an enzymatic complex that is involved in innate immunity, notably via its capacity to produce toxic reactive oxygen species. Recently, a proteomic analysis of the constitutively active Nox2 complex, isolated from neutrophil fractions, highlighted the presence of 6-phosphofructo-2-kinase (PFK-2). The purpose of this work was to study the relationship between PFK-2 and NADPH oxidase in neutrophils. Data have underlined a specific association of the active phosphorylated form of PFK-2 with Nox2 complex in stimulated neutrophils. In its active form, PFK-2 catalyzes the production of fructose-2,6-bisphosphate, which is the main allosteric activator of phosphofructo-1-kinase, the limiting enzyme in glycolysis. Pharmacologic inhibition of PFK-2 phosphorylation and cell depletion in PFK-2 by a small interfering RNA strategy led to a decrease in the glycolysis rate and a reduction in NADPH oxidase activity in stimulated cells. Surprisingly, alteration of Nox2 activity impacted the glycolysis rate, which indicated that Nox2 in neutrophils was not only required for reactive oxygen species production but was also involved in supporting the energetic metabolism increase that was induced by inflammatory conditions. PFK-2 seems to be a strategic element that links NADPH oxidase activation and glycolysis modulation, and, as such, is proposed as a potential therapeutic target in inflammatory diseases.-Baillet, A., Hograindleur, M.-A., El Benna, J., Grichine, A., Berthier, S., Morel, F., Paclet, M.-H. Unexpected function of the phagocyte NADPH oxidase in supporting hyperglycolysis in stimulated neutrophils: key role of 6-phosphofructo-2-kinase. © FASEB.

  19. Strategies for Supporting Physician-Scientists in Faculty Roles: A Narrative Review With Key Informant Consultations.

    PubMed

    Lingard, Lorelei; Zhang, Peter; Strong, Michael; Steele, Margaret; Yoo, John; Lewis, James

    2017-10-01

    Physician-scientists are a population in decline globally. Solutions to reverse this decline often have focused on the training pipeline. Less attention has been paid to reducing attrition post training, when physician-scientists take up faculty roles. However, this period is a known time of vulnerability because of the pressures of clinical duties and the long timeline to securing independent research funding. This narrative review explored existing knowledge regarding how best to support physician-scientists for success in their faculty roles. The authors searched the Medline, Embase, ERIC, and Cochrane Library databases for articles published from 2000 to 2016 on this topic and interviewed key informants in 2015 to solicit their input on the review results. The authors reviewed 78 articles and interviewed 16 key informants. From the literature, they developed a framework of organizational (facilitate mentorship, foster community, value the physician-scientist role, minimize financial barriers) and individual (develop professional and research skills) strategies for supporting physician-scientists. They also outlined key knowledge gaps representing topics either rarely or never addressed in the reviewed articles (percent research time, structural hypocrisy, objective assessment, group metrics, professional identity). The key informants confirmed the identified strategies and discussed how the gaps were particularly important and impactful. This framework offers a basis for assessing an organization's existing support strategies, identifying outstanding needs, and developing targeted programming. The identified gaps require attention, as they threaten to undermine the benefits of existing support strategies.

  20. Identification of Key Functional Residues in the Active Site of Human β1,4-Galactosyltransferase 7

    PubMed Central

    Talhaoui, Ibtissam; Bui, Catherine; Oriol, Rafael; Mulliert, Guillermo; Gulberti, Sandrine; Netter, Patrick; Coughtrie, Michael W. H.; Ouzzine, Mohamed; Fournel-Gigleux, Sylvie

    2010-01-01

    Glycosaminoglycans (GAGs) play a central role in many pathophysiological events, and exogenous xyloside substrates of β1,4-galactosyltransferase 7 (β4GalT7), a major enzyme of GAG biosynthesis, have interesting biomedical applications. To predict functional peptide regions important for substrate binding and activity of human β4GalT7, we conducted a phylogenetic analysis of the β1,4-galactosyltransferase family and generated a molecular model using the x-ray structure of Drosophila β4GalT7-UDP as template. Two evolutionary conserved motifs, 163DVD165 and 221FWGWGREDDE230, are central in the organization of the enzyme active site. This model was challenged by systematic engineering of point mutations, combined with in vitro and ex vivo functional assays. Investigation of the kinetic properties of purified recombinant wild-type β4GalT7 and selected mutants identified Trp224 as a key residue governing both donor and acceptor substrate binding. Our results also suggested the involvement of the canonical carboxylate residue Asp228 acting as general base in the reaction catalyzed by human β4GalT7. Importantly, ex vivo functional tests demonstrated that regulation of GAG synthesis is highly responsive to modification of these key active site amino acids. Interestingly, engineering mutants at position 224 allowed us to modify the affinity and to modulate the specificity of human β4GalT7 toward UDP-sugars and xyloside acceptors. Furthermore, the W224H mutant was able to sustain decorin GAG chain substitution but not GAG synthesis from exogenously added xyloside. Altogether, this study provides novel insight into human β4GalT7 active site functional domains, allowing manipulation of this enzyme critical for the regulation of GAG synthesis. A better understanding of the mechanism underlying GAG assembly paves the way toward GAG-based therapeutics. PMID:20843813

  1. The key actors maintaining elders in functional autonomy in Bobo-Dioulasso (Burkina Faso)

    PubMed Central

    2014-01-01

    Background Globally, a significant increase in functional disability among the elderly is expected in the near future. It is therefore vital to begin considering how Sub-Saharan Africa countries can best start building or strengthening the care and support system for that target population. Study objectives are: 1) identify the key actors of the social system who maintain elders in functional autonomy at home in Bobo-Dioulasso (Burkina Faso) and 2) to describe the functional status of older people living at home. Methods We conducted a longitudinal descriptive study among the elderly aged 60 and above (351). Their functional status was evaluated using the Functional Autonomy Measurement System (SMAF). Data analysis was done using the statistical software package STATA (SE11). Results In Bobo-Dioulasso, 68% of seniors have good functional capacity or a slight incapacity and 32% have moderate to severe incapacities. Older people die before (3%) or during (14%) moderate to severe disabilities. This would mean that the quality of medical and/or social care is not good for maintaining functional autonomy of older people with moderate to severe disabilities. Two main groups of people contribute to maintain elders in functional autonomy: the elderly themselves and their family. Community, private or public structures for maintaining elders in functional autonomy are non-existent. The social system for maintaining elders in functional autonomy is incomplete and failing. In case of functional handicap at home, the elders die. But stakeholders are not conscious of this situation; they believe that this system is good for maintaining elders in functional autonomy. Conclusion It is likely that the absence of formal care and support structure likely shortens the lifespan of severely disabled older people. Stakeholders have not yet looked at this possibility. The stakeholders should seriously think about: 1) how to establish the third level of actors who can fulfill the needs to

  2. Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds.

    PubMed

    Cummins, Ian; Wortley, David J; Sabbadin, Federico; He, Zhesi; Coxon, Christopher R; Straker, Hannah E; Sellars, Jonathan D; Knight, Kathryn; Edwards, Lesley; Hughes, David; Kaundun, Shiv Shankhar; Hutchings, Sarah-Jane; Steel, Patrick G; Edwards, Robert

    2013-04-09

    Multiple-herbicide resistance (MHR) in black-grass (Alopecurus myosuroides) and annual rye-grass (Lolium rigidum) is a global problem leading to a loss of chemical weed control in cereal crops. Although poorly understood, in common with multiple-drug resistance (MDR) in tumors, MHR is associated with an enhanced ability to detoxify xenobiotics. In humans, MDR is linked to the overexpression of a pi class glutathione transferase (GSTP1), which has both detoxification and signaling functions in promoting drug resistance. In both annual rye-grass and black-grass, MHR was also associated with the increased expression of an evolutionarily distinct plant phi (F) GSTF1 that had a restricted ability to detoxify herbicides. When the black-grass A. myosuroides (Am) AmGSTF1 was expressed in Arabidopsis thaliana, the transgenic plants acquired resistance to multiple herbicides and showed similar changes in their secondary, xenobiotic, and antioxidant metabolism to those determined in MHR weeds. Transcriptome array experiments showed that these changes in biochemistry were not due to changes in gene expression. Rather, AmGSTF1 exerted a direct regulatory control on metabolism that led to an accumulation of protective flavonoids. Further evidence for a key role for this protein in MHR was obtained by showing that the GSTP1- and MDR-inhibiting pharmacophore 4-chloro-7-nitro-benzoxadiazole was also active toward AmGSTF1 and helped restore herbicide control in MHR black-grass. These studies demonstrate a central role for specific GSTFs in MHR in weeds that has parallels with similar roles for unrelated GSTs in MDR in humans and shows their potential as targets for chemical intervention in resistant weed management.

  3. Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds

    PubMed Central

    Cummins, Ian; Wortley, David J.; Sabbadin, Federico; He, Zhesi; Coxon, Christopher R.; Straker, Hannah E.; Sellars, Jonathan D.; Knight, Kathryn; Hughes, David; Kaundun, Shiv Shankhar; Hutchings, Sarah-Jane; Steel, Patrick G.; Edwards, Robert

    2013-01-01

    Multiple-herbicide resistance (MHR) in black-grass (Alopecurus myosuroides) and annual rye-grass (Lolium rigidum) is a global problem leading to a loss of chemical weed control in cereal crops. Although poorly understood, in common with multiple-drug resistance (MDR) in tumors, MHR is associated with an enhanced ability to detoxify xenobiotics. In humans, MDR is linked to the overexpression of a pi class glutathione transferase (GSTP1), which has both detoxification and signaling functions in promoting drug resistance. In both annual rye-grass and black-grass, MHR was also associated with the increased expression of an evolutionarily distinct plant phi (F) GSTF1 that had a restricted ability to detoxify herbicides. When the black-grass A. myosuroides (Am) AmGSTF1 was expressed in Arabidopsis thaliana, the transgenic plants acquired resistance to multiple herbicides and showed similar changes in their secondary, xenobiotic, and antioxidant metabolism to those determined in MHR weeds. Transcriptome array experiments showed that these changes in biochemistry were not due to changes in gene expression. Rather, AmGSTF1 exerted a direct regulatory control on metabolism that led to an accumulation of protective flavonoids. Further evidence for a key role for this protein in MHR was obtained by showing that the GSTP1- and MDR-inhibiting pharmacophore 4-chloro-7-nitro-benzoxadiazole was also active toward AmGSTF1 and helped restore herbicide control in MHR black-grass. These studies demonstrate a central role for specific GSTFs in MHR in weeds that has parallels with similar roles for unrelated GSTs in MDR in humans and shows their potential as targets for chemical intervention in resistant weed management. PMID:23530204

  4. The roles of melanin-concentrating hormone in energy balance and reproductive function: Are they connected?

    PubMed

    Naufahu, Jane; Cunliffe, Adam D; Murray, Joanne F

    2013-01-01

    Melanin-concentrating hormone (MCH) is an anabolic neuropeptide with multiple and diverse physiological functions including a key role in energy homoeostasis. Rodent studies have shown that the ablation of functional MCH results in a lean phenotype, increased energy expenditure and resistance to diet-induced obesity. These findings have generated interest among pharmaceutical companies vigilant for potential anti-obesity agents. Nutritional status affects reproductive physiology and behaviours, thereby optimising reproductive success and the ability to meet energetic demands. This complex control system entails the integration of direct or indirect peripheral stimuli with central effector systems and involves numerous mediators. A role for MCH in the reproductive axis has emerged, giving rise to the premise that MCH may serve as an integratory mediator between those discrete systems that regulate energy balance and reproductive function. Hence, this review focuses on published evidence concerning i) the role of MCH in energy homoeostasis and ii) the regulatory role of MCH in the reproductive axis. The question as to whether the MCH system mediates the integration of energy homoeostasis with the neuroendocrine reproductive axis and, if so, by what means has received limited coverage in the literature; evidence to date and current theories are summarised herein.

  5. The role of personal and key resources in the family-to-work enrichment process.

    PubMed

    Tement, Sara

    2014-10-01

    Based on the work-home resources model, the aim of the present research was to test a process model of family-to-work enrichment by examining whether self-efficacy (i.e., personal resource) mediates the relationship between support from one's family and work engagement. Further, it was assumed that positive affectivity (i.e., key resource) moderates the relation between family support and self-efficacy. Using an occupationally heterogeneous sample of Slovenian employees (n = 738), we found support for a mediating effect of self-efficacy as well as for the moderating role of positive affectivity. In general, our results broaden the understanding of work-family enrichment processes and provide support for the work-home resources model. In addition, they point to the relevant role of personal and key resources in work-family interactions. © 2014 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  6. The role of lateral habenula-dorsal raphe nucleus circuits in higher brain functions and psychiatric illness.

    PubMed

    Zhao, Hua; Zhang, Bei-Lin; Yang, Shao-Jun; Rusak, Benjamin

    2015-01-15

    Serotonergic neurons in the dorsal raphe nucleus (DRN) play an important role in regulation of many physiological functions. The lateral nucleus of the habenular complex (LHb) is closely connected to the DRN both morphologically and functionally. The LHb is a key regulator of the activity of DRN serotonergic neurons, and it also receives reciprocal input from the DRN. The LHb is also a major way-station that receives limbic system input via the stria medullaris and provides output to the DRN and thereby indirectly connects a number of other brain regions to the DRN. The complex interactions of the LHb and DRN contribute to the regulation of numerous important behavioral and physiological mechanisms, including those regulating cognition, reward, pain sensitivity and patterns of sleep and waking. Disruption of these functions is characteristic of major psychiatric illnesses, so there has been a great deal of interest in how disturbed LHb-DRN interactions may contribute to the symptoms of these illnesses. This review summarizes recent research related to the roles of the LHb-DRN system in regulation of higher brain functions and the possible role of disturbed LHb-DRN function in the pathogenesis of psychiatric disorders, especially depression. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. The role of the support worker in nursing homes: a consideration of key issues.

    PubMed

    Baldwin, Julie; Roberts, Julia D; Fitzpatrick, Joanne I; While, Alison; Cowan, David T

    2003-11-01

    The aim of this paper is to critically consider the role of the support worker in the nursing home sector and with particular reference to the United Kingdom situation. With the expansion of the nursing home sector, there is an increasing population of support workers in this field. Literature in this paper covers the period between 1989 and 2002, beginning with the build up to the introduction of the National Health Service and Community Care Act (available at: http://www.hmso.gov.uk), which necessitated a major shift between public and private sector employment. The findings of this paper indicate limited research, investigating the role of support workers in general and specifically those working in the nursing home sector. The literature suggests that the majority of the role focuses on direct patient care, however, a lack of role clarification was evident and differences emerged between the views of support workers and Registered Nurses regarding the place of support workers in the care process. In particular, support workers saw their role as similar to that of the Registered Nurse, although Registered Nurse regarded 'basic nursing care' as the key remit of the support worker role. The paper also indicated inadequate preparation and subsequent supervision of support workers. These key findings indicate that role clarification, appropriate preparation and a process of continuing development require careful consideration by managers if the positive contribution of this group of care workers is to be fully realized. Furthermore, while there exists no central source of funding to finance the role preparation and mentorship of support workers, training provision will remain ad hoc. Obtaining core funding would allow for the training and education of support workers to become standard practice, which, in turn, is more likely to lead to improvements in the planning and resourcing of care provision. Equally, further research is needed if the support worker role is to

  8. The role of microRNAs in synaptic development and function

    PubMed Central

    Corbin, Rachel; Olsson-Carter, Katherine; Slack, Frank

    2015-01-01

    MicroRNAs control gene expression by inhibiting translation or promoting degradation of their target mRNAs. Since the discovery of the first microRNAs, lin-4 and let-7, in C. elegans, hundreds of microRNAs have been identified as key regulators of cell fate determination, lifespan, and cancer in species ranging from plants to humans. However, while microRNAs have been shown to be particularly abundant in the brain, their role in the development and activity of the nervous system is still largely unknown. In this review, we describe recent advances in our understanding of microRNA function at synapses, the specialized structures required for communication between neurons and their targets. We also propose how these advances might inform the molecular model of memory. PMID:19335998

  9. Thioredoxin plays a key role in retinal neuropathy prior to endothelial damage in diabetic mice

    PubMed Central

    Ren, Xiang; Li, Chen; Liu, Junli; Zhang, Chenghong; Fu, Yuzhen; Wang, Nina; Ma, Haiying; Lu, Heyuan; Kong, Hui; Kong, Li

    2017-01-01

    Diabetes is a chronic metabolic syndrome that results in changes in carbohydrate, lipid and protein metabolism. With diabetes for a long time, it increases the risk of diabetic retinopathy (DR) and long-term morbidity and mortality. Moreover, emerging evidence suggests that neuron damage occurs earlier than microvascular complications in DR patients, but the underlying mechanism is unclear. We investigated diabetes-induced retinal neuropathy and elucidated key molecular events to identify new therapeutic targets for the clinical treatment and prevention of DR. For in vivo studies, a high-fat diet and streptozotocin (STZ) injection were used to generate the diabetes model. Hematoxylin-eosin staining was used for morphological observations and measurements of the outer nuclear layer thickness. Electroretinography (ERG) was used to assess retinal function. For in vitro studies, Neuro2a cells were incubated in normal (5.5 mM) and high-glucose (30 mM) conditions. Flow cytometry assays were performed to analyze apoptosis. Additionally, real-time PCR and Western blotting analyses were carried out to determine gene and protein expression in vitro and in vivo. Taken together, the results indicated that retinal neuropathy occurred prior to endothelial damage induced by diabetes, and thioredoxin (Trx) plays a key role in this process. This underlying mechanism may be related to activation of the Trx/ASK1/p-p38/Trx-interacting protein pathway. PMID:28977868

  10. The role of gender in the socialization of emotion: key concepts and critical issues.

    PubMed

    Root, Amy Kennedy; Denham, Susanne A

    2010-01-01

    Given the omnipresent role of gender in children's and adolescents' development, it seems necessary to better understand how gender affects the process of emotion socialization. In this introductory chapter, the authors discuss the overarching themes and key concepts discussed in this volume, as well as outline the distinct contribution of each individual chapter. Each chapter within this volume underscores the important role that parents play in the socialization of emotion, and the impact gender-typed emotion socialization may have on later socioemotional adjustment. (c) Wiley Periodicals, Inc.

  11. Muscle RANK is a key regulator of Ca2+ storage, SERCA activity, and function of fast-twitch skeletal muscles.

    PubMed

    Dufresne, Sébastien S; Dumont, Nicolas A; Boulanger-Piette, Antoine; Fajardo, Val A; Gamu, Daniel; Kake-Guena, Sandrine-Aurélie; David, Rares Ovidiu; Bouchard, Patrice; Lavergne, Éliane; Penninger, Josef M; Pape, Paul C; Tupling, A Russell; Frenette, Jérôme

    2016-04-15

    Receptor-activator of nuclear factor-κB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Here we show that RANK is also expressed in fully differentiated myotubes and skeletal muscle. Muscle RANK deletion has inotropic effects in denervated, but not in sham, extensor digitorum longus (EDL) muscles preventing the loss of maximum specific force while promoting muscle atrophy, fatigability, and increased proportion of fast-twitch fibers. In denervated EDL muscles, RANK deletion markedly increased stromal interaction molecule 1 content, a Ca(2+)sensor, and altered activity of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) modulating Ca(2+)storage. Muscle RANK deletion had no significant effects on the sham or denervated slow-twitch soleus muscles. These data identify a novel role for RANK as a key regulator of Ca(2+)storage and SERCA activity, ultimately affecting denervated skeletal muscle function. Copyright © 2016 the American Physiological Society.

  12. Muscle RANK is a key regulator of Ca2+ storage, SERCA activity, and function of fast-twitch skeletal muscles

    PubMed Central

    Dufresne, Sébastien S.; Dumont, Nicolas A.; Boulanger-Piette, Antoine; Fajardo, Val A.; Gamu, Daniel; Kake-Guena, Sandrine-Aurélie; David, Rares Ovidiu; Bouchard, Patrice; Lavergne, Éliane; Penninger, Josef M.; Pape, Paul C.; Tupling, A. Russell

    2016-01-01

    Receptor-activator of nuclear factor-κB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Here we show that RANK is also expressed in fully differentiated myotubes and skeletal muscle. Muscle RANK deletion has inotropic effects in denervated, but not in sham, extensor digitorum longus (EDL) muscles preventing the loss of maximum specific force while promoting muscle atrophy, fatigability, and increased proportion of fast-twitch fibers. In denervated EDL muscles, RANK deletion markedly increased stromal interaction molecule 1 content, a Ca2+ sensor, and altered activity of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) modulating Ca2+ storage. Muscle RANK deletion had no significant effects on the sham or denervated slow-twitch soleus muscles. These data identify a novel role for RANK as a key regulator of Ca2+ storage and SERCA activity, ultimately affecting denervated skeletal muscle function. PMID:26825123

  13. The Role of Gender in the Socialization of Emotion: Key Concepts and Critical Issues

    ERIC Educational Resources Information Center

    Root, Amy Kennedy; Denham, Susanne A.

    2010-01-01

    Given the omnipresent role of gender in children's and adolescents' development, it seems necessary to better understand how gender affects the process of emotion socialization. In this introductory chapter, the authors discuss the overarching themes and key concepts discussed in this volume, as well as outline the distinct contribution of each…

  14. Comparison is key.

    PubMed

    Stone, Mark H; Stenner, A Jackson

    2014-01-01

    Several concepts from Georg Rasch's last papers are discussed. The key one is comparison because Rasch considered the method of comparison fundamental to science. From the role of comparison stems scientific inference made operational by a properly developed frame of reference producing specific objectivity. The exact specifications Rasch outlined for making comparisons are explicated from quotes, and the role of causality derived from making comparisons is also examined. Understanding causality has implications for what can and cannot be produced via Rasch measurement. His simple examples were instructive, but the implications are far reaching upon first establishing the key role of comparison.

  15. The roles and functions of a lunar base Nuclear Technology Center

    NASA Astrophysics Data System (ADS)

    Buden, D.; Angelo, J. A., Jr.

    This paper describes the roles and functions of a special Nuclear Technology Center which is developed as an integral part of a permanent lunar base. Numerous contemporary studies clearly point out that nuclear energy technology will play a major role in any successful lunar/Mars initiative program and in the overall establishment of humanity's solar system civilization. The key role of nuclear energy in the providing power has been recognized. A Nuclear Technology Center developed as part of a permanent lunar base can also help bring about many other nuclear technology applications, such as producing radioisotopes for self-illumination, food preservation, waste sterilization, and medical treatment; providing thermal energy for mining, materials processing and agricultural; and as a source of emergency habitat power. Designing such a center will involve the deployment, operation, servicing and waste product management and disposal of megawatt class reactor power plants. This challenge must be met with a minimum of direct human support at the facility. Furthermore, to support the timely, efficient integration of this Nuclear Technology Center in the evolving lunar base infrastructure, an analog of such a facility will be needed here on Earth.

  16. The adenoid as a key factor in upper airway infections.

    PubMed

    van Cauwenberge, P B; Bellussi, L; Maw, A R; Paradise, J L; Solow, B

    1995-06-01

    The adenoids (and the nasopharynx) play a key role in the normal functioning and in various pathologies of the upper respiratory tract. In this paper the role of adenoidal pathology and the beneficial effect of adenoidectomy in some upper respiratory tract and facial anomalies and diseases are discussed; otitis media with effusion, recurrent acute otitis media, sinusitis, snoring and sleep apnea and abnormal patterns in the midface growth and development.

  17. Automated secured cost effective key refreshing technique to enhance WiMAX privacy key management

    NASA Astrophysics Data System (ADS)

    Sridevi, B.; Sivaranjani, S.; Rajaram, S.

    2013-01-01

    In all walks of life the way of communication is transformed by the rapid growth of wireless communication and its pervasive use. A wireless network which is fixed and richer in bandwidth is specified as IEEE 802.16, promoted and launched by an industrial forum is termed as Worldwide Interoperability for Microwave Access (WiMAX). This technology enables seamless delivery of wireless broadband service for fixed and/or mobile users. The obscurity is the long delay which occurs during the handoff management in every network. Mobile WiMAX employs an authenticated key management protocol as a part of handoff management in which the Base Station (BS) controls the distribution of keying material to the Mobile Station (MS). The protocol employed is Privacy Key Management Version 2- Extensible Authentication Protocol (PKMV2-EAP) which is responsible for the normal and periodical authorization of MSs, reauthorization as well as key refreshing. Authorization key (AK) and Traffic Encryption key (TEK) plays a vital role in key exchange. When the lifetime of key expires, MS has to request for a new key to BS which in turn leads to repetition of authorization, authentication as well as key exchange. To avoid service interruption during reauthorization , two active keys are transmitted at the same time by BS to MS. The consequences of existing work are hefty amount of bandwidth utilization, time consumption and large storage. It is also endured by Man in the Middle attack and Impersonation due to lack of security in key exchange. This paper designs an automatic mutual refreshing of keys to minimize bandwidth utilization, key storage and time consumption by proposing Previous key and Iteration based Key Refreshing Function (PKIBKRF). By integrating PKIBKRF in key generation, the simulation results indicate that 21.8% of the bandwidth and storage of keys are reduced and PKMV2 mutual authentication time is reduced by 66.67%. The proposed work is simulated with Qualnet model and

  18. Evolutionarily conserved odorant receptor function questions ecological context of octenol role in mosquitoes

    PubMed Central

    Dekel, Amir; Pitts, Ronald J.; Yakir, Esther; Bohbot, Jonathan D.

    2016-01-01

    Olfaction is a key insect adaptation to a wide range of habitats. In the last thirty years, the detection of octenol by blood-feeding insects has been primarily understood in the context of animal host-seeking. The recent discovery of a conserved octenol receptor gene in the strictly nectar-feeding elephant mosquito Toxorhynchites amboinensis (TaOr8) suggests a different biological role. Here, we show that TaOR8 is a functional ortholog of its counterparts in blood-feeding mosquitoes displaying selectivity towards the (R)-enantiomer of octenol and susceptibility to the insect repellent DEET. These findings suggest that while the function of OR8 has been maintained throughout mosquito evolution, the context in which this receptor is operating has diverged in blood and nectar-feeding mosquitoes. PMID:27849027

  19. Group I p21-activated kinases: emerging roles in immune function and viral pathogenesis.

    PubMed

    Pacheco, Almudena; Chernoff, Jonathan

    2010-01-01

    Group I p21-activated kinases are a highly conserved three-member family of serine/threonine kinases that act as key effectors for the small GTPases Cdc42 and Rac. In man, these enzymes have been implicated in a wide range of biological processes and are beginning to draw the attention of the pharmaceutical industry as potential therapeutic targets in cancer and in inflammatory processes. In this review, we summarize basic properties of group I Paks and discuss recently uncovered roles for these kinases in immune function and in viral infection.

  20. Key role of striatal cholinergic interneurons in processes leading to arrest of motor stereotypies.

    PubMed

    Aliane, Verena; Pérez, Sylvie; Bohren, Yohann; Deniau, Jean-Michel; Kemel, Marie-Louise

    2011-01-01

    Motor stereotypy is a key symptom of various disorders such as Tourette's syndrome and punding. Administration of nicotine or cholinesterase inhibitors is effective in treating some of these symptoms. However, the role of cholinergic transmission in motor stereotypy remains unknown. During strong cocaine-induced motor stereotypy, we showed earlier that increased dopamine release results in decreased acetylcholine release in the territory of the dorsal striatum related to the prefrontal cortex. Here, we investigated the role of striatal cholinergic transmission in the arrest of motor stereotypy. Analysis of N-methyl-d-aspartic acid-evoked release of dopamine and acetylcholine during declining intensity of motor stereotypy revealed a dissociation between dopamine and acetylcholine release. Whereas dopamine release remained increased, the inhibition of acetylcholine release decreased, mirroring the time course of motor stereotypy. Furthermore, pharmacological treatments restoring striatal acetylcholine release (raclopride, dopamine D2 antagonist; intraperitoneal or local injection in prefrontal territory of the dorsal striatum) rapidly stopped motor stereotypy. In contrast, pharmacological treatments that blocked the post-synaptic effects of acetylcholine (scopolamine, muscarinic antagonist; intraperitoneal or striatal local injection) or induced degeneration of cholinergic interneurons (AF64A, cholinergic toxin) in the prefrontal territory of the dorsal striatum robustly prolonged the duration of strong motor stereotypy. Thus, we propose that restoration of cholinergic transmission in the prefrontal territory of the dorsal striatum plays a key role in the arrest of motor stereotypy.

  1. Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8.

    PubMed

    Ah Kioon, Marie Dominique; Tripodo, Claudio; Fernandez, David; Kirou, Kyriakos A; Spiera, Robert F; Crow, Mary K; Gordon, Jessica K; Barrat, Franck J

    2018-01-10

    Systemic sclerosis (SSc) is a multisystem life-threatening fibrosing disorder that lacks effective treatment. The link between the inflammation observed in organs such as the skin and profibrotic mechanisms is not well understood. The plasmacytoid dendritic cell (pDC) is a key cell type mediating Toll-like receptor (TLR)-induced inflammation in autoimmune disease patients, including lupus and skin diseases with interface dermatitis. However, the role of pDCs in fibrosis is less clear. We show that pDCs infiltrate the skin of SSc patients and are chronically activated, leading to secretion of interferon-α (IFN-α) and CXCL4, which are both hallmarks of the disease. We demonstrate that the secretion of CXCL4 is under the control of phosphatidylinositol 3-kinase δ and is due to the aberrant presence of TLR8 on pDCs of SSc patients, which is not seen in healthy donors or in lupus pDCs, and that CXCL4 primarily acts by potentiating TLR8- but also TLR9-induced IFN production by pDCs. Depleting pDCs prevented disease in a mouse model of scleroderma and could revert fibrosis in mice with established disease. In contrast, the disease was exacerbated in mice transgenic for TLR8 with recruitment of pDCs to the fibrotic skin, whereas TLR7 only partially contributed to the inflammatory response, indicating that TLR8 is the key RNA-sensing TLR involved in the establishment of fibrosis. We conclude that the pDC is an essential cell type involved in the pathogenesis of SSc and its removal using depleting antibodies or attenuating pDC function could be a novel approach to treat SSc patients. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. The key role of CYC2 during meiosis in Tetrahymena thermophila.

    PubMed

    Xu, Qianlan; Wang, Ruoyu; Ghanam, A R; Yan, Guanxiong; Miao, Wei; Song, Xiaoyuan

    2016-04-01

    Meiotic recombination is carried out through a specialized pathway for the formation and repair of DNA double-strand breaks (DSBs) made by the Spo11 protein. The present study shed light on the functional role of cyclin, CYC2, in Tetrahymena thermophila which has transcriptionally high expression level during meiosis process. Knocking out the CYC2 gene results in arrest of meiotic conjugation process at 2.5-3.5 h after conjugation initiation, before the meiosis division starts, and in company with the absence of DSBs. To investigate the underlying mechanism of this phenomenon, a complete transcriptome profile was performed between wild-type strain and CYC2 knock-out strain. Functional analysis of RNA-Seq results identifies related differentially expressed genes (DEGs) including SPO11 and these DEGs are enriched in DNA repair/mismatch repair (MMR) terms in homologous recombination (HR), which indicates that CYC2 could play a crucial role in meiosis by regulating SPO11 and participating in HR.

  3. Hepatic Inflammation and Fibrosis: Functional Links and Key Pathways

    PubMed Central

    Seki, Ekihiro; Schwabe, Robert F.

    2014-01-01

    Inflammation is one of the most characteristic features of chronic liver disease of viral, alcoholic, fatty and autoimmune origin. Inflammation is typically present in all disease stages, and associated with the development of fibrosis, cirrhosis and hepatocellular carcinoma. In the past decade, numerous studies have contributed to improved understanding of the links between hepatic inflammation and fibrosis. Here, we review mechanisms that link inflammation with the development of liver fibrosis, focusing on the role of inflammatory mediators in hepatic stellate cell (HSC) activation and HSC survival during fibrogenesis and fibrosis regression. We will summarize the contributions of different inflammatory cells, including hepatic macrophages, T- and B-lymphocytes, NK cells and platelets, as well as key effectors such as cytokines, chemokines, and damage-associated molecular patterns. Furthermore, we will discuss the relevance of inflammatory signaling pathways for clinical liver disease and for the development of anti-fibrogenic strategies. PMID:25066777

  4. Insulin- like Growth Factor-Binding Protein Action in Bone Tissue: A Key Role for Pregnancy- Associated Plasma Protein-A.

    PubMed

    Beattie, James; Al-Khafaji, Hasanain; Noer, Pernille R; Alkharobi, Hanaa Esa; Alhodhodi, Aishah; Meade, Josephine; El-Gendy, Reem; Oxvig, Claus

    2018-01-01

    The insulin-like growth factor (IGF) axis is required for the differentiation, development, and maintenance of bone tissue. Accordingly, dysregulation of this axis is associated with various skeletal pathologies including growth abnormalities and compromised bone structure. It is becoming increasingly apparent that the action of the IGF axis must be viewed holistically taking into account not just the actions of the growth factors and receptors, but also the influence of soluble high affinity IGF binding proteins (IGFBPs).There is a recognition that IGFBPs exert IGF-dependent and IGF-independent effects in bone and other tissues and that an understanding of the mechanisms of action of IGFBPs and their regulation in the pericellular environment impact critically on tissue physiology. In this respect, a group of IGFBP proteinases (which may be considered as ancillary members of the IGF axis) play a crucial role in regulating IGFBP function. In this model, cleavage of IGFBPs by specific proteinases into fragments with lower affinity for growth factor(s) regulates the partition of IGFs between IGFBPs and cell surface IGF receptors. In this review, we examine the importance of IGFBP function in bone tissue with special emphasis on the role of pregnancy associated plasma protein-A (PAPP-A). We examine the function of PAPP-A primarily as an IGFBP-4 proteinase and present evidence that PAPP-A induced cleavage of IGFBP-4 is potentially a key regulatory step in bone metabolism. We also highlight some recent findings with regard to IGFBP-2 and IGFBP-5 (also PAPP-A substrates) function in bone tissue and briefly discuss the actions of the other three IGFBPs (-1, -3, and -6) in this tissue. Although our main focus will be in bone we will allude to IGFBP activity in other cells and tissues where appropriate.

  5. The clinical role of lecturers in nursing in Ireland: perceptions from key stakeholder groups in nurse education on the role.

    PubMed

    Meskell, Pauline; Murphy, Kathleen; Shaw, David

    2009-10-01

    The clinical role of lecturers in nursing has been a focus of debate since the integration of nurse education into higher education institutions. The purpose of this paper is to report the findings from the preliminary phase of a study, undertaken to investigate the perceptions of key stakeholder groups in nurse education, regarding the current clinical role of nurse lecturers in Ireland. A descriptive exploratory design was used involving focus group and individual interviews, soliciting views of purposefully selected educationalists, clinicians, policy formulators and students. The issue was examined from a policy perspective, aiming to collectively represent views of all participant groups. This approach facilitated a more complete picture of perceptions of the role to emerge, to better inform future decision making. Twenty two focus group interviews and twenty one individual interviews were conducted. Content analysis was used to identify themes. All groups were in agreement that role definition was urgently required to dispel ambiguities surrounding what the clinical role should involve. Conflicting views were evident among groups regarding lecturers' clinical credibility, visibility and teaching effectiveness. Findings highlight the essential nature of nurse lecturers engaging with clinical areas to maintain their skills, demonstrate a value for the practice component of the role and provide a link between education and practice.

  6. The role of endothelial cells on islet function and revascularization after islet transplantation.

    PubMed

    Del Toro-Arreola, Alicia; Robles-Murillo, Ana Karina; Daneri-Navarro, Adrian; Rivas-Carrillo, Jorge David

    2016-01-02

    Islet transplantation has become a widely accepted therapeutic option for selected patients with type 1 diabetes mellitus. However, in order to achieve insulin independence a great number of islets are often pooled from 2 to 4 pancreata donors. Mostly, it is due to the massive loss of islets immediately after transplant. The endothelium plays a key role in the function of native islets and during the revascularization process after islet transplantation. However, if a delayed revascularization occurs, even the remaining islets will also undergo to cell death and late graft dysfunction. Therefore, it is essential to understand how the signals are released from endothelial cells, which might regulate both differentiation of pancreatic progenitors and thereby maintenance of the graft function. New strategies to facilitate islet engraftment and a prompt revascularization could be designed to intervene and might lead to improve future results of islet transplantation.

  7. Photonic jet: key role of injection for etchings with a shaped optical fiber tip.

    PubMed

    Pierron, Robin; Zelgowski, Julien; Pfeiffer, Pierre; Fontaine, Joël; Lecler, Sylvain

    2017-07-15

    We demonstrate the key role of the laser injection into a multimode fiber to obtain a photonic jet (PJ). PJ, a high concentrated propagating beam with a full width at half-maximum smaller than the diffraction limit, is here generated with a shaped optical fiber tip using a pulsed laser source (1064 nm, 100 ns, 35 kHz). Three optical injection systems of light are compared. For similar etched marks on silicon with diameters around 1 μm, we show that the required ablation energy is minimum when the injected light beam is close to the fundamental mode diameter of the fiber. Thus, we confirm experimentally that to obtain a PJ out of an optical fiber, light injection plays a role as important as that of the tip shape and, therefore, the role of the fundamental mode in the process.

  8. Molecular, Cellular, and Structural Mechanisms of Cocaine Addiction: A Key Role for MicroRNAs

    PubMed Central

    Jonkman, Sietse; Kenny, Paul J

    2013-01-01

    The rewarding properties of cocaine play a key role in establishing and maintaining the drug-taking habit. However, as exposure to cocaine increases, drug use can transition from controlled to compulsive. Importantly, very little is known about the neurobiological mechanisms that control this switch in drug use that defines addiction. MicroRNAs (miRNAs) are small non-protein coding RNA transcripts that can regulate the expression of messenger RNAs that code for proteins. Because of their highly pleiotropic nature, each miRNA has the potential to regulate hundreds or even thousands of protein-coding RNA transcripts. This property of miRNAs has generated considerable interest in their potential involvement in complex psychiatric disorders such as addiction, as each miRNA could potentially influence the many different molecular and cellular adaptations that arise in response to drug use that are hypothesized to drive the emergence of addiction. Here, we review recent evidence supporting a key role for miRNAs in the ventral striatum in regulating the rewarding and reinforcing properties of cocaine in animals with limited exposure to the drug. Moreover, we discuss evidence suggesting that miRNAs in the dorsal striatum control the escalation of drug intake in rats with extended cocaine access. These findings highlight the central role for miRNAs in drug-induced neuroplasticity in brain reward systems that drive the emergence of compulsive-like drug use in animals, and suggest that a better understanding of how miRNAs control drug intake will provide new insights into the neurobiology of drug addiction. PMID:22968819

  9. Proteomic analysis reveals heat shock protein 70 has a key role in polycythemia Vera.

    PubMed

    Gallardo, Miguel; Barrio, Santiago; Fernandez, Marisol; Paradela, Alberto; Arenas, Alicia; Toldos, Oscar; Ayala, Rosa; Albizua, Enriqueta; Jimenez, Ana; Redondo, Santiago; Garcia-Martin, Rosa Maria; Gilsanz, Florinda; Albar, Juan Pablo; Martinez-Lopez, Joaquin

    2013-11-19

    JAK-STAT signaling through the JAK2V617F mutation is central to the pathogenesis of myeloproliferative neoplasms (MPN). However, other events could precede the JAK2 mutation. The aim of this study is to analyze the phenotypic divergence between polycytemia vera (PV) and essential thrombocytemia (ET) to find novel therapeutics targets by a proteomic and functional approach to identify alternative routes to JAK2 activation. Through 2D-DIGE and mass spectrometry of granulocyte protein from 20 MPN samples, showed differential expression of HSP70 in PV and ET besides other 60 proteins. Immunohistochemistry of 46 MPN bone marrow samples confirmed HSP70 expression. The median of positive granulocytes was 80% in PV (SD 35%) vs. 23% in ET (SD 34.25%). In an ex vivo model KNK437 was used as an inhibition model assay of HSP70, showed dose-dependent inhibition of cell growth and burst formation unit erythroid (BFU-E) in PV and ET, increased apoptosis in the erythroid lineage, and decreased pJAK2 signaling, as well as a specific siRNA for HSP70. These data suggest a key role for HSP70 in proliferation and survival of the erythroid lineage in PV, and may represent a potential therapeutic target in MPN, especially in PV.

  10. Connecting metabolism and reproduction: roles of central energy sensors and key molecular mediators.

    PubMed

    Roa, Juan; Tena-Sempere, Manuel

    2014-11-01

    It is well established that pubertal activation of the reproductive axis and maintenance of fertility are critically dependent on the magnitude of body energy reserves and the metabolic state of the organism. Hence, conditions of impaired energy homeostasis often result in deregulation of puberty and reproduction, whereas gonadal dysfunction can be associated with the worsening of the metabolic profile and, eventually, changes in body weight. While much progress has taken place in our knowledge about the neuroendocrine mechanisms linking metabolism and reproduction, our understanding of how such dynamic interplay happens is still incomplete. As paradigmatic example, much has been learned in the last two decades on the reproductive roles of key metabolic hormones (such as leptin, insulin and ghrelin), their brain targets and the major transmitters and neuropeptides involved. Yet, the molecular mechanisms whereby metabolic information is translated and engages into the reproductive circuits remain largely unsolved. In this work, we will summarize recent developments in the characterization of the putative central roles of key cellular energy sensors, such as mTOR, in this phenomenon, and will relate these with other molecular mechanisms likely contributing to the brain coupling of energy balance and fertility. In doing so, we aim to provide an updated view of an area that, despite still underdeveloped, may be critically important to fully understand how reproduction and metabolism are tightly connected in health and disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. The structure and function of the dopamine transporter and its role in CNS diseases.

    PubMed

    McHugh, Patrick C; Buckley, David A

    2015-01-01

    In this chapter, we explore the basic science of the dopamine transporter (DAT), an integral component of a system that regulates dopamine homeostasis. Dopamine is a key neurotransmitter for several brain functions including locomotor control and reward systems. The transporter structure, function, mechanism of action, localization, and distribution, in addition to gene regulation, are discussed. Over many years, a wealth of information concerning the DAT has been accrued and has led to increased interest in the role of the DAT in a plethora of central nervous system diseases. These DAT characteristics are explored in relation to a range of neurological and neuropsychiatric diseases, with a particular focus on the genetics of the DAT. In addition, we discuss the pharmacology of the DAT and how this relates to disease and addiction. © 2015 Elsevier Inc. All rights reserved.

  12. Elucidating the Key Role of a Lewis Base Solvent in the Formation of Perovskite Films Fabricated from the Lewis Adduct Approach.

    PubMed

    Cao, Xiaobing; Zhi, Lili; Li, Yahui; Fang, Fei; Cui, Xian; Yao, Youwei; Ci, Lijie; Ding, Kongxian; Wei, Jinquan

    2017-09-27

    High-quality perovskite films can be fabricated from Lewis acid-base adducts through molecule exchange. Substantial work is needed to fully understand the formation mechanism of the perovskite films, which helps to further improve their quality. Here, we study the formation of CH 3 NH 3 PbI 3 perovskite films by introducing some dimethylacetamide into the PbI 2 /N,N-dimethylformamide solution. We reveal that there are three key processes during the formation of perovskite films through the Lewis acid-base adduct approach: molecule intercalation of solvent into the PbI 2 lattice, molecule exchange between the solvent and CH 3 NH 3 I, and dissolution-recrystallization of the perovskite grains during annealing. The Lewis base solvents play multiple functions in the above processes. The properties of the solvent, including Lewis basicity and boiling point, play key roles in forming smooth perovskite films with large grains. We also provide some rules for choosing Lewis base additives to prepare high-quality perovskite films through the Lewis adduct approach.

  13. STIM1 as a key regulator for Ca2+ homeostasis in skeletal-muscle development and function

    PubMed Central

    2011-01-01

    Stromal interaction molecules (STIM) were identified as the endoplasmic-reticulum (ER) Ca2+ sensor controlling store-operated Ca2+ entry (SOCE) and Ca2+-release-activated Ca2+ (CRAC) channels in non-excitable cells. STIM proteins target Orai1-3, tetrameric Ca2+-permeable channels in the plasma membrane. Structure-function analysis revealed the molecular determinants and the key steps in the activation process of Orai by STIM. Recently, STIM1 was found to be expressed at high levels in skeletal muscle controlling muscle function and properties. Novel STIM targets besides Orai channels are emerging. Here, we will focus on the role of STIM1 in skeletal-muscle structure, development and function. The molecular mechanism underpinning skeletal-muscle physiology points toward an essential role for STIM1-controlled SOCE to drive Ca2+/calcineurin/nuclear factor of activated T cells (NFAT)-dependent morphogenetic remodeling programs and to support adequate sarcoplasmic-reticulum (SR) Ca2+-store filling. Also in our hands, STIM1 is transiently up-regulated during the initial phase of in vitro myogenesis of C2C12 cells. The molecular targets of STIM1 in these cells likely involve Orai channels and canonical transient receptor potential (TRPC) channels TRPC1 and TRPC3. The fast kinetics of SOCE activation in skeletal muscle seem to depend on the triad-junction formation, favoring a pre-localization and/or pre-formation of STIM1-protein complexes with the plasma-membrane Ca2+-influx channels. Moreover, Orai1-mediated Ca2+ influx seems to be essential for controlling the resting Ca2+ concentration and for proper SR Ca2+ filling. Hence, Ca2+ influx through STIM1-dependent activation of SOCE from the T-tubule system may recycle extracellular Ca2+ losses during muscle stimulation, thereby maintaining proper filling of the SR Ca2+ stores and muscle function. Importantly, mouse models for dystrophic pathologies, like Duchenne muscular dystrophy, point towards an enhanced Ca2+ influx

  14. The role of thyroid hormone in trophoblast function, early pregnancy maintenance, and fetal neurodevelopment.

    PubMed

    Ohara, Noriyuki; Tsujino, Taro; Maruo, Takeshi

    2004-11-01

    To review the literature on the roles of thyroid hormone in trophoblast function, early pregnancy maintenance, and fetal neurodevelopment. MEDLINE was searched for English-language papers published from 1971 to 2003, using the key words "brain," "hypothyroidism," "placenta," "pregnancy," "threatened abortion," "thyroid hormone," "thyroid hormone receptor," "thyroid hormone replacement therapy," "thyroid hormone-responsive gene," and "trophoblast." Transplacental transfer of thyroid hormone occurs before the onset of fetal thyroid hormone secretion. Thyroid hormone receptors and iodothyronine deiodinases are present in the placenta and the fetal central nervous system early in pregnancy, and thyroid hormone plays a crucial role both in trophoblast function and fetal neurodevelopment. Maternal hypothyroxinemia is associated with a high rate of spontaneous abortion and long-term neuropsychological deficits in children born of hypothyroid mothers. Maternal iodine deficiency also causes a wide spectrum of neuropsychological disorders in children, ranging from subclinical deficits in cognitive motor and auditory functions to hypothyroid-induced cognitive impairment in infants. However, these conditions are preventable when iodine supplementation is initiated before the second trimester. Although thyroid hormone replacement therapy is effective for reducing the adverse effects complicated by maternal hypothyroidism, the appropriate dose of thyroid hormone is mandatory in protecting the early stage of pregnancy. Close monitoring of maternal thyroid hormone status and ensuring adequate maternal thyroid hormone levels in early pregnancy are of great importance to prevent miscarriage and neuropsychological deficits in infants.

  15. Functional role of adult hippocampal neurogenesis as a therapeutic strategy for mental disorders.

    PubMed

    Jun, Heechul; Mohammed Qasim Hussaini, Syed; Rigby, Michael J; Jang, Mi-Hyeon

    2012-01-01

    Adult neurogenesis, the process of generating new neurons from neural stem cells, plays significant roles in synaptic plasticity, memory, and mood regulation. In the mammalian brain, it continues to occur well into adulthood in discrete regions, namely, the hippocampus and olfactory bulb. During the past decade, significant progress has been made in understanding the mechanisms regulating adult hippocampal neurogenesis and its role in the etiology of mental disorders. In addition, adult hippocampal neurogenesis is highly correlated with the remission of the antidepressant effect. In this paper, we discuss three major psychiatric disorders, depression, schizophrenia, and drug addiction, in light of preclinical evidence used in establishing the neurobiological significance of adult neurogenesis. We interpret the significance of these results and pose questions that remain unanswered. Potential treatments which include electroconvulsive therapy, deep brain stimulation, chemical antidepressants, and exercise therapy are discussed. While consensus lacks on specific mechanisms, we highlight evidence which indicates that these treatments may function via an increase in neural progenitor proliferation and changes to the hippocampal circuitry. Establishing a significant role of adult neurogenesis in the pathogenicity of psychiatric disorders may hold the key to potential strategies toward effective treatment.

  16. Using a Functional Simulation of Crisis Management to Test the C2 Agility Model Parameters on Key Performance Variables

    DTIC Science & Technology

    2013-06-01

    1 18th ICCRTS Using a Functional Simulation of Crisis Management to Test the C2 Agility Model Parameters on Key Performance Variables...AND SUBTITLE Using a Functional Simulation of Crisis Management to Test the C2 Agility Model Parameters on Key Performance Variables 5a. CONTRACT...command in crisis management. C2 Agility Model Agility can be conceptualized at a number of different levels; for instance at the team

  17. Bacterial microcompartment assembly: The key role of encapsulation peptides

    DOE PAGES

    Aussignargues, Clément; Paasch, Bradley C.; Gonzalez-Esquer, Raul; ...

    2015-06-23

    Bacterial microcompartments (BMCs) are proteinaceous organelles used by a broad range of bacteria to segregate and optimize metabolic reactions. Their functions are diverse, and can be divided into anabolic (carboxysome) and catabolic (metabolosomes) processes, depending on their cargo enzymes. The assembly pathway for the β-carboxysome has been characterized, revealing that biogenesis proceeds from the inside out. The enzymes coalesce into a procarboxysome, followed by encapsulation in a protein shell that is recruited to the procarboxysome by a short (~17 amino acids) extension on the C-terminus of one of the encapsulated proteins. A similar extension is also found on the N-more » or C-termini of a subset of metabolosome core enzymes. These encapsulation peptides (EPs) are characterized by a primary structure predicted to form an amphipathic α-helix that interacts with shell proteins. In this study, we review the features, function and widespread occurrence of EPs among metabolosomes, and propose an expanded role for EPs in the assembly of diverse BMCs.« less

  18. Functional group diversity is key to Southern Ocean benthic carbon pathways

    PubMed Central

    Sands, Chester J.

    2017-01-01

    High latitude benthos are globally important in terms of accumulation and storage of ocean carbon, and the feedback this is likely to have on regional warming. Understanding this ecosystem service is important but difficult because of complex taxonomic diversity, history and geography of benthic biomass. Using South Georgia as a model location (where the history and geography of benthic biology is relatively well studied) we investigated whether the composition of functional groups were critical to benthic accumulation, immobilization and burial pathway to sequestration–and also aid their study through simplification of identification. We reclassified [1], [2]) morphotype and carbon mass data to 13 functional groups, for each sample of 32 sites around the South Georgia continental shelf. We investigated the influence on carbon accumulation, immobilization and sequestration estimate by multiple factors including the compositions of functional groups. Functional groups showed high diversity within and between sites, and within and between habitat types. Carbon storage was not linked to a functional group in particular but accumulation and immobilization increased with the number of functional groups present and the presence of hard substrata. Functional groups were also important to carbon burial rate, which increased with the presence of mixed (hard and soft substrata). Functional groups showed high surrogacy for taxonomic composition and were useful for examining contrasting habitat categorization. Functional groups not only aid marine carbon storage investigation by reducing time and the need for team size and speciality, but also important to benthic carbon pathways per se. There is a distinct geography to seabed carbon storage; seabed boulder-fields are hotspots of carbon accumulation and immobilization, whilst the interface between such boulder-fields and sediments are key places for burial and sequestration. PMID:28654664

  19. Identification of key regulators in glycogen utilization in E. coli based on the simulations from a hybrid functional Petri net model.

    PubMed

    Tian, Zhongyuan; Fauré, Adrien; Mori, Hirotada; Matsuno, Hiroshi

    2013-01-01

    Glycogen and glucose are two sugar sources available during the lag phase of E. coli, but the mechanism that regulates their utilization is still unclear. Attempting to unveil the relationship between glucose and glycogen, we propose an integrated hybrid functional Petri net (HFPN) model including glycolysis, PTS, glycogen metabolic pathway, and their internal regulatory systems. By comparing known biological results to this model, basic necessary regulatory mechanism for utilizing glucose and glycogen were identified as a feedback circuit in which HPr and EIIAGlc play key roles. Based on this regulatory HFPN model, we discuss the process of glycogen utilization in E. coli in the context of a systematic understanding of carbohydrate metabolism.

  20. Gain-of-function mutations in beet DODA2 identify key residues for betalain pigment evolution.

    PubMed

    Bean, Alexander; Sunnadeniya, Rasika; Akhavan, Neda; Campbell, Annabelle; Brown, Matthew; Lloyd, Alan

    2018-05-13

    The key enzymatic step in betalain biosynthesis involves conversion of l-3,4-dihydroxyphenylalanine (l-DOPA) to betalamic acid. One class of enzymes capable of this is 3,4-dihydroxyphenylalanine 4,5-dioxygenase (DODA). In betalain-producing species, multiple paralogs of this gene are maintained. This study demonstrates which paralogs function in the betalain pathway and determines the residue changes required to evolve a betalain-nonfunctional DODA into a betalain-functional DODA. Functionalities of two pairs of DODAs were tested by expression in beets, Arabidopsis and yeast, and gene silencing was performed by virus-induced gene silencing. Site-directed mutagenesis identified amino acid residues essential for betalamic acid production. Beta vulgaris and Mirabilis jalapa both possess a DODA1 lineage that functions in the betalain pathway and at least one other lineage, DODA2, that does not. Site-directed mutagenesis resulted in betalain biosynthesis by a previously nonfunctional DODA, revealing key residues required for evolution of the betalain pathway. Divergent functionality of DODA paralogs, one clade involved in betalain biosynthesis but others not, is present in various Caryophyllales species. A minimum of seven amino acid residue changes conferred betalain enzymatic activity to a betalain-nonfunctional DODA paralog, providing insight into the evolution of the betalain pigment pathway in plants. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  1. Determining the key drivers and mitigating factors that influence the role of the Nurse and/or Midwife Consultant: a cross-sectional survey.

    PubMed

    Fernandez, Ritin S; Sheppard-Law, Suzanne; Manning, Vicki

    2017-06-01

    Globally, many nurses and midwives are working at an advanced practice level. The role of a Nurse and/or Midwife Consultant encompasses a diverse and complex interaction between five specified domains namely Clinical Service and Consultancy, Clinical Leadership, Research, Education, and Clinical Services Planning and Management. The objective of this replication study was to identify the key drivers and mitigating factors that impact the role of Australian Nurse and/or Midwife Consultants. Cross-sectional survey. The study was conducted in a large metropolitan health district in Sydney, Australia. Participants for this study consisted of all Nurse and/or Midwife Consultants working within a health district in New South Wales (NSW). Data were collected by an anonymous online survey. Key drivers and mitigating factors perceived to influence their role were identified using previously implemented instruments. Data were analysed using SPSS version 21. Responses were obtained from 122 Nurse and/or Midwife Consultants. The number of years of experience as a Nurse and/or Midwife Consultant ranged from 6 months to 25.5 years. Personal attributes which included personal motivation and own communication skills were identified as key drivers to role performance with a mean score of 7.7±0.6. Other key drivers included peer support, organisational culture, personal attributes, professional learning, Nurse and/or Midwife Consultant experience, and collaborative relationships. Of the 14 mitigating factors to the role, the most common factors were lack of resources to set up and develop the role (2.6 ± 0.9), lack of secretarial support (2.6 ± 1.1), lack of managerial support (2.45 ± 1.1), and lack of understanding of the role by other health professionals (2.40 ± 0.8). Understanding the key drivers and mitigating factors that influence the role of the Nurse and/or Midwife Consultant is important for healthcare managers. Given the changing landscape of nursing

  2. Dysregulation and functional roles of miR-183-96-182 cluster in cancer cell proliferation, invasion and metastasis

    PubMed Central

    Ma, Yi; Liang, A-Juan; Fan, Yu-Ping; Huang, Yi-Ran; Zhao, Xiao-Ming; Sun, Yun; Chen, Xiang-Feng

    2016-01-01

    Previous studies have reported aberrant expression of the miR-183-96-182 cluster in a variety of tumors, which indicates its' diagnostic or prognostic value. However, a key characteristic of the miR-183-96-182 cluster is its varied expression levels, and pleomorphic functional roles in different tumors or under different conditions. In most tumor types, the cluster is highly expressed and promotes tumorigenesis, cancer progression and metastasis; yet tumor suppressive effects have also been reported in some tumors. In the present study, we discuss the upstream regulators and the downstream target genes of miR-183-96-182 cluster, and highlight the dysregulation and functional roles of this cluster in various tumor cells. Newer insights summarized in this review will help readers understand the different facets of the miR-183-96-182 cluster in cancer development and progression. PMID:27081087

  3. Kalrn plays key roles within and outside of the nervous system.

    PubMed

    Mandela, Prashant; Yankova, Maya; Conti, Lisa H; Ma, Xin-Ming; Grady, James; Eipper, Betty A; Mains, Richard E

    2012-11-01

    The human KALRN gene, which encodes a complex, multifunctional Rho GDP/GTP exchange factor, has been linked to cardiovascular disease, psychiatric disorders and neurodegeneration. Examination of existing Kalrn knockout mouse models has focused only on neuronal phenotypes. However, Kalirin was first identified through its interaction with an enzyme involved in the synthesis and secretion of multiple bioactive peptides, and studies in C.elegans revealed roles for its orthologue in neurosecretion. We used a broad array of tests to evaluate the effects of ablating a single exon in the spectrin repeat region of Kalrn (KalSR(KO/KO)); transcripts encoding Kalrn isoforms containing only the second GEF domain can still be produced from the single remaining functional Kalrn promoter. As expected, KalSR(KO/KO) mice showed a decrease in anxiety-like behavior and a passive avoidance deficit. No changes were observed in prepulse inhibition of acoustic startle or tests of depression-like behavior. Growth rate, parturition and pituitary secretion of growth hormone and prolactin were deficient in the KalSR(KO/KO) mice. Based on the fact that a subset of Kalrn isoforms is expressed in mouse skeletal muscle and the observation that muscle function in C.elegans requires its Kalrn orthologue, KalSR(KO/KO) mice were evaluated in the rotarod and wire hang tests. KalSR(KO/KO) mice showed a profound decrease in neuromuscular function, with deficits apparent in KalSR(+/KO) mice; these deficits were not as marked when loss of Kalrn expression was restricted to the nervous system. Pre- and postsynaptic deficits in the neuromuscular junction were observed, along with alterations in sarcomere length. Many of the widespread and diverse deficits observed both within and outside of the nervous system when expression of Kalrn is eliminated may reflect its role in secretory granule function and its expression outside of the nervous system.

  4. Kalrn plays key roles within and outside of the nervous system

    PubMed Central

    2012-01-01

    Background The human KALRN gene, which encodes a complex, multifunctional Rho GDP/GTP exchange factor, has been linked to cardiovascular disease, psychiatric disorders and neurodegeneration. Examination of existing Kalrn knockout mouse models has focused only on neuronal phenotypes. However, Kalirin was first identified through its interaction with an enzyme involved in the synthesis and secretion of multiple bioactive peptides, and studies in C.elegans revealed roles for its orthologue in neurosecretion. Results We used a broad array of tests to evaluate the effects of ablating a single exon in the spectrin repeat region of Kalrn (KalSRKO/KO); transcripts encoding Kalrn isoforms containing only the second GEF domain can still be produced from the single remaining functional Kalrn promoter. As expected, KalSRKO/KO mice showed a decrease in anxiety-like behavior and a passive avoidance deficit. No changes were observed in prepulse inhibition of acoustic startle or tests of depression-like behavior. Growth rate, parturition and pituitary secretion of growth hormone and prolactin were deficient in the KalSRKO/KO mice. Based on the fact that a subset of Kalrn isoforms is expressed in mouse skeletal muscle and the observation that muscle function in C.elegans requires its Kalrn orthologue, KalSRKO/KO mice were evaluated in the rotarod and wire hang tests. KalSRKO/KO mice showed a profound decrease in neuromuscular function, with deficits apparent in KalSR+/KO mice; these deficits were not as marked when loss of Kalrn expression was restricted to the nervous system. Pre- and postsynaptic deficits in the neuromuscular junction were observed, along with alterations in sarcomere length. Conclusions Many of the widespread and diverse deficits observed both within and outside of the nervous system when expression of Kalrn is eliminated may reflect its role in secretory granule function and its expression outside of the nervous system. PMID:23116210

  5. Risk factors for psychosis: impaired social and role functioning.

    PubMed

    Cornblatt, Barbara A; Carrión, Ricardo E; Addington, Jean; Seidman, Larry; Walker, Elaine F; Cannon, Tyronne D; Cadenhead, Kristin S; McGlashan, Thomas H; Perkins, Diana O; Tsuang, Ming T; Woods, Scott W; Heinssen, Robert; Lencz, Todd

    2012-11-01

    Risk for psychosis is currently defined primarily on the basis of attenuated positive symptoms (APS), with no inclusion of the functional deficits characteristic of schizophrenia. Impaired social and role functioning have been of interest for reflecting poor outcome but far less is known about the developmental impact of these deficits as vulnerability or risk factors. Age-appropriate social and role functioning were prospectively assessed in 100 individuals at clinical high risk (CHR) for psychosis included in the 8-site North American Prodromal Longitudinal Study database. A nested case-control design was used to compare changes in social and role functioning in 26 individuals converting to psychosis shortly after baseline assessment and 24 converting over a year later. Individuals in each converter subgroup were directly matched to a non-converter at the same site, controlling for time to conversion, age, gender, and severity of baseline symptoms. At baseline, CHR subjects who later became psychotic were significantly more likely to be impaired socially than matched non-converters. Onset of psychosis did not further disrupt social difficulties. Role functioning showed some of the same trends, but the overall pattern was not as consistent as for the social domain. Controlling for neurocognition did not change the pattern of group differences. Early impaired social functioning appears to be a risk factor for psychosis and, added to APS, could potentially contribute to accurate identification of CHR individuals and provide a new direction for early intervention to reduce long-term disability.

  6. Managing competing goals - a key role for the frontopolar cortex.

    PubMed

    Mansouri, Farshad Alizadeh; Koechlin, Etienne; Rosa, Marcello G P; Buckley, Mark J

    2017-11-01

    Humans are set apart from other animals by many elements of advanced cognition and behaviour, including language, judgement and reasoning. What is special about the human brain that gives rise to these abilities? Could the foremost part of the prefrontal cortex (the frontopolar cortex), which has become considerably enlarged in humans during evolution compared with other animals, be important in this regard, especially as, in primates, it contains a unique cytoarchitectural field, area 10? The first studies of the function of the frontopolar cortex in monkeys have now provided critical new insights about its precise role in monitoring the significance of current and alternative goals. In human evolution, the frontopolar cortex may have acquired a further role in enabling the monitoring of the significance of multiple goals in parallel, as well as switching between them. Here, we argue that many other forms of uniquely human behaviour may benefit from this cognitive ability mediated by the frontopolar cortex.

  7. Key factors affecting dying children and their families.

    PubMed

    Hinds, Pamela S; Schum, Lisa; Baker, Justin N; Wolfe, Joanne

    2005-01-01

    The death of a child alters the life and health of others immediately and for the rest of their lives. How a child dies influences parents' abilities to continue their role functions as well as siblings' abilities to make and maintain friendships, and may be the basis for health care providers' decisions to exit direct care roles. Thus, facilitating a "good death"-an obvious care priority for all involved with the dying child-ought also to be a priority for the health of bereaved families and affected health care providers. Making this a care priority is complicated by a serious lack of data, as details of the last hours or weeks of a dying child or adolescent's life are largely unknown. The purpose of this paper is to identify key factors that affect the course of dying children and adolescents and that of their bereaved survivors, and to link those key factors to needed research that could produce clinically relevant findings to improve the care of these patients. Key factors described here include suffering (physical, psychological, and spiritual), communication, decision making, prognostic ambiguities, ability of the seriously ill child to give assent to research participation, and educational preparation of health care providers to give competent end-of-life care.

  8. Functional role of frontal alpha oscillations in creativity.

    PubMed

    Lustenberger, Caroline; Boyle, Michael R; Foulser, A Alban; Mellin, Juliann M; Fröhlich, Flavio

    2015-06-01

    Creativity, the ability to produce innovative ideas, is a key higher-order cognitive function that is poorly understood. At the level of macroscopic cortical network dynamics, recent electroencephalography (EEG) data suggests that cortical oscillations in the alpha frequency band (8-12 Hz) are correlated with creative thinking. However, whether alpha oscillations play a functional role in creativity has remained unknown. Here we show that creativity is increased by enhancing alpha power using 10 Hz transcranial alternating current stimulation (10 Hz-tACS) of the frontal cortex. In a study of 20 healthy participants with a randomized, balanced cross-over design, we found a significant improvement of 7.4% in the Creativity Index measured by the Torrance Test of Creative Thinking (TTCT), a comprehensive and most frequently used assay of creative potential and strengths. In a second similar study with 20 subjects, 40 Hz-tACS was used instead of 10 Hz-tACS to rule out a general "electrical stimulation" effect. No significant change in the Creativity Index was found for such frontal 40 Hz stimulation. Our results suggest that alpha activity in frontal brain areas is selectively involved in creativity; this enhancement represents the first demonstration of specific neuronal dynamics that drive creativity and can be modulated by non-invasive brain stimulation. Our findings agree with the model that alpha recruitment increases with internal processing demands and is involved in inhibitory top-down control, which is an important requirement for creative ideation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. [Assessment on the changing conditions of ecosystems in key ecological function zones in China].

    PubMed

    Huang, Lin; Cao, Wei; Wu, Dan; Gong, Guo-li; Zhao, Guo-song

    2015-09-01

    In this paper, the dynamics of ecosystem macrostructure, qualities and core services during 2000 and 2010 were analyzed for the key ecological function zones of China, which were classified into four types of water conservation, soil conservation, wind prevention and sand fixation, and biodiversity maintenance. In the water conservation ecological function zones, the areas of forest and grassland ecosystems were decreased whereas water bodies and wetland were increased in the past 11 years, and the water conservation volume of forest, grassland and wetland ecosystems increased by 2.9%. This region needs to reverse the decreasing trends of forest and grassland ecosystems. In the soil conservation ecological function zones, the area of farmland ecosystem was decreased, and the areas of forest, grassland, water bodies and wetland ecosystems were increased. The total amount of the soil erosion was reduced by 28.2%, however, the soil conservation amount of ecosystems increased by 38.1%. In the wind prevention and sand fixation ecological function zones, the areas of grassland, water bodies and wetland ecosystems were decreased, but forest and farmland ecosystems were increased. The unit amount of the soil. wind erosion was reduced and the sand fixation amount of ecosystems increased lightly. In this kind of region that is located in arid and semiarid areas, ecological conservation needs to reduce farmland area and give priority to the protection of the original ecological system. In the biodiversity maintenance ecological function zones, the areas of grassland and desert ecosystems were decreased and other types were increased. The human disturbances showed a weakly upward trend and needs to be reduced. The key ecological function zones should be aimed at the core services and the protecting objects, to assess quantitatively on the effectiveness of ecosystem conservation and improvement.

  10. The Role of Control Functions in Mentalizing: Dual-Task Studies of Theory of Mind and Executive Function

    ERIC Educational Resources Information Center

    Bull, Rebecca; Phillips, Louise H.; Conway, Claire A.

    2008-01-01

    Conflicting evidence has arisen from correlational studies regarding the role of executive control functions in Theory of Mind. The current study used dual-task manipulations of executive functions (inhibition, updating and switching) to investigate the role of these control functions in mental state and non-mental state tasks. The "Eyes"…

  11. Borderline intellectual functioning and sleep: the role of cyclic alternating pattern.

    PubMed

    Esposito, Maria; Carotenuto, Marco

    2010-11-19

    In the clinical literature there are few specific studies about the relationship between cognition processes and sleep during childhood. In addition, milder deficits in general intellectual capacity have received less attention relative to major cognitive dysfunctions (such as the genetic or environmental basis of mental retardation), especially concerning the low normal and borderline status. Sleep could play a key role in multiple intellectual abilities such as memory, executive functions, and school performances. Aim of our study is to assess the sleep macrostructure and NREM instability (cyclic alternating pattern) and their relationship with IQ in a sample of subjects with borderline intellectual functioning (BIF). The DSM-IV defines BIF as a total intelligence quotient (TIQ) ranging between 71 and 84. Intellective functioning was assessed using the Italian version of Wechsler Intelligence Scale for Children-Revised (WISC-R), a well validated test for the developmental age between 6 and 16. For this study, 12 BIF and 17 healthy children, matched for sex and age, underwent an overnight PSG recording. Macrostructural sleep and CAP analysis were also performed. To our knowledge, this study represents the first attempt to evaluate sleep architecture and NREM instability organization in children with BIF. Findings from this investigation evidence that BIF presents alterations in both macro- and microstructural sleep architecture, with an interesting statistical significant correlation with IQ. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Therapeutic Role of Functional Components in Alliums for Preventive Chronic Disease in Human Being

    PubMed Central

    Li, Yuping; Yang, Jiazhen; Pu, Xiaoying; Du, Juan; Yang, Xiaomeng; Yang, Tao; Yang, Shuming

    2017-01-01

    Objectives. Functional components in alliums have long been maintained to play a key role in modifying the major risk factors for chronic disease. To obtain a better understanding of alliums for chronic disease prevention, we conducted a systematic review for risk factors and prevention strategies for chronic disease of functional components in alliums, based on a comprehensive English literature search that was conducted using various electronic search databases, especially the PubMed, ISI Web of Science, and CNKI for the period 2007–2016. Allium genus especially garlic, onion, and Chinese chive is rich in organosulfur compounds, quercetin, flavonoids, saponins, and others, which have anticancer, preventive cardiovascular and heart diseases, anti-inflammation, antiobesity, antidiabetes, antioxidants, antimicrobial activity, neuroprotective and immunological effects, and so on. These results support Allium genus; garlic and onion especially may be the promising dietotherapeutic vegetables and organopolysulfides as well as quercetin mechanism in the treatment of chronic diseases. This review may be used as scientific basis for the development of functional food, nutraceuticals, and alternative drugs to improve the chronic diseases. PMID:28261311

  13. Functioning: the third health indicator in the health system and the key indicator for rehabilitation.

    PubMed

    Stucki, Gerold; Bickenbach, Jerome

    2017-02-01

    In this methodological note on applying the ICF in rehabilitation, we introduce functioning as the third health indicator complementing the established indicators mortality and morbidity. Together, these three provide a complete set of indicators for monitoring the performance of health strategies in health systems. When applying functioning as the third health indicator across the five health strategies, it is fundamental to distinguish between biological health and lived health. For rehabilitation, functioning is the key indicator. Since we can now code mortality and morbidity data with the ICD, and functioning data with the ICF, and since given current plans to including functioning properties in the proposed ICD-11 revision, we should in the future be able to report on all three health indicators.

  14. Functional neuroanatomy of amygdalohippocampal interconnections and their role in learning and memory.

    PubMed

    McDonald, Alexander J; Mott, David D

    2017-03-01

    The amygdalar nuclear complex and hippocampal/parahippocampal region are key components of the limbic system that play a critical role in emotional learning and memory. This Review discusses what is currently known about the neuroanatomy and neurotransmitters involved in amygdalo-hippocampal interconnections, their functional roles in learning and memory, and their involvement in mnemonic dysfunctions associated with neuropsychiatric and neurological diseases. Tract tracing studies have shown that the interconnections between discrete amygdalar nuclei and distinct layers of individual hippocampal/parahippocampal regions are robust and complex. Although it is well established that glutamatergic pyramidal cells in the amygdala and hippocampal region are the major players mediating interconnections between these regions, recent studies suggest that long-range GABAergic projection neurons are also involved. Whereas neuroanatomical studies indicate that the amygdala only has direct interconnections with the ventral hippocampal region, electrophysiological studies and behavioral studies investigating fear conditioning and extinction, as well as amygdalar modulation of hippocampal-dependent mnemonic functions, suggest that the amygdala interacts with dorsal hippocampal regions via relays in the parahippocampal cortices. Possible pathways for these indirect interconnections, based on evidence from previous tract tracing studies, are discussed in this Review. Finally, memory disorders associated with dysfunction or damage to the amygdala, hippocampal region, and/or their interconnections are discussed in relation to Alzheimer's disease, posttraumatic stress disorder (PTSD), and temporal lobe epilepsy. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. A Novel Functional Role of Collagen Glycosylation

    PubMed Central

    Jürgensen, Henrik J.; Madsen, Daniel H.; Ingvarsen, Signe; Melander, Maria C.; Gårdsvoll, Henrik; Patthy, Laszlo; Engelholm, Lars H.; Behrendt, Niels

    2011-01-01

    Collagens make up the most abundant component of interstitial extracellular matrices and basement membranes. Collagen remodeling is a crucial process in many normal physiological events and in several pathological conditions. Some collagen subtypes contain specific carbohydrate side chains, the function of which is poorly known. The endocytic collagen receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 plays an important role in matrix remodeling through its ability to internalize collagen for lysosomal degradation. uPARAP/Endo180 is a member of the mannose receptor protein family. These proteins all include a fibronectin type II domain and a series of C-type lectin-like domains, of which only a minor part possess carbohydrate recognition activity. At least two of the family members, uPARAP/Endo180 and the mannose receptor, interact with collagens. The molecular basis for this interaction is known to involve the fibronectin type II domain but nothing is known about the function of the lectin domains in this respect. In this study, we have investigated a possible role of the single active lectin domain of uPARAP/Endo180 in the interaction with collagens. By expressing truncated recombinant uPARAP/Endo180 proteins and analyzing their interaction with collagens with high and low levels of glycosylation we demonstrated that this lectin domain interacts directly with glycosylated collagens. This interaction is functionally important because it was found to modulate the endocytic efficiency of the receptor toward highly glycosylated collagens such as basement membrane collagen IV. Surprisingly, this property was not shared by the mannose receptor, which internalized glycosylated collagens independently of its lectin function. This role of modulating its uptake efficiency by a specific receptor is a previously unrecognized function of collagen glycosylation. PMID:21768090

  16. Phosphate homeostasis in the yeast Saccharomyces cerevisiae, the key role of the SPX domain-containing proteins.

    PubMed

    Secco, David; Wang, Chuang; Shou, Huixia; Whelan, James

    2012-02-17

    In the yeast Saccharomyces cerevisiae, a working model for nutrient homeostasis in eukaryotes, inorganic phosphate (Pi) homeostasis is regulated by the PHO pathway, a set of phosphate starvation induced genes, acting to optimize Pi uptake and utilization. Among these, a subset of proteins containing the SPX domain has been shown to be key regulators of Pi homeostasis. In this review, we summarize the recent progresses in elucidating the mechanisms controlling Pi homeostasis in yeast, focusing on the key roles of the SPX domain-containing proteins in these processes, as well as describing the future challenges and opportunities in this fast-moving field. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Protein Kinase C-Related Kinase (PKN/PRK). Potential Key-Role for PKN1 in Protection of Hypoxic Neurons.

    PubMed

    Thauerer, Bettina; Zur Nedden, Stephanie; Baier-Bitterlich, Gabriele

    2014-05-01

    Serine/threonine protein kinase C-related kinase (PKN/PRK) is a family of three isoenzymes (PKN1, PKN2, PKN3), which are widely distributed in eukaryotic organisms and share the same overall domain structure. The Nterminal region encompasses a conserved repeated domain, termed HR1a-c as well as a HR2/C2 domain. The serine/threonine kinase domain is found in the C-terminal region of the protein and shows high sequence homology to other members of the PKC superfamily. In neurons, PKN1 is the most abundant isoform and has been implicated in a variety of functions including cytoskeletal organization and neuronal differentiation and its deregulation may contribute to neuropathological processes such as amyotrophic lateral sclerosis and Alzheimer's disease. We have recently identified a candidate role of PKN1 in the regulation of neuroprotective processes during hypoxic stress. Our key findings were that: 1) the activity of PKN1 was significantly increased by hypoxia (1% O2) and neurotrophins (nerve growth factor and purine nucleosides); 2) Neuronal cells, deficient of PKN1 showed a decrease of cell viability and neurite formation along with a disturbance of the F-actinassociated cytoskeleton; 3) Purine nucleoside-mediated neuroprotection during hypoxia was severely hampered in PKN1 deficient neuronal cells, altogether suggesting a potentially critical role of PKN1 in neuroprotective processes. This review gives an up-to-date overview of the PKN family with a special focus on the neuroprotective role of PKN1 in hypoxia.

  18. Signaling Network of Environmental Sensing and Adaptation in Plants:. Key Roles of Calcium Ion

    NASA Astrophysics Data System (ADS)

    Kurusu, Takamitsu; Kuchitsu, Kazuyuki

    2011-01-01

    Considering the important issues concerning food, environment, and energy that humans are facing in the 21st century, humans mostly depend on plants. Unlike animals which move from an inappropriate environment, plants do not move, but rapidly sense diverse environmental changes or invasion by other organisms such as pathogens and insects in the place they root, and adapt themselves by changing their own bodies, through which they developed adaptability. Whole genetic information corresponding to the blueprints of many biological systems has recently been analyzed, and comparative genomic studies facilitated tracing strategies of each organism in their evolutional processes. Comparison of factors involved in intracellular signal transduction between animals and plants indicated diversification of different gene sets. Reversible binding of Ca2+ to sensor proteins play key roles as a molecular switch both in animals and plants. Molecular mechanisms for signaling network of environmental sensing and adaptation in plants will be discussed with special reference to Ca2+ as a key element in information processing.

  19. THE ROLE OF REEF FISH IN THE TRANSMISSION DYNAMICS OF BLACK-BAND DISEASE IN THE FLORIDA KEYS

    EPA Science Inventory

    Aeby, Greta S. and Deborah L. Santavy. In press. Role of Reef Fish in the Transmission Dynamics of Black-Band Disease in the Florida Keys (Abstract). To be presented at the 10th International Coral Reef Symposium, 28 June-2 July 2004, Okinawa, Japan. 1 p. (ERL,GB R998).

    T...

  20. Further support for the role of dysfunctional attitudes in models of real-world functioning in schizophrenia.

    PubMed

    Horan, William P; Rassovsky, Yuri; Kern, Robert S; Lee, Junghee; Wynn, Jonathan K; Green, Michael F

    2010-06-01

    According to A.T. Beck and colleagues' cognitive formulation of poor functioning in schizophrenia, maladaptive cognitive appraisals play a key role in the expression and persistence of negative symptoms and associated real-world functioning deficits. They provided initial support for this model by showing that dysfunctional attitudes are elevated in schizophrenia and account for significant variance in negative symptoms and subjective quality of life. The current study used structural equation modeling to further evaluate the contribution of dysfunctional attitudes to outcome in schizophrenia. One hundred eleven outpatients and 67 healthy controls completed a Dysfunctional Attitudes Scale, and patients completed a competence measure of functional capacity, clinical ratings of negative symptoms, and interview-based ratings of real-world functioning. Patients reported higher defeatist performance beliefs than controls and these were significantly related to lower functional capacity, higher negative symptoms, and worse community functioning. Consistent with Beck and colleagues' formulation, modeling analyses indicated a significant indirect pathway from functional capacity-->dysfunctional attitudes-->negative symptoms-->real-world functioning. These findings support the value of dysfunctional attitudes for understanding the determinants of outcome in schizophrenia and suggest that therapeutic interventions targeting these attitudes may facilitate functional recovery. (c) 2009 Elsevier Ltd. All rights reserved.

  1. Critical role of tissue mast cells in controlling long-term glucose sensor function in vivo.

    PubMed

    Klueh, Ulrike; Kaur, Manjot; Qiao, Yi; Kreutzer, Donald L

    2010-06-01

    Little is known about the specific cells, mediators and mechanisms involved in the loss of glucose sensor function (GSF) in vivo. Since mast cells (MC) are known to be key effector cells in inflammation and wound healing, we hypothesized that MC and their products are major contributors to the skin inflammation and wound healing that controls GSF at sites of sensor implantation. To test this hypothesis we utilized a murine model of continuous glucose monitoring (CGM) in vivo in both normal C57BL/6 mice (mast cell sufficient), as well as mast cell deficient B6.Cg-Kit(W-sh)/HNihrJaeBsmJ (Sash) mice over a 28 day CGM period. As expected, both strains of mice displayed excellent CGM for the first 7 days post sensor implantation (PSI). CGM in the mast cell sufficient C57BL/6 mice was erratic over the remaining 21 days PSI. CGM in the mast cell deficient Sash mice displayed excellent sensor function for the entire 28 day of CGM. Histopathologic evaluation of implantation sites demonstrated that tissue reactions in Sash mice were dramatically less compared to the reactions in normal C57BL/6 mice. Additionally, mast cells were also seen to be consistently associated with the margins of sensor tissue reactions in normal C57BL/6 mice. Finally, direct injection of bone marrow derived mast cells at sites of sensor implantation induced an acute and dramatic loss of sensor function in both C57BL/6 and Sash mice. These results demonstrate the key role of mast cells in controlling glucose sensor function in vivo. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Translating the basic knowledge of mitochondrial functions to metabolic therapy: role of L-carnitine.

    PubMed

    Marcovina, Santica M; Sirtori, Cesare; Peracino, Andrea; Gheorghiade, Mihai; Borum, Peggy; Remuzzi, Giuseppe; Ardehali, Hossein

    2013-02-01

    Mitochondria play important roles in human physiological processes, and therefore, their dysfunction can lead to a constellation of metabolic and nonmetabolic abnormalities such as a defect in mitochondrial gene expression, imbalance in fuel and energy homeostasis, impairment in oxidative phosphorylation, enhancement of insulin resistance, and abnormalities in fatty acid metabolism. As a consequence, mitochondrial dysfunction contributes to the pathophysiology of insulin resistance, obesity, diabetes, vascular disease, and chronic heart failure. The increased knowledge on mitochondria and their role in cellular metabolism is providing new evidence that these disorders may benefit from mitochondrial-targeted therapies. We review the current knowledge of the contribution of mitochondrial dysfunction to chronic diseases, the outcomes of experimental studies on mitochondrial-targeted therapies, and explore the potential of metabolic modulators in the treatment of selected chronic conditions. As an example of such modulators, we evaluate the efficacy of the administration of L-carnitine and its analogues acetyl and propionyl L-carnitine in several chronic diseases. L-carnitine is intrinsically involved in mitochondrial metabolism and function as it plays a key role in fatty acid oxidation and energy metabolism. In addition to the transportation of free fatty acids across the inner mitochondrial membrane, L-carnitine modulates their oxidation rate and is involved in the regulation of vital cellular functions such as apoptosis. Thus, L-carnitine and its derivatives show promise in the treatment of chronic conditions and diseases associated with mitochondrial dysfunction but further translational studies are needed to fully explore their potential. Copyright © 2013 Mosby, Inc. All rights reserved.

  3. Self-conscious emotions׳ role in functional outcomes within clinical populations.

    PubMed

    Macaulay, Rebecca; Cohen, Alex

    2014-04-30

    Patients with severe mental illnesses (SMI) often experience dysfunction in their ability to efficiently carry out everyday roles and/or skills. These deficits are seen across many domains of daily functioning. We suggest that the "self-conscious emotions" of pride and shame play a role in these functional outcomes. Pride and shame appear to facilitate individuals׳ ability to evaluate their group status, detect social threats, and to adjust their behaviors accordingly. This study utilized an objective performance measure of functional capacity and a self-report of quality of life (QoL) to examine the respective roles of pride and shame in functional outcomes within two SMI patient groups (schizophrenia and affective disorder) and a community control group. The influence of neurocognition, affect and symptomatology on functional outcomes was also assessed. The patient groups did not differ in cognitive functioning, QoL, or shame. The schizophrenia group reported significantly higher pride and displayed worse objective performance than the other groups. Within each of the groups, shame had an inverse relationship with QoL, while pride positively associated with QoL. Shame associated with worse functional capacity in the schizophrenia group. Shame associated with better functional capacity, while pride associated with worse functional capacity within the affective disorder group. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Plant diversity and root traits benefit physical properties key to soil function in grasslands.

    PubMed

    Gould, Iain J; Quinton, John N; Weigelt, Alexandra; De Deyn, Gerlinde B; Bardgett, Richard D

    2016-09-01

    Plant diversity loss impairs ecosystem functioning, including important effects on soil. Most studies that have explored plant diversity effects belowground, however, have largely focused on biological processes. As such, our understanding of how plant diversity impacts the soil physical environment remains limited, despite the fundamental role soil physical structure plays in ensuring soil function and ecosystem service provision. Here, in both a glasshouse and a long-term field study, we show that high plant diversity in grassland systems increases soil aggregate stability, a vital structural property of soil, and that root traits play a major role in determining diversity effects. We also reveal that the presence of particular plant species within mixed communities affects an even wider range of soil physical processes, including hydrology and soil strength regimes. Our results indicate that alongside well-documented effects on ecosystem functioning, plant diversity and root traits also benefit essential soil physical properties. © 2016 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  5. Telocytes play a key role in prostate tissue organisation during the gland morphogenesis.

    PubMed

    Sanches, Bruno D A; Maldarine, Juliana S; Zani, Bruno C; Tamarindo, Guilherme H; Biancardi, Manoel F; Santos, Fernanda C A; Rahal, Paula; Góes, Rejane M; Felisbino, Sérgio L; Vilamaior, Patricia S L; Taboga, Sebastião R

    2017-12-01

    Telocytes are CD34-positive interstitial cells, known to exert several functions, one of which is a role in tissue organisation, previously demonstrated by telocytes in the myocardium. The existence of telocytes in the prostate has recently been reported, however, there is a lack of information regarding the function of these cells in prostate tissue, and information regarding the possible role of these cells in prostatic development. This study used immunofluorescence techniques in prostate tissue and prostatic telocytes in culture to determine the relationship between telocytes and prostate morphogenesis. Furthermore, immunofluorescent labelling of telocytes was performed on prostate tissue at different stages of early postnatal development. Initially, CD34-positive cells are found at the periphery of the developing alveoli, later in the same region, c-kit-positive cells and cells positive for both factors are verified and CD34-positive cells were predominantly observed in the interalveolar stroma and the region surrounding the periductal smooth muscle. Fluorescence assays also demonstrated that telocytes secrete TGF-β1 and are ER-Beta (ERβ) positive. The results suggest that telocytes play a changing role during development, initially supporting the differentiation of periductal and perialveolar smooth muscle, and later, producing dense networks that separate alveoli groups and form a barrier between the interalveolar region and periurethral smooth muscle. We conclude that telocytes play a relevant role in prostate tissue organisation during postnatal development. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. The Human BNST: Functional Role in Anxiety and Addiction.

    PubMed

    Avery, S N; Clauss, J A; Blackford, J U

    2016-01-01

    The consequences of chronic stress on brain structure and function are far reaching. Whereas stress can produce short-term adaptive changes in the brain, chronic stress leads to long-term maladaptive changes that increase vulnerability to psychiatric disorders, such as anxiety and addiction. These two disorders are the most prevalent psychiatric disorders in the United States, and are typically chronic, disabling, and highly comorbid. Emerging evidence implicates a tiny brain region-the bed nucleus of the stria terminalis (BNST)-in the body's stress response and in anxiety and addiction. Rodent studies provide compelling evidence that the BNST plays a central role in sustained threat monitoring, a form of adaptive anxiety, and in the withdrawal and relapse stages of addiction; however, little is known about the role of BNST in humans. Here, we review current evidence for BNST function in humans, including evidence for a role in the production of both adaptive and maladaptive anxiety. We also review preliminary evidence of the role of BNST in addiction in humans. Together, these studies provide a foundation of knowledge about the role of BNST in adaptive anxiety and stress-related disorders. Although the field is in its infancy, future investigations of human BNST function have tremendous potential to illuminate mechanisms underlying stress-related disorders and identify novel neural targets for treatment.

  7. The Human BNST: Functional Role in Anxiety and Addiction

    PubMed Central

    Avery, S N; Clauss, J A; Blackford, J U

    2016-01-01

    The consequences of chronic stress on brain structure and function are far reaching. Whereas stress can produce short-term adaptive changes in the brain, chronic stress leads to long-term maladaptive changes that increase vulnerability to psychiatric disorders, such as anxiety and addiction. These two disorders are the most prevalent psychiatric disorders in the United States, and are typically chronic, disabling, and highly comorbid. Emerging evidence implicates a tiny brain region—the bed nucleus of the stria terminalis (BNST)—in the body's stress response and in anxiety and addiction. Rodent studies provide compelling evidence that the BNST plays a central role in sustained threat monitoring, a form of adaptive anxiety, and in the withdrawal and relapse stages of addiction; however, little is known about the role of BNST in humans. Here, we review current evidence for BNST function in humans, including evidence for a role in the production of both adaptive and maladaptive anxiety. We also review preliminary evidence of the role of BNST in addiction in humans. Together, these studies provide a foundation of knowledge about the role of BNST in adaptive anxiety and stress-related disorders. Although the field is in its infancy, future investigations of human BNST function have tremendous potential to illuminate mechanisms underlying stress-related disorders and identify novel neural targets for treatment. PMID:26105138

  8. Roles and responsibilities of pharmacists with respect to natural health products: key informant interviews.

    PubMed

    Olatunde, Shade; Boon, Heather; Hirschkorn, Kristine; Welsh, Sandy; Bajcar, Jana

    2010-03-01

    Although many pharmacies sell natural health products (NHPs), there is no clear definition as to the roles and responsibilities (if any) of pharmacists with respect to these products. The purpose of this study was to explore pharmacy and stakeholder leaders' perceptions of pharmacists' professional NHP roles and responsibilities. Semi-structured key informant interviews were conducted with pharmacy leaders (n=17) and stakeholder (n=18) leaders representing consumers, complementary and alternative medicine practitioners, conventional health care practitioners, and industry across Canada. All participants believed a main NHP responsibility for pharmacists was in safety monitoring, although a one challenge identified in the interviews was pharmacists' general lack of NHP knowledge; however, stakeholder leaders did not expect pharmacists to be experts, but should have a basic level of knowledge about NHPs. Participants described pharmacists' professional roles and responsibilities for NHPs as similar to those for over-the-counter drugs; more awareness of existing NHP-related pharmacy policies is needed, and pharmacy owners/managers should provide additional training to ensure front-line pharmacists have appropriate knowledge of NHPs sold in the pharmacy. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Role of religious involvement and spirituality in functioning among African Americans with cancer: testing a mediational model

    PubMed Central

    Holt, Cheryl L.; Wang, Min Qi; Caplan, Lee; Schulz, Emily; Blake, Victor; Southward, Vivian L.

    2013-01-01

    The present study tested a mediational model of the role of religious involvement, spirituality, and physical/emotional functioning in a sample of African American men and women with cancer. Several mediators were proposed based on theory and previous research, including sense of meaning, positive and negative affect, and positive and negative religious coping. One hundred patients were recruited through oncologist offices, key community leaders and community organizations, and interviewed by telephone. Participants completed an established measure of religious involvement, the Functional Assessment of Chronic Illness Therapy-Spiritual Well-Being Scale (FACIT-SP-12 version 4), the Positive and Negative Affect Schedule (PANAS), the Meaning in Life Scale, the Brief RCOPE, and the SF-12, which assesses physical and emotional functioning. Positive affect completely mediated the relationship between religious behaviors and emotional functioning. Though several other constructs showed relationships with study variables, evidence of mediation was not supported. Mediational models were not significant for the physical functioning outcome, nor were there significant main effects of religious involvement or spirituality for this outcome. Implications for cancer survivorship interventions are discussed. PMID:21222026

  10. Microarray analysis identifies candidate genes for key roles in coral development

    PubMed Central

    Grasso, Lauretta C; Maindonald, John; Rudd, Stephen; Hayward, David C; Saint, Robert; Miller, David J; Ball, Eldon E

    2008-01-01

    Background Anthozoan cnidarians are amongst the simplest animals at the tissue level of organization, but are surprisingly complex and vertebrate-like in terms of gene repertoire. As major components of tropical reef ecosystems, the stony corals are anthozoans of particular ecological significance. To better understand the molecular bases of both cnidarian development in general and coral-specific processes such as skeletogenesis and symbiont acquisition, microarray analysis was carried out through the period of early development – when skeletogenesis is initiated, and symbionts are first acquired. Results Of 5081 unique peptide coding genes, 1084 were differentially expressed (P ≤ 0.05) in comparisons between four different stages of coral development, spanning key developmental transitions. Genes of likely relevance to the processes of settlement, metamorphosis, calcification and interaction with symbionts were characterised further and their spatial expression patterns investigated using whole-mount in situ hybridization. Conclusion This study is the first large-scale investigation of developmental gene expression for any cnidarian, and has provided candidate genes for key roles in many aspects of coral biology, including calcification, metamorphosis and symbiont uptake. One surprising finding is that some of these genes have clear counterparts in higher animals but are not present in the closely-related sea anemone Nematostella. Secondly, coral-specific processes (i.e. traits which distinguish corals from their close relatives) may be analogous to similar processes in distantly related organisms. This first large-scale application of microarray analysis demonstrates the potential of this approach for investigating many aspects of coral biology, including the effects of stress and disease. PMID:19014561

  11. Thioredoxin: a key regulator of cardiovascular homeostasis.

    PubMed

    Yamawaki, Hideyuki; Haendeler, Judith; Berk, Bradford C

    2003-11-28

    The thioredoxin (TRX) system (TRX, TRX reductase, and NADPH) is a ubiquitous thiol oxidoreductase system that regulates cellular reduction/oxidation (redox) status. The oxidation mechanism for disease pathogenesis states that an imbalance in cell redox state alters function of multiple cell pathways. In this study, we review the essential role for TRX to limit oxidative stress directly via antioxidant effects and indirectly by protein-protein interaction with key signaling molecules, such as apoptosis signal-regulating kinase 1. We propose that TRX and its endogenous regulators are important future targets to develop clinical therapies for cardiovascular disorders associated with oxidative stress.

  12. Modifications in small nuclear RNAs and their roles in spliceosome assembly and function.

    PubMed

    Bohnsack, Markus T; Sloan, Katherine E

    2018-06-01

    Modifications in cellular RNAs have emerged as key regulators of all aspects of gene expression, including pre-mRNA splicing. During spliceosome assembly and function, the small nuclear RNAs (snRNAs) form numerous dynamic RNA-RNA and RNA-protein interactions, which are required for spliceosome assembly, correct positioning of the spliceosome on substrate pre-mRNAs and catalysis. The human snRNAs contain several base methylations as well as a myriad of pseudouridines and 2'-O-methylated nucleotides, which are largely introduced by small Cajal body-specific-RNPs. Modified nucleotides typically cluster in functionally important regions of the snRNAs, suggesting that their presence could optimise the interactions of snRNAs with each other or with pre-mRNAs, or may affect the binding of spliceosomal proteins. snRNA modifications appear to play important roles in snRNP biogenesis and spliceosome assembly, and have also been proposed to influence the efficiency and fidelity of pre-mRNAs splicing. Interestingly, alterations in the modification status of snRNAs have recently been observed in different cellular conditions, implying that some snRNA modifications are dynamic and raising the possibility that these modifications may fine-tune the spliceosome for particular functions. Here, we review the current knowledge on the snRNA modification machinery and discuss the timing, functions and dynamics of modifications in snRNAs.

  13. Functional Roles of the Interaction of APP and Lipoprotein Receptors

    PubMed Central

    Pohlkamp, Theresa; Wasser, Catherine R.; Herz, Joachim

    2017-01-01

    The biological fates of the key initiator of Alzheimer’s disease (AD), the amyloid precursor protein (APP), and a family of lipoprotein receptors, the low-density lipoprotein (LDL) receptor-related proteins (LRPs) and their molecular roles in the neurodegenerative disease process are inseparably interwoven. Not only does APP bind tightly to the extracellular domains (ECDs) of several members of the LRP group, their intracellular portions are also connected through scaffolds like the one established by FE65 proteins and through interactions with adaptor proteins such as X11/Mint and Dab1. Moreover, the ECDs of APP and LRPs share common ligands, most notably Reelin, a regulator of neuronal migration during embryonic development and modulator of synaptic transmission in the adult brain, and Agrin, another signaling protein which is essential for the formation and maintenance of the neuromuscular junction (NMJ) and which likely also has critical, though at this time less well defined, roles for the regulation of central synapses. Furthermore, the major independent risk factors for AD, Apolipoprotein (Apo) E and ApoJ/Clusterin, are lipoprotein ligands for LRPs. Receptors and ligands mutually influence their intracellular trafficking and thereby the functions and abilities of neurons and the blood-brain-barrier to turn over and remove the pathological product of APP, the amyloid-β peptide. This article will review and summarize the molecular mechanisms that are shared by APP and LRPs and discuss their relative contributions to AD. PMID:28298885

  14. Insights into the key roles of proteoglycans in breast cancer biology and translational medicine

    PubMed Central

    Theocharis, Achilleas D.; Skandalis, Spyros S.; Neill, Thomas; Multhaupt, Hinke A. B.; Hubo, Mario; Frey, Helena; Gopal, Sandeep; Gomes, Angélica; Afratis, Nikos; Lim, Hooi Ching; Couchman, John R.; Filmus, Jorge; Sanderson, Ralph D.; Schaefer, Liliana; Iozzo, Renato V.; Karamanos, Nikos K.

    2015-01-01

    Proteoglycans control numerous normal and pathological processes, among which are morphogenesis, tissue repair, inflammation, vascularization and cancer metastasis. During tumor development and growth, proteoglycan expression is markedly modified in the tumor microenvironment. Altered expression of proteoglycans on tumor and stromal cell membranes affects cancer cell signaling, growth and survival, cell adhesion, migration and angiogenesis. Despite the high complexity and heterogeneity of breast cancer, the rapid evolution in our knowledge that proteoglycans are among the key players in the breast tumor microenvironment suggests their potential as pharmacological targets in this type of cancer. It has been recently suggested that pharmacological treatment may target proteoglycan metabolism, their utilization as targets for immunotherapy or their direct use as therapeutic agents. The diversity inherent in the proteoglycans that will be presented herein provides the potential for multiple layers of regulation of breast tumor behavior. This review summarizes recent developments concerning the biology of selected proteoglycans in breast cancer, and presents potential targeted therapeutic approaches based on their novel key roles in breast cancer. PMID:25829250

  15. Role of Vitamin C in the Function of the Vascular Endothelium

    PubMed Central

    Harrison, Fiona E.

    2013-01-01

    Abstract Significance: Vitamin C, or ascorbic acid, has long been known to participate in several important functions in the vascular bed in support of endothelial cells. These functions include increasing the synthesis and deposition of type IV collagen in the basement membrane, stimulating endothelial proliferation, inhibiting apoptosis, scavenging radical species, and sparing endothelial cell-derived nitric oxide to help modulate blood flow. Although ascorbate may not be able to reverse inflammatory vascular diseases such as atherosclerosis, it may well play a role in preventing the endothelial dysfunction that is the earliest sign of many such diseases. Recent Advances: Beyond simply preventing scurvy, evidence is mounting that ascorbate is required for optimal function of many dioxygenase enzymes in addition to those involved in collagen synthesis. Several of these enzymes regulate the transcription of proteins involved in endothelial function, proliferation, and survival, including hypoxia-inducible factor-1α and histone and DNA demethylases. More recently, ascorbate has been found to acutely tighten the endothelial permeability barrier and, thus, may modulate access of ascorbate and other molecules into tissues and organs. Critical Issues: The issue of the optimal cellular content of ascorbate remains unresolved, but it appears that low millimolar ascorbate concentrations are normal in most animal tissues, in human leukocytes, and probably in the endothelium. Although there may be little benefit of increasing near maximal cellular ascorbate concentrations in normal people, many diseases and conditions have either systemic or localized cellular ascorbate deficiency as a cause for endothelial dysfunction, including early atherosclerosis, sepsis, smoking, and diabetes. Future Directions: A key focus for future studies of ascorbate and the vascular endothelium will likely be to determine the mechanisms and clinical relevance of ascorbate effects on endothelial

  16. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information.

  17. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption

    PubMed Central

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information. PMID:26823196

  18. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption.

    PubMed

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-29

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information.

  19. The role and functionality of Veterinary Services in food safety throughout the food chain.

    PubMed

    McKenzie, A I; Hathaway, S C

    2006-08-01

    Both national Veterinary Services and international standard-setting organisations have now embraced risk assessment as an essential tool for achieving their goals. Veterinarians have key roles in all aspects of the control of food-borne hazards of animal origin, but additional specialist skills are necessary for assessing, managing and communicating risk. Further, the deployment of Veterinary Services must reflect the multi-functional aspects of public and animal health activities. A generic risk management framework provides a systematic process whereby food safety standards and other measures are chosen and implemented on the basis of knowledge of risk and evaluation of other factors relevant to protecting human health and promoting non-discriminatory trade practices. In this context, a number of countries are exploring new administrative and structural arrangements for competent authorities. The traditional focus of veterinary involvement in food safety has been in meat hygiene at the level of the slaughterhouse. While this role continues, the emerging 'risk-based' approach to food control requires increased involvement in other segments of the meat food chain, as well as other areas such as production of milk and fish. This more extensive role requires a wider skill base and establishment of effective networks with a different range of stakeholders.

  20. Quantum key distribution network for multiple applications

    NASA Astrophysics Data System (ADS)

    Tajima, A.; Kondoh, T.; Ochi, T.; Fujiwara, M.; Yoshino, K.; Iizuka, H.; Sakamoto, T.; Tomita, A.; Shimamura, E.; Asami, S.; Sasaki, M.

    2017-09-01

    The fundamental architecture and functions of secure key management in a quantum key distribution (QKD) network with enhanced universal interfaces for smooth key sharing between arbitrary two nodes and enabling multiple secure communication applications are proposed. The proposed architecture consists of three layers: a quantum layer, key management layer and key supply layer. We explain the functions of each layer, the key formats in each layer and the key lifecycle for enabling a practical QKD network. A quantum key distribution-advanced encryption standard (QKD-AES) hybrid system and an encrypted smartphone system were developed as secure communication applications on our QKD network. The validity and usefulness of these systems were demonstrated on the Tokyo QKD Network testbed.

  1. Key properties of expert movement systems in sport : an ecological dynamics perspective.

    PubMed

    Seifert, Ludovic; Button, Chris; Davids, Keith

    2013-03-01

    This paper identifies key properties of expertise in sport predicated on the performer-environment relationship. Weaknesses of traditional approaches to expert performance, which uniquely focus on the performer and the environment separately, are highlighted by an ecological dynamics perspective. Key properties of expert movement systems include 'multi- and meta-stability', 'adaptive variability', 'redundancy', 'degeneracy' and the 'attunement to affordances'. Empirical research on these expert system properties indicates that skill acquisition does not emerge from the internal representation of declarative and procedural knowledge, or the imitation of expert behaviours to linearly reduce a perceived 'gap' separating movements of beginners and a putative expert model. Rather, expert performance corresponds with the ongoing co-adaptation of an individual's behaviours to dynamically changing, interacting constraints, individually perceived and encountered. The functional role of adaptive movement variability is essential to expert performance in many different sports (involving individuals and teams; ball games and outdoor activities; land and aquatic environments). These key properties signify that, in sport performance, although basic movement patterns need to be acquired by developing athletes, there exists no ideal movement template towards which all learners should aspire, since relatively unique functional movement solutions emerge from the interaction of key constraints.

  2. ROLE OF TYROSINE-SULFATED PROTEINS IN RETINAL STRUCTURE AND FUNCTION

    PubMed Central

    Kanan, Y.; Al-Ubaidi, M.R.

    2014-01-01

    The extracellular matrix (ECM) plays a significant role in cellular and retinal health. The study of retinal tyrosine-sulfated proteins is an important first step toward understanding the role of ECM in retinal health and diseases. These secreted proteins are members of the retinal ECM. Tyrosine sulfation was shown to be necessary for the development of proper retinal structure and function. The importance of tyrosine sulfation is further demonstrated by the evolutionary presence of tyrosylprotein sulfotransferases, enzymes that catalyze proteins’ tyrosine sulfation, and the compensatory abilities of these enzymes. Research has identified four tyrosine-sulfated retinal proteins: fibulin 2, vitronectin, complement factor H (CFH), and opticin. Vitronectin and CFH regulate the activation of the complement system and are involved in the etiology of some cases of age-related macular degeneration. Analysis of the role of tyrosine sulfation in fibulin function showed that sulfation influences the protein's ability to regulate growth and migration. Although opticin was recently shown to exhibit anti-angiogenic properties, it is not yet determined what role sulfation plays in that function. Future studies focusing on identifying all of the tyrosine-sulfated retinal proteins would be instrumental in determining the impact of sulfation on retinal protein function in retinal homeostasis and diseases. PMID:25819460

  3. Translational Perspective on the Role of Testosterone in Sexual Function and Dysfunction.

    PubMed

    Podlasek, Carol A; Mulhall, John; Davies, Kelvin; Wingard, Christopher J; Hannan, Johanna L; Bivalacqua, Trinity J; Musicki, Biljana; Khera, Mohit; González-Cadavid, Nestor F; Burnett, Arthur L

    2016-08-01

    The biological importance of testosterone is generally accepted by the medical community; however, controversy focuses on its relevance to sexual function and the sexual response, and our understanding of the extent of its role in this area is evolving. To provide scientific evidence examining the role of testosterone at the cellular and molecular levels as it pertains to normal erectile physiology and the development of erectile dysfunction and to assist in guiding successful therapeutic interventions for androgen-dependent sexual dysfunction. In this White Paper, the Basic Science Committee of the Sexual Medicine Society of North America assessed the current basic science literature examining the role of testosterone in sexual function and dysfunction. Testosterone plays an important role in sexual function through multiple processes: physiologic (stimulates activity of nitric oxide synthase), developmental (establishes and maintains the structural and functional integrity of the penis), neural (development, maintenance, function, and plasticity of the cavernous nerve and pelvic ganglia), therapeutically for dysfunctional regulation (beneficial effect on aging, diabetes, and prostatectomy), and phosphodiesterase type 5 inhibition (testosterone supplement to counteract phosphodiesterase type 5 inhibitor resistance). Despite controversies concerning testosterone with regard to sexual function, basic science studies provide incontrovertible evidence for a significant role of testosterone in sexual function and suggest that properly administered testosterone therapy is potentially advantageous for treating male sexual dysfunction. Published by Elsevier Inc.

  4. The Role and Function of Presidential Libraries.

    ERIC Educational Resources Information Center

    Fischer, Linda

    This paper identifies various elements of presidential libraries. The advantages and disadvantages of the libraries' centralization or decentralization are discussed, and some common misconceptions held by the public as to the role and function of presidential libraries are identified. Criticism and debate from the professional community about…

  5. The role of psychosocial factors and psychiatric disorders in functional dyspepsia.

    PubMed

    Van Oudenhove, Lukas; Aziz, Qasim

    2013-03-01

    In this Review, after a brief historical introduction, we first provide an overview of epidemiological studies that demonstrate an association between functional dyspepsia and psychological traits, states or psychiatric disorders. These studies suggest an important intrinsic role for psychosocial factors and psychiatric disorders, especially anxiety and depression, in the aetiopathogenesis of functional dyspepsia, in addition to their putative influence on health-care-seeking behaviour. Second, we describe pathophysiological evidence on how psychosocial factors and psychiatric disorders might exert their role in functional dyspepsia. Novel insights from functional brain imaging studies regarding the integration of gut-brain signals, processed in homeostatic-interoceptive brain regions, with input from the exteroceptive system, the reward system and affective and cognitive circuits, help to clarify the important role of psychological processes and psychiatric morbidity. We therefore propose an integrated model of functional dyspepsia as a disorder of gut-brain signalling, supporting a biopsychosocial approach to the diagnosis and management of this disorder.

  6. Turning up the heat in the lungs. A key mechanism to preserve their function.

    PubMed

    Sartori, Claudio; Scherrer, Urs

    2003-01-01

    Life threatening events cause important alterations in the structure of proteins creating the urgent need of repair to preserve function and ensure survival of the cell. In eukariotic cells, an intrinsic mechanism allows them to defend against external stress. Heat shock proteins are a group of highly preserved molecular chaperones, playing a crucial role in maintaining proper protein assembly, transport and function. Stress-induced upregulation of heat shock proteins provides a unique defense system to ensure survival and function of the cell in many organ systems during conditions such as high temperature, ischemia, hypoxia, inflammation, and exposure to endotoxin or reactive oxygen species. Induction of this cellular defense mechanism prior to imposing one of these noxious insults, allows the cell/organ to withstand a subsequent insult that would otherwise be lethal, a phenomenon referred to as "thermo-tolerance" or "preconditioning". In the lung, stress-induced heat shock protein synthesis, in addition to its cyto-protective and anti-inflammatory effect, helps to preserve vectorial ion transport and alveolar fluid clearance. In this review, we describe the function of heat shock proteins in the lung, with particular emphasis on their role in the pathophysiology of experimental pulmonary edema, and their potential beneficial effects in the prevention and/or treatment of this life-threatening disease in humans.

  7. Rhodanese Functions as Sulfur Supplier for Key Enzymes in Sulfur Energy Metabolism

    PubMed Central

    Aussignargues, Clément; Giuliani, Marie-Cécile; Infossi, Pascale; Lojou, Elisabeth; Guiral, Marianne; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne

    2012-01-01

    How microorganisms obtain energy is a challenging topic, and there have been numerous studies on the mechanisms involved. Here, we focus on the energy substrate traffic in the hyperthermophilic bacterium Aquifex aeolicus. This bacterium can use insoluble sulfur as an energy substrate and has an intricate sulfur energy metabolism involving several sulfur-reducing and -oxidizing supercomplexes and enzymes. We demonstrate that the cytoplasmic rhodanese SbdP participates in this sulfur energy metabolism. Rhodaneses are a widespread family of proteins known to transfer sulfur atoms. We show that SbdP has also some unusual characteristics compared with other rhodaneses; it can load a long sulfur chain, and it can interact with more than one partner. Its partners (sulfur reductase and sulfur oxygenase reductase) are key enzymes of the sulfur energy metabolism of A. aeolicus and share the capacity to use long sulfur chains as substrate. We demonstrate a positive effect of SbdP, once loaded with sulfur chains, on sulfur reductase activity, most likely by optimizing substrate uptake. Taken together, these results lead us to propose a physiological role for SbdP as a carrier and sulfur chain donor to these key enzymes, therefore enabling channeling of sulfur substrate in the cell as well as greater efficiency of the sulfur energy metabolism of A. aeolicus. PMID:22496367

  8. Development of fluorescent probes based on protection-deprotection of the key functional groups for biological imaging.

    PubMed

    Tang, Yonghe; Lee, Dayoung; Wang, Jiaoliang; Li, Guanhan; Yu, Jinghua; Lin, Weiying; Yoon, Juyoung

    2015-08-07

    Recently, the strategy of protection-deprotection of functional groups has been widely employed to design fluorescent probes, as the protection-deprotection of functional groups often induces a marked change in electronic properties. Significant advances have been made in the development of analyte-responsive fluorescent probes based on the protection-deprotection strategy. In this tutorial review, we highlight the representative examples of small-molecule based fluorescent probes for bioimaging, which are operated via the protection-deprotection of key functional groups such as aldehyde, hydroxyl, and amino functional groups reported from 2010 to 2014. The discussion includes the general protection-deprotection methods for aldehyde, hydroxyl, or amino groups, as well as the design strategies, sensing mechanisms, and deprotection modes of the representative fluorescent imaging probes applied to bio-imaging.

  9. Syntactic Functions in Functional Discourse Grammar and Role and Reference Grammar: An Evaluative Comparison

    ERIC Educational Resources Information Center

    Butler, Christopher S.

    2012-01-01

    The aim of this paper is to compare the treatment of syntactic functions, and more particularly those traditionally labelled as Subject and Object, in Functional Discourse Grammar and Role and Reference Grammar. Relevant aspects of the overall structure of the two theories are briefly described. The concept of alignment between levels of the…

  10. Hyaluronic acid: its role in voice.

    PubMed

    Ward, P Daniel; Thibeault, Susan L; Gray, Steven D

    2002-09-01

    The extracellular matrix (ECM), once regarded simply as a structural scaffold, is now recognized as an important modulator of cellular behavior and function. One component that plays a prominent role in this process is hyaluronic acid (HA)--a molecule found in many different tissues. Research into the roles of HA indicates that it plays a key role in tissue viscosity, shock absorption, and space filling. Specifically, research into the role of HA in laryngology indicates that it has profound effects on the structure and viscosity of vocal folds. This article provides an introduction to the structure and biological functions of HA and its importance in voice. In addition, an overview of the pharmaceutical applications of HA is discussed.

  11. Roles and Functions of the Psychologist in Special Education.

    ERIC Educational Resources Information Center

    Hestick, Henrietta

    The paper, intended for a Chinese audience, examines roles and functions of the school psychologist in special education in the United States in the context of federal and state (Maryland) legislation and in correctional institutions. Some of the minimum roles of the school psychologist are to serve on the preplacement team, conduct student…

  12. Roles and Functions of Community Health Workers in Primary Care.

    PubMed

    Hartzler, Andrea L; Tuzzio, Leah; Hsu, Clarissa; Wagner, Edward H

    2018-05-01

    Community health workers have potential to enhance primary care access and quality, but remain underutilized. To provide guidance on their integration, we characterized roles and functions of community health workers in primary care through a literature review and synthesis. Analysis of 30 studies identified 12 functions (ie, care coordination, health coaching, social support, health assessment, resource linking, case management, medication management, remote care, follow-up, administration, health education, and literacy support) and 3 prominent roles representing clusters of functions: clinical services, community resource connections, and health education and coaching. We discuss implications for community health worker training and clinical support in primary care. © 2018 Annals of Family Medicine, Inc.

  13. Circular RNA: an emerging key player in RNA world.

    PubMed

    Meng, Xianwen; Li, Xue; Zhang, Peijing; Wang, Jingjing; Zhou, Yincong; Chen, Ming

    2017-07-01

    Insights into the circular RNA (circRNA) exploration have revealed that they are abundant in eukaryotic transcriptomes. Diverse genomic regions can generate different types of RNA circles, implying their diversity. Covalently closed loop structures elevate the stability of this new type of noncoding RNA. High-throughput sequencing analyses suggest that circRNAs exhibit tissue- and developmental-specific expression, indicating that they may play crucial roles in multiple cellular processes. Strikingly, several circRNAs could function as microRNA sponges and regulate gene transcription, highlighting a new class of important regulators. Here, we review the recent advances in knowledge of endogenous circRNA biogenesis, properties and functions. We further discuss the current findings about circRNAs in human diseases. In plants, the roles of circRNAs remain a mystery. Online resources and bioinformatics identification of circRNAs are essential for the analysis of circRNA biology, although different strategies yield divergent results. The understanding of circRNA functions remains limited; however, circRNAs are enriching the RNA world, acting as an emerging key player. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. The Role of Glia in Sleep Regulation and Function.

    PubMed

    Frank, Marcos G

    2018-01-28

    The cellular mechanisms governing the expression, regulation, and function of sleep are not entirely understood. The traditional view is that these mechanisms are neuronal. An alternative view is that glial brain cells may play important roles in these processes. Their ubiquity in the central nervous system makes them well positioned to modulate neuronal circuits that gate sleep and wake. Their ability to respond to chemical neuronal signals suggests that they form feedback loops with neurons that may globally regulate neuronal activity. Their potential role in detoxifying the brain, regulating neuronal metabolism, and promoting synaptic plasticity raises the intriguing possibility that glia mediate important functions ascribed to sleep.

  15. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services.

    PubMed

    Gianinazzi, Silvio; Gollotte, Armelle; Binet, Marie-Noëlle; van Tuinen, Diederik; Redecker, Dirk; Wipf, Daniel

    2010-11-01

    The beneficial effects of arbuscular mycorrhizal (AM) fungi on plant performance and soil health are essential for the sustainable management of agricultural ecosystems. Nevertheless, since the 'first green revolution', less attention has been given to beneficial soil microorganisms in general and to AM fungi in particular. Human society benefits from a multitude of resources and processes from natural and managed ecosystems, to which AM make a crucial contribution. These resources and processes, which are called ecosystem services, include products like food and processes like nutrient transfer. Many people have been under the illusion that these ecosystem services are free, invulnerable and infinitely available; taken for granted as public benefits, they lack a formal market and are traditionally absent from society's balance sheet. In 1997, a team of researchers from the USA, Argentina and the Netherlands put an average price tag of US $33 trillion a year on these fundamental ecosystem services. The present review highlights the key role that the AM symbiosis can play as an ecosystem service provider to guarantee plant productivity and quality in emerging systems of sustainable agriculture. The appropriate management of ecosystem services rendered by AM will impact on natural resource conservation and utilisation with an obvious net gain for human society.

  16. THE ROLE OF SEROTONIN IN RESPIRATORY FUNCTION AND DYSFUNCTION

    PubMed Central

    Hilaire, Gérard; Voituron, Nicolas; Menuet, Clément; Ichiyama, Ronaldo M.; Subramanian, Hari H.; Dutschmann, Mathias

    2010-01-01

    Serotonin (5-HT) is a neuro-modulator–transmitter influencing global brain function. Past and present findings illustrate a prominent role for 5-HT in the modulation of ponto-medullary autonomic circuits. 5-HT is also involved in the control of neurotrophic processes during pre- and postnatal development of neural circuits. The functional implications of 5-HT is particularly illustrated in the alterations to the serotonergic system, as seen in a wide range of neurological disorders. This article reviews the role of 5-HT in the development and control of respiratory networks in the ponto-medullary brainstem. The review further examines the role of 5-HT in breathing disorders occurring at different stages of life, in particular, the neonatal neurodevelopmental diseases such as Rett, sudden infant death and Prader-Willi syndromes, adult diseases such as sleep apnoea and mental illness linked to neurodegeneration. PMID:20801236

  17. Functional Role of PPARs in Ruminants: Potential Targets for Fine-Tuning Metabolism during Growth and Lactation

    PubMed Central

    Chen, Shuowen; Khan, Muhammad J.; Loor, Juan J.

    2013-01-01

    Characterization and biological roles of the peroxisome proliferator-activated receptor (PPAR) isotypes are well known in monogastrics, but not in ruminants. However, a wealth of information has accumulated in little more than a decade on ruminant PPARs including isotype tissue distribution, response to synthetic and natural agonists, gene targets, and factors affecting their expression. Functional characterization demonstrated that, as in monogastrics, the PPAR isotypes control expression of genes involved in lipid metabolism, anti-inflammatory response, development, and growth. Contrary to mouse, however, the PPARγ gene network appears to controls milk fat synthesis in lactating ruminants. As in monogastrics, PPAR isotypes in ruminants are activated by long-chain fatty acids, therefore, making them ideal candidates for fine-tuning metabolism in this species via nutrients. In this regard, using information accumulated in ruminants and monogastrics, we propose a model of PPAR isotype-driven biological functions encompassing key tissues during the peripartal period in dairy cattle. PMID:23737762

  18. 25 CFR 502.14 - Key employee.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Key employee. 502.14 Section 502.14 Indians NATIONAL....14 Key employee. Key employee means: (a) A person who performs one or more of the following functions... gaming operation. (d) Any other person designated by the tribe as a key employee. [57 FR 12392, Apr. 9...

  19. Gliomagenesis and neural stem cells: Key role of hypoxia and concept of tumor "neo-niche".

    PubMed

    Diabira, Sylma; Morandi, Xavier

    2008-01-01

    Gliomas represent the most common primary brain tumors and the most devastating pathology of the central nervous system. Despite progress in conventional treatments, the prognosis remains dismal. Recent studies have suggested that a glioma brain tumor may arise from a "cancer stem cell". To understand this theory we summarize studies of the concepts of neural stem cell, and its specialized microenvironment, namely the niche which can regulate balanced self-renewal, differentiation and stem cell quiescence. We summarize the molecular mechanism known or postulated to be involved in the disregulation of normal stem cells features allowing them to undergo neoplasic transformation. We seek data pointing out the key role of hypoxia in normal homeostasis of stem cells and in the initiation, development and aggressiveness of gliomas. We develop the concept of tumor special microenvironment and we propose the new concept of neo-niche, surrounding the glioma, in which hypoxia could be a key factor to recruit and deregulate different stem cells for gliogenesis process. Substantial advances in treatment would come from obtaining better knowledge of molecular impairs of this disease.

  20. Cost-effectiveness analysis and efficient use of the pharmaceutical budget: the key role of clinical pharmacologists

    PubMed Central

    Edlin, Richard; Round, Jeff; Hulme, Claire; McCabe, Christopher

    2010-01-01

    The purpose of this paper is to provide information about cost-effectiveness analysis and the roles of clinical pharmacologists generally in providing efficient health care. The paper highlights the potential consequences of ‘off-label prescribing’ and ‘indication creep’ behaviour given slower growth (or potential cuts) in the NHS budget. This paper highlights the key roles of clinical pharmacologists in delivering an efficient health care system when resources are allocated using cost-effectiveness analyses. It describes what cost-effectiveness analysis (CEA) is and how incremental cost-effectiveness ratios (ICERs) are used to identify efficient options. After outlining the theoretical framework within which using CEA can promote the efficient allocation of the health care budget, it considers the place of disinvestment within achieving efficient resource allocation. Clinical pharmacologists are argued to be critical to providing improved population health under CEA-based resource allocation processes because of their roles in implementation and disinvestment. Given that the challenges facing the United Kingdom National Health Service (NHS) are likely to increase, this paper sets out the stark choices facing clinical pharmacologists. PMID:20716234

  1. Cost-effectiveness analysis and efficient use of the pharmaceutical budget: the key role of clinical pharmacologists.

    PubMed

    Edlin, Richard; Round, Jeff; Hulme, Claire; McCabe, Christopher

    2010-09-01

    The purpose of this paper is to provide information about cost-effectiveness analysis and the roles of clinical pharmacologists generally in providing efficient health care. The paper highlights the potential consequences of 'off-label prescribing' and 'indication creep' behaviour given slower growth (or potential cuts) in the NHS budget. This paper highlights the key roles of clinical pharmacologists in delivering an efficient health care system when resources are allocated using cost-effectiveness analyses. It describes what cost-effectiveness analysis (CEA) is and how incremental cost-effectiveness ratios (ICERs) are used to identify efficient options. After outlining the theoretical framework within which using CEA can promote the efficient allocation of the health care budget, it considers the place of disinvestment within achieving efficient resource allocation. Clinical pharmacologists are argued to be critical to providing improved population health under CEA-based resource allocation processes because of their roles in implementation and disinvestment. Given that the challenges facing the United Kingdom National Health Service (NHS) are likely to increase, this paper sets out the stark choices facing clinical pharmacologists.

  2. Key Ecological Roles for Zoosporic True Fungi in Aquatic Habitats.

    PubMed

    Gleason, Frank H; Scholz, Bettina; Jephcott, Thomas G; van Ogtrop, Floris F; Henderson, Linda; Lilje, Osu; Kittelmann, Sandra; Macarthur, Deborah J

    2017-03-01

    The diversity and abundance of zoosporic true fungi have been analyzed recently using fungal sequence libraries and advances in molecular methods, such as high-throughput sequencing. This review focuses on four evolutionary primitive true fungal phyla: the Aphelidea, Chytridiomycota, Neocallimastigomycota, and Rosellida (Cryptomycota), most species of which are not polycentric or mycelial (filamentous), rather they tend to be primarily monocentric (unicellular). Zoosporic fungi appear to be both abundant and diverse in many aquatic habitats around the world, with abundance often exceeding other fungal phyla in these habitats, and numerous novel genetic sequences identified. Zoosporic fungi are able to survive extreme conditions, such as high and extremely low pH; however, more work remains to be done. They appear to have important ecological roles as saprobes in decomposition of particulate organic substrates, pollen, plant litter, and dead animals; as parasites of zooplankton and algae; as parasites of vertebrate animals (such as frogs); and as symbionts in the digestive tracts of mammals. Some chytrids cause economically important diseases of plants and animals. They regulate sizes of phytoplankton populations. Further metagenomics surveys of aquatic ecosystems are expected to enlarge our knowledge of the diversity of true zoosporic fungi. Coupled with studies on their functional ecology, we are moving closer to unraveling the role of zoosporic fungi in carbon cycling and the impact of climate change on zoosporic fungal populations.

  3. New perspectives in cyclic nucleotide-mediated functions in the CNS: the emerging role of cyclic nucleotide-gated (CNG) channels.

    PubMed

    Podda, Maria Vittoria; Grassi, Claudio

    2014-07-01

    Cyclic nucleotides play fundamental roles in the central nervous system (CNS) under both physiological and pathological conditions. The impact of cAMP and cGMP signaling on neuronal and glial cell functions has been thoroughly characterized. Most of their effects have been related to cyclic nucleotide-dependent protein kinase activity. However, cyclic nucleotide-gated (CNG) channels, first described as key mediators of sensory transduction in retinal and olfactory receptors, have been receiving increasing attention as possible targets of cyclic nucleotides in the CNS. In the last 15 years, consistent evidence has emerged for their expression in neurons and astrocytes of the rodent brain. Far less is known, however, about the functional role of CNG channels in these cells, although several of their features, such as Ca(2+) permeability and prolonged activation in the presence of cyclic nucleotides, make them ideal candidates for mediators of physiological functions in the CNS. Here, we review literature suggesting the involvement of CNG channels in a number of CNS cellular functions (e.g., regulation of membrane potential, neuronal excitability, and neurotransmitter release) as well as in more complex phenomena, like brain plasticity, adult neurogenesis, and pain sensitivity. The emerging picture is that functional and dysfunctional cyclic nucleotide signaling in the CNS has to be reconsidered including CNG channels among possible targets. However, concerted efforts and multidisciplinary approaches are still needed to get more in-depth knowledge in this field.

  4. Endothelial nitric oxide synthase in red blood cells: Key to a new erythrocrine function?☆

    PubMed Central

    Cortese-Krott, Miriam M.; Kelm, Malte

    2014-01-01

    Red blood cells (RBC) have been considered almost exclusively as a transporter of metabolic gases and nutrients for the tissues. It is an accepted dogma that RBCs take up and inactivate endothelium-derived NO via rapid reaction with oxyhemoglobin to form methemoglobin and nitrate, thereby limiting NO available for vasodilatation. Yet it has also been shown that RBCs not only act as “NO sinks”, but exert an erythrocrine function – i.e an endocrine function of RBC – by synthesizing, transporting and releasing NO metabolic products and ATP, thereby potentially controlling systemic NO bioavailability and vascular tone. Recent work from our and others laboratory demonstrated that human RBCs carry an active type 3, endothelial NO synthase (eNOS), constitutively producing NO under normoxic conditions, the activity of which is compromised in patients with coronary artery disease. In this review we aim to discuss the potential role of red cell eNOS in RBC signaling and function, and to critically revise evidence to this date showing a role of non-endothelial circulating eNOS in cardiovascular pathophysiology. PMID:24494200

  5. Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits.

    PubMed

    Zhang, Mei; Leng, Ping; Zhang, Guanglian; Li, Xiangxin

    2009-08-15

    Ripening and senescence are generally controlled by ethylene in climacteric fruits like peaches, and the ripening process of grape, a non-climacteric fruit, may have some relationship to abscisic acid (ABA) function. In order to better understand the role of ABA in ripening and senescence of these two types of fruits, we cloned the 9-cis-epoxycarotenoid dioxygenase (NCED) gene that encodes a key enzyme in ABA biosynthesis from peaches and grapes using an RT-PCR approach. The NCED gene fragments were cloned from peaches (PpNCED1and PpNCED2, each 740bp) and grapes (VVNCED1, 741bp) using degenerate primers designed based on the conserved amino acids sequence of NCEDs in other plants. PpNCED1 showed 78.54% homology with PpNCED2, 74.90% homology with VVNCED1, and both showed high homology to NCEDs from other plants. The expression patterns of PpNCED1 and VVNCED1 were very similar. Both were highly expressed at the beginning of ripening when ABA content becomes high. The maximum ABA preceded ethylene production in peach fruit. ABA in the grape gradually increased from the beginning of ripening and reached the highest level at 20d before the harvest stage. However, ethylene remained at low levels during the entire process of fruit development, including ripening and senescence. ABA content, and ripening and softening of both types of fruits, were promoted or delayed by exogenous ABA or Fluridone (or NDGA) treatment. The roles of ABA and ethylene in the later ripening of fruit are complex. Based on results obtained in this study, we concluded that PpNCED1 and VVNCED1 initiate ABA biosynthesis at the beginning of fruit ripening, and that ABA accumulation might play a key role in the regulation of ripeness and senescence of both peach and grape fruits.

  6. Diverse mitotic functions of the cytoskeletal cross-linking protein Shortstop suggest a role in Dynein/Dynactin activity

    PubMed Central

    Dewey, Evan B.; Johnston, Christopher A.

    2017-01-01

    Proper assembly and orientation of the bipolar mitotic spindle is critical to the fidelity of cell division. Mitotic precision fundamentally contributes to cell fate specification, tissue development and homeostasis, and chromosome distribution within daughter cells. Defects in these events are thought to contribute to several human diseases. The underlying mechanisms that function in spindle morphogenesis and positioning remain incompletely defined, however. Here we describe diverse roles for the actin-microtubule cross-linker Shortstop (Shot) in mitotic spindle function in Drosophila. Shot localizes to mitotic spindle poles, and its knockdown results in an unfocused spindle pole morphology and a disruption of proper spindle orientation. Loss of Shot also leads to chromosome congression defects, cell cycle progression delay, and defective chromosome segregation during anaphase. These mitotic errors trigger apoptosis in Drosophila epithelial tissue, and blocking this apoptotic response results in a marked induction of the epithelial–mesenchymal transition marker MMP-1. The actin-binding domain of Shot directly interacts with Actin-related protein-1 (Arp-1), a key component of the Dynein/Dynactin complex. Knockdown of Arp-1 phenocopies Shot loss universally, whereas chemical disruption of F-actin does so selectively. Our work highlights novel roles for Shot in mitosis and suggests a mechanism involving Dynein/Dynactin activation. PMID:28747439

  7. Adult Roles & Functions. Objective Based Evaluation System.

    ERIC Educational Resources Information Center

    West Virginia State Vocational Curriculum Lab., Cedar Lakes.

    This book of objective-based test items is designed to be used with the Adult Roles and Functions curriculum for a non-laboratory home economic course for grades eleven and twelve. It contains item banks for each cognitive objective in the curriculum. In addition, there is a form for the table of specifications to be developed for each unit. This…

  8. Role of T Cells in Malnutrition and Obesity

    PubMed Central

    Gerriets, Valerie A.; MacIver, Nancie J.

    2014-01-01

    Nutritional status is critically important for immune cell function. While obesity is characterized by inflammation that promotes metabolic syndrome including cardiovascular disease and insulin resistance, malnutrition can result in immune cell defects and increased risk of mortality from infectious diseases. T cells play an important role in the immune adaptation to both obesity and malnutrition. T cells in obesity have been shown to have an early and critical role in inducing inflammation, accompanying the accumulation of inflammatory macrophages in obese adipose tissue, which are known to promote insulin resistance. How T cells are recruited to adipose tissue and activated in obesity is a topic of considerable interest. Conversely, T cell number is decreased in malnourished individuals, and T cells in the setting of malnutrition have decreased effector function and proliferative capacity. The adipokine leptin, which is secreted in proportion to adipocyte mass, may have a key role in mediating adipocyte-T cell interactions in both obesity and malnutrition, and has been shown to promote effector T cell function and metabolism while inhibiting regulatory T cell proliferation. Additionally, key molecular signals are involved in T cell metabolic adaptation during nutrient stress; among them, the metabolic regulator AMP kinase and the mammalian target of rapamycin have critical roles in regulating T cell number, function, and metabolism. In summary, understanding how T cell number and function are altered in obesity and malnutrition will lead to better understanding of and treatment for diseases where nutritional status determines clinical outcome. PMID:25157251

  9. The role of executive functions in social impairment in Autism Spectrum Disorder.

    PubMed

    Leung, Rachel C; Vogan, Vanessa M; Powell, Tamara L; Anagnostou, Evdokia; Taylor, Margot J

    2016-01-01

    Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by socio-communicative impairments. Executive dysfunction may explain some key characteristics of ASD, both social and nonsocial hallmarks. Limited research exists exploring the relations between executive function and social impairment in ASD and few studies have used a comparison control group. Thus, the objective of the present study was to investigate the relations between executive functioning using the Behavioral Rating Inventory of Executive Functioning (BRIEF), social impairment as measured by the Social Responsiveness Scale (SRS), and overall autistic symptomology as measured by the Autism Diagnostic Observation Schedule (ADOS) in children and adolescents with and without ASD. Seventy children and adolescents diagnosed with ASD and 71 typically developing controls were included in this study. Findings showed that behavioral regulation executive processes (i.e., inhibition, shifting, and emotional control) predicted social function in all children. However, metacognitive executive processes (i.e., initiation, working memory, planning, organization, and monitoring) predicted social function only in children with ASD and not in typically developing children. Our findings suggest a distinct metacognitive executive function-social symptom link in ASD that is not present in the typical population. Understanding components of executive functioning that contribute to the autistic symptomology, particularly in the socio-communicative domain, is crucial for developing effective interventions that target key executive processes as well as underlying behavioral symptoms.

  10. Key Issues in the Role of Peroxisome Proliferator–Activated Receptor Agonism and Cell Signaling in Trichloroethylene Toxicity

    PubMed Central

    Keshava, Nagalakshmi; Caldwell, Jane C.

    2006-01-01

    Peroxisome proliferator–activated receptor α (PPARα) is thought to be involved in several different diseases, toxic responses, and receptor pathways. The U.S. Environmental Protection Agency 2001 draft trichloroethylene (TCE) risk assessment concluded that although PPAR may play a role in liver tumor induction, the role of its activation and the sequence of subsequent events important to tumorigenesis are not well defined, particularly because of uncertainties concerning the extraperoxisomal effects. In this article, which is part of a mini-monograph on key issues in the health risk assessment of TCE, we summarize some of the scientific literature published since that time on the effects and actions of PPARα that help inform and illustrate the key scientific questions relevant to TCE risk assessment. Recent analyses of the role of PPARα in gene expression changes caused by TCE and its metabolites provide only limited data for comparison with other PPARα agonists, particularly given the difficulties in interpreting results involving PPARα knockout mice. Moreover, the increase in data over the last 5 years from the broader literature on PPARα agonists presents a more complex array of extraperoxisomal effects and actions, suggesting the possibility that PPARα may be involved in modes of action (MOAs) not only for liver tumors but also for other effects of TCE and its metabolites. In summary, recent studies support the conclusion that determinations of the human relevance and susceptibility to PPARα-related MOA(s) of TCE-induced effects cannot rely on inferences regarding peroxisome proliferation per se and require a better understanding of the interplay of extraperoxisomal events after PPARα agonism. PMID:16966106

  11. Novel Basic Protein, PfN23, Functions as Key Macromolecule during Nacre Formation*

    PubMed Central

    Fang, Dong; Pan, Cong; Lin, Huijuan; Lin, Ya; Zhang, Guiyou; Wang, Hongzhong; He, Maoxian; Xie, Liping; Zhang, Rongqing

    2012-01-01

    The fine microstructure of nacre (mother of pearl) illustrates the beauty of nature. Proteins found in nacre were believed to be “natural hands” that control nacre formation. In the classical view of nacre formation, nucleation of the main minerals, calcium carbonate, is induced on and by the acidic proteins in nacre. However, the basic proteins were not expected to be components of nacre. Here, we reported that a novel basic protein, PfN23, was a key accelerator in the control over crystal growth in nacre. The expression profile, in situ immunostaining, and in vitro immunodetection assays showed that PfN23 was localized within calcium carbonate crystals in the nacre. Knocking down the expression of PfN23 in adults via double-stranded RNA injection led to a disordered nacre surface in adults. Blocking the translation of PfN23 in embryos using morpholino oligomers led to the arrest of larval development. The in vitro crystallization assay showed that PfN23 increases the rate of calcium carbonate deposition and induced the formation of aragonite crystals with characteristics close to nacre. In addition, we constructed the peptides and truncations of different regions of this protein and found that the positively charged C-terminal region was a key region for the function of PfN23 Taken together, the basic protein PfN23 may be a key accelerator in the control of crystal growth in nacre. This provides a valuable balance to the classic view that acidic proteins control calcium carbonate deposition in nacre. PMID:22416139

  12. Left atrial size and function: role in prognosis.

    PubMed

    Hoit, Brian D

    2014-02-18

    The author examines the ability of left atrial size and function to predict cardiovascular outcomes. Data are sufficient to recommend evaluation of left atrial volume in certain populations, and although analysis of atrial reservoir, conduit, and booster pump function trails in that regard, the gap is rapidly closing. In this state-of-the-art paper, the author reviews the methods used to assess left atrial size and function and discusses their role in predicting cardiovascular events in general and referral populations and in patients with atrial fibrillation, cardiomyopathy, ischemic heart disease, and valvular heart disease. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  13. Asparagine 285 plays a key role in transition state stabilization in rabbit muscle creatine kinase

    PubMed Central

    Borders, Charles L.; MacGregor, Katherine M.; Edmiston, Paul L.; Gbeddy, Elikem R.K.; Thomenius, Michael J.; Mulligan, Guy B.; Snider, Mark J.

    2003-01-01

    To explore the possibility that asparagine 285 plays a key role in transition state stabilization in phosphagen kinase catalysis, the N285Q, N285D, and N285A site-directed mutants of recombinant rabbit muscle creatine kinase (rmCK) were prepared and characterized. Kinetic analysis of phosphocreatine formation showed that the catalytic efficiency of each N285 mutant was reduced by approximately four orders of magnitude, with the major cause of activity loss being a reduction in kcat in comparison to the recombinant native CK. The data for N285Q still fit a random-order, rapid-equilibrium mechanism, with either MgATP or creatine binding first with affinities very nearly equal to those for native CK. However, the affinity for the binding of the second substrate is reduced approximately 10-fold, suggesting that addition of a single methylene group at position 285 disrupts the symphony of substrate binding. The data for the N285A mutant only fit an ordered binding mechanism, with MgATP binding first. Isosteric replacement to form the N285D mutant has almost no effect on the KM values for either creatine or MgATP, thus the decrease in activity is due almost entirely to a 5000-fold reduction in kcat. Using the quenching of the intrinsic CK tryptophan fluorescence by added MgADP (Borders et al. 2002), it was found that, unlike native CK, none of the mutants have the ability to form a quaternary TSAC. We use these data to propose that asparagine 285 indeed plays a key role in transition state stabilization in the reaction catalyzed by creatine kinase and other phosphagen kinases. PMID:12592023

  14. Asparagine 285 plays a key role in transition state stabilization in rabbit muscle creatine kinase.

    PubMed

    Borders, Charles L; MacGregor, Katherine M; Edmiston, Paul L; Gbeddy, Elikem R K; Thomenius, Michael J; Mulligan, Guy B; Snider, Mark J

    2003-03-01

    To explore the possibility that asparagine 285 plays a key role in transition state stabilization in phosphagen kinase catalysis, the N285Q, N285D, and N285A site-directed mutants of recombinant rabbit muscle creatine kinase (rmCK) were prepared and characterized. Kinetic analysis of phosphocreatine formation showed that the catalytic efficiency of each N285 mutant was reduced by approximately four orders of magnitude, with the major cause of activity loss being a reduction in k(cat) in comparison to the recombinant native CK. The data for N285Q still fit a random-order, rapid-equilibrium mechanism, with either MgATP or creatine binding first with affinities very nearly equal to those for native CK. However, the affinity for the binding of the second substrate is reduced approximately 10-fold, suggesting that addition of a single methylene group at position 285 disrupts the symphony of substrate binding. The data for the N285A mutant only fit an ordered binding mechanism, with MgATP binding first. Isosteric replacement to form the N285D mutant has almost no effect on the K(M) values for either creatine or MgATP, thus the decrease in activity is due almost entirely to a 5000-fold reduction in k(cat). Using the quenching of the intrinsic CK tryptophan fluorescence by added MgADP (Borders et al. 2002), it was found that, unlike native CK, none of the mutants have the ability to form a quaternary TSAC. We use these data to propose that asparagine 285 indeed plays a key role in transition state stabilization in the reaction catalyzed by creatine kinase and other phosphagen kinases.

  15. Executive function moderates the role of muscular fitness in determining functional mobility in older adults.

    PubMed

    Forte, Roberta; Pesce, Caterina; Leite, Joao Costa; De Vito, Giuseppe; Gibney, Eileen R; Tomporowski, Phillip D; Boreham, Colin A G

    2013-06-01

    Both physical and cognitive factors are known to independently predict functional mobility in older people. However, the combined predictive value of both physical fitness and cognitive factors on functional mobility has been less investigated. The aim of the present study was to assess if cognitive executive functions moderate the role of physical fitness in determining functional mobility of older individuals. Fifty-seven 65- to 75-year-old healthy participants performed tests of functional mobility (habitual and maximal walking speed, maximal walking speed while picking up objects/stepping over obstacles), physical fitness (peak power, knee extensors torque, back/lower limb flexibility, aerobic fitness), and executive function (inhibition and cognitive flexibility). Maximal walking speeds were predicted by physical fitness parameters and their interaction with cognitive factors. Knee extensor torque emerged as the main predictor of all tested locomotor performances at maximal speed. The effect of peak power and back/lower limb flexibility was moderated by executive functions. In particular, inhibition and cognitive flexibility differed in the way in which they moderate the role of fitness. High levels of cognitive flexibility seem necessary to take advantage of leg power for walking at maximal speed. In contrast, high levels of inhibitory capacity seem to compensate for low levels of back/lower limb flexibility when picking up movements are added to a locomotor task. These findings may have important practical implications for the design and implementation of multi-component training programs aimed at optimizing functional abilities in older adults.

  16. A Study of the Relationship between Key Factors of Academic Innovation and Faculties' Teaching Goals--The Mediatory Role of Knowledge

    ERIC Educational Resources Information Center

    Mohammadi, Mehdi; Marzooghi, Rahmatullah; Dehghani, Fatemeh

    2017-01-01

    The following research tries to study the Relationship between key factors of academic innovations and faculties' teaching goals with the mediatory role of their pedagogical, technological and content knowledge. The statistical population in this research included faculty members of Shiraz University. By simple random sampling, 127 faculty members…

  17. Structure and function of gap junction proteins: role of gap junction proteins in embryonic heart development.

    PubMed

    Ahir, Bhavesh K; Pratten, Margaret K

    2014-01-01

    Intercellular (cell-to-cell) communication is a crucial and complex mechanism during embryonic heart development. In the cardiovascular system, the beating of the heart is a dynamic and key regulatory process, which is functionally regulated by the coordinated spread of electrical activity through heart muscle cells. Heart tissues are composed of individual cells, each bearing specialized cell surface membrane structures called gap junctions that permit the intercellular exchange of ions and low molecular weight molecules. Gap junction channels are essential in normal heart function and they assist in the mediated spread of electrical impulses that stimulate synchronized contraction (via an electrical syncytium) of cardiac tissues. This present review describes the current knowledge of gap junction biology. In the first part, we summarise some relevant biochemical and physiological properties of gap junction proteins, including their structure and function. In the second part, we review the current evidence demonstrating the role of gap junction proteins in embryonic development with particular reference to those involved in embryonic heart development. Genetics and transgenic animal studies of gap junction protein function in embryonic heart development are considered and the alteration/disruption of gap junction intercellular communication which may lead to abnormal heart development is also discussed.

  18. Probing the Role of Nascent Helicity in p27 Function as a Cell Cycle Regulator

    PubMed Central

    Otieno, Steve; Kriwacki, Richard

    2012-01-01

    p27 regulates the activity of Cdk complexes which are the principal governors of phase transitions during cell division. Members of the p27 family of proteins, which also includes p21 and p57, are called the Cip/Kip cyclin-dependent kinase regulators (CKRs). Interestingly, the Cip/Kip CKRs play critical roles in cell cycle regulation by being intrinsically unstructured, a characteristic contrary to the classical structure-function paradigm. They exhibit nascent helicity which has been localized to a segment referred to as sub-domain LH. The nascent helicity of this sub-domain is conserved and we hypothesize that it is an important determinant of their functional properties. To test this hypothesis, we successfully designed and prepared p27 variants in which domain LH was either more or less helical with respect to the wild-type protein. Thermal denaturation experiments showed that the ternary complexes of the p27 variants bound to Cdk2/Cyclin A were less stable compared to the wild-type complex. Isothermal titration calorimetry experiments showed a decrease in the enthalpy of binding for all the mutants with respect to p27. The free energies of binding varied within a much narrower range. In vitro Cdk2 inhibition assays showed that the p27 variants exhibited disparate inhibitory potencies. Furthermore, when over-expressed in NIH 3T3 mouse fibroblast cells, the less helical p27 variants were less effective in causing cell cycle arrest relative to the wild-type p27. Our results indicate that the nascent helicity of sub-domain LH plays a key role mediating the biological function of p27. PMID:23071750

  19. A Role for Brain Stress Systems in Addiction

    PubMed Central

    Koob, George F.

    2009-01-01

    Drug addiction is a chronically relapsing disorder characterized by compulsion to seek and take drugs and has been linked to dysregulation of brain regions that mediate reward and stress. Activation of brain stress systems is hypothesized to be key to the negative emotional state produced by dependence that drives drug seeking through negative reinforcement mechanisms. This review explores the role of brain stress systems (corticotropin-releasing factor, norepinephrine, orexin [hypocretin], vasopressin, dynorphin) and brain antistress systems (neuropeptide Y, nociceptin [orphanin FQ]) in drug dependence, with emphasis on the neuropharmacological function of extrahypothalamic systems in the extended amygdala. The brain stress and antistress systems may play a key role in the transition to and maintenance of drug dependence once initiated. Understanding the role of brain stress and antistress systems in addiction provides novel targets for treatment and prevention of addiction and insights into the organization and function of basic brain emotional circuitry. PMID:18614026

  20. SLAR image interpretation keys for geographic analysis

    NASA Technical Reports Server (NTRS)

    Coiner, J. C.

    1972-01-01

    A means for side-looking airborne radar (SLAR) imagery to become a more widely used data source in geoscience and agriculture is suggested by providing interpretation keys as an easily implemented interpretation model. Interpretation problems faced by the researcher wishing to employ SLAR are specifically described, and the use of various types of image interpretation keys to overcome these problems is suggested. With examples drawn from agriculture and vegetation mapping, direct and associate dichotomous image interpretation keys are discussed and methods of constructing keys are outlined. Initial testing of the keys, key-based automated decision rules, and the role of the keys in an information system for agriculture are developed.

  1. The Role of Noise in Brain Function

    NASA Astrophysics Data System (ADS)

    Roy, S.; Llinás, R.

    2012-12-01

    Noise plays a fundamental role in all living organisms from the earliest prokaryotes to advanced mammalian forms, such as ourselves. In the context of living organisms, the term 'noise' usually refers to the variance amongst measurements obtained from repeated identical experimental conditions, or from output signals from these systems. It is noteworthy that both these conditions are universally characterized by the presence of background fluctuations. In non-biological systems, such as electronics or in communications sciences, where the aim is to send error-free messages, noise was generally regarded as a problem. The discovery of Stochastic Resonances (SR) in non-linear dynamics brought a shift of perception where noise, rather than representing a problem, became fundamental to system function, especially so in biology. The question now is: to what extent is biological function dependent on random noise. Indeed, it seems feasible that noise also plays an important role in neuronal communication and oscillatory synchronization. Given this approach, it follows that determining Fisher information content could be relevant in neuronal communication. It also seems possible that the principle of least time, and that of the sum over histories, could be important basic principles in understanding the coherence dynamics responsible for action and perception. Ultimately, external noise cancellation combined with intrinsic noise signal embedding and, the use of the principle of least time may be considered an essential step in the organization of central nervous system (CNS) function.

  2. The role of long-range connectivity for the characterization of the functional-anatomical organization of the cortex.

    PubMed

    Knösche, Thomas R; Tittgemeyer, Marc

    2011-01-01

    This review focuses on the role of long-range connectivity as one element of brain structure that is of key importance for the functional-anatomical organization of the cortex. In this context, we discuss the putative guiding principles for mapping brain function and structure onto the cortical surface. Such mappings reveal a high degree of functional-anatomical segregation. Given that brain regions frequently maintain characteristic connectivity profiles and the functional repertoire of a cortical area is closely related to its anatomical connections, long-range connectivity may be used to define segregated cortical areas. This methodology is called connectivity-based parcellation. Within this framework, we investigate different techniques to estimate connectivity profiles with emphasis given to non-invasive methods based on diffusion magnetic resonance imaging (dMRI) and diffusion tractography. Cortical parcellation is then defined based on similarity between diffusion tractograms, and different clustering approaches are discussed. We conclude that the use of non-invasively acquired connectivity estimates to characterize the functional-anatomical organization of the brain is a valid, relevant, and necessary endeavor. Current and future developments in dMRI technology, tractography algorithms, and models of the similarity structure hold great potential for a substantial improvement and enrichment of the results of the technique.

  3. Key Considerations of Community, Scalability, Supportability, Security, and Functionality in Selecting Open-Source Software in California Universities as Perceived by Technology Leaders

    ERIC Educational Resources Information Center

    Britton, Todd Alan

    2014-01-01

    Purpose: The purpose of this study was to examine the key considerations of community, scalability, supportability, security, and functionality for selecting open-source software in California universities as perceived by technology leaders. Methods: After a review of the cogent literature, the key conceptual framework categories were identified…

  4. miR-125b Functions as a Key Mediator for Snail-induced Stem Cell Propagation and Chemoresistance*

    PubMed Central

    Liu, Zixing; Liu, Hao; Desai, Shruti; Schmitt, David C.; Zhou, Ming; Khong, Hung T.; Klos, Kristine S.; McClellan, Steven; Fodstad, Oystein; Tan, Ming

    2013-01-01

    Chemoresistance is a major obstacle in cancer treatment. Our previous studies have shown that miR-125b plays an important role in chemoresistance. Here we report a novel mechanism that up-regulation of miR-125b through Wnt signaling by Snail enriches cancer stem cells. Overexpression of Snail dramatically increases the expression of miR-125b through the Snail-activated Wnt/β-catenin/TCF4 axis. Snail confers chemoresistance by repressing Bak1 through up-regulation of miR-125b. Restoring the expression of Bak1 or depleting miR-125b re-sensitizes Snail-expressing cancer cells to Taxol, indicating that miR-125b is critical in Snail-induced chemoresistance. Moreover, overexpression of miR-125b significantly increases the cancer stem cell population (CD24-CD44+), while depletion of miR-125b or rescue of the expression of Bak1 increases the non-stem cell population (CD24+CD44+) in Snail-overexpressing cells. These findings strongly support that miR-125b functions as a key mediator in Snail-induced cancer stem cell enrichment and chemoresistance. This novel mechanism for Snail-induced stem cell propagation and chemoresistance may have important implications in the development of strategies for overcoming cancer cell resistance to chemotherapy. PMID:23255607

  5. Family quality of life and ASD: the role of child adaptive functioning and behavior problems.

    PubMed

    Emily, Gardiner; Grace, Iarocci

    2015-04-01

    The family is the key support network for children with autism spectrum disorder (ASD), in many cases into adulthood. The Family Quality of Life (FQOL) construct encompasses family satisfaction with both internal and external dynamics, as well as support availability. Therefore, although these families face considerable risk in raising a child with a disability, the FQOL outcome is conceptualized as representative of a continuum of family adaptation. This study examined the role of child characteristics, including adaptive functioning and behaviour problems, in relation to FQOL. Eighty-four caregivers of children and adolescents (range = 6-18 years) with ASD participated, completing questionnaires online and by telephone. Adaptive functioning, and specifically daily living skills, emerged as a significant predictor of FQOL satisfaction, after accounting for behavioural and demographic characteristics, including child age, gender, perceived disability severity, and behavioural problems, as well as family income. Furthermore, there were significant differences across each domain of FQOL when groups were separated by daily living skill functioning level ('low,' 'moderately low,' and 'adequate'). The results suggest that intervention strategies targeting daily living skills will likely have beneficial effects for both individual and family well-being, and may reduce family support demands. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  6. The Role of Corpus Callosum Development in Functional Connectivity and Cognitive Processing

    PubMed Central

    Findlay, Anne M.; Honma, Susanne; Jeremy, Rita J.; Strominger, Zoe; Bukshpun, Polina; Wakahiro, Mari; Brown, Warren S.; Paul, Lynn K.; Barkovich, A. James; Mukherjee, Pratik; Nagarajan, Srikantan S.; Sherr, Elliott H.

    2012-01-01

    The corpus callosum is hypothesized to play a fundamental role in integrating information and mediating complex behaviors. Here, we demonstrate that lack of normal callosal development can lead to deficits in functional connectivity that are related to impairments in specific cognitive domains. We examined resting-state functional connectivity in individuals with agenesis of the corpus callosum (AgCC) and matched controls using magnetoencephalographic imaging (MEG-I) of coherence in the alpha (8–12 Hz), beta (12–30 Hz) and gamma (30–55 Hz) bands. Global connectivity (GC) was defined as synchronization between a region and the rest of the brain. In AgCC individuals, alpha band GC was significantly reduced in the dorsolateral pre-frontal (DLPFC), posterior parietal (PPC) and parieto-occipital cortices (PO). No significant differences in GC were seen in either the beta or gamma bands. We also explored the hypothesis that, in AgCC, this regional reduction in functional connectivity is explained primarily by a specific reduction in interhemispheric connectivity. However, our data suggest that reduced connectivity in these regions is driven by faulty coupling in both inter- and intrahemispheric connectivity. We also assessed whether the degree of connectivity correlated with behavioral performance, focusing on cognitive measures known to be impaired in AgCC individuals. Neuropsychological measures of verbal processing speed were significantly correlated with resting-state functional connectivity of the left medial and superior temporal lobe in AgCC participants. Connectivity of DLPFC correlated strongly with performance on the Tower of London in the AgCC cohort. These findings indicate that the abnormal callosal development produces salient but selective (alpha band only) resting-state functional connectivity disruptions that correlate with cognitive impairment. Understanding the relationship between impoverished functional connectivity and cognition is a key step

  7. Experimental quantum key distribution with finite-key security analysis for noisy channels.

    PubMed

    Bacco, Davide; Canale, Matteo; Laurenti, Nicola; Vallone, Giuseppe; Villoresi, Paolo

    2013-01-01

    In quantum key distribution implementations, each session is typically chosen long enough so that the secret key rate approaches its asymptotic limit. However, this choice may be constrained by the physical scenario, as in the perspective use with satellites, where the passage of one terminal over the other is restricted to a few minutes. Here we demonstrate experimentally the extraction of secure keys leveraging an optimal design of the prepare-and-measure scheme, according to recent finite-key theoretical tight bounds. The experiment is performed in different channel conditions, and assuming two distinct attack models: individual attacks or general quantum attacks. The request on the number of exchanged qubits is then obtained as a function of the key size and of the ambient quantum bit error rate. The results indicate that viable conditions for effective symmetric, and even one-time-pad, cryptography are achievable.

  8. SCOP/PHLPP and its functional role in the brain.

    PubMed

    Shimizu, Kimiko; Mackenzie, Scott M; Storm, Daniel R

    2010-01-01

    SCOP (suprachiasmatic nucleus (SCN) circadian oscillatory protein) was originally identified in 1999 in a differential display screen of the rat SCN for genes whose expression were regulated in a circadian manner (K. Shimizu, M. Okada, A. Takano and K. Nagai, FEBS Lett., 1999, 458, 363-369). The SCN is the principle pacemaker of the circadian clock, and expression of SCOP protein in the SCN was found to oscillate, increasing during the subjective night, even when animals were housed in constant darkness. SCOP interacts with and inhibits multiple proteins important for intracellular signaling, either by directly binding to K-Ras or by dephosphorylating p-Akt and p-PKC. Since the functions of K-Ras, Akt, and PKC are considerably divergent, SCOP may have several roles. We recently discovered that SCOP participates in the formation of long-term hippocampus-dependent memories, and other investigators have examined its role in cell proliferation and survival. In this review, we introduce SCOP from its molecular structure to its physiological functions, focusing mainly on its role in ERK1/2 activation and memory consolidation.

  9. SCOP/PHLPP and its functional role in the brain

    PubMed Central

    Shimizu, Kimiko; Mackenzie, Scott M.; Storm, Daniel R.

    2012-01-01

    SCOP (suprachiasmatic nucleus (SCN) circadian oscillatory protein) was originally identified in 1999 in a differential display screen of the rat SCN for genes whose expression were regulated in a circadian manner (K. Shimizu, M. Okada, A. Takano and K. Nagai, FEBS Lett., 1999, 458, 363–369). The SCN is the principle pacemaker of the circadian clock, and expression of SCOP protein in the SCN was found to oscillate, increasing during the subjective night, even when animals were housed in constant darkness. SCOP interacts with and inhibits multiple proteins important for intracellular signaling, either by directly binding to K-Ras or by dephosphorylating p-Akt and p-PKC. Since the functions of K-Ras, Akt, and PKC are considerably divergent, SCOP may have several roles. We recently discovered that SCOP participates in the formation of long-term hippocampus-dependent memories, and other investigators have examined its role in cell proliferation and survival. In this review, we introduce SCOP from its molecular structure to its physiological functions, focusing mainly on its role in ERK1/2 activation and memory consolidation. PMID:20024065

  10. Beyond traditional approaches to understanding the functional role of neuromodulators in sensory cortices

    PubMed Central

    Edeline, Jean-Marc

    2012-01-01

    Over the last two decades, a vast literature has described the influence of neuromodulatory systems on the responses of sensory cortex neurons (review in Gu, 2002; Edeline, 2003; Weinberger, 2003; Metherate, 2004, 2011). At the single cell level, facilitation of evoked responses, increases in signal-to-noise ratio, and improved functional properties of sensory cortex neurons have been reported in the visual, auditory, and somatosensory modality. At the map level, massive cortical reorganizations have been described when repeated activation of a neuromodulatory system are associated with a particular sensory stimulus. In reviewing our knowledge concerning the way the noradrenergic and cholinergic system control sensory cortices, I will point out that the differences between the protocols used to reveal these effects most likely reflect different assumptions concerning the role of the neuromodulators. More importantly, a gap still exists between the descriptions of neuromodulatory effects and the concepts that are currently applied to decipher the neural code operating in sensory cortices. Key examples that bring this gap into focus are the concept of cell assemblies and the role played by the spike timing precision (i.e., by the temporal organization of spike trains at the millisecond time-scale) which are now recognized as essential in sensory physiology but are rarely considered in experiments describing the role of neuromodulators in sensory cortices. Thus, I will suggest that several lines of research, particularly in the field of computational neurosciences, should help us to go beyond traditional approaches and, ultimately, to understand how neuromodulators impact on the cortical mechanisms underlying our perceptual abilities. PMID:22866031

  11. The Historical Role of the Production Function in Economics and Business

    ERIC Educational Resources Information Center

    Gordon, David; Vaughan, Richard

    2011-01-01

    The production function explains a basic technological relationship between scarce resources, or inputs, and output. This paper offers a brief overview of the historical significance and operational role of the production function in business and economics. The origin and development of this function over time is initially explored. Several…

  12. Integrated omics for the identification of key functionalities in biological wastewater treatment microbial communities.

    PubMed

    Narayanasamy, Shaman; Muller, Emilie E L; Sheik, Abdul R; Wilmes, Paul

    2015-05-01

    Biological wastewater treatment plants harbour diverse and complex microbial communities which prominently serve as models for microbial ecology and mixed culture biotechnological processes. Integrated omic analyses (combined metagenomics, metatranscriptomics, metaproteomics and metabolomics) are currently gaining momentum towards providing enhanced understanding of community structure, function and dynamics in situ as well as offering the potential to discover novel biological functionalities within the framework of Eco-Systems Biology. The integration of information from genome to metabolome allows the establishment of associations between genetic potential and final phenotype, a feature not realizable by only considering single 'omes'. Therefore, in our opinion, integrated omics will become the future standard for large-scale characterization of microbial consortia including those underpinning biological wastewater treatment processes. Systematically obtained time and space-resolved omic datasets will allow deconvolution of structure-function relationships by identifying key members and functions. Such knowledge will form the foundation for discovering novel genes on a much larger scale compared with previous efforts. In general, these insights will allow us to optimize microbial biotechnological processes either through better control of mixed culture processes or by use of more efficient enzymes in bioengineering applications. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. Role and functions of beneficial microorganisms in sustainable aquaculture.

    PubMed

    Zhou, Qunlan; Li, Kangmin; Jun, Xie; Bo, Liu

    2009-08-01

    This paper aims to review the development of scientific concepts of microecology and ecology of microbes and the role and functions of beneficial microorganisms in aquaculture and mariculture. Beneficial microorganisms play a great role in natural and man-made aquatic ecosystems based on the co-evolution theory in living biosphere on earth. Their functions are to adjust algal population in water bodies so as to avoid unwanted algal bloom; to speed up decomposition of organic matter and to reduce CODmn, NH3-N and NO2-N in water and sediments so as to improve water quality; to suppress fish/shrimp diseases and water-borne pathogens; to enhance immune system of cultured aquatic animals and to produce bioactive compounds such as vitamins, hormones and enzymes that stimulate growth, thus to decrease the FCR of feed.

  14. Gender differences in the roles and functions of inpatient psychiatric nurses.

    PubMed

    Torkelson, Diane J; Seed, Mary S

    2011-03-01

    This study explored the difference between male and female psychiatric nurses' job performance and job satisfaction levels on an acute care inpatient unit. The amount of time male (n = 28) and female (n = 45) nurses spent on 10 specific functions and roles during a shift were observed and recorded. The nurses also self-rated the amount of time they spent on these specific functions and roles. The observed and self-rated functions were then correlated with job satisfaction. Female nurses were observed and self-rated as spending significantly more time on patient care activities, and these activities were significantly correlated with higher job satisfaction levels. Male nurses who self-rated spending more time on patient care activities had significantly lower job satisfaction scores. Findings confirm the concepts from social role theory that gender identity and expectations influence job performance in psychiatric nursing. The results offer insight for increasing job satisfaction and recruitment/retention efforts. Copyright 2011, SLACK Incorporated.

  15. Functional Nanofibers and Colloidal Gels: Key Elements to Enhance Functionality

    NASA Astrophysics Data System (ADS)

    Vogel, Nancy Amanda

    material so that prolonged release can be readily achieved from highly water soluble nanofibers. The final research theme focuses on gaining a fundamental understanding of a new class of materials, nanodiamond, so that a desired microstructure can be achieved via functionalization or manipulating processing parameters. In particular, we utilize both steady and dynamic rheology techniques to systematically investigate systems of nanodiamonds dispersed in model nonpolar (mineral oil) and polar (glycerol) media. In both cases, selfsupporting colloidal gels form at relatively low nanodiamond content; however, the gel behavior is highly dependent on the type of media used. Nanodiamonds dispersed in mineral oil exhibit characteristic colloidal gel behavior, with a rheological response that is independent of both frequency and time. However, nanodiamonds dispersed in glycerol exhibit a time dependent response, with the strength of the colloidal gels increasing several orders of magnitude. We attribute these rheological differences to changes in solvent complexity, where new particle-solvent and particle-particle interactions have the potential to delay optimal gel formation. In addition to colloidal gel formation, we use large oscillatory strains to probe the effect of processing parameters on microstructure disruption and recovery. The results indicate that the formation and rearrangement of the nanodiamond microstructures are concentration dependent for both media types; however, the recovery after breakdown is different for each system. Recovery of the nanodiamond/mineral oil gels is incomplete, with the strength of the recovered gel being significantly reduced. In contrast, the original strength of the nanodiamond/glycerol gels is recoverable as the system restructures with time. The practical implications of these results are significant as it suggest that shear history and solvent polarity play a dominant role in nanodiamond processing.

  16. The polygalacturonase FaPG1 gene plays a key role in strawberry fruit softening

    PubMed Central

    García-Gago, Juan A; Posé, Sara; Muñoz-Blanco, Juan; Quesada, Miguel A

    2009-01-01

    The loss of firm texture is one of the most characteristic physiological processes that occur during the ripening of fleshy fruits. It is generally accepted that the disassembly of primary cell wall and middle lamella is the main factor involved in fruit softening. In this process, polygalacturonase (PG) has been implicated in the degradation of the polyuronide network in several fruits. However, the minor effect of PG downregulation on tomato softening, reported during the nineties, minimized the role of this enzyme in softening. Further works in other fruits are challenging this general assumption, as is occurring in strawberry. The strawberry (Fragaria × ananassa) fruit undergoes an extensive and fast softening that limit its shelf life and postharvest. Traditionally, it has also been considered that PG plays a minor role on this process, due to the low PG activity found in ripened strawberry fruits. Transgenic strawberry plants expressing an antisense sequence of the ripening-specific PG gene FaPG1 have been generated to get an insight into the role of this gene in softening. Half of the transgenic lines analyzed yielded fruits significantly firmer than control, without being affected other fruit parameters such as weight, color or soluble solids. The increase on firmness was maintained after several days of posharvest. In these firmer lines, FaPG1 was silenced to 95%, but total PG activity was only minor reduced. At the cell wall level, transgenic fruits contained a higher amount of covalently bound pectins whereas the soluble fraction was diminished. A microarray analysis of genes expressed in ripened receptacle did not show any significant change between control and transgenic fruits. Thus, contrary to the most accepted view, it is concluded that PG plays a key role on pectin metabolism and softening of strawberry fruit. PMID:19820312

  17. The polygalacturonase FaPG1 gene plays a key role in strawberry fruit softening.

    PubMed

    García-Gago, Juan A; Posé, Sara; Muñoz-Blanco, Juan; Quesada, Miguel A; Mercado, José A

    2009-08-01

    The loss of firm texture is one of the most characteristic physiological processes that occur during the ripening of fleshy fruits. It is generally accepted that the disassembly of primary cell wall and middle lamella is the main factor involved in fruit softening. In this process, polygalacturonase (PG) has been implicated in the degradation of the polyuronide network in several fruits. However, the minor effect of PG downregulation on tomato softening, reported during the nineties, minimized the role of this enzyme in softening. Further works in other fruits are challenging this general assumption, as is occurring in strawberry. The strawberry (Fragaria x ananassa) fruit undergoes an extensive and fast softening that limit its shelf life and postharvest. Traditionally, it has also been considered that PG plays a minor role on this process, due to the low PG activity found in ripened strawberry fruits. Transgenic strawberry plants expressing an antisense sequence of the ripening-specific PG gene FaPG1 have been generated to get an insight into the role of this gene in softening. Half of the transgenic lines analyzed yielded fruits significantly firmer than control, without being affected other fruit parameters such as weight, color or soluble solids. The increase on firmness was maintained after several days of posharvest. In these firmer lines, FaPG1 was silenced to 95%, but total PG activity was only minor reduced. At the cell wall level, transgenic fruits contained a higher amount of covalently bound pectins whereas the soluble fraction was diminished. A microarray analysis of genes expressed in ripened receptacle did not show any significant change between control and transgenic fruits. Thus, contrary to the most accepted view, it is concluded that PG plays a key role on pectin metabolism and softening of strawberry fruit.

  18. Arabidopsis Transcriptome Analysis Reveals Key Roles of Melatonin in Plant Defense Systems

    PubMed Central

    Weeda, Sarah; Zhang, Na; Zhao, Xiaolei; Ndip, Grace; Guo, Yangdong; Buck, Gregory A.; Fu, Conggui; Ren, Shuxin

    2014-01-01

    Melatonin is a ubiquitous molecule and exists across kingdoms including plant species. Studies on melatonin in plants have mainly focused on its physiological influence on growth and development, and on its biosynthesis. Much less attention has been drawn to its affect on genome-wide gene expression. To comprehensively investigate the role(s) of melatonin at the genomics level, we utilized mRNA-seq technology to analyze Arabidopsis plants subjected to a 16-hour 100 pM (low) and 1 mM (high) melatonin treatment. The expression profiles were analyzed to identify differentially expressed genes. 100 pM melatonin treatment significantly affected the expression of only 81 genes with 51 down-regulated and 30 up-regulated. However, 1 mM melatonin significantly altered 1308 genes with 566 up-regulated and 742 down-regulated. Not all genes altered by low melatonin were affected by high melatonin, indicating different roles of melatonin in regulation of plant growth and development under low and high concentrations. Furthermore, a large number of genes altered by melatonin were involved in plant stress defense. Transcript levels for many stress receptors, kinases, and stress-associated calcium signals were up-regulated. The majority of transcription factors identified were also involved in plant stress defense. Additionally, most identified genes in ABA, ET, SA and JA pathways were up-regulated, while genes pertaining to auxin responses and signaling, peroxidases, and those associated with cell wall synthesis and modifications were mostly down-regulated. Our results indicate critical roles of melatonin in plant defense against various environmental stresses, and provide a framework for functional analysis of genes in melatonin-mediated signaling pathways. PMID:24682084

  19. Role of Gender, Sex Role Identity, and Type A Behavior in Anger Expression and Mental Health Functioning.

    ERIC Educational Resources Information Center

    Kopper, Beverly A.

    1993-01-01

    Investigated relationship of gender, sex role identity, Type A behavior to multiple dimensions of anger expression and mental health functioning among 407 female and 222 male college students. Found significant multivariate effects for sex role and behavior pattern type for anger expression. Significant gender differences were not observed.…

  20. Role of selenium-containing proteins in T cell and macrophage function

    PubMed Central

    Carlson, Bradley A.; Yoo, Min-Hyuk; Shrimali, Rajeev K.; Irons, Robert; Gladyshev, Vadim N.; Hatfield, Dolph L.; Park, Jin Mo

    2011-01-01

    Synopsis Selenium has been known for many years to have a role in boosting immune function, but the manner in which this element acts at the molecular level in host defense and inflammatory diseases is poorly understood. To elucidate the role of selenium-containing proteins in immune function, we knocked out the expression of this protein class in T cells or macrophages of mice by targeting the removal of the selenocysteine tRNA gene using loxP-Cre technology. Mice with selenoprotein-less T cells manifested reduced pools of mature and functional T cells in lymphoid tissues and an impairment in T cell-dependent antibody responses. Furthermore, selenoprotein deficiency in T cells led to an inability of these cells to suppress reactive oxygen species (ROS) production, which in turn affected their ability to proliferate in response to T cell receptor stimulation. Selenoprotein-less macrophages, on the other hand, manifested mostly normal inflammatory responses, but this deficiency resulted in an altered regulation in extracellular matrix-related gene expression and a diminished migration of macrophages in a protein gel matrix. These observations provided novel insights into the role of selenoproteins in immune function and tissue homeostasis. PMID:20576203

  1. The cerebellum: its role in language and related cognitive and affective functions.

    PubMed

    De Smet, Hyo Jung; Paquier, Philippe; Verhoeven, Jo; Mariën, Peter

    2013-12-01

    The traditional view on the cerebellum as the sole coordinator of motor function has been substantially redefined during the past decades. Neuroanatomical, neuroimaging and clinical studies have extended the role of the cerebellum to the modulation of cognitive and affective processing. Neuroanatomical studies have demonstrated cerebellar connectivity with the supratentorial association areas involved in higher cognitive and affective functioning, while functional neuroimaging and clinical studies have provided evidence of cerebellar involvement in a variety of cognitive and affective tasks. This paper reviews the recently acknowledged role of the cerebellum in linguistic and related cognitive and behavioral-affective functions. In addition, typical cerebellar syndromes such as the cerebellar cognitive affective syndrome (CCAS) and the posterior fossa syndrome (PFS) will be briefly discussed and the current hypotheses dealing with the presumed neurobiological mechanisms underlying the linguistic, cognitive and affective modulatory role of the cerebellum will be reviewed. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Role of stromal cell-derived factor 1 (SDF1/CXCL12) in regulating anterior pituitary function.

    PubMed

    Barbieri, Federica; Bajetto, Adriana; Porcile, Carola; Pattarozzi, Alessandra; Schettini, Gennaro; Florio, Tullio

    2007-03-01

    Chemokines are key factors involved in the regulation of immune response, through the activation and control of leukocyte traffic, lymphopoiesis and immune surveillance. However, a large number of chemokines and their receptors are expressed in central nervous system (CNS) cells, either constitutively or induced by inflammatory stimuli, playing a role in many neuropathological processes. Stromal cell-derived factor 1 (SDF1) is a chemokine whose extra-immunological localization and functions have been extensively studied. SDF1 and its receptor CXCR4 were identified in both neurons and glia of many brain areas, including the hypothalamus, as well as at the pituitary level. Importantly, SDF1 and CXCR4 expression is increased in brain tumors in which their activity induced tumor cell proliferation and brain parenchyma invasion. Despite their localization, to date very few reports addressed the role of CXCR4 and SDF1 in the modulation of the hypothalamus/pituitary axis and their possible involvement in the development of pituitary adenomas. In this review, we discuss previous literature data on the role of chemokines in normal and adenomatous pituitary cells, focusing on recent data from our group showing that CXCR4 activation controls proliferation and both prolactin and GH release in the pituitary adenoma cell line GH4C1 through a complex network of intracellular signals. Thus, the SDF1/CXCR4 system together with other chemokinergic ligand-receptor pairs, may represent a novel regulatory pathway for pituitary function and, possibly, be involved in pituitary adenoma development. These lines of evidence suggest that the inhibition of chemokine receptors may represent a novel pharmacological target for the treatment of pituitary adenomas.

  3. Bruton's Tyrosine Kinase: An Emerging Key Player in Innate Immunity.

    PubMed

    Weber, Alexander N R; Bittner, Zsofia; Liu, Xiao; Dang, Truong-Minh; Radsak, Markus Philipp; Brunner, Cornelia

    2017-01-01

    Bruton's tyrosine kinase (BTK) was initially discovered as a critical mediator of B cell receptor signaling in the development and functioning of adaptive immunity. Growing evidence also suggests multiple roles for BTK in mononuclear cells of the innate immune system, especially in dendritic cells and macrophages. For example, BTK has been shown to function in Toll-like receptor-mediated recognition of infectious agents, cellular maturation and recruitment processes, and Fc receptor signaling. Most recently, BTK was additionally identified as a direct regulator of a key innate inflammatory machinery, the NLRP3 inflammasome. BTK has thus attracted interest not only for gaining a more thorough basic understanding of the human innate immune system but also as a target to therapeutically modulate innate immunity. We here review the latest developments on the role of BTK in mononuclear innate immune cells in mouse versus man, with specific emphasis on the sensing of infectious agents and the induction of inflammation. Therapeutic implications for modulating innate immunity and critical open questions are also discussed.

  4. Antimicrobial Nanoplexes meet Model Bacterial Membranes: the key role of Cardiolipin

    NASA Astrophysics Data System (ADS)

    Marín-Menéndez, Alejandro; Montis, Costanza; Díaz-Calvo, Teresa; Carta, Davide; Hatzixanthis, Kostas; Morris, Christopher J.; McArthur, Michael; Berti, Debora

    2017-01-01

    Antimicrobial resistance to traditional antibiotics is a crucial challenge of medical research. Oligonucleotide therapeutics, such as antisense or Transcription Factor Decoys (TFDs), have the potential to circumvent current resistance mechanisms by acting on novel targets. However, their full translation into clinical application requires efficient delivery strategies and fundamental comprehension of their interaction with target bacterial cells. To address these points, we employed a novel cationic bolaamphiphile that binds TFDs with high affinity to form self-assembled complexes (nanoplexes). Confocal microscopy revealed that nanoplexes efficiently transfect bacterial cells, consistently with biological efficacy on animal models. To understand the factors affecting the delivery process, liposomes with varying compositions, taken as model synthetic bilayers, were challenged with nanoplexes and investigated with Scattering and Fluorescence techniques. Thanks to the combination of results on bacteria and synthetic membrane models we demonstrate for the first time that the prokaryotic-enriched anionic lipid Cardiolipin (CL) plays a key-role in the TFDs delivery to bacteria. Moreover, we can hypothesize an overall TFD delivery mechanism, where bacterial membrane reorganization with permeability increase and release of the TFD from the nanoplexes are the main factors. These results will be of great benefit to boost the development of oligonucleotides-based antimicrobials of superior efficacy.

  5. A Novel Role for the Immunoproteasome in Retinal Function

    PubMed Central

    Hussong, Stacy A.; Roehrich, Heidi; Kapphahn, Rebecca J.; Maldonado, Marcela; Pardue, Machelle T.

    2011-01-01

    Purpose. The immunoproteasome is a proteasome subtype with a well-characterized role in the immune system. The presence of high immunoproteasome concentrations in the photoreceptors and synaptic regions of the immune-privileged retina implies a role in visual transmission. In this study, immunoproteasome knockout (KO) mice lacking either one (lmp7−/−, L7) or two (lmp7−/−/mecl-1−/−, L7M1) catalytic subunits of the immunoproteasome were used to test the hypothesis that it is essential for the maintenance of normal retinal function. Methods. Wild-type (WT) and immunoproteasome KO mice lacking either one (L7) or two (L7M1) catalytic subunits of the immunoproteasome were studied to determine the importance of the immunoproteasome in maintaining normal retinal function and morphology. Changes in retinal morphology were assessed in mice 2 to 24 months of age. Retinal function was measured with electroretinography (ERG), and relative content of select retinal proteins was assessed by immunoblot analysis. Results. Retinal morphometry showed no major abnormalities in age-matched WT or KO mice. No significant difference was observed in the levels of proteins involved in vision transmission. ERGs from KO mice exhibited an approximate 25% decrease in amplitude of the dark- and light-adapted b-waves and faster dark-adapted b-wave implicit times. Conclusions. Immunoproteasome deficiency causes defects in bipolar cell response. These results support a previously unrecognized role for the immunoproteasome in vision transmission. PMID:20881299

  6. Children's Learning in Scientific Thinking: Instructional Approaches and Roles of Variable Identification and Executive Function

    NASA Astrophysics Data System (ADS)

    Blums, Angela

    The present study examines instructional approaches and cognitive factors involved in elementary school children's thinking and learning the Control of Variables Strategy (CVS), a critical aspect of scientific reasoning. Previous research has identified several features related to effective instruction of CVS, including using a guided learning approach, the use of self-reflective questions, and learning in individual and group contexts. The current study examined the roles of procedural and conceptual instruction in learning CVS and investigated the role of executive function in the learning process. Additionally, this study examined how learning to identify variables is a part of the CVS process. In two studies (individual and classroom experiments), 139 third, fourth, and fifth grade students participated in hands-on and paper and pencil CVS learning activities and, in each study, were assigned to either a procedural instruction, conceptual instruction, or control (no instruction) group. Participants also completed a series of executive function tasks. The study was carried out with two parts--Study 1 used an individual context and Study 2 was carried out in a group setting. Results indicated that procedural and conceptual instruction were more effective than no instruction, and the ability to identify variables was identified as a key piece to the CVS process. Executive function predicted ability to identify variables and predicted success on CVS tasks. Developmental differences were present, in that older children outperformed younger children on CVS tasks, and that conceptual instruction was slightly more effective for older children. Some differences between individual and group instruction were found, with those in the individual context showing some advantage over the those in the group setting in learning CVS concepts. Conceptual implications about scientific thinking and practical implications in science education are discussed.

  7. Do myoepithelial cells hold the key for breast tumorprogression?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyak, Kornelia; Hu, Min

    2005-11-18

    Mammary myoepithelial cells have been the foster child of breast cancer biology and have been largely ignored since they were considered to be less important for tumorigenesis than luminal epithelial cells from which most of breast carcinomas are thought to arise. In recent years as our knowledge in stem cell biology and the cellular microenvironment has been increasing myoepithelial cells are slowly starting to gain more attention. Emerging data raise the hypothesis if myoepithelial cells play a key role in breast tumor progression by regulating the in situ to invasive carcinoma transition and if myoepithelial cells are part of themore » mammary stem cell niche. Paracrine interactions between myoepithelial and luminal epithelial cells are known to be important for cell cycle arrest, establishing epithelial cell polarity, and inhibiting migration and invasion. Based on these functions normal mammary myoepithelial cells have been called ''natural tumor suppressors''. However, during tumor progression myoepithelial cells seem to loose these properties and eventually they themselves diminish as tumors become invasive. Better understanding of myoepithelial cell function and their role in tumor progression may lead to their exploitation for cancer therapeutic and preventative measures.« less

  8. Family Functioning and Adolescent Psychological Maladjustment: The Mediating Role of Coping Strategies.

    PubMed

    Francisco, Rita; Loios, Sara; Pedro, Marta

    2016-10-01

    This study aims to analyze the mediating role of coping strategies in the relationship between family functioning and youth maladjustment. A community sample of 341 adolescents (M = 15.11 years old; SD = 1.71) completed self-report measures about such variables. Results showed that a perception of an inadequate family functioning was associated with the use of maladaptive coping strategies, as well as with youth psychological maladjustment. The results also revealed that rumination and support-seeking mediated the relationship between family functioning and internalizing behavior, and hostile expression of feelings played a mediating role between family functioning and externalizing behavior. No gender differences were found in the relationship between variables. This study emphasizes the importance of coping strategies used by adolescents to understand the relationship between family functioning and youth psychological maladjustment.

  9. Mitochondrial function, ornamentation, and immunocompetence.

    PubMed

    Koch, Rebecca E; Josefson, Chloe C; Hill, Geoffrey E

    2017-08-01

    Understanding the mechanisms that link ornamental displays and individual condition is key to understanding the evolution and function of ornaments. Immune function is an aspect of individual quality that is often associated with the expression of ornamentation, but a general explanation for why the expression of some ornaments seems to be consistently linked to immunocompetence remains elusive. We propose that condition-dependent ornaments may be linked to key aspects of immunocompetence through co-dependence on mitochondrial function. Mitochondrial involvement in immune function is rarely considered outside of the biomedical literature, but the role of mitochondria as the primary energy producers of the cell and the centres of biosynthesis, the oxidative stress response, and cellular signalling place them at the hub of a variety of immune pathways. A promising new mechanistic explanation for correlations between a wide range of ornamental traits and the properties of individual quality is that mitochondrial function may be the 'shared pathway' responsible for links between ornament production and individual condition. Herein, we first review the role of mitochondria as both signal transducers and metabolic regulators of immune function. We then describe connections between hormonal pathways and mitochondria, with implications for both immune function and the expression of ornamentation. Finally, we explore the possibility that ornament expression may link directly to mitochondrial function. Considering condition-dependent traits within the framework of mitochondrial function has the potential to unify central tenets within the study of sexual selection, eco-immunology, oxidative stress ecology, stress and reproductive hormone biology, and animal physiology. © 2016 Cambridge Philosophical Society.

  10. Thai and Korean Students' Perceptions about the Roles and Functions of School Psychologists

    ERIC Educational Resources Information Center

    Tangdhanakanond, Kamonwan; Lee, Dong Hun

    2014-01-01

    The purpose of the present study was to compare Thai and Korean college students on their perceptions of the roles and functions of school psychologists. One hundred and ninety-three Thai college students and 238 Korean counterparts participated in this study. Students rated the importance of various roles/functions of a school psychologist and…

  11. Dendritic cells: key to fetal tolerance?

    PubMed

    Blois, Sandra M; Kammerer, Ulrike; Alba Soto, Catalina; Tometten, Mareike C; Shaikly, Valerie; Barrientos, Gabriela; Jurd, Richard; Rukavina, Daniel; Thomson, Angus W; Klapp, Burghard F; Fernández, Nelson; Arck, Petra C

    2007-10-01

    Pregnancy is a unique event in which a fetus, despite being genetically and immunologically different from the mother (a hemi-allograft), develops in the uterus. Successful pregnancy implies avoidance of rejection by the maternal immune system. Fetal and maternal immune cells come into direct contact at the decidua, which is a highly specialized mucous membrane that plays a key role in fetal tolerance. Uterine dendritic cells (DC) within the decidua have been implicated in pregnancy maintenance. DC serve as antigen-presenting cells with the unique ability to induce primary immune responses. Just as lymphocytes comprise different subsets, DC subsets have been identified that differentially control lymphocyte function. DC may also act to induce immunologic tolerance and regulation of T cell-mediated immunity. Current understanding of DC immunobiology within the context of mammalian fetal-maternal tolerance is reviewed and discussed herein.

  12. β-Arrestin2 plays a key role in the modulation of the pancreatic beta cell mass in mice.

    PubMed

    Ravier, Magalie A; Leduc, Michele; Richard, Joy; Linck, Nathalie; Varrault, Annie; Pirot, Nelly; Roussel, Morgane M; Bockaert, Joël; Dalle, Stéphane; Bertrand, Gyslaine

    2014-03-01

    Beta cell failure due to progressive secretory dysfunction and limited expansion of beta cell mass is a key feature of type 2 diabetes. Beta cell function and mass are controlled by glucose and hormones/neurotransmitters that activate G protein-coupled receptors or receptor tyrosine kinases. We have investigated the role of β-arrestin (ARRB)2, a scaffold protein known to modulate such receptor signalling, in the modulation of beta cell function and mass, with a specific interest in glucagon-like peptide-1 (GLP-1), muscarinic and insulin receptors. β-arrestin2-knockout mice and their wild-type littermates were fed a normal or a high-fat diet (HFD). Glucose tolerance, insulin sensitivity and insulin secretion were assessed in vivo. Beta cell mass was evaluated in pancreatic sections. Free cytosolic [Ca(2+)] and insulin secretion were determined using perifused islets. The insulin signalling pathway was evaluated by western blotting. Arrb2-knockout mice exhibited impaired glucose tolerance and insulin secretion in vivo, but normal insulin sensitivity compared with wild type. Surprisingly, the absence of ARRB2 did not affect glucose-stimulated insulin secretion or GLP-1- and acetylcholine-mediated amplifications from perifused islets, but it decreased the islet insulin content and beta cell mass. Additionally, there was no compensatory beta cell mass expansion through proliferation in response to the HFD. Furthermore, Arrb2 deletion altered the islet insulin signalling pathway. ARRB2 is unlikely to be involved in the regulation of insulin secretion, but it is required for beta cell mass plasticity. Additionally, we provide new insights into the mechanisms involved in insulin signalling in beta cells.

  13. The Inexpressive Male: Functional-Conflict and Role Theory as Contrasting Explanations.

    ERIC Educational Resources Information Center

    Balswick, Jack

    1979-01-01

    Compares functional-conflict and role theory perspectives in their ability to explain male inexpressiveness. The role theory approach incorporates the individual and the social structure in explaining male inexpressiveness. Change in male expressiveness can be expected if males are encouraged to devote more time and energy to emotionally laden…

  14. T cell fates ‘zipped up’: how the Bach2 basic leucine zipper transcriptional repressor directs T cell differentiation and function1

    PubMed Central

    Richer, Martin J.; Lang, Mark L.; Butler, Noah S.

    2016-01-01

    Recent data illustrate a key role for the transcriptional regulator Bach2 in orchestrating T cell differentiation and function. Although Bach2 has a well-described role in B cell differentiation, emerging data show that Bach2 is a prototypical member of a novel class of transcription factors that regulates transcriptional activity in T cells at super enhancers, or regions of high transcriptional activity. Accumulating data demonstrate specific roles for Bach2 in favoring regulatory T cell generation, restraining effector T cell differentiation and potentiating memory T cell development. Evidence suggests that Bach2 regulates various facets of T cell function by repressing other key transcriptional regulator such as Blimp-1. This review examines our current understanding of the role of Bach2 in T cell function and highlights the growing evidence that this transcriptional repressor functions as a key regulator involved in maintenance of T cell quiescence, T cell subset differentiation and memory T cell generation. PMID:27496973

  15. Role of nuclear progesterone receptor isoforms in uterine pathophysiology

    PubMed Central

    Patel, Bansari; Elguero, Sonia; Thakore, Suruchi; Dahoud, Wissam; Bedaiwy, Mohamed; Mesiano, Sam

    2015-01-01

    BACKGROUND Progesterone is a key hormonal regulator of the female reproductive system. It plays a major role to prepare the uterus for implantation and in the establishment and maintenance of pregnancy. Actions of progesterone on the uterine tissues (endometrium, myometrium and cervix) are mediated by the combined effects of two progesterone receptor (PR) isoforms, designated PR-A and PR-B. Both receptors function primarily as ligand-activated transcription factors. Progesterone action on the uterine tissues is qualitatively and quantitatively determined by the relative levels and transcriptional activities of PR-A and PR-B. The transcriptional activity of the PR isoforms is affected by specific transcriptional coregulators and by PR post-translational modifications that affect gene promoter targeting. In this context, appropriate temporal and cell-specific expression and function of PR-A and PR-B are critical for normal uterine function. METHODS Relevant studies describing the role of PRs in uterine physiology and pathology (endometriosis, uterine leiomyoma, endometrial cancer, cervical cancer and recurrent pregnancy loss) were comprehensively searched using PubMed, Cochrane Library, Web of Science, and Google Scholar and critically reviewed. RESULTS Progesterone, acting through PR-A and PR-B, regulates the development and function of the endometrium and induces changes in cells essential for implantation and the establishment and maintenance of pregnancy. During pregnancy, progesterone via the PRs promotes myometrial relaxation and cervical closure. Withdrawal of PR-mediated progesterone signaling triggers menstruation and parturition. PR-mediated progesterone signaling is anti-mitogenic in endometrial epithelial cells, and as such, mitigates the tropic effects of estrogen on eutopic normal endometrium, and on ectopic implants in endometriosis. Similarly, ligand-activated PRs function as tumor suppressors in endometrial cancer cells through inhibition of key

  16. Seeing conflict and engaging control: Experience with contrastive language benefits executive function in preschoolers

    PubMed Central

    Doebel, Sabine; Zelazo, Philip David

    2016-01-01

    Engaging executive function often requires overriding a prepotent response in favor of a conflicting but adaptive one. Language may play a key role in this ability by supporting integrated representations of conflicting rules. We tested whether experience with contrastive language that could support such representations benefits executive function in 3-year-old children. Children who received brief experience with language highlighting contrast between objects, attributes, and actions showed greater executive function on two of three ‘conflict’ executive function tasks than children who received experience with contrasting stimuli only and children who read storybooks with the experimenter, controlling for baseline executive function. Experience with contrasting stimuli did not benefit executive function relative to reading books with the experimenter, indicating experience with contrastive language, rather than experience with contrast generally, was key. Experience with contrastive language also boosted spontaneous attention to contrast, consistent with improvements in representing contrast. These findings indicate a role for language in executive function that is consistent with the Cognitive Complexity and Control theory's key claim that coordinating conflicting rules is critical to overcoming perseveration, and suggest new ideas for testing theories of executive function. PMID:27658118

  17. Seeing conflict and engaging control: Experience with contrastive language benefits executive function in preschoolers.

    PubMed

    Doebel, Sabine; Zelazo, Philip David

    2016-12-01

    Engaging executive function often requires overriding a prepotent response in favor of a conflicting but adaptive one. Language may play a key role in this ability by supporting integrated representations of conflicting rules. We tested whether experience with contrastive language that could support such representations benefits executive function in 3-year-old children. Children who received brief experience with language highlighting contrast between objects, attributes, and actions showed greater executive function on two of three 'conflict' executive function tasks than children who received experience with contrasting stimuli only and children who read storybooks with the experimenter, controlling for baseline executive function. Experience with contrasting stimuli did not benefit executive function relative to reading books with the experimenter, indicating experience with contrastive language, rather than experience with contrast generally, was key. Experience with contrastive language also boosted spontaneous attention to contrast, consistent with improvements in representing contrast. These findings indicate a role for language in executive function that is consistent with the Cognitive Complexity and Control theory's key claim that coordinating conflicting rules is critical to overcoming perseveration, and suggest new ideas for testing theories of executive function. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The views of key leaders in South Africa on implementation of family medicine: critical role in the district health system.

    PubMed

    Moosa, Shabir; Mash, Bob; Derese, Anselme; Peersman, Wim

    2014-06-25

    Integrated team-based primary care is an international imperative. This is required more so in Africa, where fragmented verticalised care dominates. South Africa is trying to address this with health reforms, including Primary Health Care Re-engineering. Family physicians are already contributing to primary care despite family medicine being only fully registered as a full specialty in South Africa in 2008. However the views of leaders on family medicine and the role of family physicians is not clear, especially with recent health reforms. The aim of this study was to understand the views of key government and academic leaders in South Africa on family medicine, roles of family physicians and human resource issues. This was a qualitative study with academic and government leaders across South Africa. In-depth interviews were conducted with sixteen purposively selected leaders using an interview guide. Thematic content analysis was based on the framework method. Whilst family physicians were seen as critical to the district health system there was ambivalence on their leadership role and 'specialist' status. National health reforms were creating both threats and opportunities for family medicine. Three key roles for family physicians emerged: supporting referrals; clinical governance/quality improvement; and providing support to community-oriented care. Respondents' urged family physicians to consolidate the development and training of family physicians, and shape human resource policy to include family physicians. Family physicians were seen as critical to the district health system in South Africa despite difficulties around their precise role. Whilst their role was dominated by filling gaps at district hospitals to reduce referrals it extended to clinical governance and developing community-oriented primary care - a tall order, requiring strong teamwork. Innovative team-based service delivery is possible despite human resource challenges, but requires family

  19. The views of key leaders in South Africa on implementation of family medicine: critical role in the district health system

    PubMed Central

    2014-01-01

    Background Integrated team-based primary care is an international imperative. This is required more so in Africa, where fragmented verticalised care dominates. South Africa is trying to address this with health reforms, including Primary Health Care Re-engineering. Family physicians are already contributing to primary care despite family medicine being only fully registered as a full specialty in South Africa in 2008. However the views of leaders on family medicine and the role of family physicians is not clear, especially with recent health reforms. The aim of this study was to understand the views of key government and academic leaders in South Africa on family medicine, roles of family physicians and human resource issues. Methods This was a qualitative study with academic and government leaders across South Africa. In-depth interviews were conducted with sixteen purposively selected leaders using an interview guide. Thematic content analysis was based on the framework method. Results Whilst family physicians were seen as critical to the district health system there was ambivalence on their leadership role and ‘specialist’ status. National health reforms were creating both threats and opportunities for family medicine. Three key roles for family physicians emerged: supporting referrals; clinical governance/quality improvement; and providing support to community-oriented care. Respondents’ urged family physicians to consolidate the development and training of family physicians, and shape human resource policy to include family physicians. Conclusions Family physicians were seen as critical to the district health system in South Africa despite difficulties around their precise role. Whilst their role was dominated by filling gaps at district hospitals to reduce referrals it extended to clinical governance and developing community-oriented primary care - a tall order, requiring strong teamwork. Innovative team-based service delivery is possible despite human

  20. Fetal Programming of Body Composition, Obesity, and Metabolic Function: The Role of Intrauterine Stress and Stress Biology

    PubMed Central

    Entringer, Sonja; Buss, Claudia; Swanson, James M.; Cooper, Dan M.; Wing, Deborah A.; Waffarn, Feizal; Wadhwa, Pathik D.

    2012-01-01

    Epidemiological, clinical, physiological, cellular, and molecular evidence suggests that the origins of obesity and metabolic dysfunction can be traced back to intrauterine life and supports an important role for maternal nutrition prior to and during gestation in fetal programming. The elucidation of underlying mechanisms is an area of interest and intense investigation. In this perspectives paper we propose that in addition to maternal nutrition-related processes it may be important to concurrently consider the potential role of intrauterine stress and stress biology. We frame our arguments in the larger context of an evolutionary-developmental perspective that supports roles for both nutrition and stress as key environmental conditions driving natural selection and developmental plasticity. We suggest that intrauterine stress exposure may interact with the nutritional milieu, and that stress biology may represent an underlying mechanism mediating the effects of diverse intrauterine perturbations, including but not limited to maternal nutritional insults (undernutrition and overnutrition), on brain and peripheral targets of programming of body composition, energy balance homeostasis, and metabolic function. We discuss putative maternal-placental-fetal endocrine and immune/inflammatory candidate mechanisms that may underlie the long-term effects of intrauterine stress. We conclude with a commentary of the implications for future research and clinical practice. PMID:22655178

  1. The functional characterization and comparison of two single CRD containing C-type lectins with novel and typical key motifs from Portunus trituberculatus.

    PubMed

    Huang, Mengmeng; Mu, Changkao; Wu, Yuehong; Ye, Fei; Wang, Dan; Sun, Cong; Lv, Zhengbing; Han, Bingnan; Wang, Chunlin; Xu, Xue-Wei

    2017-11-01

    C-type lectins are a superfamily of Ca 2+ -dependent carbohydrate-recognition proteins, which play crucial roles in innate immunity including nonself-recognition and pathogen elimination. In the present study, two single-CRD containing C-type lectins were identified from swimming crab Portunus trituberculatus (designated as PtCTL-2 and PtCTL-3). The open reading frame (ORF) of PtCTL-2 encoded polypeptides of 485 amino acids with a signal peptide and a single carbohydrate-recognition domain (CRD), while PtCTL-3's ORF encoded polypeptides of 241 amino acids with a coiled-coil region and a single-CRD. The key motifs determining carbohydrate binding specificity in PtCTL-2 and PtCTL-3 were EPR (Glu-Pro-Arg) and QPD (Gln-Pro-Asp). EPR is a motif being identified for the first time, whereas QPD is a typical motif in C-type lectins. Different PAMPs binding features of the two recombinant proteins - PtCTL-2 (rPtCTL-2) and PtCTL-3 (rPtCTL-3) have been observed in our experiments. rPtCTL-2 could bind three pathogen-associated molecular patterns (PAMPs) with relatively high affinity, including glucan, lipopolysaccharide (LPS) and peptidoglycan (PGN), while rPtCTL-3 could barely bind any of them. However, rPtCTL-2 could bind seven kinds of microbes and rPtCTL-3 could bind six kinds in microbe binding assay. Moreover, rPtCTL-2 and rPtCTL-3 exhibited similar agglutination activity against Gram-positive bacteria, Gram-negative bacteria and fungi in agglutination assay. All these results illustrated that PtCTL-2 and PtCTL-3 could function as important pattern-recognition receptors (PRR) with broad nonself-recognition spectrum involved in immune defense against invaders. In addition, the results of carbohydrate binding specificity showed that PtCTL-2 with novel key motif had broad carbohydrate binding specificity, while PtCTL-3 with typical key motif possessed different carbohydrate binding specificity from the classical binding rule. Furthermore, PtCTL-2 and PtCTL-3 could also

  2. On the role of second number-conserving functional derivatives

    NASA Astrophysics Data System (ADS)

    Gál, Tamás

    2006-06-01

    It is found that number-conserving second derivatives, of functional differentiation constrained to the domain of functional variables ρ(x) of a given norm ∫ρ(x)dx, are not obtained via two successive number-conserving differentiations, contrary to the case of unrestricted second derivatives. Investigating the role of second number-conserving derivatives, with the density-functional formulation of time-dependent quantum mechanics in focus, it is shown how number-conserving differentiation handles the dual nature of the Kohn Sham potential arising in the practical use of the theory. On the other hand, it is pointed out that number-conserving derivatives cannot resolve the causality paradox connected with the second derivative of the exchange-correlation part of the action density functional.

  3. From Embryonic Development to Human Diseases: The Functional Role of Caveolae/Caveolin

    PubMed Central

    Sohn, Jihee; Brick, Rachel M.; Tuan, Rocky S.

    2017-01-01

    Caveolae, an almost ubiquitous, structural component of the plasma membrane, play a critical role in many functions essential for proper cell function, including membrane trafficking, signal transduction, extracellular matrix remodeling, and tissue regeneration. Three main types of caveolin proteins have been identified from caveolae since the discovery of caveolin-1 in the early 1990s. All three (Cav-1, Cav-2, and Cav-3) play crucial roles in mammalian physiology, and can effect pathogenesis in a wide range of human diseases. While many biological activities of caveolins have been uncovered since its discovery, their role and regulation in embryonic develop remain largely poorly understood, although there is increasing evidence that caveolins may be linked to lung and brain birth defects. Further investigations are clearly needed to decipher how caveolae/caveolins mediate cellular functions and activities of normal embryogenesis and how their perturbations contribute to developmental disorders. PMID:26991990

  4. Drawing a dog: The role of working memory and executive function.

    PubMed

    Panesi, Sabrina; Morra, Sergio

    2016-12-01

    Previous research suggests that young children draw animals by adapting their scheme for the human figure. This can be considered an early form of drawing flexibility. This study investigated preschoolers' ability to draw a dog that is different from the human figure. The role of working memory capacity and executive function was examined. The participants were 123 children (36-73 months old) who were required to draw both a person and a dog. The dog figure was scored on a list of features that could render it different from the human figure. Regression analyses showed that both working memory capacity and executive function predicted development in the dog drawing; the dog drawing score correlated with working memory capacity and executive function, even partialling out age, motor coordination, and drawing ability (measured with Goodenough's Draw-a-Man test). These results suggest that both working memory capacity and executive function play an important role in the early development of drawing flexibility. The implications regarding executive functions and working memory are also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Long-term hypoxia modulates expression of key genes regulating adipose function in the late-gestation ovine fetus.

    PubMed

    Myers, Dean A; Hanson, Krista; Mlynarczyk, Malgorzata; Kaushal, Kanchan M; Ducsay, Charles A

    2008-04-01

    A major function of abdominal adipose in the newborn is nonshivering thermogenesis. Uncoupling protein (UCP) UCP1 and UCP2 play major roles in thermogenesis. The present study tested the hypothesis that long-term hypoxia (LTH) modulates expression of UCP1 and UCP2, and key genes regulating expression of these genes in the late-gestation ovine fetus. Ewes were maintained at high altitude (3,820 m) from 30 to 138 days gestation (dG); perirenal adipose tissue was collected from LTH and age-matched, normoxic control fetuses at 139-141 dG. Quantitative real-time PCR was used to analyze mRNA for UCP1, UCP2, 11beta hydroxysteroid dehydrogenase type 1 (HSD11B1) and 2 (HSD11B2), glucocorticoid receptor (GR), beta3 adrenergic receptor (beta3AR), deiodinase type 1 (DIO1) and DIO2, peroxisome proliferator activated receptor (PPAR) alpha and gamma and PPARgamma coactivator 1 (PGC1alpha). Concentrations of mRNA for UCP1, HSD11B1, PPARgamma, PGC1, DIO1, and DIO2 were significantly higher in perirenal adipose of LTH compared with control fetuses, while mRNA for HSD11B2, GR, or PPARalpha in perirenal adipose did not differ between control and LTH fetuses. The increased expression of UCP1 is likely an adaptive response to LTH, assuring adequate thermogenesis in the event of birth under oxygen-limiting conditions. Because both glucocorticoids and thyroid hormone regulate UCP1 expression, the increase in HSD11B1, DIO1, and DIO2 implicate increased adipose capacity for local synthesis of these hormones. PPARgamma and its coactivator may provide an underlying mechanism via which LTH alters development of the fetal adipocyte. These findings have important implications regarding fetal/neonatal adipose tissue function in response to LTH.

  6. The Role of Nitric Oxide and Hydrogen Sulfide in Urinary Tract Function.

    PubMed

    Fernandes, Vítor S; Hernández, Medardo

    2016-10-01

    This MiniReview focuses on the role played by nitric oxide (NO) and hydrogen sulfide (H 2 S) in physiology of the upper and lower urinary tract. NO and H 2 S, together with carbon monoxide, belong to the group of gaseous autocrine/paracrine messengers or gasotransmitters, which are employed for intra- and intercellular communication in almost all organ systems. Because they are lipid-soluble gases, gaseous transmitters are not constrained by cellular membranes, so that their storage in vesicles for later release is not possible. Gasotransmitter signals are terminated by falling concentrations upon reduction in production that are caused by reacting with cellular components (essentially reactive oxygen species and NO), binding to cellular components or diffusing away. NO and, more recently, H 2 S have been identified as key mediators in neurotransmission of the urinary tract, involved in the regulation of ureteral smooth muscle activity and urinary flow ureteral resistance, as well as by playing a crucial role in the smooth muscle relaxation of bladder outlet region. Urinary bladder function is also dependent on integration of inhibitory mediators, such as NO, released from the urothelium. In the bladder base and distal ureter, the co-localization of neuronal NO synthase with substance P and calcitonin gene-related peptide in sensory nerves as well as the existence of a high nicotinamide adenine dinucleotide phosphate-diaphorase activity in dorsal root ganglion neurons also suggests the involvement of NO as a sensory neurotransmitter. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  7. The ORCA2 transcription factor plays a key role in regulation of the terpenoid indole alkaloid pathway

    PubMed Central

    2013-01-01

    Background The terpenoid indole alkaloid (TIA) pathway leads to the production of pharmaceutically important drugs, such as the anticancer compounds vinblastine and vincristine. Unfortunately, these drugs are produced in trace amounts, causing them to be very costly. To increase production of these drugs, an improved understanding of the TIA regulatory pathway is needed. Towards this end, transgenic Catharanthus roseus hairy roots that overexpress the ORCA2 TIA transcriptional activator were generated and characterized. Results Transcriptional profiling experiments revealed that overexpression of ORCA2 results in altered expression of key genes from the indole and terpenoid pathways, which produce precursors for the TIA pathway, and from the TIA pathway itself. In addition, metabolite-profiling experiments revealed that overexpression of ORCA2 significantly affects the levels of several TIA metabolites. ORCA2 overexpression also causes significant increases in transcript levels of several TIA regulators, including TIA transcriptional repressors. Conclusions Results presented here indicate that ORCA2 plays a critical role in regulation of TIA metabolism. ORCA2 regulates expression of key genes from both feeder pathways, as well as the genes (STR and SGD) encoding the enzymes that catalyze the first two steps in TIA biosynthesis. ORCA2 may play an especially important role in regulation of the downstream branches of the TIA pathway, as it regulates four out of five genes characterized from this part of the pathway. Regulation of TIA transcriptional repressors by ORCA2 may provide a mechanism whereby increases in TIA metabolite levels in response to external stimuli are transient and limited in magnitude. PMID:24099172

  8. AMP-activated kinase in human spermatozoa: identification, intracellular localization, and key function in the regulation of sperm motility.

    PubMed

    Calle-Guisado, Violeta; de Llera, Ana Hurtado; Martin-Hidalgo, David; Mijares, Jose; Gil, Maria C; Alvarez, Ignacio S; Bragado, Maria J; Garcia-Marin, Luis J

    2017-01-01

    AMP-activated kinase (AMPK), a protein that regulates energy balance and metabolism, has recently been identified in boar spermatozoa where regulates key functional sperm processes essential for fertilization. This work's aims are AMPK identification, intracellular localization, and their role in human spermatozoa function. Semen was obtained from healthy human donors. Sperm AMPK and phospho-Thr172-AMPK were analyzed by Western blotting and indirect immunofluorescence. High- and low-quality sperm populations were separated by a 40%-80% density gradient. Human spermatozoa motility was evaluated by an Integrated Semen Analysis System (ISAS) in the presence or absence of the AMPK inhibitor compound C (CC). AMPK is localized along the human spermatozoa, at the entire acrosome, midpiece and tail with variable intensity, whereas its active form, phospho-Thr172-AMPK, shows a prominent staining at the acrosome and sperm tail with a weaker staining in the midpiece and the postacrosomal region. Interestingly, spermatozoa bearing an excess residual cytoplasm show strong AMPK staining in this subcellular compartment. Both AMPK and phospho-Thr172-AMPK human spermatozoa contents exhibit important individual variations. Moreover, active AMPK is predominant in the high motility sperm population, where shows a stronger intensity compared with the low motility sperm population. Inhibition of AMPK activity in human spermatozoa by CC treatment leads to a significant reduction in any sperm motility parameter analyzed: percent of motile sperm, sperm velocities, progressivity, and other motility coefficients. This work identifies and points out AMPK as a new molecular mechanism involved in human spermatozoa motility. Further AMPK implications in the clinical efficiency of assisted reproduction and in other reproductive areas need to be studied.

  9. AMP-activated kinase in human spermatozoa: identification, intracellular localization, and key function in the regulation of sperm motility

    PubMed Central

    Calle-Guisado, Violeta; de Llera, Ana Hurtado; Martin-Hidalgo, David; Mijares, Jose; Gil, Maria C; Alvarez, Ignacio S; Bragado, Maria J; Garcia-Marin, Luis J

    2017-01-01

    AMP-activated kinase (AMPK), a protein that regulates energy balance and metabolism, has recently been identified in boar spermatozoa where regulates key functional sperm processes essential for fertilization. This work's aims are AMPK identification, intracellular localization, and their role in human spermatozoa function. Semen was obtained from healthy human donors. Sperm AMPK and phospho-Thr172-AMPK were analyzed by Western blotting and indirect immunofluorescence. High- and low-quality sperm populations were separated by a 40%–80% density gradient. Human spermatozoa motility was evaluated by an Integrated Semen Analysis System (ISAS) in the presence or absence of the AMPK inhibitor compound C (CC). AMPK is localized along the human spermatozoa, at the entire acrosome, midpiece and tail with variable intensity, whereas its active form, phospho-Thr172-AMPK, shows a prominent staining at the acrosome and sperm tail with a weaker staining in the midpiece and the postacrosomal region. Interestingly, spermatozoa bearing an excess residual cytoplasm show strong AMPK staining in this subcellular compartment. Both AMPK and phospho-Thr172-AMPK human spermatozoa contents exhibit important individual variations. Moreover, active AMPK is predominant in the high motility sperm population, where shows a stronger intensity compared with the low motility sperm population. Inhibition of AMPK activity in human spermatozoa by CC treatment leads to a significant reduction in any sperm motility parameter analyzed: percent of motile sperm, sperm velocities, progressivity, and other motility coefficients. This work identifies and points out AMPK as a new molecular mechanism involved in human spermatozoa motility. Further AMPK implications in the clinical efficiency of assisted reproduction and in other reproductive areas need to be studied. PMID:27678462

  10. Deciphering the Role of B Cells in Multiple Sclerosis—Towards Specific Targeting of Pathogenic Function

    PubMed Central

    Lehmann-Horn, Klaus; Kinzel, Silke; Weber, Martin S.

    2017-01-01

    B cells, plasma cells and antibodies may play a key role in the pathogenesis of multiple sclerosis (MS). This notion is supported by various immunological changes observed in MS patients, such as activation and pro-inflammatory differentiation of peripheral blood B cells, the persistence of clonally expanded plasma cells producing immunoglobulins in the cerebrospinal fluid, as well as the composition of inflammatory central nervous system lesions frequently containing co-localizing antibody depositions and activated complement. In recent years, the perception of a respective pathophysiological B cell involvement was vividly promoted by the empirical success of anti-CD20-mediated B cell depletion in clinical trials; based on these findings, the first monoclonal anti-CD20 antibody—ocrelizumab—is currently in the process of being approved for treatment of MS. In this review, we summarize the current knowledge on the role of B cells, plasma cells and antibodies in MS and elucidate how approved and future treatments, first and foremost anti-CD20 antibodies, therapeutically modify these B cell components. We will furthermore describe regulatory functions of B cells in MS and discuss how the evolving knowledge of these therapeutically desirable B cell properties can be harnessed to improve future safety and efficacy of B cell-directed therapy in MS. PMID:28946620

  11. Key attributes of ecological production functions

    EPA Science Inventory

    Ecological production functions (EPFs) link ecosystems, stressors, and management actions to ecosystem service (ES) production. Though essential for improving environmental management, relatively little attention has been directed toward the characteristics of EPFs. EPFs may be d...

  12. Identification of functional interactome of a key cell division regulatory protein CedA of E.coli.

    PubMed

    Sharma, Pankaj; Tomar, Anil Kumar; Kundu, Bishwajit

    2018-01-01

    Cell division is compromised in DnaAcos mutant Escherichia coli cells that results in filamentous cell morphology. This is countered by over-expression of CedA protein that induces cytokinesis and thus, regular cell morphology is regained; however via an unknown mechanism. To understand the process systematically, exact role of CedA should be deciphered. Protein interactions are crucial for functional organization of a cell and their identification helps in revealing exact function(s) of a protein and its binding partners. Thus, this study was intended to identify CedA binding proteins (CBPs) to gain more clues of CedA function. We isolated CBPs by pull down assay using purified recombinant CedA and identified nine CBPs by mass spectrometric analysis (MALDI-TOF MS and LC-MS/MS), viz. PDHA1, RL2, DNAK, LPP, RPOB, G6PD, GLMS, RL3 and YBCJ. Based on CBPs identified, we hypothesize that CedA plays a crucial and multifaceted role in cell cycle regulation and specific pathways in which CedA participates may include transcription and energy metabolism. However, further validation through in-vitro and in-vivo experiments is necessary. In conclusion, identification of CBPs may help us in deciphering mechanism of CedA mediated cell division during chromosomal DNA over-replication. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Functional Roles of Syk in Macrophage-Mediated Inflammatory Responses

    PubMed Central

    Yi, Young-Su; Son, Young-Jin; Ryou, Chongsuk; Sung, Gi-Ho; Kim, Jong-Hoon; Cho, Jae Youl

    2014-01-01

    Inflammation is a series of complex biological responses to protect the host from pathogen invasion. Chronic inflammation is considered a major cause of diseases, such as various types of inflammatory/autoimmune diseases and cancers. Spleen tyrosine kinase (Syk) was initially found to be highly expressed in hematopoietic cells and has been known to play crucial roles in adaptive immune responses. However, recent studies have reported that Syk is also involved in other biological functions, especially in innate immune responses. Although Syk has been extensively studied in adaptive immune responses, numerous studies have recently presented evidence that Syk has critical functions in macrophage-mediated inflammatory responses and is closely related to innate immune response. This review describes the characteristics of Syk-mediated signaling pathways, summarizes the recent findings supporting the crucial roles of Syk in macrophage-mediated inflammatory responses and diseases, and discusses Syk-targeted drug development for the therapy of inflammatory diseases. PMID:25045209

  14. Brain and Retinal Pericytes: Origin, Function and Role

    PubMed Central

    Trost, Andrea; Lange, Simona; Schroedl, Falk; Bruckner, Daniela; Motloch, Karolina A.; Bogner, Barbara; Kaser-Eichberger, Alexandra; Strohmaier, Clemens; Runge, Christian; Aigner, Ludwig; Rivera, Francisco J.; Reitsamer, Herbert A.

    2016-01-01

    Pericytes are specialized mural cells located at the abluminal surface of capillary blood vessels, embedded within the basement membrane. In the vascular network these multifunctional cells fulfil diverse functions, which are indispensable for proper homoeostasis. They serve as microvascular stabilizers, are potential regulators of microvascular blood flow and have a central role in angiogenesis, as they for example regulate endothelial cell proliferation. Furthermore, pericytes, as part of the neurovascular unit, are a major component of the blood-retina/brain barrier. CNS pericytes are a heterogenic cell population derived from mesodermal and neuro-ectodermal germ layers acting as modulators of stromal and niche environmental properties. In addition, they display multipotent differentiation potential making them an intriguing target for regenerative therapies. Pericyte-deficiencies can be cause or consequence of many kinds of diseases. In diabetes, for instance, pericyte-loss is a severe pathological process in diabetic retinopathy (DR) with detrimental consequences for eye sight in millions of patients. In this review, we provide an overview of our current understanding of CNS pericyte origin and function, with a special focus on the retina in the healthy and diseased. Finally, we highlight the role of pericytes in de- and regenerative processes. PMID:26869887

  15. Cytosolic chloride ion is a key factor in lysosomal acidification and function of autophagy in human gastric cancer cell

    PubMed Central

    Hosogi, Shigekuni; Kusuzaki, Katsuyuki; Inui, Toshio; Wang, Xiangdong; Marunaka, Yoshinori

    2014-01-01

    The purpose of the present study was to clarify roles of cytosolic chloride ion (Cl−) in regulation of lysosomal acidification [intra-lysosomal pH (pHlys)] and autophagy function in human gastric cancer cell line (MKN28). The MKN28 cells cultured under a low Cl− condition elevated pHlys and reduced the intra-lysosomal Cl− concentration ([Cl−]lys) via reduction of cytosolic Cl− concentration ([Cl−]c), showing abnormal accumulation of LC3II and p62 participating in autophagy function (dysfunction of autophagy) accompanied by inhibition of cell proliferation via G0/G1 arrest without induction of apoptosis. We also studied effects of direct modification of H+ transport on lysosomal acidification and autophagy. Application of bafilomycin A1 (an inhibitor of V-type H+-ATPase) or ethyl isopropyl amiloride [EIPA; an inhibitor of Na+/H+ exchanger (NHE)] elevated pHlys and decreased [Cl−]lys associated with inhibition of cell proliferation via induction of G0/G1 arrest similar to the culture under a low Cl− condition. However, unlike low Cl− condition, application of the compound, bafilomycin A1 or EIPA, induced apoptosis associated with increases in caspase 3 and 9 without large reduction in [Cl−]c compared with low Cl− condition. These observations suggest that the lowered [Cl−]c primarily causes dysfunction of autophagy without apoptosis via dysfunction of lysosome induced by disturbance of intra-lysosomal acidification. This is the first study showing that cytosolic Cl− is a key factor of lysosome acidification and autophagy. PMID:24725767

  16. The olivo-cerebellar system: a key to understanding the functional significance of intrinsic oscillatory brain properties

    PubMed Central

    Llinás, Rodolfo R.

    2014-01-01

    The reflexological view of brain function (Sherrington, 1906) has played a crucial role in defining both the nature of connectivity and the role of the synaptic interactions among neuronal circuits. One implicit assumption of this view, however, has been that CNS function is fundamentally driven by sensory input. This view was questioned as early as the beginning of the last century when a possible role for intrinsic activity in CNS function was proposed by Thomas Graham Brow (Brown, 1911, 1914). However, little progress was made in addressing intrinsic neuronal properties in vertebrates until the discovery of calcium conductances in vertebrate central neurons leading dendritic electroresponsiveness (Llinás and Hess, 1976; Llinás and Sugimori, 1980a,b) and subthreshold neuronal oscillation in mammalian inferior olive (IO) neurons (Llinás and Yarom, 1981a,b). This happened in parallel with a similar set of findings concerning invertebrate neuronal system (Marder and Bucher, 2001). The generalization into a more global view of intrinsic rhythmicity, at forebrain level, occurred initially with the demonstration that the thalamus has similar oscillatory properties (Llinás and Jahnsen, 1982) and the ionic properties responsible for some oscillatory activity were, in fact, similar to those in the IO (Jahnsen and Llinás, 1984; Llinás, 1988). Thus, lending support to the view that not only motricity, but cognitive properties, are organized as coherent oscillatory states (Pare et al., 1992; Singer, 1993; Hardcastle, 1997; Llinás et al., 1998; Varela et al., 2001). PMID:24478634

  17. Strengthening a consolidated memory: the key role of the reconsolidation process.

    PubMed

    Forcato, Cecilia; Fernandez, Rodrigo S; Pedreira, María E

    2014-01-01

    The reconsolidation hypothesis posits that the presentation of a specific cue, previously associated with a life event, makes the stored memory pass from a stable to a reactivated state. In this state, memory is again labile and susceptible to different agents, which may either damage or improve the original memory. Such susceptibility decreases over time and leads to a re-stabilization phase known as reconsolidation process. This process has been assigned two biological roles: memory updating, which suggests that destabilization of the original memory allows the integration of new information into the background of the original memory; and memory strengthening, which postulates that the labilization-reconsolidation process strengthens the original memory. The aim of this review is to analyze the strengthening as an improvement obtained only by triggering such process without any other treatment. In our lab, we have demonstrated that when triggering the labilization-reconsolidation process at least once the original memory becomes strengthened and increases its persistence. We have also shown that repeated labilization-reconsolidation processes strengthened the original memory by enlarging its precision, and said reinforced memories were more resistant to interference. Finally, we have shown that the strengthening function is not operative in older memories. We present and discuss both our findings and those of others, trying to reveal the central role of reconsolidation in the modification of stored information. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. How Do Organizational Policies and Practices Affect Return to Work and Work Role Functioning Following a Musculoskeletal Injury?

    PubMed

    Amick, Benjamin C; Lee, Hyunmi; Hogg-Johnson, Sheilah; Katz, Jeffrey N; Brouwer, Sandra; Franche, Renée-Louise; Bültmann, Ute

    2017-09-01

    Purpose Organizational-level policies and practices that promote safety leadership and practices, disability management and ergonomic policies and practices are considered key contextual determinants of return to work. Our objective was to examine the role of worker-reported organizational policies and practices (OPPs) in return to work (RTW) and work role functioning (WRF) and the mediating role of pain self-efficacy and work accommodation. Methods A worker cohort (n = 577) in Ontario, Canada was followed at 1, 6 and 12 months post injury. Both RTW (yes/no) and WRF (WLQ-16) status (3 levels) were measured. OPPs were measured (high vs. low) at 1 month post-injury. Pain self-efficacy (PSE) and work accommodation (WA) were included in mediation analyses. Results OPPs predicted RTW at 6 months (adjusted OR 1.77; 95 % CI 1.07-2.93) and 12 months (adjusted OR 2.07; 95 % CI 1.18-3.62). OPPs predicted WRF at 6 months, but only the transition from working with limitations to working without limitations (adjusted OR 3.21; 95 % CI 1.92-5.39). At 12 months, OPPs predicted both the transition from not working to working with and without limitations and from not working or working with limitations to working without limitations (adjusted OR 2.13; 95 % CI 1.37-3.30). Offers of WA mediated the relationship between OPPs and both RTW and WRF at 6 months follow-up. PSE mediated the relationship between OPPs and RTW and WRF at 6 months. At 12 months neither mediated the relationship. Conclusions The findings support worker-reported OPPs as key determinants of both RTW and WRF. These results point to the importance of WA and PSE in both RTW and WRF at 6 months.

  19. A Unifying Theory of Biological Function.

    PubMed

    van Hateren, J H

    2017-01-01

    A new theory that naturalizes biological function is explained and compared with earlier etiological and causal role theories. Etiological (or selected effects) theories explain functions from how they are caused over their evolutionary history. Causal role theories analyze how functional mechanisms serve the current capacities of their containing system. The new proposal unifies the key notions of both kinds of theories, but goes beyond them by explaining how functions in an organism can exist as factors with autonomous causal efficacy. The goal-directedness and normativity of functions exist in this strict sense as well. The theory depends on an internal physiological or neural process that mimics an organism's fitness, and modulates the organism's variability accordingly. The structure of the internal process can be subdivided into subprocesses that monitor specific functions in an organism. The theory matches well with each intuition on a previously published list of intuited ideas about biological functions, including intuitions that have posed difficulties for other theories.

  20. Extending key sharing: how to generate a key tightly coupled to a network security policy

    NASA Astrophysics Data System (ADS)

    Kazantzidis, Matheos

    2006-04-01

    Current state of the art security policy technologies, besides the small scale limitation and largely manual nature of accompanied management methods, are lacking a) in real-timeliness of policy implementation and b) vulnerabilities and inflexibility stemming from the centralized policy decision making; even if, for example, a policy description or access control database is distributed, the actual decision is often a centralized action and forms a system single point of failure. In this paper we are presenting a new fundamental concept that allows implement a security policy by a systematic and efficient key distribution procedure. Specifically, we extend the polynomial Shamir key splitting. According to this, a global key is split into n parts, any k of which can re-construct the original key. In this paper we present a method that instead of having "any k parts" be able to re-construct the original key, the latter can only be reconstructed if keys are combined as any access control policy describes. This leads into an easily deployable key generation procedure that results a single key per entity that "knows" its role in the specific access control policy from which it was derived. The system is considered efficient as it may be used to avoid expensive PKI operations or pairwise key distributions as well as provides superior security due to its distributed nature, the fact that the key is tightly coupled to the policy, and that policy change may be implemented easier and faster.

  1. Functional role of AMP-activated protein kinase in the heart during exercise.

    PubMed

    Musi, Nicolas; Hirshman, Michael F; Arad, Michael; Xing, Yanqiu; Fujii, Nobuharu; Pomerleau, Jason; Ahmad, Ferhaan; Berul, Charles I; Seidman, Jon G; Tian, Rong; Goodyear, Laurie J

    2005-04-11

    AMP-activated protein kinase (AMPK) plays a critical role in maintaining energy homeostasis and cardiac function during ischemia in the heart. However, the functional role of AMPK in the heart during exercise is unknown. We examined whether acute exercise increases AMPK activity in mouse hearts and determined the significance of these increases by studying transgenic (TG) mice expressing a cardiac-specific dominant-negative (inactivating) AMPKalpha2 subunit. Exercise increased cardiac AMPKalpha2 activity in the wild type mice but not in TG. We found that inactivation of AMPK did not result in abnormal ATP and glycogen consumption during exercise, cardiac function assessed by heart rhythm telemetry and stress echocardiography, or in maximal exercise capacity.

  2. The Role of Communication in Library Management. Occasional Paper No. 34.

    ERIC Educational Resources Information Center

    Mwenegoha, Hamza A.

    This paper defines and discusses the nature of management; outlines the primary management functions and activities, emphasizing the importance of communication and coordination to successful management; and examines the place of communication as a management function in the library setting. After a discussion of the key role of coordination in…

  3. Switching roles: the functional plasticity of adult tissue stem cells

    PubMed Central

    Wabik, Agnieszka; Jones, Philip H

    2015-01-01

    Adult organisms have to adapt to survive, and the same is true for their tissues. Rates and types of cell production must be rapidly and reversibly adjusted to meet tissue demands in response to both local and systemic challenges. Recent work reveals how stem cell (SC) populations meet these requirements by switching between functional states tuned to homoeostasis or regeneration. This plasticity extends to differentiating cells, which are capable of reverting to SCs after injury. The concept of the niche, the micro-environment that sustains and regulates stem cells, is broadening, with a new appreciation of the role of physical factors and hormonal signals. Here, we review different functions of SCs, the cellular mechanisms that underlie them and the signals that bias the fate of SCs as they switch between roles. PMID:25812989

  4. Role of AAA(+)-proteins in peroxisome biogenesis and function.

    PubMed

    Grimm, Immanuel; Erdmann, Ralf; Girzalsky, Wolfgang

    2016-05-01

    Mutations in the PEX1 gene, which encodes a protein required for peroxisome biogenesis, are the most common cause of the Zellweger spectrum diseases. The recognition that Pex1p shares a conserved ATP-binding domain with p97 and NSF led to the discovery of the extended family of AAA+-type ATPases. So far, four AAA+-type ATPases are related to peroxisome function. Pex6p functions together with Pex1p in peroxisome biogenesis, ATAD1/Msp1p plays a role in membrane protein targeting and a member of the Lon-family of proteases is associated with peroxisomal quality control. This review summarizes the current knowledge on the AAA+-proteins involved in peroxisome biogenesis and function.

  5. Key Principles of Superfund Remedy Selection

    EPA Pesticide Factsheets

    Guidance on the primary considerations of remedy selection which are universally applicable at Superfund sites. Key guidance here include: Rules of Thumb for Superfund Remedy Selection and Role of the Baseline Risk Assessment.

  6. Arsenic enhances the apoptosis induced by interferon gamma: key role of IRF-1.

    PubMed

    El Bougrini, J; Pampin, M; Chelbi-Alix, M K

    2006-05-15

    Interferons (IFNs) and arsenic trioxide (As2O3) are known inhibitors of cell proliferation and have been used in the treatment of certain forms of malignancy. IFNgamma treatment of cells leads to tyrosine phosphorylation of STAT1 followed by dimerization that accumulates in the nucleus. This is followed by DNA binding, activation of target gene transcription, dephosphorylation, and return to the cytoplasm. We have shown earlier that IFNgamma and As2O3 act synergistically in acute promyelocytic leukemia cells to upregulate IRF-1 expression and to induce apoptosis. Here, we show that in the human fibrosarcoma cell line 2fTGH, As2O3 prolongs IFNgamma-induced STAT1 phosphorylation resulting in persistent binding of STAT1 to GAS motif leading to an increase in IRF-1 expression which correlated with both higher anti-proliferative effect and increased apoptosis. These biological responses induced by IFNgamma alone or in combination with As2O3 were abolished when IRF-1 expression was down-regulated by RNA interference, thus demonstrating the key role of IRF-1.

  7. [The roles and functions of volunteer counselors to the elderly].

    PubMed

    Chen, Chun-Yu

    2004-06-01

    In Taiwan's current counseling centers for the elderly, large numbers of volunteers are supervised by only a few social workers or nurses, so the roles and functions of these volunteers are very important. A neat summary of the services provided by the volunteers would include: (1) Direct services: telephone counseling, telephone interviewing, case handling, mail counseling, resource provision. (2) Indirect services: fundraising, supervision. (3) Administration: administrative assistance, management of institutional web sites. (4) Strategic consultancy: consultancy, provision of expertise. (5) Advocacy: service as educators and spokespersons; public relations and marketing. (6) MANAGEMENT: team leadership, plan implementation. To sum up, their functions are, by means of telephone and face-to-face contact, to provide information to the elderly about finances, medical services, housing, citizenship, the dignity of life and death, and related issues, as well as to serve as advocates for the provision of resources--such as educational courses--and to facilitate such provision. Indeed, the roles and functions of volunteer counselors become more diverse and more comprehensive by the day.

  8. IL-33: biological properties, functions, and roles in airway disease.

    PubMed

    Drake, Li Yin; Kita, Hirohito

    2017-07-01

    Interleukin (IL)-33 is a key cytokine involved in type 2 immunity and allergic airway diseases. Abundantly expressed in lung epithelial cells, IL-33 plays critical roles in both innate and adaptive immune responses in mucosal organs. In innate immunity, IL-33 and group 2 innate lymphoid cells (ILC2s) provide an essential axis for rapid immune responses and tissue homeostasis. In adaptive immunity, IL-33 interacts with dendritic cells, Th2 cells, follicular T cells, and regulatory T cells, where IL-33 influences the development of chronic airway inflammation and tissue remodeling. The clinical findings that both the IL-33 and ILC2 levels are elevated in patients with allergic airway diseases suggest that IL-33 plays an important role in the pathogenesis of these diseases. IL-33 and ILC2 may also serve as biomarkers for disease classification and to monitor the progression of diseases. In this article, we reviewed the current knowledge of the biology of IL-33 and discussed the roles of the IL-33 in regulating airway immune responses and allergic airway diseases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Quantitative proteomics reveals that peroxidases play key roles in post-flooding recovery in soybean roots.

    PubMed

    Khan, Mudassar Nawaz; Sakata, Katsumi; Hiraga, Susumu; Komatsu, Setsuko

    2014-12-05

    Soybean is an important legume crop that exhibits markedly reduced growth and yields under flooding conditions. To unravel the mechanisms involved in recovery after flooding in soybean root, gel-free proteomic analysis was performed. Morphological analysis revealed that growth suppression was more severe with increased flooding duration. Out of a total of 1645 and 1707 identified proteins, 73 and 21 proteins were changed significantly during the recovery stage following 2 and 4 days flooding, respectively. Based on the proteomic, clustering, and in silico protein-protein interaction analyses, six key enzymes were analyzed at the mRNA level. Lipoxygenase 1, which was increased at the protein level during the recovery period, was steadily down-regulated at the mRNA level. The peroxidase superfamily protein continuously increased in abundance during the course of recovery and was up-regulated at the mRNA level. HAD acid phosphatase was decreased at the protein level and down-regulated at the transcript level, while isoflavone reductase and an unknown protein were increased at both the protein and mRNA levels. Consistent with these findings, the enzymatic activity of peroxidase was decreased under flooding stress but increased significantly during the recovery sage. These results suggest that peroxidases might play key roles in post-flooding recovery in soybean roots through the scavenging of toxic radicals.

  10. A conceptual and statistical framework for adaptive radiations with a key role for diversity dependence.

    PubMed

    Etienne, Rampal S; Haegeman, Bart

    2012-10-01

    In this article we propose a new framework for studying adaptive radiations in the context of diversity-dependent diversification. Diversity dependence causes diversification to decelerate at the end of an adaptive radiation but also plays a key role in the initial pulse of diversification. In particular, key innovations (which in our definition include novel traits as well as new environments) may cause decoupling of the diversity-dependent dynamics of the innovative clade from the diversity-dependent dynamics of its ancestral clade. We present a likelihood-based inference method to test for decoupling of diversity dependence using molecular phylogenies. The method, which can handle incomplete phylogenies, identifies when the decoupling took place and which diversification parameters are affected. We illustrate our approach by applying it to the molecular phylogeny of the North American clade of the legume tribe Psoraleeae (47 extant species, of which 4 are missing). Two diversification rate shifts were previously identified for this clade; our analysis shows that the first, positive shift can be associated with decoupling of two Pediomelum subgenera from the other Psoraleeae lineages, while we argue that the second, negative shift can be attributed to speciation being protracted. The latter explanation yields nonzero extinction rates, in contrast to previous findings. Our framework offers a new perspective on macroevolution: new environments and novel traits (ecological opportunity) and diversity dependence (ecological limits) cannot be considered separately.

  11. Optimizing prognosis-related key miRNA-target interactions responsible for cancer metastasis.

    PubMed

    Zhao, Hongying; Yuan, Huating; Hu, Jing; Xu, Chaohan; Liao, Gaoming; Yin, Wenkang; Xu, Liwen; Wang, Li; Zhang, Xinxin; Shi, Aiai; Li, Jing; Xiao, Yun

    2017-12-12

    Increasing evidence suggests that the abnormality of microRNAs (miRNAs) and their downstream targets is frequently implicated in the pathogenesis of human cancers, however, the clinical benefit of causal miRNA-target interactions has been seldom studied. Here, we proposed a computational method to optimize prognosis-related key miRNA-target interactions by combining transcriptome and clinical data from thousands of TCGA tumors across 16 cancer types. We obtained a total of 1,956 prognosis-related key miRNA-target interactions between 112 miRNAs and 1,443 their targets. Interestingly, these key target genes are specifically involved in tumor progression-related functions, such as 'cell adhesion' and 'cell migration'. Furthermore, they are most significantly correlated with 'tissue invasion and metastasis', a hallmark of metastasis, in ten distinct types of cancer through the hallmark analysis. These results implicated that the prognosis-related key miRNA-target interactions were highly associated with cancer metastasis. Finally, we observed that the combination of these key miRNA-target interactions allowed to distinguish patients with good prognosis from those with poor prognosis both in most TCGA cancer types and independent validation sets, highlighting their roles in cancer metastasis. We provided a user-friendly database named miRNATarget (freely available at http://biocc.hrbmu.edu.cn/miRNATar/), which provides an overview of the prognosis-related key miRNA-target interactions across 16 cancer types.

  12. A functional role for CD28 costimulation in tumor recognition by single-chain receptor-modified T cells.

    PubMed

    Moeller, Maria; Haynes, Nicole M; Trapani, Joseph A; Teng, Michele W L; Jackson, Jacob T; Tanner, Jane E; Cerutti, Loretta; Jane, Stephen M; Kershaw, Michael H; Smyth, Mark J; Darcy, Phillip K

    2004-05-01

    T cells engineered to express single-chain antibody receptors that incorporate TCR-zeta and cluster designation (CD)28 signaling domains (scFv-alpha-erbB2-CD28-zeta) can be redirected in vivo to cancer cells that lack triggering costimulatory molecules. To assess the contribution of CD28 signaling to the function of the scFv-CD28-zeta receptor, we expressed a series of mutated scFv-CD28-zeta receptors directed against erbB2. Residues known to be critical for CD28 signaling were mutated from tyrosine to phenylalanine at position 170 or proline to alanine at positions 187 and 190. Primary mouse T cells expressing either of the mutant receptors demonstrated impaired cytokine (IFN-gamma and GM-CSF) production and decreased proliferation after antigen ligation in vitro and decreased antitumor efficacy in vivo compared with T cells expressing the wild-type scFv-CD28-zeta receptor, suggesting a key signaling role for the CD28 component of the scFv-CD28-zeta receptor. Importantly, cell surface expression, binding capacity and cytolytic activity mediated by the scFv-CD28-zeta receptor were not diminished by either mutation. Overall, this study has definitively demonstrated a functional role for the CD28 component of the scFv-CD28-zeta receptor and has shown that incorporation of costimulatory activity in chimeric scFv receptors is a powerful approach for improving adoptive cancer immunotherapy.

  13. More Than Cholesterol Transporters: Lipoprotein Receptors in CNS Function and Neurodegeneration

    PubMed Central

    Lane-Donovan, Courtney E.; Philips, Gary T.; Herz, Joachim

    2014-01-01

    Members of the low-density lipoprotein (LDL) receptor gene family have a diverse set of biological functions that transcend lipid metabolism. Lipoprotein receptors have broad effects in both the developing and adult brain and participate in synapse development, cargo trafficking, and signal transduction. In addition, several family members play key roles in Alzheimer's disease pathogenesis and neurodegeneration. This review summarizes our current understanding of the role lipoprotein receptors play in CNS function and AD pathology, with a special emphasis on amyloid-independent roles in endocytosis and synaptic dysfunction. PMID:25144875

  14. Species Pool Functional Diversity Plays a Hidden Role in Generating β-Diversity.

    PubMed

    Patrick, Christopher J; Brown, Bryan L

    2018-05-01

    Functional trait diversity is used as a way to infer mechanistic processes that drive community assembly. While functional diversity within communities is often viewed as a response variable, here we present and test a framework for how functional diversity among taxa in the regional species pool drives the assembly of communities among habitats. We predicted that species pool functional diversity should work with environmental heterogeneity to drive β-diversity. We tested these predictions by modeling empirical patterns in invertebrate communities from 570 streams in 52 watersheds. Our analysis of the field data provided strong support for the inclusion of both functional diversity and environmental heterogeneity in the models, and our predictions were supported when the community was analyzed all together. However, analyses within individual functional feeding guilds revealed strong context dependency in the relative importance of functional diversity, γ-richness, and environmental heterogeneity to β-diversity. We interpret the results to mean that functional diversity can play an important role in driving β-diversity; however, within guilds the nature of interspecific interactions and species pool size complicate the relationship. Future research should test this conceptual model across different ecosystems and in experimental settings using metacommunity mesocosms to enhance our understanding of the role that functional variation plays in generating spatial biodiversity patterns.

  15. Effects of common mental disorders and physical conditions on role functioning in Spain.

    PubMed

    Barbaglia, Gabriela; Duran, Núria; Vilagut, Gemma; Forero, Carlos García; Haro, Josep Maria; Alonso, Jordi

    2013-01-01

    To examine the effects of common mental disorders and physical conditions on role functioning in Spain. Cross-sectional study of the general adult population of Spain (n = 2,121). Non-psychotic mental disorders were assessed with the Composite International Diagnostic Interview (CIDI 3.0) and physical conditions with a checklist. The role functioning dimension of the WHO-Disability Assessment Schedule (WHODAS) was used to asses the number of days in the past month in which respondents were fully or partially limited to perform daily activities. Generalized linear models were used to estimate individual-level associations of specific conditions and role functioning, controlling for co-morbidity. Societal level estimates were calculated using population attributable risk proportions (PARP). Mental disorders and physical conditions showed similar number of days with full role limitation (about 20 days per year); in contrast mental disorders were responsible for twice as many days with partial role limitation than physical conditions (42 vs 21 days, respectively). If the population were entirely unexposed to mental and physical conditions, days with full limitation would be reduced by 73% and days with partial limitation by 41%. Common health conditions in Spain are associated with considerably more days with role limitation than other Western countries. There is need of mainstreaming disability in the Spanish public health agenda in order to reduce role limitation among individuals with common conditions. Copyright © 2013 SESPAS. Published by Elsevier Espana. All rights reserved.

  16. The Key Role of U28 in the Aqueous Self-Assembly of Uranyl Peroxide Nanocages.

    PubMed

    Falaise, Clément; Nyman, May

    2016-10-04

    For 11 years now, the structural diversity and aesthetic beauty of uranyl-peroxide capsules have fascinated researchers from the diverse fields of mineralogy, polyoxometalate chemistry, and nuclear fuel technologies. There is still much to be learned about the mechanisms of the self-assembly process, and the role of solution parameters including pH, alkali template, temperature, time, and others. Here we have exploited the high solubility of the UO2 (2+) /H2 O2 /LiOH aqueous system to address the effect of the hydroxide concentration. Important techniques of this study are single-crystal X-ray diffraction, small-angle X-ray scattering, and Raman spectroscopy. Three key phases dominate the solution speciation as a function of time and the LiOH/UO2 (2+) ratio: the uranyl-triperoxide monomer [UO2 (O2 )3 ](4-) and the two capsules [(UO2 )(O2 )(OH)]24 (24-) (U24 ) and [(UO2 )(O2 )1.5 ]28 (28-) (U28 ). When the LiOH/U ratio is around three, U28 forms rapidly and this cluster can be isolated in high yield and purity. This result was most surprising and challenges the hypothesis that alkali templating is the most important determinant in the cluster geometry. Moreover, analogous experiments with KOH, NH4 OH, and TEAOH (TEA=tetraethylammonium) also rapidly yield U28 , which suggests that U28 is the kinetically favored species. Complete mapping of the pH-time phase space reveals only a narrow window of the U28 dominance, which is why it was previously overlooked as an important kinetic species in this chemical system, as well as others with different counterions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A Mouse Model of Harlequin Ichthyosis Delineates a Key Role for Abca12 in Lipid Homeostasis

    PubMed Central

    Smyth, Ian; Mukhamedova, Nigora; Meikle, Peter J.; Ellis, Sarah; Slattery, Keith; Collinge, Janelle E.; de Graaf, Carolyn A.; Bahlo, Melanie; Sviridov, Dmitri

    2008-01-01

    Harlequin Ichthyosis (HI) is a severe and often lethal hyperkeratotic skin disease caused by mutations in the ABCA12 transport protein. In keratinocytes, ABCA12 is thought to regulate the transfer of lipids into small intracellular trafficking vesicles known as lamellar bodies. However, the nature and scope of this regulation remains unclear. As part of an original recessive mouse ENU mutagenesis screen, we have identified and characterised an animal model of HI and showed that it displays many of the hallmarks of the disease including hyperkeratosis, loss of barrier function, and defects in lipid homeostasis. We have used this model to follow disease progression in utero and present evidence that loss of Abca12 function leads to premature differentiation of basal keratinocytes. A comprehensive analysis of lipid levels in mutant epidermis demonstrated profound defects in lipid homeostasis, illustrating for the first time the extent to which Abca12 plays a pivotal role in maintaining lipid balance in the skin. To further investigate the scope of Abca12's activity, we have utilised cells from the mutant mouse to ascribe direct transport functions to the protein and, in doing so, we demonstrate activities independent of its role in lamellar body function. These cells have severely impaired lipid efflux leading to intracellular accumulation of neutral lipids. Furthermore, we identify Abca12 as a mediator of Abca1-regulated cellular cholesterol efflux, a finding that may have significant implications for other diseases of lipid metabolism and homeostasis, including atherosclerosis. PMID:18802465

  18. Insulin: its Role in the Central Control of Reproduction

    PubMed Central

    Sliwowska, Joanna H.; Fergani, Chrysanthi; Gawałek, Monika; Skowronska, Bogda; Fichna, Piotr; Lehman, Michael N.

    2014-01-01

    Insulin has long been recognized as a key regulator of energy homeostasis via its actions at the level of the brain, but in addition, plays a role in regulating neural control of reproduction. In this review, we consider and compare evidence from animal models demonstrating a role for insulin for physiological control of reproduction by effects on GnRH/LH secretion. We also review the role that insulin plays in prenatal programming of adult reproduction, and consider specific candidate neurons in the adult hypothalamus by which insulin may act to regulate reproductive function. Finally, we review clinical evidence of the role that insulin may play in adult human fertility and reproductive disorders. Overall, while insulin appears to have a significant impact on reproductive neuroendocrine function, there are many unanswered questions regarding its precise sites and mechanisms of action, and their impact on developing and adult reproductive neuroendocrine function. PMID:24874777

  19. Role of ankle foot orthoses in functional stability of individuals with stroke.

    PubMed

    Rao, N; Aruin, A S

    2016-10-01

    Ankle foot orthoses (AFOs) are frequently prescribed to improve ambulation in individuals with stroke. However, the role of AFOs in balance control is not completely understood. The aim of the study was to evaluate the contribution of the AFOs in functional stability of individuals with stroke. Twenty three individuals with unilateral hemiparesis due to stroke were assessed using the Functional Reach Test. The subjects performed reaches forward, left and right while standing with or without an AFO. When provided with AFO, individuals with stroke improved the maximal reaching distance in all the directions (p < 0.05). The study found that individuals with unilateral stroke clearly demonstrated improvements in functional stability when they were provided with AFOs. This outcome could be used in the optimization of balance rehabilitation of individuals with stroke. Implications for Rehabilitation Functional stability is impaired in individuals with stroke. Functional Reach Test (FRT) was used to assess the role of ankle foot orthoses (AFOs) in balance control. Individuals with stroke improved their functional stability while they were provided with AFOs. Functional Reach Test could assist clinicians in the evaluation of postural stability associated with the use of AFOs.

  20. Process Consultation: Its Role in Organization Development.

    ERIC Educational Resources Information Center

    Schein, Edgar H.

    This volume focuses on the process by which the consultant builds readiness for organizational development (OD) programs, actually conducts training, and works with the key individuals of an organization as part of an OD program. Part I describes in some detail the human processes in organizations--communication, functional roles of group members,…

  1. The interactive effects of negative symptoms and social role functioning on suicide ideation in individuals with schizophrenia.

    PubMed

    Jahn, Danielle R; Bennett, Melanie E; Park, Stephanie G; Gur, Raquel E; Horan, William P; Kring, Ann M; Blanchard, Jack J

    2016-02-01

    Findings regarding the protective effect of social role functioning on suicide ideation in individuals with schizophrenia have been mixed. One reason for such inconsistencies in the literature may be that individuals with prominent negative symptoms of schizophrenia may not experience a desire for social closeness, and therefore social role functioning may not influence suicide risk in these individuals. The aim of this study was to examine the moderating effects of self-reported desire for social closeness and interviewer-rated negative symptoms on the relationship between social role functioning and suicide ideation. Our sample consisted of 162 individuals who had been diagnosed with schizophrenia-spectrum disorders; all participants completed self-report questionnaires and clinician-administered interviews, and moderation hypotheses were tested with a non-parametric procedure. The results indicated that motivation and pleasure-related negative symptoms moderated the relationship between social role functioning and suicide ideation; self-reported desire for social closeness and negative symptoms related to expression did not have such a moderating effect. Specifically, better social role functioning was associated with less suicide ideation only in those individuals who had low motivation and pleasure-related negative symptoms; no significant relationship was observed between social role functioning and suicide ideation among those with elevated motivation and pleasure-related negative symptoms. These findings suggest that assessing for negative symptoms and social role functioning may inform suicide risk assessments in individuals with schizophrenia, and improving social role functioning may reduce suicide ideation among those with few motivation and pleasure-related negative symptoms. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The functional role of long non-coding RNA in digestive system carcinomas.

    PubMed

    Wang, Guang-Yu; Zhu, Yuan-Yuan; Zhang, Yan-Qiao

    2014-09-01

    In recent years, long non-coding RNAs (lncRNAs) are emerging as either oncogenes or tumor suppressor genes. Recent evidences suggest that lncRNAs play a very important role in digestive system carcinomas. However, the biological function of lncRNAs in the vast majority of digestive system carcinomas remains unclear. Recently, increasing studies has begun to explore their molecular mechanisms and regulatory networks that they are implicated in tumorigenesis. In this review, we highlight the emerging functional role of lncRNAs in digestive system carcinomas. It is becoming clear that lncRNAs will be exciting and potentially useful for diagnosis and treatment of digestive system carcinomas, some of these lncRNAs might function as both diagnostic markers and the treatment targets of digestive system carcinomas.

  3. Biological roles and functional mechanisms of arenavirus Z protein in viral replication.

    PubMed

    Wang, Jialong; Danzy, Shamika; Kumar, Naveen; Ly, Hinh; Liang, Yuying

    2012-09-01

    Arenaviruses can cause severe hemorrhagic fever diseases in humans, with limited prophylactic or therapeutic measures. A small RING-domain viral protein Z has been shown to mediate the formation of virus-like particles and to inhibit viral RNA synthesis, although its biological roles in an infectious viral life cycle have not been directly addressed. By taking advantage of the available reverse genetics system for a model arenavirus, Pichinde virus (PICV), we provide the direct evidence for the essential biological roles of the Z protein's conserved residues, including the G2 myristylation site, the conserved C and H residues of RING domain, and the poorly characterized C-terminal L79 and P80 residues. Dicodon substitutions within the late (L) domain (PSAPPYEP) of the PICV Z protein, although producing viable mutant viruses, have significantly reduced virus growth, a finding suggestive of an important role for the intact L domain in viral replication. Further structure-function analyses of both PICV and Lassa fever virus Z proteins suggest that arenavirus Z proteins have similar molecular mechanisms in mediating their multiple functions, with some interesting variations, such as the role of the G2 residue in blocking viral RNA synthesis. In summary, our studies have characterized the biological roles of the Z protein in an infectious arenavirus system and have shed important light on the distinct functions of its domains in virus budding and viral RNA regulation, the knowledge of which may lead to the development of novel antiviral drugs.

  4. Dopamine signaling and myopia development: What are the key challenges.

    PubMed

    Zhou, Xiangtian; Pardue, Machelle T; Iuvone, P Michael; Qu, Jia

    2017-11-01

    In the face of an "epidemic" increase in myopia over the last decades and myopia prevalence predicted to reach 2.5 billion people by the end of this decade, there is an urgent need to develop effective and safe therapeutic interventions to slow down this "myopia booming" and prevent myopia-related complications and vision loss. Dopamine (DA) is an important neurotransmitter in the retina and mediates diverse functions including retina development, visual signaling, and refractive development. Inspired by the convergence of epidemiological and animal studies in support of the inverse relationship between outdoor activity and risk of developing myopia and by the close biological relationship between light exposure and dopamine release/signaling, we felt it is timely and important to critically review the role of DA in myopia development. This review will revisit several key points of evidence for and against DA mediating light control of myopia: 1) the causal role of extracellular retinal DA levels, 2) the mechanism and action of dopamine D1 and D2 receptors and 3) the roles of cellular/circuit retinal pathways. We examine the experiments that show causation by altering DA, DA receptors and visual pathways using pharmacological, transgenic, or visual environment approaches. Furthermore, we critically evaluate the safety issues of a DA-based treatment strategy and some approaches to address these issues. The review identifies the key questions and challenges in translating basic knowledge on DA signaling and myopia from animal studies into effective pharmacological treatments for myopia in children. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Fengxia; Zhang, Minjie; University of Chinese Academy of Sciences, Beijing 100049

    2014-10-03

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage.more » Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.« less

  6. Left Inferior Frontal Cortex and Syntax: Function, Structure and Behaviour in Patients with Left Hemisphere Damage

    ERIC Educational Resources Information Center

    Tyler, Lorraine K.; Marslen-Wilson, William D.; Randall, Billi; Wright, Paul; Devereux, Barry J.; Zhuang, Jie; Papoutsi, Marina; Stamatakis, Emmanuel A.

    2011-01-01

    For the past 150 years, neurobiological models of language have debated the role of key brain regions in language function. One consistently debated set of issues concern the role of the left inferior frontal gyrus in syntactic processing. Here we combine measures of functional activity, grey matter integrity and performance in patients with left…

  7. The PICALM Protein Plays a Key Role in Iron Homeostasis and Cell Proliferation

    PubMed Central

    Scotland, Paula B.; Heath, Jessica L.; Conway, Amanda E.; Porter, Natasha B.; Armstrong, Michael B.; Walker, Jennifer A.; Klebig, Mitchell L.; Lavau, Catherine P.; Wechsler, Daniel S.

    2012-01-01

    The ubiquitously expressed phosphatidylinositol binding clathrin assembly (PICALM) protein associates with the plasma membrane, binds clathrin, and plays a role in clathrin-mediated endocytosis. Alterations of the human PICALM gene are present in aggressive hematopoietic malignancies, and genome-wide association studies have recently linked the PICALM locus to late-onset Alzheimer's disease. Inactivating and hypomorphic Picalm mutations in mice cause different degrees of severity of anemia, abnormal iron metabolism, growth retardation and shortened lifespan. To understand PICALM’s function, we studied the consequences of PICALM overexpression and characterized PICALM-deficient cells derived from mutant fit1 mice. Our results identify a role for PICALM in transferrin receptor (TfR) internalization and demonstrate that the C-terminal PICALM residues are critical for its association with clathrin and for the inhibitory effect of PICALM overexpression on TfR internalization. Murine embryonic fibroblasts (MEFs) that are deficient in PICALM display several characteristics of iron deficiency (increased surface TfR expression, decreased intracellular iron levels, and reduced cellular proliferation), all of which are rescued by retroviral PICALM expression. The proliferation defect of cells that lack PICALM results, at least in part, from insufficient iron uptake, since it can be corrected by iron supplementation. Moreover, PICALM-deficient cells are particularly sensitive to iron chelation. Taken together, these data reveal that PICALM plays a critical role in iron homeostasis, and offer new perspectives into the pathogenesis of PICALM-associated diseases. PMID:22952941

  8. Key Microbiota Identification Using Functional Gene Analysis during Pepper (Piper nigrum L.) Peeling.

    PubMed

    Zhang, Jiachao; Hu, Qisong; Xu, Chuanbiao; Liu, Sixin; Li, Congfa

    2016-01-01

    Pepper pericarp microbiota plays an important role in the pepper peeling process for the production of white pepper. We collected pepper samples at different peeling time points from Hainan Province, China, and used a metagenomic approach to identify changes in the pericarp microbiota based on functional gene analysis. UniFrac distance-based principal coordinates analysis revealed significant changes in the pericarp microbiota structure during peeling, which were attributed to increases in bacteria from the genera Selenomonas and Prevotella. We identified 28 core operational taxonomic units at each time point, mainly belonging to Selenomonas, Prevotella, Megasphaera, Anaerovibrio, and Clostridium genera. The results were confirmed by quantitative polymerase chain reaction. At the functional level, we observed significant increases in microbial features related to acetyl xylan esterase and pectinesterase for pericarp degradation during peeling. These findings offer a new insight into biodegradation for pepper peeling and will promote the development of the white pepper industry.

  9. Key Microbiota Identification Using Functional Gene Analysis during Pepper (Piper nigrum L.) Peeling

    PubMed Central

    Xu, Chuanbiao; Liu, Sixin; Li, Congfa

    2016-01-01

    Pepper pericarp microbiota plays an important role in the pepper peeling process for the production of white pepper. We collected pepper samples at different peeling time points from Hainan Province, China, and used a metagenomic approach to identify changes in the pericarp microbiota based on functional gene analysis. UniFrac distance-based principal coordinates analysis revealed significant changes in the pericarp microbiota structure during peeling, which were attributed to increases in bacteria from the genera Selenomonas and Prevotella. We identified 28 core operational taxonomic units at each time point, mainly belonging to Selenomonas, Prevotella, Megasphaera, Anaerovibrio, and Clostridium genera. The results were confirmed by quantitative polymerase chain reaction. At the functional level, we observed significant increases in microbial features related to acetyl xylan esterase and pectinesterase for pericarp degradation during peeling. These findings offer a new insight into biodegradation for pepper peeling and will promote the development of the white pepper industry. PMID:27768750

  10. Functional roles affect diversity-succession relationships for boreal beetles.

    PubMed

    Gibb, Heloise; Johansson, Therese; Stenbacka, Fredrik; Hjältén, Joakim

    2013-01-01

    Species diversity commonly increases with succession and this relationship is an important justification for conserving large areas of old-growth habitats. However, species with different ecological roles respond differently to succession. We examined the relationship between a range of diversity measures and time since disturbance for boreal forest beetles collected over a 285 year forest chronosequence. We compared responses of "functional" groups related to threat status, dependence on dead wood habitats, diet and the type of trap in which they were collected (indicative of the breadth of ecologies of species). We examined fits of commonly used rank-abundance models for each age class and traditional and derived diversity indices. Rank abundance distributions were closest to the Zipf-Mandelbrot distribution, suggesting little role for competition in structuring most assemblages. Diversity measures for most functional groups increased with succession, but differences in slopes were common. Evenness declined with succession; more so for red-listed species than common species. Saproxylic species increased in diversity with succession while non-saproxylic species did not. Slopes for fungivores were steeper than other diet groups, while detritivores were not strongly affected by succession. Species trapped using emergence traps (log specialists) responded more weakly to succession than those trapped using flight intercept traps (representing a broader set of ecologies). Species associated with microhabitats that accumulate with succession (fungi and dead wood) thus showed the strongest diversity responses to succession. These clear differences between functional group responses to forest succession should be considered in planning landscapes for optimum conservation value, particularly functional resilience.

  11. Emerging roles for neurosteroids in sexual behavior and function.

    PubMed

    King, Steven R

    2008-01-01

    Although gonadal and adrenal steroids heavily impact sexual function at the level of the brain, the nervous system also produces its own steroids de novo that may regulate sexual behavior and reproduction. Current evidence points to important roles for neurosteroids in sexual and gender-typical behaviors, control of ovulation, and behaviors that strongly influence sexual interest and motivation like aggression, anxiety and depression. At the cellular level, neurosteroids act through stimulating rapid changes in excitability and direct activation of membrane receptors in neurons. Thus, unlike peripheral steroids, neurosteroids can have immediate and specific effects on select neuronal pathways to regulate sexual function.

  12. MicroRNAs in prostate cancer: Functional role as biomarkers.

    PubMed

    Kanwal, Rajnee; Plaga, Alexis R; Liu, Xiaoqi; Shukla, Girish C; Gupta, Sanjay

    2017-10-28

    MicroRNAs (miRNAs) are small endogenous non-coding molecules that alters gene expression through post-transcriptional regulation of messenger RNA. Compelling evidence suggest the role of miRNA in cancer biology having potential as diagnostic, prognostic and predictive biomarkers. This review summarizes the current knowledge on miRNA deregulated in prostate cancer and their role as oncogene, tumor suppressor and metastasis regulators. The emerging information elucidating the biological function of miRNA is promising and may lead to their potential usefulness as diagnostic/prognostic markers and development as effective therapeutic tools for management of prostate cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Protecting Cryptographic Keys and Functions from Malware Attacks

    DTIC Science & Technology

    2010-12-01

    registers. modifies RSA private key signing in OpenSSL to use the technique. The resulting system has the following features: 1. No special hardware is...the above method based on OpenSSL , by exploiting the Streaming SIMD Extension (SSE) XMM registers of modern Intel and AMD x86-compatible CPU’s [22...one can store a 2048-bit exponent.1 Our prototype is based on OpenSSL 0.9.8e, the Ubuntu 6.06 Linux distribution with a 2.6.15 kernel, and SSE2 which

  14. Human resource processes and the role of the human resources function during mergers and acquisitions in the electricity industry

    NASA Astrophysics Data System (ADS)

    Dass, Ted K.

    Mergers and acquisitions (M&A) have been a popular strategy for organizations to consolidate and grow for more than a century. However, research in this field indicates that M&A are more likely to fail than succeed, with failure rates estimated to be as high as 75%. People-related issues have been identified as important causes for the high failure rate, but these issues are largely neglected until after the deal is closed. One explanation for this neglect is the low involvement of human resource (HR) professionals and the HR function during the M&A process. The strategic HR management literature suggests that a larger role for HR professionals in the M&A process would enable organizations to identify potential problems early and devise appropriate solutions. However, empirical research from an HR perspective has been scarce in this area. This dissertation examines the role of the HR function and the HR processes followed in organizations during M&A. Employing a case-study research design, this study examines M&A undertaken by two large organizations in the electricity industry through the lens of a "process" perspective. Based on converging evidence, the case studies address three sets of related issues: (1) how do organizations undertake and manage M&A; (2) what is the extent of HR involvement in M&A and what role does it play in the M&A process; and (3) what factors explain HR involvement in the M&A process and, more generally, in the formulation of corporate goals and strategies. Results reveal the complexity of issues faced by organizations in undertaking M&A, the variety of roles played by HR professionals, and the importance of several key contextual factors---internal and external to the organization---that influence HR involvement in the M&A process. Further, several implications for practice and future research are explored.

  15. Neurotrophin Propeptides: Biological Functions and Molecular Mechanisms.

    PubMed

    Rafieva, Lola M; Gasanov, Eugene V

    2016-01-01

    Neurotrophins constitute a family of growth factors that play a key role in the regulation of the development and function of the central and peripheral nervous systems. A common feature of all the neurotrophins is their synthesis in cells as long precursors (pre-pro-neurotrophins) that contain an N-terminal signal peptide, a following propeptide and the mature neurotrophin. Although the signal peptide functions have been well studied, the role of neurotrophin propeptides is not so clear. Here, we briefly summarize the biochemistry of neurotrophin propeptides, including their role as folding-assistants for the mature factor and their role in processing and in secretion of neurotrophins. In the main part of the review we summarize our current state of knowledge of the biological activity of neurotrophin propeptides, their possible mechanisms of action, and their potential influence on the activity of the mature neurotrophins.

  16. Remote Control of Gene Function by Local Translation

    PubMed Central

    Jung, Hosung; Gkogkas, Christos G.; Sonenberg, Nahum; Holt, Christine E.

    2014-01-01

    The subcellular position of a protein is a key determinant of its function. Mounting evidence indicates that RNA localization, where specific mRNAs are transported subcellularly and subsequently translated in response to localized signals, is an evolutionarily conserved mechanism to control protein localization. On-site synthesis confers novel signaling properties to a protein and helps to maintain local proteome homeostasis. Local translation plays particularly important roles in distal neuronal compartments, and dysregulated RNA localization and translation cause defects in neuronal wiring and survival. Here, we discuss key findings in this area and possible implications of this adaptable and swift mechanism for spatial control of gene function. PMID:24679524

  17. Cytosolic chloride ion is a key factor in lysosomal acidification and function of autophagy in human gastric cancer cell.

    PubMed

    Hosogi, Shigekuni; Kusuzaki, Katsuyuki; Inui, Toshio; Wang, Xiangdong; Marunaka, Yoshinori

    2014-06-01

    The purpose of the present study was to clarify roles of cytosolic chloride ion (Cl(-) ) in regulation of lysosomal acidification [intra-lysosomal pH (pHlys )] and autophagy function in human gastric cancer cell line (MKN28). The MKN28 cells cultured under a low Cl(-) condition elevated pHlys and reduced the intra-lysosomal Cl(-) concentration ([Cl(-) ]lys ) via reduction of cytosolic Cl(-) concentration ([Cl(-) ]c ), showing abnormal accumulation of LC3II and p62 participating in autophagy function (dysfunction of autophagy) accompanied by inhibition of cell proliferation via G0 /G1 arrest without induction of apoptosis. We also studied effects of direct modification of H(+) transport on lysosomal acidification and autophagy. Application of bafilomycin A1 (an inhibitor of V-type H(+) -ATPase) or ethyl isopropyl amiloride [EIPA; an inhibitor of Na(+) /H(+) exchanger (NHE)] elevated pHlys and decreased [Cl(-) ]lys associated with inhibition of cell proliferation via induction of G0 /G1 arrest similar to the culture under a low Cl(-) condition. However, unlike low Cl(-) condition, application of the compound, bafilomycin A1 or EIPA, induced apoptosis associated with increases in caspase 3 and 9 without large reduction in [Cl(-) ]c compared with low Cl(-) condition. These observations suggest that the lowered [Cl(-) ]c primarily causes dysfunction of autophagy without apoptosis via dysfunction of lysosome induced by disturbance of intra-lysosomal acidification. This is the first study showing that cytosolic Cl(-) is a key factor of lysosome acidification and autophagy. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  18. Global functional diversity of freshwater fish is concentrated in the Neotropics while functional vulnerability is widespread.

    PubMed

    Toussaint, A; Charpin, N; Brosse, S; Villéger, S

    2016-03-16

    Worldwide biodiversity assessments have mainly focused on species richness but little is known about the diversity of species roles, i.e. functional diversity, while this is a key facet to understanding the consequences of global changes on the ecosystem services to human societies. Here, we report the world pattern of functional diversity of freshwater fish using a database encompassing morphological characteristics of more than 9,000 species. The Neotropical realm hosts more than 75% of global functional diversity while other realms each host less than 25%. This discrepancy is mediated by high functional uniqueness in some diversified Neotropical fish orders. Surprisingly, functional diversity patterns were weakly related to functional vulnerability. In the Neotropics the loss of threatened species will cause a limited loss of functional diversity (<10%) whereas in the Nearctic and Palearctic realms, decline of the functional diversity will reach 43% and 33%, respectively, conferring a high functional vulnerability to these realms. Conservation of the Neotropical fish diversity is a key target to maintain world fish functional diversity, but this should not hide the pressing need to conserve the vulnerable fish faunas of the rest of the world, in which functional diversity is to a large extent supported by threatened species.

  19. The impact of eicosanoids on the crosstalk between innate and adaptive immunity: the key roles of dendritic cells.

    PubMed

    Harizi, H; Gualde, N

    2005-06-01

    The innate immune response is essentially the first line of defense against an invading pathogen. Through specialized receptors, known as pattern recognition receptors, especially Toll-like receptors, specialized cells of myeloid origin, including macrophages and dendritic cells (DCs) are able to phagocytose microorganisms and induce an innate inflammatory response. Although B and T lymphocytes recognize tissue antigens with high specificity, they are unable to initiate immune responses. The decision to activate an appropriate immune response is made by unique DC, the most professional antigen-presenting cells (APCs) which control the responses of several types of lymphocytes and play central role in the transition between innate and adaptive immunity. Increased secretion of inflammatory endogenous mediators such as cytokines and arachidonic acid-derived lipid mediators, also termed eicosanoids, can activate APC, particularly DC, which in turn induce an adaptive immune response. There is an increasing evidence that eicosanoids play an important role in connecting innate and adaptive immunity by acting on cells of both systems. Prostanoids, a major class of eicosanoids, have a great impact on inflammatory and immune responses. PGE(2) is one of the best known and most well-characterized prostanoids in terms of immunomodulation. Although cytokines are known as key regulators of immunity, eicosanoids, including PGE(2), PGD(2), LTB(4), and LTC(4), may also affect cells of immune system by modulating cytokine release, cell differentiation, survival, migration, antigen presentation, and apoptosis. By acting on various aspects of immune and inflammatory reactions, these lipid mediators emerge as key regulators of the crosstalk between innate and adaptive immunity.

  20. Regulation of Endothelial Barrier Function by Cyclic Nucleotides: The Role of Phosphodiesterases

    PubMed Central

    Surapisitchat, James

    2014-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction. PMID:21695641

  1. Regulation of endothelial barrier function by cyclic nucleotides: the role of phosphodiesterases.

    PubMed

    Surapisitchat, James; Beavo, Joseph A

    2011-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction.

  2. Functional Roles of Bestrophins in Ocular Epithelia

    PubMed Central

    Marmorstein, Alan D.; Cross, Harold E.; Peachey, Neal S.

    2009-01-01

    There are four members of the bestrophin family of proteins in the human genome, of which two are known to be expressed in the eye. The gene BEST1 (formerly VMD2) which encodes the protein bestrophin-1 (Best1) was first identified in 1998. Mutations in this gene have now been associated with four clinically distinguishable human eye diseases, collectively referred to as “bestrophinopathies”. Over the last decade, laboratories have sought to understand how Best1 mutations could result in eye diseases that range in presentation from macular degeneration to nanophthalmos. The majority of our knowledge comes from studies that have sought to understand how Best1 mutations or dysfunction could induce the classical symptoms of the most common of these diseases: Best vitelliform macular dystrophy (BVMD). BVMD is a dominant trait that is characterized electrophysiologically by a diminished electrooculogram light peak with a normal clinical electroretinogram. This together with the localization of Best1 to the retinal pigment epithelium (RPE) basolateral plasma membrane and data from heterologous expression studies, have led to the proposal that Best1 generates the light peak, and that bestrophins are a family of Ca2+ activated Cl- channels (CaCCs). However, data from Best1 knock-out and knock-in mice, coupled with the recent discovery of a recessive bestrophinopathy suggest that Best1 does not generate the light peak. Recently Best2 was found to be expressed in non-pigmented epithelia in the ciliary body. However, aqueous dynamics in Best2 knock-out mice do not support a role for Best2 as a Cl- channel. Thus, the purported CaCC function of the bestrophins and how loss of this function relates to clinical disease needs to be reassessed. In this article, we examine data obtained from tissue-type and animal models and discuss the current state of bestrophin research, what roles Best1 and Best2 may play in ocular epithelia and ocular electrophysiology, and how perturbation

  3. The Key Role of Emotions in the Schizophrenia Puzzle

    PubMed Central

    Ciompi, Luc

    2015-01-01

    The aim of this paper is to show that the dynamic effects of emotions in schizophrenia are underestimated and partly misunderstood. This may be related to an insufficient consideration for certain key properties of emotions, especially their energizing effects. After introductory remarks on current notions on emotions in schizophrenia, I present an alternative view based on my concept of affect-logic and discuss some of its therapeutic implications. PMID:25481397

  4. Key role of an ADP - ribose - dependent transcriptional regulator of NAD metabolism for fitness and virulence of Pseudomonas aeruginosa.

    PubMed

    Okon, Elza; Dethlefsen, Sarah; Pelnikevich, Anna; Barneveld, Andrea van; Munder, Antje; Tümmler, Burkhard

    2017-01-01

    NAD is an essential co-factor of redox reactions and metabolic conversions of NAD-dependent enzymes. NAD biosynthesis in the opportunistic pathogen Pseudomonas aeruginosa has yet not been experimentally explored. The in silico search for orthologs in the P. aeruginosa PAO1 genome identified the operon pncA - pncB1-nadE (PA4918-PA4920) to encode the nicotinamidase, nicotinate phosporibosyltransferase and Nad synthase of salvage pathway I. The functional role of the preceding genes PA4917 and PA4916 was resolved by the characterization of recombinant protein. PA4917 turned out to encode the nicotinate mononucleotide adenylyltransferase NadD2 and PA4916 was determined to encode the transcriptional repressor NrtR that binds to an intergenic sequence between nadD2 and pncA. Complex formation between the catalytically inactive Nudix protein NrtR and its DNA binding site was suppressed by the antirepressor ADP-ribose. NrtR plasposon mutagenesis abrogated virulence of P. aeruginosa TBCF10839 in a murine acute airway infection model and constrained its metabolite profile. When grown together with other isogenic plasposon mutants, the nrtR knock-out was most compromised in competitive fitness to persist in nutrient-rich medium in vitro or murine airways in vivo. This example demonstrates how tightly metabolism and virulence can be intertwined by key elements of metabolic control. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Physical and role functioning among persons with HIV: results from a nationally representative survey.

    PubMed

    Crystal, S; Fleishman, J A; Hays, R D; Shapiro, M F; Bozzette, S A

    2000-12-01

    Functional limitations of persons living with HIV affect their care needs and ability to perform social roles such as employment. Earlier estimates are outdated, and nationally representative estimates of prevalence and distribution of these limitations have not previously been available. The objectives of this study were to characterize physical and role limitations experienced by adults in care for HIV disease in the United States and to analyze variations by demographic and health characteristics in a multivariate framework. Among 2,836 respondents in the HIV Cost and Services Utilization Survey, we assessed physical functioning with a 9-item scale designed to span a broad continuum of tasks and administered the 2-item ACTG SF-21 role functioning scale. Linearization methods were used to account for the multistage survey design. Limitation in complex roles-working at a job, working around the house, or going to school-was more prevalent than limitation in most specific physical tasks. Among physical tasks, limitation was more prevalent in energy-demanding activities such as climbing stairs (43%) or walking >1 block (26%) than in self-care tasks such as bathing and dressing (14%). Greater limitation was associated with older age, lower educational attainment, more advanced disease, and higher symptom burden. Protease inhibitor treatment was associated with somewhat less physical limitation but no difference in role limitation. Functional status varied widely, suggesting the need for flexible, individualized care system responses. Results identified subgroups whose needs warrant special attention. Symptom intensity, pain, and fatigue were strongly associated with limitation; improved management of these disease manifestations might improve physical and social functioning.

  6. Functional disability in patients with low back pain: the mediator role of suffering and beliefs about pain control in patients receiving physical and chiropractic treatment.

    PubMed

    Pereira, M Graça; Roios, Edite; Pereira, Marta

    Low back pain is the leading cause of disability worldwide. There is evidence that depression, anxiety, and external locus of control are negative predictors of functional disability in low back patients. This study focused on the mediator role of suffering and beliefs about pain control in the relationship between psychological morbidity and functional disability in patients receiving physical therapy and chiropractic treatment for chronic low back pain. The sample included 213 patients receiving chiropractic treatment and 125 receiving physical therapy, who answered the following instruments: Beliefs about Pain Control Questionnaire; Inventory of Subjective Experiences of Suffering in Illness; Oswestry Low Back Pain Disability Questionnaire; and the Hospital Anxiety and Depression Scales. Suffering was a mediator in the relationship between depression and functional disability in both treatment groups. Only beliefs related to external chance events mediated the relationship between depression and functional disability in the physical therapy group, but not in the chiropratic teratment group. Intervention should focus on suffering regardless of the type of treatment and target beliefs about pain control, in patients receiving physical therapy treatment since they seem to play a key role in functional disability in patients with low back pain. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  7. Insulin: its role in the central control of reproduction.

    PubMed

    Sliwowska, Joanna H; Fergani, Chrysanthi; Gawałek, Monika; Skowronska, Bogda; Fichna, Piotr; Lehman, Michael N

    2014-06-22

    Insulin has long been recognized as a key regulator of energy homeostasis via its actions at the level of the brain, but in addition, plays a role in regulating neural control of reproduction. In this review, we consider and compare evidence from animal models demonstrating a role for insulin for physiological control of reproduction by effects on GnRH/LH secretion. We also review the role that insulin plays in prenatal programming of adult reproduction, and consider specific candidate neurons in the adult hypothalamus by which insulin may act to regulate reproductive function. Finally, we review clinical evidence of the role that insulin may play in adult human fertility and reproductive disorders. Overall, while insulin appears to have a significant impact on reproductive neuroendocrine function, there are many unanswered questions regarding its precise sites and mechanisms of action, and their impact on developing and adult reproductive neuroendocrine function. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. [Standardization of the terms for Chinese herbal functions based on functional targeting].

    PubMed

    Xiao, Bin; Tao, Ou; Gu, Hao; Wang, Yun; Qiao, Yan-Jiang

    2011-03-01

    Functional analysis concisely summarizes and concentrates on the therapeutic characteristics and features of Chinese herbal medicine. Standardization of the terms for Chinese herbal functions not only plays a key role in modern research and development of Chinese herbal medicine, but also has far-reaching clinical applications. In this paper, a new method for standardizing the terms for Chinese herbal function was proposed. Firstly, functional targets were collected. Secondly, the pathological conditions and the mode of action of every functional target were determined by analyzing the references. Thirdly, the relationships between the pathological condition and the mode of action were determined based on Chinese medicine theory and data. This three-step approach allows for standardization of the terms for Chinese herbal functions. Promoting the standardization of Chinese medicine terms will benefit the overall clinical application of Chinese herbal medicine.

  9. The Role of Functional Foods in Cutaneous Anti-aging

    PubMed Central

    Cho, Soyun

    2014-01-01

    Oral supplementation of micronutrients, or functional foods, to prevent aging has gained much attention and popularity as society ages and becomes more affluent, and as science reveals the pathological mechanisms of aging. Aging of the skin combines biologic aging and extrinsic aging caused predominantly by sunlight and other environmental toxins. Anti-aging functional foods exert their influence mostly through their anti-oxidant and anti-inflammatory effects, thereby abrogating collagen degradation and/or increasing procollagen synthesis. Clinical evidence supporting a role in preventing cutaneous aging is available for oral supplements such as carotenoids, polyphenols, chlorophyll, aloe vera, vitamins C and E, red ginseng, squalene, and omega-3 fatty acids. Collagen peptides and proteoglycans are claimed to provide building blocks of the dermal matrix. This review summarizes the current study findings of these functional foods. PMID:26064850

  10. Key Issues in Instructional Computer Graphics.

    ERIC Educational Resources Information Center

    Wozny, Michael J.

    1981-01-01

    Addresses key issues facing universities which plan to establish instructional computer graphics facilities, including computer-aided design/computer aided manufacturing systems, role in curriculum, hardware, software, writing instructional software, faculty involvement, operations, and research. Thirty-seven references and two appendices are…

  11. The role of preliminary magazine training in acquisition of the autoshaped key peck1

    PubMed Central

    Davol, G. H.; Steinhauer, G. D.; Lee, A.

    1977-01-01

    A series of experiments tested the hypothesis that initial key pecks in the autoshaping procedure are generalized pecks at the illuminated grain hopper. Experiment I found that autoshaping readily occurred when the chamber was continuously illuminated by a house-light. In Experiment II, pigeons given magazine training and autoshaping with an unlighted grain hopper failed to autoshape in 200 trials. Acquisition of autoshaped key pecking was retarded in Experiment III when stimulus control by the magazine light was reduced. In the fourth study, pigeons were given magazine training with either a red or white magazine light and then given autoshaping with concurrently presented red and white keys. For all pigeons in this experiment, the first key peck occurred on the key of the same color as that pigeon's magazine light. The results of these experiments were interpreted as supporting an account of autoshaping that identifies initial key pecks as arising due to generalization of pecking at the lighted grain hopper to pecking at the lighted key. PMID:16812027

  12. The Profession, Functions, Roles, and Practices of the Rehabilitation Counselor.

    ERIC Educational Resources Information Center

    Muthard, John E., Ed.; And Others

    Four investigations of the rehabilitation counselor were presented to and discussed by representatives of universities, professional associations, and public and private rehabilitation agencies. Four major aspects of the counselor's professional development and practice were covered in these studies: (1) his perceived role and function within…

  13. Ecosystem-scale fluxes in seminatural Pyrenean grasslands: role of annual dynamics of plant functional types

    NASA Astrophysics Data System (ADS)

    Altimir, Nuria; Ibañez, Mercedes; Elbers, Jan; Rota, Cristina; Arias, Claudia; Carrara, Arnaud; Nogues, Salvador; Sebastia, Maria-Teresa

    2013-04-01

    The net ecosystem exchange (NEE) and the annual C balance of a site are in general modulated by light, temperature and availability of water and other resources to the plants. In grasslands, NEE is expected to depend strongly on the vegetation with a relationship that can be summarized by the above-ground biomass, its amount and dynamics. Any factor controlling the amount of green biomass is expected to have a strong impact on the short-term NEE, such as amount of solar radiation, water availability and grazing pressure. These controls are modulated differently depending on the plant functional type enduring them. Furthermore, as different guilds follow different functional strategies for optimization of the resources, they also present different patterns of change in their capacities such as photosynthetic fixation, belowground C allocation, and C loss via respiration. We examined these relationships at several semi-natural pastures to determine how the seasonal distribution of plant functional types is detected in the short-term ecosystem exchange and what role it plays. We have looked into these patterns to determine the general variation of key processes and whether different temporal patterns arise between different guilds. The study sites are in the Pyrenees, on the mountain pastures of La Bertolina, Alinyà, and Castellar at 1300, 1700, 1900 m a.s.l. respectively. We performed ecosystem-scale flux measurements by means of micrometeorologial stations combined with a thorough description of the vegetation including below- and above-ground biomass and leaf area as well as monitoring of natural abundance of C isotopes, discriminated by plant functional types. We present here the results of the study.

  14. Prediction of Geomagnetic Activity and Key Parameters in High-Latitude Ionosphere-Basic Elements

    NASA Technical Reports Server (NTRS)

    Lyatsky, W.; Khazanov, G. V.

    2007-01-01

    Prediction of geomagnetic activity and related events in the Earth's magnetosphere and ionosphere is an important task of the Space Weather program. Prediction reliability is dependent on the prediction method and elements included in the prediction scheme. Two main elements are a suitable geomagnetic activity index and coupling function -- the combination of solar wind parameters providing the best correlation between upstream solar wind data and geomagnetic activity. The appropriate choice of these two elements is imperative for any reliable prediction model. The purpose of this work was to elaborate on these two elements -- the appropriate geomagnetic activity index and the coupling function -- and investigate the opportunity to improve the reliability of the prediction of geomagnetic activity and other events in the Earth's magnetosphere. The new polar magnetic index of geomagnetic activity and the new version of the coupling function lead to a significant increase in the reliability of predicting the geomagnetic activity and some key parameters, such as cross-polar cap voltage and total Joule heating in high-latitude ionosphere, which play a very important role in the development of geomagnetic and other activity in the Earth s magnetosphere, and are widely used as key input parameters in modeling magnetospheric, ionospheric, and thermospheric processes.

  15. Incorporating Family Function into Chronic Pain Disability: The Role of Catastrophizing

    PubMed Central

    Akbari, Fatemeh; Dehghani, Mohsen; Khatibi, Ali; Vervoort, Tine

    2016-01-01

    Background. Observers' responses to pain are recently investigated to more comprehensively explain chronic pain (CP) and disability. However, the role of family context, defined as interference in roles, communication, and problem-solving, and how (i.e., through which mechanisms) these variables contribute to CP related disability have yet to be examined. Objectives. The aim of the present study is to examine family context in relationship to pain catastrophizing, fear of movement, and depression and its role in understanding CP disability. Three different models were examined. Methods. A total sample of 142 patients with musculoskeletal chronic pain was recruited to examine the role of fear of movement, pain intensity, pain catastrophizing, and depression in relationship to family functioning as predictors of disability. Results. Findings indicated that two models showed acceptable fit, but one of them revealed superior fit indices. Results of the model with superior fit indices indicated that family dysfunction may contribute to catastrophic thinking, which, in turn, contributes to patients' disability through increasing fear of movement and depression. Discussion. The current study provides further support for the notion that the impact of emotional and cognitive variables upon CP-related disability can be better understood when we consider the social context of pain patients and family function in particular. PMID:27445620

  16. Incorporating Family Function into Chronic Pain Disability: The Role of Catastrophizing.

    PubMed

    Akbari, Fatemeh; Dehghani, Mohsen; Khatibi, Ali; Vervoort, Tine

    2016-01-01

    Background. Observers' responses to pain are recently investigated to more comprehensively explain chronic pain (CP) and disability. However, the role of family context, defined as interference in roles, communication, and problem-solving, and how (i.e., through which mechanisms) these variables contribute to CP related disability have yet to be examined. Objectives. The aim of the present study is to examine family context in relationship to pain catastrophizing, fear of movement, and depression and its role in understanding CP disability. Three different models were examined. Methods. A total sample of 142 patients with musculoskeletal chronic pain was recruited to examine the role of fear of movement, pain intensity, pain catastrophizing, and depression in relationship to family functioning as predictors of disability. Results. Findings indicated that two models showed acceptable fit, but one of them revealed superior fit indices. Results of the model with superior fit indices indicated that family dysfunction may contribute to catastrophic thinking, which, in turn, contributes to patients' disability through increasing fear of movement and depression. Discussion. The current study provides further support for the notion that the impact of emotional and cognitive variables upon CP-related disability can be better understood when we consider the social context of pain patients and family function in particular.

  17. Key enablers to facilitate healthy behavior change: workshop summary.

    PubMed

    Teyhen, Deydre S; Aldag, Matt; Centola, Damon; Edinborough, Elton; Ghannadian, Jason D; Haught, Andrea; Jackson, Theresa; Kinn, Julie; Kunkler, Kevin J; Levine, Betty; Martindale, Valerie E; Neal, David; Snyder, Leslie B; Styn, Mindi A; Thorndike, Frances; Trabosh, Valerie; Parramore, David J

    2014-05-01

    The increases in preventable chronic diseases and the rising costs of health care are unsustainable. The US Army Surgeon General's vision to transition from a health care system to a system of health requires the identification of key health enablers to facilitate the adoption of healthy behaviors. In support of this vision, the US Army Telemedicine and Advanced Technology Research Center hosted a workshop in April 2013 titled "Incentives to Create and Sustain Change for Health." Members of government and academia participated to identify key health enablers that could ultimately be leveraged by technology. The key health enablers discussed included (1) public health messaging, (2) changing health habits and the environmental influence on health, (3) goal setting and tracking, (4) the role of incentives in behavior-change intervention, and (5) the role of peer and social networks on change. This report summarizes leading evidence and the group consensus on evidence-based practices with respect to the key enablers in creating healthy behavior change.

  18. Minireview: roles of the forkhead transcription factor FOXL2 in granulosa cell biology and pathology.

    PubMed

    Pisarska, Margareta D; Barlow, Gillian; Kuo, Fang-Ting

    2011-04-01

    The forkhead transcription factor (FOXL2) is an essential transcription factor in the ovary. It is important in ovarian development and a key factor in female sex determination. In addition, FOXL2 plays a significant role in the postnatal ovary and follicle maintenance. The diverse transcriptional activities of FOXL2 are likely attributable to posttranslational modifications and binding to other key proteins involved in granulosa cell function. Mutations of FOXL2 lead to disorders of ovarian function ranging from premature follicle depletion and ovarian failure to unregulated granulosa cell proliferation leading to tumor formation. Thus, FOXL2 is a key regulator of granulosa cell function and a master transcription factor in these cells.

  19. Minireview: Roles of the Forkhead Transcription Factor FOXL2 in Granulosa Cell Biology and Pathology

    PubMed Central

    Barlow, Gillian; Kuo, Fang-Ting

    2011-01-01

    The forkhead transcription factor (FOXL2) is an essential transcription factor in the ovary. It is important in ovarian development and a key factor in female sex determination. In addition, FOXL2 plays a significant role in the postnatal ovary and follicle maintenance. The diverse transcriptional activities of FOXL2 are likely attributable to posttranslational modifications and binding to other key proteins involved in granulosa cell function. Mutations of FOXL2 lead to disorders of ovarian function ranging from premature follicle depletion and ovarian failure to unregulated granulosa cell proliferation leading to tumor formation. Thus, FOXL2 is a key regulator of granulosa cell function and a master transcription factor in these cells. PMID:21248146

  20. Mitochondria and Endothelial Function

    PubMed Central

    Kluge, Matthew A.; Fetterman, Jessica L.; Vita, Joseph A.

    2013-01-01

    In contrast to their role in other cell types with higher energy demands, mitochondria in endothelial cells primarily function in signaling cellular responses to environmental cues. This article provides an overview of key aspects of mitochondrial biology in endothelial cells, including subcellular location, biogenesis, dynamics, autophagy, ROS production and signaling, calcium homeostasis, regulated cell death, and heme biosynthesis. In each section, we introduce key concepts and then review studies showing the importance of that mechanism to endothelial control of vasomotor tone, angiogenesis, and inflammatory activation. We particularly highlight the small number of clinical and translational studies that have investigated each mechanism in human subjects. Finally, we review interventions that target different aspects of mitochondrial function and their effects on endothelial function. The ultimate goal of such research is the identification of new approaches for therapy. The reviewed studies make it clear that mitochondria are important in endothelial physiology and pathophysiology. A great deal of work will be needed, however, before mitochondria-directed therapies are available for the prevention and treatment of cardiovascular disease. PMID:23580773

  1. The relation of education and cognitive activity to mini-mental state in old age: the role of functional fitness status.

    PubMed

    Ihle, Andreas; Gouveia, Élvio R; Gouveia, Bruna R; Freitas, Duarte L; Jurema, Jefferson; Ornelas, Rui T; Antunes, António M; Muniz, Bárbara R; Kliegel, Matthias

    2018-06-01

    It remains unclear so far whether the role of cognitive reserve for cognitive functioning in old age may differ between individuals with low, compared to those with high functional fitness status. Therefore, the present study set out to investigate the relation of education and cognitive leisure activity as key markers of cognitive reserve to mini-mental state in old age (as an indicator of the extent of cognitive impairment) and its interplay with functional fitness status in a large sample of older adults. We assessed MMSE in 701 older adults ( M  = 70.4 years, SD = 6.9, range: 60-91). We measured functional fitness status using the Senior Fitness Test battery and interviewed individuals on their education and cognitive leisure activity. Results showed that better functional fitness status, longer education, and greater engagement in cognitive leisure activity were significantly related to higher MMSE scores. Moderation analyses showed that the relations of education and cognitive leisure activity to MMSE scores were significantly larger in individuals with low, compared to those with high functional fitness status. In conclusion, cognitive functioning in old age may more strongly depend on cognitive reserve accumulated during the life course in older adults with low, compared to those with high functional fitness status. These findings may be explained by cross-domain compensation effects in vulnerable individuals and may (at least partly) account for the large variability in cognitive reserve-cognition relations debated in the literature.

  2. Functional inhibition of UQCRB suppresses angiogenesis in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Yoon Sun; Jung, Hye Jin; Seok, Seung Hyeok

    2013-04-19

    Highlights: ► This is the first functional characterization of UQCRB in vivo model. ► Angiogenesis is inhibited with UQCRB loss of function in zebrafish. ► UQCRB is introduced as a prognostic marker for mitochondria- and angiogenesis-related diseases. -- Abstract: As a subunit of mitochondrial complex III, UQCRB plays an important role in complex III stability, electron transport, and cellular oxygen sensing. Herein, we report UQCRB function regarding angiogenesis in vivo with the zebrafish (Danio rerio). UQCRB knockdown inhibited angiogenesis in zebrafish leading to the suppression of VEGF expression. Moreover, the UQCRB-targeting small molecule terpestacin also inhibited angiogenesis and VEGF levelsmore » in zebrafish, supporting the role of UQCRB in angiogenesis. Collectively, UQCRB loss of function by either genetic and pharmacological means inhibited angiogenesis, indicating that UQCRB plays a key role in this process and can be a prognostic marker of angiogenesis- and mitochondria-related diseases.« less

  3. Diverse mitotic functions of the cytoskeletal cross-linking protein Shortstop suggest a role in Dynein/Dynactin activity.

    PubMed

    Dewey, Evan B; Johnston, Christopher A

    2017-09-15

    Proper assembly and orientation of the bipolar mitotic spindle is critical to the fidelity of cell division. Mitotic precision fundamentally contributes to cell fate specification, tissue development and homeostasis, and chromosome distribution within daughter cells. Defects in these events are thought to contribute to several human diseases. The underlying mechanisms that function in spindle morphogenesis and positioning remain incompletely defined, however. Here we describe diverse roles for the actin-microtubule cross-linker Shortstop (Shot) in mitotic spindle function in Drosophila Shot localizes to mitotic spindle poles, and its knockdown results in an unfocused spindle pole morphology and a disruption of proper spindle orientation. Loss of Shot also leads to chromosome congression defects, cell cycle progression delay, and defective chromosome segregation during anaphase. These mitotic errors trigger apoptosis in Drosophila epithelial tissue, and blocking this apoptotic response results in a marked induction of the epithelial-mesenchymal transition marker MMP-1. The actin-binding domain of Shot directly interacts with Actin-related protein-1 (Arp-1), a key component of the Dynein/Dynactin complex. Knockdown of Arp-1 phenocopies Shot loss universally, whereas chemical disruption of F-actin does so selectively. Our work highlights novel roles for Shot in mitosis and suggests a mechanism involving Dynein/Dynactin activation. © 2017 Dewey and Johnston. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Aspartate 102 in the Heme Domain of Soluble Guanylyl Cyclase Has a Key Role in NO Activation

    PubMed Central

    Baskaran, Padmamalini; Heckler, Erin J.; van den Akker, Focco; Beuve, Annie

    2012-01-01

    Nitric oxide (NO) is involved in the physiology and pathophysiology of the cardiovascular and neuronal systems via activation of soluble guanylyl cyclase (sGC), a heme-containing heterodimer. Recent structural studies have allowed a better understanding of the residues that dictate the affinity and binding of NO to the heme and the resulting breakage of the bond between the heme iron and histidine 105 (H105) of the β subunit of sGC. Still, it is unknown how the breakage of the iron–His bond translates into NO-dependent increased catalysis. Structural studies on homologous H-NOX domains in various states pointed to a role for movement of the H105 containing αF helix. Our modeling of the heme-binding domain highlighted conserved residues in the vicinity of H105 that could potentially regulate the extent to which the αF helix shifts and/or propagate the activation signal once the covalent bond with H105 has been broken. These include a direct interaction of αF helix residue D102 with the backbone nitrogen of F120. Mutational analysis of this region points to an essential role of the interactions in the vicinity of H105 for heme stability and identifies aspartate 102 (D102) as having a key role in NO activation following breakage of the iron–His bond. PMID:21491881

  5. Deciphering the functions of O-GlcNAc glycosylation in the brain: The role of site-specific quantitative O-GlcNAcomics.

    PubMed

    Thompson, John W; Sorum, Alexander W; Hsieh-Wilson, Linda C

    2018-06-23

    The dynamic posttranslational modification O-linked β-N-acetylglucosamine glycosylation (O-GlcNAcylation) is present on thousands of intracellular proteins in the brain. Like phosphorylation, O-GlcNAcylation is inducible and plays important functional roles in both physiology and disease. Recent advances in mass spectrometry (MS) and bioconjugation methods are now enabling the mapping of O-GlcNAcylation events to individual sites in proteins. However, our understanding of which glycosylation events are necessary for regulating protein function and controlling specific processes, phenotypes, or diseases remains in its infancy. Given the sheer number of O-GlcNAc sites, methods are greatly needed to identify promising sites and prioritize them for time- and resource-intensive functional studies. Revealing sites that are dynamically altered by different stimuli or disease states will likely to go a long way in this regard. Here, we describe advanced methods for identifying O-GlcNAc sites on individual proteins and across the proteome, and for determining their stoichiometry in vivo. We also highlight emerging technologies for quantitative, site-specific MS-based O-GlcNAc proteomics (O-GlcNAcomics), which allow proteome-wide tracking of O-GlcNAcylation dynamics at individual sites. These cutting-edge technologies are beginning to bridge the gap between the high-throughput cataloging of O-GlcNAcylated proteins and the relatively low-throughput study of individual proteins. By uncovering the O-GlcNAcylation events that change in specific physiological and disease contexts, these new approaches are providing key insights into the regulatory functions of O-GlcNAc in the brain, including their roles in neuroprotection, neuronal signaling, learning and memory, and neurodegenerative diseases.

  6. Functional Rarity: The Ecology of Outliers.

    PubMed

    Violle, Cyrille; Thuiller, Wilfried; Mouquet, Nicolas; Munoz, François; Kraft, Nathan J B; Cadotte, Marc W; Livingstone, Stuart W; Mouillot, David

    2017-05-01

    Rarity has been a central topic for conservation and evolutionary biologists aiming to determine the species characteristics that cause extinction risk. More recently, beyond the rarity of species, the rarity of functions or functional traits, called functional rarity, has gained momentum in helping to understand the impact of biodiversity decline on ecosystem functioning. However, a conceptual framework for defining and quantifying functional rarity is still lacking. We introduce 12 different forms of functional rarity along gradients of species scarcity and trait distinctiveness. We then highlight the potential key role of functional rarity in the long-term and large-scale maintenance of ecosystem processes, as well as the necessary linkage between functional and evolutionary rarity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The Functional Impact of the Intestinal Microbiome on Mucosal Immunity and Systemic Autoimmunity

    PubMed Central

    Longman, Randy S.; Littman, Dan R.

    2016-01-01

    Purpose of Review This review will highlight recent advances functionally linking the gut microbiome with mucosal and systemic immune cell activation potentially underlying autoimmunity. Recent Findings Dynamic interactions between the gut microbiome and environmental cues (including diet and medicines) shape the effector potential of the microbial organ. Key bacteria and viruses have emerged, that, in defined microenvironments, play a critical role in regulating effector lymphocyte functions. The coordinated interactions between these different microbial kingdoms—including bacteria, helminths, and viruses (termed transkingdom interactions)—play a critical role in shaping immunity. Emerging strategies to identify immunologically-relevant microbes with the potential to regulate immune cell functions both at mucosal sites and systemically will likely define key diagnostic and therapeutic targets. Summary The microbiome constitutes a critical microbial organ with coordinated interactions that shape host immunity. PMID:26002030

  8. Cationic PAMAM dendrimers disrupt key platelet functions

    PubMed Central

    Jones, Clinton F.; Campbell, Robert A.; Franks, Zechariah; Gibson, Christopher C.; Thiagarajan, Giridhar; Vieira-de-Abreu, Adriana; Sukavaneshvar, Sivaprasad; Mohammad, S. Fazal; Li, Dean Y.; Ghandehari, Hamidreza; Weyrich, Andrew S.; Brooks, Benjamin D.; Grainger, David W.

    2012-01-01

    Poly(amidoamine) (PAMAM) dendrimers have been proposed for a variety of biomedical applications and are increasingly studied as model nanomaterials for such use. The dendritic structure features both modular synthetic control of molecular size and shape and presentation of multiple equivalent terminal groups. These properties make PAMAM dendrimers highly functionalizable, versatile single-molecule nanoparticles with a high degree of consistency and low polydispersity. Recent nanotoxicological studies showed that intravenous administration of amine-terminated PAMAM dendrimers to mice was lethal, causing a disseminated intravascular coagulation-like condition. To elucidate the mechanisms underlying this coagulopathy, in vitro assessments of platelet functions in contact with PAMAM dendrimers were undertaken. This study demonstrates that cationic G7 PAMAM dendrimers activate platelets and dramatically alter their morphology. These changes to platelet morphology and activation state substantially altered platelet function, including increased aggregation and adherence to surfaces. Surprisingly, dendrimer exposure also attenuated platelet-dependent thrombin generation, indicating that not all platelet functions remained intact. These findings provide additional insight into PAMAM dendrimer effects on blood components and underscore the necessity for further research on the effects and mechanisms of PAMAM-specific and general nanoparticle toxicity in blood. PMID:22497592

  9. Glucose metabolism regulates T cell activation, differentiation, and functions.

    PubMed

    Palmer, Clovis S; Ostrowski, Matias; Balderson, Brad; Christian, Nicole; Crowe, Suzanne M

    2015-01-01

    The adaptive immune system is equipped to eliminate both tumors and pathogenic microorganisms. It requires a series of complex and coordinated signals to drive the activation, proliferation, and differentiation of appropriate T cell subsets. It is now established that changes in cellular activation are coupled to profound changes in cellular metabolism. In addition, emerging evidence now suggest that specific metabolic alterations associated with distinct T cell subsets may be ancillary to their differentiation and influential in their immune functions. The "Warburg effect" originally used to describe a phenomenon in which most cancer cells relied on aerobic glycolysis for their growth is a key process that sustain T cell activation and differentiation. Here, we review how different aspects of metabolism in T cells influence their functions, focusing on the emerging role of key regulators of glucose metabolism such as HIF-1α. A thorough understanding of the role of metabolism in T cell function could provide insights into mechanisms involved in inflammatory-mediated conditions, with the potential for developing novel therapeutic approaches to treat these diseases.

  10. Plant Hormones: Key Players in Gut Microbiota and Human Diseases?

    PubMed

    Chanclud, Emilie; Lacombe, Benoît

    2017-09-01

    It is well established that plant hormones such as auxins, cytokinins (CKs), and abscisic acid (ABA) not only govern important plant physiological traits but are key players in plant-microbe interactions. A poorly appreciated fact, however, is that both microbes and animals produce and perceive plant hormones and their mimics. Moreover, dietary plant hormones impact on human physiological process such as glucose assimilation, inflammation, and cell division. This leads us to wonder whether plant hormones could ensure functions in microbes per se as well as in animal-microbe interactions. We propose here and explore the hypothesis that plant hormones play roles in animal-microbiota relationships, with consequences for human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. STAT6: its role in interleukin 4-mediated biological functions.

    PubMed

    Takeda, K; Kishimoto, T; Akira, S

    1997-05-01

    Interleukin (IL) 4 is known to be a cytokine which plays a central role in the regulation of immune response. Studies on cytokine signal transduction have clarified the mechanism by which IL4 exerts its functions. Two cytoplasmic proteins, signal transducer and activator of transcription (STAT) 6 and IL4-induced phosphotyrosine substrate/insulin receptor substrate 2 (4PS/IRS2), are activated in IL4 signal transduction. Recent studies from STAT6-deficient mice have revealed the essential role of STAT6 in IL4-mediated biological actions. In addition, STAT6 has also been demonstrated to be important for the functions mediated by IL13, which is related to IL4. IL4 and IL13 have been shown to induce the production of IgE, which is a major mediator in an allergic response. These findings indicate that STAT6 activation is involved in IL4- and IL13-mediated disorders such as allergy.

  12. A key role for Pre-B cell colony-enhancing factor in experimental hepatitis.

    PubMed

    Moschen, Alexander R; Gerner, Romana; Schroll, Andrea; Fritz, Teresa; Kaser, Arthur; Tilg, Herbert

    2011-08-01

    Pre-B cell colony-enhancing factor (PBEF), also known as nicotinamide phosphoribosyltransferase or visfatin, plays an important role in metabolic, inflammatory, and malignant diseases. Recent evidence suggests that blocking its enzymatic activity using a specific small-molecule inhibitor (FK866) might be beneficial in acute experimental inflammation. We investigated the role of PBEF in human liver disease and experimental hepatitis. PBEF serum levels and hepatic expression were determined in patients with chronic liver diseases. These studies were followed by in vivo experiments using concanavalin A (ConA) and D-galactosamine/lipopolysaccharide (LPS) models of experimental hepatitis. PBEF was either overexpressed by hydrodynamic perfusion or inhibited by FK866. In vivo findings were corroborated studying inflammatory responses of lentivirally PBEF-silenced or control FL83B mouse hepatocytes. Here, we demonstrate that PBEF serum levels were increased in patients with chronic liver diseases irrespective of disease stage and etiology. In particular, we observed enhanced PBEF expression in hepatocytes. Liver-targeted overexpression of PBEF rendered mice more susceptible to ConA- and D-galactosamine/LPS-induced hepatitis compared with control animals. In contrast, inhibition of PBEF using FK866 protected mice from ConA-induced liver damage and apoptosis. Administration of FK866 resulted in depletion of liver nicotinamide adenine dinucleotide+ levels and reduced proinflammatory cytokine expression. Additionally, FK866 protected mice in the D-galactosamine/LPS model of acute hepatitis. In vitro, PBEF-silenced mouse hepatocytes showed decreased responses after stimulation with LPS, lipoteichoic acid, and tumor necrosis factor α. In primary murine Kupffer cells, FK866 suppressed LPS-induced interleukin (IL)-6 production, whereas incubation with recombinant PBEF resulted in increased IL-6 release. Our data suggest that PBEF is of key importance in experimental hepatitis

  13. [Elucidation of key genes in sex determination in genetics teaching].

    PubMed

    Li, Meng; He, Zhumei

    2014-06-01

    Sex is an important and complex feature of organisms, which is controlled by the genetic and environmental factors. The genetic factors, i.e., genes, are vital in sex determination. However, not all the related genes play the same roles, and some key genes play a vital role in the sex determination and differentiation. With the development of the modern genetics, a great progress on the key genes has been made in sex determination. In this review, we summarize the mechanism of sex determination and the strategy of how to study the key genes in sex determination. It will help us to understand the mechanism of sex determination better in the teaching of genetics.

  14. Students' Ability to Connect Function Properties to Different Types of Elementary Functions: An Empirical Study on the Role of External Representations

    ERIC Educational Resources Information Center

    De Bock, Dirk; Neyens, Deborah; Van Dooren, Wim

    2017-01-01

    Recent research on the phenomenon of improper proportional reasoning focused on students' understanding of elementary functions and their external representations. So far, the role of basic function properties in students' concept images of functions remained unclear. We add to this research line by investigating how accurate students are in…

  15. C3aR and C5aR1 act as key regulators of human and mouse β-cell function.

    PubMed

    Atanes, Patricio; Ruz-Maldonado, Inmaculada; Pingitore, Attilio; Hawkes, Ross; Liu, Bo; Zhao, Min; Huang, Guo Cai; Persaud, Shanta J; Amisten, Stefan

    2018-02-01

    Complement components 3 and 5 (C3 and C5) play essential roles in the complement system, generating C3a and C5a peptides that are best known as chemotactic and inflammatory factors. In this study we characterised islet expression of C3 and C5 complement components, and the impact of C3aR and C5aR1 activation on islet function and viability. Human and mouse islet mRNAs encoding key elements of the complement system were quantified by qPCR and distribution of C3 and C5 proteins was determined by immunohistochemistry. Activation of C3aR and C5aR1 was determined using DiscoverX beta-arrestin assays. Insulin secretion from human and mouse islets was measured by radioimmunoassay, and intracellular calcium ([Ca 2+ ]i), ATP generation and apoptosis were assessed by standard techniques. C3 and C5 proteins and C3aR and C5aR1 were expressed by human and mouse islets, and C3 and C5 were mainly localised to β- and α-cells. Conditioned media from islets exposed for 1 h to 5.5 and 20 mM glucose stimulated C3aR and C5aR1-driven beta-arrestin recruitment. Activation of C3aR and C5aR1 potentiated glucose-induced insulin secretion from human and mouse islets, increased [Ca 2+ ]i and ATP generation, and protected islets against apoptosis induced by a pro-apoptotic cytokine cocktail or palmitate. Our observations demonstrate a functional link between activation of components of the innate immune system and improved β-cell function, suggesting that low-level chronic inflammation may improve glucose homeostasis through direct effects on β-cells.

  16. Elucidating the functional role of endoreduplication in tomato fruit development

    PubMed Central

    Chevalier, Christian; Nafati, Mehdi; Mathieu-Rivet, Elodie; Bourdon, Matthieu; Frangne, Nathalie; Cheniclet, Catherine; Renaudin, Jean-Pierre; Gévaudant, Frédéric; Hernould, Michel

    2011-01-01

    Background Endoreduplication is the major source of endopolyploidy in higher plants. The process of endoreduplication results from the ability of cells to modify their classical cell cycle into a partial cell cycle where DNA synthesis occurs independently from mitosis. Despite the ubiquitous occurrence of the phenomenon in eukaryotic cells, the physiological meaning of endoreduplication remains vague,although several roles during plant development have been proposed, mostly related to cell differentiation and cell size determination. Scope Here recent advances in the knowledge of endoreduplication and fruit organogenesis are reviewed, focusing on tomato (Solanum lycopersicum) as a model, and the functional analyses of endoreduplication-associated regulatory genes in tomato fruit are described. Conclusions The cyclin-dependent kinase inhibitory kinase WEE1 and the anaphase promoting complex activator CCS52A both participate in the control of cell size and the endoreduplication process driving cell expansion during early fruit development in tomato. Moreover the fruit-specific functional analysis of the tomato CDK inhibitor KRP1 reveals that cell size and fruit size determination can be uncoupled from DNA ploidy levels, indicating that endoreduplication acts rather as a limiting factor for cell growth. The overall functional data contribute to unravelling the physiological role of endoreduplication in growth induction of fleshy fruits. PMID:21199834

  17. Developmental programming: the concept, large animal models, and the key role of uteroplacental vascular development.

    PubMed

    Reynolds, L P; Borowicz, P P; Caton, J S; Vonnahme, K A; Luther, J S; Hammer, C J; Maddock Carlin, K R; Grazul-Bilska, A T; Redmer, D A

    2010-04-01

    Developmental programming refers to the programming of various bodily systems and processes by a stressor of the maternal system during pregnancy or during the neonatal period. Such stressors include nutritional stress, multiple pregnancy (i.e., increased numbers of fetuses in the gravid uterus), environmental stress (e.g., high environmental temperature, high altitude, prenatal steroid exposure), gynecological immaturity, and maternal or fetal genotype. Programming refers to impaired function of numerous bodily systems or processes, leading to poor growth, altered body composition, metabolic dysfunction, and poor productivity (e.g., poor growth, reproductive dysfunction) of the offspring throughout their lifespan and even across generations. A key component of developmental programming seems to be placental dysfunction, leading to altered fetal growth and development. We discuss various large animal models of developmental programming and how they have and will continue to contribute to our understanding of the mechanisms underlying altered placental function and developmental programming, and, further, how large animal models also will be critical to the identification and application of therapeutic strategies that will alleviate the negative consequences of developmental programming to improve offspring performance in livestock production and human medicine.

  18. P-glycoprotein binds to ezrin at amino acid residues 149-242 in the FERM domain and plays a key role in the multidrug resistance of human osteosarcoma.

    PubMed

    Brambilla, Daria; Zamboni, Silvia; Federici, Cristina; Lugini, Luana; Lozupone, Francesco; De Milito, Angelo; Cecchetti, Serena; Cianfriglia, Maurizio; Fais, Stefano

    2012-06-15

    Overexpression of the mdr1 gene encoding P-glycoprotein (Pgp) exerts a major role in reducing the effectiveness of cytotoxic therapy in osteosarcoma. The interaction between actin and Pgp has been shown to be instrumental in the establishment of multidrug resistance (MDR) in human tumor cells. The cytoskeleton linker ezrin exerts a pivotal role in maintaining the functional connection between actin and Pgp. We investigated the role of ezrin in a human multidrug-resistant osteosarcoma cell line overexpressing Pgp and compared it to its counterpart that overexpresses an ezrin deletion mutant. The results showed that Pgp binds at amino acid residues 149-242 of the N-terminal domain of ezrin. The interaction between ezrin and Pgp occurs in the plasma membrane of MDR cells, where they also co-localize with the ganglioside G(M1) located in lipid rafts. The overexpression of the ezrin deletion mutant entirely restored drug susceptibility of osteosarcoma cells, consistent with Pgp dislocation to cytoplasmic compartments and abrogation of G(M1) /Pgp co-localization at the plasma membrane. Our study provides evidence that ezrin exerts a key role in MDR of human osteosarcoma cells through a Pgp-ezrin-actin connection that is instrumental for the permanence of Pgp into plasma membrane lipid rafts. We also show for the first time that Pgp-binding site is localized to amino acid residues 149-242 of the ezrin Band 4.1, Ezrin/Radixin/Moesin (FERM) domain, thus proposing a specific target for future molecular therapy aimed at counteracting MDR in osteosarcoma patients. Copyright © 2011 UICC.

  19. Functional dyspepsia: The role of visceral hypersensitivity in its pathogenesis

    PubMed Central

    Keohane, John; Quigley, Eamonn M M

    2006-01-01

    Functional, or non-ulcer, dyspepsia (FD) is one of the most common reasons for referral to gastroenterologists. It is associated with significant morbidity and impaired quality of life. Many authorities believe that functional dyspepsia and irritable bowel syndrome represent part of the spectrum of the same disease process. The pathophysiology of FD remains unclear but several theories have been proposed including visceral hypersensitivity, gastric motor dysfunction, Helicobacter pylori infection and psychosocial factors. In this review, we look at the evidence, to date, for the role of visceral hypersensitivity in the aetiology of FD. PMID:16718751

  20. Functional dyspepsia: the role of visceral hypersensitivity in its pathogenesis.

    PubMed

    Keohane, John; Quigley, Eamonn M M

    2006-05-07

    Functional, or non-ulcer, dyspepsia (FD) is one of the most common reasons for referral to gastroenterologists. It is associated with significant morbidity and impaired quality of life. Many authorities believe that functional dyspepsia and irritable bowel syndrome represent part of the spectrum of the same disease process. The pathophysiology of FD remains unclear but several theories have been proposed including visceral hypersensitivity, gastric motor dysfunction, Helicobacter pylori infection and psychosocial factors. In this review, we look at the evidence, to date, for the role of visceral hypersensitivity in the aetiology of FD.

  1. Use and satisfaction with key functions of a common commercial electronic health record: a survey of primary care providers.

    PubMed

    Makam, Anil N; Lanham, Holly J; Batchelor, Kim; Samal, Lipika; Moran, Brett; Howell-Stampley, Temple; Kirk, Lynne; Cherukuri, Manjula; Santini, Noel; Leykum, Luci K; Halm, Ethan A

    2013-08-09

    Despite considerable financial incentives for adoption, there is little evidence available about providers' use and satisfaction with key functions of electronic health records (EHRs) that meet "meaningful use" criteria. We surveyed primary care providers (PCPs) in 11 general internal medicine and family medicine practices affiliated with 3 health systems in Texas about their use and satisfaction with performing common tasks (documentation, medication prescribing, preventive services, problem list) in the Epic EHR, a common commercial system. Most practices had greater than 5 years of experience with the Epic EHR. We used multivariate logistic regression to model predictors of being a structured documenter, defined as using electronic templates or prepopulated dot phrases to document at least two of the three note sections (history, physical, assessment and plan). 146 PCPs responded (70%). The majority used free text to document the history (51%) and assessment and plan (54%) and electronic templates to document the physical exam (57%). Half of PCPs were structured documenters (55%) with family medicine specialty (adjusted OR 3.3, 95% CI, 1.4-7.8) and years since graduation (nonlinear relationship with youngest and oldest having lowest probabilities) being significant predictors. Nearly half (43%) reported spending at least one extra hour beyond each scheduled half-day clinic completing EHR documentation. Three-quarters were satisfied with documenting completion of pneumococcal vaccinations and half were satisfied with documenting cancer screening (57% for breast, 45% for colorectal, and 46% for cervical). Fewer were satisfied with reminders for overdue pneumococcal vaccination (48%) and cancer screening (38% for breast, 37% for colorectal, and 31% for cervical). While most believed the problem list was helpful (70%) and kept an up-to-date list for their patients (68%), half thought they were unreliable and inaccurate (51%). Dissatisfaction with and suboptimal use

  2. How do Supervising Clinicians of a University Hospital and Associated Teaching Hospitals Rate the Relevance of the Key Competencies within the CanMEDS Roles Framework in Respect to Teaching in Clinical Clerkships?

    PubMed

    Jilg, Stefanie; Möltner, Andreas; Berberat, Pascal; Fischer, Martin R; Breckwoldt, Jan

    2015-01-01

    In German-speaking countries, the physicians' roles framework of the "Canadian Medical Education Directives for Specialists" (CanMEDS) is increasingly used to conceptualize postgraduate medical education. It is however unclear, whether it may also be applied to the final year of undergraduate education within clinical clerkships, called "Practical Year" (PY). Therefore, the aim of this study was to explore how clinically active physicians at a university hospital and at associated teaching hospitals judge the relevance of the seven CanMEDS roles (and their (role-defining) key competencies) in respect to their clinical work and as learning content for PY training. Furthermore, these physicians were asked whether the key competencies were actually taught during PY training. 124 physicians from internal medicine and surgery rated the relevance of the 28 key competencies of the CanMEDS framework using a questionnaire. For each competency, following three aspects were rated: "relevance for your personal daily work", "importance for teaching during PY", and "implementation into actual PY teaching". In respect to the main study objective, all questionnaires could be included into analysis. All seven CanMEDS roles were rated as relevant for personal daily work, and also as important for teaching during PY. Furthermore, all roles were stated to be taught during actual PY training. The roles "Communicator", "Medical Expert", and "Collaborator" were rated as significantly more important than the other roles, for all three sub-questions. No differences were found between the two disciplines internal medicine and surgery, nor between the university hospital and associated teaching hospitals. Participating physicians rated all key competencies of the CanMEDS model to be relevant for their personal daily work, and for teaching during PY. These findings support the suitability of the CanMEDS framework as a conceptual element of PY training.

  3. How do Supervising Clinicians of a University Hospital and Associated Teaching Hospitals Rate the Relevance of the Key Competencies within the CanMEDS Roles Framework in Respect to Teaching in Clinical Clerkships?

    PubMed Central

    Jilg, Stefanie; Möltner, Andreas; Berberat, Pascal; Fischer, Martin R.; Breckwoldt, Jan

    2015-01-01

    Background and aim: In German-speaking countries, the physicians’ roles framework of the “Canadian Medical Education Directives for Specialists” (CanMEDS) is increasingly used to conceptualize postgraduate medical education. It is however unclear, whether it may also be applied to the final year of undergraduate education within clinical clerkships, called “Practical Year” (PY). Therefore, the aim of this study was to explore how clinically active physicians at a university hospital and at associated teaching hospitals judge the relevance of the seven CanMEDS roles (and their (role-defining) key competencies) in respect to their clinical work and as learning content for PY training. Furthermore, these physicians were asked whether the key competencies were actually taught during PY training. Methods: 124 physicians from internal medicine and surgery rated the relevance of the 28 key competencies of the CanMEDS framework using a questionnaire. For each competency, following three aspects were rated: “relevance for your personal daily work”, “importance for teaching during PY”, and “implementation into actual PY teaching”. Results: In respect to the main study objective, all questionnaires could be included into analysis. All seven CanMEDS roles were rated as relevant for personal daily work, and also as important for teaching during PY. Furthermore, all roles were stated to be taught during actual PY training. The roles “Communicator”, “Medical Expert”, and “Collaborator” were rated as significantly more important than the other roles, for all three sub-questions. No differences were found between the two disciplines internal medicine and surgery, nor between the university hospital and associated teaching hospitals. Conclusion: Participating physicians rated all key competencies of the CanMEDS model to be relevant for their personal daily work, and for teaching during PY. These findings support the suitability of the Can

  4. Impact of Neurocognition on Social and Role Functioning in Individuals at Clinical High Risk for Psychosis

    PubMed Central

    Carrión, Ricardo E.; Goldberg, Terry E.; McLaughlin, Danielle; Auther, Andrea M.; Correll, Christoph U.; Cornblatt, Barbara A.

    2011-01-01

    Objective Cognitive deficits have been well documented in schizophrenia and have been shown to impair quality of life and to compromise everyday functioning. Recent studies of adolescents and young adults at high risk for developing psychosis show that neurocognitive impairments are detectable before the onset of psychotic symptoms. However, it remains unclear how cognitive impairments affect functioning before the onset of psychosis. The authors assessed cognitive impairment in adolescents at clinical high risk for psychosis and examined its impact on social and role functioning. Method A sample of 127 treatment-seeking patients at clinical high risk for psychosis and a group of 80 healthy comparison subjects were identified and recruited for research in the Recognition and Prevention Program. At baseline, participants were assessed with a comprehensive neurocognitive battery as well as measures of social and role functioning. Results Relative to healthy comparison subjects, clinical high-risk patients showed significant impairments in the domains of processing speed, verbal memory, executive function, working memory, visuospatial processing, motor speed, sustained attention, and language. Clinical high-risk patients also displayed impaired social and role functioning at baseline. Among patients with attenuated positive symptoms, processing speed was related to social and role functioning at baseline. Conclusions These findings demonstrate that cognitive and functional impairments are detectable in patients at clinical high risk for psychosis before the onset of psychotic illness and that processing speed appears to be an important cognitive predictor of poor functioning. PMID:21536691

  5. Impact of neurocognition on social and role functioning in individuals at clinical high risk for psychosis.

    PubMed

    Carrión, Ricardo E; Goldberg, Terry E; McLaughlin, Danielle; Auther, Andrea M; Correll, Christoph U; Cornblatt, Barbara A

    2011-08-01

    Cognitive deficits have been well documented in schizophrenia and have been shown to impair quality of life and to compromise everyday functioning. Recent studies of adolescents and young adults at high risk for developing psychosis show that neurocognitive impairments are detectable before the onset of psychotic symptoms. However, it remains unclear how cognitive impairments affect functioning before the onset of psychosis. The authors assessed cognitive impairment in adolescents at clinical high risk for psychosis and examined its impact on social and role functioning. A sample of 127 treatment-seeking patients at clinical high risk for psychosis and a group of 80 healthy comparison subjects were identified and recruited for research in the Recognition and Prevention Program. At baseline, participants were assessed with a comprehensive neurocognitive battery as well as measures of social and role functioning. Relative to healthy comparison subjects, clinical high-risk patients showed significant impairments in the domains of processing speed, verbal memory, executive function, working memory, visuospatial processing, motor speed, sustained attention, and language. Clinical high-risk patients also displayed impaired social and role functioning at baseline. Among patients with attenuated positive symptoms, processing speed was related to social and role functioning at baseline. These findings demonstrate that cognitive and functional impairments are detectable in patients at clinical high risk for psychosis before the onset of psychotic illness and that processing speed appears to be an important cognitive predictor of poor functioning.

  6. The role of executive functioning in children's attentional pain control: an experimental analysis.

    PubMed

    Verhoeven, Katrien; Dick, Bruce; Eccleston, Christopher; Goubert, Liesbet; Crombez, Geert

    2014-02-01

    Directing attention away from pain is often used in children's pain treatment programs to control pain. However, empirical evidence concerning its effectiveness is inconclusive. We therefore sought to understand other influencing factors, including executive function and its role in the pain experience. This study investigates the role of executive functioning in the effectiveness of distraction. School children (n=164) completed executive functioning tasks (inhibition, switching, and working memory) and performed a cold-pressor task. One half of the children simultaneously performed a distracting tone-detection task; the other half did not. Results showed that participants in the distraction group were engaged in the distraction task and were reported to pay significantly less attention to pain than controls. Executive functioning influenced distraction task engagement. More specifically, participants with good inhibition and working memory abilities performed the distraction task better; participants with good switching abilities reported having paid more attention to the distraction task. Furthermore, distraction was found to be ineffective in reducing pain intensity and affect. Executive functioning did not influence the effectiveness of distraction. However, a relationship was found between executive functioning and pain affect, indicating that participants with good inhibition and working memory abilities experienced the cold-pressor task as less stressful and unpleasant. Our findings suggest that distraction as a process for managing pain is complex. While it appears that executive function may play a role in adult distraction, in this study it did not direct attention away from pain. It may instead be involved in the overall pain experience. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  7. Role of the ECM in notochord formation, function and disease.

    PubMed

    Trapani, Valeria; Bonaldo, Paolo; Corallo, Diana

    2017-10-01

    The notochord is a midline structure common to all chordate animals; it provides mechanical and signaling cues for the developing embryo. In vertebrates, the notochord plays key functions during embryogenesis, being a source of developmental signals that pattern the surrounding tissues. It is composed of a core of vacuolated cells surrounded by an epithelial-like sheath of cells that secrete a thick peri-notochordal basement membrane made of different extracellular matrix (ECM) proteins. The correct deposition and organization of the ECM is essential for proper notochord morphogenesis and function. Work carried out in the past two decades has allowed researchers to dissect the contribution of different ECM components to this embryonic tissue. Here, we will provide an overview of these genetic and mechanistic studies. In particular, we highlight the specific functions of distinct matrix molecules in regulating notochord development and notochord-derived signals. Moreover, we also discuss the involvement of ECM synthesis and its remodeling in the pathogenesis of chordoma, a malignant bone cancer that originates from remnants of notochord remaining after embryogenesis. © 2017. Published by The Company of Biologists Ltd.

  8. Role of acetylcholinesterase in lung cancer

    PubMed Central

    Xi, Hui-Jun; Wu, Ren-Pei; Liu, Jing-Jing; Zhang, Ling-Juan; Li, Zhao-Shen

    2015-01-01

    Acetylcholinesterase (AChE) plays a key role in catalytic hydrolysis of cholinergic neurotransmitters. Intensive research has proven the involvement of this protein in novel functions, such as cell adhesion, differentiation, and proliferation. In addition, several recent studies have indicated that acetylcholinesterase is potentially a marker and regulator of apoptosis. Importantly, AChE is also a promising tumor suppressor. In this review, we briefly summarize the involvement of AChE in apoptosis and cancer, focusing on the role of AChE in lung cancer, as well as the therapeutic consideration of AChE for cancer therapy. PMID:26273392

  9. Functional roles of lower-limb joint moments while walking in water.

    PubMed

    Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Akai, Masami

    2005-02-01

    To clarify the functional roles of lower-limb joint moments and their contribution to support and propulsion tasks while walking in water compared with that on land. Sixteen healthy, young subjects walked on land and in water at several different speeds with and without additional loads. Walking in water is a major rehabilitation therapy for patients with orthopedic disorders. However, the functional role of lower-limb joint moments while walking in water is still unclear. Kinematics, electromyographic activities in biceps femoris and gluteus maximums, and ground reaction forces were measured under the following conditions: walking on land and in water at a self-determined pace, slow walking on land, and fast walking in water with or without additional loads (8 kg). The hip, knee, and ankle joint moments were calculated by inverse dynamics. The contribution of the walking speed increased the hip extension moment, and the additional weight increased the ankle plantar flexion and knee extension moment. The major functional role was different in each lower-limb joint muscle. That of the muscle group in the ankle is to support the body against gravity, and that of the muscle group involved in hip extension is to contribute to propulsion. In addition, walking in water not only reduced the joint moments but also completely changed the inter-joint coordination. It is of value for clinicians to be aware that the greater the viscosity of water produces a greater load on the hip joint when fast walking in water.

  10. Complementary Roles of Estrogen-Related Receptors in Brown Adipocyte Thermogenic Function

    PubMed Central

    Gantner, Marin L.; Hazen, Bethany C.; Eury, Elodie; Brown, Erin L.

    2016-01-01

    Brown adipose tissue (BAT) thermogenesis relies on a high abundance of mitochondria and the unique expression of the mitochondrial Uncoupling Protein 1 (UCP1), which uncouples substrate oxidation from ATP synthesis. Adrenergic stimulation of brown adipocytes activates UCP1-mediated thermogenesis; it also induces the expression of Ucp1 and other genes important for thermogenesis, thereby endowing adipocytes with higher oxidative and uncoupling capacities. Adipocyte mitochondrial biogenesis and oxidative capacity are controlled by multiple transcription factors, including the estrogen-related receptor (ERR)α. Whole-body ERRα knockout mice show decreased BAT mitochondrial content and oxidative function but normal induction of Ucp1 in response to cold. In addition to ERRα, brown adipocytes express ERRβ and ERRγ, 2 nuclear receptors that are highly similar to ERRα and whose function in adipocytes is largely unknown. To gain insights into the roles of all 3 ERRs, we assessed mitochondrial function and adrenergic responses in primary brown adipocytes lacking combinations of ERRs. We show that adipocytes lacking just ERRα, the most abundant ERR, show only mild mitochondrial defects. Adipocytes lacking ERRβ and ERRγ also show just mild defects. In contrast, adipocytes lacking all 3 ERRs have severe reductions in mitochondrial content and oxidative capacity. Moreover, adipocytes lacking all 3 ERRs have defects in the transcriptional and metabolic response to adrenergic stimulation, suggesting a wider role of ERRs in BAT function than previously appreciated. Our study shows that ERRs have a great capacity to compensate for each other in protecting mitochondrial function and the metabolic response to adrenergic signaling, processes vital to BAT function. PMID:27763777

  11. Versatile functional roles of horizontal cells in the retinal circuit.

    PubMed

    Chaya, Taro; Matsumoto, Akihiro; Sugita, Yuko; Watanabe, Satoshi; Kuwahara, Ryusuke; Tachibana, Masao; Furukawa, Takahisa

    2017-07-17

    In the retinal circuit, environmental light signals are converted into electrical signals that can be decoded properly by the brain. At the first synapse of the visual system, information flow from photoreceptors to bipolar cells is modulated by horizontal cells (HCs), however, their functional contribution to retinal output and individual visual function is not fully understood. In the current study, we investigated functional roles for HCs in retinal ganglion cell (RGC) response properties and optokinetic responses by establishing a HC-depleted mouse line. We observed that HC depletion impairs the antagonistic center-surround receptive field formation of RGCs, supporting a previously reported HC function revealed by pharmacological approaches. In addition, we found that HC loss reduces both the ON and OFF response diversities of RGCs, impairs adjustment of the sensitivity to ambient light at the retinal output level, and alters spatial frequency tuning at an individual level. Taken together, our current study suggests multiple functional aspects of HCs crucial for visual processing.

  12. Do key dimensions of seed and seedling functional trait variation capture variation in recruitment probability?

    PubMed

    Larson, Julie E; Sheley, Roger L; Hardegree, Stuart P; Doescher, Paul S; James, Jeremy J

    2016-05-01

    Seedling recruitment is a critical driver of population dynamics and community assembly, yet we know little about functional traits that define different recruitment strategies. For the first time, we examined whether trait relatedness across germination and seedling stages allows the identification of general recruitment strategies which share core functional attributes and also correspond to recruitment outcomes in applied settings. We measured six seed and eight seedling traits (lab- and field-collected, respectively) for 47 varieties of dryland grasses and used principal component analysis (PCA) and cluster analysis to identify major dimensions of trait variation and to isolate trait-based recruitment groups, respectively. PCA highlighted some links between seed and seedling traits, suggesting that relative growth rate and root elongation rate are simultaneously but independently associated with seed mass and initial root mass (first axis), and with leaf dry matter content, specific leaf area, coleoptile tissue density and germination rate (second axis). Third and fourth axes captured separate tradeoffs between hydrothermal time and base water potential for germination, and between specific root length and root mass ratio, respectively. Cluster analysis separated six recruitment types along dimensions of germination and growth rates, but classifications did not correspond to patterns of germination, emergence or recruitment in the field under either of two watering treatments. Thus, while we have begun to identify major threads of functional variation across seed and seedling stages, our understanding of how this variation influences demographic processes-particularly germination and emergence-remains a key gap in functional ecology.

  13. The role of food in the functional gastrointestinal disorders: introduction to a manuscript series.

    PubMed

    Chey, William D

    2013-05-01

    Functional gastrointestinal disorders (FGIDs) are characterized by the presence of chronic or recurrent symptoms that are felt to originate from the gastrointestinal (GI) tract, which cannot be attributed to an identifiable structural or biochemical cause. Food is associated with symptom onset or exacerbation in a significant proportion of FGID patients. Despite this, the role of food in the pathogenesis of the FGIDs has remained poorly understood. For this reason, diet has largely played an adjunctive rather than a primary role in the management of FGID patients. In recent years, there has been a rapid expansion in our understanding of the role of food in GI function and sensation and how food relates to GI symptoms in FGID patients. In a series of evidence-based manuscripts produced by the Rome Foundation Working Group on the role of food in FGIDs, comprehensive reviews of the physiological changes associated with nutrient intake, and the respective roles of carbohydrates, fiber, protein, and fats are provided. The series concludes with a manuscript that provides guidance on proper clinical trial design when considering the role of food in FGIDs.

  14. Thyroid function. Pathogenesis of Graves ophthalmopathy--a role for TSH-R?

    PubMed

    Wall, Jack R

    2014-05-01

    A new study highlights the complexities of anti-TSH-receptor antibody function and the differences between adult and paediatric patients with Graves disease, adding to the controversy regarding the possible role of these antibodies in the development of ophthalmopathy.

  15. Protective role of Parkin in skeletal muscle contractile and mitochondrial function.

    PubMed

    Gouspillou, Gilles; Godin, Richard; Piquereau, Jérome; Picard, Martin; Mofarrahi, Mahroo; Mathew, Jasmin; Purves-Smith, Fennigje M; Sgarioto, Nicolas; Hepple, Russell T; Burelle, Yan; Hussain, Sabah N A

    2018-04-22

    Parkin, an E3 ubiquitin ligase encoded by the Park2 gene, has been implicated in the regulation of mitophagy, a quality control process in which defective mitochondria are degraded. The exact physiological significance of Parkin in regulating mitochondrial function and contractility in skeletal muscle remains largely unexplored. Using Park2 -/- mice, we show that Parkin ablation causes a decrease in muscle specific force, a severe decrease in mitochondrial respiration, mitochondrial uncoupling and an increased susceptibility to opening of the permeability transition pore. These results demonstrate that Parkin plays a protective role in the maintenance of normal mitochondrial and contractile functions in skeletal muscles. Parkin is an E3 ubiquitin ligase encoded by the Park2 gene. Parkin has been implicated in the regulation of mitophagy, a quality control process in which defective mitochondria are sequestered in autophagosomes and delivered to lysosomes for degradation. Although Parkin has been mainly studied for its implication in neuronal degeneration in Parkinson disease, its role in other tissues remains largely unknown. In the present study, we investigated the skeletal muscles of Park2 knockout (Park2 -/- ) mice to test the hypothesis that Parkin plays a physiological role in mitochondrial quality control in normal skeletal muscle, a tissue highly reliant on mitochondrial content and function. We first show that the tibialis anterior (TA) of Park2 -/- mice display a slight but significant decrease in its specific force. Park2 -/ - muscles also show a trend for type IIB fibre hypertrophy without alteration in muscle fibre type proportion. Compared to Park2 +/+ muscles, the mitochondrial function of Park2 -/- skeletal muscles was significantly impaired, as indicated by the significant decrease in ADP-stimulated mitochondrial respiratory rates, uncoupling, reduced activities of respiratory chain complexes containing mitochondrial DNA (mtDNA)-encoded subunits

  16. Reduced Abundance and Subverted Functions of Proteins in Prion-Like Diseases: Gained Functions Fascinate but Lost Functions Affect Aetiology.

    PubMed

    Allison, W Ted; DuVal, Michèle G; Nguyen-Phuoc, Kim; Leighton, Patricia L A

    2017-10-24

    Prions have served as pathfinders that reveal many aspects of proteostasis in neurons. The recent realization that several prominent neurodegenerative diseases spread via a prion-like mechanism illuminates new possibilities for diagnostics and therapeutics. Thus, key proteins in Alzheimer Disease and Amyotrophic lateral sclerosis (ALS), including amyloid-β precursor protein, Tau and superoxide dismutase 1 (SOD1), spread to adjacent cells in their misfolded aggregated forms and exhibit template-directed misfolding to induce further misfolding, disruptions to proteostasis and toxicity. Here we invert this comparison to ask what these prion-like diseases can teach us about the broad prion disease class, especially regarding the loss of these key proteins' function(s) as they misfold and aggregate. We also consider whether functional amyloids might reveal a role for subverted protein function in neurodegenerative disease. Our synthesis identifies SOD1 as an exemplar of protein functions being lost during prion-like protein misfolding, because SOD1 is inherently unstable and loses function in its misfolded disease-associated form. This has under-appreciated parallels amongst the canonical prion diseases, wherein the normally folded prion protein, PrP C , is reduced in abundance in fatal familial insomnia patients and during the preclinical phase in animal models, apparently via proteostatic mechanisms. Thus while template-directed misfolding and infectious properties represent gain-of-function that fascinates proteostasis researchers and defines (is required for) the prion(-like) diseases, loss and subversion of the functions attributed to hallmark proteins in neurodegenerative disease needs to be integrated into design towards effective therapeutics. We propose experiments to uniquely test these ideas.

  17. A Role for PML in Innate Immunity

    PubMed Central

    Lunardi, Andrea; Gaboli, Mirella; Giorgio, Marco; Rivi, Roberta; Bygrave, Anne; Antoniou, Michael; Drabek, Dubravka; Dzierzak, Elaine; Fagioli, Marta; Salmena, Leonardo; Botto, Marina; Cordon-Cardo, Carlos; Luzzatto, Lucio; Pelicci, Pier Giuseppe; Grosveld, Frank; Pandolfi, Pier Paolo

    2011-01-01

    The promyelocytic leukemia gene (PML) of acute promyelocytic leukemia is an established tumor suppressor gene with critical functions in growth suppression, induction of apoptosis, and cellular senescence. Interestingly, although less studied, PML seems to play a key role also in immune response to viral infection. Herein, we report that Pml −/− mice spontaneously develop an atypical invasive and lethal granulomatous lesion known as botryomycosis (BTM). In Pml −/− mice, BTM is the result of impaired function of macrophages, whereby they fail to become activated and are thus unable to clear pathogenic microorganisms. Accordingly, Pml −/− mice are resistant to lipopolysaccharide (LPS)–induced septic shock as a result of an ineffective production of cytokines and chemokines, suggesting a role for PML in the innate immune Toll-like receptor (TLR)/NF-κB prosurvival pathway. These results not only shed light on a new fundamental function of PML in innate immunity, but they also point to a proto-oncogenic role for PML in certain cellular and pathological contexts. PMID:21779477

  18. Adjustment to loss of the driving role following traumatic brain injury: a qualitative exploration with key stakeholders.

    PubMed

    Liddle, Jacki; Fleming, Jennifer; McKenna, Kryss; Turpin, Merrill; Whitelaw, Penny; Allen, Shelley

    2012-02-01

    Community mobility is affected by an interruption to or cessation of driving following traumatic brain injury (TBI). This study aimed to examine loss of the driving role and to explore the outcomes associated with driving cessation from the perspectives of key people involved within the process: people with TBI, their family members and involved health professionals. A qualitative methodology was used, employing semi-structured interviews with 15 individuals with TBI who had experienced driving cessation, 10 family members and 10 health professionals working with this population. This article focuses on two themes, each with three subthemes. Being stuck: needs related to driving cessation had subthemes: (i) an emotional time, (ii) being normal and (iii) participation without driving. The second theme, A better way: suggestions to improve outcomes had subthemes: (i) information, (ii) support and trying it out and (iii) their family member's roles and needs. Driving cessation following TBI is associated with emotional, identity, transport and participation-related needs. An ongoing, individualised approach involving information, support and practical experiences may improve outcomes of driving cessation for people with TBI and their family members. © 2011 The Authors. Australian Occupational Therapy Journal © 2011 Occupational Therapy Australia.

  19. The Roles of β-Oxidation and Cofactor Homeostasis in Peroxisome Distribution and Function in Arabidopsis thaliana

    PubMed Central

    Rinaldi, Mauro A.; Patel, Ashish B.; Park, Jaeseok; Lee, Koeun; Strader, Lucia C.; Bartel, Bonnie

    2016-01-01

    Key steps of essential metabolic pathways are housed in plant peroxisomes. We conducted a microscopy-based screen for anomalous distribution of peroxisomally targeted fluorescence in Arabidopsis thaliana. This screen uncovered 34 novel alleles in 15 genes affecting oil body mobilization, fatty acid β-oxidation, the glyoxylate cycle, peroxisome fission, and pexophagy. Partial loss-of-function of lipid-mobilization enzymes conferred peroxisomes clustered around retained oil bodies without other notable defects, suggesting that this microscopy-based approach was sensitive to minor perturbations, and that fatty acid β-oxidation rates in wild type are higher than required for normal growth. We recovered three mutants defective in PECTIN METHYLESTERASE31, revealing an unanticipated role in lipid mobilization for this cytosolic enzyme. Whereas mutations reducing fatty acid import had peroxisomes of wild-type size, mutations impairing fatty acid β-oxidation displayed enlarged peroxisomes, possibly caused by excess fatty acid β-oxidation intermediates in the peroxisome. Several fatty acid β-oxidation mutants also displayed defects in peroxisomal matrix protein import. Impairing fatty acid import reduced the large size of peroxisomes in a mutant defective in the PEROXISOMAL NAD+ TRANSPORTER (PXN), supporting the hypothesis that fatty acid accumulation causes pxn peroxisome enlargement. The diverse mutants isolated in this screen will aid future investigations of the roles of β-oxidation and peroxisomal cofactor homeostasis in plant development. PMID:27605050

  20. Functional hierarchy of the N-terminal tyrosines of SLP-76.

    PubMed

    Jordan, Martha S; Sadler, Jeffrey; Austin, Jessica E; Finkelstein, Lisa D; Singer, Andrew L; Schwartzberg, Pamela L; Koretzky, Gary A

    2006-02-15

    The adaptor protein Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) plays a central role in T cell activation and T cell development. SLP-76 has three functional modules: an acidic domain with three key tyrosines, a central proline-rich domain, and a C-terminal Src homology 2 domain. Of these, mutation of the three N-terminal tyrosines (Y112, Y128, and Y145) results in the most profound effects on T cell development and function. Y112 and Y128 associate with Vav and Nck, two proteins shown to be important for TCR-induced phosphorylation of proximal signaling substrates, Ca(2+) flux, and actin reorganization. Y145 has been shown to be important for optimal association of SLP-76 with inducible tyrosine kinase, a key regulator of T cell function. To investigate further the role of the phosphorylatable tyrosines of SLP-76 in TCR signaling, cell lines and primary T cells expressing SLP-76 with mutations in individual or paired tyrosine residues were analyzed. These studies show that Tyr(145) of SLP-76 is the most critical tyrosine for both T cell function in vitro and T cell development in vivo.

  1. Structure-function analysis of mouse Sry reveals dual essential roles of the C-terminal polyglutamine tract in sex determination.

    PubMed

    Zhao, Liang; Ng, Ee Ting; Davidson, Tara-Lynne; Longmuss, Enya; Urschitz, Johann; Elston, Marlee; Moisyadi, Stefan; Bowles, Josephine; Koopman, Peter

    2014-08-12

    The mammalian sex-determining factor SRY comprises a conserved high-mobility group (HMG) box DNA-binding domain and poorly conserved regions outside the HMG box. Mouse Sry is unusual in that it includes a C-terminal polyglutamine (polyQ) tract that is absent in nonrodent SRY proteins, and yet, paradoxically, is essential for male sex determination. To dissect the molecular functions of this domain, we generated a series of Sry mutants, and studied their biochemical properties in cell lines and transgenic mouse embryos. Sry protein lacking the polyQ domain was unstable, due to proteasomal degradation. Replacing this domain with irrelevant sequences stabilized the protein but failed to restore Sry's ability to up-regulate its key target gene SRY-box 9 (Sox9) and its sex-determining function in vivo. These functions were restored only when a VP16 transactivation domain was substituted. We conclude that the polyQ domain has important roles in protein stabilization and transcriptional activation, both of which are essential for male sex determination in mice. Our data disprove the hypothesis that the conserved HMG box domain is the only functional domain of Sry, and highlight an evolutionary paradox whereby mouse Sry has evolved a novel bifunctional module to activate Sox9 directly, whereas SRY proteins in other taxa, including humans, seem to lack this ability, presumably making them dependent on partner proteins(s) to provide this function.

  2. Behind the scenes of JAC: the publisher's role.

    PubMed

    Orchard, Laura; Jackson, Christopher; Bishop, Phil

    2016-12-01

    In this brief article, we focus on Oxford University Press's role as the publisher of the JAC and how it supports authors and readers. The article defines the role of the publisher, as opposed to the Editorial team, Editorial Office or Society owner. It reviews three key functions at the publisher, namely, editorial, production and marketing. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. [Organization, functioning and expectations of organizations representing patients. Survey of key informants].

    PubMed

    García-Sempere, Aníbal; Artells, Juan José

    2005-01-01

    To explore patient organizations and their scope in terms of patient and user participation in decisions affecting their health. Semi-structured questionnaire survey of key informants from 21 patient organizations. Most of the patient organizations were regional or national private organizations. Their main objectives include improving quality of life and representing the interests of patients and their families, developing information triage and dissemination activities, and providing additional services not offered by the public health service. The main methods of communicating with members were electronic mail, open meetings and forums. Most patient organizations considered health professionals to be the most important group of stakeholders. The sources of funding most frequently quoted were membership fees, public grants and contributions from the pharmaceutical industry. The most important factor for enhancing patient co-responsibility was considered to be involving patients in health care as a way to improve the quality of the heath services. The proposed future scenario that received the most support was the creation of a legal forum in which the patient's voice could be heard and demonstrably taken into account. Patient organizations can play an important role in providing patients and health professionals with information, promoting self care and improving the effectiveness of health care. These features require visible commitment by the health authorities to facilitate opportunities for patient decisions and choice within the system.

  4. Structures and functions of insect arylalkylamine N-acetyltransferase (iaaNAT); a key enzyme for physiological and behavioral switch in arthropods.

    PubMed

    Hiragaki, Susumu; Suzuki, Takeshi; Mohamed, Ahmed A M; Takeda, Makio

    2015-01-01

    The evolution of N-acetyltransfeases (NATs) seems complex. Vertebrate arylalkylamine N-acetyltransferase (aaNAT) has been extensively studied since it leads to the synthesis of melatonin, a multifunctional neurohormone prevalent in photoreceptor cells, and is known as a chemical token of the night. Melatonin also serves as a scavenger for reactive oxygen species. This is also true with invertebrates. NAT therefore has distinct functional implications in circadian function, as timezymes (aaNAT), and also xenobiotic reactions (arylamine NAT or simply NAT). NATs belong to a broader enzyme group, the GCN5-related N-acetyltransferase superfamily. Due to low sequence homology and a seemingly fast rate of structural differentiation, the nomenclature for NATs can be confusing. The advent of bioinformatics, however, has helped to classify this group of enzymes; vertebrates have two distinct subgroups, the timezyme type and the xenobiotic type, which has a wider substrate range including imidazolamine, pharmacological drugs, environmental toxicants and even histone. Insect aaNAT (iaaNAT) form their own clade in the phylogeny, distinct from vertebrate aaNATs. Arthropods are unique, since the phylum has exoskeleton in which quinones derived from N-acetylated monoamines function in coupling chitin and arthropodins. Monoamine oxidase (MAO) activity is limited in insects, but NAT-mediated degradation prevails. However, unexpectedly iaaNAT occurs not only among arthropods but also among basal deuterostomia, and is therefore more apomorphic. Our analyses illustrate that iaaNATs has unique physiological roles but at the same time it plays a role in a timezyme function, at least in photoperiodism. Photoperiodism has been considered as a function of circadian system but the detailed molecular mechanism is not well understood. We propose a molecular hypothesis for photoperiodism in Antheraea pernyi based on the transcription regulation of NAT interlocked by the circadian system

  5. Role of PPARγ in the Differentiation and Function of Neurons

    PubMed Central

    Quintanilla, Rodrigo A.; Utreras, Elias; Cabezas-Opazo, Fabián A.

    2014-01-01

    Neuronal processes (neurites and axons) have an important role in brain cells communication and, generally, they are damaged in neurodegenerative diseases. Recent evidence has showed that the activation of PPARγ pathway promoted neuronal differentiation and axon polarity. In addition, activation of PPARγ using thiazolidinediones (TZDs) prevented neurodegeneration by reducing neuronal death, improving mitochondrial function, and decreasing neuroinflammation in neuropathic pain. In this review, we will discuss important evidence that supports a possible role of PPARγ in neuronal development, improvement of neuronal health, and pain signaling. Therefore, activation of PPARγ is a potential target with therapeutic applications against neurodegenerative disorders, brain injury, and pain regulation. PMID:25246934

  6. Key role for efflux in the preservative susceptibility and adaptive resistance of Burkholderia cepacia complex bacteria.

    PubMed

    Rushton, Laura; Sass, Andrea; Baldwin, Adam; Dowson, Christopher G; Donoghue, Denise; Mahenthiralingam, Eshwar

    2013-07-01

    Bacteria from the Burkholderia cepacia complex (Bcc) are encountered as industrial contaminants, and little is known about the species involved or their mechanisms of preservative resistance. Multilocus sequence typing (MLST) revealed that multiple Bcc species may cause contamination, with B. lata (n = 17) and B. cenocepacia (n = 11) dominant within the collection examined. At the strain level, 11 of the 31 industrial sequence types identified had also been recovered from either natural environments or clinical infections. Minimal inhibitory (MIC) and minimum bactericidal (MBC) preservative concentrations varied across 83 selected Bcc strains, with industrial strains demonstrating increased tolerance for dimethylol dimethyl hydantoin (DMDMH). Benzisothiazolinone (BIT), DMDMH, methylisothiazolinone (MIT), a blend of 3:1 methylisothiazolinone-chloromethylisothiazolinone (M-CMIT), methyl paraben (MP), and phenoxyethanol (PH), were all effective anti-Bcc preservatives; benzethonium chloride (BC) and sodium benzoate (SB) were least effective. Since B. lata was the dominant industrial Bcc species, the type strain, 383(T) (LMG 22485(T)), was used to study preservative tolerance. Strain 383 developed stable preservative tolerance for M-CMIT, MIT, BIT, and BC, which resulted in preservative cross-resistance and altered antibiotic susceptibility, motility, and biofilm formation. Transcriptomic analysis of the B. lata 383 M-CMIT-adapted strain demonstrated that efflux played a key role in its M-CMIT tolerance and elevated fluoroquinolone resistance. The role of efflux was corroborated using the inhibitor l-Phe-Arg-β-napthylamide, which reduced the MICs of M-CMIT and ciprofloxacin. In summary, intrinsic preservative tolerance and stable adaptive changes, such as enhanced efflux, play a role in the ability of Bcc bacteria to cause industrial contamination.

  7. Key Role for Efflux in the Preservative Susceptibility and Adaptive Resistance of Burkholderia cepacia Complex Bacteria

    PubMed Central

    Rushton, Laura; Sass, Andrea; Baldwin, Adam; Dowson, Christopher G.; Donoghue, Denise

    2013-01-01

    Bacteria from the Burkholderia cepacia complex (Bcc) are encountered as industrial contaminants, and little is known about the species involved or their mechanisms of preservative resistance. Multilocus sequence typing (MLST) revealed that multiple Bcc species may cause contamination, with B. lata (n = 17) and B. cenocepacia (n = 11) dominant within the collection examined. At the strain level, 11 of the 31 industrial sequence types identified had also been recovered from either natural environments or clinical infections. Minimal inhibitory (MIC) and minimum bactericidal (MBC) preservative concentrations varied across 83 selected Bcc strains, with industrial strains demonstrating increased tolerance for dimethylol dimethyl hydantoin (DMDMH). Benzisothiazolinone (BIT), DMDMH, methylisothiazolinone (MIT), a blend of 3:1 methylisothiazolinone-chloromethylisothiazolinone (M-CMIT), methyl paraben (MP), and phenoxyethanol (PH), were all effective anti-Bcc preservatives; benzethonium chloride (BC) and sodium benzoate (SB) were least effective. Since B. lata was the dominant industrial Bcc species, the type strain, 383T (LMG 22485T), was used to study preservative tolerance. Strain 383 developed stable preservative tolerance for M-CMIT, MIT, BIT, and BC, which resulted in preservative cross-resistance and altered antibiotic susceptibility, motility, and biofilm formation. Transcriptomic analysis of the B. lata 383 M-CMIT-adapted strain demonstrated that efflux played a key role in its M-CMIT tolerance and elevated fluoroquinolone resistance. The role of efflux was corroborated using the inhibitor l-Phe-Arg-β-napthylamide, which reduced the MICs of M-CMIT and ciprofloxacin. In summary, intrinsic preservative tolerance and stable adaptive changes, such as enhanced efflux, play a role in the ability of Bcc bacteria to cause industrial contamination. PMID:23587949

  8. The Role of Key Qualifications in the Transition from Vocational Education to Work

    ERIC Educational Resources Information Center

    van Zolingen, S. J.

    2002-01-01

    This study presents a new definition of key qualifications related to occupations based on an extensive literature search. The empirical aspect of this study describes a Delphi study focused on policy where a number of key qualifications were operationalized for three selected jobs: commercial employee at a bank, claims assessor or acceptor at an…

  9. Key role of dual specificity kinase TTK in proliferation and survival of pancreatic cancer cells

    PubMed Central

    Kaistha, B P; Honstein, T; Müller, V; Bielak, S; Sauer, M; Kreider, R; Fassan, M; Scarpa, A; Schmees, C; Volkmer, H; Gress, T M; Buchholz, M

    2014-01-01

    Background: Pancreatic ductal adenocarcinoma (PDAC) is among the most aggressive human malignancies with an overall 5-year survival rate of <5%. Despite significant advances in treatment of the disease during the past decade, the median survival rate (∼6 months) has hardly improved, warranting the need to identify novel targets for therapeutic approaches. Methods: Quantitative real time PCR, western blot analyses and immunohistochemical staining of tissue microarrays were used to analyse the expression of TTK gene in primary PDAC tissues and cell lines. To inhibit TTK kinase expression in a variety of pancreatic cancer cell lines, RNA interference was used. Functional roles of this kinase in the context of PDAC were studied using cell proliferation, viability and anchorage-independent growth assays. Western blotting, fluorescence-activated cell sorting analyses and fluorescence microscopy were used to gain mechanistic insight into the functional effects. Conclusions: We show that the dual specificity kinase TTK (also known as Mps1), is strongly overexpressed in human PDAC. Functionally, cell proliferation was significantly attenuated following TTK knockdown, whereas apoptosis and necrosis rates were significantly increased. In addition, anchorage-independent growth, a hallmark of malignant transformation and metastatic potential, was strongly impaired in the absence of TTK gene function. Interestingly, immortalised normal pancreatic hTERT-HPNE cells were not affected by loss of TTK function. Mechanistically, these effects in cancer cells were associated with increased formation of micronuclei, suggesting that loss of TTK function in pancreatic cancer cells results in chromosomal instability and mitotic catastrophe. Taken together, our data show that TTK function is critical for growth and proliferation of pancreatic cancer cells, thus establishing this kinase as an interesting new target for novel therapeutic approaches in combating this malignancy. PMID:25137017

  10. Two-key concurrent responding: response-reinforcement dependencies and blackouts1

    PubMed Central

    Herbert, Emily W.

    1970-01-01

    Two-key concurrent responding was maintained for three pigeons by a single variable-interval 1-minute schedule of reinforcement in conjunction with a random number generator that assigned feeder operations between keys with equal probability. The duration of blackouts was varied between keys when each response initiated a blackout, and grain arranged by the variable-interval schedule was automatically presented after a blackout (Exp. I). In Exp. II every key peck, except for those that produced grain, initiated a blackout, and grain was dependent upon a response following a blackout. For each pigeon in Exp. I and for one pigeon in Exp. II, the relative frequency of responding on a key approximated, i.e., matched, the relative reciprocal of the duration of the blackout interval on that key. In a third experiment, blackouts scheduled on a variable-interval were of equal duration on the two keys. For one key, grain automatically followed each blackout; for the other key, grain was dependent upon a response and never followed a blackout. The relative frequency of responding on the former key, i.e., the delay key, better approximated the negative exponential function obtained by Chung (1965) than the matching function predicted by Chung and Herrnstein (1967). PMID:16811458

  11. Keys to Transition: The California Model.

    ERIC Educational Resources Information Center

    Kearly, Patt

    This publication addresses basic issues related to the concept of transition as it is applied to students with disabilities in California. Following a pretest (and its answer key), the document uses a question and answer format to discuss common concerns about transition, normalization, the school role, the "Bridges" model developed by…

  12. Distinct roles of a tyrosine-associated hydrogen-bond network in fine-tuning the structure and function of heme proteins: two cases designed for myoglobin.

    PubMed

    Liao, Fei; Yuan, Hong; Du, Ke-Jie; You, Yong; Gao, Shu-Qin; Wen, Ge-Bo; Lin, Ying-Wu; Tan, Xiangshi

    2016-10-20

    A hydrogen-bond (H-bond) network, specifically a Tyr-associated H-bond network, plays key roles in regulating the structure and function of proteins, as exemplified by abundant heme proteins in nature. To explore an approach for fine-tuning the structure and function of artificial heme proteins, we herein used myoglobin (Mb) as a model protein and introduced a Tyr residue in the secondary sphere of the heme active site at two different positions (107 and 138). We performed X-ray crystallography, UV-Vis spectroscopy, stopped-flow kinetics, and electron paramagnetic resonance (EPR) studies for the two single mutants, I107Y Mb and F138Y Mb, and compared to that of wild-type Mb under the same conditions. The results showed that both Tyr107 and Tyr138 form a distinct H-bond network involving water molecules and neighboring residues, which fine-tunes ligand binding to the heme iron and enhances the protein stability, respectively. Moreover, the Tyr107-associated H-bond network was shown to fine-tune both H2O2 binding and activation. With two cases demonstrated for Mb, this study suggests that the Tyr-associated H-bond network has distinct roles in regulating the protein structure, properties and functions, depending on its location in the protein scaffold. Therefore, it is possible to design a Tyr-associated H-bond network in general to create other artificial heme proteins with improved properties and functions.

  13. A Distributed Set of Interactions Controls μ2 Functionality in the Role of AP-2 as a Sorting Adaptor in Synaptic Vesicle Endocytosis*♦

    PubMed Central

    Kim, Sung Hyun; Ryan, Timothy A.

    2009-01-01

    The mechanisms of how, following exocytosis, the approximately nine types of synaptic vesicle (SV) transmembrane proteins are accurately resorted to form SVs are poorly understood. The time course of SV endocytosis is very sensitive to perturbations in clathrin and dynamin, supporting the model that SV endocytosis occurs through a clathrin-mediated pathway. We recently demonstrated that removal of the clathrin adaptor protein AP-2, the key protein thought to coordinate cargo selection into clathrin-coated pits, results in a significant impairment in endocytosis kinetics. Endocytosis, however, still proceeds in the absence of AP-2, bringing into question the role of AP-2 in cargo sorting in this process. Using quantitative endocytosis assays at nerve terminals, we examined how endocytosis depends on the integrity of μ2 function. Our experiments indicate that no single perturbation in μ2 prevents restoration of endocytic function when mutated μ2 replaces native μ2, whereas introduction of multiple distributed mutations significantly impairs endocytosis. We also examined whether the presence of AP-2 is important for the functionality of the previously identified endocytic motif in an SV cargo protein, the dileucine motif in vGlut-1. These data show that while mutations in the dileucine motif slow the retrieval of vGlut-1, they only do so in the presence of AP-2. These data thus indicate that AP-2 plays a role in cargo selection but that no single aspect of μ2 function is critical, implying that a more distributed network of interactions supports AP-2 function in SV endocytosis. PMID:19762466

  14. The Role of Functional and Perceptual Attributes: Evidence from Picture Naming in Dementia

    ERIC Educational Resources Information Center

    Harley, Trevor A.; Grant, Fiona

    2004-01-01

    We examined the performance of a group of people with moderately severe Alzheimer's type dementia on a naming task. We found that functional information plays an important role in determining naming performance on both living and non-living things. Perceptual information may play some role in naming living things. We also found some evidence that…

  15. Structural analysis of phospholipase A2 from functional perspective. 1. Functionally relevant solution structure and roles of the hydrogen-bonding network.

    PubMed

    Yuan, C; Byeon, I J; Li, Y; Tsai, M D

    1999-03-09

    Bovine pancreatic phospholipase A2 (PLA2), a small (13.8 kDa) Ca2+-dependent lipolytic enzyme, is rich in functional and structural character. In an effort to examine its detailed structure-function relationship, we determined its solution structure by multidimensional nuclear magnetic resonance (NMR) spectroscopy at a functionally relevant pH. An ensemble of 20 structures generated has an average root-mean-square deviation (RMSD) of 0.62 +/- 0.08 A for backbone (N, Calpha, C) atoms and 0.98 +/- 0.09 A for all heavy atoms. The overall structure shows several notable differences from the crystal structure: the first three residues at the N-terminus, the calcium-binding loop (Y25-T36), and the surface loop (V63-N72) appear to be flexible; the alpha-helical conformation of helix B (E17-F22) is absent; helix D appears to be shorter (D59-V63 instead of D59-D66); and the hydrogen-bonding network is less defined. These differences were analyzed in relation to the function of PLA2. We then further examined the H-bonding network, because its functional role or even its existence in solution has been in dispute recently. Our results show that part of the H-bonding network (the portion away from N-terminus) clearly exists in solution, as evidenced by direct observation (at 11.1 ppm) of a strong H-bond between Y73 and D99 and an implicated interaction between D99 and H48. Analyses of a series of mutants indicated that the existence of the Y73.D99 H-bond correlates directly with the conformational stability of the mutant. Loss of this H-bond results in a loss of 2-3 kcal/mol in the conformational stability of PLA2. The unequivocal identification and demonstration of the structural importance of a specific hydrogen bond, and the magnitude of its contribution to conformational stability, are uncommon to the best of our knowledge. Our results also suggest that, while the D99.H48 catalytic diad is the key catalytic machinery of PLA2, it also helps to maintain conformational

  16. CD14 is a key mediator of both lysophosphatidic acid and lipopolysaccharide induction of foam cell formation.

    PubMed

    An, Dong; Hao, Feng; Zhang, Fuqiang; Kong, Wei; Chun, Jerold; Xu, Xuemin; Cui, Mei-Zhen

    2017-09-01

    Macrophage uptake of oxidized low-density lipoprotein (oxLDL) plays an important role in foam cell formation and the pathogenesis of atherosclerosis. We report here that lysophosphatidic acid (LPA) enhances lipopolysaccharide (LPS)-induced oxLDL uptake in macrophages. Our data revealed that both LPA and LPS highly induce the CD14 expression at messenger RNA and protein levels in macrophages. The role of CD14, one component of the LPS receptor cluster, in LPA-induced biological functions has been unknown. We took several steps to examine the role of CD14 in LPA signaling pathways. Knockdown of CD14 expression nearly completely blocked LPA/LPS-induced oxLDL uptake in macrophages, demonstrating for the first time that CD14 is a key mediator responsible for both LPA- and LPS-induced oxLDL uptake/foam cell formation. To determine the molecular mechanism mediating CD14 function, we demonstrated that both LPA and LPS significantly induce the expression of scavenger receptor class A type I (SR-AI), which has been implicated in lipid uptake process, and depletion of CD14 levels blocked LPA/LPS-induced SR-AI expression. We further showed that the SR-AI-specific antibody, which quenches SR-AI function, blocked LPA- and LPS-induced foam cell formation. Thus, SR-AI is the downstream mediator of CD14 in regulating LPA-, LPS-, and LPA/LPS-induced foam cell formation. Taken together, our results provide the first experimental evidence that CD14 is a novel connecting molecule linking both LPA and LPS pathways and is a key mediator responsible for LPA/LPS-induced foam cell formation. The LPA/LPS-CD14-SR-AI nexus might be the new convergent pathway, contributing to the worsening of atherosclerosis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Steroid Hormones Are Key Modulators of Tissue Mechanical Function via Regulation of Collagen and Elastic Fibers

    PubMed Central

    Nallasamy, Shanmugasundaram; Yoshida, Kyoko; Akins, Meredith; Myers, Kristin; Iozzo, Renato

    2017-01-01

    The extracellular matrix (ECM) plays an active and dynamic role that both reflects and facilitates the functional requirements of a tissue. The mature ECM of the nonpregnant cervix is drastically reorganized during pregnancy to drive changes in tissue mechanics that ensure safe birth. In this study, our research on mice deficient in the proteoglycan decorin have led to the finding that progesterone and estrogen play distinct and complementary roles to orchestrate structural reorganization of both collagen and elastic fibers in the cervix during pregnancy. Abnormalities in collagen and elastic fiber structure and tissue mechanical function evident in the cervix of nonpregnant and early pregnant decorin-null mice transiently recover for the remainder of pregnancy only to return 1 month postpartum. Consistent with the hypothesis that pregnancy levels of progesterone and estrogen may regulate ECM organization and turnover, expressions of factors required for assembly and synthesis of collagen and elastic fibers are temporally regulated, and the ultrastructure of collagen fibrils and elastic fibers is markedly altered during pregnancy in wild-type mice. Finally, utilizing ovariectomized nonpregnant decorin-null mice, we demonstrate structural resolution of collagen and elastic fibers by progesterone or estrogen, respectively, and the potential for both ECM proteins to contribute to mechanical function. These investigations advance understanding of regulatory factors that drive specialized ECM organization and contribute to an understanding of the cervical remodeling process, which may provide insight into potential complications associated with preterm birth that impact 9.6% of live births in the United States. PMID:28204185

  18. Biological roles of glycans

    PubMed Central

    Varki, Ajit

    2017-01-01

    Abstract Simple and complex carbohydrates (glycans) have long been known to play major metabolic, structural and physical roles in biological systems. Targeted microbial binding to host glycans has also been studied for decades. But such biological roles can only explain some of the remarkable complexity and organismal diversity of glycans in nature. Reviewing the subject about two decades ago, one could find very few clear-cut instances of glycan-recognition-specific biological roles of glycans that were of intrinsic value to the organism expressing them. In striking contrast there is now a profusion of examples, such that this updated review cannot be comprehensive. Instead, a historical overview is presented, broad principles outlined and a few examples cited, representing diverse types of roles, mediated by various glycan classes, in different evolutionary lineages. What remains unchanged is the fact that while all theories regarding biological roles of glycans are supported by compelling evidence, exceptions to each can be found. In retrospect, this is not surprising. Complex and diverse glycans appear to be ubiquitous to all cells in nature, and essential to all life forms. Thus, >3 billion years of evolution consistently generated organisms that use these molecules for many key biological roles, even while sometimes coopting them for minor functions. In this respect, glycans are no different from other major macromolecular building blocks of life (nucleic acids, proteins and lipids), simply more rapidly evolving and complex. It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences. PMID:27558841

  19. DNA recombination protein-dependent mechanism of homoplasmy and its proposed functions.

    PubMed

    Shibata, Takehiko; Ling, Feng

    2007-01-01

    Homoplasmy is a basic genetic state of mitochondria, in which all of the hundreds to thousands of mitochondrial (mt)DNA copies within a cell or an individual have the same nucleotide-sequence. It was recently found that "vegetative segregation" to generate homoplasmic cells is an active process under genetic control. In the yeast Saccharomyces cerevisiae, the Mhr1 protein which catalyzes a key reaction in mtDNA homologous recombination, plays a pivotal role in vegetative segregation. Conversely, within the nuclear genome, homologous DNA recombination causes genetic diversity. Considering these contradictory roles of this key reaction in DNA recombination, possible functions of homoplasmy are discussed.

  20. TSLP: A Key Regulator of Asthma Pathogenesis.

    PubMed

    West, Erin E; Kashyap, Mohit; Leonard, Warren J

    2012-12-01

    Asthma is a complex disorder of the airways that is characterized by T helper type 2 (Th2) inflammation. The pleiotrophic cytokine TSLP has emerged as an important player involved in orchestrating the inflammation seen in asthma and other atopic diseases. Early research elucidated the role of TSLP on CD4 + T cells, and recent work has revealed the impact of TSLP on multiple cell types. Furthermore, TSLP plays an important role in the sequential progression of atopic dermatitis to asthma, clarifying the key role of TSLP in the pathogenesis of asthma, a finding with therapeutic implications.

  1. Energy-Efficient Implementation of ECDH Key Exchange for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Lederer, Christian; Mader, Roland; Koschuch, Manuel; Großschädl, Johann; Szekely, Alexander; Tillich, Stefan

    Wireless Sensor Networks (WSNs) are playing a vital role in an ever-growing number of applications ranging from environmental surveillance over medical monitoring to home automation. Since WSNs are often deployed in unattended or even hostile environments, they can be subject to various malicious attacks, including the manipulation and capture of nodes. The establishment of a shared secret key between two or more individual nodes is one of the most important security services needed to guarantee the proper functioning of a sensor network. Despite some recent advances in this field, the efficient implementation of cryptographic key establishment for WSNs remains a challenge due to the resource constraints of small sensor nodes such as the MICAz mote. In this paper we present a lightweight implementation of the elliptic curve Diffie-Hellman (ECDH) key exchange for ZigBee-compliant sensor nodes equipped with an ATmega128 processor running the TinyOS operating system. Our implementation uses a 192-bit prime field specified by the NIST as underlying algebraic structure and requires only 5.20 ·106 clock cycles to compute a scalar multiplication if the base point is fixed and known a priori. A scalar multiplication using a random base point takes about 12.33 ·106 cycles. Our results show that a full ECDH key exchange between two MICAz motes consumes an energy of 57.33 mJ (including radio communication), which is significantly better than most previously reported ECDH implementations on comparable platforms.

  2. RegA Plays a Key Role in Oxygen-Dependent Establishment of Persistence and in Isocitrate Lyase Activity, a Critical Determinant of In vivo Brucella suis Pathogenicity

    PubMed Central

    Abdou, Elias; Jiménez de Bagüés, María P.; Martínez-Abadía, Ignacio; Ouahrani-Bettache, Safia; Pantesco, Véronique; Occhialini, Alessandra; Al Dahouk, Sascha; Köhler, Stephan; Jubier-Maurin, Véronique

    2017-01-01

    For aerobic human pathogens, adaptation to hypoxia is a critical factor for the establishment of persistent infections, as oxygen availability is low inside the host. The two-component system RegB/A of Brucella suis plays a central role in the control of respiratory systems adapted to oxygen deficiency, and in persistence in vivo. Using an original “in vitro model of persistence” consisting in gradual oxygen depletion, we compared transcriptomes and proteomes of wild-type and ΔregA strains to identify the RegA-regulon potentially involved in the set-up of persistence. Consecutive to oxygen consumption resulting in growth arrest, 12% of the genes in B. suis were potentially controlled directly or indirectly by RegA, among which numerous transcriptional regulators were up-regulated. In contrast, genes or proteins involved in envelope biogenesis and in cellular division were repressed, suggesting a possible role for RegA in the set-up of a non-proliferative persistence state. Importantly, the greatest number of the RegA-repressed genes and proteins, including aceA encoding the functional IsoCitrate Lyase (ICL), were involved in energy production. A potential consequence of this RegA impact may be the slowing-down of the central metabolism as B. suis progressively enters into persistence. Moreover, ICL is an essential determinant of pathogenesis and long-term interactions with the host, as demonstrated by the strict dependence of B. suis on ICL activity for multiplication and persistence during in vivo infection. RegA regulates gene or protein expression of all functional groups, which is why RegA is a key regulator of B. suis in adaptation to oxygen depletion. This function may contribute to the constraint of bacterial growth, typical of chronic infection. Oxygen-dependent activation of two-component systems that control persistence regulons, shared by several aerobic human pathogens, has not been studied in Brucella sp. before. This work therefore contributes

  3. A key role for mitochondria in endothelial signaling by plasma cysteine/cystine redox potential

    PubMed Central

    Go, Young-Mi; Park, Heonyong; Koval, Michael; Orr, Michael; Reed, Matthew; Liang, Yongliang; Smith, Debra; Pohl, Jan; Jones, Dean P.

    2011-01-01

    The redox potential of the plasma cysteine/cystine couple (EhCySS) is oxidized in association with risk factors for cardiovascular disease (CVD), including age, smoking, type 2 diabetes, obesity, and alcohol abuse. Previous in vitro findings support a cause–effect relationship for extracellular EhCySS in cell signaling pathways associated with CVD, including those controlling monocyte adhesion to endothelial cells. In this study, we provide evidence that mitochondria are a major source of reactive oxygen species (ROS) in the signaling response to a more oxidized extracellular EhCySS. This increase in ROS was blocked by overexpression of mitochondrial thioredoxin-2 (Trx2) in endothelial cells from Trx2-transgenic mice, suggesting that mitochondrial thiol antioxidant status plays a key role in this redox signaling mechanism. Mass spectrometry-based redox proteomics showed that several classes of plasma membrane and cytoskeletal proteins involved in inflammation responded to this redox switch, including vascular cell adhesion molecule, integrins, actin, and several Ras family GTPases. Together, the data show that the proinflammatory effects of oxidized plasma EhCySS are due to a mitochondrial signaling pathway that is mediated through redox control of downstream effector proteins. PMID:19879942

  4. PO-12 - The key role of talin-1 in cancer cell extravasation dissected through human vascularized 3D microfluidic model.

    PubMed

    Gilardi, M; Bersini, S; Calleja, A Boussomier; Kamm, R D; Vanoni, M; Moretti, M

    2016-04-01

    Metastases are responsible for more than 90% of cancer related mortality. The hematogenous metastatic invasion is a complex process in which the endothelium plays a key role. Extravasation is a dynamic process involving remodeling and change in cell shape and in cytoskeleton whereby a series of strongly dependent interactions between CTCs and endothelium occurs [1]. Talins are proteins regulating focal adhesions and cytoskeleton remodeling. Talin-1 seems to be involved in the aggressiveness, motility, survival and invadopodia formation of cancer cells throughout the entire metastatic cascade [2], being up-regulated in breast cancer cells and mutated in sarcomas. Understand the implication of talin-1 in extravasation could facilitate the design of new therapies and finally fight cancer. We hypothesized that Talin-1 could be specifically involved in extravasation driving each of its steps. We developed a human 3D microfluidic model that enables the study of human cancer cell extravasation within a perfusable human microvascularized organ specific environment[3]. For the study of extravasation we applied microfluidic approach through the development of a microfluidic device in which endothelial cells and fibroblasts generated a 3D human functional vascular networks. Microvessel characterization was performed with immunofluorescence and permeability assays. We knocked-down talin-1 in triple negative breast cancer cell line MDA-MB231 and metastatic fibro-sarcoma cell line HT1080 with SiRNA and verified by Western-blot. Cancer cells were then perfused in the vessels and extravasation monitored through confocal imaging. We developed a human vascularized 3D microfluidic device with human perfusable capillary-like structures embedded in fibrin matrix, characterized by mature endothelium markers and physiological permeability (1.5±0.76)×10(-6) cm/s. We focused on the role of Talin-1 in adhesion to endothelium, trans-endothelial migration (TEM) and early invasion. Adhesion

  5. The impact of premorbid adjustment, neurocognition, and depression on social and role functioning in patients in an early psychosis treatment program.

    PubMed

    Minor, Kyle S; Friedman-Yakoobian, Michelle; Leung, Y Jude; Meyer, Eric C; Zimmet, Suzanna V; Caplan, Brina; Monteleone, Thomas; Bryant, Caitlin; Guyer, Margaret; Keshavan, Matcheri S; Seidman, Larry J

    2015-05-01

    Functional impairments are debilitating concomitants of psychotic disorders and are present early in the illness course and, commonly, prior to psychosis onset. The factors affecting social and role functioning in early psychosis (EP) following treatment are unclear. We evaluated whether six months of participation in the PREP(R), Boston, EP treatment program, part of a public-academic community mental health center, was related to improvements in social and role functioning and whether premorbid adjustment in adolescence, baseline neurocognition, and depression symptoms predicted functional improvement. The Global Functioning Social and Role scales, MATRICS neurocognitive battery, and Calgary Depression Scale were assessed at baseline and six months during naturalistic treatment, while premorbid adjustment was measured at baseline. All participants were psychotic disorder patients in PREP(R) (n = 46 with social functioning and 47 with role functioning measures at both time points). Large improvements were observed in role functioning (d = 0.84) and medium to large improvements were observed in social functioning (d = 0.70). Models consisting of adolescent premorbid adjustment and change in depression symptoms predicted social and role functioning change, whereas neuropsychological functioning did not. Substantial improvements in social and role functioning were observed among this sample participating in a recovery-based EP program. The impact of clinical factors on social and role functioning was highlighted. Further studies of premorbid adjustment in adolescence and the treatment of depression in EP programs in controlled treatment trials are needed to confirm these findings. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  6. THE FUNCTIONAL ROLES OF MUSCLES DURING SLOPED WALKING

    PubMed Central

    Pickle, Nathaniel T.; Grabowski, Alena M.; Auyang, Arick G.; Silverman, Anne K.

    2016-01-01

    Sloped walking is biomechanically different from level-ground walking, as evidenced by changes in joint kinematics and kinetics. However, the changes in muscle functional roles underlying these altered movement patterns have not been established. In this study, we developed a total of 273 muscle-actuated simulations to assess muscle functional roles, quantified by induced body center-of-mass accelerations and trunk and leg power, during walking on slopes of 0°, ±3°, ±6°, and ±9° at 1.25 m/s. The soleus and gastrocnemius both provided greater forward acceleration of the body parallel to the slope at +9° compared to level ground (+126% and +66%, respectively). However, while the power delivered to the trunk by the soleus varied with slope, the magnitude of net power delivered to the trunk and ipsilateral leg by the biarticular gastrocnemius was similar across all slopes. At +9°, the hip extensors absorbed more power from the trunk (230% hamstrings, 140% gluteus maximus) and generated more power to both legs (200% hamstrings, 160% gluteus maximus) compared to level ground. At −9°, the knee extensors (rectus femoris and vasti) accelerated the body upward perpendicular to the slope at least 50% more and backward parallel to the slope twice as much as on level ground. In addition, the knee extensors absorbed greater amounts of power from the ipsilateral leg on greater declines to control descent. Future studies can use these results to develop targeted rehabilitation programs and assistive devices aimed at restoring sloped walking ability in impaired populations. PMID:27553849

  7. The regulation of the chloroplast proton motive force plays a key role for photosynthesis in fluctuating light.

    PubMed

    Armbruster, Ute; Correa Galvis, Viviana; Kunz, Hans-Henning; Strand, Deserah D

    2017-06-01

    Plants use sunlight as their primary energy source. During photosynthesis, absorbed light energy generates reducing power by driving electron transfer reactions. These are coupled to the transfer of protons into the thylakoid lumen, generating a proton motive force (pmf) required for ATP synthesis. Sudden alterations in light availability have to be met by regulatory mechanisms to avoid the over-accumulation of reactive intermediates and maximize energy efficiency. Here, the acidification of the lumen, as an intermediate product of photosynthesis, plays an important role by regulating photosynthesis in response to excitation energy levels. Recent findings reveal pmf regulation and the modulation of its composition as key determinants for efficient photosynthesis, plant growth, and survival in fluctuating light environments. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Using NMR spectroscopy to elucidate the role of molecular motions in enzyme function

    PubMed Central

    Lisi, George P.; Loria, J. Patrick

    2015-01-01

    Conformational motions play an essential role in enzyme function, often facilitating the formation of enzyme-substrate complexes and/or product release. Although considerable debate remains regarding the role of molecular motions in the conversion of enzymatic substrates to products, numerous examples have found motions to be crucial for optimization of enzyme scaffolds, effective substrate binding, and product dissociation. Conformational fluctuations are often rate-limiting to enzyme catalysis, primarily through product release, with the chemical reaction occurring much more quickly. As a result, the direct involvement of motions at various stages along the enzyme reaction coordinate remains largely unknown and untested. In the following review, we describe the use of solution NMR techniques designed to probe various timescales of molecular motions and detail examples in which motions play a role in propagating catalytic effects from the active site and directly participate in essential aspects of enzyme function. PMID:26952190

  9. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants

    PubMed Central

    Sénéchal, Fabien; Wattier, Christopher; Rustérucci, Christine; Pelloux, Jérôme

    2014-01-01

    Understanding the changes affecting the plant cell wall is a key element in addressing its functional role in plant growth and in the response to stress. Pectins, which are the main constituents of the primary cell wall in dicot species, play a central role in the control of cellular adhesion and thereby of the rheological properties of the wall. This is likely to be a major determinant of plant growth. How the discrete changes in pectin structure are mediated is thus a key issue in our understanding of plant development and plant responses to changes in the environment. In particular, understanding the remodelling of homogalacturonan (HG), the most abundant pectic polymer, by specific enzymes is a current challenge in addressing its fundamental role. HG, a polymer that can be methylesterified or acetylated, can be modified by HGMEs (HG-modifying enzymes) which all belong to large multigenic families in all species sequenced to date. In particular, both the degrees of substitution (methylesterification and/or acetylation) and polymerization can be controlled by specific enzymes such as pectin methylesterases (PMEs), pectin acetylesterases (PAEs), polygalacturonases (PGs), or pectate lyases-like (PLLs). Major advances in the biochemical and functional characterization of these enzymes have been made over the last 10 years. This review aims to provide a comprehensive, up to date summary of the recent data concerning the structure, regulation, and function of these fascinating enzymes in plant development and in response to biotic stresses. PMID:25056773

  10. Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.

    PubMed

    Pietz, Grzegorz; De, Rituparna; Hedberg, Maria; Sjöberg, Veronika; Sandström, Olof; Hernell, Olle; Hammarström, Sten; Hammarström, Marie-Louise

    2017-01-01

    Celiac disease is a chronic inflammatory disease of the small intestine mucosa due to permanent intolerance to dietary gluten. The aim was to elucidate the role of small intestinal epithelial cells in the immunopathology of celiac disease in particular the influence of celiac disease-associated bacteria. Duodenal biopsies were collected from children with active celiac disease, treated celiac disease, and clinical controls. Intestinal epithelial cells were purified and analyzed for gene expression changes at the mRNA and protein levels. Two in vitro models for human intestinal epithelium, small intestinal enteroids and polarized tight monolayers, were utilized to assess how interferon-γ, interleukin-17A, celiac disease-associated bacteria and gluten influence intestinal epithelial cells. More than 25 defense-related genes, including IRF1, SPINK4, ITLN1, OAS2, CIITA, HLA-DMB, HLA-DOB, PSMB9, TAP1, BTN3A1, and CX3CL1, were significantly upregulated in intestinal epithelial cells at active celiac disease. Of these genes, 70% were upregulated by interferon-γ via the IRF1 pathway. Most interestingly, IRF1 was also upregulated by celiac disease-associated bacteria. The NLRP6/8 inflammasome yielding CASP1 and biologically active interleukin-18, which induces interferon-γ in intraepithelial lymphocytes, was expressed in intestinal epithelial cells. A key factor in the epithelial reaction in celiac disease appears to be over-expression of IRF1 that could be inherent and/or due to presence of undesirable microbes that act directly on IRF1. Dual activation of IRF1 and IRF1-regulated genes, both directly and via the interleukin-18 dependent inflammasome would drastically enhance the inflammatory response and lead to the pathological situation seen in active celiac disease.

  11. Immunopathology of childhood celiac disease—Key role of intestinal epithelial cells

    PubMed Central

    Hedberg, Maria; Sjöberg, Veronika; Sandström, Olof; Hernell, Olle; Hammarström, Sten

    2017-01-01

    Background & Aims Celiac disease is a chronic inflammatory disease of the small intestine mucosa due to permanent intolerance to dietary gluten. The aim was to elucidate the role of small intestinal epithelial cells in the immunopathology of celiac disease in particular the influence of celiac disease-associated bacteria. Methods Duodenal biopsies were collected from children with active celiac disease, treated celiac disease, and clinical controls. Intestinal epithelial cells were purified and analyzed for gene expression changes at the mRNA and protein levels. Two in vitro models for human intestinal epithelium, small intestinal enteroids and polarized tight monolayers, were utilized to assess how interferon-γ, interleukin-17A, celiac disease-associated bacteria and gluten influence intestinal epithelial cells. Results More than 25 defense-related genes, including IRF1, SPINK4, ITLN1, OAS2, CIITA, HLA-DMB, HLA-DOB, PSMB9, TAP1, BTN3A1, and CX3CL1, were significantly upregulated in intestinal epithelial cells at active celiac disease. Of these genes, 70% were upregulated by interferon-γ via the IRF1 pathway. Most interestingly, IRF1 was also upregulated by celiac disease-associated bacteria. The NLRP6/8 inflammasome yielding CASP1 and biologically active interleukin-18, which induces interferon-γ in intraepithelial lymphocytes, was expressed in intestinal epithelial cells. Conclusion A key factor in the epithelial reaction in celiac disease appears to be over-expression of IRF1 that could be inherent and/or due to presence of undesirable microbes that act directly on IRF1. Dual activation of IRF1 and IRF1-regulated genes, both directly and via the interleukin-18 dependent inflammasome would drastically enhance the inflammatory response and lead to the pathological situation seen in active celiac disease. PMID:28934294

  12. Functional Gustatory Role of Chemoreceptors in Drosophila Wings.

    PubMed

    Raad, Hussein; Ferveur, Jean-François; Ledger, Neil; Capovilla, Maria; Robichon, Alain

    2016-05-17

    Neuroanatomical evidence argues for the presence of taste sensilla in Drosophila wings; however, the taste physiology of insect wings remains hypothetical, and a comprehensive link to mechanical functions, such as flight, wing flapping, and grooming, is lacking. Our data show that the sensilla of the Drosophila anterior wing margin respond to both sweet and bitter molecules through an increase in cytosolic Ca(2+) levels. Conversely, genetically modified flies presenting a wing-specific reduction in chemosensory cells show severe defects in both wing taste signaling and the exploratory guidance associated with chemodetection. In Drosophila, the chemodetection machinery includes mechanical grooming, which facilitates the contact between tastants and wing chemoreceptors, and the vibrations of flapping wings that nebulize volatile molecules as carboxylic acids. Together, these data demonstrate that the Drosophila wing chemosensory sensilla are a functional taste organ and that they may have a role in the exploration of ecological niches. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Diagnosing and improving functioning in interdisciplinary health care teams.

    PubMed

    Blackmore, Gail; Persaud, D David

    2012-01-01

    Interdisciplinary teams play a key role in the delivery of health care. Team functioning can positively or negatively impact the effective and efficient delivery of health care services as well as the personal well-being of group members. Additionally, teams must be able and willing to work together to achieve team goals within a climate that reflects commitment to team goals, accountability, respect, and trust. Not surprisingly, dysfunctional team functioning can limit the success of interdisciplinary health care teams. The first step in improving dysfunctional team function is to conduct an analysis based on criteria necessary for team success, and this article provides meaningful criteria for doing such an analysis. These are the following: a common team goal, the ability and willingness to work together to achieve team goals, decision making, communication, and team member relationships. High-functioning interdisciplinary teams must exhibit features of good team function in all key domains. If a team functions well in some domains and needs to improve in others, targeted strategies are described that can be used to improve team functioning.

  14. The role of vision processing in prosthetic vision.

    PubMed

    Barnes, Nick; He, Xuming; McCarthy, Chris; Horne, Lachlan; Kim, Junae; Scott, Adele; Lieby, Paulette

    2012-01-01

    Prosthetic vision provides vision which is reduced in resolution and dynamic range compared to normal human vision. This comes about both due to residual damage to the visual system from the condition that caused vision loss, and due to limitations of current technology. However, even with limitations, prosthetic vision may still be able to support functional performance which is sufficient for tasks which are key to restoring independent living and quality of life. Here vision processing can play a key role, ensuring that information which is critical to the performance of key tasks is available within the capability of the available prosthetic vision. In this paper, we frame vision processing for prosthetic vision, highlight some key areas which present problems in terms of quality of life, and present examples where vision processing can help achieve better outcomes.

  15. Roles of EphA2 in Development and Disease

    PubMed Central

    Park, Jeong Eun; Son, Alexander I.; Zhou, Renping

    2013-01-01

    The Eph family of receptor tyrosine kinases (RTKs) has been implicated in the regulation of many aspects of mammalian development. Recent analyses have revealed that the EphA2 receptor is a key modulator for a wide variety of cellular functions. This review focuses on the roles of EphA2 in both development and disease. PMID:24705208

  16. How the bioanalytical scientist plays a key role in interdisciplinary project teams in the development of biotherapeutics - a reflection of the European Bioanalysis Forum.

    PubMed

    Dudal, Sherri; Staack, Roland F; Stoellner, Daniela; Fjording, Marianne Scheel; Vieser, Eva; Pascual, Marie-Hélène; Brudny-Kloeppel, Margarete; Golob, Michaela

    2014-05-01

    The bioanalytical scientist plays a key role in the project team for the drug development of biotherapeutics from the discovery to the marketing phase. Information from the project team members is required for assay development and sample analysis during the discovery, preclinical and clinical phases of the project and input is needed from the bioanalytical scientist to help data interpretation. The European Bioanalysis Forum target team 20 discussed many of the gaps in information and communication between the bioanalytical scientist and project team members as a base for providing a perspective on the bioanalytical scientist's role and interactions within the project team.

  17. MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menachery, Vineet D.; Mitchell, Hugh D.; Cockrell, Adam S.

    ABSTRACT While dispensable for viral replication, coronavirus (CoV) accessory open reading frame (ORF) proteins often play critical roles during infection and pathogenesis. Utilizing a previously generated mutant, we demonstrate that the absence of all four Middle East respiratory syndrome CoV (MERS-CoV) accessory ORFs (deletion of ORF3, -4a, -4b, and -5 [dORF3-5]) has major implications for viral replication and pathogenesis. Importantly, attenuation of the dORF3-5 mutant is primarily driven by dysregulated host responses, including disrupted cell processes, augmented interferon (IFN) pathway activation, and robust inflammation.In vitroreplication attenuation also extends toin vivomodels, allowing use of dORF3-5 as a live attenuated vaccine platform.more » Finally, examination of ORF5 implicates a partial role in modulation of NF-κB-mediated inflammation. Together, the results demonstrate the importance of MERS-CoV accessory ORFs for pathogenesis and highlight them as potential targets for surveillance and therapeutic treatments moving forward. IMPORTANCEThe initial emergence and periodic outbreaks of MERS-CoV highlight a continuing threat posed by zoonotic pathogens to global public health. In these studies, mutant virus generation demonstrates the necessity of accessory ORFs in regard to MERS-CoV infection and pathogenesis. With this in mind, accessory ORF functions can be targeted for both therapeutic and vaccine treatments in response to MERS-CoV and related group 2C coronaviruses. In addition, disruption of accessory ORFs in parallel may offer a rapid response platform to attenuation of future emergent strains based on both SARS- and MERS-CoV accessory ORF mutants.« less

  18. Role of p21-activated kinases in cardiovascular development and function.

    PubMed

    Kelly, Mollie L; Astsaturov, Artyom; Chernoff, Jonathan

    2013-11-01

    p21-activated kinases (Paks) are a group of six serine/threonine kinases (Pak1-6) that are involved in a variety of biological processes. Recently, Paks, more specifically Pak1, -2, and -4, have been shown to play important roles in cardiovascular development and function in a range of model organisms including zebrafish and mice. These functions include proper morphogenesis and conductance of the heart, cardiac contractility, and development and integrity of the vasculature. The mechanisms underlying these effects are not fully known, but they likely differ among the various Pak isoforms and include both kinase-dependent and -independent functions. In this review, we discuss aspects of Pak function relevant to cardiovascular biology as well as potential therapeutic implications of small-molecule Pak inhibitors in cardiovascular disease.

  19. A Role for Corticotropin-releasing Factor in Functional Gastrointestinal Disorders

    PubMed Central

    Tacheé, Yvette; Kiank, Cornelia; Stengel, Andreas

    2012-01-01

    Functional gastrointestinal disorders (FGIDs), which include irritable bowel syndrome (IBS), encompass a heterogeneous group of diseases identified by chronic or recurrent symptom-based diagnostic criteria. Psychosocial factors are key components in the outcome of clinical manifestations of IBS symptoms. Anxiogenic and endocrine responses to stress are mediated by the corticotropin-releasing factor (CRF)–CRF1 receptor pathway. Preclinical studies show that activation of the CRF1 receptor by exogenous CRF or stress recapitulates many functional symptoms of IBS diarrhea-predominant patients as related to anxiogenic/hypervigilant behavior, autonomic nervous system alterations, induction of diarrhea, visceral hyperalgesia, enhanced colonic motility, mucus secretion, increased permeability, bacterial translocation, and mast cell activation, which are all alleviated by selective CRF1 receptor antagonists. Clinical studies also support that CRF administration can induce IBS-like symptoms in healthy subjects and heighten colonic sensitivity in IBS patients. Yet to be ascertained is whether CRF1 receptor antagonists hold promise as a new therapy in IBS treatment. PMID:19615302

  20. Multi-chaperone function modulation and association with cytoskeletal proteins are key features of the function of AIP in the pituitary gland

    PubMed Central

    Hernández-Ramírez, Laura C.; Morgan, Rhodri M.L.; Barry, Sayka; D’Acquisto, Fulvio; Prodromou, Chrisostomos; Korbonits, Márta

    2018-01-01

    Despite the well-recognized role of loss-of-function mutations of the aryl hydrocarbon receptor interacting protein gene (AIP) predisposing to pituitary adenomas, the pituitary-specific function of this tumor suppressor remains an enigma. To determine the repertoire of interacting partners for the AIP protein in somatotroph cells, wild-type and variant AIP proteins were used for pull-down/quantitative mass spectrometry experiments against lysates of rat somatotropinoma-derived cells; relevant findings were validated by co-immunoprecipitation and co-localization. Global gene expression was studied in AIP mutation positive and negative pituitary adenomas via RNA microarrays. Direct interaction with AIP was confirmed for three known and six novel partner proteins. Novel interactions with HSPA5 and HSPA9, together with known interactions with HSP90AA1, HSP90AB1 and HSPA8, indicate that the function/stability of multiple chaperone client proteins could be perturbed by a deficient AIP co-chaperone function. Interactions with TUBB, TUBB2A, NME1 and SOD1 were also identified. The AIP variants p.R304* and p.R304Q showed impaired interactions with HSPA8, HSP90AB1, NME1 and SOD1; p.R304* also displayed reduced binding to TUBB and TUBB2A, and AIP-mutated tumors showed reduced TUBB2A expression. Our findings suggest that cytoskeletal organization, cell motility/adhesion, as well as oxidative stress responses, are functions that are likely to be involved in the tumor suppressor activity of AIP. PMID:29507682

  1. Closing the water cycle - the key role of water and wastewater management in a circular economy

    NASA Astrophysics Data System (ADS)

    Uhlenbrook, Stefan; Connor, Rick; Koncagul, Engin; Ortigara, Angela

    2017-04-01

    Planetary water boundaries are exceeded locally and regionally as water demand and use are escalating and per capita water availability is decreasing. However, wastewater represents an alternative yet reliable source containing for instance, nutrients (for use as fertilizer) and metals that can be extracted, and can be a source of energy. These characteristics mean that water and wastewater are set to play a key role in the circular economy. Furthermore, wastewater use can generate business opportunities and enhance water, food and energy security, therefore helping to alleviate poverty. However, to increase the collection, treatment and use of wastewater, investments in infrastructure and appropriate (low cost) technologies are needed. Ensuring the development of human and institutional capacity is also essential for proper wastewater management. The UN World Water Assessment Programme (WWAP) produces together with several UN-Water Members and Partners the annual World Water Development Report (WWDR). Its 2017 edition "Wastewater: The Untapped Resource" focuses on the critical role of wastewater management for vibrant economies, resilient societies and the maintenance of a healthy environment. Wastewater issues play also a central role in the 2030 Agenda for Sustainable Development, most notably through Sustainable Development Goal (SDG) target 6.3 that aims to improve water quality by reducing the proportion of untreated wastewater released to the environment and increasing its recycling and safe reuse globally. This target is interlinked with several other targets of SDG 6 ('the water goal') as well as to several other SDGs that relate to, poverty reduction, health, energy and food security, among others. The main policy-relevant messages of the WWDR 2017 will be introduced and linked to socio-hydrological approaches. These messages are an important input to the implementation of the water research agenda of the Panta Rhei initiative of IAHS.

  2. Thumb-loops up for catalysis: a structure/function investigation of a functional loop movement in a GH11 xylanase

    PubMed Central

    Paës, Gabriel; Cortés, Juan; Siméon, Thierry; O'Donohue, Michael J.; Tran, Vinh

    2012-01-01

    Dynamics is a key feature of enzyme catalysis. Unfortunately, current experimental and computational techniques do not yet provide a comprehensive understanding and description of functional macromolecular motions. In this work, we have extended a novel computational technique, which combines molecular modeling methods and robotics algorithms, to investigate functional motions of protein loops. This new approach has been applied to study the functional importance of the so-called thumb-loop in the glycoside hydrolase family 11 xylanase from Thermobacillus xylanilyticus (Tx-xyl). The results obtained provide new insight into the role of the loop in the glycosylation/deglycosylation catalytic cycle, and underline the key importance of the nature of the residue located at the tip of the thumb-loop. The effect of mutations predicted in silico has been validated by in vitro site-directed mutagenesis experiments. Overall, we propose a comprehensive model of Tx-xyl catalysis in terms of substrate and product dynamics by identifying the action of the thumb-loop motion during catalysis. PMID:24688637

  3. Restoration of mitochondria function as a target for cancer therapy

    PubMed Central

    Bhat, Tariq A.; Kumar, Sandeep; Chaudhary, Ajay K.; Yadav, Neelu; Chandra, Dhyan

    2015-01-01

    Defective oxidative phosphorylation has a crucial role in the attenuation of mitochondrial function, which confers therapy resistance in cancer. Various factors, including endogenous heat shock proteins (HSPs) and exogenous agents such as dichloroacetate, restore respiratory and other physiological functions of mitochondria in cancer cells. Functional mitochondria might ultimately lead to the restoration of apoptosis in cancer cells that are refractory to current anticancer agents. Here, we summarize the key reasons contributing to mitochondria dysfunction in cancer cells and whether and/or how restoration of mitochondrial function could be exploited for cancer therapeutics. PMID:25766095

  4. Role of chronic exercise on pelvic floor support and function

    PubMed Central

    Shaw, Janet M.; Nygaard, Ingrid E.

    2017-01-01

    Purpose of review To summarize recent literature about the potential role of chronic exercise on pelvic floor support and function. Recent findings Stress urinary incontinence is common during physical activity. Scant evidence suggests a dose-response association between higher volumes of exercise and urinary incontinence. Athletes do not appear to have greater pelvic floor muscle strength or worse pelvic floor support compared to non-athletes. Pelvic floor muscle electromyographic activity increases substantially as running speeds increase. Summary Based on the current literature, no strong conclusions can be drawn about whether chronic exercise exerts a positive or negative influence on pelvic floor support and function. Adopting longitudinal research methodology that prospectively monitors exercise exposure and subsequent changes in pelvic floor support and function would help to reduce selection bias associated with cross sectional studies on groups of athletes. PMID:28212118

  5. Functional Analogy in Human Metabolism: Enzymes with Different Biological Roles or Functional Redundancy?

    PubMed Central

    Piergiorge, Rafael Mina; de Miranda, Antonio Basílio; Catanho, Marcos

    2017-01-01

    Abstract Since enzymes catalyze almost all chemical reactions that occur in living organisms, it is crucial that genes encoding such activities are correctly identified and functionally characterized. Several studies suggest that the fraction of enzymatic activities in which multiple events of independent origin have taken place during evolution is substantial. However, this topic is still poorly explored, and a comprehensive investigation of the occurrence, distribution, and implications of these events has not been done so far. Fundamental questions, such as how analogous enzymes originate, why so many events of independent origin have apparently occurred during evolution, and what are the reasons for the coexistence in the same organism of distinct enzymatic forms catalyzing the same reaction, remain unanswered. Also, several isofunctional enzymes are still not recognized as nonhomologous, even with substantial evidence indicating different evolutionary histories. In this work, we begin to investigate the biological significance of the cooccurrence of nonhomologous isofunctional enzymes in human metabolism, characterizing functional analogous enzymes identified in metabolic pathways annotated in the human genome. Our hypothesis is that the coexistence of multiple enzymatic forms might not be interpreted as functional redundancy. Instead, these enzymatic forms may be implicated in distinct (and probably relevant) biological roles. PMID:28854631

  6. Using NMR spectroscopy to elucidate the role of molecular motions in enzyme function.

    PubMed

    Lisi, George P; Loria, J Patrick

    2016-02-01

    Conformational motions play an essential role in enzyme function, often facilitating the formation of enzyme-substrate complexes and/or product release. Although considerable debate remains regarding the role of molecular motions in the conversion of enzymatic substrates to products, numerous examples have found motions to be crucial for optimization of enzyme scaffolds, effective substrate binding, and product dissociation. Conformational fluctuations are often rate-limiting to enzyme catalysis, primarily through product release, with the chemical reaction occurring much more quickly. As a result, the direct involvement of motions at various stages along the enzyme reaction coordinate remains largely unknown and untested. In the following review, we describe the use of solution NMR techniques designed to probe various timescales of molecular motions and detail examples in which motions play a role in propagating catalytic effects from the active site and directly participate in essential aspects of enzyme function. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The Role of Oxygen Sensors, Hydroxylases, and HIF in Cardiac Function and Disease.

    PubMed

    Townley-Tilson, W H Davin; Pi, Xinchun; Xie, Liang

    2015-01-01

    Ischemic heart disease is the leading cause of death worldwide. Oxygen-sensing proteins are critical components of the physiological response to hypoxia and reperfusion injury, but the role of oxygen and oxygen-mediated effects is complex in that they can be cardioprotective or deleterious to the cardiac tissue. Over 200 oxygen-sensing proteins mediate the effects of oxygen tension and use oxygen as a substrate for posttranslational modification of other proteins. Hydroxylases are an essential component of these oxygen-sensing proteins. While a major role of hydroxylases is regulating the transcription factor HIF, we investigate the increasing scope of hydroxylase substrates. This review discusses the importance of oxygen-mediated effects in the heart as well as how the field of oxygen-sensing proteins is expanding, providing a more complete picture into how these enzymes play a multifaceted role in cardiac function and disease. We also review how oxygen-sensing proteins and hydroxylase function could prove to be invaluable in drug design and therapeutic targets for heart disease.

  8. Roles of water in protein structure and function studied by molecular liquid theory.

    PubMed

    Imai, Takashi

    2009-01-01

    The roles of water in the structure and function of proteins have not been completely elucidated. Although molecular simulation has been widely used for the investigation of protein structure and function, it is not always useful for elucidating the roles of water because the effect of water ranges from atomic to thermodynamic level. The three-dimensional reference interaction site model (3D-RISM) theory, which is a statistical-mechanical theory of molecular liquids, can yield the solvation structure at the atomic level and calculate the thermodynamic quantities from the intermolecular potentials. In the last few years, the author and coworkers have succeeded in applying the 3D-RISM theory to protein aqueous solution systems and demonstrated that the theory is useful for investigating the roles of water. This article reviews some of the recent applications and findings, which are concerned with molecular recognition by protein, protein folding, and the partial molar volume of protein which is related to the pressure effect on protein.

  9. A key role of GARP in the immune suppressive tumor microenvironment.

    PubMed

    Hahn, Susanne A; Neuhoff, Annemarie; Landsberg, Jenny; Schupp, Jonathan; Eberts, Daniela; Leukel, Petra; Bros, Matthias; Weilbaecher, Martin; Schuppan, Detlef; Grabbe, Stephan; Tueting, Thomas; Lennerz, Volker; Sommer, Clemens; Jonuleit, Helmut; Tuettenberg, Andrea

    2016-07-12

    In melanoma patients, one of the main reasons for tumor immune escape and therapy failure is the immunosuppressive tumor microenvironment. Herein, suppressive immune cells and inhibitory factors secreted by the tumor itself play a central role.In the present study we show that the Treg activation marker GARP (glycoprotein A repetitions predominant), known to induce peripheral tolerance in a TGF-β dependent way, is also expressed on human primary melanoma. Interestingly, membrane bound GARP is shed from the surface of both, activated Treg and melanoma cells, and, in its soluble form (sGARP), not only induces peripheral Treg but also a tumor associated (M2) macrophage phenotype. Notably, proliferation of cytotoxic T cells and their effector function is inhibited in the presence of sGARP. GARP expression on Treg and melanoma cells is significantly decreased in the presence of agents such as IFN-α, thus explaining at least in part a novel mechanism of action of this adjuvant therapy.In conclusion, GARP in its soluble and membrane bound form contributes to peripheral tolerance in a multipronged way, potentiates the immunosuppressive tumor microenvironment and thus acts as a negative regulator in melanoma patients. Therefore, it may qualify as a promising target and a new checkpoint for cancer immunotherapy.

  10. Structures and functions of insect arylalkylamine N-acetyltransferase (iaaNAT); a key enzyme for physiological and behavioral switch in arthropods

    PubMed Central

    Hiragaki, Susumu; Suzuki, Takeshi; Mohamed, Ahmed A. M.; Takeda, Makio

    2015-01-01

    The evolution of N-acetyltransfeases (NATs) seems complex. Vertebrate arylalkylamine N-acetyltransferase (aaNAT) has been extensively studied since it leads to the synthesis of melatonin, a multifunctional neurohormone prevalent in photoreceptor cells, and is known as a chemical token of the night. Melatonin also serves as a scavenger for reactive oxygen species. This is also true with invertebrates. NAT therefore has distinct functional implications in circadian function, as timezymes (aaNAT), and also xenobiotic reactions (arylamine NAT or simply NAT). NATs belong to a broader enzyme group, the GCN5-related N-acetyltransferase superfamily. Due to low sequence homology and a seemingly fast rate of structural differentiation, the nomenclature for NATs can be confusing. The advent of bioinformatics, however, has helped to classify this group of enzymes; vertebrates have two distinct subgroups, the timezyme type and the xenobiotic type, which has a wider substrate range including imidazolamine, pharmacological drugs, environmental toxicants and even histone. Insect aaNAT (iaaNAT) form their own clade in the phylogeny, distinct from vertebrate aaNATs. Arthropods are unique, since the phylum has exoskeleton in which quinones derived from N-acetylated monoamines function in coupling chitin and arthropodins. Monoamine oxidase (MAO) activity is limited in insects, but NAT-mediated degradation prevails. However, unexpectedly iaaNAT occurs not only among arthropods but also among basal deuterostomia, and is therefore more apomorphic. Our analyses illustrate that iaaNATs has unique physiological roles but at the same time it plays a role in a timezyme function, at least in photoperiodism. Photoperiodism has been considered as a function of circadian system but the detailed molecular mechanism is not well understood. We propose a molecular hypothesis for photoperiodism in Antheraea pernyi based on the transcription regulation of NAT interlocked by the circadian system

  11. Connecting Teratogen-Induced Congenital Heart Defects to Neural Crest Cells and Their Effect on Cardiac Function

    PubMed Central

    Karunamuni, Ganga H.; Ma, Pei; Gu, Shi; Rollins, Andrew M.; Jenkins, Michael W.; Watanabe, Michiko

    2014-01-01

    Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol-exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest is in regulating the morphogenesis of the heart and associated great vessels. The paradox is that their derivatives constitute a small proportion of cells to the cardiovascular system. Findings supporting that these cells impact early cardiac function raises the interesting possibility that they indirectly control cardiovascular development at least partially through regulating function. Making connections between insults to the neural crest, cardiac function, and morphogenesis is more approachable with technological advances. Expanding our understanding of early functional consequences could be useful in improving diagnosis and testing therapies. PMID:25220155

  12. Miniaturized supercapacitors: key materials and structures towards autonomous and sustainable devices and systems.

    PubMed

    Soavi, Francesca; Bettini, Luca Giacomo; Piseri, Paolo; Milani, Paolo; Santoro, Carlo; Atanassov, Plamen; Arbizzani, Catia

    2016-09-15

    Supercapacitors (SCs) are playing a key role for the development of self-powered and self-sustaining integrated systems for different fields ranging from remote sensing, robotics and medical devices. SC miniaturization and integration into more complex systems that include energy harvesters and functional devices are valuable strategies that address system autonomy. Here, we discuss about novel SC fabrication and integration approaches. Specifically, we report about the results of interdisciplinary activities on the development of thin, flexible SCs by an additive technology based on Supersonic Cluster Beam Deposition (SCBD) to be implemented into supercapacitive electrolyte gated transistors and supercapacitive microbial fuel cells. Such systems integrate at materials level the specific functions of devices, like electric switch or energy harvesting with the reversible energy storage capability. These studies might open new frontiers for the development and application of new multifunction-energy storage elements.

  13. Miniaturized supercapacitors: key materials and structures towards autonomous and sustainable devices and systems

    NASA Astrophysics Data System (ADS)

    Soavi, Francesca; Bettini, Luca Giacomo; Piseri, Paolo; Milani, Paolo; Santoro, Carlo; Atanassov, Plamen; Arbizzani, Catia

    2016-09-01

    Supercapacitors (SCs) are playing a key role for the development of self-powered and self-sustaining integrated systems for different fields ranging from remote sensing, robotics and medical devices. SC miniaturization and integration into more complex systems that include energy harvesters and functional devices are valuable strategies that address system autonomy. Here, we discuss about novel SC fabrication and integration approaches. Specifically, we report about the results of interdisciplinary activities on the development of thin, flexible SCs by an additive technology based on Supersonic Cluster Beam Deposition (SCBD) to be implemented into supercapacitive electrolyte gated transistors and supercapacitive microbial fuel cells. Such systems integrate at materials level the specific functions of devices, like electric switch or energy harvesting with the reversible energy storage capability. These studies might open new frontiers for the development and application of new multifunction-energy storage elements.

  14. Benefits of Simulation and Role-Playing to Teach Performance of Functional Assessments.

    PubMed

    Trail Ross, Mary Ellen; Otto, Dorothy A; Stewart Helton, Anne

    The use of simulation is an innovative teaching strategy that has proven to be valuable in nursing education. This article describes the benefits of a simulation lab involving faculty role-play to teach baccalaureate nursing students how to properly assess the functional status of older adults. Details about the simulation lab, which involved functional assessments of two elderly community-dwelling residents, are presented, along with student and faculty evaluations of this teaching modality.

  15. The critical role of peptide chemistry in the life sciences.

    PubMed

    Kent, Stephen B H

    2015-03-01

    Peptide chemistry plays a key role in the synthesis and study of protein molecules and their functions. Modern ligation methods enable the total synthesis of enzymes and the systematic dissection of the chemical basis of enzyme catalysis. Predicted developments in peptide science are described. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  16. Key role of integrin α(IIb)β (3) signaling to Syk kinase in tissue factor-induced thrombin generation.

    PubMed

    van der Meijden, Paola E J; Feijge, Marion A H; Swieringa, Frauke; Gilio, Karen; Nergiz-Unal, Reyhan; Hamulyák, Karly; Heemskerk, Johan W M

    2012-10-01

    The fibrin(ogen) receptor, integrin α(IIb)β(3), has a well-established role in platelet spreading, aggregation and clot retraction. How α(IIb)β(3) contributes to platelet-dependent coagulation is less well resolved. Here, we demonstrate that the potent suppressing effect of clinically used α(IIb)β(3) blockers on tissue factor-induced thrombin generation is linked to diminished platelet Ca(2+) responses and phosphatidylserine (PS) exposure. The same blockers suppress these responses in platelets stimulated with collagen and thrombin receptor agonists, whereas added fibrinogen potentiates these responses. In platelets spreading on fibrinogen, outside-in α(IIb)β(3) signaling similarly enhances thrombin-induced Ca(2+) rises and PS exposure. These responses are reduced in α(IIb)β(3)-deficient platelets from patients with Glanzmann's thrombasthenia. Furthermore, the contribution of α(IIb)β(3) to tissue factor-induced platelet Ca(2+) rises, PS exposure and thrombin generation in plasma are fully dependent on Syk kinase activity. Tyrosine phosphorylation analysis confirms a key role of Syk activation, which is largely but not exclusively dependent on α(IIb)β(3) activation. It is concluded that the majority of tissue factor-induced procoagulant activity of platelets relies on Syk activation and ensuing Ca(2+) signal generation, and furthermore that a considerable part of Syk activation relies on α(IIb)β(3) signaling. These results hence point to a novel role of Syk in integrin-dependent thrombin generation.

  17. The Role of Diacylglycerol Acyltransferase (DGAT) 1 and 2 in Cardiac Metabolism and Function.

    PubMed

    Roe, Nathan D; Handzlik, Michal K; Li, Tao; Tian, Rong

    2018-03-21

    It is increasingly recognized that synthesis and turnover of cardiac triglyceride (TG) play a pivotal role in the regulation of lipid metabolism and function of the heart. The last step in TG synthesis is catalyzed by diacylglycerol:acyltransferase (DGAT) which esterifies the diacylglycerol with a fatty acid. Mammalian heart has two DGAT isoforms, DGAT1 and DGAT2, yet their roles in cardiac metabolism and function remain poorly defined. Here, we show that inactivation of DGAT1 or DGAT2 in adult mouse heart results in a moderate suppression of TG synthesis and turnover. Partial inhibition of DGAT activity increases cardiac fatty acid oxidation without affecting PPARα signaling, myocardial energetics or contractile function. Moreover, coinhibition of DGAT1/2 in the heart abrogates TG turnover and protects the heart against high fat diet-induced lipid accumulation with no adverse effects on basal or dobutamine-stimulated cardiac function. Thus, the two DGAT isoforms in the heart have partially redundant function, and pharmacological inhibition of one DGAT isoform is well tolerated in adult hearts.

  18. Revised estimates of the ocean energy cycle and the key role of the western boundary in the APE to KE conversion due to high latitude cooling

    NASA Astrophysics Data System (ADS)

    Tailleux, Remi

    2014-05-01

    The ocean energy cycle is a key aspect of the ocean circulation, and has been traditionally framed in terms of Lorenz (1955) theory of available potential energy. However, the latest available observational estimate of the ocean energy cycle is due to Oort and Peixoto (1994) and is now very dated. Moreover, the latter estimate relies on the so-called Lorenz quasi-geostrophic approximation, which is known to be very inaccurate. Oort and Peixoto also neglected the internal energy contribution to the total available potential energy, which is now understood to be far from negligible, and to account for up to 40 percent of the total APE. The purpose of this work is to revisit observational estimates of the ocean energy cycle by taking advantage of a newly developed APE framework, as well as of the many new available observational products for temperature, salinity and surface buoyancy fluxes. In contrast to previous frameworks, our APE framework (Tailleux, 2013) relies on a physically well defined local APE definition, which is valid for a binary Boussinesq or fully compressible fluid with an arbitrary nonlinear equation of state. As part of our approach, we also developed a new fast and accurate way to construct Lorenz reference state of minimum potential energy, based on using the joint probability distribution function for temperature and salinity. Results will be presented for a variety of observational products, as well as for the ECCO2 ocean state estimate. The role of the deep western boundary as the place where the APE created by high latitude is converted into kinetic energy (KE) as part of driving the Atlantic meridional overturning circulation will be emphasized. References: Tailleux, R., 2013: Available potential energy density for a multicomponent Boussinesq fluid with arbitrary nonlinear equation of state.J. Fluid Mech., 735,499-518. Sijp, W., J.M.Gregory, R. Tailleux, P. Spence, 2012: The key role of the western boundary in linking the AMOC strength to

  19. Mutation of the key residue for extraribosomal function of ribosomal protein S19 cause increased grooming behaviors in mice.

    PubMed

    Chen, Jun; Kaitsuka, Taku; Fujino, Rika; Araki, Kimi; Tomizawa, Kazuhito; Yamamoto, Tetsuro

    2016-08-26

    Ribosomal protein S19 (RP S19) possesses ribosomal function as RP S19 monomer and extraribosomal function as cross-linked RP S19 oligomers which function as a ligand of the complement 5a (C5a) receptor (CD88). We have generated a Gln137Glu-RP S19 knock-in (KI) mouse, which is shown to possess the weakened extraribosomal function of RP S19. Because whether the extraribosomal function of RP S19 has a role in brain function had been unclear, we performed behavioral analysis on these mice and demonstrated that KI mice displayed an increased grooming behavior during open-field test and elevated plus maze test and an enhanced freezing behavior in contextual fear conditioning test. These results suggest an involvement of RP S19 oligomers in some anxiety-like behavior, especially grooming behavior. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Key neurological impairments influence function-related group outcomes after stroke.

    PubMed

    Han, Lu; Law-Gibson, Diane; Reding, Michael

    2002-07-01

    The function-related group (FRG) classification is based on functional assessment and has been assumed to encompass the effects of different patterns and severity of neurological impairments. This assumption may not be correct. It has been proposed as a means of comparing rehabilitation outcome across institutions. If neurological impairments significantly affect FRG outcome, then higher FRG outcome scores may reflect selection bias favoring patients with fewer neurological impairments rather than better quality of rehabilitation care. The goal of this study was to assess the influence of motor, somatosensory, and hemianopic visual impairments on FRG outcomes after stroke. All 288 consecutive stroke patients discharged in 1999 from an acute rehabilitation hospital were assigned to 1 of 5 FRGs on the basis of their Functional Independence Measure (FIM) mobility subscore and age. Each FRG was also stratified into 1 of 4 cohorts on the basis of the presence or absence of key neurological impairments: motor impairment only (M), motor plus either somatosensory or hemianopic visual impairment (MS/MV), motor plus somatosensory plus hemianopic visual impairment (MSV), and other combinations of impairments. FIM scores were available every 10 days for all patients from admission to discharge. The effect of impairment group on outcome was assessed within each FRG category through repeated-measures analysis of variance to assess differences in serial FIM scores across the 4 impairment groups. The distribution of each of the 4 impairment groups across the 5 FRGs was assessed with chi2 analysis. The numbers of patients in each of the 5 FRGs from the lowest level, FRG-11, to the highest, FRG-15, were as follows: 78 (27%), 47 (16%), 75 (26%), 55 (19%), and 33 (11%). Different neurological impairments were associated with significantly different mean+/-SD discharge FIM scores as follows: for FRG-11, MSV=63+/-16, MS/MV=68+/-19, and M=81+/-13 (P=0.04); for FRG-12, MSV=47+/-14, MS

  1. Glucocorticoid programming of neuroimmune function.

    PubMed

    Walker, David J; Spencer, Karen A

    2018-01-15

    Throughout life physiological systems strive to maintain homeostasis and these systems are susceptible to exposure to maternal or environmental perturbations, particularly during embryonic development. In some cases, these perturbations may influence genetic and physiological processes that permanently alter the functioning of these physiological systems; a process known as developmental programming. In recent years, the neuroimmune system has garnered attention for its fundamental interactions with key hormonal systems, such as the hypothalamic pituitary adrenal (HPA) axis. The ultimate product of this axis, the glucocorticoid hormones, play a key role in modulating immune responses within the periphery and the CNS as part of the physiological stress response. It is well-established that elevated glucocorticoids induced by developmental stress exert profound short and long-term physiological effects, yet there is relatively little information of how these effects are manifested within the neuroimmune system. Pre and post-natal periods are prime candidates for manipulation in order to uncover the physiological mechanisms that underlie glucocorticoid programming of neuroimmune responses. Understanding the potential programming role of glucocorticoids may be key in uncovering vulnerable windows of CNS susceptibility to stressful experiences during embryonic development and improve our use of glucocorticoids as therapeutics in the treatment of neurodegenerative diseases. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  2. Language Ability and Verbal and Nonverbal Executive Functioning in Deaf Students Communicating in Spoken English

    ERIC Educational Resources Information Center

    Remine, Maria D.; Care, Esther; Brown, P. Margaret

    2008-01-01

    The internal use of language during problem solving is considered to play a key role in executive functioning. This role provides a means for self-reflection and self-questioning during the formation of rules and plans and a capacity to control and monitor behavior during problem-solving activity. Given that increasingly sophisticated language is…

  3. Minnesota School Principals' Perceptions of Minnesota School Counselors' Role and Functions

    ERIC Educational Resources Information Center

    Karch, Lisa Irene Hanson

    2010-01-01

    The purpose of the concurrent mixed methods study was to explore Minnesota principals' perceptive responses regarding the role and functions of Minnesota school counselors. A convenience sample of K-12 school principals was used for this study. Participant criteria was that each individual be a school principal in the state of Minnesota. School…

  4. Symbiodinium—Invertebrate Symbioses and the Role of Metabolomics

    PubMed Central

    Gordon, Benjamin R.; Leggat, William

    2010-01-01

    Symbioses play an important role within the marine environment. Among the most well known of these symbioses is that between coral and the photosynthetic dinoflagellate, Symbiodinium spp. Understanding the metabolic relationships between the host and the symbiont is of the utmost importance in order to gain insight into how this symbiosis may be disrupted due to environmental stressors. Here we summarize the metabolites related to nutritional roles, diel cycles and the common metabolites associated with the invertebrate-Symbiodinium relationship. We also review the more obscure metabolites and toxins that have been identified through natural products and biomarker research. Finally, we discuss the key role that metabolomics and functional genomics will play in understanding these important symbioses. PMID:21116405

  5. Functional defect in regulatory T cells in myasthenia gravis

    PubMed Central

    Thiruppathi, Muthusamy; Rowin, Julie; Jiang, Qin Li; Sheng, Jian Rong; Prabhakar, Bellur S.; Meriggioli, Matthew N.

    2012-01-01

    Forkhead box P3 (FOXP3)+ is a transcription factor necessary for the function of regulatory T cells (Treg cells). Treg cells maintain immune homeostasis and self-tolerance, and play an important role in the prevention of autoimmune disease. Here, we discuss the role of Treg cells in the pathogenesis of myasthenia gravis (MG) and review evidence indicating that a significant defect in Treg cell in vitro suppressive function exists in MG patients, without an alteration in circulating frequency. This functional defect is associated with a reduced expression of key functional molecules such as FOXP3 on isolated Treg cells and appears to be more pronounced in immunosuppression-naive MG patients. In vitro administration of granulocyte-macrophage colony-stimulating factor (GM-CSF) enhanced the suppressive function of Treg cells and up-regulated FOXP3 expression. These findings indicate a clinically relevant Treg cell–intrinsic defect in immune regulation in MG that may reveal a novel therapeutic target. PMID:23252899

  6. Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice.

    PubMed

    Xu, Bing; Jiang, Mingzuo; Chu, Yi; Wang, Weijie; Chen, Di; Li, Xiaowei; Zhang, Zhao; Zhang, Di; Fan, Daiming; Nie, Yongzhan; Shao, Feng; Wu, Kaichun; Liang, Jie

    2017-12-20

    Gasdermin D (GSDMD)-executed programmed necrosis is involved in inflammation and controls interleukin (IL)-1β release. However, the role of GSDMD in non-alcoholic steatohepatitis (NASH) remains unclear. We investigated the role of GSDMD in the pathogenesis of steatohepatitis. Human liver tissues from patients with non-alcoholic fatty liver disease (NAFLD) and control individuals were obtained to evaluate GSDMD expression. Gsdmd knockout (Gsdmd -/- ) mice, obese db/db mice and their wild-type (WT) littermates were fed with methionine-choline deficient (MCD) or control diet to induce steatohepatitis. The Gsdmd -/- and WT mice were also used in a high-fat diet (HFD)-induced NAFLD model. In addition, Alb-Cre mice were administered an adeno-associated virus (AAV) vector that expressed the gasdermin-N domain (AAV9-FLEX-GSDMD-N) and were fed with either MCD or control diet for 10 days. GSDMD and its pyroptosis-inducing fragment GSDMD-N were upregulated in liver tissues of human NAFLD/NASH. Importantly, hepatic GSDMD-N protein levels were significantly higher in human NASH and correlated with the NAFLD activity score and fibrosis. GSDMD-N remained a potential biomarker for the diagnosis of NASH. MCD-fed Gsdmd -/- mice exhibit decreased severity of steatosis and inflammation compared with WT littermates. GSDMD was associated with the secretion of pro-inflammatory cytokines (IL-1β, TNF-α, and MCP-1 [CCL2]) and persistent activation of the NF-ĸB signaling pathway. Gsdmd -/- mice showed lower steatosis, mainly because of reduced expression of the lipogenic gene Srebp1c (Srebf1) and upregulated expression of lipolytic genes, including Pparα, Aco [Klk15], Lcad [Acadl], Cyp4a10 and Cyp4a14. Alb-Cre mice administered with AAV9-FLEX-GSDMD-N showed significantly aggravated steatohepatitis when fed with MCD diet. As an executor of pyroptosis, GSDMD plays a key role in the pathogenesis of steatohepatitis, by controlling cytokine secretion, NF-ĸB activation, and lipogenesis

  7. Examining the Roles of Work Autonomous and Controlled Motivations on Satisfaction and Anxiety as a Function of Role Ambiguity.

    PubMed

    Gillet, Nicolas; Fouquereau, Evelyne; Lafrenière, Marc-André K; Huyghebaert, Tiphaine

    2016-07-03

    Past research in the self-determination theory has shown that autonomous motivation is associated with positive outcomes (e.g., work satisfaction), whereas controlled motivation is related to negative outcomes (e.g., anxiety). The purpose of the present research was to examine the moderating function of role ambiguity on the relationships between work autonomous and controlled motivations on the one hand, and work satisfaction and anxiety on the other. Six hundred and ninety-eight workers (449 men and 249 women) participated in this study. Results revealed that autonomous motivation was most strongly related to satisfaction when ambiguity was low. In addition, controlled motivation was most strongly related to anxiety when ambiguity was high. In other words, the present findings suggest that the outcomes associated with each form of motivation may vary as a function of role ambiguity. The present study thus offers meaningful insights for organizations, managers, and employees.

  8. Role of theory of mind and executive function in explaining social intelligence: a structural equation modeling approach.

    PubMed

    Yeh, Zai-Ting

    2013-01-01

    Social intelligence is the ability to understand others and the social context effectively and thus to interact with people successfully. Research has suggested that the theory of mind (ToM) and executive function may play important roles in explaining social intelligence. The specific aim of the present study was to test with structural equation modeling (SEM) the hypothesis that performance on ToM tasks is more associated with social intelligence in the elderly than is performance on executive functions. One hundred and seventy-seven participants (age 56-96) completed ToM, executive function, and other basic cognition tasks, and were rated with social intelligence scales. The SEM results showed that ToM and executive function were strongly correlated (0.54); however, only the path coefficient from ToM to social intelligence, and not from executive function, was significant (0.37). ToM performance, but not executive function, was strongly correlated with social intelligence among elderly individuals. ToM and executive function might play different roles in social behavior during normal aging; however, based on the present results, it is possible that ToM might play an important role in social intelligence.

  9. The Prediction of Key Cytoskeleton Components Involved in Glomerular Diseases Based on a Protein-Protein Interaction Network.

    PubMed

    Ding, Fangrui; Tan, Aidi; Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie

    2016-01-01

    Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet

  10. The Prediction of Key Cytoskeleton Components Involved in Glomerular Diseases Based on a Protein-Protein Interaction Network

    PubMed Central

    Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie

    2016-01-01

    Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet

  11. The Research and Implementation of Vehicle Bluetooth Hands-free Devices Key Parameters Downloading Algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-bo; Wang, Zhi-xue; Li, Jian-xin; Ma, Jian-hui; Li, Yang; Li, Yan-qiang

    In order to facilitate Bluetooth function realization and information can be effectively tracked in the process of production, the vehicle Bluetooth hands-free devices need to download such key parameters as Bluetooth address, CVC license and base plate numbers, etc. Therefore, it is the aim to search simple and effective methods to download parameters for each vehicle Bluetooth hands-free device, and to control and record the use of parameters. In this paper, by means of Bluetooth Serial Peripheral Interface programmer device, the parallel port is switched to SPI. The first step is to download parameters is simulating SPI with the parallel port. To perform SPI function, operating the parallel port in accordance with the SPI timing. The next step is to achieve SPI data transceiver functions according to the programming parameters of options. Utilizing the new method, downloading parameters is fast and accurate. It fully meets vehicle Bluetooth hands-free devices production requirements. In the production line, it has played a large role.

  12. Acetylation of Mammalian ADA3 Is Required for Its Functional Roles in Histone Acetylation and Cell Proliferation.

    PubMed

    Mohibi, Shakur; Srivastava, Shashank; Bele, Aditya; Mirza, Sameer; Band, Hamid; Band, Vimla

    2016-10-01

    Alteration/deficiency in activation 3 (ADA3) is an essential component of specific histone acetyltransferase (HAT) complexes. We have previously shown that ADA3 is required for establishing global histone acetylation patterns and for normal cell cycle progression (S. Mohibi et al., J Biol Chem 287:29442-29456, 2012, http://dx.doi.org/10.1074/jbc.M112.378901). Here, we report that these functional roles of ADA3 require its acetylation. We show that ADA3 acetylation, which is dynamically regulated in a cell cycle-dependent manner, reflects a balance of coordinated actions of its associated HATs, GCN5, PCAF, and p300, and a new partner that we define, the deacetylase SIRT1. We use mass spectrometry and site-directed mutagenesis to identify major sites of ADA3 acetylated by GCN5 and p300. Acetylation-defective mutants are capable of interacting with HATs and other components of HAT complexes but are deficient in their ability to restore ADA3-dependent global or locus-specific histone acetylation marks and cell proliferation in Ada3-deleted murine embryonic fibroblasts (MEFs). Given the key importance of ADA3-containing HAT complexes in the regulation of various biological processes, including the cell cycle, our study presents a novel mechanism to regulate the function of these complexes through dynamic ADA3 acetylation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Acetylation of Mammalian ADA3 Is Required for Its Functional Roles in Histone Acetylation and Cell Proliferation

    PubMed Central

    Mohibi, Shakur; Srivastava, Shashank; Bele, Aditya; Mirza, Sameer; Band, Hamid

    2016-01-01

    Alteration/deficiency in activation 3 (ADA3) is an essential component of specific histone acetyltransferase (HAT) complexes. We have previously shown that ADA3 is required for establishing global histone acetylation patterns and for normal cell cycle progression (S. Mohibi et al., J Biol Chem 287:29442–29456, 2012, http://dx.doi.org/10.1074/jbc.M112.378901). Here, we report that these functional roles of ADA3 require its acetylation. We show that ADA3 acetylation, which is dynamically regulated in a cell cycle-dependent manner, reflects a balance of coordinated actions of its associated HATs, GCN5, PCAF, and p300, and a new partner that we define, the deacetylase SIRT1. We use mass spectrometry and site-directed mutagenesis to identify major sites of ADA3 acetylated by GCN5 and p300. Acetylation-defective mutants are capable of interacting with HATs and other components of HAT complexes but are deficient in their ability to restore ADA3-dependent global or locus-specific histone acetylation marks and cell proliferation in Ada3-deleted murine embryonic fibroblasts (MEFs). Given the key importance of ADA3-containing HAT complexes in the regulation of various biological processes, including the cell cycle, our study presents a novel mechanism to regulate the function of these complexes through dynamic ADA3 acetylation. PMID:27402865

  14. Experiences of Habitual Physical Activity in Maintaining Roles and Functioning among Older Adults: A Qualitative Study

    PubMed Central

    Svantesson, Ulla; Willén, Carin

    2016-01-01

    Physically active older adults have reduced risk of functional restrictions and role limitations. Several aspects may interrelate and influence habitual physical activity (PA). However, older adults' own perspectives towards their PA need to be addressed. The aim of this study was to explore the experiences of habitual physical activity in maintaining roles and functioning among older adult Palestinians ≥60 years. Data were collected through in-depth interviews based on a narrative approach. Seventeen participants were recruited (aged 64–84 years). Data were analyzed using a narrative interpretative method. Findings. Three central narratives were identified, “keep moving, stay healthy,” “social connectedness, a motive to stay active,” and “adapting strategies to age-related changes.” Conclusion. Habitual physical activity was perceived as an important factor to maintain functioning and to preserve active roles in older adults. Walking was the most prominent pattern of physical activity and it was viewed as a vital tool to maintain functioning among the older adults. Social connectedness was considered as a contributing factor to the status of staying active. To adapt the process of age-related changes in a context to stay active, the participants have used different adapting strategies, including protective strategy, awareness of own capabilities, and modifying or adopting new roles. PMID:28078141

  15. Overweight, obesity and work functioning: the role of working-time arrangements.

    PubMed

    Nigatu, Yeshambel T; van de Ven, Hardy A; van der Klink, Jac J L; Brouwer, Sandra; Reijneveld, Sijmen A; Bültmann, Ute

    2016-01-01

    Obesity is associated with productivity loss, but little is known about how obese workers function at work and also the role of working-time arrangements on this association is lacking. Therefore, the aim of this study was to examine the association of overweight and obesity with work functioning (WF), and to determine whether the associations differ between workers with different working-time arrangements. A cross-sectional study was conducted within the sampling frame of the 'Shift Your Work' study that examined the effect of irregular working-times in relation to health and functioning at work. We included N = 622 Dutch employees, of which N = 384 (62%) were shift-workers, N = 171 (27%) on-call workers and N = 67 (11%) day-workers. Overweight and obesity were defined as BMI 25-30 and ≥30, respectively. WF was assessed using the Work-Role Functioning Questionnaire. The prevalences of overweight and obesity were 48% and 10% in all workers, 49% and 11% in shift-workers, 45% and 10% in on-call workers, and 49% and 6% in day workers, respectively. In all workers, obesity was associated with lower WF scores for physical demands (adjusted estimate, aB = -5.5). In shift-workers, obesity was associated with lower WF scores for output and physical demands (aB = -8.8 and -6.8, respectively). In day and on-call workers, overweight and obesity were not associated with WF. Overweight and obesity are highly prevalent in the working population. Obesity might reduce the executive function performance beyond physical limitations, and limit the ability to accomplish tasks successfully, especially in shift workers. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Shyness and Vocabulary: The Roles of Executive Functioning and Home Environmental Stimulation

    PubMed Central

    Nayena Blankson, A.; O’Brien, Marion; Leerkes, Esther M.; Marcovitch, Stuart; Calkins, Susan D.

    2010-01-01

    Although shyness has often been found to be negatively related to vocabulary, few studies have examined the processes that produce or modify this relation. The present study examined executive functioning skills and home environmental stimulation as potential mediating and moderating mechanisms. A sample of 3.5-year-old children (N=254) were administered executive functioning tasks and a vocabulary test during a laboratory visit. Mothers completed questionnaires assessing child shyness and home environmental stimulation. Our primary hypothesis was that executive functioning mediates the association between shyness and vocabulary, and home environmental stimulation moderates the relation between executive functioning and vocabulary. Alternative hypotheses were also tested. Results indicated that children with better executive functioning skills developed stronger vocabularies when reared in more, versus less, stimulating environments. Implications of these results are discussed in terms of the role of shyness, executive functioning, and home environmental stimulation in early vocabulary development. PMID:22096267

  17. Probing Molecular Mechanisms of the Hsp90 Chaperone: Biophysical Modeling Identifies Key Regulators of Functional Dynamics

    PubMed Central

    Dixit, Anshuman; Verkhivker, Gennady M.

    2012-01-01

    Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based “conformational selection” of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected residue clusters

  18. Teachers' Understanding of the Role of Executive Functions in Mathematics Learning.

    PubMed

    Gilmore, Camilla; Cragg, Lucy

    2014-09-01

    Cognitive psychology research has suggested an important role for executive functions, the set of skills that monitor and control thought and action, in learning mathematics. However, there is currently little evidence about whether teachers are aware of the importance of these skills and, if so, how they come by this information. We conducted an online survey of teachers' views on the importance of a range of skills for mathematics learning. Teachers rated executive function skills, and in particular inhibition and shifting, to be important for mathematics. The value placed on executive function skills increased with increasing teaching experience. Most teachers reported that they were aware of these skills, although few knew the term "executive functions." This awareness had come about through their teaching experience rather than from formal instruction. Researchers and teacher educators could do more to highlight the importance of these skills to trainee or new teachers.

  19. 'The ones that turn up are the ones that are responsible': Key stakeholders perspectives on liquor accords.

    PubMed

    Curtis, Ashlee; Miller, Peter; Droste, Nicolas; McFarlane, Emma; Martino, Florentine; Palmer, Darren

    2016-05-01

    Liquor accords were introduced as an intervention to reduce alcohol-related harm in and around licensed venues. There have been very few evaluations of the accords, made all the more difficult given the multitude of measures that are often implemented under their banner. This study provides perspectives on the effectiveness of the liquor accords from key stakeholders who were involved in the strategy. In-depth interviews were conducted with 97 key stakeholders as part of a larger study, of which 46 spoke about the effectiveness of liquor accords. Responses were analysed using thematic analysis. Stakeholders reported the greatest benefit of liquor accords to be their ability to improve communication. Many stakeholders recognised the need for mandatory attendance and discussed whether the accords are a waste of time of resources. Stakeholders did not generally view liquor accords as effective means of reducing alcohol-related harm. There was a lack of positive feedback about liquor accords provided by stakeholders, indicating a clear need to better understand the role of liquor accords, and what they aim to achieve. Responsive regulation theory suggests that the dual roles of communication and intervention are confused, leading to some of the inherent problems with accords. The role and aims of liquor accords need to be clearly defined. The findings suggest that separating the communication and regulatory functions from accords will lead to a clearer role for accords, and interventions and regulation might be better placed in the hands of regulators and enforcement. [Curtis A, Miller P, Droste N, McFarlane E, Martino F, Palmer D. 'The ones that turn up are the ones that are responsible': Key stakeholders perspectives on liquor accords. Drug Alcohol Rev 2016;35:273-279]. © 2016 Australasian Professional Society on Alcohol and other Drugs.

  20. Selective neural pathway targeting reveals key roles of thalamostriatal projection in the control of visual discrimination.

    PubMed

    Kato, Shigeki; Kuramochi, Masahito; Kobayashi, Kenta; Fukabori, Ryoji; Okada, Kana; Uchigashima, Motokazu; Watanabe, Masahiko; Tsutsui, Yuji; Kobayashi, Kazuto

    2011-11-23

    The dorsal striatum receives converging excitatory inputs from diverse brain regions, including the cerebral cortex and the intralaminar/midline thalamic nuclei, and mediates learning processes contributing to instrumental motor actions. However, the roles of each striatal input pathway in these learning processes remain uncertain. We developed a novel strategy to target specific neural pathways and applied this strategy for studying behavioral roles of the pathway originating from the parafascicular nucleus (PF) and projecting to the dorsolateral striatum. A highly efficient retrograde gene transfer vector encoding the recombinant immunotoxin (IT) receptor was injected into the dorsolateral striatum in mice to express the receptor in neurons innervating the striatum. IT treatment into the PF of the vector-injected animals caused a selective elimination of neurons of the PF-derived thalamostriatal pathway. The elimination of this pathway impaired the response selection accuracy and delayed the motor response in the acquisition of a visual cue-dependent discrimination task. When the pathway elimination was induced after learning acquisition, it disturbed the response accuracy in the task performance with no apparent change in the response time. The elimination did not influence spontaneous locomotion, methamphetamine-induced hyperactivity, and motor skill learning that demand the function of the dorsal striatum. These results demonstrate that thalamostriatal projection derived from the PF plays essential roles in the acquisition and execution of discrimination learning in response to sensory stimulus. The temporal difference in the pathway requirement for visual discrimination suggests a stage-specific role of thalamostriatal pathway in the modulation of response time of learned motor actions.

  1. Understanding the Mechanism of the Broad-Spectrum Antiviral Activity of Favipiravir (T-705): Key Role of the F1 Motif of the Viral Polymerase.

    PubMed

    Abdelnabi, Rana; Morais, Ana Theresa Silveira de; Leyssen, Pieter; Imbert, Isabelle; Beaucourt, Stéphanie; Blanc, Hervé; Froeyen, Mathy; Vignuzzi, Marco; Canard, Bruno; Neyts, Johan; Delang, Leen

    2017-06-15

    Favipiravir (T-705) is a broad-spectrum antiviral agent that has been approved in Japan for the treatment of influenza virus infections. T-705 also inhibits the replication of various RNA viruses, including chikungunya virus (CHIKV). We demonstrated earlier that the K291R mutation in the F1 motif of the RNA-dependent RNA polymerase (RdRp) of CHIKV is responsible for low-level resistance to T-705. Interestingly, this lysine is highly conserved in the RdRp of positive-sense single-stranded RNA (+ssRNA) viruses. To obtain insights into the unique broad-spectrum antiviral activity of T-705, we explored the role of this lysine using another +ssRNA virus, namely, coxsackievirus B3 (CVB3). Introduction of the corresponding K-to-R substitution in the CVB3 RdRp (K159R) resulted in a nonviable virus. Replication competence of the K159R variant was restored by spontaneous acquisition of an A239G substitution in the RdRp. A mutagenesis analysis at position K159 identified the K159M variant as the only other viable variant which had also acquired the A239G substitution. The K159 substitutions markedly decreased the processivity of the purified viral RdRp, which was restored by the introduction of the A239G mutation. The K159R A239G and K159M A239G variants proved, surprisingly, more susceptible than the wild-type virus to T-705 and exhibited lower fidelity in polymerase assays. Furthermore, the K159R A239G variant was found to be highly attenuated in mice. We thus demonstrate that the conserved lysine in the F1 motif of the RdRp of +ssRNA viruses is involved in the broad-spectrum antiviral activity of T-705 and that it is a key amino acid for the proper functioning of the enzyme. IMPORTANCE In this study, we report the key role of a highly conserved lysine residue of the viral polymerase in the broad-spectrum antiviral activity of favipiravir (T-705) against positive-sense single-stranded RNA viruses. Substitutions of this conserved lysine have a major negative impact on the

  2. Osteoblast role in osteoarthritis pathogenesis.

    PubMed

    Maruotti, Nicola; Corrado, Addolorata; Cantatore, Francesco P

    2017-11-01

    Even if osteoarthritis pathogenesis is still poorly understood, numerous evidences suggest that osteoblasts dysregulation plays a key role in osteoarthritis pathogenesis. An abnormal expression of OPG and RANKL has been described in osteoarthritis osteoblasts, which is responsible for abnormal bone remodeling and decreased mineralization. Alterations in genes expression are involved in dysregulation of osteoblast function, bone remodeling, and mineralization, leading to osteoarthritis development. Moreover, osteoblasts produce numerous transcription factors, growth factors, and other proteic molecules which are involved in osteoarthritis pathogenesis. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  3. Abscisic acid (ABA) and key proteins in its perception and signaling pathways are ancient, but their roles have changed through time.

    PubMed

    Sussmilch, Frances C; Atallah, Nadia M; Brodribb, Timothy J; Banks, Jo Ann; McAdam, Scott A M

    2017-09-02

    Homologs of the Arabidopsis core abscisic acid (ABA) signaling component OPEN STOMATA1 (OST1) are best known for their role in closing stomata in angiosperm species. We recently characterized a fern OST1 homolog, GAMETOPHYTES ABA INSENSITIVE ON ANTHERDIOGEN 1 (GAIA1), which is not required for stomatal closure in ferns, consistent with physiologic evidence that shows the stomata of these plants respond passively to changes in leaf water status. Instead, gaia1 mutants reveal a critical role in ABA signaling for spore dormancy and sex determination, in a system regulated by antagonism between ABA and the gibberellin (GA)-derived fern hormone antheridiogen (A CE ). ABA and key proteins, including ABA receptors from the PYR/PYL/RCAR family and negative regulators of ABA-signaling from Group A of the type-2C protein phosphatases (PP2Cs), in addition to OST1 homologs, can be found in all terrestrial land plant lineages, ranging from liverworts that lack stomata, to angiosperms. As land plants have evolved and diversified over the past 450 million years, so too have the roles of this important plant hormone and the genes involved in its signaling and perception.

  4. A data mining paradigm for identifying key factors in biological processes using gene expression data.

    PubMed

    Li, Jin; Zheng, Le; Uchiyama, Akihiko; Bin, Lianghua; Mauro, Theodora M; Elias, Peter M; Pawelczyk, Tadeusz; Sakowicz-Burkiewicz, Monika; Trzeciak, Magdalena; Leung, Donald Y M; Morasso, Maria I; Yu, Peng

    2018-06-13

    A large volume of biological data is being generated for studying mechanisms of various biological processes. These precious data enable large-scale computational analyses to gain biological insights. However, it remains a challenge to mine the data efficiently for knowledge discovery. The heterogeneity of these data makes it difficult to consistently integrate them, slowing down the process of biological discovery. We introduce a data processing paradigm to identify key factors in biological processes via systematic collection of gene expression datasets, primary analysis of data, and evaluation of consistent signals. To demonstrate its effectiveness, our paradigm was applied to epidermal development and identified many genes that play a potential role in this process. Besides the known epidermal development genes, a substantial proportion of the identified genes are still not supported by gain- or loss-of-function studies, yielding many novel genes for future studies. Among them, we selected a top gene for loss-of-function experimental validation and confirmed its function in epidermal differentiation, proving the ability of this paradigm to identify new factors in biological processes. In addition, this paradigm revealed many key genes in cold-induced thermogenesis using data from cold-challenged tissues, demonstrating its generalizability. This paradigm can lead to fruitful results for studying molecular mechanisms in an era of explosive accumulation of publicly available biological data.

  5. WRKY transcription factors: key components in abscisic acid signalling.

    PubMed

    Rushton, Deena L; Tripathi, Prateek; Rabara, Roel C; Lin, Jun; Ringler, Patricia; Boken, Ashley K; Langum, Tanner J; Smidt, Lucas; Boomsma, Darius D; Emme, Nicholas J; Chen, Xianfeng; Finer, John J; Shen, Qingxi J; Rushton, Paul J

    2012-01-01

    WRKY transcription factors (TFs) are key regulators of many plant processes, including the responses to biotic and abiotic stresses, senescence, seed dormancy and seed germination. For over 15 years, limited evidence has been available suggesting that WRKY TFs may play roles in regulating plant responses to the phytohormone abscisic acid (ABA), notably some WRKY TFs are ABA-inducible repressors of seed germination. However, the roles of WRKY TFs in other aspects of ABA signalling, and the mechanisms involved, have remained unclear. Recent significant progress in ABA research has now placed specific WRKY TFs firmly in ABA-responsive signalling pathways, where they act at multiple levels. In Arabidopsis, WRKY TFs appear to act downstream of at least two ABA receptors: the cytoplasmic PYR/PYL/RCAR-protein phosphatase 2C-ABA complex and the chloroplast envelope-located ABAR-ABA complex. In vivo and in vitro promoter-binding studies show that the target genes for WRKY TFs that are involved in ABA signalling include well-known ABA-responsive genes such as ABF2, ABF4, ABI4, ABI5, MYB2, DREB1a, DREB2a and RAB18. Additional well-characterized stress-inducible genes such as RD29A and COR47 are also found in signalling pathways downstream of WRKY TFs. These new insights also reveal that some WRKY TFs are positive regulators of ABA-mediated stomatal closure and hence drought responses. Conversely, many WRKY TFs are negative regulators of seed germination, and controlling seed germination appears a common function of a subset of WRKY TFs in flowering plants. Taken together, these new data demonstrate that WRKY TFs are key nodes in ABA-responsive signalling networks. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  6. Novel ethyl methanesulfonate (EMS)-induced null alleles of the Drosophila homolog of LRRK2 reveal a crucial role in endolysosomal functions and autophagy in vivo.

    PubMed

    Dodson, Mark W; Leung, Lok K; Lone, Mohiddin; Lizzio, Michael A; Guo, Ming

    2014-12-01

    Mutations in LRRK2 cause a dominantly inherited form of Parkinson's disease (PD) and are the most common known genetic determinant of PD. Inhibitor-based therapies targeting LRRK2 have emerged as a key therapeutic strategy in PD; thus, understanding the consequences of inhibiting the normal cellular functions of this protein is vital. Despite much interest, the physiological functions of LRRK2 remain unclear. Several recent studies have linked the toxicity caused by overexpression of pathogenic mutant forms of LRRK2 to defects in the endolysosomal and autophagy pathways, raising the question of whether endogenous LRRK2 might play a role in these processes. Here, we report the characterization of multiple novel ethyl methanesulfonate (EMS)-induced nonsense alleles in the Drosophila LRRK2 homolog, lrrk. Using these alleles, we show that lrrk loss-of-function causes striking defects in the endolysosomal and autophagy pathways, including the accumulation of markedly enlarged lysosomes that are laden with undigested contents, consistent with a defect in lysosomal degradation. lrrk loss-of-function also results in the accumulation of autophagosomes, as well as the presence of enlarged early endosomes laden with mono-ubiquitylated cargo proteins, suggesting an additional defect in lysosomal substrate delivery. Interestingly, the lysosomal abnormalities in these lrrk mutants can be suppressed by a constitutively active form of the small GTPase rab9, which promotes retromer-dependent recycling from late endosomes to the Golgi. Collectively, our data provides compelling evidence of a vital role for lrrk in lysosomal function and endolysosomal membrane transport in vivo, and suggests a link between lrrk and retromer-mediated endosomal recycling. © 2014. Published by The Company of Biologists Ltd.

  7. CCN2 plays a key role in extracellular matrix gene expression in severe hypertrophic cardiomyopathy and heart failure.

    PubMed

    Tsoutsman, Tatiana; Wang, Xiaoyu; Garchow, Kendra; Riser, Bruce; Twigg, Stephen; Semsarian, Christopher

    2013-09-01

    Hypertrophic cardiomyopathy (HCM) is the most common inherited primary myocardial disorder. HCM is characterized by interstitial fibrosis and excessive accumulation of extracellular matrix (ECM) proteins. Fibrosis in HCM has been associated with impaired cardiac function and heart failure, and has been considered a key substrate for ventricular arrhythmias and sudden death. The molecular triggers underpinning ECM production are not well established. We have previously developed a double-mutant mouse model of HCM that recapitulates the phenotype seen in humans with multiple mutations, including earlier onset of the disease, progression to a dilated phenotype, severe heart failure and premature mortality. The present study investigated the expression of ECM-encoding genes in severe HCM and heart failure. Significant upregulation of structural Fn1, regulatory Mmp14, Timp1, Serpin3A, SerpinE1, SerpineE2, Tgfβ1, and Tgfβ2; and matricellular Ccn2, Postn, Spp1, Thbs1, Thbs4, and Tnc was evident from the early, pre-phenotype stage. Non-myocytes expressed ECM genes at higher levels than cardiomyocytes in normal and diseased hearts. Synchronous increase of secreted CCN2 and TIMP1 plasma levels and decrease of MMP3 levels were observed in end-stage disease. CCN2 protein expression was increased from early disease in double-mutant hearts and played an important role in ECM responses. It was a powerful modulator of ECM regulatory (Timp1 and SerpinE1) and matricellular protein-encoding (Spp1, Thbs1, Thbs4 and Tnc) gene expression in cardiomyocytes when added exogenously in vitro. Modulation of CCN2 (CTGF, connective tissue growth factor) and associated early ECM changes may represent a new therapeutic target in the treatment and prevention of heart failure in HCM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Genetic contribution to the relationship between social role function and depressive symptoms in Japanese elderly twins: a twin study.

    PubMed

    Nishihara, Reiko; Inui, Fujio; Kato, Kenji; Tomizawa, Rie; Hayakawa, Kazuo

    2011-03-01

    Social role function is the capacity to maintain interpersonal relationships and is essential for being independent in the community. Limitations in social role function often coexist with depressive symptoms, suggesting a possible common mechanistic basis. We investigated whether the observed association between these traits is mainly a result of genetic or environmental influences. In 2008, a questionnaire was sent to 745 male twins aged 65 years and older. Our sample included 397 male twins. The number of monozygotic twins was 302, and dizygotic was 95. Among the twin pairs for whom data were available for both twins, 75 twin pairs (150 individuals) were monozygotic and 28 pairs (56 individuals) were dizygotic. Social role function was assessed using the Tokyo Metropolitan Institute of Gerontology Index of Competence. Depressive symptoms were measured by the 15-item version of the Geriatric Depression Scale. Relative importance of genes and environments for the phenotypes was calculated using structural equation analyses. Our results show that genetic influence was the major contributor to the relationship between social role function and depressive symptoms, and non-shared environmental influence was important for overall variation in each trait. We concluded that focusing on a non-shared environment is an essential approach for maintaining social role function and psychological well-being. It is suggested that treatments specific to depressive symptoms are more effective than indirect intervention targeting social role function. © 2011 The Authors. Psychogeriatrics © 2011 Japanese Psychogeriatric Society.

  9. The role of the cerebellum in the regulation of language functions.

    PubMed

    Starowicz-Filip, Anna; Chrobak, Adrian Andrzej; Moskała, Marek; Krzyżewski, Roger M; Kwinta, Borys; Kwiatkowski, Stanisław; Milczarek, Olga; Rajtar-Zembaty, Anna; Przewoźnik, Dorota

    2017-08-29

    The present paper is a review of studies on the role of the cerebellum in the regulation of language functions. This brain structure until recently associated chiefly with motor skills, visual-motor coordination and balance, proves to be significant also for cognitive functioning. With regard to language functions, studies show that the cerebellum determines verbal fluency (both semantic and formal) expressive and receptive grammar processing, the ability to identify and correct language mistakes, and writing skills. Cerebellar damage is a possible cause of aphasia or the cerebellar mutism syndrome (CMS). Decreased cerebellocortical connectivity as well as anomalies in the structure of the cerebellum are emphasized in numerous developmental dyslexia theories. The cerebellum is characterized by linguistic lateralization. From the neuroanatomical perspective, its right hemisphere and dentate nucleus, having multiple cerebellocortical connections with the cerebral cortical language areas, are particularly important for language functions. Usually, language deficits developed as a result of a cerebellar damage have subclinical intensity and require applying sensitive neuropsychological diagnostic tools designed to assess higher verbal functions.

  10. Beyond microbial community composition: functional activities of the oral microbiome in health and disease

    PubMed Central

    Duran-Pinedo, Ana E.; Frias-Lopez, Jorge

    2015-01-01

    The oral microbiome plays a relevant role in the health status of the host and is a key element in a variety of oral and non-oral diseases. Despite advances in our knowledge of changes in microbial composition associated with different health conditions the functional aspects of the oral microbiome that lead to dysbiosis remain for the most part unknown. In this review, we discuss the progress made towards understanding the functional role of the oral microbiome in health and disease and how novel technologies are expanding our knowledge on this subject. PMID:25862077

  11. Quantitative cell polarity imaging defines leader-to-follower transitions during collective migration and the key role of microtubule-dependent adherens junction formation.

    PubMed

    Revenu, Céline; Streichan, Sebastian; Donà, Erika; Lecaudey, Virginie; Hufnagel, Lars; Gilmour, Darren

    2014-03-01

    The directed migration of cell collectives drives the formation of complex organ systems. A characteristic feature of many migrating collectives is a 'tissue-scale' polarity, whereby 'leader' cells at the edge of the tissue guide trailing 'followers' that become assembled into polarised epithelial tissues en route. Here, we combine quantitative imaging and perturbation approaches to investigate epithelial cell state transitions during collective migration and organogenesis, using the zebrafish lateral line primordium as an in vivo model. A readout of three-dimensional cell polarity, based on centrosomal-nucleus axes, allows the transition from migrating leaders to assembled followers to be quantitatively resolved for the first time in vivo. Using live reporters and a novel fluorescent protein timer approach, we investigate changes in cell-cell adhesion underlying this transition by monitoring cadherin receptor localisation and stability. This reveals that while cadherin 2 is expressed across the entire tissue, functional apical junctions are first assembled in the transition zone and become progressively more stable across the leader-follower axis of the tissue. Perturbation experiments demonstrate that the formation of these apical adherens junctions requires dynamic microtubules. However, once stabilised, adherens junction maintenance is microtubule independent. Combined, these data identify a mechanism for regulating leader-to-follower transitions within migrating collectives, based on the relocation and stabilisation of cadherins, and reveal a key role for dynamic microtubules in this process.

  12. Role of Escherichia coli dnaG function in coliphage M13 DNA synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, S.; Mitra, S.

    Examination of the role of Escherichia coli dnaG function in different stages of M13 phage DNA synthesis by ultracentrifugal analysis of intracellular phage DNA in a thermosensitive dnaG mutant shows that: (a) the formation of parental double-strand replicative-form DNA (rfDNA) from the infecting virus is independent of dnaG function; (b) the synthesis of progeny rfDNA requires dnaG product; (c) after a pool of rfDNA is made up, dnaG function is not required for the progeny single-strand DNA (ssDNA) synthesis. The ssDNAs produced under nonpermissive condition are mostly circular and biologically functional.

  13. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.)

    PubMed Central

    Abdurakhmonov, Ibrokhim Y.; Ayubov, Mirzakamol S.; Ubaydullaeva, Khurshida A.; Buriev, Zabardast T.; Shermatov, Shukhrat E.; Ruziboev, Haydarali S.; Shapulatov, Umid M.; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z.; Percy, Richard G.; Devor, Eric J.; Sharma, Govind C.; Sripathi, Venkateswara R.; Kumpatla, Siva P.; van der Krol, Alexander; Kater, Hake D.; Khamidov, Khakimdjan; Salikhov, Shavkat I.; Jenkins, Johnie N.; Abdukarimov, Abdusattor; Pepper, Alan E.

    2016-01-01

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization. PMID:26941765

  14. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.).

    PubMed

    Abdurakhmonov, Ibrokhim Y; Ayubov, Mirzakamol S; Ubaydullaeva, Khurshida A; Buriev, Zabardast T; Shermatov, Shukhrat E; Ruziboev, Haydarali S; Shapulatov, Umid M; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z; Percy, Richard G; Devor, Eric J; Sharma, Govind C; Sripathi, Venkateswara R; Kumpatla, Siva P; van der Krol, Alexander; Kater, Hake D; Khamidov, Khakimdjan; Salikhov, Shavkat I; Jenkins, Johnie N; Abdukarimov, Abdusattor; Pepper, Alan E

    2016-01-01

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization.

  15. The role of cognitive impairment in psychosocial functioning in remitted depression.

    PubMed

    Knight, Mattew J; Air, Tracy; Baune, Bernhard T

    2018-08-01

    Cognitive dysfunction is a prevalent and disabling symptom of Major Depressive Disorder (MDD), and is often retained in the remitted stage of illness. Emerging evidence suggests that cognitive impairment may be associated with dysfunction in a number of psychosocial domains (e.g., workplace productivity, social relationships). The current study explored the relationship between cognition and psychosocial functioning in remitted MDD and in healthy controls. Data were obtained from 182 participants of the Cognitive Function and Mood Study (CoFaM-S), a cross-sectional study of cognition, mood, and social cognition in mood disorders. Participants' (Remitted MDD n = 72, Healthy n = 110) cognition was assessed with a battery of cognitive tests including the Repeatable Battery for the Assessment of Neuropsychological Function (RBANS) and other standard measures of cognition (e.g., The Tower of London task). Psychosocial functioning was clinically evaluated with the Functioning Assessment Short Test (FAST). The results indicated that executive functioning was the strongest independent predictor of functioning in remitted MDD patients, whereas various cognitive domains predicted psychosocial functioning in healthy individuals. Psychosocial functioning was measured with a clinical interview, and was therefore reliant on clinicians' judgement of impairment, as opposed to more objective measures of functioning. These findings suggest that executive cognition plays an important role in functional recovery in remitted depression, and may be a crucial target in adjunctive treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Functions in Contemporary Secondary Mathematics Textbook Series in the United States

    ERIC Educational Resources Information Center

    Ross, Daniel J.

    2011-01-01

    Textbooks play a central role in US mathematics classrooms (Stein, Remillard, & Smith, 2007) and functions are a key topic in secondary mathematics (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002). This study presents results from an analysis of this essential topic in the latest editions of three textbook series: the Glencoe Mathematics…

  17. Early Childcare, Executive Functioning, and the Moderating Role of Early Stress Physiology

    ERIC Educational Resources Information Center

    Berry, Daniel; Willoughby, Michael T.; Blair, Clancy; Ursache, Alexandra; Granger, Douglas A.

    2014-01-01

    Intervention studies indicate that children's childcare experiences can be leveraged to support the development of executive functioning (EF). The role of more normative childcare experiences is less clear. Increasingly, theory and empirical work suggest that individual differences in children's physiological stress systems may be associated with…

  18. Teachers' Understanding of the Role of Executive Functions in Mathematics Learning

    PubMed Central

    Gilmore, Camilla; Cragg, Lucy

    2014-01-01

    Cognitive psychology research has suggested an important role for executive functions, the set of skills that monitor and control thought and action, in learning mathematics. However, there is currently little evidence about whether teachers are aware of the importance of these skills and, if so, how they come by this information. We conducted an online survey of teachers' views on the importance of a range of skills for mathematics learning. Teachers rated executive function skills, and in particular inhibition and shifting, to be important for mathematics. The value placed on executive function skills increased with increasing teaching experience. Most teachers reported that they were aware of these skills, although few knew the term “executive functions.” This awareness had come about through their teaching experience rather than from formal instruction. Researchers and teacher educators could do more to highlight the importance of these skills to trainee or new teachers. PMID:25674156

  19. Assessing the Functional Role of Leptin in Energy Homeostasis and the Stress Response in Vertebrates

    PubMed Central

    Deck, Courtney A.; Honeycutt, Jamie L.; Cheung, Eugene; Reynolds, Hannah M.; Borski, Russell J.

    2017-01-01

    Leptin is a pleiotropic hormone that plays a critical role in regulating appetite, energy metabolism, growth, stress, and immune function across vertebrate groups. In mammals, it has been classically described as an adipostat, relaying information regarding energy status to the brain. While retaining poor sequence conservation with mammalian leptins, teleostean leptins elicit a number of similar regulatory properties, although current evidence suggests that it does not function as an adipostat in this group of vertebrates. Teleostean leptin also exhibits functionally divergent properties, however, possibly playing a role in glucoregulation similar to what is observed in lizards. Further, leptin has been recently implicated as a mediator of immune function and the endocrine stress response in teleosts. Here, we provide a review of leptin physiology in vertebrates, with a particular focus on its actions and regulatory properties in the context of stress and the regulation of energy homeostasis. PMID:28439255

  20. Subcellular Relocalization and Positive Selection Play Key Roles in the Retention of Duplicate Genes of Populus Class III Peroxidase Family[W][OPEN

    PubMed Central

    Ren, Lin-Ling; Liu, Yan-Jing; Liu, Hai-Jing; Qian, Ting-Ting; Qi, Li-Wang; Wang, Xiao-Ru; Zeng, Qing-Yin

    2014-01-01

    Gene duplication is the primary source of new genes and novel functions. Over the course of evolution, many duplicate genes lose their function and are eventually removed by deletion. However, some duplicates have persisted and evolved diverse functions. A particular challenge is to understand how this diversity arises and whether positive selection plays a role. In this study, we reconstructed the evolutionary history of the class III peroxidase (PRX) genes from the Populus trichocarpa genome. PRXs are plant-specific enzymes that play important roles in cell wall metabolism and in response to biotic and abiotic stresses. We found that two large tandem-arrayed clusters of PRXs evolved from an ancestral cell wall type PRX to vacuole type, followed by tandem duplications and subsequent functional specification. Substitution models identified seven positively selected sites in the vacuole PRXs. These positively selected sites showed significant effects on the biochemical functions of the enzymes. We also found that positive selection acts more frequently on residues adjacent to, rather than directly at, a critical active site of the enzyme, and on flexible regions rather than on rigid structural elements of the protein. Our study provides new insights into the adaptive molecular evolution of plant enzyme families. PMID:24934172

  1. Nitric oxide plays a role in the regulation of adrenal blood flow and adrenocorticomedullary functions in the llama fetus

    PubMed Central

    Riquelme, Raquel A; Sánchez, Gina; Liberona, Leonel; Sanhueza, Emilia M; Giussani, Dino A; Blanco, Carlos E; Hanson, Mark A; Llanos, Aníbal J

    2002-01-01

    The hypothesis that nitric oxide plays a key role in the regulation of adrenal blood flow and plasma concentrations of cortisol and catecholamines under basal and hypoxaemic conditions in the llama fetus was tested. At 0.6-0.8 of gestation, 11 llama fetuses were surgically prepared for long-term recording under anaesthesia with vascular and amniotic catheters. Following recovery all fetuses underwent an experimental protocol based on 1 h of normoxaemia, 1 h of hypoxaemia and 1 h of recovery. In nine fetuses, the protocol occurred during fetal i.v. infusion with saline and in five fetuses during fetal i.v. treatment with the nitric oxide synthase inhibitor l-NAME. Adrenal blood flow was determined by the radiolabelled microsphere method during each of the experimental periods during saline infusion and treatment with l-NAME. Treatment with l-NAME during normoxaemia led to a marked fall in adrenal blood flow and a pronounced increase in plasma catecholamine concentrations, but it did not affect plasma ACTH or cortisol levels. In saline-infused fetuses, acute hypoxaemia elicited an increase in adrenal blood flow and in plasma ACTH, cortisol, adrenaline and noradrenaline concentrations. Treatment with l-NAME did not affect the increase in fetal plasma ACTH, but prevented the increments in adrenal blood flow and in plasma cortisol and adrenaline concentrations during hypoxaemia in the llama fetus. In contrast, l-NAME further enhanced the increase in fetal plasma noradrenaline. These data support the hypothesis that nitric oxide has important roles in the regulation of adrenal blood flow and adrenal corticomedullary functions during normoxaemia and hypoxaemia functions in the late gestation llama fetus. PMID:12356897

  2. Tissue Factor-Factor VII Complex As a Key Regulator of Ovarian Cancer Phenotypes.

    PubMed

    Koizume, Shiro; Miyagi, Yohei

    2015-01-01

    Tissue factor (TF) is an integral membrane protein widely expressed in normal human cells. Blood coagulation factor VII (fVII) is a key enzyme in the extrinsic coagulation cascade that is predominantly secreted by hepatocytes and released into the bloodstream. The TF-fVII complex is aberrantly expressed on the surface of cancer cells, including ovarian cancer cells. This procoagulant complex can initiate intracellular signaling mechanisms, resulting in malignant phenotypes. Cancer tissues are chronically exposed to hypoxia. TF and fVII can be induced in response to hypoxia in ovarian cancer cells at the gene expression level, leading to the autonomous production of the TF-fVII complex. Here, we discuss the roles of the TF-fVII complex in the induction of malignant phenotypes in ovarian cancer cells. The hypoxic nature of ovarian cancer tissues and the roles of TF expression in endometriosis are discussed. Arguments will be extended to potential strategies to treat ovarian cancers based on our current knowledge of TF-fVII function.

  3. The unique fold and lability of the [2Fe-2S] clusters of NEET proteins mediate their key functions in health and disease.

    PubMed

    Karmi, Ola; Marjault, Henri-Baptiste; Pesce, Luca; Carloni, Paolo; Onuchic, Jose' N; Jennings, Patricia A; Mittler, Ron; Nechushtai, Rachel

    2018-02-12

    NEET proteins comprise a new class of [2Fe-2S] cluster proteins. In human, three genes encode for NEET proteins: cisd1 encodes mitoNEET (mNT), cisd2 encodes the Nutrient-deprivation autophagy factor-1 (NAF-1) and cisd3 encodes MiNT (Miner2). These recently discovered proteins play key roles in many processes related to normal metabolism and disease. Indeed, NEET proteins are involved in iron, Fe-S, and reactive oxygen homeostasis in cells and play an important role in regulating apoptosis and autophagy. mNT and NAF-1 are homodimeric and reside on the outer mitochondrial membrane. NAF-1 also resides in the membranes of the ER associated mitochondrial membranes (MAM) and the ER. MiNT is a monomer with distinct asymmetry in the molecular surfaces surrounding the clusters. Unlike its paralogs mNT and NAF-1, it resides within the mitochondria. NAF-1 and mNT share similar backbone folds to the plant homodimeric NEET protein (At-NEET), while MiNT's backbone fold resembles a bacterial MiNT protein. Despite the variation of amino acid composition among these proteins, all NEET proteins retained their unique CDGSH domain harboring their unique 3Cys:1His [2Fe-2S] cluster coordination through evolution. The coordinating exposed His was shown to convey the lability to the NEET proteins' [2Fe-2S] clusters. In this minireview, we discuss the NEET fold and its structural elements. Special attention is given to the unique lability of the NEETs' [2Fe-2S] cluster and the implication of the latter to the NEET proteins' cellular and systemic function in health and disease.

  4. Small heat shock proteins: Role in cellular functions and pathology.

    PubMed

    Bakthisaran, Raman; Tangirala, Ramakrishna; Rao, Ch Mohan

    2015-04-01

    Small heat shock proteins (sHsps) are conserved across species and are important in stress tolerance. Many sHsps exhibit chaperone-like activity in preventing aggregation of target proteins, keeping them in a folding-competent state and refolding them by themselves or in concert with other ATP-dependent chaperones. Mutations in human sHsps result in myopathies, neuropathies and cataract. Their expression is modulated in diseases such as Alzheimer's, Parkinson's and cancer. Their ability to bind Cu2+, and suppress generation of reactive oxygen species (ROS) may have implications in Cu2+-homeostasis and neurodegenerative diseases. Circulating αB-crystallin and Hsp27 in the plasma may exhibit immunomodulatory and anti-inflammatory functions. αB-crystallin and Hsp20 exhitbit anti-platelet aggregation: these beneficial effects indicate their use as potential therapeutic agents. sHsps have roles in differentiation, proteasomal degradation, autophagy and development. sHsps exhibit a robust anti-apoptotic property, involving several stages of mitochondrial-mediated, extrinsic apoptotic as well as pro-survival pathways. Dynamic N- and C-termini and oligomeric assemblies of αB-crystallin and Hsp27 are important factors for their functions. We propose a "dynamic partitioning hypothesis" for the promiscuous interactions and pleotropic functions exhibited by sHsps. Stress tolerance and anti-apoptotic properties of sHsps have both beneficial and deleterious consequences in human health and diseases. Conditional and targeted modulation of their expression and/or activity could be used as strategies in treating several human disorders. The review attempts to provide a critical overview of sHsps and their divergent roles in cellular processes particularly in the context of human health and disease. Copyright © 2015. Published by Elsevier B.V.

  5. Key-value store with internal key-value storage interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, John M.; Faibish, Sorin; Ting, Dennis P. J.

    A key-value store is provided having one or more key-value storage interfaces. A key-value store on at least one compute node comprises a memory for storing a plurality of key-value pairs; and an abstract storage interface comprising a software interface module that communicates with at least one persistent storage device providing a key-value interface for persistent storage of one or more of the plurality of key-value pairs, wherein the software interface module provides the one or more key-value pairs to the at least one persistent storage device in a key-value format. The abstract storage interface optionally processes one or moremore » batch operations on the plurality of key-value pairs. A distributed embodiment for a partitioned key-value store is also provided.« less

  6. Molecular analysis of functional redundancy among anti-apoptotic Bcl-2 proteins and its role in cancer cell survival.

    PubMed

    Eichhorn, Joshua M; Alford, Sarah E; Sakurikar, Nandini; Chambers, Timothy C

    2014-04-01

    Bcl-2 family proteins act as essential regulators and mediators of intrinsic apoptosis. Several lines of evidence suggest that the anti-apoptotic members of the family, including Bcl-2, Bcl-xL and Mcl-1, exhibit functional redundancy. However, the current evidence is largely indirect, and based mainly on pharmacological data using small-molecule inhibitors. In order to study compensation and redundancy of anti-apoptotic Bcl-2 proteins at the molecular level, we used a combined knockdown/overexpression strategy to essentially replace the function of one member with another. The results show that HeLa cells are strictly dependent on Mcl-1 for survival and correspondingly refractory to the Bcl-2/Bcl-xL inhibitor ABT-263, and remain resistant to ABT-263 in the context of Bcl-xL overexpression because endogenous Mcl-1 continues to provide the primary guardian role. However, if Mcl-1 is knocked down in the context of Bcl-xL overexpression, the cells become Bcl-xL-dependent and sensitive to ABT-263. We also show that Bcl-xL compensates for loss of Mcl-1 by sequestration of two key pro-apoptotic Bcl-2 family members, Bak and Bim, normally bound to Mcl-1, and that Bim is essential for cell death induced by Mcl-1 knockdown. To our knowledge, this is the first example where cell death induced by loss of Mcl-1 was rescued by the silencing of a single BH3-only Bcl-2 family member. In colon carcinoma cell lines, Bcl-xL and Mcl-1 also play compensatory roles, and Mcl-1 knockdown sensitizes cells to ABT-263. The results, obtained employing a novel strategy of combining knockdown and overexpression, provide unique molecular insight into the mechanisms of compensation by pro-survival Bcl-2 family proteins. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Key Role of MicroRNA in the Regulation of Granulocyte Macrophage Colony-stimulating Factor Expression in Murine Alveolar Epithelial Cells during Oxidative Stress*

    PubMed Central

    Sturrock, Anne; Mir-Kasimov, Mustafa; Baker, Jessica; Rowley, Jesse; Paine, Robert

    2014-01-01

    GM-CSF is an endogenous pulmonary cytokine produced by normal alveolar epithelial cells (AEC) that is a key defender of the alveolar space. AEC GM-CSF expression is suppressed by oxidative stress through alternations in mRNA turnover, an effect that is reversed by treatment with recombinant GM-CSF. We hypothesized that specific microRNA (miRNA) would play a key role in AEC GM-CSF regulation. A genome-wide miRNA microarray identified 19 candidate miRNA altered in primary AEC during oxidative stress with reversal by treatment with GM-CSF. Three of these miRNA (miR 133a, miR 133a*, and miR 133b) are also predicted to bind the GM-CSF 3′-untranslated region (UTR). PCR for the mature miRNA confirmed induction during oxidative stress that was reversed by treatment with GM-CSF. Experiments using a GM-CSF 3′-UTR reporter construct demonstrated that miR133a and miR133b effects on GM-CSF expression are through interactions with the GM-CSF 3′-UTR. Using lentiviral transduction of specific mimics and inhibitors in primary murine AEC, we determined that miR133a and miR133b suppress GM-CSF expression and that their inhibition both reverses oxidant-induced suppression of GM-CSF expression and increases basal expression of GM-CSF in cells in normoxia. In contrast, these miRNAs are not active in regulation of GM-CSF expression in murine EL4 T cells. Thus, members of the miR133 family play key roles in regulation of GM-CSF expression through effects on mRNA turnover in AEC during oxidative stress. Increased understanding of GM-CSF gene regulation may provide novel miRNA-based interventions to augment pulmonary innate immune defense in lung injury. PMID:24371146

  8. Knockdown of stem cell regulator Oct4A in ovarian cancer reveals cellular reprogramming associated with key regulators of cytoskeleton-extracellular matrix remodelling

    PubMed Central

    Samardzija, Chantel; Greening, David W.; Escalona, Ruth; Chen, Maoshan; Bilandzic, Maree; Luwor, Rodney; Kannourakis, George; Findlay, Jock K.; Ahmed, Nuzhat

    2017-01-01

    Oct4A is a master regulator of self-renewal and pluripotency in embryonic stem cells. It is a well-established marker for cancer stem cell (CSC) in malignancies. Recently, using a loss of function studies, we have demonstrated key roles for Oct4A in tumor cell survival, metastasis and chemoresistance in in vitro and in vivo models of ovarian cancer. In an effort to understand the regulatory role of Oct4A in tumor biology, we employed the use of an ovarian cancer shRNA Oct4A knockdown cell line (HEY Oct4A KD) and a global mass spectrometry (MS)-based proteomic analysis to investigate novel biological targets of Oct4A in HEY samples (cell lysates, secretomes and mouse tumor xenografts). Based on significant differential expression, pathway and protein network analyses, and comprehensive literature search we identified key proteins involved with biologically relevant functions of Oct4A in tumor biology. Across all preparations of HEY Oct4A KD samples significant alterations in protein networks associated with cytoskeleton, extracellular matrix (ECM), proliferation, adhesion, metabolism, epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs) and drug resistance was observed. This comprehensive proteomics study for the first time presents the Oct4A associated proteome and expands our understanding on the biological role of this stem cell regulator in carcinomas. PMID:28406185

  9. Genome-Wide Association and Functional Follow-Up Reveals New Loci for Kidney Function

    PubMed Central

    Fuchsberger, Christian; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C.; O'Seaghdha, Conall M.; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V.; O'Connell, Jeffrey R.; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D.; Gierman, Hinco J.; Feitosa, Mary; Hwang, Shih-Jen; Atkinson, Elizabeth J.; Lohman, Kurt; Cornelis, Marilyn C.; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Chouraki, Vincent; Holliday, Elizabeth G.; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y.; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B.; Launer, Lenore J.; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D.; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank B.; Demirkan, Ayse; Oostra, Ben A.; de Andrade, Mariza; Turner, Stephen T.; Ding, Jingzhong; Andrews, Jeanette S.; Freedman, Barry I.; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H.-Erich; Kolcic, Ivana; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E.; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H.; Wright, Alan F.; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Endlich, Karlhans; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K.; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Aulchenko, Yurii S.; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Giulianini, Franco; Krämer, Bernhard K.; Portas, Laura; Ford, Ian; Buckley, Brendan M.; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Metzger, Marie; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K.; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J. Wouter; Probst-Hensch, Nicole M.; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S.; van Duijn, Cornelia M.; Borecki, Ingrid; Kardia, Sharon L. R.; Liu, Yongmei; Curhan, Gary C.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Franke, Andre; Pramstaller, Peter P.; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline C. M.; Hayward, Caroline; Ridker, Paul; Parsa, Afshin; Bochud, Murielle; Heid, Iris M.; Goessling, Wolfram; Chasman, Daniel I.; Kao, W. H. Linda; Fox, Caroline S.

    2012-01-01

    Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD. PMID:22479191

  10. Genome-wide association and functional follow-up reveals new loci for kidney function.

    PubMed

    Pattaro, Cristian; Köttgen, Anna; Teumer, Alexander; Garnaas, Maija; Böger, Carsten A; Fuchsberger, Christian; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; O'Seaghdha, Conall M; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D; Gierman, Hinco J; Feitosa, Mary; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Chouraki, Vincent; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank B; Demirkan, Ayse; Oostra, Ben A; de Andrade, Mariza; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H-Erich; Kolcic, Ivana; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Endlich, Karlhans; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Giulianini, Franco; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Metzger, Marie; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S; van Duijn, Cornelia M; Borecki, Ingrid; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline C M; Hayward, Caroline; Ridker, Paul; Parsa, Afshin; Bochud, Murielle; Heid, Iris M; Goessling, Wolfram; Chasman, Daniel I; Kao, W H Linda; Fox, Caroline S

    2012-01-01

    Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD.

  11. Protein Tyrosine Nitration: Role in Aging.

    PubMed

    Chakravarti, Bulbul; Chakravarti, Deb N

    2017-01-01

    Aging is the inevitable fate of all living organisms, but the molecular basis of physiological aging is poorly understood. Oxidative stress is believed to play a key role in the aging process. In addition to Reactive Oxygen Species (ROS), Reactive Nitrogen Species (RNS) are generated during aerobic metabolism in living organisms. Although protein damage and functional modification by ROS have been demonstrated in details, fewer studies have been reported on protein damage by RNS and its implication in the aging process. Proteins undergoing tyrosine nitration are associated with pathophysiology of several diseases, as well as physiological aging. The purpose of the current review article is to provide a brief summary of the biochemical mechanisms of tyrosine nitration, methodologies used for the detection of these modified proteins, effect of RNS induced post translational modification on biological functions and the putative role of tyrosine nitrated proteins in the aging process. Published studies on the role of RNS in age related functional alteration of various organs/ tissues were critically reviewed and evaluated. Covalent modification of various proteins by tyrosine nitration is associated with modification of biological functions of various organs/tissues such as skeletal muscle, heart, brain and liver due to aging. This information will be helpful to further investigate the interplay of different biochemical pathways and networks involved in the tyrosine nitration of various proteins due to aging with the ultimate goal to prevent the detrimental effects of RNS on the functional activities of these proteins. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. [Roles and functions of military flight nursing: aeromedical evacuation].

    PubMed

    Lee, Chun-Lan; Hsiao, Yun-Chien; Chen, Chao-Yen

    2012-06-01

    Evacuating the injured is an important part of disaster medicine. Aircraft provide timely access to distant and remote areas and, in an emergency, can evacuate sick or injured individuals in such areas quickly and safely for critical treatment elsewhere. Aeromedical evacuation (AE) comprises the two categories of fixed-wing ambulance service and helicopter emergency medical service (HEMS). Each aims to accomplish unique objectives. In Taiwan, the Second Taiwan Strait Crisis in 1958 established the unique role and functions of medical flight nursing. Significant knowledge and experience has been accumulated in the field since that time in such areas as the effects of high altitude environments on individuals and equipment; physiological, psychological, social and spiritual factors that affect the injured and / or response team members; and emergency care delivery techniques. All have been essential elements in the development and delivery of comprehensive medical flight nurse training. Medical flight nursing belongs in a special professional category, as nurses must master knowledge on general and special-case casualty evacuation procedures, relevant instruments and equipment, triage, in-flight medical care, and aircraft loading requirements related to transporting the sick and injured. The internationalization of medical care has opened the potential to expand medical flight nursing roles and functions into disaster nursing. Although military considerations continue to frame medical flight nursing training and preparation today, the authors feel that creating strategic alliances with disaster nursing specialists and organizations overseas is a future developmental direction for Taiwan's medical flight nursing sector worth formal consideration.

  13. Clusterin in the protein corona plays a key role in the stealth effect of nanoparticles against phagocytes.

    PubMed

    Aoyama, Michihiko; Hata, Katsutomo; Higashisaka, Kazuma; Nagano, Kazuya; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2016-11-25

    In biological fluids, nanoparticles interact with biological components such as proteins, and a layer called the "protein corona" forms around the nanoparticles. It is believed that the composition of the protein corona affects the cellular uptake and in vivo biodistribution of nanoparticles; however, the key proteins of the protein corona that control the biological fate of nanoparticles remain unclear. Recently, it was reported that clusterin binding to pegylated nanoparticles is important for the stealth effect of pegylated nanoparticles in phagocytes. However, the effect of clusterin on non-pegylated nanoparticles is unknown, although it is known that clusterin is present in the protein corona of non-pegylated nanoparticles. Here, we assessed the stealth effect of clusterin in the corona of non-pegylated silver nanoparticles and silica nanoparticles. We found that serum- and plasma-protein corona inhibited the cellular uptake of silver nanoparticles and silica nanoparticles in phagocytes and that the plasma-protein corona showed a greater stealth effect compared with the serum-protein corona. Clusterin was present in both the serum- and plasma-protein corona, but was present at a higher level in the plasma-protein corona than in the serum-protein corona. Clusterin binding to silver nanoparticles and silica nanoparticles suppressed the cellular uptake of nanoparticles in human macrophage-like cells (THP-1 cells). Although further studies are required to determine how clusterin suppresses non-specific cellular uptake in phagocytes, our data suggest that clusterin plays a key role in the stealth effect of not only pegylated nanoparticles but also non-pegylated nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Genomics as the key to unlocking the polyploid potential of wheat.

    PubMed

    Borrill, Philippa; Adamski, Nikolai; Uauy, Cristobal

    2015-12-01

    Polyploidy has played a central role in plant genome evolution and in the formation of new species such as tetraploid pasta wheat and hexaploid bread wheat. Until recently, the high sequence conservation between homoeologous genes, together with the large genome size of polyploid wheat, had hindered genomic analyses in this important crop species. In the past 5 yr, however, the advent of next-generation sequencing has radically changed the wheat genomics landscape. Here, we review a series of advances in genomic resources and tools for functional genomics that are shifting the paradigm of what is possible in wheat molecular genetics and breeding. We discuss how understanding the relationship between homoeologues can inform approaches to modulate the response of quantitative traits in polyploid wheat; we also argue that functional redundancy has 'locked up' a wide range of phenotypic variation in wheat. We explore how genomics provides key tools to inform targeted manipulation of multiple homoeologues, thereby allowing researchers and plant breeders to unlock the full polyploid potential of wheat. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. Deducing trapdoor primitives in public key encryption schemes

    NASA Astrophysics Data System (ADS)

    Pandey, Chandra

    2005-03-01

    Semantic security of public key encryption schemes is often interchangeable with the art of building trapdoors. In the frame of reference of Random Oracle methodology, the "Key Privacy" and "Anonymity" has often been discussed. However to a certain degree the security of most public key encryption schemes is required to be analyzed with formal proofs using one-way functions. This paper evaluates the design of El Gamal and RSA based schemes and attempts to parallelize the trapdoor primitives used in the computation of the cipher text, thereby magnifying the decryption error δp in the above schemes.

  16. Partitioned key-value store with atomic memory operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, John M.; Faibish, Sorin; Grider, Gary

    A partitioned key-value store is provided that supports atomic memory operations. A server performs a memory operation in a partitioned key-value store by receiving a request from an application for at least one atomic memory operation, the atomic memory operation comprising a memory address identifier; and, in response to the atomic memory operation, performing one or more of (i) reading a client-side memory location identified by the memory address identifier and storing one or more key-value pairs from the client-side memory location in a local key-value store of the server; and (ii) obtaining one or more key-value pairs from themore » local key-value store of the server and writing the obtained one or more key-value pairs into the client-side memory location identified by the memory address identifier. The server can perform functions obtained from a client-side memory location and return a result to the client using one or more of the atomic memory operations.« less

  17. The notochord: structure and functions.

    PubMed

    Corallo, Diana; Trapani, Valeria; Bonaldo, Paolo

    2015-08-01

    The notochord is an embryonic midline structure common to all members of the phylum Chordata, providing both mechanical and signaling cues to the developing embryo. In vertebrates, the notochord arises from the dorsal organizer and it is critical for proper vertebrate development. This evolutionary conserved structure located at the developing midline defines the primitive axis of embryos and represents the structural element essential for locomotion. Besides its primary structural function, the notochord is also a source of developmental signals that patterns surrounding tissues. Among the signals secreted by the notochord, Hedgehog proteins play key roles during embryogenesis. The Hedgehog signaling pathway is a central regulator of embryonic development, controlling the patterning and proliferation of a wide variety of organs. In this review, we summarize the current knowledge on notochord structure and functions, with a particular emphasis on the key developmental events that take place in vertebrates. Moreover, we discuss some genetic studies highlighting the phenotypic consequences of impaired notochord development, which enabled to understand the molecular basis of different human congenital defects and diseases.

  18. Supporting women with advanced breast cancer: the impact of altered functional status on their social roles.

    PubMed

    Chen, Bai Qi Peggy; Parmar, Monica P; Gartshore, Kimberley

    2014-01-01

    Despite early detection of breast cancer and the progress of treatment modalities, metastasis-specific symptoms continue to impact women's functional status and daily living. The aim of this study was to explore the experience of altered functional status and social roles of women with advanced breast cancer. Using qualitative descriptive methodology, semi-structured interviews were conducted with 10 women diagnosed with advanced breast cancer and altered functional status attending a tertiary care cancer centre. Results illustrated the adaptive experience of women living with their illness as they reshaped their social roles to fit with their altered functional status and advanced disease. These findings highlight the opportunity for supportive care nursing interventions to facilitate the behavioural and cognitive transitions that are experienced by women with advanced breast cancer and altered functional status. These results may have implications for women with other advanced chronic diseases, though more research is required.

  19. Cytokines and macrophage function in humans - role of stress

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald (Principal Investigator)

    1996-01-01

    We have begun this study to commence the determination of the role of mild chronic stress in the effects of space flight on macrophage/monocyte function, a component of the immune response. Medical students undergoing regular periods of stress and relaxation have been shown to be an excellent model for determining the effects of stress on immune responses. We have begun using this model using the macrophage/monocyte as model leukocyte. The monocyte/macrophage plays a central role in immunoregulation. The studies to be included in this three year project are the effects of stress on: (1) interactions of monocytes with microbes, (2) monocyte production of cytokines, (3) monocyte phagocytosis and activity, and (4) monocyte expression of cell surface antigens important in immune responses. Stress hormone levels will also be carried out to determine if there is a correlation between stress effects on immune responses and hormonal levels. Psychological testing to insure subjects are actually stressed or relaxed at the time of testing will also be carried out. The results obtained from the proposed studies should be comparable with space flight studies with whole animals and isolated cell cultures. When complete this study should allow the commencement of the establishment of the role of stress as one compartment of the induction of immune alterations by space flight.

  20. Complement factor H family proteins in their non-canonical role as modulators of cellular functions.

    PubMed

    Józsi, Mihály; Schneider, Andrea E; Kárpáti, Éva; Sándor, Noémi

    2018-01-04

    Complement factor H is a major regulator of the alternative pathway of the complement system. The factor H-related proteins are less characterized, but recent data indicate that they rather promote complement activation. These proteins have some common ligands with factor H and have both overlapping and distinct functions depending on domain composition and the degree of conservation of amino acid sequence. Factor H and some of the factor H-related proteins also appear in a non-canonical function that is beyond their role in the modulation of complement activation. This review covers our current understanding on this emerging role of factor H family proteins in modulating the activation and function of various cells by binding to receptors or receptor ligands. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. The Role of Soil Biological Function in Regulating Agroecosystem Services and Sustainability in the Quesungual Agroforestry System

    NASA Astrophysics Data System (ADS)

    Fonte, S.; Pauli, N.; Rousseau, L.; SIX, J. W. U. A.; Barrios, E.

    2014-12-01

    The Quesungual agroforestry system from western Honduras has been increasingly promoted as a promising alternative to traditional slash-and-burn agriculture in tropical dry forest regions of the Americas. Improved residue management and the lack of burning in this system can greatly impact soil biological functioning and a number of key soil-based ecosystem services, yet our understanding of these processes has not been thoroughly integrated to understand system functionality as a whole that can guide improved management. To address this gap, we present a synthesis of various field studies conducted in Central America aimed at: 1) quantifying the influence of the Quesungual agroforestry practices on soil macrofauna abundance and diversity, and 2) understanding how these organisms influence key soil-based ecosystem services that ultimately drive the success of this system. A first set of studies examined the impact of agroecosystem management on soil macrofauna populations, soil fertility and key soil processes. Results suggest that residue inputs (derived from tree biomass pruning), a lack of burning, and high tree densities, lead to conditions that support abundant, diverse soil macrofauna communities under agroforestry, with soil organic carbon content comparable to adjacent forest. Additionally, there is great potential in working with farmers to develop refined soil quality indicators for improved land management. A second line of research explored interactions between residue management and earthworms in the regulation of soil-based ecosystem services. Earthworms are the most prominent ecosystem engineers in these soils. We found that earthworms are key drivers of soil structure maintenance and the stabilization of soil organic matter within soil aggregates, and also had notable impacts on soil nutrient dynamics. However, the impact of earthworms appears to depend on residue management practices, thus indicating the need for an integrated approach for

  2. Institutional Research: The Key to Successful Enrollment Management.

    ERIC Educational Resources Information Center

    Clagett, Craig A.

    Enrollment management includes the processes and activities that influence the size, shape, and characteristics of a student body by directing institutional efforts in marketing, recruitment, admissions, pricing, and financial aid. Institutional research plays an essential, if not the key, role in enrollment management. This report discusses the…

  3. The Arabidopsis transcription factor AtTCP15 regulates endoreduplication by modulating expression of key cell-cycle genes.

    PubMed

    Li, Zi-Yu; Li, Bin; Dong, Ai-Wu

    2012-01-01

    Plant cells frequently undergo endoreduplication, a modified cell cycle in which genome is repeatedly replicated without cytokinesis. As the key step to achieve final size and function for cells, endoreduplication is prevalent during plant development. However, mechanisms to control the balance between endoreduplication and mitotic cell division are still poorly understood. Here, we show that the Arabidopsis TCP (CINCINNATA-like TEOSINTE BRANCHED1-CYCLOIDEA-PCF)-family transcription factor gene AtTCP15 is expressed in trichomes, as well as in rapidly dividing and vascular tissues. Expression of AtTCP15SRDX, AtTCP15 fused with a SRDX repressor domain, induces extra endoreduplication in trichomes and cotyledon cells in transgenic Arabidopsis. On the contrary, overexpression of AtTCP15 suppresses endoreduplication in trichomes and other examined cells. Misregulation of AtTCP15 affects the expression of several important genes involved in cell-cycle regulation. AtTCP15 protein binds directly to the promoter regions of CYCA2;3 and RETINOBLASTOMA-RELATED (RBR) genes, which play key roles in endoreduplication. Taken together, AtTCP15 plays an important role in regulating endoreduplication during Arabidopsis development.

  4. Florida Keys

    NASA Image and Video Library

    2002-12-13

    The Florida Keys are a chain of islands, islets and reefs extending from Virginia Key to the Dry Tortugas for about 309 kilometers (192 miles). The keys are chiefly limestone and coral formations. The larger islands of the group are Key West (with its airport), Key Largo, Sugarloaf Key, and Boca Chica Key. A causeway extends from the mainland to Key West. This image was acquired on October 28, 2001, by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03890

  5. Introduction to the special section on "translational models of prefrontal cortical function".

    PubMed

    Baxter, Mark G

    2011-06-01

    Impaired functioning of the prefrontal cortex is particularly prominent in many forms of psychopathology and in degenerative brain diseases. Because it is challenging to draw causal links between specific brain abnormalities and impaired cognition in these conditions, research using nonhuman animals has a key role to play in elucidating the neurobiological mechanisms of prefrontal cortex function and aiding the search for treatments. This role is clearly illustrated in the review articles and original research reports in this special section. Taken together, these papers demonstrate the insights that have already been gained from research with nonhuman animals as well as the work that still needs to be done to attain the goal of understanding human prefrontal cortical function in both health and disease.

  6. Functional roles of CSPG4/NG2 in chondrosarcoma.

    PubMed

    Jamil, Nuor S M; Azfer, Asim; Worrell, Harrison; Salter, Donald M

    2016-04-01

    CSPG4/NG2 is a multifunctional transmembrane protein with limited distribution in adult tissues including articular cartilage. The purpose of this study was to investigate the possible roles of CSPG4/NG2 in chondrosarcomas and to establish whether this molecule may have potential for targeted therapy. Stable knock-down of CSPG4/NG2 in the JJ012 chondrosarcoma cell line by shRNA resulted in decreased cell proliferation and migration as well as a decrease in gene expression of the MMP (matrix metalloproteinase) 3 protease and ADAMTS4 (aggrecanase). Chondrosarcoma cells in which CSPG4/NG2 was knocked down were more sensitive to doxorubicin than wild-type cells. The results indicate that CSPG4/NG2 has roles in regulating chondrosarcoma cell function in relation to growth, spread and resistance to chemotherapy and that anti-CSPG4/NG2 therapies may have potential in the treatment of surgically unresectable chondrosarcoma. © 2016 The Authors. International Journal of Experimental Pathology © 2016 International Journal of Experimental Pathology.

  7. Gain-of-function mutagenesis approaches in rice for functional genomics and improvement of crop productivity.

    PubMed

    Moin, Mazahar; Bakshi, Achala; Saha, Anusree; Dutta, Mouboni; Kirti, P B

    2017-07-01

    The epitome of any genome research is to identify all the existing genes in a genome and investigate their roles. Various techniques have been applied to unveil the functions either by silencing or over-expressing the genes by targeted expression or random mutagenesis. Rice is the most appropriate model crop for generating a mutant resource for functional genomic studies because of the availability of high-quality genome sequence and relatively smaller genome size. Rice has syntenic relationships with members of other cereals. Hence, characterization of functionally unknown genes in rice will possibly provide key genetic insights and can lead to comparative genomics involving other cereals. The current review attempts to discuss the available gain-of-function mutagenesis techniques for functional genomics, emphasizing the contemporary approach, activation tagging and alterations to this method for the enhancement of yield and productivity of rice. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Contribution of Theory of Mind, Executive Functioning, and Pragmatics to Socialization Behaviors of Children with High-Functioning Autism.

    PubMed

    Berenguer, Carmen; Miranda, Ana; Colomer, Carla; Baixauli, Inmaculada; Roselló, Belén

    2018-02-01

    Social difficulties are a key aspect of autism, but the intervening factors are still poorly understood. This study had two objectives: to compare the profile of ToM skills, executive functioning (EF), and pragmatic competence (PC) of children with high-functioning autism (HFA) and children with typical development (TD), and analyze their mediator role in social functioning. The participants were 52 children with HFA and 37 children with TD matched on age, intelligence quotient, and expressive vocabulary. Significant differences were found on measures of ToM, both explicit and applied, EF, and PC between children with HFA and TD. Multiple mediation analysis revealed that applied ToM skills and PC mediated the relations between autism symptoms and social functioning. Implications for social cognitive interventions to address these findings are discussed.

  9. ROLE OF DOM PHOTOREACTIONS IN CONTROLLING UV EXPOSURE OF CORAL ASSEMBLAGES IN THE FLORIDA KEYS

    EPA Science Inventory

    Recent studies have indicated that solar LTV radiation is a significant stressor of coral assemblages in tropical and subtropical marine environments. Here evidence is presented that UV exposure of coral reefs in the Florida Keys near Key West is controlled by the colored compone...

  10. An Empirical Mass Function Distribution

    NASA Astrophysics Data System (ADS)

    Murray, S. G.; Robotham, A. S. G.; Power, C.

    2018-03-01

    The halo mass function, encoding the comoving number density of dark matter halos of a given mass, plays a key role in understanding the formation and evolution of galaxies. As such, it is a key goal of current and future deep optical surveys to constrain the mass function down to mass scales that typically host {L}\\star galaxies. Motivated by the proven accuracy of Press–Schechter-type mass functions, we introduce a related but purely empirical form consistent with standard formulae to better than 4% in the medium-mass regime, {10}10{--}{10}13 {h}-1 {M}ȯ . In particular, our form consists of four parameters, each of which has a simple interpretation, and can be directly related to parameters of the galaxy distribution, such as {L}\\star . Using this form within a hierarchical Bayesian likelihood model, we show how individual mass-measurement errors can be successfully included in a typical analysis, while accounting for Eddington bias. We apply our form to a question of survey design in the context of a semi-realistic data model, illustrating how it can be used to obtain optimal balance between survey depth and angular coverage for constraints on mass function parameters. Open-source Python and R codes to apply our new form are provided at http://mrpy.readthedocs.org and https://cran.r-project.org/web/packages/tggd/index.html respectively.

  11. Family functioning mediates adaptation in caregivers of individuals with Rett syndrome.

    PubMed

    Lamb, Amanda E; Biesecker, Barbara B; Umstead, Kendall L; Muratori, Michelle; Biesecker, Leslie G; Erby, Lori H

    2016-11-01

    The objective of this study was to investigate factors related to family functioning and adaptation in caregivers of individuals with Rett syndrome (RS). A cross-sectional quantitative survey explored the relationships between demographics, parental self-efficacy, coping methods, family functioning and adaptation. A forward-backward, step-wise model selection procedure was used to evaluate variables associated with both family functioning and adaptation. Analyses also explored family functioning as a mediator of the relationship between other variables and adaptation. Bivariate analyses (N=400) revealed that greater parental self-efficacy, a greater proportion of problem-focused coping, and a lesser proportion of emotion-focused coping were associated with more effective family functioning. In addition, these key variables were significantly associated with greater adaptation, as was family functioning, while controlling for confounders. Finally, regression analyses suggest family functioning as a mediator of the relationships between three variables (parental self-efficacy, problem-focused coping, and emotion-focused coping) with adaptation. This study demonstrates the potentially predictive roles of expectations and coping methods and the mediator role of family functioning in adaptation among caregivers of individuals with RS, a chronic developmental disorder. A potential target for intervention is strengthening of caregiver competence in the parenting role to enhance caregiver adaptation. Published by Elsevier Ireland Ltd.

  12. Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi.

    PubMed

    Field, Katie J; Pressel, Silvia

    2018-04-26

    Contents I. II. III. IV. V. VI. VII. VIII. References SUMMARY: Mycorrhizal symbiosis is an ancient and widespread mutualism between plants and fungi that facilitated plant terrestrialisation > 500 million years ago, with key roles in ecosystem functioning at multiple scales. Central to the symbiosis is the bidirectional exchange of plant-fixed carbon for fungal-acquired nutrients. Within this unifying role of mycorrhizas, considerable diversity in structure and function reflects the diversity of the partners involved. Early diverging plants form mutualisms not only with arbuscular mycorrhizal Glomeromycotina fungi, but also with poorly characterised Mucoromycotina, which may also colonise the roots of 'higher' plants as fine root endophytes. Functional diversity in these symbioses depends on both fungal and plant life histories and is influenced by the environment. Recent studies have highlighted the roles of lipids/fatty acids in plant-to-fungus carbon transport and potential contributions of Glomeromycotina fungi to plant nitrogen nutrition. Together with emerging appreciation of mycorrhizal networks as multi-species resource-sharing systems, these insights are broadening our views on mycorrhizas and their roles in nutrient cycling. It is crucial that the diverse array of biotic and abiotic factors that together shape the dynamics of carbon-for-nutrient exchange between plants and fungi are integrated, in addition to embracing the unfolding and potentially key role of Mucoromycotina fungi in these processes. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  13. Preventive and Therapeutic Role of Functional Ingredients of Barley Grass for Chronic Diseases in Human Beings

    PubMed Central

    Du, Juan; Yang, Xiaomeng; Li, Xia; Li, Ling; Zhou, Yan; Yang, Tao

    2018-01-01

    Barley grass powder is the best functional food that provides nutrition and eliminates toxins from cells in human beings; however, its functional ingredients have played an important role as health benefit. In order to better cognize the preventive and therapeutic role of barley grass for chronic diseases, we carried out the systematic strategies for functional ingredients of barley grass, based on the comprehensive databases, especially the PubMed, Baidu, ISI Web of Science, and CNKI, between 2008 and 2017. Barley grass is rich in functional ingredients, such as gamma-aminobutyric acid (GABA), flavonoids, saponarin, lutonarin, superoxide dismutase (SOD), K, Ca, Se, tryptophan, chlorophyll, vitamins (A, B1, C, and E), dietary fiber, polysaccharide, alkaloid, metallothioneins, and polyphenols. Barley grass promotes sleep; has antidiabetic effect; regulates blood pressure; enhances immunity; protects liver; has anti-acne/detoxifying and antidepressant effects; improves gastrointestinal function; has anticancer, anti-inflammatory, antioxidant, hypolipidemic, and antigout effects; reduces hyperuricemia; prevents hypoxia, cardiovascular diseases, fatigue, and constipation; alleviates atopic dermatitis; is a calcium supplement; improves cognition; and so on. These results support that barley grass may be one of the best functional foods for preventive chronic diseases and the best raw material of modern diet structure in promoting the development of large health industry and further reveal that GABA, flavonoids, SOD, K-Ca, vitamins, and tryptophan mechanism of barley grass have preventive and therapeutic role for chronic diseases. This paper can be used as a scientific evidence for developing functional foods and novel drugs for barley grass for preventive chronic diseases.

  14. The role of the non-collagenous matrix in tendon function.

    PubMed

    Thorpe, Chavaunne T; Birch, Helen L; Clegg, Peter D; Screen, Hazel R C

    2013-08-01

    Tendon consists of highly ordered type I collagen molecules that are grouped together to form subunits of increasing diameter. At each hierarchical level, the type I collagen is interspersed with a predominantly non-collagenous matrix (NCM) (Connect. Tissue Res., 6, 1978, 11). Whilst many studies have investigated the structure, organization and function of the collagenous matrix within tendon, relatively few have studied the non-collagenous components. However, there is a growing body of research suggesting the NCM plays an important role within tendon; adaptations to this matrix may confer the specific properties required by tendons with different functions. Furthermore, age-related alterations to non-collagenous proteins have been identified, which may affect tendon resistance to injury. This review focuses on the NCM within the tensional region of developing and mature tendon, discussing the current knowledge and identifying areas that require further study to fully understand structure-function relationships within tendon. This information will aid in the development of appropriate techniques for tendon injury prevention and treatment. © 2013 The Authors. International Journal of Experimental Pathology © 2013 International Journal of Experimental Pathology.

  15. The Functional Role of Neural Oscillations in Non-Verbal Emotional Communication

    PubMed Central

    Symons, Ashley E.; El-Deredy, Wael; Schwartze, Michael; Kotz, Sonja A.

    2016-01-01

    Effective interpersonal communication depends on the ability to perceive and interpret nonverbal emotional expressions from multiple sensory modalities. Current theoretical models propose that visual and auditory emotion perception involves a network of brain regions including the primary sensory cortices, the superior temporal sulcus (STS), and orbitofrontal cortex (OFC). However, relatively little is known about how the dynamic interplay between these regions gives rise to the perception of emotions. In recent years, there has been increasing recognition of the importance of neural oscillations in mediating neural communication within and between functional neural networks. Here we review studies investigating changes in oscillatory activity during the perception of visual, auditory, and audiovisual emotional expressions, and aim to characterize the functional role of neural oscillations in nonverbal emotion perception. Findings from the reviewed literature suggest that theta band oscillations most consistently differentiate between emotional and neutral expressions. While early theta synchronization appears to reflect the initial encoding of emotionally salient sensory information, later fronto-central theta synchronization may reflect the further integration of sensory information with internal representations. Additionally, gamma synchronization reflects facilitated sensory binding of emotional expressions within regions such as the OFC, STS, and, potentially, the amygdala. However, the evidence is more ambiguous when it comes to the role of oscillations within the alpha and beta frequencies, which vary as a function of modality (or modalities), presence or absence of predictive information, and attentional or task demands. Thus, the synchronization of neural oscillations within specific frequency bands mediates the rapid detection, integration, and evaluation of emotional expressions. Moreover, the functional coupling of oscillatory activity across multiples

  16. The Functional Role of Neural Oscillations in Non-Verbal Emotional Communication.

    PubMed

    Symons, Ashley E; El-Deredy, Wael; Schwartze, Michael; Kotz, Sonja A

    2016-01-01

    Effective interpersonal communication depends on the ability to perceive and interpret nonverbal emotional expressions from multiple sensory modalities. Current theoretical models propose that visual and auditory emotion perception involves a network of brain regions including the primary sensory cortices, the superior temporal sulcus (STS), and orbitofrontal cortex (OFC). However, relatively little is known about how the dynamic interplay between these regions gives rise to the perception of emotions. In recent years, there has been increasing recognition of the importance of neural oscillations in mediating neural communication within and between functional neural networks. Here we review studies investigating changes in oscillatory activity during the perception of visual, auditory, and audiovisual emotional expressions, and aim to characterize the functional role of neural oscillations in nonverbal emotion perception. Findings from the reviewed literature suggest that theta band oscillations most consistently differentiate between emotional and neutral expressions. While early theta synchronization appears to reflect the initial encoding of emotionally salient sensory information, later fronto-central theta synchronization may reflect the further integration of sensory information with internal representations. Additionally, gamma synchronization reflects facilitated sensory binding of emotional expressions within regions such as the OFC, STS, and, potentially, the amygdala. However, the evidence is more ambiguous when it comes to the role of oscillations within the alpha and beta frequencies, which vary as a function of modality (or modalities), presence or absence of predictive information, and attentional or task demands. Thus, the synchronization of neural oscillations within specific frequency bands mediates the rapid detection, integration, and evaluation of emotional expressions. Moreover, the functional coupling of oscillatory activity across multiples

  17. Role of Osmolytes in Regulating Immune System.

    PubMed

    Kumar, Tarun; Yadav, Manisha; Singh, Laishram Rajendrakumar

    2016-01-01

    The immune system has evolved to protect the host organism from diverse range of pathogenic microbes that are themselves constantly evolving. It is a complex network of cells, humoral factors, chemokines and cytokines. Dysregulation of immune system results in various kinds of immunological disorders. There are several external agents which govern the regulation of immune system. Recent studies have indicated the role of osmolytes in regulation of various immunological processes such as Ag-Ab interaction, Ig assembly, Ag presentation etc. In this present review, we have systematically discussed the role of osmolytes involved in regulation of several key immunological processes. Osmolytes are involved in the regulation of several key immunological processes such as immunoglobulin assembly and folding, immune cells proliferation, regulation of immune cells function, Ag-Ab interaction, antigen presentation, inflammatory response and protection against photo-immunosuppression. Hence, osmolytes and their transporters might be used as potential drug and drug targets respectively. This review is therefore designed to help clinicians in development of osmolyte based therapeutic strategies in the treatment of various immunological disorders. Appropriate future perspectives have also been included.

  18. Pharmacological Tools to Study the Role of Astrocytes in Neural Network Functions.

    PubMed

    Peña-Ortega, Fernando; Rivera-Angulo, Ana Julia; Lorea-Hernández, Jonathan Julio

    2016-01-01

    Despite that astrocytes and microglia do not communicate by electrical impulses, they can efficiently communicate among them, with each other and with neurons, to participate in complex neural functions requiring broad cell-communication and long-lasting regulation of brain function. Glial cells express many receptors in common with neurons; secrete gliotransmitters as well as neurotrophic and neuroinflammatory factors, which allow them to modulate synaptic transmission and neural excitability. All these properties allow glial cells to influence the activity of neuronal networks. Thus, the incorporation of glial cell function into the understanding of nervous system dynamics will provide a more accurate view of brain function. Our current knowledge of glial cell biology is providing us with experimental tools to explore their participation in neural network modulation. In this chapter, we review some of the classical, as well as some recent, pharmacological tools developed for the study of astrocyte's influence in neural function. We also provide some examples of the use of these pharmacological agents to understand the role of astrocytes in neural network function and dysfunction.

  19. Iterative key-residues interrogation of a phytase with thermostability increasing substitutions identified in directed evolution.

    PubMed

    Shivange, Amol V; Roccatano, Danilo; Schwaneberg, Ulrich

    2016-01-01

    Bacterial phytases have attracted industrial interest as animal feed supplement due to their high activity and sufficient thermostability (required for feed pelleting). We devised an approach named KeySIDE,  an iterative Key-residues interrogation of the wild type with Substitutions Identified in Directed Evolution for improving Yersinia mollaretii phytase (Ymphytase) thermostability by combining key beneficial substitutions and elucidating their individual roles. Directed evolution yielded in a discovery of nine positions in Ymphytase and combined iteratively to identify key positions. The "best" combination (M6: T77K, Q154H, G187S, and K289Q) resulted in significantly improved thermal resistance; the residual activity improved from 35 % (wild type) to 89 % (M6) at 58 °C and 20-min incubation. Melting temperature increased by 3 °C in M6 without a loss of specific activity. Molecular dynamics simulation studies revealed reduced flexibility in the loops located next to helices (B, F, and K) which possess substitutions (Helix-B: T77K, Helix-F: G187S, and Helix-K: K289E/Q). Reduced flexibility in the loops might be caused by strengthened hydrogen bonding network (e.g., G187S and K289E/K289Q) and a salt bridge (T77K). Our results demonstrate a promising approach to design phytases in food research, and we hope that the KeySIDE might become an attractive approach for understanding of structure-function relationships of enzymes.

  20. Potentially important periods of change in the development of social and role functioning in youth at clinical high risk for psychosis.

    PubMed

    Velthorst, Eva; Zinberg, Jamie; Addington, Jean; Cadenhead, Kristin S; Cannon, Tyrone D; Carrión, Ricardo E; Auther, Andrea; Cornblatt, Barbara A; McGlashan, Thomas H; Mathalon, Daniel H; Perkins, Diana O; Seidman, Larry J; Tsuang, Ming T; Walker, Elaine F; Woods, Scott W; Reichenberg, Abraham; Bearden, Carrie E

    2018-02-01

    The developmental course of daily functioning prior to first psychosis-onset remains poorly understood. This study explored age-related periods of change in social and role functioning. The longitudinal study included youth (aged 12-23, mean follow-up years = 1.19) at clinical high risk (CHR) for psychosis (converters [CHR-C], n = 83; nonconverters [CHR-NC], n = 275) and a healthy control group (n = 164). Mixed-model analyses were performed to determine age-related differences in social and role functioning. We limited our analyses to functioning before psychosis conversion; thus, data of CHR-C participants gathered after psychosis onset were excluded. In controls, social and role functioning improved over time. From at least age 12, functioning in CHR was poorer than in controls, and this lag persisted over time. Between ages 15 and 18, social functioning in CHR-C stagnated and diverged from that of CHR-NC, who continued to improve (p = .001). Subsequently, CHR-C lagged behind in improvement between ages 21 and 23, further distinguishing them from CHR-NC (p < .001). A similar period of stagnation was apparent for role functioning, but to a lesser extent (p = .007). The results remained consistent when we accounted for the time to conversion. Our findings suggest that CHR-C start lagging behind CHR-NC in social and role functioning in adolescence, followed by a period of further stagnation in adulthood.

  1. Key-lock colloids in a nematic liquid crystal.

    PubMed

    Silvestre, Nuno M; Tasinkevych, M

    2017-01-01

    The Landau-de Gennes free energy is used to study theoretically the effective interaction of spherical "key" and anisotropic "lock" colloidal particles. We assume identical anchoring properties of the surfaces of the key and of the lock particles, and we consider planar degenerate and perpendicular anchoring conditions separately. The lock particle is modeled as a spherical particle with a spherical dimple. When such a particle is introduced into a nematic liquid crystal, it orients its dimple at an oblique angle θ_{eq} with respect to the far field director n_{∞}. This angle depends on the depth of the dimple. Minimization results show that the free energy of a pair of key and lock particles exhibits a global minimum for the configuration when the key particle is facing the dimple of the lock colloidal particle. The preferred orientation ϕ_{eq} of the key-lock composite doublet relative to n_{∞} is robust against thermal fluctuations. The preferred orientation θ_{eq}^{(2)} of the dimple particle in the doublet is different from the isolated situation. This is related to the "direct" interaction of defects accompanying the key particle with the edge of the dimple. We propose that this nematic-amplified key-lock interaction can play an important role in self-organization and clustering of mixtures of colloidal particles with dimple colloids present.

  2. The Role of PGC-1α in Vascular Regulation: Implications for Atherosclerosis

    PubMed Central

    Kadlec, Andrew O.; Chabowski, Dawid S.; Ait-Aissa, Karima; Gutterman, David D.

    2016-01-01

    Mitochondrial dysfunction results in high levels of oxidative stress and mitochondrial damage, leading to disruption of endothelial homeostasis. Recent discoveries have clarified several pathways whereby mitochondrial dysregulation contributes to endothelial dysfunction and vascular disease burden. One such pathway centers around PGC-1α, a transcriptional coactivator linked to mitochondrial biogenesis and antioxidant defense, among other functions. Although primarily investigated for its therapeutic potential in obesity and skeletal muscle differentiation, the ability of PGC-1α to alter a multitude of cellular functions has sparked interest in its role in the vasculature. Within this context, recent studies demonstrate that PGC-1α plays a key role in endothelial cell and smooth muscle cell regulation through effects on oxidative stress, apoptosis, inflammation, and cell proliferation. The ability of PGC-1α to impact these parameters is relevant to vascular disease progression, particularly in relation to atherosclerosis. Upregulation of PGC-1α can prevent the development of, and even encourage regression of, atherosclerotic lesions. Therefore, PGC-1α is poised to serve as a promising target in vascular disease. This review details recent findings related to PGC-1α in vascular regulation, regulation of PGC-1α itself, the role of PGC-1α in atherosclerosis, and therapies that target this key protein. PMID:27312223

  3. Role of the MAGUK protein family in synapse formation and function.

    PubMed

    Oliva, Carlos; Escobedo, Pía; Astorga, César; Molina, Claudia; Sierralta, Jimena

    2012-01-01

    Synaptic function is crucially dependent on the spatial organization of the presynaptic and postsynaptic apparatuses and the juxtaposition of both membrane compartments. This precise arrangement is achieved by a protein network at the submembrane region of each cell that is built around scaffold proteins. The membrane-associated guanylate kinase (MAGUK) family of proteins is a widely expressed and well-conserved group of proteins that plays an essential role in the formation and regulation of this scaffolding. Here, we review general features of this protein family, focusing on the discs large and calcium/calmodulin-dependent serine protein kinase subfamilies of MAGUKs in the formation, function, and plasticity of synapses. Copyright © 2011 Wiley Periodicals, Inc.

  4. Proteomic analyses reveal the key roles of BrlA and AbaA in biogenesis of gliotoxin in Aspergillus fumigatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Kwang-Soo, E-mail: shinks@dju.kr; Kim, Young Hwan; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 305-764

    2015-07-31

    The opportunistic human pathogenic fungus Aspergillus fumigatus primarily reproduces by forming a large number of asexual spores (conidia). Sequential activation of the central regulators BrlA, AbaA and WetA is necessary for the fungus to undergo asexual development. In this study, to address the presumed roles of these key developmental regulators during proliferation of the fungus, we analyzed and compared the proteomes of vegetative cells of wild type (WT) and individual mutant strains. Approximately 1300 protein spots were detectable from 2-D electrophoresis gels. Among these, 13 proteins exhibiting significantly altered accumulation levels were further identified by ESI-MS/MS. Markedly, we found thatmore » the GliM and GliT proteins associated with gliotoxin (GT) biosynthesis and self-protection of the fungus from GT were significantly down-regulated in the ΔabaA and ΔbrlA mutants. Moreover, mRNA levels of other GT biosynthetic genes including gliM, gliP, gliT, and gliZ were significantly reduced in both mutant strains, and no and low levels of GT were detectable in the ΔbrlA and ΔabaA mutant strains, respectively. As GliT is required for the protection of the fungus from GT, growth of the ΔbrlA mutant with reduced levels of GliT was severely impaired by exogenous GT. Our studies demonstrate that AbaA and BrlA positively regulate expression of the GT biosynthetic gene cluster in actively growing vegetative cells, and likely bridge morphological and chemical development during the life-cycle of A. fumigatus. - Highlights: • Proteome analyses of WT and mutants reveal 13 differentially expressed proteins. • The GliT and GliM proteins are significantly down-regulated by ΔabaA and ΔbrlA. • Expression of other gliotoxin biosynthetic genes is lowered by ΔabaA and ΔbrlA. • Growth of ΔbrlA strain lacking GliT is completely inhibited by exogenous gliotoxin. • BrlA and AbaA play key roles in biogenesis of gliotoxin in Aspergillus fumigatus.« less

  5. Protein analysis: key to the future.

    PubMed

    Boodhun, Nawsheen

    2018-05-01

    Protein analysis is crucial to elucidating the function of proteins and understanding the impact of their presence, absence and alteration. This is key to advancing knowledge about diseases, providing the opportunity for biomarker discovery and development of therapeutics. In this issue of Tech News, Nawsheen Boodhun explores the various means of protein analysis.

  6. Impaired Social and Role Function in Ultra-High Risk for Psychosis and First-Episode Schizophrenia: Its Relations with Negative Symptoms.

    PubMed

    Lee, So Jung; Kim, Kyung Ran; Lee, Su Young; An, Suk Kyoon

    2017-03-01

    Psychosocial dysfunction was a nettlesome of schizophrenia even in their prodromal phase as well as first episode and its relations with psychopathology were not determined. The aim of the present study was to examine whether the social and role function impairment was found in ultra-high risk for psychosis (UHR) individuals as well as first-episode schizophrenia patients and to explore its relations with psychopathology. Thirty-seven normal controls, 63 UHR participants and 28 young, first-episode schizophrenia patients were recruited. Psychosocial functioning was examined by using Global function: Social and Role scale. Psychopathologies of positive, negative and depressive symptom were also measured. Social and role functioning in UHR were compromised at the equivalent level of those of first-episode schizophrenia patients. Multiple linear regression analysis revealed that social and role dysfunction was associated with negative symptoms in each UHR and first-episode schizophrenia group. These findings suggest that the significant impairment of social and role function may be appeared before the active psychosis onset at the level of extent to those of first-episode schizophrenia patients. The psychosocial intervention strategy especially targeting the negative symptoms should be developed and provided to individuals from their prepsychotic stage of schizophrenia.

  7. Key drivers of airline loyalty.

    PubMed

    Dolnicar, Sara; Grabler, Klaus; Grün, Bettina; Kulnig, Anna

    2011-10-01

    This study investigates drivers of airline loyalty. It contributes to the body of knowledge in the area by investigating loyalty for a number of a priori market segments identified by airline management and by using a method which accounts for the multi-step nature of the airline choice process. The study is based on responses from 687 passengers. Results indicate that, at aggregate level, frequent flyer membership, price, the status of being a national carrier and the reputation of the airline as perceived by friends are the variables which best discriminate between travellers loyal to the airline and those who are not. Differences in drivers of airline loyalty for a number of segments were identified. For example, loyalty programs play a key role for business travellers whereas airline loyalty of leisure travellers is difficult to trace back to single factors. For none of the calculated models satisfaction emerged as a key driver of airline loyalty.

  8. Key drivers of airline loyalty

    PubMed Central

    Dolnicar, Sara; Grabler, Klaus; Grün, Bettina; Kulnig, Anna

    2011-01-01

    This study investigates drivers of airline loyalty. It contributes to the body of knowledge in the area by investigating loyalty for a number of a priori market segments identified by airline management and by using a method which accounts for the multi-step nature of the airline choice process. The study is based on responses from 687 passengers. Results indicate that, at aggregate level, frequent flyer membership, price, the status of being a national carrier and the reputation of the airline as perceived by friends are the variables which best discriminate between travellers loyal to the airline and those who are not. Differences in drivers of airline loyalty for a number of segments were identified. For example, loyalty programs play a key role for business travellers whereas airline loyalty of leisure travellers is difficult to trace back to single factors. For none of the calculated models satisfaction emerged as a key driver of airline loyalty. PMID:27064618

  9. Long-term functioning following whiplash injury: the role of social support and personality traits.

    PubMed

    Nijs, Jo; Inghelbrecht, Els; Daenen, Liesbeth; Hachimi-Idrissi, Said; Hens, Luc; Willems, Bert; Roussel, Nathalie; Cras, Patrick; Bernheim, Jan

    2011-07-01

    Transition from acute whiplash injury to either recovery or chronicity and the development of chronic whiplash-associated disorders (WAD) remains a challenging issue for researchers and clinicians. The roles of social support and personality traits in long-term functioning following whiplash have not been studied concomitantly. The present study aimed to examine whether social support and personality traits are related to long-term functioning following whiplash. One hundred forty-three subjects, who had experienced a whiplash injury in a traffic accident 10-26 months before the study took place, participated. The initial diagnoses were a 'sprain of the neck' (ICD-9 code 847.0); only the outcome of grades I-III acute WAD was studied. Long-term functioning was considered within the biopsychosocial model: it was expressed in terms of disability, functional status, quality of life and psychological well-being. Participants filled out a set of questionnaires to measure the long-term functioning parameters (i.e. the Neck Disability Index, Medical Outcome Study Short-Form General Health Survey, Anamnestic Comparative Self-Assessment measure of overall well-being and the Symptom Checklist-90) and potential determinants of long-term functioning (the Dutch Personality Questionnaire and the Social Support List). The results suggest that social support (especially the discrepancies dimension of social support) and personality traits (i.e. inadequacy, self-satisfaction and resentment) are related to long-term functioning following whiplash injury (Spearman rho varied between 0.32 and 0.57; p < 0.01). Within the discrepancy dimension, everyday emotional support, emotional support during problems, appreciative support and informative support were identified as important correlates of long-term functioning. Future prospective studies are required to confirm the role of social support and personality traits in relation to long-term functioning following whiplash. For such

  10. Teachers' Understanding of the Role of Executive Functions in Mathematics Learning

    ERIC Educational Resources Information Center

    Gilmore, Camilla; Cragg, Lucy

    2014-01-01

    Cognitive psychology research has suggested an important role for executive functions, the set of skills that monitor and control thought and action, in learning mathematics. However, there is currently little evidence about whether teachers are aware of the importance of these skills and, if so, how they come by this information. We conducted an…

  11. A key role for foxQ2 in anterior head and central brain patterning in insects

    PubMed Central

    Kitzmann, Peter; Weißkopf, Matthias; Schacht, Magdalena Ines

    2017-01-01

    ABSTRACT Anterior patterning of animals is based on a set of highly conserved transcription factors but the interactions within the protostome anterior gene regulatory network (aGRN) remain enigmatic. Here, we identify the red flour beetle Tribolium castaneum ortholog of foxQ2 (Tc-foxQ2) as a novel upstream component of the aGRN. It is required for the development of the labrum and higher order brain structures, namely the central complex and the mushroom bodies. We reveal Tc-foxQ2 interactions by RNAi and heat shock-mediated misexpression. Surprisingly, Tc-foxQ2 and Tc-six3 mutually activate each other, forming a novel regulatory module at the top of the aGRN. Comparisons of our results with those of sea urchins and cnidarians suggest that foxQ2 has acquired more upstream functions in the aGRN during protostome evolution. Our findings expand the knowledge on foxQ2 gene function to include essential roles in epidermal development and central brain patterning. PMID:28811313

  12. Non-Structural Proteins of Arthropod-Borne Bunyaviruses: Roles and Functions

    PubMed Central

    Eifan, Saleh; Schnettler, Esther; Dietrich, Isabelle; Kohl, Alain; Blomström, Anne-Lie

    2013-01-01

    Viruses within the Bunyaviridae family are tri-segmented, negative-stranded RNA viruses. The family includes several emerging and re-emerging viruses of humans, animals and plants, such as Rift Valley fever virus, Crimean-Congo hemorrhagic fever virus, La Crosse virus, Schmallenberg virus and tomato spotted wilt virus. Many bunyaviruses are arthropod-borne, so-called arboviruses. Depending on the genus, bunyaviruses encode, in addition to the RNA-dependent RNA polymerase and the different structural proteins, one or several non-structural proteins. These non-structural proteins are not always essential for virus growth and replication but can play an important role in viral pathogenesis through their interaction with the host innate immune system. In this review, we will summarize current knowledge and understanding of insect-borne bunyavirus non-structural protein function(s) in vertebrate, plant and arthropod. PMID:24100888

  13. The Functional Role of the Periphery in Emotional Language Comprehension

    PubMed Central

    Havas, David A.; Matheson, James

    2013-01-01

    Language can impact emotion, even when it makes no reference to emotion states. For example, reading sentences with positive meanings (“The water park is refreshing on the hot summer day”) induces patterns of facial feedback congruent with the sentence emotionality (smiling), whereas sentences with negative meanings induce a frown. Moreover, blocking facial afference with botox selectively slows comprehension of emotional sentences. Therefore, theories of cognition should account for emotion-language interactions above the level of explicit emotion words, and the role of peripheral feedback in comprehension. For this special issue exploring frontiers in the role of the body and environment in cognition, we propose a theory in which facial feedback provides a context-sensitive constraint on the simulation of actions described in language. Paralleling the role of emotions in real-world behavior, our account proposes that (1) facial expressions accompany sudden shifts in wellbeing as described in language; (2) facial expressions modulate emotional action systems during reading; and (3) emotional action systems prepare the reader for an effective simulation of the ensuing language content. To inform the theory and guide future research, we outline a framework based on internal models for motor control. To support the theory, we assemble evidence from diverse areas of research. Taking a functional view of emotion, we tie the theory to behavioral and neural evidence for a role of facial feedback in cognition. Our theoretical framework provides a detailed account that can guide future research on the role of emotional feedback in language processing, and on interactions of language and emotion. It also highlights the bodily periphery as relevant to theories of embodied cognition. PMID:23750145

  14. On the key role of droughts in the dynamics of summer fires in Mediterranean Europe.

    PubMed

    Turco, Marco; von Hardenberg, Jost; AghaKouchak, Amir; Llasat, Maria Carmen; Provenzale, Antonello; Trigo, Ricardo M

    2017-03-06

    Summer fires frequently rage across Mediterranean Europe, often intensified by high temperatures and droughts. According to the state-of-the-art regional fire risk projections, in forthcoming decades climate effects are expected to become stronger and possibly overcome fire prevention efforts. However, significant uncertainties exist and the direct effect of climate change in regulating fuel moisture (e.g. warmer conditions increasing fuel dryness) could be counterbalanced by the indirect effects on fuel structure (e.g. warmer conditions limiting fuel amount), affecting the transition between climate-driven and fuel-limited fire regimes as temperatures increase. Here we analyse and model the impact of coincident drought and antecedent wet conditions (proxy for the climatic factor influencing total fuel and fine fuel structure) on the summer Burned Area (BA) across all eco-regions in Mediterranean Europe. This approach allows BA to be linked to the key drivers of fire in the region. We show a statistically significant relationship between fire and same-summer droughts in most regions, while antecedent climate conditions play a relatively minor role, except in few specific eco-regions. The presented models for individual eco-regions provide insights on the impacts of climate variability on BA, and appear to be promising for developing a seasonal forecast system supporting fire management strategies.

  15. Role of Intermediate Filaments in Vesicular Traffic.

    PubMed

    Margiotta, Azzurra; Bucci, Cecilia

    2016-04-25

    Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway.

  16. The key role of exudative lesions and their encapsulation: lessons learned from the pathology of human pulmonary tuberculosis.

    PubMed

    Cardona, Pere-Joan

    2015-01-01

    A review of the pathology of human pulmonary TB cases at different stages of evolution in the pre-antibiotic era suggests that neutrophils play an instrumental role in the progression toward active TB. This progression is determined by the type of lesion generated. Thus, exudative lesions, in which neutrophils are the major cell type, are both triggered by and induce local high bacillary load, and tend to enlarge and progress toward liquefaction and cavitation. In contrast, proliferative lesions are triggered by low bacillary loads, mainly comprise epithelioid cells and fibroblasts and tend to fibrose, encapsulate and calcify, thus controlling the infection. Infection of the upper lobes is key to the progression toward active TB for two main reasons, namely poor breathing amplitude, which allows local bacillary accumulation, and the high mechanical stress to which the interlobular septae (which enclose secondary lobes) are submitted, which hampers their ability to encapsulate lesions. Overall, progressing factors can be defined as internal (exudative lesion, local bronchogenous dissemination, coalescence of lesions), with lympho-hematological dissemination playing a very limited role, or external (exogenous reinfection). Abrogating factors include control of the bacillary load and the local encapsulation process, as directed by interlobular septae. The age and extent of disease depend on the quality and speed with which lesions liquefy and disseminate bronchially, the volume of the slough, and the amount and distribution of the sloughing debris dispersed.

  17. The Role of Functional Foods, Nutraceuticals, and Food Supplements in Intestinal Health

    PubMed Central

    Cencic, Avrelija; Chingwaru, Walter

    2010-01-01

    New eating habits, actual trends in production and consumption have a health, environmental and social impact. The European Union is fighting diseases characteristic of a modern age, such as obesity, osteoporosis, cancer, diabetes, allergies and dental problems. Developed countries are also faced with problems relating to aging populations, high energy foods, and unbalanced diets. The potential of nutraceuticals/functional foods/food supplements in mitigating health problems, especially in the gastrointestinal (GI) tract, is discussed. Certain members of gut microflora (e.g., probiotic/protective strains) play a role in the host health due to its involvement in nutritional, immunologic and physiological functions. The potential mechanisms by which nutraceuticals/functional foods/food supplements may alter a host’s health are also highlighted in this paper. The establishment of novel functional cell models of the GI and analytical tools that allow tests in controlled experiments are highly desired for gut research. PMID:22254045

  18. A Key Claudin Extracellular Loop Domain is Critical for Epithelial Barrier Integrity

    PubMed Central

    Mrsny, Randall J.; Brown, G. Thomas; Gerner-Smidt, Kirsten; Buret, Andre G.; Meddings, Jon B.; Quan, Clifford; Koval, Michael; Nusrat, Asma

    2008-01-01

    Intercellular tight junctions (TJs) regulate epithelial barrier properties. Claudins are major structural constituents of TJs and belong to a large family of tetra-spanning membrane proteins that have two predicted extracellular loops (ELs). Given that claudin-1 is widely expressed in epithelia, we further defined the role of its EL domains in determining TJ function. The effects of several claudin-1 EL mimetic peptides on epithelial barrier structure and function were examined. Incubation of model human intestinal epithelial cells with a 27-amino acid peptide corresponding to a portion of the first EL domain (Cldn-153–80) reversibly interfered with epithelial barrier function by inducing the rearrangement of key TJ proteins: occludin, claudin-1, junctional adhesion molecule-A, and zonula occludens-1. Cldn-153–80 associated with both claudin-1 and occludin, suggesting both the direct interference with the ability of these proteins to assemble into functional TJs and their close interaction under physiological conditions. These effects were specific for Cldn-153–80, because peptides corresponding to other claudin-1 EL domains failed to influence TJ function. Furthermore, the oral administration of Cldn-153–80 to rats increased paracellular gastric permeability. Thus, the identification of a critical claudin-1 EL motif, Cldn-153–80, capable of regulating TJ structure and function, offers a useful adjunct to treatments that require drug delivery across an epithelial barrier. PMID:18349130

  19. Bench to Bedside and Back Again: Molecular Mechanisms of α-Catenin Function and Roles in Tumorigenesis

    PubMed Central

    Benjamin, Jacqueline M.; Nelson, W. James

    2009-01-01

    The cadherin/catenin complex, comprised of E-cadherin, β-catenin and α-catenin, is essential for initiating cell-cell adhesion, establishing cellular polarity and maintaining tissue organization. Disruption or loss of the cadherin/catenin complex is common in cancer. As the primary cell-cell adhesion protein in epithelial cells, E-cadherin has long been studied in cancer progression. Similarly, additional roles for β-catenin in the Wnt signaling pathway has led to many studies of the role of β-catenin in cancer. Alpha-catenin, in contrast, has received less attention. However, recent data demonstrate novel functions for α-catenin in regulating the actin cytoskeleton and cell-cell adhesion, which when perturbed could contribute to cancer progression. In this review, we use cancer data to evaluate molecular models of α-catenin function, from the canonical role of α-catenin in cell-cell adhesion to non-canonical roles identified following conditional α-catenin deletion. This analysis identifies α-catenin as a prognostic factor in cancer progression. PMID:17945508

  20. Application of a Novel Functional Gene Microarray to Probe the Functional Ecology of Ammonia Oxidation in Nitrifying Activated Sludge

    PubMed Central

    Short, Michael D.; Abell, Guy C. J.; Bodrossy, Levente; van den Akker, Ben

    2013-01-01

    We report on the first study trialling a newly-developed, functional gene microarray (FGA) for characterising bacterial and archaeal ammonia oxidisers in activated sludge. Mixed liquor (ML) and media biofilm samples from a full-scale integrated fixed-film activated sludge (IFAS) plant were analysed with the FGA to profile the diversity and relative abundance of ammonia-oxidising archaea and bacteria (AOA and AOB respectively). FGA analyses of AOA and AOB communities revealed ubiquitous distribution of AOA across all samples – an important finding for these newly-discovered and poorly characterised organisms. Results also revealed striking differences in the functional ecology of attached versus suspended communities within the IFAS reactor. Quantitative assessment of AOB and AOA functional gene abundance revealed a dominance of AOB in the ML and approximately equal distribution of AOA and AOB in the media-attached biofilm. Subsequent correlations of functional gene abundance data with key water quality parameters suggested an important functional role for media-attached AOB in particular for IFAS reactor nitrification performance and indicate possible functional redundancy in some IFAS ammonia oxidiser communities. Results from this investigation demonstrate the capacity of the FGA to resolve subtle ecological shifts in key microbial communities in nitrifying activated sludge and indicate its value as a tool for better understanding the linkages between the ecology and performance of these engineered systems. PMID:24155925